In Joumnal of Logic and Computation, Special Issue on Agreement Technologies, 22(5), 2012.

Using argumentation to reason about trust and belief*

Yuging Tang', Kai Cai!, Peter McBurney?, Elizabeth Sklar'® and Simon Parsons®??

'Department of Computer Science, 2Department of Informatics,

Graduate Center Kings College London,
City University of New York, The Strand

365 Fifth Avenue, London, WC2R 2LS
New York, NY 10016, USA, United Kingdom

{vtang, kcai}l@gc.cuny.edu mcburney@kcl.ac.uk
3Department of Computer & Information Science,
Brooklyn College,

City University of New York,

2900 Bedford Avenue,

Brooklyn, NY 11210 USA
{sklar,parsons}@sci.brooklyn.cuny.edu

April 29, 2011

Abstract

Trust is a mechanism for managing the uncertainty about autonomous entities and the information they store, and
so can play an important role in any decentralized system. As a result, trust has been widely studied in multiagent
systems and related fields such as the semantic web. Here we introduce a formal system of argumentation that can be
used to reason using information about trust. This system is described as a set of graphs, which makes it possible to
combine our approach with conventional representations of trust between individuals where the relationships between
individuals are given in the form of a graph. The resulting system can easily relate the grounds of an argument to the
agent that supplied the information, and can be used as the basis to compute Dungian notions of acceptability that
take trust into account. We explore some of the properties of these argumentation graphs, examine the computation
of trust and belief in the graphs, and illustrate the capabilities of the system on an example from the trust literature.

1 Introduction

Trust is a mechanism for managing the uncertainty about autonomous entities and the information they deal with. As
a result, trust can play an important role in any decentralized system. As computer systems have become increasingly
distributed, and control in those systems has become more decentralized, trust has been an increasingly important
concept in computer science [0, 35].

As a number of authors have pointed out, trust is a concept that is both complex and rather difficult to pin down
precisely and as a result, there are a number of different definitions in the literature. Thus, to pick a few specific
examples, Sztompka [85]] suggests that:

Trust is a bet about the future contingent actions of others.

while Mcknight and Chervany [61]], drawing on a range of existing definitions, define:

*This paper is a revised and expanded version of [86].

elizabeth sklar
In Journal of Logic and Computation, Special Issue on Agreement Technologies, 22(5), 2012.

elizabeth sklar

elizabeth sklar

Trust is the extent to which one party is willing to depend on something or somebody in a given situation
with a feeling of relative security, even though negative consequences are possible.

and Gambetta [28]] states:

Trust is the subjective probability by which an individual, A, expects that another individual, B, performs
a given action on which its welfare depends.

In the multiagent systems community, an influential model of trust is that of Falcone and Castelfranchi [25] who argue
that trust arises when the trusting agent only trusts another with respect to some goal, and thus with respect to some
action that the second agent can perform which will bring about that goal. Trust then relates to the beliefs that the
trusting agent holds, which include a belief that the second, trusted agent is capable of bringing about the goal, will
carry out the action to bring about the goal, and that this action is necessary to bring about the goal.

It is also pointed out in a number of places that there are different kinds of trust, what [44] calls “trust scopes”. For
example, [35] identifies the following types of trust:

1. Provision trust: the trust that exists between the user of a service or resource, and the provider of that resource.
2. Access trust: the trust that exists between the owner of a resource and those that are accessing those resources.

3. Delegation trust: the trust that exists between an individual who delegates responsibility for some action or
decision and the individual to whom that action or decision is delegated.

4. Identity trust: trust that an individual is who they claim to be.

5. Context trust: trust that an individual has in the existence of sufficient infrastructure to support whatever activi-
ties that individual is engaged in.

While these definitions of trust vary, there are clearly some common elements. First, there is a degree of uncertainty
associated with trust. As [[L1] point out, trust is a function of the subjective certainty of the trusting agent’s beliefs. This
subjective certainty might, as argued by Gambetta, be expressed as a subjective probability, or as Sztompka prefers to
think of it as a betﬂ The subjective certainty can be expressed as a “feeling of security” [61]], or as Castelfranchi and
Falcone [[L1] prefer, in terms of reasons based on perceived risk. Second, trust is tied up with the relationships between
individuals. Trust is related to the actions of individuals and how those actions affect others.

As Demolombe and Lorini [15] 57] have shown, building a logical model of even part of a detailed trust model is
a complex undertaking (they construct a modal logic model of one part of Falcone and Castelfranchi’s [25] concept
of trust). Our focus is rather different. The aim of this paper is to begin to combine two lines of work — work on
modelling trust, and work on reasoning using argumentation. While, as we discuss in the next section, there is a large
amount of work on trust, we are most concerned with work on handling trust in social networks which deals with
a simpler concept of trust than those we have discussed so far. Much of the work on trust in social networks, for
example [37], has concentrated on identifying ways to take a social network in which people rate the trustworthiness
of their acquaintances, and infer new ratings between pairs of individuals. Many models have been proposed, and
their predictions compared with the ratings that people themselves generate. However, little work has been done on
reasoning using these ratings.

Argumentation [73]] on the other hand, is a field that is almost entirely concerned with reasoning and has a couple
of features that we believe make it appropriate for dealing with trust. First, argumentation has been used to capture
features of interaction between agents [67, |68]], a situation in which trust needs to be considered, so it seems to be a
natural step to think about how argumentation-based interactions might be extended with a model of trust. The first
step in doing this is to develop a system of argumentation that can make use of trust information and that is what we
do here. Second, argumentation provides a reason-based model of trust — it constructs arguments (reasons) for and
against adopting beliefs and actions which explicitly record the agents that need to be trusted in the adoption. Thus
our work contributes towards a model of trust that is reason-based as [11]] argues trust should be. (The system we
describe here is a system that constructs arguments that incorporate information about trust, not arguments about what

IBets can, of course, be expressed in terms of subjective probabilities [41]).

information or agents to trust.) As we have suggested before [69]], the fact that argumentation records the steps used
in reaching conclusions makes it appropriate for reasoning where the provenance of information is important, as is
widely acknowledged in handling trust [30} [32].

In this paper, we develop a general system of argumentation that can represent trust information, and be used in
combination with a trust network that captures relationships between agents. This system makes it possible for an
agent to construct arguments where belief in the conclusions is related to the degree of trust in the agents who supplied
the information that is used as premises in the arguments. We present several instantiations of the general system, and
demonstrate that one of them gives intuitively appealing results on an illustrative example. Part of the novelty of the
work is its fusion of trust and argumentation, a topic that has not received much attention (though we describe a couple
of related papers in Section[J). Another part of the novelty comes from the fact that the model we develop is graphical.
Though arguments, and the relationships between them, are often drawn as graphs, the underlying systems are not
typically formulated graph-theoretically. Since one of our long-term aims is to use the graphical display of arguments
as a way to help people make decisions in situations where trust — especially trust that stems from the provenance of
information — is important, a graphical formulation seems natural. As part of this, we give a graphical formulation of
the usual notions of acceptability [22], though with some slight variations from the notions [22].

The rest of the paper is structured as follows. Section [3]introduces models of trust and argumentation, and then
Section [] combines them. The combined model is an abstract model, and to make the discussion more concrete,
Section[5]give some instantiations. Section[f|gives a large example, before Sections[7]and[8|consider the computational
aspects of building the graphical models and propagating trust and belief values through them. Finally Section [J]
reviews the contribution of the paper, particularly with respect to other work on trust and argumentation, and Section[I0]
concludes.

2 Related work

As we pointed out above, there has been much work in recent years that is concerned with trust, both within computer
science and outside computer science. Much of the work on trust in computer science has concentrated on dealing
with specific scenarios in which trust has to be established or handled in some fashion. Thus, for example, we see
work on trust in peer-to-peer networks, including the EigenTrust algorithm [48|] — a variant of PageRank [65]] where
downloads from a source play the same role as outgoing hyperlinks and which is effective in excluding peers who
want to disrupt the network. [1]] then builds on this, developing a mechanism that prevents peers manipulating their
trust values to get preferential downloads. [96] is concerned with slightly different issues in mobile ad-hoc networks,
looking to prevent nodes from getting others to transmit their messages while refusing to transmit the messages of
others.

The internet, as the largest distributed system of all, is naturally a target of much of the research on trust. There
have, for example, been studies on the development of trust in ecommerce through the use of reputation systems [78]]
and studies on how such systems perform [77} 87]] and how such systems can be manipulated [54]. One interesting
recent development is the idea of having individuals indemnify each other by placing some form of financial guarantee
on transactions that others enter into [13} [14]], thus providing a reputation mechanism that is strategy-proof. Another
area of concern has to do with the reliability of sources of information on the web. [92], for example, investigates
mechanisms to determine which sources to trust when faced with multiple conflicting sources, while [[17] looks at the
related question of how to resolve conflicting information, and [2] extends this idea to rate the individuals who provide
information by looking at the history of the information they have provided. Issues related to trust in the social web
have also attracted much attention 34} 162, 87, 91].

Trust is an especially important issue from the perspective of autonomous agents and multiagent systems. The
premise behind the multiagent systems field is that of developing software agents that will work in the interests of
their owners, carrying out their owners’ wishes while interacting with other entities. In such interactions, agents will
have to reason about the amount that they should trust those other entities, whether they are trusting those entities to
carry out some task, or whether they are trusting those entities to not misuse crucial information. As a result we find
much work on trust in agent-based systems [81]].

In the previous section, we mentioned the definition of trust suggested by Falcone and Castelfranchi [25], which
relates trust explicitly to the goals of an agent, and considers trust to be concerned with whether another agent can and

will perform an action which will enable the first agent to achieve its goals. Much has been written on this model, and,
from our perspective, [11] and [27] are the most important. [11] argues that while trust has an element of “subjective
certainty” to it, it is also reason-based, and this is a position that we completely agree with — as we will see below
our handling of trust uses some numerical elements to capture aspects of that certainty or uncertainty while relying on
argumentation to capture the reason [27] discusses the issue of transitivity, which is often taken for granted in work
on trust, but which always involves assumptions, assumptions which are analyzed in detail in [27].

Give the logical basis of the argumentation system that we develop, we should point out other work on logical
approaches to trust. As we mentioned above, [[15157]] have developed a logic that captures important elements of the
definition of trust in [25]]. This model has also been extended [9] to deal with situations in which the trusting agent has
to rely on another agent for more than a single action. The focus on action, which is of course key in [25]’s concept
of trust, distinguishes these models from other logical accounts of trust, such as [56] where the focus is on trust in
information sources. This latter is much closer to our concern, though our notions of trust and the beliefs that are
affected by them are much simpler than either those of [[15] and [56].

In work on trust in multiagent systems and the social web, it is common to assume that individuals maintain a
trust network of their acquaintances, which includes ratings of how much those acquaintances are trusted, and how
much those acquaintances trust their acquaintances, and so on. One natural question to ask in this context is what
inference is reasonable in such networks, and the propagation of trust — both through the transitivity of trust relations
[50} 53,179 190] and more complex relationships like “co-citation” [36] — have been studied. Our approach builds on
this work by considering how agents can make use of information that comes from acquaintances for which a trust
value is derived using this kind of computation. In this regard, the closest progenitor of the work in this paper is [50],
which combines information from different individuals in a trust to reason about what one of these agents should do.
([5Q] is also the paper from which we draw our ongoing example.)

3 An abstract model of trust and argumentation

In this section we present the formal models of trust and argumentation that we use in this paper.

3.1 Some graph theory

Since graphs of various kinds will crop up throughout this paper, we start with a little graph theory, based on the
introductory chapters of [L6]. A graph is a pair G = (V, E) of sets. V is the set of vertices (or nodes). E is the set of
edges (or arcs), and is a set of subsets of V. Each element e € E is the set of nodes joined by that edge. For much of
this paper we will be concerned with graphs that include hyperedges, that is edges which join three or more vertices.
Thus if V = {v1,va,v3,v4,v5}, E might be {{v1,va},{vs,va}, {v1,v3,v5}}. A graph that includes hyperedges is
called a hypergraph. If V/ C V and E' C E then G’ = (V' E’) is a subgraph of G, which we write as G’ C G.

