CEL: A Framework for Enabling an

Internet Learning Community

A Dissertation

Presented to
The Faculty of the Graduate School of Arts and Sciences
Brandeis University
Department of Computer Science

Jordan B. Pollack, Advisor

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

by
Flizabeth Ida Sklar
May 8, 2000

This dissertation, directed and approved by Elizabeth Ida Sklar’s Committee,
has been accepted and approved by the Graduate Faculty of Brandeis
University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Dean of Arts and Sciences

Dissertation Committee

Professor Jordan B. Pollack, Chair

Professor Richard Alterman

Professor Pattie Maes

Professor James Storer

Copyright (© by
Flizabeth Ida Sklar

2000

for my two grandmothers, Mildred and Sadie

the faces of my yesterday who gave me the strength and the courage to pursue the dreams
of my tomorrow

and my three children, Suzanne, Jennifer and Alex

the faces of my tomorrow who make all the todays worthwhile

Acknowledgments

Many people have helped me along the journey that has culminated in this thesis.
I would like to offer special thanks to the following —

To my advisor, Jordan Pollack, for supplying an endless stream of new ideas, for
trusting in me and for being my friend. To my committee, Rick Alterman, Pattie Maes
and Jim Storer for their wisdom and advice and for taking an interest in my work. To
Tom Banaszewski and Jackie Kagey, for supporting the pilot study.

To the members of my department, with whom I’ve shared friendship and sometimes
authorship over the past b years: Paul Buitelaar, Carina Canaan, Paul Darwen, Jeanne
DeBaie, Sevan Ficici, Andy Garland, Greg Hornby, Hugues Juillé, Simon Levy, Hod
Lipson, Ofer Melnik, Julio Santana, Miguel Schneider, Marc Verhagen, Richard Watson,
and especially to Pablo Funes, for many an afternoon hack and for his devotion to
Tron, with besitos. To the faithful stream of undergraduate programmers who helped
me implement the CEL system: John Abercrombie, Robert Gebhardt, Travis Gebhardt,
Matthew Hugger, Louis Lapat and Maccabee Levine.

To Myrna Fox, for listening patiently to my daily woes and always giving me sound
advice. To my sister, Deborah Sklar, for supplying the beautiful artwork that became
the CEL logo. To Ed Rozier, for being an ever-faithful babysitter and father. To my
ever-faithful babysitter and friend, Linea Hopwood, who always kept my guys safe and
sound.

To my parents, Jay and Ellen Sklar, for teaching me to stand up on my own two
feet and for letting go, because you always knew I wanted to do it all by myself; for
loving me despite my mistakes and for being proud of me.

To my guys — Suzanne, for your enthusiasm and willingness to test anything and
everything; Jennifer, for the best hugs ever and for continually enlightening me by care-
fully explaining the world to me; and Alex, for quietly growing from an infant into a
capable little boy, waiting patiently each day for your frantic mother to get the girls on
the bus so we could finally sit down and share our breakfast together.

And to Alan Blair, my best friend and wonder twin, for all your love and support
throughout this process, at any time of day or night, through lice and floods and bone
infections. You always believed in me, even when no-one else did, even when I lost faith
in myself. Thank you, from the bottom of my heart.

Go team!

— Betsy.

ABSTRACT

CEL: A Framework for Enabling an Internet Learning Community

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Elizabeth Ida Sklar

With the introduction of personal computers into schools, educational software has
infiltrated classrooms. Yet despite all the technology that is currently available, the
order of magnitude improvement in student performance which many expected as a
result of computer-based interactive learning systems is not evident. There are many
reasons for this shortcoming. This thesis discusses these reasons and responds to three
specific issues: the practical needs of schools, the curricular needs of teachers, and the
overlapping system needs of researchers.

We present a prototype system called CEL (Community of Fvolving Learners) which
provides an environment that i1s: accessible, because it can be reached by schools with
minimal hardware capabilities and no specialized software installation requirements; flex-
ible, because 1t can host a variety of curricular and experimental activities; and extensi-
ble, because it offers a shareable framework to which others can add their own activities.

CEL is an Internet environment in which users engage in multi-player educational
games, with each other and/or with software agents. This thesis describes the CEL
system, detailing its design and explaining the kinds of activities that can be hosted by
CEL and the types of data that can be gathered. Pilot testing that was used to validate
the CEL mechanism is outlined. Throughout, we demonstrate CEL as an accessible,
flexible and extensible platform capable of supporting many types of curricular activities
and research experiments.

vi

Contents

1 Introduction 1
1.1 Contribution L L 3
1.2 Outline o 7

2 Background 9
2.1 What are interactive learning systems? 11

2.1.1 Instructive learning systems 11
2.1.2 Constructive learning systems 12
2.2 How are interactive learning systems evaluated? 13
2.3 Interactive learning studies L. 16
2.3.1 Experimental research: motivation 17
2.3.2 Experimental research: skill acquisition 21
2.3.3 Field study: KIE o 000 24
2.3.4 Field study: Pueblo o0 25
2.3.5 Field study: MOOSE Crossing 28
2.3.6 Pilot study: MANIC 30

vii

2.3.7 Pilot study: Countingon Frank 31
2.3.8 Pilot study: Phoenix Quest 32
2.3.9 Pilot study: ScienceSpace Lo 33
2.3.10 Pilot study: Zadarh o000 34
2.3.11 System design: Belvedere 35
2.3.12 System design: CoVis, 36
2.4 SUmMMAry . ..o .o e e e e e e e e e e e e e e 38
An Overview of CEL 45
3.1 Abrieftourof CEL o 45
3.2 TheIDsigner 51
3.3 Prototype Activitieso Lo o 53
33.1 Keyit . . . e 53
3.3.2 Pickeyo 56
3.33 Monkey 58
3.34 Automath o oo o oo 60
335 Loois. 62
33.6 Tron 64
3.4 Summary ... oL e e e e e e 66
System Architecture 67
4.1 Server ... e e e e e 69
4.2 Messenger 73
4.3 Monitor 73

4.4 Database Manager 74

4.5 Matchmaker o Lo 75
4.6 Secret Agent L 76
4.7 Player . . . Lo 78
4.7.1 Formative assessment, 79
4.72 Final design o Lo 83
4.8 CEL Message Language 84
4.9 Player States oL 89
Data in CEL 93
5.1 Domain knowledge L o L 94
5.1.1 Words database 0. 96
5.1.2 Arithmetic database o o000 99
5.2 Dataproducts. L 101
5.2.1 Student modelo oo 101
5.2.2 Performance o o 103
5.2.3 Match Results 0L 106
5.24 Survey Results o oo 108
525 System Logs 109
5.3 Summaryol e e e e e 110
Pilot Testing 113
6.1 Activity e 118
6.2 Interaction 121

X

6.3 Learning L 127

6.4 Interest L 129
6.5 Off-line survey 131
6.6 Summaryo e e e 135
Agents as learning partners 137
7.1 Functional description o oL 138
7.2 Playground behavior o oo o 141
7.3 Game behavior o o 0o 143
7.4 Training agents to emulate humans 145
7.4.1 Architecture oo o 147
7.4.2 Training oL Lo o 148
743 Results o 150
7.5 Discussion L e e 154
Domain coverage 155
8.1 Thedomain e 157
8.2 Selection algorithm oL L oo 158
8.2.1 Merging 161
8.2.2 Reproduction through sampling 164
83 Results. o L 169
8.3.1 Domain coverage L. 170
8.3.2 Feature correlation oL 172
8.4 Discussion Lo e e e 177

9 Conclusion 179

9.1 Accessibilityo o 179
9.2 Flexibility oo 180
9.3 Extensibility Lo 181
9.4 TIssues in Internet communities 181
9.4.1 Safety and privacy in CEL 182
9.4.2 Identity in CEL 185
9.4.3 Communicationin CEL 187
9.5 Futurework 188
9.5.1 Visualization L0000 189
9.5.2 Player clustering oL 189
9.6 Finally L 193

xi

xii

List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

4.1

System development cycleo oo oL 16
CEL Home Page. 46
Logginginto CEL. 47
The CEL menu.0 0 i 48
The CEL Playground. 49
An invitation to play amatch.o 50
Site Map. oo 51
The IDsigner. L 52
The game of Keyit. o o L 55
The game of Pickey. L o oL 57
The game of Monkey. L. 59
The game of Automath., 61
The game of Loois. L L 63
The game of Tron. 65
System Architecture.o o oo 67

4.2 Sockets.
4.3 Server architecture, with overview of clients.
4.4 The Monitor. L e
4.5 The Matchmaker. o oo
4.6 Typical software agent architecture.
4.7 Overview of the player. oo L.
4.8 The CEL Playground, initial version.
4.9 The CEL Playground, intermediate version.

4.10 Player state diagram. Lo

5.1 Sample word with feature vector.
5.2 RATE definition for Keyit, Pickey and Automath.

5.3 RATE definition for Monkey.

6.1 Data collection time, per day.
6.2 Number of words completed versus typing speed, per student. . .
6.3 Activity charts for sample students.
6.4 Summary activity chart. o000 oo
6.5 Number of games played per minute.
6.6 Interactions between types of participants.
6.7 Who plays whom, grouped by age and gender.
6.8 Who plays whom, ordered by typing speed.
6.9 Tracking learning in sample students..

6.10 Change in typing speed. oL L.

xiv

70

72

74

75

7

79

82

128

6.11

6.12

6.13

6.14

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Exit poll. e
“How much did you enjoy the match?”
“How hard was the match?”

Post-study survey.

Basic control architecture.o o000
Playground behavior.. oo Lo
Command probability. oo o0
Game behavior. oL L o
Neural network architecture.
Average typing speeds of players. 0oL
Improvement during training. L.
Correlation between trainers and best trainees.

Correlation between populations of trainers and best trainees. . .

Distance between words in feature space.
Selection and reproduction. Lo 0oL
Exploitation and exploration in feature space.
Sampling illustration. o o oo
Sample domain coverage chart.
Domain coverage charts for sample users.
Word length vs typing speed. 0oL
Feature correlation with typing speed.

Correlation coeflicients. oo

XV

151

9.1 Sample IDsigns.

9.2 Sample playgroup graph

xvi

Chapter 1

Introduction

In the last two decades, the rise in popularity of personal computers has spawned
a new and burgeoning market for educational software. With the introduction
of computers into schools, this software has infiltrated classrooms. Schools are
being “wired” at a rapid rate, giving teachers and students direct access to the
Internet. Yet despite all the vast and varied hardware and software, the order of
magnitude improvement in student performance that many expected as a result

of computer-based interactive learning systems is not evident.

There are many reasons for this shortcoming. Some believe that the educa-
tional software market has exploded too fast, without enough pedagogy behind
the software or developmental psychology supporting schools’ technology inte-
gration decisions [Healy, 1999]. “Once net connections are established,...many
teachers find a shortage of quality software tools and curricula to make use

of them.” [Bruckman & DeBonte, 1997] And there are practical issues as well.

“Computer software and hardware become obsolete every 30 months, too swift

a change for most schools to handle economically.” [Gonzalez, 2000]

Most learning systems have not been successfully deployed in practical en-
vironments, in spite of expensive resources and years of research. Kinshuk and
Patel [1997] cite two primary reasons for this failure: (1) the underlying method-
ologies for developing most learning systems were not designed from an educa-
tional viewpoint, and (2) the development of most learning systems has left out

the needs of teachers and students.

Indeed, John Anderson’s original motivation was “to learn more about skill
acquisition rather than to produce practical classroom results.” [Anderson et al.,
1995] In a paper outlining lessons learned from working on intelligent tutoring
systems (ITS) for over 10 years, Anderson et al. [1995] list several reasons why
their tutors were not put into general use in classrooms, including: “there was
never any attempt on our part to address the curriculum that educators wanted
to teach.” As well, “the systems that we developed were inflexible in the way
they had to be used and gave teachers no ability to tune the application of the

tutors to their own needs and beliefs about instruction.”

However, “there is no mention of any existing I'TS in the literature which
allows the teaching community to contribute towards the development of an I'TS
without starting the design process from scratch.” [Kinshuk & Patel, 1997] Pri-
marily, this is because “knowledge-based educational software, such as intelligent
tutoring systems, have historically been large, self-contained programs with spe-

cialized platform requirements.” [Suthers & Jones, 1997]

Clearly, the field of interactive learning systems (ILS), which includes in-
structive intelligent tutoring systems as well as constructive environments, has

problems. The work presented in this thesis responds to three specific issues:

1. The practical needs of schools. It is impractical to ask schools to install
fancy educational systems and keep up with hardware and software up-
grades. Additionally, the hardware at many schools is several generations

behind the equipment used in research labs.

2. The curricular needs of teachers. Educational practitioners should have
an active role in building educational software, both for experimental and

commercial implementations.

3. The overlapping system needs of researchers. Many researchers with a vari-
ety of backgrounds and goals are studying human learning and technology,
and each group is building their own complete system, despite the fact that

many underlying system components are the same.

1.1 Contribution

The main contribution of this thesis is to put forth a practicable interactive
learning system designed to support the types of activities, experiments and data
collection which are common to the ILS field, while answering needs that have
not been addressed satisfactorily in the past. The thesis presents a prototype

system called CEL (Community of Fvolving Learners) [Sklar & Pollack, 1998;

Sklar & Pollack, 1999; Sklar & Pollack, 2000b] which provides an environment

that is:

e accessible, because it can be reached by schools with minimal hardware

capabilities and no specialized software installation requirements;

o flexible, because it can host a variety of curricular and experimental activ-

ities; and

e cxtensible, because it offers a shareable framework to which others can add

their own activities.

The basis of this work is in computer science, not education, psychology
or cognitive science; so the purpose here is not to set forth a new pedagogical
example. On the contrary, the goal is to establish a platform that others with
research interests in human learning can use to define and implement their own
studies. The CEL system is specifically engineered for re-use, so that it can be
shared by others to host a variety of activities, without requiring others to build
an entire interactive learning system “from scratch.”

CEL is implemented on the Internet because in order “to reduce cost...and
enable greater collaboration...educational materials should be shareable between
diverse applications across the Internet.” [Suthers & Jones, 1997] As well, Inter-
net learning communities offer several advantages over traditional educational
software [Kinshuk & Patel, 1997; Stanchev, 1993]: many-to-many communica-
tion, place independence, time independence, multi-media support and computer-

mediated interaction. Inside CEL, users engage in multi-player educational games

because “play appears to be a universally accepted mode of learning.” [Amory
et al., 1998] Also, games are “attractive to many children, and exploratory and
interactive in nature.” [Klawe & Phillips, 1995] Multi-player activities are imple-
mented because much research has shown group learning to be highly effective
[Johnson & Johnson, 1989; Slavin, 1992; Slavin, 1995].

CEL is accessible, taking advantage of the Internet in two ways. First, the
technology behind the Internet means that the system can be used by people
from all over the world with varying hardware and software capabilities. Sec-
ond, the distributed nature of the Internet means that learners can participate
anonymously, allowing students to succeed and fail incognito, without the normal
social pressures of a traditional classroom setting.

CEL is flexible, having the ability to host many types of games and collect
many types of data, supporting teachers and researchers by enabling a variety of
curricular activities and experiments. The games in CEL may be synchronous,
where players take turns, or asynchronous, where play happens in pseudo real-
time. Games in CEL may be collaborative or competitive. Players may partici-
pate openly or secretly, with each other and/or with software agents. Some of the
curricular activities that have been hosted include: a spelling bee, an anagrams
game, typing races, a collaborative building activity and arithmetic exercises.

Some of the types of experiments that can be conducted include:

e comparison of methods for defining curricular paths within a knowledge

domain

e analysis of competitive versus collaborative settings for an educational game

¢ study of interactions in human-human versus human-agent encounters as

opponents in competitive, or partners in collaborative, activities

e comparison of different user interfaces for the same underlying engine

CEL is extensible, allowing others to implement and host their own activi-
ties and collect their own data, while tapping into our client-server architecture,
facilitating communication through our system server, handling data with our
database manager and gaining access to a common infrastructure and user base.
This design enables rapid creation and dissemination of additional games and
abstracts away complex system building issues such as client-server communi-
cation, player distribution and synchronization, and data capture and storage.
This means, for example, that contributors could be teachers or non-technical
researchers, who could lay out new pedagogical activities and then work with
undergraduate programmers to extend our model and implement the new activ-
ities.

Our target user group is primary school children, therefore we pay particular
attention to issues of privacy and safety. CEL offers an alternative to traditional
learning environments, breaking physical barriers of classroom walls and linking

students with similar abilities but diverse ages, genders and locations.

1.2 Outline

This thesis presents the CEL environment, detailing the system architecture,
explaining the types of activities that can be hosted by CEL and the types of
data that can be collected in CEL, and demonstrating the accessibility, flexibility

and extensibility of the system. The thesis is organized into nine chapters.

Chapter two provides background in interactive learning environments, iden-
tifying elements of these systems that are pertinent to researchers and describing
the types of data that is generally collected and analyses that are typically per-

formed. The focus is on educational games and Internet learning communities.

Chapter three introduces the CEL system, from a user’s point of view. An
overview of the environment is given, site components are explained and termi-

nology is defined that will be used throughout the thesis.

Chapter four gives a detailed description of the modular system architecture,
focusing on its accessibility and extensibility. The basis is a client-server model.
Particular attention is paid to the needs of the client since the user base for CEL
includes school children with low-end computers — slow network bandwidth and

limited memory.

Chapter five discusses the data that is gathered inside CEL and describes
the databases that are in use. The emphasis is on the flexibility of the data
collection module.

Chapter six reports on pilot testing in which CEL was used in a public

primary school by fourth and fifth grade children. During the early phase of this

period, the architecture of the system was adjusted in response to various issues
raised at the client site. The remainder of the period was spent collecting sample
data and this chapter closes by demonstrating the types of analyses that could
be performed on CEL data, using the pilot study as an example.

Chapter seven details the use of software agents as artificial learning partners
who inhabit CEL in order to sustain the community by maintaining a “live”
presence at all times. CEL allows flexibility in the choice of a control mechanism
for these agents. The agents described here are controlled by neural networks
that were trained using a new approach, based on human usage data gathered
during pilot testing.

Chapter eight outlines a method used for domain knowledge engineering,
exhibiting CEL’s flexibility in the choice of a domain delivery mechanism. The
method presented is a novel approach in which curricular paths are allowed to
emerge as students interact with CEL with the goal of achieving individualized
domain coverage that adapts on-line to the needs of each student as each student
learns. Note that this work is likely the first to take an evolutionary approach to
problem selection in an interactive learning system.

The thesis concludes with a specific defense of the three initial claims —
that CEL is accessible, flexible and extensible. Finally, future endeavors are
discussed, wherein the current capabilities of the system will be expanded, and

new directions will be explored.

Chapter 2

Background

No matter what we do, a huge infusion of technology is coming to
education. It doesn’t matter if it works or not, whether we make
mistakes or not. It’s coming because so much money is behind it.
And because that infusion of technology is inevitable, it would be
nice to start adding some new perspectives about technology in the
schools. It’s just possible our decisions about technology in schools
are not being guided by the instincts of our best teachers. Right now,
we run the risk of being blinded by science. [Snyder, 1994]

In general, there is a disconnect between educational researchers and prac-
titioners [Reeves, 1999], and this divide is increased when the topic of research
is educational software, or interactive learning systems (ILS). Often the builders
of these systems are either computer scientists, not trained in education, or edu-
cators, psychologists and/or cognitive scientists, not trained in system building.

There is clearly a need to connect the work of education practitioners with
that of human learning researchers and builders of learning systems. This chapter
examines literature on interactive learning environments, in an effort to unify the

interests of the different groups since the motivation behind the CEL system is to

provide a platform that could be used by any of these groups for experimentation
or in support of curricular activities. Because the CEL environment involves
Internet-based educational games, the emphasis in this chapter is on educational
games and Internet learning communities.

This chapter is organized as follows. Initially, two questions are addressed:
What are interactive learning systems? How are interactive learning systems
evaluated? Then several interactive learning studies, at varying levels of maturity,

are discussed. Particular attention is paid to the following four elements:

—_

. the types of issues addressed in the ILS field,

2. the kinds of environments supported and system components built,

3. the forms of data collected, and

4. the various testing and analyses performed.

Each of these elements has contributed to the composition of the CEL platform.
The chapter closes with a summary that highlights the specific ways in which

CEL is designed to address these four elemental requirements.

10

2.1 What are interactive learning systems?

Ultimately, all learning is interactive in the sense that learners in-
teract with content to process, tasks to accomplish, and/or prob-
lems to solve. However...I refer to a specific meaning of interactive
learning as involving some sort of technological mediation between a
teacher/designer and a learner. [Reeves, 1999]

There are two major approaches taken in the field of interactive learning

systems (ILS) [Reeves, 1999]:
1. instructive and
2. constructive.

The difference can be described as follows: students learn “from” instructive

systems; students learn “with” constructive systems.

2.1.1 Instructive learning systems

Instructive learning systems have a basis in educational communication theory,
where researchers look to find the best ways of communicating new ideas to
learners. Traditional computer-aided instruction (CAI) applications and intelli-
gent tutoring systems (ITS) are examples of this type of system.

ITS’s grew out of fixed-path, drill-and-practice CAI applications. Semi-
nal work in the ITS area began with frame-based tutoring systems [Brown &
Burton, 1978], exhibiting such desirable characteristics as providing traces of
problem-solving sessions, customizing for individual users, dynamically select-

ing what to do next and coaching users at opportune times [Clancey, 1986].

11

Early work combined some or all of these features, each emphasizing issues
such as memory modeling [Schank, 1981; Kolodner, 1983], construction of rules
[Anderson, 1982], and representation of students’ misconceptions [VanLehn, 1983;
Soloway et al., 1981]. Many of these ideas were developed into systems tested in
laboratories, classrooms and work places [Koedinger & Anderson, 1993; Schank
& Cleary, 1995].

Subsequent work has continued to explore these areas in more depth. Stu-
dent modeling has been aided by statistical techniques [McCalla & Greer, 1994;
Conati & VanLehn, 1996; Beck, 1997; VanLehn et al., 1998] as well as artificial

intelligence methods like case-based reasoning [Shiri-A. et al., 1998].

2.1.2 Constructive learning systems

Constructive learning systems are based in cognitive psychology, where the com-
puter is seen as a cognitive tool or learning partner. Constructivism originated
with Jean Piaget and states that knowledge being acquired is built by the stu-
dent, rather than being supplied by the teacher [Gruber & Voneche, 1977].
Seymour Papert suggested constructionism as an expansion to construc-
tivism, postulating that students learn better when they are actively engaged in
building something external to themselves. Their construction could be a phys-
ical object, like a castle, or a virtual object, such as a room in a virtual world
[Papert, 1991]. In constructionist environments, students are able to explore
ideas for themselves without having to stick to a fixed curriculum [Papert, 1993];

and students at all levels of ability are provided with opportunities to learn.

12

For example, Papert developed LOGO [Papert, 1980], a simple computer
language that children can use to program graphics environments. In LOGO,
the cursor is a “turtle” that moves around the screen based on commands given
by the student. Later, Mitch Resnick and Uri Wilensky developed Star*L.OGO
[Resnick, 1997], which builds on the LOGO setting and adds a dimension of
parallelism. Instead of having one turtle, the programmer is given many, even
thousands, of turtles. Students can experiment with adaptive behavior, by giv-
ing a group of turtles the same commands and observing what happens as the
members of the group perform the commands and in doing so interfere with each

other.

2.2 How are interactive learning systems evaluated?

There is no simple standard for evaluating the effectiveness of interactive learn-

ing systems, either instructive or constructive. Mark and Greer [1993] review

methodologies commonly used, describing two general categories of assessment!:
1. formative — used to assess the design and behavior of a

system in-progress, generally performed
by computer scientists

2. summative — used to assess the effectiveness of a completed
system, generally performed by educators
and/or psychologists

Hollowing from Littman and Soloway [1988]

13

Table 2.1 lists common components of interactive learning systems and some

corresponding evaluation criteria.

Table 2.1: Components of and evaluation criteria for ILS.
component ‘ evaluation criteria

domain knowledge | e accuracy

teaching component | o range of instructional method(s) offered

e level of adaptability

o degree to which instruction is based on
educational and psychological testing

user interface e comparison of multiple user interfaces
for the same underlying engine

student knowledge | (note that the same criteria are used to evaluate
standard educational and/or psychological tests):
e validity — does the test show evidence that it
measures what it says it measures?
e reliability — are multiple results for the same
subject consistent?
e objectivity — is the test administered and scored
the same way for every participant?
o standardization — can results be translated into
a meaningful representation
of student performance?

system adaptivity e comparison of interactions at different skill levels

control component | e system performance measures (e.g., speed)
(Source: interpretation of [Mark & Greer, 1993])

The techniques for performing assessments vary depending on which compo-
nent is being evaluated, where in the system development cycle the evaluation is
being performed and who is performing the evaluation. Pilot testing often occurs
late in formative evaluation, bridging the gap to summative evaluation. There
are three methods of pilot testing: one-to-one, which is performed early in the
development cycle, with one student, teacher or researcher providing feedback;

small-group, which is performed later in the development cycle, with a small

14

group of students (or teachers) providing feedback; and field, which is performed
near the end of development, emulating experimental conditions with teachers

and students in a “live” (school) setting.

The list of criteria in table 2.1 is of primary concern during formative eval-
uation. Other techniques are more pertinent during summative evaluation. In
criterion-based evaluation, a general list of guidelines is developed and systems
are evaluated based on their adherence to these guidelines, for example, program
construction, behavior and characteristics. While developing specifically relevant
criteria is not an easy task, this method may prove useful in formative assessment
and in comparing different systems. With expert knowledge and behavior assess-
ment, system performance is compared to that of a human expert performing
the same task. One famous example is the Turing test [Turing, 1963]. Software
systems may be subjected to a standard certification process, just as human
teachers are, perhaps through careful examination by qualified human experts.
In sensitivity analysis, the responsiveness of a system is tested on a variety of
different user behaviors. This may be particularly useful for evaluating system
adaptivity. After system development and pilot testing are complete, experimen-
tal research begins. The conditions should be the same as those during the field
testing phase. Figure 2.1 illustrates the progression from system development

through experimental research.

In reviewing the pilot testing and experimental literature, two types of eval-
uations are common: (1) comparison of pre- and post-tests, to measure changes

in student performance, and (2) analysis of on- and off-line surveys, to deter-

15

formative assessment ‘ %

v

‘ one-to-one pilot testing

g

‘ small-group pilot testing

y

field pilot testing

. g

summative assessment \ experimental research \

Figure 2.1: System development cycle

mine students’ interest in a system. This reflects the fact that most systems are

assessed based on learning and/or motivation.

2.3 Interactive learning studies

As mentioned earlier, there are many diverse groups studying interactive learning,
each with its own interests, goals and methods of analysis. This section samples
some of the interactive learning literature, describing several projects at varying
levels of maturity (see figure 2.1).

First, the experimental work of two prominent researchers is outlined: Thomas
Malone, a psychologist who examined motivation in educational games, and John

Anderson, a cognitive scientist who looked at skill acquisition in human learning.

Second, three field studies performed using Internet-based systems are dis-

16

cussed. The KIE system [Bell et al., 1995] is designed to help students learn
to integrate knowledge when facing scientific problems. The other two systems
mentioned are educational MUD’s?. MUD’s were introduced in the late 1960’s,
originating with off-line text-based role-playing adventure games. Probably the
most famous was called Dungeons and Dragons. The first digital versions came
on-line in the late 1970’s, on Arpanet [Bruckman, 1997], and since then MUD’s
have been growing in popularity. Some have used the MUD paradigm to build
educational applications [Fanderclai, 1995; Gordon & Hall, 1998]. The educa-
tional MUD’s discussed here are Pueblo [Walters & Hughes, 1994] and MOOSE
Crossing [Bruckman, 1997].

Third, five small-group studies are detailed. The first, describes an Internet-
based system called MANIC [Stern et al., 1997] that is designed to deliver course
materials effectively. The remainder discuss educational games: Counting on
Frank [Klawe & Phillips, 1995], Phoenix Quest [Klawe et al., 1996], ScienceSpace
[Dede et al., 1996] and Zadarh [Amory et al., 1998].

Finally, two system design reports are summarized: Belvedere [Suthers &
Jones, 1997] and CoVis [Pea, 1993]. Both are Internet-based systems used to

support collaboration in science learning at the high school level.

2.3.1 Experimental research: motivation

Many believe that the secret to education is motivating the student. Researchers

in human learning have been trying to identify the elements of electronic environ-

2Multi-User Dungeon/Dimension/Domain

17

ments that work to captivate young learners. In 1991, Eliot Soloway wrote “Oh, if
kids were only as motivated in school as they are in playing Nintendo.” [Soloway, 1991]
Two years later, Herb Brody wrote: “Children assimilate information and acquire
skills with astonishing speed when playing video games. Although much of this
gain is of dubious value, the phenomenon suggests a potent medium for learning

more practical things.” [Brody, 1993]

Thomas Malone is probably the most frequently referenced author on the
topic of motivation in educational games. In the late 1970’s and early 1980’s,
he conducted comprehensive experimental research to identify elements of ed-
ucational games that made them intrinsically motivating. He highlights three

characteristics: challenge, fantasy and curiosity.

Challenge involves games having an obvious goal and an uncertain outcome.
Malone recommends that goals be “personally meaningful”, reaching beyond
simple demonstration of a certain skill (such as being able to solve a multiplication
problem or spell a word). Instead, goals should be intrinsically practical or
creative, like solving a multiplication problem in order to compute the cost of
lemons needed to make a gallon of lemonade for a lemonade stand, or spelling

the words in the marketing copy that will advertise the lemonade stand.