Many of the graphs we use will be directed graphs. A directed graph is a graph in which each edge has an initial
vertex (or set of vertices) and a terminal vertex (or set of vertices). Thus for:

E = {{vl, VQ}, {V3, V4}7 {Vl, V3, V5}}>

v1 might be the initial vertex and v, the terminal vertex of the first edge, and {v1, v3} might be the initial vertices of
the third (hyper) edge and vs the terminal vertex. (The third edge might also have vy as the initial vertex and {vs, v5}
as the terminal vertices.)
A path in an undirected graph G is just a subgraph of G for which V = {vg,v1,va,...,w}and E = {{vo,v1}, {vi,va}, {ve—1, v }}.

Where this is unambiguous, we will write the path as (vg, v1,va, ..., k). Clearly E has to be such that there is an edge
joining every subsequent pair of vertices in V. When the graph is directed, we distinguish between an undirected path,
as defined above, and a directed path which obeys an additional constraint on path, that for every v; and v;1 in V,
v; is the initial vertex of the edge that joins v; and v; 11, and v;;; is the terminal vertex. When we consider paths in
hypergraphs, the constraint is that for every pair of vertices in the sequence, there is an edge in E that contains both

2The arguments that we consider here are admittedly not arguments for and against trusting another agent, but that aspect can be captured by the
related system we describe in [70]

vertices, and if that hypergraph is directed, the first edge in the pair must contain one of the initial vertices, and the
second must contain one of the terminal vertices of the edge in question.

A connected graph is one for which there is a path between every pair of vertices. If the graph is directed, it is
connected if there is an undirected path between every pair of vertices. A cycle is an (undirected) path v, ..., v, v,.
A graph that doesn’t contain any cycles is called a forest, and a forest that is connected is called a free. The usual
graph-theoretic terminology calls any vertex which is a member of only one edge a leaf. In the directed graphs we
use, we will place an additional constraint on leaves. A leaf is a vertex that is part of only one edge, and which is the
terminal vertex of that edge. In contrast, a root is a vertex that is part of only one edge, and which is the initial vertex
of that edge.

3.2 Trust Networks

Given this graph theory, we can now describe the first important set of concepts that we will be dealing with. We are
interested in a set of Agents Ags and the relationships between them, relationships that we assume are captured in a
structure similar to a social network. In particular, we are interested in how the agents trust one another, and to do this
we use a simple model of trust that is similar to that used in other work on social networks [33,150}155]]. Following the
usual presentation, for example [36} 50, 53} 79} 90], we start with a trust relation:

T C Ags x Ags

which we can think of as identifying which agents trust one another. If 7(Ag;, Ag;) for Ag;,Ag; € Ags, then Ag; trusts
Ag;. Note that this is not a symmetric relation, so it is not necessarily the case that 7(Ag;,Ag;) = 7(Ag;,Agi).
It is natural to represent this trust relation as a directed graph, and we have:

Definition 1 A trust network for a set of agents Ags is a pair

T = (Ags,{7}}

where {T} is the set of pairwise trust relations over the agents in Ags so that if T(Ag;, Ag;) is in {7} then {Ag;,Ag;} is
a directed arc in T.

In this graph, the set of agents is the set of vertices, and the trust relations define the arcs. We are typically interested
in minimal trust networks, which we define to be trust networks that are connected. These thus capture the relationship
between a set of agents all of whom, in one way or another, have something to say about trust in other members of the
group. A directed path between agents in the trust network indicates that one agent directly or indirectly trusts others
to which it is connected directly or indirectly. For example:

<Ag17Ag2a .. -Agn>

is a path from agent Ag; to Ag,, which requires that:
T(Ag1,Ag2), T(Ag2,Ag3), - .., T(Agn—1,A8n)

and looking at the path gives us a means to compute the trust that Ag; has in Ag, given the trust that each agent along
the path has in the next agent along the path. The usual assumption here is that we can place some measure of opinion
on the trust that one agent has in another, so we have:

tr:Ags x Ags — O

where O denotes the set of possible values of those opinions. A popular instantiation of opinion in the literature is the
set of real numbers ¥t:
% Ags x Ags — R

where fr gives a suitable trust value. For example, we might take a value of 0 to indicate that there is no trust between
the agents in question and a value of 1 to indicate the fullest possible degree of trust between the agents. Other
instantiations of O might contain more structure, such as the tuple of numbers used in subjective logic [45] (64, [90].

‘We assume that ¢ and 7 match, so that:

r(Agi,Ag) # L & (Agi,Ag)eT
r(Agi,Agy) = L & (Agi,Ag) ¢

where L is the value from ¥ that denotes no trust.

Now, this just deals with the direct trust relations encoded in 7. It is usual in work on trust to consider performing
inference about trust by assuming that trust relations are transitive. This is easily captured in the notion of a trust
network:

Definition 2 If Ag; is connected to Ag; by a set of directed paths {(Agi,Agit1,...Agj)} in the trust network T, then
Ag; trusts Ag; according to 7.

In other words, here we take trust to be a transitive notion. We note that while [27] argue that transitivity does not
always hold — and we believe that it is absolutely correct that transitivity only holds under certain conditions —
transitivity is an assumption that is commonly made in the literature. For example, the notion of trust embodied here
is exactly the “indirect trust” or “derived trust” of [46], and the process of inferring this indirect trust is what [36] calls
“direct propagation”. Our purpose here is to model those situations in which it is reasonable to consider trust to be
transitive, while acknowledging that this is not always the cas

If we have a trust function ¢r, then we can compute:

tr(Agi,Ag)) = 1r(Agi,Agiy1,Agiv2;--.,Ag1,Ag))
= 1r(Agi,Agiv1) ®" tr(Agit1,Agir2) @ ... @ tr(Agj—1,Ag))

for some function
RU:OxO0O—0

Here we follow [90] in using the symbol ®" to stand for this operatioﬂ while allowing it in practice to be one of
a number of possible operations as we will discuss below. Sometimes it is the case that there are two or more paths
through the trust network between Ag; and Ag; indicating that Ag; has several opinions about the trustworthiness of
Ag;. If we have two paths:

(Agi,Agii1, - Ag_1,Ag)
<Ag,~,Ag§'+h .- 'Ag_ll‘l—lvAgj>

and

ir(Agi, Ag;) 1r(Agi,Agiy1) @ tr(Agiy1,A81y0) @ ... @ 1r(Ag]_1,Ag))
r(Agi,Ag)" = 1r(Agi,Agl 1) ®" tr(Ag] 1, Agls) @ ... &" tr(AgJ’-’_l,Agj)

then the overall degree of trust that Ag; has in Ag; is:
r(Agi, Agj) = tr(Agi, Ag;) ®" tr(Agi, Ag;)"”

again using the standard notation

D" 0x0— 0

for a function that combines trust measures along two distinct paths between the same two vertices [90]. This approach
can clearly be extended to deal with three or more paths. The literature contains several instantiations of ®" and &".
For example, [[79] discusses using multiplication or minimum for ®” and using maximum for &", while [50] uses a
weighted average that in essence adopts multiplication for ®" and addition for &". [46]] and [90] use operators derived

3Indeed, in other work [70], we discuss explicitly modelling the ways in which trust is propagated, which makes it possible to perform metarea-
soning about which forms are applicable in different situations.
4[90] uses the unadorned symbol ® and we add the subscript to distinguish it from the similar operation for belief values we introduce below.

() (b) (©

Figure 1: Example trust graphs. (a) shows a complete graph, (b) shows an agent-centric version from John’s point of
view, and (c) shows an agent-centric view from Alice’s point of view.

from Dempster-Shafer theory, and as [8] discuss, we could instantiate operators like these in many other ways. We
will discuss some of these options more below.

As an example of a trust graph, consider Figure[T{a) which shows the trust relationship between John, Mary, Alice,
Jane and Dave. This is adapted from the example in [S0]] normalizing the values to lie between 0 and 1. The solid lines
are direct trust relationships, the dotted lines are indirect links derived from the direct links. Thus John trusts Jane and
Dave because he trusts Mary and Mary trusts Jane and Dave. However, John does not, even indirectly, trust Alice.

Since we will often be considering the viewpoint of a given agent, it is useful for us to define the concept of an
agent-centric trust graph:

Definition 3 An agent-centric trust graph T is a trust network with a single root.

The agent-centric trust graph with Ag at its root is said to be the network from Ag’s point of view or the “Ag-centric
network”. Thus Figure[I[b) is the John-centric version of the graph in Figure[I(a) and Figure[Ic) is the Alice-centric
version. We use this terminology because:

Proposition 1 For an agent-centric trust network T with Ag at the root, Ag trusts every agent in the network according

toT.

Proof: An agent-centric trust network has just one root and so it is a tree. Every tree is connected, and in a directed
tree such as T, there is a directed path from the single root to every node (if there was not, there would be more than
one root). Thus a directed path connects Ag to every other agent in T and by Definition [2] Ag trusts every agent
according to T. O

Thus an agent-centric trust network identifies the agents that are, direct and indirectly, trusted by the agent correspond-
ing to the root, and every agent in the agent-centric trust network is trusted by the agent at the root. In addition, we
can immediately see that:

Proposition 2 For any trust network T = (Ags, {1}), there exists a distinct agent-centric trust network T’ for each
node in T, and every T’ will be a sub-graph of T.

Proof: For the first part, we can construct a trust network T' = (Ags', {7}') for every agent Ag; € Ags by recursively
identifying the agents Ag; it is linked to by directed arcs from T, and every agent that those Ag; are linked to, and so
on. (If there are no outgoing arcs from an Ag;, the graph will just include that one agent). Since these graphs all have

different root nodes, they are distinct. For the second part, it is clear that during this construction process, Ags' C Ags
and {t} C{r},s0oT' CT.O

Proposition 3 Given a trust network T that contains Ag; and Ag; and an Ag;-centric trust network T such that
T' C T, Ag; trusts Agj according to T iff Ag; trusts Ag; according to T.

Proof: From Proposition|2) T' C T. As a result, every arc in T' is also an arc in T, and so every path in T is a
pathin T. Thus Ag; trusts Ag; according to T' only if Ag; trusts Ag; according to T. For the “if” part, again consider
the recursive construction of T sketched in the proof of Proposition|2| If there is a directed path from the root of
T’ to some agent in T, then that path will be in T' and so Ag; trusts Ag; according to T' for every Ag; that it trusts
according to T. O

Thus an Ag;-centric trust network that is derived from a trust network 7 exactly identifies the agents that, according to
T, Ag; trusts. As a result, when we consider what Ag; reasons about, we lose nothing by ignoring the parts of 7 that
aren’t in the Ag;-centric network — they only contain agents that Ag; can safely ignore because they aren’t trusted.

3.3 Argumentation

Now we turn our attention to the structure of the agents. An agent Ag; has a knowledge base > = P U A. P is a set
of premises, each of which is a logical statement in a language £. A is a set of inference rules, which we individually
denote by ¢, each of which is of the form:

5: {ph-'-pn}
C

where every p; (denoted by p;(0)) and ¢ (denoted by ¢(9)) are members of L. In other words the inference rules link
some set of premises p; to a conclusion ¢. We will also write these rules as (4, ¢). In this paper, since here we draw
heavily on the work of [S0], these rules are much like the normal default rules used in that work. For example, a
domain specific inference rule on not watching a comedy film can be represented:

_ Comedy(x)
~ —Watch(x)

wedded to the use of these default-like rule. A can be any set of inference rules, for example we might use the natural
deduction style rules of [59].
We can represent inference using the rules in §, whatever form they take, as another graph as follows:

Definition 4 A rule network R is a directed hypergraph (V" E") where:
1. the set of vertices V" are elements of L;
2. the set of edges E" are inference rules §;
3. the initial vertices of an edge e € E" are the premises of the corresponding rule §; and
4. the terminal node of that edge is the corresponding conclusion c.

Thus a rule network simply connects premises and conclusions of rules. For a simple rule network, see Figure 2] (again
this is taken from [50]).
Under certain circumstances, a rule network captures a proof made using the rules and premises in a particular >:

Definition 5 For a given knowledge base ¥ = P U A, a rule network R = (V' E") is a proof network if and only if
every premise of each § € E" is either a member of P or the conclusion of some ¢’ € E'.

‘ IndieFilm(hce) ‘ ‘ DirectedBy(hce, Almodovar) ‘

£

5 __ IndieFilm(z)ADirected By(z,Almodovar)
dave = Watch(z)

Watch(hce)

Figure 2: A rule network. The rectangular nodes denote premises and the oval, which represent a hyperedge, denotes
an inference rule.

To be a proof network, the rule network has to be constructed from the contents of some knowledge-base — a rule
can’t be in the proof network unless its premises are either in the knowledge base or are derived by applying rules to
premises that are in the knowledge base.

We say that a proof network is for a conclusion c if c is a leaf of the network. For example, if:

Y = {IndieFilm(hce), DirectedBy(hce, Almodovar)}
U IndieFilm(x) N\ DirectedBy(x, Almodovar)
Watch(x)

then Figure [2]is a proof network for Watch(hce).
Some proof networks correspond to arguments:

Definition 6 An argument A from a knowledge base = = PUA is a pair (h, H) where H = (V' E") is a proof network
for h, and h is the only leaf of H.

H is the support of the argument, and £ is the conclusion. C(H) is the set of intermediate conclusions of H, the set of
all the conclusions of the 6 € E” other than h. P(H) is the set of pure premises of H, the premises of the § € E” that
aren’t intermediate conclusions of H.

Thus for us an argument is a graphical representation of Prakken’s idea of an argument [72], where the argument
contains a full trace of the steps that were used to reach the conclusion (rather than just containing the set of rules that
were used as in [29]).

Given these definitions, we can easily show that:

Proposition 4 [f (h, H) is an argument, then H is a connected graph.

Proof: The proof network of an argument is allowed only one leaf. Since it is a proof network, the leaf has to be
a conclusion of a rule whose premises are either part of X, and thus roots of the graph, or the conclusions of other
rules. Working backwards from the leaf/conclusion, it is clear that there can be no components of the graph that aren’t
connected to the leaf, and so the graph must be connected. O

Proposition 5 If (h, H) is an argument, then there is only one hyperedge (0;, h) in H.
Proof: This follows directly from the fact that h is a leaf of H. If there were more than one rule in H with h as its

conclusion, h would not be a leaf, which contradicts Definition[6] O

Thus an argument does not have any duplicated reasoning that supports its conclusion, and an argument is a proof
network that is minimal in the sense that it sanctions no inferences other than its conclusion and intermediate steps
that become premises of rules required to generate the conclusion.

Since our agents are often going to deal with information that is uncertain, we will assume that each agent Ag; has
a function which assigns a degree of belief — which might be established as described in [S8] — to elements of the
logical language it uses for premises and rules:
bel;: L+— B

where 53 denotes the set of possible values of the degree of beliefs. A common instantiation of B is the set of real
numbers
bel; : L — R.

Furthermore, as with trust, we will often use a function that returns degrees of belief between 0 and 1. As we build
arguments, we need to combine the degrees of belief assigned to premises and rules. For a rule:

5 _ {plvﬂ‘vpm}
c

each agent Ag; associates a degree of belief bel;(§) with the rule along with a belief combination function:
57 (beli(p1), .., beli(pm), beli(5))

of the appropriate arity to combine the beliefs in all the premises with the belief in the rule itself to establish the
appropriate belief in the conclusion. combination function 6i® can be tailored to reflect different belief combinations
for different inference schemes (such as the modus ponens, modus tollens, and hypothetical syllogism [52]).
With a belief function bel; for each element of the grounds of an argument, we can assign belief to an argument as
a whole:
bel;({h,H)) = combine;({bel;(hi|l € H)})

where combine; is a function to combine the belief on individual component of H into the belief on the argument as a
whole. Ignoring the internal structure of an argument, a simplified implementation of combine is

combine;({hy, ha, ...,h,}) = hy @ hy @ ... @ h,,.

where:
@ BxB— B

is a function for the pairwise combination of beliefs. Depending on the requirement of the application of our argu-
mentation system, we can also implement the combination function by taking into account the inference structure of
the arguments and applying the combination function §7 of every inference rule used in the arguments.

A key notion in argumentation is that arguments defeat one another. That is, one argument casts doubt on another
by, for example, contradicting the conclusion of the second argument. We distinguish a number of ways that a defeat
may occur as follows:

Definition 7 An argument (h1, H,) defeats an argument (ho, Hy) if it rebuts, premise-undercuts, intermediate-undercuts,
or inference-undercuts it, where:

e An argument (hy, Hy) rebuts another argument (ho, Ha) iff hy = —ho.

o An argument (hy, H,) premise-undercuts another argument (ha, Hz) iff there is a premise p € P(Hz) such that
I’l1 = .

e An argument {(hy, H,) intermediate-undercuts another argument {ha, Hs) iff there is an intermediate conclusion
¢ € C(H3) such that ¢ # hs and hy = —c.

e An argument (hy, H,) inference-undercuts another argument (ha, Hs) iff there is an inference rule 5 € A(Hs)
such that § = P2==P and hy = =(p1 A ... Apy — ©).

In any case in which (hy, Hy) defeats (ha,Hs2), (h1, Hy) is said to be a defeater of (ha, Ha), and (ha, Hs) is said to be
the defeatee. The relation defeat collects all pairs ({(hy,H1), (ha, H2)) such that (hy, Hy) defeats (ha, Ho).

10

From Dung [23]], we have the following component definitions, all of which hold for the system of argumentation we
have described.

Definition 8 An argumentation framework is a pair, Args = (A, R), where A is a set of arguments, and R is the
binary relation defeat over the arguments.

Definition 9 Let (A, R) be an argumentation framework, and S C A. An argument A is defended by S iff VB € A if
(B,A) € R then 3C € S such that (C,B) € R.

Definition 10 S C A. Fr(S) = {A € A|A is defended by S with respect to R}.

Now, for a function F : D — D where D is the domain and the range of the function, a fixed point of F is an x € D
such that x = F(x). When the D is associated with an ordering P — for example, P can be set inclusion over the power
set D of arguments — x is a least fixpoint of F if x is a least element of D with respect to P and x is a fixed point.

Definition 11 Let (A, R) be an argumentation framework. The set of acceptable arguments, denoted by Acc’y, is the
least fixpoint of the function Fr with respect to set inclusion.

The least fixpoint semantics can be viewed as a mathematical translation of the principle that an argument survives if it
can defend itself and be defended by a set of arguments which can also survive all the attacks made upon its members.
Other argumentation semantics from the literature, such as [[7, 12, 23] can also be employed.

4 Arguments and Trust

So far we have described how trust is propagated between agents, and how each agent builds arguments. We now
combine the two.

4.1 Trust and belief

As we discussed above, we make use of a very simple model of belief, since for the purposes of this paper we only
need to capture the fact that an agent’s knowledge can be uncertain. We capture this by allowing each agent Ag; to
have a measure of belief bel;(¢) for each ¢ in its knowledge base ¥;. However, an agent Ag; is not only interested in
using information from its own knowledge base, but also information from other agents — for example let’s imagine
that Ag; is using ¢ which Ag; told Ag; was true. [56]] handles this situation by saying that if Ag; trusts Ag;. and Ag; says
¢ is true, then Ag; believes ¢. We follow this principle but adapt it for our model where both trust and belief admit
degrees.

To do this, we say that Ag; needs to take into account its degree of trust in Ag; in formulating its degree of belief
in information it gets from Ag;. We assume that this is done this by using the trust value that Ag; can compute for Ag;
through the trust network that joins them, as outlined in Section[3.2] Having computed this value, which we will call
tr(Ag;,Agj), we further assume that Ag; can convert this value into a degree of belief that it can use in argumentation,
thus assuming a function trust-to-belief

tth: R — RN

that can take any trust value and map it to the correct degree of belief. Depending on the semantics of the degrees of
trust and belief, this function may be the identity — for example if the trust values Ag; has for every Ag; is simply
Ag/’s subjective degree of belief that what Ag; says is true, which is the notion of trust in [28, 63] — though different
semantics for trust and belief would require more complex transformations. ([93] suggests translations between some
pairs of belief measures which might be appropriate.) In any case, for Ag;, its belief in ¢ may be computed:

bel;(¢) = tth(tr(Agi, Ag;))

In other words the belief that Ag; has in ¢ is a function of the trust that Ag; has in Ag;. What we have so far assumes
that Ag; expresses the opinion that ¢ is true. If Ag; expresses some degree of belief in ¢, then bel;(¢), Ag; can compute
its degree of belief in ¢:

beli(¢) = ttb(tr(Agi, Ag;)) @ bel;(¢)

In other words, the belief that Ag; has in ¢ is a combination of Ag;’s belief in ¢ and the trust that Ag; has in Ag;.

11

(Aga, p3)

Agr. o
m (Agr,04) @ c

Ags, e
Ag5 < i b> DPe

Figure 3: A trust-extended proof network

4.2 Trust-extended argumentation

Since we believe that it is useful to keep track of where different pieces of information came from, for example in
case the trust values in our trust network change, we find the concept of the trust-extended proof network to be useful.
A trust-extended proof network marries trust networks and argument graphs. This concept is formally defined below,
and an example is given in Figure[3]

Definition 12 A trust-extended proof network R’ is a pair (T, R) of an agent-centric trust network T and a proof
network R such that every rule 6; and every leaf p; of R are connected to a node Agy in T by an arc (Agy, ;) or
(Agk, pj) that denote, respectively, that 6; € Ay or p; € ¥y respectively.

An example of a trust-extended proof network is given in Figure |3} This shows how the acquaintances of Ag; each
provide the elements of an argument. Ag, and Ags each provide a premise of the rule d,, while Ag7 provides the rule
itself, and together these support the conclusion £. The idea behind the trust-extended proof network is that it relates
the premises of an argument to their sources. Such a network therefore captures the reasoning of the agent at the root
of the trust network, including which pieces of information it has used from which agents it trusts. It is simple to show
that:

Proposition 6 A trust-extended proof network has one root and possibly many leaves, but only one leaf that is a
conclusion of the proof network.

Proof: A trust-extended proof network is proof-network where every root in the proof network is linked to a node in an
agent-centric trust network. Since is there is, by definition, only one root in the trust network, there is only one root in
the trust-extended proof network. Equally, although there may be many leaves of the trust network that are not linked
to elements of the proof network, the proof network by definition only has one conclusion, and this will therefore be
the only conclusion of the trust-extended network. O

Thus a trust-extended proof network relates a single agent to a single conclusion, and we can easily extend the notion
of an argument — which as we recall from Definition [6]is a pair consisting of a proof network and its conclusion —
with the trust information of a trust-extended proof network:

Definition 13 A trust-extended argument A" from the union of a set of knowledge bases {¥1,...%,} belonging to a
set of agents Ags = {Ag1,...Ag,}, all of which are in T, is a pair (h, R') where R' is a trust-extended proof network
for h, and h is the only leaf of R'.