Malone emphasizes that achieving the goal should not be guaranteed and

suggests several methods for providing this uncertainty:

1. variable difficulty level — this can be determined automatically by the

system or manually by the player;

18

2. multiple goal levels — this can include performing a task correctly and also
quickly, so that once the player has learned how to do the task right, s/he

will then be motivated to learn to accomplish the goal with greater speed;

3. hidden information — as the learner progresses at the task, more informa-
tion can be revealed, for example by making the task simpler when players

take longer to find solutions;

4. randomness — an element of surprise or risk may engage a learner, e.g.,

games that involve gambling.

Fantasy is a feature that is designed to enhance the fun of learning. Fantasy
can be intrinsic or extrinsic. Extrinsic fantasy involves overlaying some kind story
on top of the learning task, for example allowing the player to move around a
baseball diamond by providing correct answers to arithmetic problems. Intrinsic
fantasy implies that the skill being learned is inherent in the problems presented,
for example teaching a player about Cartesian coordinates by letting him move
around in a grid space.

Curiosity provides “novel and surprising” elements, but these should not be
uncomprehensible to the learner. There are two forms of curiosity elements —
sensory and cognitive. Sensory refers to audio and visual effects. Cognitive refers
to surprises within the game content. These should also be constructive, moving
the learner toward the goal, not distracting him from the goal.

Malone makes an important distinction between toys and tools. He defines

toys to be systems that exist for their own sake, with no external goals; in

19

contrast, tools are systems that exist because of their external goals. Good
games are difficult to play, in order to increase the challenge provided to the
player. Good tools should be easy to use, in order to expedite the user’s external
goal. We can infer that good educational games should encompass elements of
both. There is an external goal — for the user to learn how to perform a given
task — and the learning process should be made as easy as possible. At the same

time, the learner should be challenged during the learning process.

The simplest educational games take old-fashioned tutoring systems and
surround them with extrinsic motivational features like attractive multi-media
special effects. However, according to Mitch Resnick, building an animated world
around a series of puzzles, all having correct answers, imposes an artificial en-
vironment and reduces the educational encounter to a fact-learning experience.
“Pedagogically, children will learn more if the acquisition of knowledge is made
integral to the game.” [Brody, 1993] The E-GEMS group at the University of
British Columbia agrees, promoting “the playing of games as an integral compo-

nent of [mathematics] learning.” [Klawe & Phillips, 1995]

With a rise in computer-supported collaborative learning environments, many
educational games are moving into multi-player modes. McGrenere [1996] re-
viewed much of the literature and summarized her findings with a series of
guidelines for designing educational multi-player games: provide for challenge,
fantasy, curiosity and creativity; design the learning task carefully; allow learner
control; allow for communication possibly through multiple modalities (audio,

video, text messages); provide instant update of the game space; and provide for

20

awareness through the use of various views and color. These recommendations
clearly follow on Malone’s research, while promoting constructivist environments

as well.

2.3.2 Experimental research: skill acquisition

John Anderson is one of the most renowned early researchers in instructive in-
teractive learning systems. His overarching research question can be summed up

as follows:

One of the current controversies in cognitive science and education is
whether it is possible to take a complex competence, break it down
into its components, and understand the learning and performance
of that competence in terms of the learning and performance of the
components. [Anderson et al., 1995]

Anderson’s work is based on the ACT theory, which is a theory of skill acqui-
sition that began with ACT* [Anderson, 1982] and became ACT-R [Anderson,
1993]. The basic principles of ACT include distinguishing between declarative
knowledge and procedural knowledge (i.e., stating a fact and knowing how to use
that fact), relating this knowledge to task goals and converting the declarative
knowledge into production rules to help achieve the task, and strengthening the
knowledge through practice. In general, Anderson defines computer-based tu-
toring systems using a “model-tracing” approach wherein a correct behavior is
modeled as a set of production rules and it is intended that the student should
follow this model in his learning.

Anderson and his colleagues developed three major systems: geometry tutor,

algebra tutor and LISP tutor. Many experiments were performed over a number

21

of years with these systems. Their summative analysis included four components:

1. production practice — this is a measure of how often students apply the

relevant production rules,

2. within-problem practice effects — this is a measure, over time, of how a

student improves his application of the appropriate production rules,

3. acquisition factor — this is a measure of how well students performed with

new rules introduced during a lesson, and

4. retention factor — this is a measure of how well students retained rules

learned during earlier lessons.

They performed formative experiments to determine the appropriate form
and level of feedback that should be given to students and the amount of error
correction that should be required. They compared several levels, including no
feedback, feedback provided immediately by the system and feedback provided
on demand (only when requested by the student). They gave students a fixed set
of exercises to complete with one version of the system. They administered both
on-line and paper-and-pencil post-tests to determine which feedback mechanism
was most effective. The version that provided immediate feedback and immediate
error correction gave the best results.

They also carried out some tests to determine what the content of feed-
back messages should be. Measuring the speed with which students provided

correct answers showed that feedback messages containing some explanation of

22

a student’s error were significantly more effective than feedback which simply
indicated that the student had made an error. However, post-testing, after the
session was over, did not result in statistically significant differences, indicating
that providing more explanation during initial learning did not appear to offer
longterm learning benefits.

One issue they point out is that creators of tutoring systems need to pay
attention to user interface design early on, rather than building the underlying
tutoring mechanism first. It is important to identify the skills being learned
and the environment in which these skills will be used, once acquired. The user
interface should be designed so that transferral of these skills from the learning
environment to the “real world” will be smooth.

Practical deployment of these systems offered further learning opportunities
for the researchers. They stated [Anderson et al., 1995] that there was no at-
tempt on the part of the researchers to address the curricular needs of teachers.
There was no larger educational objective — the post-tests were the only mea-
sure of success. There was little understanding of how to deploy the software
tutors in the classroom, and the tutors were not flexible, so teachers could not
customize the tutors to the meet the needs of their classrooms. As a result,
the researchers began to develop working relationships with public schools and

classroom teachers.

23

2.3.3 Field study: KIE

KIE® (Knowledge Integration Environment) is designed to help students with
science learning and is focused on bringing students and evidence together to solve
problems. This system includes tools like an electronic space for taking notes, an
on-line discussion facility and a knowledge integration coach that provides hints
to students as they work together to answer scientific questions. A more recent
version of this system is called the Web-based Integrated Science Fnvironment
(WISE)*.

KIE stresses the integration of science knowledge, arguing that today, sci-
ence education is often too abstract. Students are exposed to a broad scope
information and they do not gain in-depth understanding of this knowledge. The
pedagogical basis of the KIE project lies in a “scaffolded knowledge integration
framework”, which aims to teach students to reconcile scientific models with
intuitive observation and distinguish between technical and colloquial use of sci-
entific terminology. KIE defines activities and software tools designed to help
students learn to use the Internet effectively for research, critique evidence and
integrate new knowledge. The overall goal is for students to gain an integrated
understanding of science topics.

A pilot study was conducted with KIE in which students were given the
following question to answer: “How far does light go?” 165 eighth grade students

participated in a school setting. They worked in pairs, sharing 16 computers. The

®http:/ /www.clp.berkeley.edu/KIE.html

*http:/ /wise.berkeley.edu/WISE /welcome.php

24

study began with students providing their intuitive answer to the question, prior
to doing any research. Next, students reviewed evidence on the web to support
or refute their intuitions. Third, the students collaborated to come up with their
own empirical evidence, and then they posted that evidence on the web for others
to share. Fourth, they built a scientific argument, by integrating the evidence
found in the second and third steps. Fifth, they presented their arguments to the
class and discussion ensued. Finally, they took a post-test and provided informed
answers to the original question. Overall, the study demonstrated that the KIE
approach was feasible and the study suggested and motivated improvements to
the system, both in terms of software and curriculum.

The technical components of the system include: a web browser, an HTML
editor, email software, a system navigation tool for selecting components, an on-
line notebook, a networked evidence database (containing information from steps
two and three, above), a multi-media discussion tool, a teacher tool for designing
activities, and an on-line coach.

The overall goal of the KIE system is to help make the Internet a partner in

education and to teach students lifelong skills for science exploration.

2.3.4 Field study: Pueblo

Pueblo® was originally called MariMUSE and was used at a summer camp for
primary school children in Arizona in 1993. Two years later, the MUD was

given its current name. The focus in Pueblo is on learning through writing,

®http:/ /pcacad.pc.maricopa.edu/Pueblo/index_frame.html

25

programming and simulation. Participants create their own virtual world and
take on new identities, using the language of the MUD to invent and describe
places and creatures, defining appearances and enacting behaviors. Researchers
found that Pueblo served to draw otherwise uninterested children into literacy
activities and that the paradigm helped to break down traditional classroom and
social boundaries.

The motivation behind Pueblo is to be able to link experts and learners via
the Internet. Typically, a classroom contains one expert (a teacher) and many
learners (students). The Internet facilitates linking many experts with students
and allows people to participate anonymously.

Researchers were interested in answering several questions with regard to
the system. Can elementary students use a MUSE environment? Is there any
indication that writing skills develop as a result of using Pueblo? Do primary
school teachers believe in the system?

The data collected in the Pueblo system includes demographic information
(gender, age and race of participants), experimenters’ observations, anecdotal
information, session transcripts, daily evaluations and journal entries.

Two years after the introduction of the Pueblo project, Billie Hughes high-
lighted some on-going challenges in making the system useful in a school setting
[Hughes, 1995]. These could be considered recommendations for any type of

system designed to be used in schools. Key issues are:

26

o Teacher start-up — School implementations entail use of local staff for
solving technical installation problems, who must be trained. As well, there

are training issues involved in introducing teachers to the system.

e Student start-up — Farly use of the system is difficult because students
have to learn many commands in order to just get around in the environ-

ment, before being able to really create anything.

e Toolbox creation — It is helpful to have a toolbox of generic objects with
generic behaviors that teachers and students can invoke when they first
begin using the system, before they are ready to learn/perform low-level

programming tasks.

e Help — Even after initial start-up, help is often needed, especially for users
without a programming background; in addition to creation of a toolbox

(above), a tutoring facility would be useful.

¢ Reporting mechanism — In order for this environment to be useful for
teachers, there needs to be a toolbox of reporting mechanisms for extracting
samples of students’ work, examining students’ activities with the system

and showing students’ progress over time.

e Reality check — Young children have trouble distinguishing the real from

the virtual, and researchers and teachers need to be aware of this.

27

2.3.5 Field study: MOOSE Crossing

MOOSE Crossing® is a constructionist environment designed for late primary
and middle school students. It is a text-based MUD, however MOOSE Crossing
uses a new language called MOOSE which was the first MUD language designed
explicitly for children. MOOSE Crossing is enabled on the Internet, however
it is not accessible from inside a browser. Participants must download software
onto their computers and connect to the MUD using this software. Participants
enter MOOSE Crossing with a user name and password, but must apply for
membership off-line by sending in forms signed by the child member and her
parent/guardian. Adults monitor discussion on the site, and anyone found mis-
behaving will be denied future access. MOOSE Crossing has been extremely
well-received by researchers as probably the first widely available environment
of its kind, and analysis of participation has revealed positive results similar to

those found in Pueblo.

MOOSE Crossing is designed to be used from home, as part of organized
after-school activities and as a classroom activity. [Bruckman & DeBonte, 1997]
reports on pilot testing that was performed with five classes in four schools in
three different states. “Too many factors vary among these classes to warrant a
formal comparison. However, a case-study analysis reveals a number of educa-

tionally significant features.” [Bruckman & DeBonte, 1997]

Data collected during pilot testing included: transcripts of discussions with

http://www.cc.gatech.edu/fac/ Amy.Bruckman/moose-crossing /

28

students and teachers (both on- and off-line), objects created by children, log files
of interactions and observations of researchers. Permission for collecting this data
was obtained from both students and their parents. Statistics include: location
of study, grade level of participants, number of participants, number of adults
present to assist, length and frequency of sessions, average number of commands
typed per student, average number of objects owned per student, and average

number of scripts written per student.

Results are presented both in terms of overall averages, grouped averages (for
each classroom) and individual averages and examples. The system is assessed
on four measures: access, peer experts, free-form versus structured activity and
atmosphere. Access refers to the ease with which students have access to a

computer where they can log on to MOOSE Crossing.

In schools where a computer is physically located in the classroom, children
are often allowed to use that computer during their free “choice” time. Bruckman
[1997] states that in these classrooms, children “regularly” use MOOSE Crossing
during their free time. There is no statistical data to support this claim, nor any
indication as to the percentage of children who chose to use MOOSE Crossing
“regularly”, nor what other computer programs are available to children at that
time, etc.

Other factors were observed during the pilot testing. The presence of peer ex-
perts improved use of the system and these students served as a valuable resource
for others. Some of the students’ experiences with the system were motivated

by collaborative projects designated by the teacher; the structure appeared to

29

help keep students involved in using the system. There seems to be a mixture of
attitudes and cultures toward allowing students to get up and walk around and
talk to each other during computer lab time.

More comprehensive analysis and statistical results can be found in

[Bruckman, 1997].

2.3.6 Pilot study: MANIC

MANIC is a system designed to intelligently and adaptively deliver course ma-
terial over the WWW, using existing slides and video. The authors want to
personalize the delivery according to the educational needs and learning style of
individual students. There were three main goals of the project: to guide stu-
dents through the course material, to provide interactive/adaptive quizzes, and
to pre-fetch course material.

The system architecture is based on a client-server model. There is a server-
side database that contains the slides and video. The client-side contains a web
browser and plug-ins (to support presentation of audio and visual materials).

The domain being delivered is organized into a set of topics. Unlike tra-
ditional ITS’s (like Anderson’s LISP tutor) that pre-determine what a student
will see, MANIC does not impose a strict presentation order. As well, MANIC
includes multiple versions of the same slide (e.g., easy and hard).

A student model is maintained, containing scores for five measures: amount
of a topic viewed, version viewed (e.g., easy or hard), access patterns, hyper-links

followed to review topic (which implies some level of uncomprehension or perhaps

30

inattention), and quiz performance. Based on the student model, two methods
are used for guiding students: adaptive navigation support (as in ELM-ART
[Brusilovsky et al., 1996]), which adapts which links are shown, and adaptive
presentation, which adapts the content shown.

A study was performed with 15 university students. Aside from the infor-
mation gathered by the student model, additional data was collected including a
post-study questionnaire, primarily to ascertain if the students liked the system.

9 of the 15 students completed the survey.

2.3.7 Pilot study: Counting on Frank

[Klawe & Phillips, 1995] describes a study involving an educational game called
Counting on Frank, which was designed for teaching math. In this study, the
game was used by primary school students in a collaborative mode where small
groups of learners worked together at one computer.

Games are an attractive medium for teaching math because they are ap-
pealing to children, they are exploratory and interactive in nature, and they
facilitate visualization. The philosophy embraced by the researchers here asserts
that the “playing of games is an integral component of mathematics learning,
rather than as a way to trick students into paying attention before the ‘real
teaching’ starts.” [Klawe & Phillips, 1995]

The Counting on Frank study puts forth the notion of “student as re-
searcher”, because the students kept logs of their experiences with the system,

which included bugs they found and criticisms they had. The study emphasizes

31

group discussion, both before and after the sessions with the system. The re-
sults are anecdotal, based on data collected in students’ logs and observations of
experimenters.