12

In the same way that an argument is relative to a knowledge base, so a trust-extended argument is relative to a set
of agents, and, in particular, to the set of knowledge bases of those agents. Furthermore, the conclusions of a trust-
extended argument are relative to a specific agent. Given a trust-extended argument, the only agent that is sanctioned
to infer the conclusion of the argument is the one at the root of the trust graph. Thus, like the graph, the conclusions
are agent-centric. Figure [presents two trust extended arguments. The leftmost, in Figure [d[a), contains the same
information as a previous example, but now — in keeping with the spirit of trust-extended arguments — identifies the
origin of the information. In this case it is John whose reasoning is being captured, and this agent has access to the
information:
Yionn = {IndieFilm(hce), SpanishFilm(hce), DirectedBy(hce, Almodovar)}

while John’s acquaintance Dave says that:

IndieFilm(x) A DirectedBy(x, Almodovar)
Watch(x)

Odave =
allowing John to construct an argument for Watch(hce).

The second argument, in Figure Ekb), makes use of information from another acquaintance, Jane, who holds that:

IndieFilm(x) A SpanishFilm(x)
—Watch(x)

5jane -

from which John can construct an argument for =Watch(hce).

The last element of our model is the trust-extended argument graph, in which we show the relations between a set
of trust-extended arguments. Informally, this is a set of trust-extended arguments with the defeat relationships between
the arguments denoted by labelled edge. There are four kinds of defeat edge, one for each of the kinds of link identified
in Definition [7}

Definition 14 A trust-extended argument graph AG’ from the union of a set of knowledge bases {¥1, . .. %, } belonging
to a set of agents Ags = {Ag;, . ..Agn}, all of which are in T is the union of a set of trust-extended arguments A} with
an additional set D of edges which we call defeat edges.

There are four kinds of defeat edge: a rebut edge, a premise-undercut edge, a intermediate-undercut edge and an
inference-undercut edge. Each defeat edge d € D links two arguments A = (h;, R}) and A} = (h;, R}).

e A} and A} will be joined by a rebut edge iff h; = —h;.
o Aland A]’~ will be joined by a premise-undercut edge iff there is some rule § in R]’ with a premise p and h; = —p.

o Al and A]t» will be joined by a intermediate-undercut edge iff there is some rule § in R]’ with conclusion ¢ and
h; = —c.

o Aland Ajt» will be joined by a inference-undercut edge iff there is some rule § in Rj’ with premises p1, . .. ,p, and
conclusion ¢, and h; = =(p1 A ... Ap, — ¢).

In any case in which A defeats A%, A} is said to be a defeater of A%, and A}, is said to be the defeatee.

This definition clearly mirrors Definition [/}, and with good reason. A trust-extended argument graph is a graphical
counterpart of the argumentation framework of Definition [§] and we can identify sets of acceptable arguments from
the graph just as we can from an argumentation framework.

Given the equivalence of the graphical framework we introduce here and previous non-graphical frameworks, a
reasonable question is why we bother with the graphical framework. There are two answers. One is that the graphical
approach links neatly with trust networks, and gives us a uniform representation to use as the basis for computations
involving argumentation and trust — we describe how this may be done in Sections[7]and[8] The second answer is
that our long-term goal is to use the framework we describe as the basis for a decision support tool that helps human
users to understand the impact of trust on their decisions. Previous work on graphical representation of arguments, for
example [10l 49,166l [76, 180, [88| [89], suggests that a graphical representation will be a good way to do this, and here
we have a graphical representation that can exactly mirror the computation of acceptability of arguments.

13

JONNSUOD UBD UYO[Jey) sjuawngIe popud)xe-isni) om[, 7 oSy

@ (®)

()42 M= = unly

(z)y210. M _ 2app,
(@) ysundgy (T) Wi 2tpu ¢

(4paopow)y x)igparpauqV (T)wpapul —

7 (22y)wipp qysrundg 7 7 (29w g21pUT 7 (uvaopowyy 0y figgpaoa.ag 7 7 (22y)wipp go1puy

2UUWNL ADNPUOIIS quawnban 984

YUOMPIU JSN.LY YAOMPIU JSN.4Y

U—

14

An example of a trust-extended argument graph is shown in Figure 5} This particular graph, which corresponds
to the example we have discussed throughout this paper (and which we will continue to work with) shows the two
arguments that John can develop (previously seen as separate trust-extended arguments in Figure [) as one trust-
extended argument graph. As before, the section in the middle of the graph is a trust network which shows the
relationship between John, Mary, Dave and Jane. The two sections on either side of the trust network show arguments
that John can develop. Each of these uses information from John’s knowledge (the rectangular nodes linked to the
Jjohn node in the trust graph) and an inference rule from one of John’s acquaintances (the oval nodes linked to the
dave and jane nodes in the trust graph). The conclusions of these two arguments (the rectangular nodes at the bottom
of the graph) are joined by two rebut edges since the two arguments rebut each other, disagreeing with each other’s
conclusions.

5 Instantiations of the abstract model

So far, our discussion of the trust models, and the way that the trust information is used in argumentation, has been
rather abstract. In this section, we make the discussion more concrete by describing some instantiations of the model.
In particular, in this section we discuss operations that might be used for ®" and ®” in combining trust values.

5.1 Possibility theory

As suggested by [79]], possibility theory [18, [19] 20] is a natural way to interpret trust values. In possibility theory,
itself derived from the notion of fuzzy sets [93| 94|, numbers are attached to propositions to quantify the degree of
uncertainty in the propositions, but the values are not probabilities. Instead they are taken to represent the degree of
possibility that the proposition is true. The possibility of a proposition p is written as II(p).

Informally, the degree of possibility can be taken to suggest how surprised one would be to discover that the
proposition is true. A proposition with a degree of possibility of 1 is a proposition that is thought to be completely
possible, so one that would occasion no surprise were it found to be the case. A proposition with a lower degree of
possibility would create some surprise were it found to be true.

There are several families of functions that may be used to combine possibility values, but the most commonly
used are the following. The possibility of a conjunction p A g is taken to be greater than or equal to the minimum of
the possibility of p and the possibility of g:

I(p A q) = min(I1(p), I1(q))

and so if we capture trust using the lower bound of the possibility values, then ®" is min. Similarly the possibility of
a disjunction p V g is typically taken to be the maximum of the possibilities of p and ¢:

H(p V q) = max(Il(p), I1(q))

and so using possibility theory to model trust it is natural to take &" to be max.

5.2 Subjective logic

The Dempster-Shafer theory [82) I83] is a generalization of probability theory (and, indeed, possibility theory [21])
in which probabilities can be assigned not just to individual propositions, but also to sets of propositions. This, it is
argued, allows for the expression of a degree of ambiguity — if we have evidence that suggests either p or g is the
case we can assign probability to the set {p, g} and wait to see if additional evidence allows us to refine this opinion.
A typical way to make use of this ability is to assign probability to some proposition p, its negation —p and the set
{p, —p}, with the latter representing the belief that one cannot, for lack of evidence, assign to either p or its negation.
This can be interpreted as the degree to which one cannot tell whether p is true or not.

Subjective logic [42, 43| 164] uses Dempster-Shafer theory in exactly this way, modelling the trust in every propo-
sition as a triple, and this is the approach taken by [90]. In this latter work, the trust links are labeled by a belief
measurement:

tr(Agi,Agj) = Mi,

15

ordwexe wiy a9y} Jo mara s, uyor Surnides ydea3 uonejuowingie papualxe-isni) y G 2In3ig

(Z)y210 M= _ ounf,
(@)wprgysrundg V() wpgampuy ¢

[Goyyuraowpur | [(Goy)uprayswundg

FULWNDUD pU0IIS

Q..

YLOMIIU JST.L)

()20 M _ 2avp
(apaopown]y @) igparoastqV (T WL fopu] ¢

(99)wipr garpury

7 (upaopowyy 90y figrpagoa.ng 7

quawnban s 40f

16

where M;; = (b,d,u) and b, denoted by b(m;), is the probability that what Ag; tells Ag; will be true is actually true;
d, denoted by d(m;), is the probability that what Ag; tells Ag; is true is actually false; and u, denoted by u(m; j), is the
probability of uncertain outcomes (that Ag;, for example, will not know if what it is told is true or notﬂ Subjective
logic, with its triple M; ; representing trust, is thus an example of a trust measure where opinions O are more complex
than just a single number.

Wang and Singh [90] describe how these values can be linked to an agent’s experience so that the values b(m;),
d(m; ;) and u(m; ;) are determined by how often what agent j tells agent i turns out to be the case. In particular Wang
and Singh consider that agents keep track of the number of positive outcomes (where something that they are told
is true turns out to be true, or something they are told is false turns out to be false) and negative outcomes (where
something that they are told is true turns out to be false, or vice versa) for each agent they interact with. Then:

Definition 15 The evidence space is defined as
E={(r,s)|r>0,s >0}

where r is the number of positive outcomes and s is the number of the negative outcomes, and the belief space is
defined as:
B={(b,d,u)lb>0,d>0,u>0,b+d+u=1}

This just says that for each agent that Ag; interacts with, there are positive and negative instances of interaction, and,
separately, there is the triple measure (b, d, u) that allows the outcome of future interactions to be estimated. Clearly
we want to derive the latter from the former, and we do this as follows.

Definition 16 Let Z = (B, D, U) be a transformation from E to B such that Z(r,s) = (B(r,s),D(r,s), U(r,s)) where:

r+1
B = .
(r,s) c(r,s)r+s+2
s+ 1
D = §)———
(ns) = el
U(r,s) = 1—c(r,s)

and where ¢(r, s) is the certainty level computed by a statistical model of certainty given the evidence of the trust links.

Thus the belief space is computed rather straightforwardly from the history of interactions provided that we have a
model of certainty. One model of certainty is to let

c(r,s) = %/0 |frs(x) — 1]dx
where 1 X
Jrs(x) = m

fr.s(x) is the posterior (cumulative) probability of the positive outcomes (of a binary event with x as its prior) after
observing r positive outcomes and s negative outcomes. ¢(r, s) is then defined as mean absolute deviation.
Given this model, the operators ®" and ©" can be defined as the following.

Definition 17 Suppose My = (by,dy,u1) and My = (bs,da, us), then M = My @ My = (b, d, u) where

b = biby
d = bidsy
= 1—>bibs — b1d>

SConceptually, at least, this uncertainty can later be resolved, and the probability or true or false increased accordingly.

17

Definition 18 Suppose M1 = (b1,d1,u1) and My = (ba,d2,us), and let (r1,s1) and (r2,s2) be the elements in the
event space of My and My respectively, then M = My & My = (b, d, u) where

b = B(ri+rys1+s2)
d = D(}"1+}"2,Sl +SQ)
u = U(r +ro,s1+52)

5.3 TidalTrust

The two models we have discussed so far are taken from the literature of reasoning under uncertainty. In other
words, using these models to represent and compute trust values is assuming, as suggested by [28,163], that trust in an
individual is the subjective belief that the individual tells the truth. An alternative view of trust is discussed in [S0],
where the authors’ aim is to construct a model that agrees with the way that people compute with trust values. (The
values themselves also differ — while possibility theory and subjective logic deal with values in the range [0, 1], [50]
uses values between 0 and 10.) The result is the TidalTrust model, which describes how to propagate values through
the kind of trust network we described earlier.

In particular, in the context of a extended trust network 7 = (Ags, {7}), we can use the TidalTrust model to
propagate trust along paths through the network by recursively computing:

tr(Ag;, Ag;) = DlhgiAg) €T and ir(Agi Agi) >0 1T (ALi Agr) @ tr(Agr, Ag))
iy j) —
@,(’:‘\gi,Agk)eT and zr(Ag,-,Agk)>9tr(AgiaAgk)

where 6 is a parameter to ensure the model only considers trust values above a certain threshold thus ignoring small
trust values, ¢ is implemented as the arithmetic addition “4” and ®"" is implemented as the arithmetic multiplication
“X7.