The authors conclude by outlining several issues highlighted by their work.
First, it is beneficial to have two students work together at one computer. How-
ever, the authors offer no comparison — is their scenario better than students
working alone at one computer or better than two students working together at
two computers? Second, requiring students to make use of external tools while
using a computer may help with knowledge transfer. Third, careful consideration
must go into the design of user interfaces for education, particularly in relation to
choosing a highly intuitive versus more deliberate design because students may
lose opportunities for learning when using an interface that does too much. In
summary: “making computer use more efflicient for learners can sometimes result

in less effective learning.” [Klawe & Phillips, 1995]

2.3.8 Pilot study: Phoenix Quest

Phoeniz Quest is a computer game designed to encourage (especially) girls ages
10-14 to explore concepts in mathematics and language arts. [Klawe et al., 1996]
describes a study which showed that girls value story line, characters, worthwhile
goals, social interactions, creative activities and challenge. In comparison, boys
value fast action, adventure, challenge and violence. The results are largely
anecdotal.

The study took place over a 6 week period, in 40 minute sessions. The first

32

half of the study was spent fixing implementation problems. Approximately 120
groups of primary school children (grades 3-7) participated. There were between
one and three children in a group. Overall, there were nearly the same numbers
of girls as boys.

The following data was collected: log files, which included correspondence
and game events, participants’ ratings, researchers’ observations, and interviews
with teachers and some of the students. The ratings mentioned came from a post-
session survey that was conducted on-line, where students rated their experience
after each session according to three criterion: fun, importance and challenge.

Analysis examined session completion rate (normal or error) for both boys
and girls and the average rating (from the post-session survey) per category for
both genders. Gender differences were noted. No data or results on learning was

presented.

2.3.9 Pilot study: ScienceSpace

[Dede et al., 1996] compares and evaluates three virtual reality microworlds that
comprise a system called ScienceSpace. Formative evaluation compared three
user interface styles. Summative assessment was performed in terms of usability
and learning.

Usability was evaluated according to the following objective and subjective
measures: task completion, error frequency, ratings by participants (“easy” or
“hard”), rankings of interaction styles, participants’ comments, and researchers

observations. Learning was measured by comparing results of pre- and post-tests

33

of participants’ knowledge.

Three multi-sensing interfaces were compared: (1) visual only, (2) visual and
auditory, and (3) visual, auditory and haptic. The determination was that the
more multi-sensory cues that were available, the more the students were engaged
in using the system, concluding that students find virtual reality attractive for
learning.

Anecdotal remarks are shared, however no statistical results are reported.

2.3.10 Pilot study: Zadarh

[Amory et al., 1998] conducted a study in which they compared four single-
player games in order to determine the types of games enjoyed by students, in
this case undergraduate biology students, and then used the results to design
their own game. The four types were: strategy, adventure, simulation, and
shoot-em up. They divided participants into racially and gender balanced groups
and recorded additional demographics which included age, race and amount of
computer experience.

The participants played each of the four games and afterwards completed a
questionnaire. They rated the games on a scale of 0 to 4, for specific character-

istics within three categories:

34

1. game aspects funness, sound/graphics, game type,
story, technology

2. assessment of skills required logic, memory, visualization, math,
reflexes, problem solving

3. game play too easy, addictive, boring, too long,
challenging, confusing, too difficult,

illogical, difficult to play,
practice makes perfect

After this study, a new learning game was built, called “Zadarh”. This game
was assessed using the same questionnaire as above. In addition, the groups com-
pleted pre- and post-tests. The results showed that adventure and strategy games
were preferred (over the other types tested). They report that “[the students] also
learnt something while playing,” [Amory et al., 1998] although this statement is

not supported with any statistical or even anecdotal evidence.

2.3.11 System design: Belvedere

Belvedere™ is designed to assist students learning critical inquiry skills for science
domains. The primary element of the system is a collaborative inquiry database,
which students can access through a variety of interfaces. The database helps
them keep track of the problem they are addressing, their hypotheses, evidence
and references. The system also includes a sophisticated coach that can help
students during the critical inquiry process.

Belvedere has five components: (1) a collaborative inquiry database, where

students keep a record of their inquiry process, (2) a Java-based interface into

"http://Lilt.ics. hawaii.edu /belvedere/

35

the collaborative inquiry database, (3) HTML interfaces which serve as a backup
to the Java interface, (4) a coach designed to stimulate students, and (5) HTML
reference materials designed to scaffold students. Components are implemented
using Java, CGI, Lisp, HTML and SQL.

There are several educational issues at hand: lack of motivation, limited
knowledge of scientific domains, inability to understand theories and arguments,
particularly abstract concepts, difficulty in keeping track of debate, and lack of
scientific basis in arguments. The interface is specifically designed to address

each of these issues.

2.3.12 System design: CoVis

CoVis® is geared towards forming distributed electronic communities dedicated
to science learning in K-12 environments, particularly through scientific visu-
alization. As well, the system provides links to Internet resources and several
interaction devices, such as real-time collaborative environments for conversing
with teachers and other students. Specific curricular activities are built into the
system, such as learning about the weather using graphics tools that let users
view climate maps or satellite imagery.

School-based learning communities are formed by teachers and students to
support long-term collaborative projects, “allowing them to learn from one an-
other and letting the problems to be solved dictate the knowledge that must be

acquired,...frequently and purposefully crossing disciplinary boundaries.” [Gordin

Shttp:/ /www.covis.nwu.edu/

36

et al., 1996] There are various levels of interaction in these communities that are

currently in use:

1. Information resources — kExamples are published work and analyzed data.
This includes information provided by libraries, museums and government
sites, as well as curricula and activities found on educational sites, and in-
dices offered by a variety of sources. This information is generally available

as text or hypertext with images.

2. Analysis resources — Examples are raw data and analysis tools, such as

weather data and visualization software.

3. Interaction with community members — There are several categories of
interaction: connecting teachers to each other, connecting students to each
other and connecting parents and local communities with schools. Addi-
tionally, some sites provide connections between students of one school with

teachers at another school.

4. Collaboration with community members — The vision here is to connect ex-

perts from within a local community with teachers and students in schools.

5. Publication of community’s work — The result of a community’s work
can, if published on-line, feed back as information and analysis resources,

described above.

37

2.4 Summary

In designing CEL to be an accessible, flexible and extensible interactive learning
system, it is necessary to position CEL solidly as a viable ILS so that it can
sustain the basic requirements of the field. As such, CEL must be able to support
the types of issues, environments, data collection, testing and analysis put forth
throughout this chapter.

CEL responds to the most prominent issues in the ILS field of study as

follows:

e motivation in learning — Using Malone’s definition, CEL is both a tool and
a toy. It is a tool for researchers and teachers, but the games inside CEL
should be considered toys by the students that use them. They should
be intrinsically motivating, providing elements of challenge, fantasy and
curiosity. The sample activities outlined in chapter 3 take these concerns

into account.

e acquisition and synthesis of complex skills — Following from Anderson’s
work as well as the three systems that support collaborative scientific in-
quiry (KIE, CoVis and Belvedere), it is important that CEL be able to
handle simple domain elements and support individual acquisition of these
elements as well as integration of multiple elements into complex groupings.
The nature of CEL promotes flexible definition of domains, elements within
these domains, groupings of elements and actions concerning the elements.

The message language described in chapter 4 and the data handling tech-

38

niques discussed in chapter 5 outline the mechanisms in CEL that address

this issue.

o effective use of Internet technology at varying age levels — The philosophy
of CEL is to adjust to the broadest standard software environment that
is sensible in order to service the most number of participants while still
delivering a useful system. This means that the hardware requirements
should be minimal, an issue which is discussed in chapters 4 and 6. As
well, the user interface, described in chapter 3, is designed to be usable
by children as young as age 8. Although this means that some of the
nomenclature (e.g., “playground”) may seem silly to older children, the

environment will be understandable by a larger segment of the population.

¢ productive integration of learning systems in schools — The startup issues
highlighted by [Hughes, 1995] as well as installation and upgrade concerns
mentioned by [Gonzalez, 2000] are addressed by the accessible feature of
CEL. The basic CEL “playground” interface (see chapter 3) requires a
minimum of instruction to use, and so startup time for both teachers and
students is short. Because CEL runs inside a standard web browser, it

requires no special software installation, hence no special upgrades.

The flexibility of CEL enables it to support the different types of environ-
ments that are popular in the ILS field. This includes both instructive and
constructive activities. While many ILS environments are single-user, CEL ac-

tivities are all multi-player games (currently two players). Note that in CEL

39

both players need not be human; chapter 7 discusses the use of software agents
as artificial game partners or opponents. ILS environments may be competitive
or cooperative; the latter is more typical, since collaborative learning is highly
touted by today’s experts and competition in education, especially in the United
States, is highly controversial [Kohn, 1986]. Chapter 3 illustrates competitive
and collaborative games in CEL.

Quite a few ILS’s allow direct on-line communication between participants.
In most Internet learning communities, communication is explicit, e.g., via a
collaborative workspace (as in KIE) or through the English-like language of a
MUD (as in Pueblo and MOOSE Crossing). In CEL, open communication is
not permitted, in order to protect young participants. Instead, CEL members
interact with each other and/or with software agents, using the “language” of

the games they are playing:

a game like, say, chess has highly formalized signs and rules; the
‘language’ of chess may be exhaustively described by logical syn-
tax, without the fluidity and uncertainty of human language. So
such games form an oversimplified analogy to human conversation.
[Cherry, 1978], p.252.

This restricted mode of communication not only serves to protect the privacy
of young participants but also offers two additional benefits. First, simple soft-
ware agents can interact in CEL and pass a minimal Turing test, because the nor-
mal complications of natural language are avoided. Second, while the absence of
open conversation diverges from typical computer supported collaborative learn-
ing (CSCL) systems, CEL provides the opportunity to explore non-conversational

collaborative learning, which e.g., could support learning partnerships between

40

members who do not speak the same language.

The common components to most interactive learning systems include a
user interface, a student model, a communication facility (for multi-user environ-
ments) and a control mechanism. Chapter 4 describes each of these components,

which are all implemented in CEL.

The data gathered during ILS studies is typically in the form of oral dis-
cussions, video tapes, paper-and-pencil surveys and tests, on-line surveys and
tests, on-line system products and on-line session logs. This data comes from
(objective) pre- and post-tests, (subjective) on- and off-line surveys (where typ-
ically users are asked to rate various features on a numeric scale), user demo-
graphic questionnaires (including information like age, gender, race, location and
computer experience), and observations of experimenters, teachers and students.
CEL supports on-line collection of user demographics (through a login facility),
surveys, system products and session logs. On-line testing is not currently im-
plemented, but would be quite feasible in future work. Chapter 5 describes the
on-line data capture and storage methods used in CEL. Of course, experimenters
are free to employ any off-line methods they choose. For example, during the
pilot testing outlined in chapter 6, we took video footage and administered an
off-line survey.

The types of analyses performed on this data is obviously geared toward the
particular goals of individual studies. However, there is often some overlap and
we identify five common categories of analysis and the types of questions asked

in each category:

41

1. activity — what are participants doing with the time they spend using a

system? what types of activities are they involved in?

2. coverage — how much of the knowledge domain have students covered in

their interactions with the system?

3. learning — how much have the students learned in their interactions with

the system?

4. interaction — with multi-user systems, or systems involving use of software
agents, how much have students interacted with other users or software
agents? have these interactions changed students’ activity levels? have

these interactions affected learning? who have the students interacted with?

5. interest — do the participants enjoy using the system? are they motivated
to participate? do they find elements of fantasy, curiosity and/or challenge

in the system?

Table 2.2 shows the relationship between the types of data collected and the

types of analyses performed.

42

Table 2.2: Relationship between data and analysis.

activity | coverage | learning | interaction | interest

pre-tests X

post-tests X

on-line surveys X
off-line surveys X
session logs X X X X X
observations X X X
system products X X X X X

In the field of ILS, it appears that the most common testing reported in
the literature is field testing. There are very few comprehensive experimental
results published, particularly with Internet environments, as the technology is
relatively recent. The analyses performed are sometimes statistical and more
often anecdotal. Chapter 6 describes field testing done with the CEL system and

shows examples of the types of analyses that could be performed on the data

collected in CEL.

Most ILS systems need tools with which to examine the data that is collected

on-line. These should be usable by researchers as well as teachers. Future work

with CEL involves creating a set of analysis tools, particularly for teachers.

43

44

Chapter 3

An Overview of CEL

This chapter provides a tour of the CEL environment from a user’s point of
view. Terminology specific to CEL is introduced. We highlight the features of
the system that make it accessible for participants and flexible and extensible for

contributors.

3.1 A brief tour of CEL

CEL is located on a free web site and is open to anyone with Internet access and
a Java-enabled browser. Netscape is currently the only browser fully tested. We
have also performed basic testing with Internet Explorer. CEL has been tested
on Windows-95, Macintosh and Linux platforms. Figure 3.1 shows the home
page for CEL, located at: http://www.demo.cs.brandeis.edu/cel.

Students log into CEL with an individual user name and password (see

figure 3.2.a). In order to maintain the levels of anonymity and privacy that CEL

45

= Netscape: welcome to CEL HEE|
File Edit View Go Communicator Help |

4 AgdoumSd T

" w§ ~ Bookmarks A Location: [http: / /s .demo . on . brandeis . odu foel / /‘ ﬁl' What's Related

welcome to CEL!

.8 Community of Evolving Learners

login

help

read about the CEl project
view consent form

il

S % aB 2|

Figure 3.1: CEL Home Page.

demands, the user name (and password) are never shown to others. Unlike other
virtual communities where users interact directly in open environments, CEL
users only communicate indirectly — the content of each game serves to link
players and participants are identified in the system solely by graphical icons.

These icons are called [Dsigns and users create their IDsigns themselves (see

figure 3.2.b and section 3.2).

46

Hetscape: login page

File Edit Wiew Go Communicator ‘
(S A Dot s §

" € " Bookmarks i Localion: [http s/ /w2 e, o6 brandeis . sdu/oel/ /‘ @7 What's Related

fim & new user.

sign me up!

fle been here beibre.

user name:l
password: |§
let’s go

By logging in, | consent to being involved in this experiment using the pseudonymous name that | have entered above. |

understand that datais collected on every game | play, and | hereby give the DEMO lab at Brandeis University permission
to amalyze and publish this data for scientific purpozes

= |

(a) Login screen. (b) Sample IDsign.

Figure 3.2: Logging in to CEL.

47

After logging in, students are shown a simple menu page, containing a list

of available activities. Clicking on a game icon selects that activity (figure 3.3).

[EF= =0 =i = L ieiseepes CELmEnGG v = =0 e o falElD
File Edit View Go Communicalor Help ||
[Addoasd @ =

™ Bookinarks i Lovation: [tp: /s e on -brandeis . edu/fosl / /‘-ﬁl' What's Related

welcome to CEL, ﬁ!

play -!
use “ to change vour IDsign

. and have fun!

click to exit CEL

thank vou for wvour time and participation!

please send any guestions or comments to:
celweb@cs.brandeis.edu

Fil w2

Figure 3.3: The CEL menu.