The above formula carries out a breath-first search through the trust network. To evaluate an agent Ag;’s trust on
another agent Ag;, the algorithm has each neighbor agent Ag; of Ag; obtain their evaluations of the trust to the agent
Agj (in a same way), and then Ag; computes the weighted average of its neighbors’ trust values on Ag; with the weights

being set to its trust values on each neighbor Agy.

6 Examples

In this section we show how the formal system we have introduced can capture two versions of the the example from
(501.

6.1 The original example

This example, from which we have been drawing throughout the paper, considers reasoning in the FilmTrust [26} [34]
database. This is an online database where people offer ratings for films they have seen and search for recommen-
dations for films to watch. FilmTrust members also rate each other, indicating who they trust to give good advice on
films. Although we have seen various pieces of the example already, we will start with a recap.

In the example, we are concerned with a certain agent John who is invited to watch a film by one of his friends.
John is part of the trust network from Figure [T(a), and furthermore has the following information about the film in
questionﬂ

{IndieFilm(hce), SpanishFilm(hce), DirectedBy(hce, almodovar) }

In the original example, John also has the rule:

Comedy(x)
—Watch(x)

6john

6«“Almodovar” here is Pedro Almodovar, and “hce” is an abbreviation for his 2002 film Hable con ella (Talk to her). It is, of course, arguable
whether “hce” is an independent film, but since the original example considered it to be one, so will we.

18

sanyeA Isna) yim pa[reqe] ‘ordwexe wiy [euIsLo ay) Jo mara s uyor Juumnideds ydei3 uonejuowinsre papuaixe-isni} y (9 2In3L

mgaL
+4

- (2)y21. M _ savp
80 * Twnopoungy @)igpomen V(@) Ipa] ¢

o (@)oo M= _ ounf,
L0 @ympaysiundgy (@yapaomar ¢

15 (oy)wpgarpug

7 1 : (upaopowy 00y) figrpagoa.ancy 7

12 (oy)urgysyundg |

12 Goyyuipsgorpug |

JuUWNBYD PUodas quawnban 15 J0f

YLOMPDU JSN.LY

19

which indicates that he doesn’t like to watch comedies.
Since this information doesn’t help him to decide whether to watch the film, John asks people in his social network
(for all of whom he can compute a trust rating) for their opinions and learns:

IndieFilm(x) A SpanishFilm(x)

Ojane =
! —Watch(x)

5 _IndieFilm(x) A DirectedBy(x, almodovar)
dave Watch(x)

From this information, John can, as we have already discussed, construct two simple arguments which are depicted in
Figure[6] and which we can translate as:

I should watch hce because it is an independent film and it is directed by Almodovar, and Dave says that
any independent film directed by Almodovar is watchable.

and

I shouldn’t watch hce because it is a Spanish independent film, and Jane says that Spanish independent
films are unwatchable.

These arguments rebut each other and John can use information about his friends in order to further refine his view
of the arguments. However, to do that he has to choose a specific instantiation of the trust values. Let us assume he
models trust using possibility theory. Then, as discussed in the previous section, ®” is min. Considering the trust
graph in Figure[I|a) it is easy for John to compute that:

tr(john,dave) = 0.8
tr(john,jane) = 0.7

and these are the values we see in Figure[6]

Now, these values need to be turned into belief values. Since the trust values are expressed using possibility theory
it is natural to handle belief in the same way — this means that we handle the notion of strength of arguments in a
way that is close to that adopted by [4] though the authors of that paper do not explicitly mention the use of possibility
theory. Using the same values for trust and belief means that we interpret the degree of trust that one agent, Ag;, has
in another, Ag;, to be the degree of belief that Ag; has that what Ag; says is true (exactly as in [28,163]).

In other words the degree of belief that John has in a statement from Dave is exactly John’s degree of trust in Dave.
As aresult:

bel/’ohn(ddave) = 0.8
belj,,hn((Sju,,e) = 0.7

In order to reach conclusions about watching /ce, these rules need to be combined with John’s initial knowledge, all
of which he believes to be completely possible so that:

beljop, (IndieFilm(hce)) = 1
beljon, (SpanishFilm(hce)) = 1
beljopy(DirectedBy(hce, almodovar)) = 1

Since these are possibility values, we use minimum for ®*¢, and so:

beljon,(Watch(hce)) = 0.8
beljop,(~Watch(hce)) = 0.7

We have not discussed how to use these belief values in conjunction with argumentation (we will come back to this
topic below), but since as we mentioned, we are handling belief rather like Amgoud and Cayrol [4]], we can take their
approach to resolving defeat using belief. In other words, one argument defeats another if it defeats it in the sense of
Definition [[4]and its conclusion has a higher degree of belief. In this case, John will decide to watch Ace.

While this is a simple example, it shows that our approach handles the combination of trust and argumentation in
an intuitively appealing way, as well as agreeing with the analysis in [S0].

20

6.2 The modified example

The previous example was included to show how our system can capture the reasoning from [50]. However, argu-
mentation is typically less interested in the kind of symmetrical “rebut” conflict between the two arguments seen in
that example than it is in the asymmetrical “undercut” conflict. The modified example will illustrate undercutting. We
consider that John has a slightly different set of information:

{SpanishFilm(hce), DirectedBy(hce, almodovar)}

which does not include the information about Ace being an indie film (as one reviewer pointed out, Ace is not really an
indie film). Rather he has the rule:

DirectedBy(x, almodovar)
—IndieFilm(x)

0 john

indicating that he believes that no Almodovar film is an indie film. We will further assume that, this time around,
when John polls his social network about watching the film, he gets no reply from Dave, but does hear from Mary
(who thinks Ace is an independent film), and from Jane who replies as in the previous example. Thus John has the
information that:

IndieFilm(x) A SpanishFilm(x)
—Watch(x)
Pmary = IndieFilm(hce)

5jane

This time John has the arguments of Figure [/l Handling trust values as before — again using the approach from [4]
— John will find that his argument against ice being an independent film defeats the argument for not watching hce.
(Of course this leaves John with no information about whether to watch the film, he just knows that he doesn’t have
an acceptable argument to not watch it).

7 Constructing trust-extended argumentation graphs

So far in this paper we have introduced a graphical representation of a variant of Dung’s argumentation framework
which also captures information about which agents hold which pieces of information that are used to construct an
argument, and what the trust relationship between the agents is. In this section we describe how to construct these
trust-extended argumentation graphs. Here we separate the construction procedure (Algorithm [2)) from the trust and
belief propagation for clarity. However, in practice, we might wish to combine the two procedures together to avoid
constructing unnecessary arguments.

From the algorithmic point of view, instead of constructing each proof network and the corresponding argument
explicitly, we mark each proof network by its unique ID, and each arguments by its unique ID. The graph construction
is based on the construction of proof networks in Algorithm|l1|(below).

Proposition 7 Given a query g, Algorithm[I|creates all possible proofs of q. Each proof of q is marked with a unique
ID, id € ID(G, node(q)), and each proof with id is associated with a sub-proof network SubIDs(G, id).

Proof: Algorithm [I| goes through each inference rule 6 € A whose conclusion can be unified with ¢, and tries to
construct a proof network for each premise of §. If all premises have proof networks, the algorithm then connects
node(q) to node(d), and node(d) to the nodes corresponding to the premises of §. At the same time, the algorithm
records each combination of the proofs for §’s premises as a proof network for ¢ and marks it down with a unique ID.
This unique ID is recorded into the set of proofs for ¢: ID(G, node(g)) O

In Algorithm |1} the ID set for a node node(q), denoted by ID(G,node(q)), records a set of arguments for g.
Given an ID id € ID(G,node(q)), the SubIDs(G,id) = (idy,ids, ..., idy) tracks the proof sub-networks identified
by (idy, id>, ..., idy). With this ID construction, we can then recover each proof network of Definition by traversing

21

sonyeA JsnI Yim pof[oqe| ‘ojdwrexe wiy poyIpow y) Jo malA s, uyor Sunmdes ydeiS uonejuownsre popualxe-jsnn y i/, oIndLj

- (@)yor0 M= _ ounf,
L0 @ywpgysavdgy (eyupgomig ¢

[1: oy)wprayswundg | [6°0: (2oy)wiprgopur

Juwnb AP P.aY]

mo.pun spjoy

o (z)wiprgorpur—
e (4vpoaowv*T)igpazoasrq

7 1 : (upaopowsyy ‘00y)Agpapaaa | S

JUWNHAD Y400

spioy

YLOMIIU JSN.LY

22

ID(G, node(q)) and SubIDs(G,ID(G, node(q)) recursively until a knowledge base ¥; and a set of inference rules A;
are reached. At this point the components of an argument are connected to the trust network. With these expanded
proof networks, we can then recover the arguments of Definition With Algorithm[T]as a sub-routine, Algorithm
can create an argumentation graph for ¢ efficiently.

Proposition 8 Given a query g, Algorithm[2]creates an argumentation graph for q.

e For each node in the argument graph, if there are proof networks for it, all the proof networks are included in
the argument graph, all the proof networks included are valid.

e For each node in the argument graph, if there are defeaters, the defeaters are included in the argument graph.

o [fthere is a defeat between two arguments, it is marked in ID(defeater, defeatee).

Proof: Algorithm[2|calls Algorithm[I|which constructs all the valid proof networks for each node. It also goes through
all the nodes, and tries to construct proof networks and defeaters recursively with Algorithm [I]for all these nodes. O

In a similar manner to argument construction, Algorithm [2| records the IDs of arguments where one argument de-
feats another argument associated with two nodes nd; and nd, (which are either premise nodes, conclusion nodes or
inference nodes) in the argument graph using IDgefq((nd1, nd2)). The set of argument ID pairs which are recorded
in IDgefeq; (for all nodes recorded) recovers the defeat relation in Definition @ We can then use the defeat relation
recorded in IDg,f.q; to compute various argumentation semantics, such as the one in Definition E} Following a similar
approach to [3] the same defeat relation recorded in IDg.f.q; can be refined with the trust and belief values, and in turn
the argumentation semantics can be refined.

As Algorithm[T] and Algorithm 2] work in a dynamic programming manner, the complexity of these procedures is
determined by the size of the syntactic structure of the knowledge base and the inference rule base, and the number of
all possible arguments in the output.

Proposition 9 Assume that that rule base /A only contains first order schemes (i.e. there are domain variables in the
rules but no predicate variables). Let PA = UscaPremises(d), Ca = Usca{c(d)} and the K be the maximum arity
of predicates and M be the maximum number of values can be assigned to the variables of predicates. The number of
reasoning links in the argumentation graph for a query q created by Algorithm is bounded by O(K* x M? x (1 +
IPA|) X (|Z| + CA)). The number of defeat links is bounded by O(K? x M? x (14 |Pa|+ |2+ Ca)) x (|X| + Ca)).

Proof: The number of all possible conclusions and intermediate conclusions is (]3| +|Ca|) x K x M, and the number
of all possible premises is (1 + |Pa]) x K x M. All possible reasoning links are between the set of all possible
(intermediate) conclusions and the set of all possible premises, therefore the number of reasoning links is bounded by
O(K? x M? x (1+|Pa|) % (|X] + Ca)). On the other hand, all possible defeat links are between the set of all possible
conclusions and the union of all the possible premises and all the possible (intermediate) conclusions, therefore the
number of defeat links is bounded by O(K? x M? x (1+ |Pa| + |2] + Ca)) X (|| + Ca)). O

Note that, although we have an argumentation graph with size bounded polynomially in the number of premises the
and number of inference rules, the number of arguments can still be exponential in the umber of premises the and
number of inference rules. We deliberately record this exponential number of arguments and their interactions in
the form of IDs in Algorithm [I]and Algorithm [2] Part of our future research focuses on how to utilize this compact
graphical structure for nearly tractable algorithms for trust and belief propagation with trust extended argumentation.
In this work, we only consider first order reasoning rules with no function symbols. For second order rules, such as
the natural deduction rules of [59] with predicate variables over the logical connectives, we will need an additional
reasoning mechanism to efficiently instantiate the deduction rules to connect the unified formulae. This extension is
also part of our planned future research.