48

Next, users are placed in an open playground, a page that contains a matrix
filled with IDsigns belonging to other users who are currently logged into CEL and
are playing the same game (figure 3.4). These are a user’s playmates; together

they comprise a user’s playgroup.

F Netscape: cel playground

File Edit Wiew Go Communicator

LA DVl S
" §~ Bookmarks A Location: [http:/ /a2 .demo . o brandeis . edu/oel/] @7 What's Related

welcome to the CEL playground (= s [HERl

& J
hints

help
update my scores

have fun!

hints

Ifthe playground doesnt re-appear in the

righthand frame of your browser {especially
after playing a game), then click reload on
YOUr browser.

Sametimes - especially if your network
connectian is slow, ar your computer doesnt
have a ot of free memary - then your browser

mminhtnot ronct fmmartiotak Clicking o an ican

= ||

@< scores for KESE

Sun, Qct 17 7 to 3
06 SEFM ﬁ E

Sun, Oct 17
03:20PM

Y RN
g;ué#nMn 5 w Jul] E‘

g;uaé:nMﬂ El ﬁ to 1 E‘

E‘ - ‘E;cmumem Dane. 0 WL P 2 M

Figure 3.4: The CEL Playground.

49

By clicking on a playmate’s IDsign, a student invites a playmate to join her
in a match (see figure 3.5). Depending on the type of game being played, the
match could be collaborative or competitive, free-play (asynchronous) or turn-

taking (synchronized).

A| Netscape: cel playground | . | 4 | Jl
File Edit “iew Go Communicator Help |
TP A Dl S @

" € " Bookmarks i Location: [ttp /w2 e, o5 brandeis . sdu/oel/ /‘ @7 What's Related

welcome to the CEL playground
!

Y T,
you have invited !
hints J click PLag] to begin your

help match
update my scores

click CANCEL to cancel the

have fun! match and return to the
playground
click nEW] to Teave Keyit and
enter a new playground

hints

Ifthe playground doesnt re-appear in the

righthand frame of your browser {especially click It to exit CEL
after playing a game), then click reload on

YOUr browser.

Sametimes - especially if your network
connectian is slow, ar your computer doesnt
have a ot of free memary - then your browser

Ly

@< scores for KEE [

O - |

R PR

Fi,0ct03 6

02:26FM

g;ué#nMn 5 w to 5 E‘

g;uaé:nMﬂ 3 ﬁ to 1 E‘

e - e i
il [{5 %5 aP w2

Figure 3.5: An invitation to play a match.

The match begins when the browser displays a game page, containing a Java
applet that facilitates play. Both players participate according to the particular
format of the selected game. When the match is over, each player is returned to

his playground and is then free to engage in another match.

50

A map of the CEL site is shown in figure 3.6, indicating the relationship
between the games menu page (figure 3.3), and the playground (figure 3.4) and
match pages (for example, figures 3.8, 3.9, 3.10, 3.11 or 3.12). The unshaded
boxes represent the static portion of the site. The shaded boxes illustrate play-
ground and match pages, which are created dynamically for each activity in CEL,

as users enter and exit playgrounds and initiate matches.

CEL home

V

v V

games

IDsigner =% menu —JZ
41% playground ==

game applet

VY

Figure 3.6: Site Map.

3.2 The IDsigner

Users create and modify their IDsigns using a pixel editing tool called the ID-
signer' (see figure 3.7). Each IDsign is 20x20 pixels in size. First-time users

must create an IDsign during the login process, before they can enter a play-

!The IDsigner is similar in operation to the KidPix stamp editor.

51

ground. Participants may modify their IDsigns later, by selecting the IDsigner
from the games menu.

Users are given a palette of 13 colors to choose from? and a straightforward
point-and-click interface with which they can set the color of each of the 400
pixels. IDsigns are saved on our server, so when users return to CEL, the most

recent version of their IDsign is loaded automatically.

IF[Tetscapeicelmsgner [[|"|
File Edit “iew Go Communicator He\p‘
(45 ARl 3o & B

" € " Bookmarks i Location: [ttp /w2 e, o5 brandeis . sdu/oel/ /‘ @7 What's Related

this tool 15 called the IDsigner. use it to create an icon {or
IDsigny that will identify wou in CEL.

1=) done loading.

- after you have edited yvour IDsign,
vou may need to hit shift-reload on your
browser so that wvour changes will appear!

& [1% 100% of 6K (al 341 bytes/sec) {8t % a@ N2 |

Figure 3.7: The IDsigner.

2The palette contains the standard set of web-safe colors defined in the Java class

java.awt.Color.

52

3.3 Prototype Activities

For the prototype implementation of CEL, we built games that would let us
demonstrate the flexibility of the system to host various types of activities. Based
on our review of the interactive learning systems literature, we chose to focus on
two-player games that are either competitive or collaborative and allow either
synchronous (turn-taking) or asynchronous (real-time) interaction between play-
ers. The games were designed to be easily accessible by participants with com-
puters that have limited memory and low network bandwidth. So we restricted
the games to small footprint Java applets, which means they take less time to
load on participants’ computers and require little memory once loaded. These
aspects are discussed further in chapter 4.

Currently, three word games, one math game, one construction activity and
one spatial reasoning game have been built and tested. These are called Keyit,
Pickey, Monkey, Automath, Loois and Tron. FEach is described below. Two

additional games are also in progress: SpellebrityBee and Mathtree.

3.3.1 Keyit

The keyboarding game called Keyit® is pictured in figure 3.8.a, and a close-up is
shown in figure 3.8.b. This is a competitive game in which participants are given
ten words to type as fast as they can, with 100% accuracy. For each player, a

timer begins when she enters the first letter of a word. Time is measured using

*Keyit was implemented in collaboration with Maccabee Levine and Travis Gebhardt.

53

the system clock on the client’s computer, and a score is calculated, which is
simply the time in hundredths of a second.

When the game page is first displayed, the column of words to type is empty.
The user clicks on the “start” button, and the game begins. A word appears in
the top row and is highlighted in yellow. The user attempts to type the word
correctly, in the white text field provided at the bottom of the applet. By pressing
the Enter key, the user signifies that she has finished typing the word. The system
verifies the entry, and if it is correct, the word box turns green, and the user’s
time is displayed in the “my score” column. If the entry is incorrect, a message
appears in the status message line (under the game button at the top of the
applet): “oops! try again.” The user must correct the entry before being given
the next word or she may opt to skip the word (by clicking on the “skip” button).

When the user’s playmate completes the same word, her time appears in the
“your score” column. Whoever has a lower score becomes the “owner” of the
word, and her IDsign appears in the “owner” column. During the course of a
game, feedback is provided to both players by filling in these columns as words
are typed.

The match need not be synchronized. For example, a network link may be
slow or one user may be interrupted. In this case, the system provides to each

user whatever moves are available from their playmate.

54

ttp s/ fwwne2 .demo. on brandeis . edu/oel/ | @5

this is the game of -

..and this 15 your match with .!

click - to cancel the match and return to the playground

click nEL to leave Keyit and enter a new plavground

click to exit CEL

conciseness

(b) A close-up view.

Figure 3.8: The game of Keyit.

55

3.3.2 Pickey

The keyboarding game called Pickey? is pictured in figure 3.9. This game is very
similar to Keyit, except that users start with the full list of ten words, and they
pick which ones they want to type.

The Pickey game board has two columns: the left column contains the list
of words to be typed and the right column contains text fields where the player
attempts to type each word. When the game page is first displayed, both columns
are empty. The user clicks on the “start” button, the left column turns yellow
and fills with words, and the game begins.

Play proceeds by the user selecting a word to type, clicking on the corre-
sponding box in the “attempt” column (which turns white), typing the word and
pressing the Enter key, to signify that she has finished typing the word. The sys-
tem verifies the entry, and if it is correct, both boxes in the row turn green and
the user’s time is displayed in the “my score” column. If the entry is incorrect,
a message appears in the status message line (under the game button at the top
of the applet): “oops! try again.” The user may correct her entry or pass on
that word and go on to another one. The mechanisms for reporting scores and

granting ownership of words are handled the same way as they are in Keyit.

*Pickey was implemented by John Abercrombie.

56

Hetscape: CEL Pickey game

File Edit “iew Go Communicator He\p‘

Hd 3 Attt S & [

" ‘. " Bookmarks i Localion: [ttp s/ /w2 .dewo. o6 brandeis . edu/oel/ /‘ @7 What's Related

this is the game of PICKEY

..and this 15 your match with

click C to cancel the match and return to the playground

click n to leave Pickey and enter a new playvground

click EXIL to exit CEL

£

belittled

.l

bermuda

reducibility

inteqrations

brovmning

conditional

= |

i 9B 2|

Figure 3.9: The game of Pickey.

57

3.3.3 Monkey

Monkey?® is a collaborative anagrams game in which players are given one long
word and they work together to find as many smaller words as they can, using
the letters from the long word. The long word is referred to as the “monkey’s
word” and players “monkey around” with the letters in the monkey’s word to
create new words, referred to as “sub-words”. When forming sub-words, letters

may appear only as many times as they appear in the monkey’s word.

Here are some examples of valid sub-words for the monkey’s word “alien-
ation”: alien, nation, line and in. An invalid sub-word would be “teen”, since

the letter “€” appears only once in alienation, but twice in teen.

The Monkey game page also has a “start” button, which each player clicks
on to begin his game. The monkey’s word is shown under the “start” button.
Players enter sub-words in the text field at the bottom of the applet, ending with
the Fnter key. Each entry is validated by the system as follows. First, the entry
is checked to make sure it is long enough (sub-words must be at least two letters
long). Then it is checked to see if it has already been used in this game. Next,
the system makes sure that the letters in the entry appear in the monkey’s word.
Finally, the entry is verified by checking in a dictionary, to make sure it is a real

word®. Valid sub-words are listed in the scrolling area which appears between

®Monkey was implemented in collaboration with John Abercrombie.

SCurrently, we are using the standard dictionary that comes with Linux. We use this same
dictionary as the database for all word games. We have filtered out any crude words by hand.

This dictionary, although it contains almost 35,000 words, is incomplete. In future, we will

58

the monkey’s word and the word entry field. Play continues until both players
want to quit or until all valid sub-words have been found.

There is no concept of individual score in Monkey, because it is collabora-

tive rather than competitive (like Keyit and Pickey). On each playground page

for every game in CEL, users can see a record of all the matches they have played

T ape: CEL Monkey game
le Edit View Go Communicalor

TEY T

<
j " Buokmarks i Localion: [tep: /i deo. on brandeis edu/oels /[ﬁl‘;\ﬁ‘ﬁ_a’s&%-ﬁ"&]a‘t&ﬂ

this is the game of -

.and this is yvour match with !

click Eﬁﬂ[:ﬂ to cancel the match and return to the playground

click nEL! to leave Monkey and enter a new plavground

to exit CEL

click

|Applet cel.Monkey Mankey running

&

Figure 3.10: The game of Monkey.

replace it with a more comprehensive dictionary.

59

and some value associated with each match. For Keyit and Pickey, this is simply
the number of words owned by each player owned at the end of the match. For

Monkey, the total number of sub-words found by both players is shown.

3.3.4 Automath

The game of Automath? is a competitive math game that follows the same struc-
ture as Keyit. However, instead of being given words to type, players are given
equations to solve. All the equations are in the form: a <operator> b. Valid oper-
ators are: + (addition), — (subtraction), * (multiplication), / (integer division)
and A (power).

Like Pickey, the Automath game board has two columns: one for the equa-
tions to be solved and one for the user’s answers. But like Keyit, each row fills in
one at a time. The game begins when each player clicks on her “start” button.
The first equation turns yellow, and the user must solve the equation by typing
the correct answer in the corresponding box to the right of the equation, ending
with the Enter key. The user’s entry is timed, and score is reported (the time,
in hundredths of a second), in the “my score” and “your score” columns. The
IDsign for “owner” of each problem — she who solves each equation correctly and
more quickly — is shown in the same row as the problem. Players are allowed

to skip an equation by clicking on the “skip” button.

TAutomath was implemented by Elizabeth Sklar, based on the InOutMachine game [Sklar

et al., 1998].

60

Hetscape: CEL Automath game

File Edit Wiew Go Communicator

[CFX At I

" .~ Bookmarks A Location: [http:/ /w2 .dema. o6 .brandeis . edu/osl/ /‘ @7 What's Related

Y
this is the game of _
..and this 15 your match with !

click m to cancel the match and return to the playground

to leave Automath and enter a new plavground

click E to exit CEL

owner my score your score

o 2450 2380
310
148.0
180
4100
1370
155.0

1280

1250

]
E‘ Applet cel.Automath.Automath running =| b R B 2 ‘

Figure 3.11: The game of Automath.

61

3.3.5 Loois

Loois®

is a collaborative construction game in which players work together to
create structures out of building blocks. This is a turn-taking game. The player
who initiates the match goes first. He selects a block from a bank of building
blocks and uses his mouse to drag it onto the building area. When he releases
his mouse, his move is sent to his partner. Every move is checked for structural
integrity, using the Lego simulator built by Pablo Funes [Funes & Pollack, 1998a;

Funes & Pollack, 1998b]. If any blocks are deemed instable, they are highlighted

in black in the building area.

When the players have finished constructing, they may print out a schematic,
containing plans for building the structure they have designed on-line. This pro-
cess promotes transference of information from the virtual world to the physical
world and helps teach students about visualization, projection and dimensional-
ity. For young children, learning how to assemble physical structures by following
paper instructions is a valuable skill; because they have designed the structures
themselves, they may more easily understand the relationship between the ele-
ments of the structure as they are represented on paper (and/or on a computer
screen) and their physical instantiations. As well, this game serves to introduce

children to the field of computer-aided design.

In an expanded version of this game, children will be able to work together

to design entire cities. The buildings in the cities could be created by anyone

8The applet for Loois was built by Louis Lapat and Pablo Funes.

62

who plays the game, so participants in different places could contribute to a
cooperative project. Children will be able to learn from their peers by observing
structures built by others. A web page will show all the buildings in the city and
their locations in relation to each other. Visitors to the web page will be able to
print schematics of selected buildings. In this way, children on opposite sides of

the world can reconstruct the same city, physically, in their own classrooms.

Er— Tesmpetlomgme [[

File Edit “iew Go Communicator Help ‘
S TP XY | =
" i " Bookmarks i Location: [http:/ fewwl .dems. o brandeis . edu/oel /‘ @7 What's Related
Y

this is the game of L00IS
cooand this is your match with ﬁ!
click EHHEEL to cancel the match and retuyrn to the playground

click nEWI to Teave Loois and enter a new playground

to exit CEL

click

stioy

1} please walt for your mate to go

Erick Bank +#bricks
] 10 [i - L]
L] 10
| 10
10
0
R
|
H Lt
A
=]
E‘ Applet cel.Loois.Loois running =| b R B 2 ‘

Figure 3.12: The game of Loois.