A trust extended argumentation graph that can be created by Algorithm [2] from our running example is given in
Figure [§] With IDs expanded into the corresponding arguments and centered on John’s view, we get the same trust
extended argumentation graph is as in Figure 5]

23

Algorithm 1: constructProofNet(G, q, T, 3, A): Construct a proof network for ¢

Input: G: a shared graph structure; g: query; 7 trust network; X: knowledge base; A: rule base
if node(q) € G then
return node(q);
end
if ¢ € X then
Create a new node node(q) in G;
for each agent Ag; such that q is in agent Ag;’s knowledge base 3; do
Add a holding link (node” (Ag;), node(q)) to G,
end
Allocate a new id;
ID(G,node(q)) + {id};
return node(q);
end
if No inference rule § € A with conclusion c¢(0) unifiable with q then
return ();
end
Create a new node node(q) into G;
ID(G, node(q)) + 0;
for each inference rule 6 € A with conclusion c() unifiable with g do
Compute a unifier 6 + unify(q, c(4));
for each rule premise p;(§[c]) do
result[p;] < constructProofNet(G,p;, T, %, A);
end
if all result|p;]s are not empty then
Refine the unifier § with the one produced for proof net result[p;]s;
Create a new node node(6[0]) in G if node(3[0]) & G;
Add (4]0], node(q)) to G;
Add (p;, r[0]) to the G for each p;;
for each agent Ag; such that § is in Ag;’s rule base do
Add a holding link (node” (Ag;), 6[6]) to G;
end
/+ Every combination of the proofs for premises is a new unique proof
for ¢ */
for each combination (idy,ids, ..., idy) € ILID(G,node(p;)) do
Allocate a new id;
ID(G, node(q)) < ID(G, node(q)) U {id};
SubIDs(G, id) < (idy, ids, ... id);
end
end
end
return node(p);

24

Algorithm 2: constructArgGraph(G, q, T,%, A): Construct trust extended argumentation graph

Input: G: a shared graph structure; g: query; 7 trust network; X: knowledge base; A: rule base
G+ 0;
gNode + constructProofNet(G,q, T, %, A);
if gNode # () then
if gNode is not visited by argumentation construction yet then
defeater < constructArgGraph(G, —n, T, %, A);
if defeater # () then
Add a rebut-defeat link (defeater,n) to G if it doesn’t exist;
Initialize IDjeeq: ({defeater, n)) if it is not initialized;
for each combination (id, id") € ID(defeater) x ID(qNode) do
Add (id, id") into ID jeeq:((defeater,n));
end
end
end
for each node n in G connecting to q through reasoning links do
if n € ¥ is premise node and it is not visited yet then
defeater <+ constructArgGraph(G, —n, T, %, A);
if defeater # () then
Add a premise-undercut link (defeater, n) to G if it doesn’t exist;
Initialize IDjefea: ((defeater, n)) if it is not initialized;
for each combination (id, id") € ID(defeater) x ID(gNode) do
Add (id, id") into ID jefeq:((defeater, n));
end
end
end
if n is an intermediate conclusions and it is not visited yet then
defeater < constructArgGraph(G,—n, T,%, A);
if defeater # () then
Add a intermediate-undercut link (defeater, n) to G if it doesn’t exist;
Initialize IDepeq ((defeater, n)) if it is not initialized;
for each combination (id, id') € ID(defeater) x ID(gNode) do
Add (id, id") into IDefeq ({defeater, n));
end
end
end
if n € A is an inference rule node and it is not visited yet then
defeater + constructArgGraph(G, —(\ yipit = conclusion(c)), T, %, A);
if defeater # () then
Add an inference-undercut link (defeater, n) if it doesn’t exist;
Initialize ID((defeater, n)) if it is not initialized;
for each combination (id,id') € ID(defeater) x ID(qNode) do
Add (id, id') into ID jefeq: ((defeater, n));
end
end
end
end
end
return gNode;

pi € Premises(r

25

ydei3 uonejuowngie papualxe-isni} Joedwod y :g a3

(@) o0 M- = ouvly

(@)yo30 M — oawp
(@)wiprgysiuodgy (X)Wt 2ipu] ¢

(uvaopowy @) igparosn Vv (T)wpgampur

sp1oy

(umaopowy 90y) figrpagoa.uq

(20y)wipr.yysiundg 7 (90y)wipr.yo1pUT 7

sploy

Aavﬁ“a\sr\:g
(z)fippwoy — 4 ﬁ%

26

8 Trust propagation

Having shown how to construct trust-extended argumentation graphs, in this section we turn to the question of how
to propagate information about trust in those graphs — after all we introduced these graphs exactly to be able to
combine trust data with argumentation. Before we can introduce the trust propagation algorithms, we first define the
data structure trustBel that we use to capture an agent Ag;’s trust or belief in a node n:

rustBel[Ags,n] — {tr(Agi, n) ?fn is an agent,

bel;(n) ifneX;orne A,
To compute the trust-based belief of an agent over an argument, we employ a set of algorithms: Algorithm [3] Algo-
rithm 4] Algorithm 5] (or Algorithm [6]if we take into account the reasoning structure of the argument when computing
the beliefs), Algorithm [§] and Algorithm [9] (computing trust in a depth-first manner) or Algorithm [T0] (if we need to
compute the trust in a breadth-first manner), with two customized functions combine and fuse.

Algorithm [3] initializes the data structure frustBel, which will hold an agent’s trust in another agent or an agent’s
beliefs over premises and inference rules, to NIL. Algorithm [9] computes the trust of one agent in the other agents in
a depth-first manner using the customized combine and fuse functions as discussed below. If the trust model requires
a breadth-first trust computation (as TidalTrust does), we can then employ Algorithm [I0] With the trust computed,
we can then use Algorithm [5|to compute beliefs over arguments as a whole. An alternative way to compute beliefs
over arguments is to use Algorithm [6] and Algorithm [7]if the underlying belief propagation model requires that we
take into account the structure of the argument rather than just the set of premises. Finally, Algorithm 4] invokes the
computation of all the agents’ trust and beliefs over the other agents and on the knowledge, inference rules, and the
conclusions that can be derived from them.

To deal with trust propagation, a typical implementation for combine is:

combine({ndy,nds, ...,nd,}) = ndy @ ndy @ ... " nd,,.
A typical implementation for fuse is:
fuse({ndy,nds, ...,nd,}) = nd; ®" ndy &" ... ®" nd,.

Other implementations of combine and fuse can be constructed depending on the underlying trust model or the belief
model being used. For example, in TidalTrust, we will have a breadth-first style implementation and use Algorithm [I0]
for trust computation:

fuse({tr(Agi,Agi)|(Agi,Agk) € T} U {tr(Agk,agj)|(Agi,Ag) € T})
Y (AgiAg) €T and 1r(Agi,Ag) > 017 (Agi, Agr)tr(Agk, Ag;)
Y (Agi,Agr) €T and 1r(Agi,Agy) > 01T (Agi, Agk)

For belief propagation, a typical implementation for combine is:
combine({ndy,nds, ...,nd, }) = nd, @ ndy @ ... @ nd,.
and a typical implementation for fuse is:
Suse({ndy,nds, ...,nd,}) = ndy @ ndy & ... & nd,.
Other implementations of combine and fuse can be constructed depending on the underlying model of belief.

Proposition 10 Let W be the number of arguments in the argumentation graph G. Algorithm | trustBelPropagate
computes the beliefs of an agent Ag; on all arguments in the size of G and the number of arguments, namely O(W - |G|).

Proof: With the help of data structure trustBel[Ag;, n], we have a dynamic programming-style computation of trust
and belief. The algorithm just needs to investigate each edge in G once, and compute the relevant trust or belief on

27

demand. Once the value has been computed, it can be looked up in the data structure trustBel. If we implement this
with an appropriate hash table, we can guarantee the look-up for the computed trust and belief value in O(1), resulting
in a total complexity in terms of O(W - |G|). O

As G is polynomial in the size of the set of premises and inference rules, we can compute the trust in all arguments
with this complexity. As before number of arguments can still be exponential in the number of premises and rules,
but the way we implement the trust and belief computation through the compact argumentation graph suggests various
possibility to reduce the complexity in our future work. Note that with Algorithm] we compute trust values and
belief values of the nodes in G with complexity in the size of G. In this way, we may be able to avoid constructing
undefendable arguments in terms of the belief levels of the components of arguments. This is another line of future
research.

Algorithm 3: initTrustMatrix(G): Initialize the trust matrix

Input: G: a shared graph structure; 7: trust network; 3: knowledge base; A: rule base
for each agent Ag; do
for each argument arg € G do
trustBel[Ag;, arg] < NIL;
end
for each premise and inference node nd € G do
trustBel[Ag;, nd) < NIL;
end
end

Algorithm 4: trustBelPropagate(G, computeBel, combine, fuse): Trust and belief propagation in argumentation

Input: G: a shared graph structure; computeBel: a customized function to compute trust and belief; combine: a
customized function to combine (AND-input) multiple sources of trust and belief together; fuse: a
customized function to fuse (OR-input) multiple sources of trust and belief together

InitTrustMatrix(G) ;

for each agent Ag; do

for each argument arg € G do
trustBel|Ag;, arg] < computeBel(G,Ag;, arg, combine, fuse);
end

end

Algorithm 5: computeBel(G, Ag;, arg, combine, fuse): Compute the trust or belief of Ag; over node in argument
arg

Input: G: a shared graph structure; Ag;: an agent; combine: a customized function to combine (AND-input)
multiple sources of trust and belief together; fuse: a customized function to fuse (OR-input) multiple
sources of trust and belief together

for each node nd € arg do

bellnd] < computeTrustBel(G,Ag;, nd, combine, fuse);

end

trustBel|Ag;, arg] < combine({bel[nd;]|nd; € arg});

return frustBel[Ag;, argl;

28

Algorithm 6: computeBel(G,Ag;, arg, combine, fuse): Compute the trust or belief of Ag; over node in argument
arg taking into account the argument structure

Input: G: a shared graph structure; Ag;: an agent; combine: a customized function to combine (AND-input)
multiple sources of trust and belief together; fuse: a customized function to fuse (OR-input) multiple
sources of trust and belief together

trustBel[Ag;, arg| < computeTrustBel(G,Ag;, arg, conclusion(arg), combine, fuse);

return frustBel[Ag;, argl;

Algorithm 7: computeTrustBel(G,Ag;, arg, node, combine, fuse): Compute the trust or belief of Ag; over node
in argument arg taking into account the argument structure

Input: G: a shared graph structure; Ag;: an agent; combine: a customized function to combine (AND-input)
multiple sources of trust and belief together; fuse: a customized function to fuse (OR-input) multiple
sources of trust and belief together

if node is a premise node or inference node then

return computeTrustBel(G,Ag;, node, combine, fuse);
end

if node is a conclusion node then
v < inference rule connecting to node in arg;
result[y] < computeTrustBel(G,Ag;,~y, cominbe, fuse);
for each premise pmy. connecting to -y in arg do
result|pmy] < comptueBel(G, Ag;, arg, pmy., combine, fuse);
end
return combine({result[pmy]} U {result[y]});
end

Algorithm 8: computeTrustBel(G, Ag;, node, combine, fuse): Compute the trust or belief of Ag; over node in
argument arg

Input: G: a shared graph structure; Ag;: an agent; combine: a customized function to combine (AND-input)
multiple sources of trust and belief together; fuse: a customized function to fuse (OR-input) multiple
sources of trust and belief together

if Ag; holds node then

return Bel;(node);
end
if rrustBel[Ag;, node] # NIL then
return frustBel[Ag;, node;
end
for each agent Ag; who holds node do
res < computeTrust(Ag;, Ag;);
if res # NIL then
bel[Agj] <— combine(res, Bel;(node));
end

end

trustBel[Ag;, node] < fuse({bel[Ag;j]|Ag; holds node});

return frustBel[Ag;, node];

29

Algorithm 9: computeTrust(G,Agi,Ag;, combine, fuse): Compute the trust or belief of Ag; over node in argu-
ment arg in a Depth-First manner

Input: G: a shared graph structure; Ag;: an agent; combine: a customized function to combine (AND-input)
multiple sources of trust and belief together; fuse: a customized function to fuse (OR-input) multiple
sources of trust and belief together

if trust[Ag;,Agj] # NIL then

return trrust[Ag;, Ag;l;
end
if (ag;,Agj) € T then
return tr(ag;, ag;);

else if there is no Agy such that (Ag;,Agy) € T then

return NIL;

else

for each Agy such that (Ag;,Agy) € T do

res < computeTrust(Agy, Ag));

if res # NIL then

result[agy] <— combine(tr(ag;, Agy), res);

end
end
trust[Ag;, Ag;] < fuse({resultlagy]|(Agi, Agk) € T});
return trust[Ag;, Agj];

end

Algorithm 10: computeTrust(G,Ag;, Ag;, combine, fuse): Compute the trust or belief of Ag; over node in argu-
ment arg in a Breadth-first manner

Input: G: a shared graph structure; Ag;: an agent; combine: a customized function to combine (AND-input)
multiple sources of trust and belief together; fuse: a customized function to fuse (OR-input) multiple
sources of trust and belief together

if trust[Ag;,Agj] # NIL then

return trrust[Ag;, Ag;l;
end
if (ag;,Ag;) € T then
return tr(ag;, ag;);

else if there is no Agy such that (Ag;,Agy) € T then

return NIL;

else

for each Agy such that (Ag;,Agy) € T do
result{Agy, Agr) <— computeTrust(Agy,Ag));
end
trust[Ag;, Ag;] < fuse({tr(Agi,Agi)|(Agi,Agk) € T} U {result|Agy, ag;l|(Agi, Agk) € T });
return rrust[Ag;, Ag;l;
end

30

9 Discussion

As we mentioned in the introduction, there is some consensus in the trust literature that provenance, the relating of
information to its source, plays an important role in reasoning about trust. This connection is made explicitly in [30]
and [32f], but can be found implicitly in, for example, work like [51] which identifies internet authorities by their links
with other nodes, and [2]] which constructs reputations for individuals from their contributions to online media. Since
argumentation explicitly captures the data used in reasoning, it seems a natural tool for dealing with provenance, and
the work we describe here develops a system of argumentation that not only records what data is used but also ties this
data back to the individuals who provided it.

The provision of such a model — a graphical model which goes beyond existing graphical accounts of Dung-
like argumentation — is one part of the contribution of this work. The other part is the provision of algorithms
for constructing the graphical model, which identifies the arguments, and then propagates trust and belief values
through the resulting network, quantifying the conclusions of the arguments. Though this particular combination of
argumentation and trust is novel, the idea of combining trust and argumentation is not. Four lines of work on trust and
argumentation that are complementary to ours include those of Harwood [38, 39], Matt at al., Hunter [40], [58]], and
Stranders [84]. In addition, argumentation has been used in the past to reason about risk [47, [60]], a subject closely
related to trust though the cited work looked at risk of carcinogenicity given chemical structure rather than risk due to
untrustworthiness.

Harwood [38} [39] takes a strong position against the use of numerical estimates of trust, instead constructing an
elegant and purely symbolic approach. In his work, arguments are constructed about the reasonableness or other-
wise of trusting individuals. Given such a set of arguments, it is then possible to impose a semantics reminiscent of
Dung’s which identifies not which arguments are acceptable, but which are to be trusted and distrusted. Hunter [40],
meanwhile, is not interested in explicitly modelling trust, but is concerned with reasoning about the proponents of ar-
guments. He does this through meta-level reasoning about arguments, that is, he constructs arguments about how good
arguments are, where the grounds of these meta-arguments include information about the agents who put forward the
object-level arguments.

Both Harwood and Hunter take strictly symbolic approaches that are not concerned with numerical degrees of trust.
In contrast, Matt at al. [58] are, like us, interested in combining numerical data on trustworthiness with arguments.
However, where we take the trust ratings for granted — or, alternatively, assume that we will employ well-founded
means of establishing trust ratings from data — Matt ar al. describe how such trust ratings may be constructed. The
closest of these four lines of work to ours is the work of Stranders [84] who use the argumentation system from [3]]
to handle trust. This is a less general approach than ours, being tied to a possibilistic notion of trust, but they extend
[5]] to include vague propositions. These are propositions that, unlike those we deal with, are not just true or false, but
have fuzzy degrees of truth, giving the system greater representational power.

All of the systems we have just mentioned suggest future directions for our work, and we have already mentioned
areas of future work in connection with the computation of arguments and the propagation of values. Another impor-
tant area of future work is to establish how to use the trust values we compute within argumentation. In Section [6]
we discussed using trust values to provide strengths for arguments, following [4]] in modifying defeat so that the de-
feater has to be stronger (in this case more trusted) than the defeatee. There are other ways to use trust values. One
natural use for trust values is to allow agents to specify a trust threshold — all information from agents trusted less
than the threshold is discarded. A less obvious use, but one we find intriguing, is the use of a trust budget (akin to
the inconsistency budget of [24]]). This approach would allow an agent to decide on a maximum amount of distrust it
was prepared to tolerate across all the agents who provided it with information pertaining to a single argument, and
obtain different sets of conclusions for different budget levels. Such an approach would allow the agent to search for
particular conclusions it was interested in (plans to achieve particular goals for example) and determine exactly how
trusting it had to be to get the conclusions it wanted.

Finally, we need to acknowledge that both the model of trust that we have used, and the model of agent beliefs,
are very simple. Trust is represented as a simple numerical measure, in most cases a single number, and a 3-tuple in
the case of subjective logic. An agent’s beliefs are modelled by attaching similar numerical measures to formulae.
While most work on argumentation takes a similarly simple view of belief, this does not mean that argumentation can
only work with such a simple model. As an example, in [71]] we described a system of argumentation that used a
multi-model logic, in particular the belief/desire/intention logic of Rao and Georgeff [74}[75]. The model makes use

31

of multi-context systems [31] to capture the different modalities, and we can use the same techniques to capture the
modal notions of trust and belief from [[15, 57]].

10 Conclusions

In this paper, we have introduced a general approach to combining argumentation with information about trust in
a way that allows us to consider information about the degree to which other agents are trusted when reasoning
with information obtained from them. The approach we introduce makes no commitment to a specific mathematical
approach to computing trust — it can be instantiated with any of a number of numerical systems for propagating trust
information that have been proposed in the literature. In particular, we discussed how to use possibility values, as
suggested by [79], subjective logic, as suggested by [90], and the TidalTrust approach [50]. In addition to introducing
this system, we explored a number of the basic properties of the system, and illustrated its use on an example from
[S0], showing how our system obtains the same solution as [S0]. We also discussed in detail some of the computation
required by our approach. In particular, we described how to construct arguments, and how to propagate trust and
belief values through the graphical representation of arguments that we use.

Future directions, as mentioned above, include detailed examination and comparison of different approaches to
propagating and combining qualitative and quantitative values for trust and belief. Long term work concerns develop-
ment of an interactive tool to support users making the types of decision faced by John in our extended example.

Acknowledgement

Research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement
Number W911NF-09-2-0053. The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

We would like to thanks the reviewers. Their many helpful suggestions have greatly improved this paper.

References

[1] Z. Abrams, R. McGrew, and S. Plotkin. Keeping peers honest in EigenTrust. In Proceedings of the 2nd Workshop
on the Economics of Peer-to-Peer Systems, 2004.

[2] B. T. Adler and L. de Alfaro. A content-driven reputation system for the Wikipedia. In Proceedings of the 16th
International World Wide Web Conference, pages 261-270, Banff, Alberta, May 2007.

[3] L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based argumentation. In Proceedings
of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pages 1-7, San Francisco, CA,
1998. Morgan Kaufmann.

[4] L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable arguments. Annals of
Mathematics and Artificial Intelligence, 34(1-3):197-215, 2002.

[5] L. Amgoud and H. Prade. Using arguments for making decisions. In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, pages 10—17, Banff, Canada, July 2004.

[6] D. Artz and Y. Gil. A survey of trust in computer science and the semantic web. Journal of Web Semantics,
5(2):58-71, June 2007.

[7] T.J. M. Bench-Capon. Value based argumentation frameworks. CoRR, cs.A1/0207059, 2002.
[8] S. Bistarelli and F. Santini. A common computational framework for semiring-based argumentation systems. In

Proceedings of the 19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 2010.

32

[9] J. Bourdon, G. Feuillade, A. Herzig, and E. Lorini. Trust in complex actions. In D. M. Gabbay and L. van der
Torre, editors, Logics in Security, Copenhagen, Denmark, 2010.

[10] C.S. Carr. Computer-supported collaborative argumentation: Supporting problem-based learning in legal educa-
tion. In Proceedings of the 2nd European Conference on Computer-Supported Collaborative Learning, Bergen,
Norway, 2003.

[11] C. Castelfranchi and R. Falcone. Trust is much more than subjective probability: Mental components and sources
of trust. In Proceedings of the 33rd Hawaii International Conference on System Science, Maui, Hawai’i, January
2000. IEEE Computer Society.

[12] C. Cayrol and M.-C. Lagasquie-Schiex. Graduality in argumentation. Journal of Artificial Intelligence Research,
23:245-297, 2005.

[13] P. Dandekar, A. Goel, R. Govindan, and I. Post. Liquidity in credit networks: A little trust goes a long way.
Technical report, Department of Management Science and Engineering, Stanford University, 2010.

[14] D. B. DeFigueiredo and E. T. Barr. TrustDavis: A non-exploitable online reputation system. In Proceedings of
the 7th IEEE International Conference on E-Commerce Technology, pages 274-283, 2005.

[15] R. Demolombe and E. Lorini. A logical account of trust in information sources. In Proceedings of the 11th
International Workshop on Trust in Agent Societies, Estoril, Portugal, may 2008.

[16] R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, 4th edition, 2010.

[17] X. L. Dong, L. Berti-Equille, and D. Srivastava. Integrating conflicting data: The role of source dependence. In
Proceedings of the 35th International Conference on Very Large Databases, Lyon, France, August 2009.

[18] D. Dubois and H. Prade. Default reasoning and possibility theory. Artificial Intelligence, 35:243-257, 1988.

[19] D.Dubois and H. Prade. An introduction to possibilistic and fuzzy logics. In P. Smets, E. H. Mamdani, D. Dubois,
and H. Prade, editors, Non-Standard Logics for Automated Reasoning, pages 287-313. Academic Press, London,
UK, 1988.

[20] D. Dubois and H. Prade. Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum
Press, New York, NY, 1988.

[21] D. Dubois and H. Prade. Consonant approximations of belief functions. International Journal of Approximate
Reasoning, 4:419-449, 1990.

[22] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence, 77:321-357, 1995.

[23] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence, 77(2):321-358, 1995.

[24] P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. Weighted argument systems: Basic
definitions, algorithms, and complexity results. Artificial Intelligence, (in press).

[25] R. Falcone and C. Castelfranchi. Social trust: A cognitive approach. In C. Castelfranchi and Y. Tan, editors,
Trust and Deception in Virtual Societies, pages 55-99. Kluwer Academic Publishers, 2001.

[26] http://trust.mindswap.org/FilmTrust/.

[27] R. Francone and C. Castelfranchi. Transitivity in trust: A discussed property. In Proceedings of the Undicesimo
Workshop Nazionale ”Dagli Oggetti agli Agenti”, Rimini, September 2010.

[28] D. Gambetta. Can we trust them? In D. Gambetta, editor, Trust: Making and breaking cooperative relations,
pages 213-238. Blackwell, Oxford, UK, 1990.