63

3.3.6 Tron

In earlier work [Funes et al., 1997; Funes et al., 1998], we built a Java version
of the real-time video game Tron® and released it on the Internet!? (see figure
3.13). Human visitors play against an evolving population of intelligent agents,
controlled by genetic programs [Koza, 1992].

Tron became popular in the 1980’s, when Disney released a film featuring
futuristic motorcycles that run at constant speeds, making right angle turns and
leaving solid wall trails behind them — until one crashes into a wall and dies. We
abstract the motorcycles and represent them only by their trails. Two players —
one human and one agent — start near the middle of the screen, heading in the
same direction. Players may move past the edges of the screen and re-appear
on the opposite side in a wrap-around, or toroidal, game arena. The size of the
arena is 256 X 256 pixels. The game runs in simulated real-time (i.e., play is
regulated by synchronized time steps).

Although Tron is not particularly educational, we placed a version of it in
CEL because we wanted to demonstrate the ability of the CEL system to host a
real-time, asynchronous activity. In the CEL version of Tron, participants play

indirectly against each other by both competing against the same software agent.

°Tron was implemented in collaboration with Pablo Funes.

Yhttp://www.demo.cs.brandeis.edu/tron

64

Hetscape: CEL Tron game

File Edit “iew Go Communicator He\p‘

40 Al SE @

.~ Bookmarks S Location: 'Dﬂ:tp:ffwme.dmn.cs.hrnndels.sdufcelj /‘ @7 What's Related
4

this 15 the game of LRon

cooand this is your match with l:‘!

click to cancel the match and retyrn to the playground

click o leave Tron and enter a new playground

click to exit CEL

you lose!

Figure 3.13: The game of Tron.

65

3.4 Summary

Table 3.1 contains the current CEL game set, highlighting the range of function-

ality amongst the games and the overall flexibility of the CEL system.

Table 3.1: Functionality of games in CEL.

interaction mode domain
Keyit real-time competitive keyboarding
Pickey real-time competitive keyboarding
Monkey real-time collaborative spelling, vocabulary

SpellebrityBee | turn-taking competitive spelling

Automath real-time competitive math

Mathtree real-time collaborative math

Loois turn-taking collaborative construction
Tron real-time competitive spatial reasoning

Each of the games described is implemented in Java and restricted to a
small footprint applet, in order to provide easy access to participants with com-
puters that have limited memory and slow network bandwidth. The pilot study
described in chapter 6 demonstrates this accessibility of the system.

Keyit was the first game implemented. All the other games were built by
undergraduate programmers by extending this model. Discussion of this exten-
sible model is contained in chapter 4. Instructions for extending the model to

create new games can be found in [Sklar, 2000].

66

Chapter 4

System Architecture

The CEL system employs a modular client-server architecture, as shown in figure
4.1. One central server maintains a dynamic database indicating who is logged
into the system and which games they are playing. This server also acts as a

message passer, sending and receiving commands that go between clients.

messenger Broveer
monitor

database database |
manager | . .
\‘
matchmaker [~

""" = the Internet :
1= server

[1= client

Figure 4.1: System Architecture.

67

There are six different types of clients in CEL: messenger, monitor, database
manager, matchmaker, agent and player. The player client is designed to meet
two fundamental needs: (1) to be practicable to anyone with Internet access and
a web browser capable of running Java, and (2) to be usable by participants
with limited network speed and low computer memory, as is the case for many
school children. As such, we use small footprint Java applets for games and
implement the playgrounds using CGI-bin programs that generate HTML and
refresh periodically in order to update playgroup content.

The system is designed to be easily accessed by participants and easily ex-
tended by contributors (those adding their own games to CEL). Participants ac-
cess CEL through the player client component, which runs inside their browsers.
Section 4.7 highlights the characteristics of the player client that were built to
meet the needs of school children. Contributors extend the matchmaker and
agent components and the game portion of the player client component to im-
plement their own activities in the system. Sections 4.5, 4.6 and 4.7, explain the
details of each of these components, respectively.

This chapter describes each of the seven modules (one server and six types

of client). Detailed software documentation can be found in [Sklar, 2000].

68

4.1 Server

The CEL server is a control component, having two primary functions: (1) to
act as a central message processing facility, handling communication between all
types of clients, and (2) to maintain a list of all the players who are currently
logged into CEL and the status of each player. The server is written in Java,
version 1.0.2. We use Java version 1.0.2 because it can run inside Netscape
version 3, which is (currently) more widely used than later versions of Netscape
— supporting CEL’s requirement for accessibility.!

A note about terminology and formatting in this document: words that are
Java keywords are highlighted in this font; words that are CEL keywords (e.g.,
CEL classes, variables and commands) are highlighted in this font.

The server interfaces with each of the six types of CEL clients (messenger,
monitor, database manager, matchmaker, agent and player). The terminology
can be somewhat confusing because while CEL players may be thought of as
general “clients”, they are not the only type of client. And while matchmakers
may also be referred to as “game servers”, they are really clients as well. The
distinction comes from network communication phraseology: the server opens
a ServerSocket and each type of client opens a Socket in order to send and
receive messages to and from the server (see figure 4.2).

Commands are sent between the server and clients using the CEL command

LOf course, we could use a later version of Java for our server and only restrict applet code
to 1.0.2, but we decided it was simpler from a configuration management standpoint to use the

same version for everything.

69

server client
application application
or applet
Ser ver Socket /\/\ Socket
cl ass cl ass
Internet

Figure 4.2: Sockets.

language (described in section 4.8). For example, messages are used to: log
a client into and out of the system, register a player entering a playground or
remove an exiting player, send a match invitation from one player to another,

and pass game moves between players.

Figure 4.3 illustrates the Server and its relationship to each client application
or applet. The components of the Server are shown above the solid grey line in
the figure. The clients (shown below the solid grey line) are described in later

sections of this chapter.

The Server extends the Java Thread class. It opens a ServerSocket on a
specified port and listens for connections. When a new client makes a connection,
the Server instantiates a ServerClient Thread to handle bi-directional communi-
cation with that client. The Server maintains a list of all active clients, i.e., a

Vector of ServerClients.

As long as the socket connection with any ServerClient is alive, the server
agsumes that the client is running. When a client exits normally, it sends a LO-

GOUT command to the Server and closes the socket connection. Sometimes, the

70

Server will initiate the closing of a client, either because the Server is shutting
down, or because it has received a command to kill a particular client, or be-
cause the socket connection has died, which typically happens when a client exits
abnormally.

The ServerCleanup class monitors the status of every client connection, run-
ning periodically to check if any activity has occurred on each client’s socket
connection within a fixed time period. If no activity has occurred, then the
Server sends a PING command to the client. The expected response is a PONG
command, from the client back to the Server. If this is not received within a fixed
time period, then the Server assumes that the client has exited abnormally and
so the cleanup thread closes that client.

This process is necessary because we cannot ensure that clients (particularly
players) will exit CEL cleanly. Players are instantiated in participants’ browsers
and if a user clicks away to another web site or closes his browser without logging
out of CEL, then we have no way of knowing that the player has exited. So, in
order to maintain the integrity of the active client list in the Server, we use the
ServerCleanup thread. For example, this prevents the system from creating game

matches that involve players who have left the system.

71

¢l

'SIUSI[O JO MOIAIDAO [JIM ‘QJHCLDQC}[I{Z).I? RESYIWES [N 4 anﬁ[&

server

Server
extends Thread

ServerClient ServerMonitor ServerDBManager ServerMatchmaker ServerPlayer ServerCleanup
extends Thread extends ServerClient extends ServerClient extends ServerClient extends ServerClient extends Thread
ServerAgentClient ServerPlayerClient
extends ServerClient extends ServerClient
ClientClient MonitorClient Cclient MatchmakerClient SecretAgentClient Cclient PlaygroundGamecClient
extends Thread extends ClientClient C function extends ClientClient extends ClientClient C function extends ClientClient
Messenger Monitor dbmanager Matchmaker SecretAgent playground PlaygroundGame
extends Applet extends Frame C application extends Thread extends Thread C cgi-bin extends Applet

messenger

monitor

dbmanager

matchmaker

secretAgent

player

4.2 Messenger

The simplest client in CEL is the Messenger client. It is a Java application that
provides a command-line interface for sending commands to the Server. It was
built primarily as a development aid. The Messenger takes a message string in
its command line and sends the message directly to the Server. The syntax of

the message is the same as the CEL command language (see section 4.8).

4.3 Monitor

The Monitor is an expansion of the Messenger. It is also a Java application
that provides a command-line interface for sending commands to the Server, but
the Monitor also receives live feedback from the Server, reporting current status
information on all active clients. The Monitor has a graphical front-end, which
is pictured in figure 4.4. It can also run in a non-graphical mode, which is
especially useful when testing CEL at a remote site where a graphics terminal is
not available.

The Monitor can run on any networked computer, so it is a useful tool for

contributors who are extending CEL.

73

=-i CEL monitor 1|0

quit |
MONITORS: log
monitor (listening) —|client[Automath]: are you alive? =
client[Automath]: sending message %¥ping
client[Keyit]: are you alive?
—|client[Keyit]: sending message Xiping
T : |client[Loois]: are you alive?
MATCHMAKERS: client[Loois]: sending message %¥#ping
~{clientfdbmanager]: are you alive?
Monkey (listening) " |client[dbmanager]: sending message %%ping
Automath (listening) client{monitor]: are you alive?
Keyit {listening) client{monitor]: yes | am healthy and alive
Loois {listening) done cleaning.

|clientldbmanager]: received message X¥pong
I client[70000]: received message ¥%pong
PLAY ERS: client[70001]: received message %pong
|client[80001]: received message %¥pong
client[90000]: received message %%pong
client[80000]: received message %pong
client[80001]: received message %pong
client[Pickey]: received message %¥pong
client[Keyit]: received message X*%¥pong
client[Loois]: received message %%pong
client[Automath]: received message %%pong
client[Monkey]: received message J%pong

70000 (listening,Keyit,lonely)
70001 (listening,Keyit,lonely)
90000 (listening,Automath,lonely)
90001 (listening,Automath,lonely)
80000 (listening,Pickey,lonely)
80001 (listening,Pickey,lonely)

= [l
e e |)6Mog client{Monkey]: received message %¥pong
ET

el

monitor> ‘

Figure 4.4: The Monitor.

4.4 Database Manager

The dbmanager is a C program that interfaces between the Server and the CEL
databases. These include the student model component of the system as well as

session logs.

The dbmanager runs as long as the Server is running. Whenever a player
begins or ends a match, a message is sent from the Server to the dbmanager.
The dbmanager parses the message and stores the relevant data in the appropri-
ate CEL database table. Refer to chapter 5 for detailed information about the

particulars of the CEL databases.

74

4.5 Matchmaker

For each game in CEL, there is one Matchmaker. This is a Java application
that keeps track of all the users who are currently connected to its game. The
Matchmaker is responsible for maintaining playgroups for each player, fetching
game content at the start of a match, instantiating agents to play the game when
playgroups are too small and verifying moves during game play.

The components of the Matchmaker are shown in figure 4.5. Some of the
components are highlighted in grey, to indicate that there may be multiple in-
stantiations of these classes. A new MatchmakerGame class is instantiated every
time a match begins. This is essentially a data structure that stores informa-
tion pertinent to individual matches. When a match ends, its corresponding

MatchmakerGame is removed.

Matchmaker

MatchmakerClient ‘ ‘ MatchmakerGame ‘ ‘ MatchmakerThread ‘ ‘ Matchmakercleanup‘ SecretAgent

SecretAgentClient

Figure 4.5: The Matchmaker.

The MatchmakerThread class can be used for one of two purposes: to fetch
data for game content when a new match begins or to save data when a match is
over. This thread is instantiated as either a fetcher or a saver. Both types invoke

CGI-bin programs to interface, respectively, with the domain knowledge or the

75

student model component of the CEL databases.

The algorithm used to fetch game content can vary, in order to maintain
system flexibility. For example, formative evaluation of a system might involve
comparing different methods for selecting content for the same game, which can

be done simply by employing different CGI-bin programs to fetch the game data.

The SecretAgent runs as a child of the Matchmaker. Once instantiated, a
SecretAgent executes independently of its Matchmaker parent, although it dies
when its parent dies. Secret agents can also be instantiated as programs and run
autonomously, outside of a Matchmaker. This flexibility allows implementation
of secret agents that have the ability to play multiple games. Detailed discussion
of secret agents is found in section 4.6 and in chapter 7.

In order to implement their own activities, contributors extend the Match-
maker, MatchmakerThread and SecretAgent classes. For example, the Keyit match-
maker is enabled through the KeyitMatchmaker, KeyitMatchmakerThread and Key-
itSecretAgent classes. Matchmaker applications can execute on contributors’ lo-
cal machines as well as on our site. Instructions for extending classes to create a

matchmaker can be found in [Sklar, 2000].

4.6 Secret Agent

All the games in CEL are multi-player games. If not enough people are logged
into a game playground, then it is useful to have software agents that can act as

playmates. Otherwise, participants would be forced to wait until another human

76

logs in before being able to play any games. We refer to the software agents in
CEL as Secret Agents, because the agents may be indistinguishable from human

playmates.

Figure 4.6 illustrates standard architecture for a software agent [Russell &
Norvig, 1995]. In CEL, the sensors and effectors are provided virtually by the
SecretAgentClient class. Through the Server, the SecretAgentClient receives infor-

mation about the state of the world and sends its actions to be effected.

Sensors

O\ effector(s)

O—
S
Q/

perception intelligence action

controller ——

Figure 4.6: Typical software agent architecture.

The SecretAgent may perform three types of actions: system actions, play-
ground actions and game actions. System actions refer to logging in and out of
CEL. Playground actions refer to entering and exiting playgrounds and initiating

challenges. Game actions refer to moves in a game.

The controller for a secret agent decides which action to take, given the input
received from the Server. The flexibility of the CEL system makes it possible to
design many types of controllers for secret agents. For the prototype version of
CEL, we have defined two types of controllers. One is a simple reactive controller

that does not initiate any challenges on the playground, and when playing a game,

7

all its moves are direct responses to its playmates moves, based on a rule that
allows the playmate to win almost every match, by a small margin. The second
type of controller is a neural network controller that is trained to emulate the
behavior of humans who have visited CEL. Chapter 7 discusses the agents in
more detail.

The SecretAgent class extends a Java Thread. It has one child: SecretAgent-
Client. Secret agents can be instantiated as part of a Matchmaker (see section
4.5). They can also be run as independent programs. This allows more flexibil-
ity, particularly by permitting complex agents that exhibit system actions like
logging in and out of CEL at particular times and being able to play different
games.

Contributors need to extend the SecretAgent class in order to implement an
agent that can participate in a new activity. Refer to [Sklar, 2000] for instructions

on how to extend this class.

4.7 Player

The CEL player client implements the user interface component of the system.
It runs inside a web browser and has three elements: the menu, the playground

and the game (see figure 4.7).

The menu and playground portions of the player client are implemented sep-
arately from the game portion. The following subsection details the development

of the player module and adjustments made during formative assessment. The

78

playground.cgi

menu

game |—=

PlaygroundGame

Figure 4.7: Overview of the player.

section concludes with a description of the final design.

4.7.1 Formative assessment

We performed formative assessment of the player client using the setup at a lo-
cal primary school. The initial implementation of the player client was written
entirely in Java. The playground was an applet, which opened a socket con-
nection to the CEL server when it was launched and kept that connection open
throughout a player’s entire session with CEL.

As illustrated in figure 4.8, the entire browser window was taken up with
one playground applet. The background was an image, designed to look like
the black-top in a school playground — white lines demarking hopscotch and a
basketball court on a black background. Users’ [Dsigns were inscribed in circles,
whose color changed based on the state of each player. Players who were playing

games were shown in green circles. Players who were sitting in the playground

79

were drawn in white circles. A user’s own player was inscribed in a blue circle.

F Helscape: cel playground |_|r_|F

File Edit Wiew Go Communicator Help ‘
e b At 3& @
'| w# Bookmarks A Go To: http:/ /wene . dems . on brandsis .sdu/cel /\ @50 What's Related
A

Welcome to the CEL Playground, suzanne!

You are the hlue circle. You can control
your circle by clicking on it with your
mouse and moving it around the
playground (while holding down the mouse
huttan) On some computers, you can also
use the arraw keys to move around

In arder to hegin a maich, move your circle
so that it bumps into another circle (another
player) an the playground. You will hoth
turn red and the match will begin. ¥ou may
have to wait a few seconds for a window fo
pop up. This is where you will play your
match

When the match is over, you can play
again with the same opponent, or you can
return 1o the playground

Have fun! -

S

Figure 4.8: The CEL Playground, initial version.

The IDsigns were animated, moving around the playground in a fluid and
dynamic manner. Each user controlled her own IDsign by clicking on it with
her mouse. She could drag her IDsign and “bump” into that of a playmate; this
action constituted an invitation to play a match. Playmates’ IDsigns moved in
and out of the playground as users entered and exited the virtual space.

This design worked quite well in the laboratory, and children who tried this
interface during one-to-one testing in our lab liked the style. Unfortunately, it
proved too slow and cumbersome to be useful in a school setting. The amount of
memory required for a large playground applet was too great for the computers at
our test site, a local primary school. Opening a socket to the server and keeping
it open continuously did not prove to be reliable. The idea of moving IDsigns

around with a mouse, while appealing to the children, did not perform well in

80

practice, primarily due to limited memory.

We were fortunate to be able to work at a test site that is better equipped
than most schools and may have faster access than many children do from home.
But we wanted to make CEL accessible to school children across the U.S. and
around the world, so the system had to perform to at least a median common
denominator. If the performance was poor at our test site, we knew that it would

not fare well in a typical school setting.

So, at first, we modified the design slightly, as shown in figure 4.9. Here the
size of the applet was smaller (i.e., the amount of memory it used) because the
image background was removed and the informational portion of the screen was
done in HTML. Additionally, frames were introduced, so the left-hand portion
of the screen, which was only HTML loaded up quickly and warned students to

be patient while the right-hand frame (which contained the applet) loaded.

We were disappointed to find that these alterations did not resolve the prob-
lems at our test site. The issues with memory were compounded by socket connec-
tion breakdowns. When the applet initialized, it opened a connection to the CEL
server and attempted to keep that connection open during a user’s entire session
with CEL. However, we found that these connections kept getting interrupted.
We tried implementing a recovery process whereby interrupted connections would
reconnect to the server. But this resulted in more memory problems, because
the memory allocated for lost connections was not recovered well in the browser
and so as more connections were made, less and less memory became available

on the students’ computers and eventually they would hang.

81

File Edit Wiew Go Window Help
(€% 3Rt 3 B

'| § Bookmarks & Ga To: [http:/ /dewn.on brandein edu/ocl. /| @07 What's Related

Welcome to the CEL A
Playground!

it may take several seconds for the
system o start Java and ioad Ihe
LRGN, Please Wait

You are the circle in the center.
You can control your circle by
clicking on it with your mouse and
maving it around the playground
(while holding down the mouse
button). G some compteters, pou
freed fo ofick ir e mghtand
frame fwihere ihe playground gefs
lnadied) i oraer e get Java to
start.

How am | doing?

In order to begin a match, move
your circle so that it bumps into
another circle (another player) an
the playground. ¥ ou will both
change colors and the match will
hegin. You may have to wait a
few seconds for a window to pop
up. This is where you will play
wour match

When the maich is over, you can
play again with the same
opponent, or you can return to the
playgraound.

Have fun!
= 100%

Figure 4.9: The CEL Playground, intermediate version.

As a result, we redesigned the player to use HI'ML and cue the browser to
refresh the playground page periodically, asking the server for playgroup updates.
This means that the player does not need to maintain a single long-term socket
connection to the server. Conceptually, the playground is still an ongoing process
that maintains a connection to the server so that the player can receive updates
concerning who his current playmates are, as others enter and exit the site.
In reality, the playground sends a refresh command to the browser telling it to
update the playground every 5 seconds, thereby simulating a real-time connection
to the server. Using this type of polling mechanism makes the system more

accessible, because it accommodates clients with slow network connections and

82

low memory computers.

The product of the redesign is a program called playground.cgi. At first,
this was a shell script which invoked a Java application that connected to the
Server, received an updated list of playmates and output HTML to draw the
playground in the user’s browser. After a few trials, we found that this method
was also unacceptable. Every time the script was called, it started a Java virtual
machine on our host computer in order to execute the Java application. This is
bad because each Java virtual machine takes a while to start up, uses a lot of
system resources while it runs and takes a while to close down and release the
resources it was using — typically longer than the 5-second refresh period of each
playground. When more than about 5 people were logged into CEL, our host
machine was swamped. One player could have several playground.cgi’s running
on our host because their browser would send a refresh command and start up a

new one before the previous one(s) had completely exited the system.

4.7.2 Final design

The final playground.cgi is written in C and implements the menu and playground
portion of the player client. This version runs in less than one second, and it
works beautifully in practice. Although we gave up the fun gained from moving
one’s [Dsign around in an animated environment, we are still able to emulate
the dynamic nature of the environment and have ended up with a much more
reliable and accessible product.

The game is a small-footprint Java applet, started when the playground.cgi

83

outputs HTML containing an APPLET command. The applet is built on a class
called PlaygroundGame. When a PlaygroundGame applet initializes, it creates a
child called PlaygroundGameClient that opens a socket to the Server and keeps
that connection open as long as the game is in progress. When the game is
over, the socket is closed and the applet invokes playground.cgi again, to fetch
an updated playgroup from the Server and return to the state of waiting for a
match. Again, accessibility is important, so the size of the applets are kept to a
minimum, in order to lessen the memory requirements of clients’ computers.
The user interfaces for individual games are enabled by extending the Play-
groundGame class. All of the games described in chapter 3 are built around this
model. Contributors extend the PlaygroundGame class to implement the user

interface for their own activities.

4.8 CEL Message Language

All communication between the Server and its clients is facilitated by the CEL
Message Language. There are five classes of messages that are sent:

I — commands between the server and any type of client

II — commands between the server and messenger and monitor clients
I — commands between the server and dbmanager client
IV — commands between the server and matchmaker clients

V — commands between the server and player and agent clients

Tables 4.1 through 4.5 list each set of commands, respectively, and describe their

actions.

84

The message language was designed to support the extensibility requirements
of the system. The separation between command classes protect the system; con-
tributors who create matchmakers, players and agents cannot send destructive
commands to the Server. For example, a matchmaker cannot effect a KILL com-
mand because it will not be recognized as a valid matchmaker command in the
server.

The commands in classes III, IV and V were designed for flexibility, keeping
short and simple the amount and type of communication that flows between the
server and dbmanager, matchmakers, players and agents. The command set can

support a variety of activities, as outlined in chapter 3.

Table 4.1: Class I: commands between server and any type of client.

‘ command ‘ from server to client: ‘ from client to server: ‘
LOGIN client logs into CEL
LOGOUT client logs out of CEL
PING server checks socket

connection
PONG client verifies socket
connection

GETTIMEOQOUT | server reports timeout | client receives value
value for client of timeout
SETTIMEOUT server sets value of

timeout

SEND server sends a message | client sends a message
to a client to another client,
via server

ERROR client reports that
an error has occurred
SHUTDOWN client shuts down server shuts down

(messenger and
monitor clients only)

85

Table 4.2: Class II: commands between server and messenger/monitor clients.

‘ command ‘ from server to client: ‘ from client to server: ‘
LOG server writes a message
to the log file

FLUSH server flushes the log file
GETLOGINT server reports value of | client receives value of

log interval used log interval used

during cleanup during cleanup
SETLOGINT server sets value of

log interval used
during cleanup

GETCLNUPINT | server reports value of | client receives value of

cleanup interval cleanup interval
SETCLNUPINT server sets value of
cleanup interval
CLEAN server forces a cleanup
to occur
WHO server reports list of client receives list of
active clients active clients
‘ KILL ‘ server kills specified client ‘

Table 4.3: Class III: Commands between server and dbmanager clients.
‘ command ‘ from server to client: ‘ from client to server: ‘

ENTER server sends name of player
entering a playground and
time of entry

EXIT server sends name of player
exiting a playground and
time of exit

RESULTS | server sends results of

a match

86

Table 4.4: Class IV: Commands between server and matchmaker clients.

command ‘ from server to client: ‘ from client to server:
GAME server sends request for

matchmaker to fetch

game data
DATA matchmaker sends game

data to server

RESULTS | server sends results of
a match

87

Table 4.5: Class V: Commands between server and player/agent clients.

‘ command ‘ from server to player: ‘ from player to server: ‘
ENTER player enters a playground
EXIT player exits a playground
STATE server gets current state player receives current

(list of active playmates) | state, with which to
update playground

ASK player requests match
with specified playmate

GAME match with requested player has started game
playmate is accepted and | applet and requests game
server has requested game | data (agent) from server
data (agent) from
matchmaker

DATA server sends game data
(after data has arrived
from matchmaker)

MOVE server passes move player sends its move
along to opponent to server
RESULTS player sends results to

server (and server passes
them along to matchmaker)

REJECT server rejects match
with requested playmate
ABORT client aborts match, server forfeits match for
returns to lonely state client and returns client to
lonely state

ERROR

client exits server removes client

88

4.9 Player States

Both the Server and the Player keep track of a player’s state. At any time, each

player is in one of five states:

1. ENTERING — a new player is entering a playground

2. LONELY — a player is in the playground and is free
to initiate a match or be invited by another
player to engage in a match

3. PREGAME — a player has initiated a match or has been

invited to play and is waiting for game data
to arrive from the server

4. GAME — a player is playing a match

5. EXITING — a player is exiting a playground

Figure 4.10 summarizes the state transitions for players inside the Server, showing

the normal flow between the five states.

All changes to the state are initiated by the Player. This is important.
Sometimes the Server and a player can become out of synch. It is most critical
for the actions in the player to seem logical to the human who is operating the
player. So, all state changes are initiated by the player, and all discrepancies are

resolved in favor of the player.

There are several ways in which the player and the Server can become in-
consistent. Since the player is enabled inside a browser, a user could click on
a navigation button to change the page and visit CEL pages out of sequence.

For example, in the middle of a game, the user could use the “back” button

89

receive STATE, receive GAME,
send STATE send GAME

receive ENTER, receive ASK,
send STATE send GAME

LONELY PREGAME

receive LOGIN

ENTERING O

receive GAME,

receive ASK,
send DATA

send REJECT, STATE

receive RESULTS,
send STATE

EXITING O

iAME

receive MOVE,
send MOVE

Figure 4.10: Player state diagram.

in the browser to visit a playground that is several pages prior in the history
list. In this case, the Server thinks that the user is in a GAME state, but upon
receiving a STATE command from the player client, the Server should respond
intelligently. The player is always considered right — so the Server registers the
player as having aborted the match that the server was tracking, and then adjusts

accordingly.

If response time is slow, users (especially children!) grow impatient. Some-
times they click on a CEL button multiple times or on the browser’s reload

button, while waiting for a response from the Server, which may result in an

90

unexpected sequence of commands being sent to the Server. The mechanism de-
scribed here is prepared to handle these types of discrepancies, which works to
support the accessibility of the system, as CEL can operate robustly, responding

reasonably to a variety of user behaviors.

91

92

Chapter 5

Data in CEL

This chapter describes the data components of the CEL system, which include
domain knowledge as well as data collected by the system as it runs. The domain
knowledge is defined to be the information that the students are acquiring; in
CEL, this is the content of games. We focus on three categories of on-line data
collection in CEL (system products, session logs and survey results), demonstrat-
ing that CEL gathers the types of data required to support the kinds of activities

common to the ILS field (see chapter 2).

93

5.1 Domain knowledge

Two types of domain knowledge databases have been defined for use by the CEL

prototype activities:

1. a words database, and

2. an arithmetic database.

Keyit, Pickey and Monkey access the words database. Automath uses the arith-
metic database.

The manner in which this data is stored and accessed is completely depen-
dent on the learning activities that use the data. As indicated in chapter 2, the
purpose of defining a domain database is to be able to identify elements within
that database, in order to track a student’s progress and (in CEL) to define game
content. Some activities are designed to facilitate acquisition of a straightforward
database of facts, e.g., multiplication tables, states and capitals, foreign language
vocabulary. Database definition is easy in these cases because the domain can
be broken down into individual elements and a one-to-one correspondence can
be found between domain elements and elements of game content. For example,
“5 x 6”7 can be defined as one element in a multiplication table database and this
same equation can also be one (or part of a) problem to solve in a mathematics
game. In the student model, the number of times a student has been asked to
solve “5 x 6” can be tracked along with the number of times she has gotten the
right answer, and then a simple numeric calculation can provide an indication

of how well she has acquired that multiplication fact (e.g., percentage of correct

94

responses).

Other domains are much harder to define. In the construction game Loois
(section 3.3.5), it is difficult to enumerate the concepts that students should be
acquiring. Here, the elements of game content are numbers and sizes of building
blocks. But the intent is for students to acquire abstract skills such as elementary
laws of physics, an understanding of torque, intuition about gravity, insights into
structural integrity and experience translating ideas from simulation to reality.
Keeping track of skill acquisition here is much more complicated and is a research
topic addressed by many working in intelligent tutoring systems. In future work
with CEL, we plan to collaborate with others working in these areas to develop
stronger methods for tracking student progress in complex domains.

The domain knowledge data sets that are used in the prototype version of
CEL are described in the remainder of this section. The methodology defined
should be taken as a suggestion for other possible domains and learning activities,

but is not a requirement of the system.

95

5.1.1 Words database

The content of word games in CEL is selected from a database of approximately
35,000 words. Every word is characterized by a set of seven features:

1. word length,

2. Scrabble! score

3. keyboarding level,

4. number of vowels,

5. number of consonants,

6. number of 2-character consonant clusters and

7. number of 3-character consonant clusters.