33

http://trust.mindswap.org/FilmTrust/

[29] A.J. Garcia and G. R. Simari. Defeasible logic programming: an argumentative approach. Theory and Practice
of Logic Programming, 4(2):95-138, 2004.

[30] F. Geerts, A. Kementsiedtsidis, and D. Milano. Mondrian: Annotating and querying databases through colors
and blocks. In Proceedings of the 22nd International Conference on Data Engineering, pages 82—-82, Atlanta,
April 2006.

[31] F. Giunchiglia and L. Serafini. Multilanguage hierarchical logics (or: How we can do without modal logics).
Artificial Intelligence, 65:29-70, 1994,

[32] J. Golbeck. Combining provenance with trust in social networks for semantic web content filtering. In Proceed-
ings of the International Provenance and Annotation Workshop, Chicago, Illinois, May 2006.

[33] J. Golbeck. Generating predictive movie recommendations from trust in social networks. In Proceedings of the
Fourth International Conference on Trust Management, Pisa, Italy, May 2006.

[34] J. Golbeck and J. Hendler. Filmtrust: Movie recommendations using trust in web-based social networks. In
Proceedings of the IEEE Consumer Communications and Networking Conference, 2006.

[35] T. Grandison and M. Sloman. A survey of trust in internet applications. IEEE Communications Surveys and
Tutorials, 4(4):2-16, 2000.

[36] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In Proceedings of the 13th
International Conference on the World Wide Web, pages 403—412, 2004.

[37] C-W Hang, Y. Wang, and M. P. Singh. Operators for propagating trust and their evaluation in social networks.
In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, Budapest,
Hungary, 2009.

[38] W. T. Harwood, J. A.Clark, and J. L. Jacob. Networks of trust and distrust: Towards logical reputation systems.
In Logics in Security, 2010.

[39] W. T. Harwood, J. A.Clark, and J. L. Jacob. A perspective on trust, security and autonomous systems. In
Proceedings of the New Security Paradigms Workshop, Concord, MA, 2010.

[40] A. Hunter. Reasoning about the appropriateness of propoents for arguments. In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence, Chicago, Illinois, July 2008.

[41] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, UK, 2003.

[42] A.Jgsang. Trust-based decision making for electronic transactions. In Proceedings of the Fourth Nordic Work-
shop on Secure Computer Systems (NORDSEC’99), 1999.

[43] A.Jgsang. A logic for uncertain probabilities. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 9:279-311, June 2001.

[44] A.Jgsang, E. Gray, and M. Kinateder. Simplification and analysis of transitive trust networks. Web Intelligence
and Agent Systems, 4(2):139-161, 2006.

[45] A. Jgsang, R. Hayward, and S. Pope. Trust network analysis with subjective logic. In Proceedings of the 29th
Australasian Computer Society Conference, Hobart, January 2006.

[46] A.Jgsang, C. Keser, and T. Dimitrakos. Can we manage trust? In Proceedings of the 3rd International Confer-
ence on Trust Management, Paris, May 2005.

[47] P.N. Judson, J. Fox, and P. J. Krause. Using new reasoning technology in chemical information systems. Journal
of Chemical Information and Computer Sciences, 36:621-624, 1996.

34

[48] S.D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust algorithm for reputation management in
P2P networks. In Proceedings of the 12th World Wide Web Conference, May 2004.

[49] N. Karacapilidis and D. Papadias. Computer-supported argumentation and collaborative decision making: The
Hermes system. Information Systems, 26(4):259-277, June 2001.

[50] Y. Katz and J. Golbeck. Social network-based trust in prioritzed default logic. In Proceedings of the 21st National
Conference on Artificial Intelligence, 2006.

[51] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, pages 604-632, 1999.

[52] G.J.Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall PTR, NJ, USA, 1st
edition, May 1995.

[53] Y. Kuter and J. Golbeck. SUNNY: A new algorithm for trust inference in social networks using probabilistic
confidence models. In Proceedings of the 22nd National Conference on Artificial Intelligence, 2007.

[54] J. Lang, M. Spear, and S. F. Wu. Social manipulation of online recommender systems. In Proceedings of the 2nd
International Conference on Social Informatics, Laxenburg, Austria, 2010.

[55] G.Li, Y. Wang, and M. A. Orgun. Optimal social trust path selection in complex social networks. In Proceedings
of the 24th AAAI Conference on Artificial Intelligence, pages 1391-1398, Atlanta, GA., 2010.

[56] C-J. Liau. Belief, information acquisition, and trust in multi-agent systems — a modal logic formulation. Artifi-
cial Intelligence, 149:31-60, 2003.

[57] E. Lorini and R. Demolombe. from binary trust to graded trust in information sources: a logical perspective. In
R. Falcone, S. K. Barber, J. Sabater-Mir, and M. P. Singh, editors, Trust in Agent Societies, 11th International
Workshop, Revised Selected and Invited Papers, number 5396 in Lecture Notes in Computer Science, pages
205-225. Springer Verlag, Berlin, Germany, 2008.

[58] P-A. Matt, M. Morge, and F. Toni. Combining statistics and arguments to compute trust. In W. van der Hoek,
G. Kaminka, Y Lespérance, M. Luck, and S. Sen, editors, Proceedings of the 9th International Conference on
Autonomous Agents and Multiagents Systems, pages 209-216, Toronto, Canada, May 2010.

[59] P. McBurney and S. Parsons. Tenacious tortoises: A formalism for argument over rules of inference. In Proceed-
ings of the ECAI Workshop on Computational Dialectics, Berlin, 2000.

[60] P. McBurney and S. Parsons. Dialectical argumentation for reasoning about chemical carcinogenicity. Logic
Journal of the IGPL, 9(2):191-203, 2001.

[61] D. H. McKnight and N. L. Chervany. The meanings of trust. Working Paper 96-04, Carlson School of Manage-
ment, University of Minnesota, 1996.

[62] Analysis of social voting patterns on Digg. K. lerman and a. galstyan. In Proceedings of the 1st Workshop on
Online Social Networks, Seattle, August 2008.

[63] D. Olmedilla, O. Rana, B. Matthews, and W. Nejdl. Security and trust issues in semantic grids. In Proceedings
of the Dagstuhl Seminar, Semantic Grid: The converegance of technologies, volume 05271, 2005.

[64] N. Oren, T. Norman, and A. Preece. Subjective logic and arguing with evidence. Artificial Intelligence, 171(10-
15):838-854, 2007.

[65] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the Web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[66] M. Paolucci, D. Suthers, and A. Weiner. Belvedere: Stimulating students’ critical discussion. In Proceedings of
the Conference on Human Factors in Computing Systems (CHI), 1995.

35

[67] S. Parsons and P. McBurney. Argumentation-based communication between agents. In M.-P. Huget, editor,
Agent Communication Languages. Springer Verlag, Berlin, 2003.

[68] S. Parsons and P. McBurney. Argumentation-based dialogues for agent coordination. Group Decision and
Negotiation, 12(5):415-439, 2003.

[69] S. Parsons, P. McBurney, and E. Sklar. Reasoning about trust using argumentation: A position paper. In Pro-
ceedings of the 7th Workshop on Argumentation in Multiagent Systems, Toronto, Canada, May 2010.

[70] S. Parsons, P. McBurney, and E. Sklar. Using argumentation to reason with and about trust. In Proceedings of
the 8th Workshop on Argumentation in Multiagent Systems, Taipei, Taiwan, May 2011.

[71] S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and negotiate by arguing. Journal of Logic and
Computation, 8(3):261—292, 1998.

[72] H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of Logic and Computation,
15(6):1009-1040, 2005.

[73] 1. Rahwan and G. R. Simari, editors. Argumentation in Artificial Intelligence. Springer Verlag, Berlin, Germany,
2009.

[74] A.Rao and M. Georgeff. Asymmetry thesis and side-effect problems in linear time and branching time intention
logics. In Proceedings of the 12th International Joint Conference on Artificial Intelligence, pages 498-504, 1991.

[75] A. S. Rao and M. P. Georgeff. Formal Models and Decision Procedures for Multi-Agent Systems. Technical
Note 61, Australian Artificial Intelligence Institute, 1995.

[76] C.Reed, D. Walton, and F. Macagno. Argument diagramming in logic, law and artificial intelligence. Knowledge
Engineering Review, 22(1):87-109, 2007.

[77] P. Resnick and R. Zeckhauser. Trust among strangers in internet transactions: Empirical analysis of eBay’s
reputation system. In M. R. Baye, editor, The Economics of the Internet and E-Commerce, pages 127-157.
Elsevier Science, Amsterdam, 2002.

[78] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation systems: Facilitating trust in internet
interactions. Communications of the ACM, 43:45-48, 2000.

[79] M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic web. In Proceedings of the
2nd International Semantic Web Conference, pages 351-368, 2003.

[80] G. Rowe, F. Macagno, C. Reed, and D. Walton. Araucaria as a tool for diagramming arguments in teaching and
studying philsophy. Teaching Philosophy, pages 111-124, 2006.

[81] J. Sabater and C. Sierra. Review on computational trustand reputation models. Al Review, 23(1):33-60, Septem-
ber 2005.

[82] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ, 1976.

[83] P. Smets. Belief functions. In P. Smets, E. H. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics
for Automated Reasoning, pages 253—-275. Academic Press, London, UK, 1988.

[84] R. Stranders, M. de Weerdt, and C. Witteveen. Fuzzy argumentation for trust. In F. Sadri and K. Satoh, editors,
Proceedings of the Eighth Workshop on Computational Logic in Multi-Agent Systems, volume 5056 of Lecture
Notes in Computer Science, pages 214-230. Springer Verlag, 2008.

[85] P. Sztompka. Trust: A Sociological Theory. Cambridge University Press, Cambridge, UK, 1999.

[86] Y. Tang, K. Cai, E. Sklar, P. McBurney, and S. Parsons. A system of argumentation for reasoning about trust. In
Proceedings of the 8th European Workshop on Multi-Agent Systems, Paris, France, December 2010.

36

[87] C-Y Teng, D. Lauterbach, and L. Adamic. I rate you. You rate me. Should we do so publicly? In Proceedings
of the 3rd Workshop on Online Social Networks, Boston, June 2010.

[88] T. van Gelder. The rationale for Rationale™. Law, Probability and Risk, 6:23-42, 2007.

[89] R. Walton, C. Gierl, H. Mistry, M. P. Vessey, and J. Fox. Evaluation of computer support for prescribing (CAP-
SULE) using simulated cases. British Medical Journal, 315:791-795, 1997.

[90] Y. Wang and M. P. Singh. Trust representation and aggregation in a distributed agent system. In Proceedings of
the 21st National Conference on Artificial Intelligence, 2006.

[91] S. Ye and S. F. Wu. Measuring message propagation and social influence on Twitter.com. In Proceedings of the
2nd International Conference on Social Informatics, Laxenburg, Austria, 2010.

[92] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple conflicting information providers on the web. In
Proceedings of the Conference on Knowledge and Data Discovery, 2007.

[93] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353, 1965.
[94] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:1-28, 1978.
[95] C.Zhang. Co-operation under uncertainty in distributed expert systems. Artificial Intelligence, 56:21-69, 1992.

[96] S.Zhong,J. Chen, and Y. R. Yang. Sprite: A simple cheat-proof, credit-based system for mobile ad-hoc networks.
In Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, 2003.

37

	Introduction
	Related work
	An abstract model of trust and argumentation
	Some graph theory
	Trust Networks
	Argumentation

	Arguments and Trust
	Trust and belief
	Trust-extended argumentation

	Instantiations of the abstract model
	Possibility theory
	Subjective logic
	TidalTrust

	Examples
	The original example
	The modified example

	Constructing trust-extended argumentation graphs
	Trust propagation
	Discussion
	Conclusions