The definition of Scrabble score is shown in table 5.1. For each word in the
dictionary, the word’s score is computed by adding together the scores for each
character in the word. For example, the score for “millennium” is 3+ 1+ 1+ 1+
1+1+14+1+1+3=13.

The definition of keyboarding level is shown in table 5.2. There are several
standards which define an order for introducing keys to students learning typing
[Rowe et al., 1967; Duncan et al., 1990; Typodrome, 1997]; the latter was chosen
arbitrarily. Each word in the dictionary is assigned a group number equal to the

highest keyboarding level of any of the letters in that word.

!Scrabble is a word game that was invented in the U.S. by Alfred M. Butts in 1948
[Hasbro, 1999]. Tt is a board game in which players take turns making interconnecting words by
placing letter tiles on a grid in crossword puzzle fashion. Each letter is assigned a fixed value,
calculated according to its frequency of usage in everyday American English. Players receive a
score for each word they place, calculated by summing the values for each letter in the word.
In the 1950°s and 60’s, Scrabble gained popularity and spread to Canada, Great Britain and
Australia. Today, the game is known all over the world.

96

Table 5.1: Scrabble scores.

character | score || character | score
Al 1 N| 1
B| 3 0] 1
c| 3 P| 3
D| 2 Q|10
E| 1 R| 1
F| 4 S| 1
G| 2 T| 1
H| 4 u| 1
I| 1 V| 4
J| 8 W| 4
K| b5 X| 8
L| 1 Y| 4
M| 3 Z |10

Table 5.2: Keyboarding levels.

level

keys introduced

—_

— O W 00~ O W

—_

asdf jkl
e

C e

N % T 0.0 s 0 H
5 8 <0< 50 K

97

Figure 5.1 shows an example of the feature vector definition for the word
“blue”. The reason for defining features for words is to provide a basis for
selecting words as the content for word games. Some algorithms for selecting
game content require that the domain be divided into a multi-dimensional feature
space, so that data elements can be ordered in some fashion. For example, this
allows the domain space to be partitioned into “easy” and “hard” segments.

Not all features will be relevant for all applications. For example, keyboard-
ing level will not be relevant for spelling games. Experimentation may highlight

which features are relevant for which applications (see chapter 8).

word= blue —=— | 4 8‘6‘2‘2 1 /0

b, %, O, 9, O, O
% Yk, U o O %, %%,
b@/ % ‘90/7 K &
% O O,
"o, 0
Uy Y,
%,
\S‘/& 6‘/@
O

Figure 5.1: Sample word with feature vector.

98

5.1.2 Arithmetic database

For math games, the same level of traceability provided for word games is desir-
able — so that a student’s progress with a certain problem (or type of problem)
can be tracked. Defining an element of knowledge in the arithmetic domain is
more complicated than the method used for the words database. Is a formula
the same as an element, e.g., “4 + 15”77 Or is the answer to a problem the same
as an element, e.g., “19”7 The answer taken by itself seems too vague, but if
it is a formula, then should “4 + 15”7 be the same element as “15 + 4”7 What
happens with complex problems, like “4 4+ 15 — (8 % 7)2”? Is this one element or
a combination of several?

Automath is the only currently operational math game, so the definitions
used for this game will be presented here. An element is defined as follows for
Automath:

<sign _X> <x> <op> <sign_y><y>

where:
<signx>, <sign_y> = positive (= 0) or negative (= 1)
<>, <y> = 0...1000
<op> = addition (= 0),

subtraction (= 1),
multiplication (= 2),
division (= 3),
power (= 4)

To get a numeric identifier out of this, a binary string is constructed, by concate-

nating the numeric values for each of the five fields shown above.

99

Here is an example. The equation “2 — 57 is represented as follows:

<y> <sign_y> | <x> <sign_x> | <op>
5 + 2 + -
000000101 | O 0000000100 | O 001

Concatenating the values in the third row results in the binary number:
00000001010000000010000015

which equals
16387310,

and hence 163873 is the identifier for “2 — 5”.

This scheme does not allow for more complex formulae. For example, in
the game of Mathtree (an arithmetic game that is currently being built), it is
possible to have equations such as “4 + 15 — (8 x 7)2”. It is desirable to use the
same domain element definition for all math games (as with all word games), so
that a user’s performance can be described with respect to the knowledge base
and the task (i.e., a word and how to spell it) rather than the specific game. As
more activities in mathematics domains are implemented, it may be necessary to

alter our definition.

100

5.2 Data products

There are three categories of data collected in CEL: system products, session
logs and survey results. The system products consist of student models and
results of games. Some of the data is stored in a Postgres SQL database. Some
data is stored in text and binary files. For the dynamic tasks that occur during
system operation, access to the data must be quick, so standard disk files (text
and binary) are employed. For post-operations analysis, it is more important
that data be easily queried, so Postgres database tables are also employed. This

section describes each type of data collected in CEL.

5.2.1 Student model

The student model has three components: demographics, behavior and perfor-

mance data. Fach is detailed in the following pages.

Demographics

User demongraphic data is stored in two tables in the Postgres database: users
and demographics. Data is inserted into these tables when users log into CEL for
the first time.

The users table contains the following information:

101

username

password

userid

consent

a text value provided by users when logging into CEL
for the first time.

a text value provided by users when logging into CEL
for the first time. The password is encrypted

using the C function crypt().

a numeric value assigned by selecting the maximum
userid from the table and adding 1 to it.

a boolean value which is true when the user has
clicked okay on a shrink-wrap consent form page,
giving us permission to collect data on users’ activities.

The demographics table contains the following information:

userid
gender

age
location

address
language

Behavior

Behavior data is

is written to by the dbmanager. Every time a user enters or exits a playground,
initiates, finishes or forfeits a match, an entry is inserted into this table. Thus
the data in this table can be accessed in order to study users’ behavior. For

example, it is useful for training secret agents to emulate the playground behavior

of humaumns.

a numeric value that is the same as in the users

table and can be used to cross-reference the two tables.
a character value that specifies the user’s gender
(either “m” (male) or “f” (female)).

an integer value specifying the age of the user.

a text value that contains the country or state (if the
country is U.S.) where the user is connecting from.

a text value containing the user’s Internet (IP) address.
a text field that specifies the user’s native language.

stored in the behavior table in the Postgres database. This table

102

The behavior table contains the following information:

userid — a numeric value that is the same as in the users
table and can be used to cross-reference the two tables.
action — a text value that is one of the following;:

ENTER (when a player enters a playground)
EXIT (when a player exits a playground)
ASK (when a player initiates a match)
RESULTS (when a player finishes a match)
FORFEIT (when a player cancels a match)
game — a text value indicating the name of the game in which
the action has occurred (e.g., “Pickey”).
a numeric value specifying the time when the action occurred.

timestamp

5.2.2 Performance

For each user, performance data is maintained both in a rates file and in the
Postgres database. The rates files are updated and accessed by the Matchmaker
applications. The database tables are updated by the dbmanager and accessed

for post-operations analysis.

Rates files

The rates files are stored in binary form. One file is stored per user. Some
rates files may be shared by multiple games, as is the case for Keyit and Pickey.

Monkey has a separate rates file, as does Automath. The content of each file is:

<ne><rp><ry> ... < _1><Ng><go><g1> . .. <Gn,—1><avg>

where:

103

ne = integer, number of r; records

ri = a structure, of type RATE

ng = integer, number of g; values

gi = integer, list of indices of domain elements in the last
“generation” — i.e., the last problem set this user was given

avg = double, a game-dependent player performance average

This format is the same for all rates files. The definition of the RATE structure

varies from one activity to another (see figures 5.2 and 5.3).

typedef struct {
int elemid;
int count;
double sum;

} RATE;

Figure 5.2: RATE definition for Keyit, Pickey and Automath.
ng = 10 and avg = the average score (sum/count) for all r; records.
For each domain element: the number of times the user has encountered that
element (count) and the total of all scores for all encounters (sum); thus an
average rate for that element = sum/count.

typedef struct {
int elemid;
int count;
int sum;
int found;

} RATE;

Figure 5.3: RATE definition for Monkey.
ng = 1 and avg = the average (sum/count) for all r; records.
For each domain element: the total number of times this word was the monkey’s
word (count) and the total number of words found when this word was the mon-
key’s word (sum); thus an average number of words found when this word was
the monkey’s word = sum/count and the number of times the user has found this
word (found) inside the monkey’s word (see section 3.3.3).

104

Rates tables

The rates tables are stored in the Postgres database. There are three inter-related
tables, generally one set per activity, though games can share rates tables?. The
tables have the name of the game which they belong to appended to the table

name:

1. rate_game (e.g., rate_Keyit),
2. ratex_game (e.g., rate x_Keyit), and

3. genx_game (e.g., gen x_Keyit).

The userid field is common to all three tables and is used to join them. It is the
primary key for all the tables.

The rate_game table is the master table. It contains one entry for each user
(userid), which is akin to one rates file per user. The rate_game table contains the

following information:

userid — a numeric value that is the same as in the users

table and can be used to cross-reference the two tables.
average — a real value akin to the avg field in the rates files.
nrate — an integer value akin to the n, field in the rates files.
n_gen — an integer value akin to the ng field in the rates files.

The rate x_game table contains one entry for each domain element that a user
has been exposed to. It is akin to the r; array in the rates files. For every record
in the rate_game table, there are rate_game.n_rate entries in the rate x_game table,

all with the same userid.

2Pickey shares Keyit’s tables.

105

For example, the rate_Keyit table contains the following information:

userid — a numeric value that is the same as in the users
table and can be used to cross-reference the two tables.
elemid - an index pointing to a word in the words database.
count — an integer value indicating the number of times this
user has been exposed to this word (elemid).
sum — a real value containing the sum of the user’s scores with

this word for all count times seeing this word.

The gen_x_game table contains one entry for each domain element in the
last problem set the user attempted. It is akin to the gj array in the rates files.
For every record in the rate_game table, there are rate_game.n_gen entries in the
gen x_game table, all with the same userid.

The gen_x_game table contains the following information:

userid — a numeric value that is the same as in the users
table and can be used to cross-reference the two tables.
elemid - an index pointing to an element in the domain database.

5.2.3 Match Results

For each match played, results data is maintained in both a journal file and in the
Postgres database. The journal file is updated by the Matchmaker applications
and is accessed by the programs that report to users a record of their activities
with each game. The database tables are updated by the dbmanager and are

accessed for post-operations analysis.

106

The journal files are stored in text form. One file is stored per game. The
format of the journal files is as follows:

<timestamp><client><userid><match><result>

where:
<timestamp> = number of seconds since midnight on 01-Jan-1970
<client> = the IP address of the player client
<userid> = the player’s userid number
<match> = four-field entity that uniquely identifies every match
<result> = result of the match, which varies for each game

The four-field <match> is defined as:

<timestamp> <game> <userid1><userid2>

where:
<timestamp> = number of milliseconds since midnight on 01-Jan-1970
<game> = name of game, e.g., Keyit
<userid1> = userid number of player 1
<userid2> = userid number of player 2

When a player finishes a match, a record is written to the journal file for
that player, with that player’s userid number as the third field in the record.
This means that for matches where both players finish normally, there will be
two records in the journal file for that match: one with player 1’s userid in the
third column and one with player 2’s userid in the third column.

Note that the <match> field always lists the players in the same order, no
matter whose results are contained in the record. Player 1 is defined to be the
player who initiated the match. Player 2 is the player who accepted. If the match

is between a human and a software agent, then the agent is always player 2.

107

5.2.4 Survey Results

Whenever a user exits a playground, she has the option of completing a quick

on-line survey and answering two questions:

1. how hard was the match?

2. how much did you enjoy the match?

Both questions are answered on a scale of 1-10. For the first question, 1 is
defined to be “easy” and 10 is defined to be “hard”. For the second question, 1
is defined to be “boring” and 10 is defined to be “exciting!”.

Answers to this survey are stored in the Postgres database in the opinion
table. Records are inserted into the table by a CGI-bin program which displays
an HTML form with the two questions on it and processes users’ responses. The
table is accessed for post-operations analysis.

The opinion table contains the following information:

userid — a numeric value that is the same as in the users

table and can be used to cross-reference the two tables.
timestamp — a date value containing the time the survey was completed.
game — a text value that specifies the name of the game played.
funness — an integer value between 1 and 10.
hardness — an integer value between 1 and 10.

108

5.2.5 System Logs

The system log file written in CEL maintains a chronological record of everything
that happens while the system runs. This includes diagnostic information, which

is kept for a month and then flushed.

The content of each log file is a record in the following format:

<timestamp><message>

The <timestamp> format is fixed (time in milliseconds since midnight, 01-Jan-
1970). The <message> format varies. [Sklar, 2000] contains detailed information

on the content of the system logs. Most messages are formatted as follows:
client[<client>] : received message <message>
client[<client>] : sent message <message>

These tags indicate which client was involved in the communication.

Some examples are shown below (the timestamps were removed):

client[174]: received message %/pong
client[Pickey]: received message %/ipong

client[null]: received message %%login 3 4 929645102
client[3]: received message %%ask Keyit 4
client[3]: sending message %%game 929645104412 Keyit 3 4

client[Keyit]: sending message }%game 929645104412 Keyit 3 4
client[Keyit]: received message %%agent 929645104412 Keyit %%3 4 007 -31 10...
...11766 -1 embeds 9169 -1 curiousest 10667 -1 disinterestedness 22151 -1...

client[3]: received message %/move 929645104412 Keyit 3 4 3 11766 107.0 embeds
client[Keyit]: sending message }%move 929645104412 Keyit 3 4 3 11766 107.0 embeds
client[Keyit]: received message %/move 929645104412 Keyit 3 4 3 11766 107.0
client[3]: sending message %%move 929645104412 Keyit 3 4 3 11766 107.0

client[4]: sending message %%move 929645104412 Keyit 3 4 3 11766 107.0

client[3]: received message %/move 929645104412 Keyit 3 4 3 9169 225.0 curiousest

109

5.3 Summary

The data products collected in CEL may be accessed for many purposes:

e Student models may be accessed to select game content tailored to the
needs of individual users. This is a dynamic task that occurs while the
system is running and must contain current information that is consulted

before every game a user plays.

Student models may be used to define playgroup content. This is also
a dynamic task that occurs while the system is running. Playgroups are
updated after every game finishes and each time a new player enters or

exits a playground.

Match results are reported to users when requested. Playground pages
show lists of all the matches a player has engaged in and the results. These
lists update when a playground page is first loaded or dynamically if a user

requests an update.

User behavior and performance data may be used to train secret agents.

See chapter 7 for an example.

e All types of data may be accessed for analysis, external to system operation.

e System logs are used to debug problems with the system.

The next chapter contains examples of the types of analysis that are typically

performed in interactive learning systems, using the data products described

110

here. We used many software tools (shell scripts, C programs, Matlab) in order
to analyse the data. Future work involves building a high-level set of analysis
tools that teachers can use to produce the same types of tables and graphs shown

here.

111

112

Chapter 6

Pilot Testing

During the first half of 1999, we conducted pilot testing with CEL. Forty-four

fourth and fifth grade students from a local public primary school participated.

Table 6 shows the breakdown of students, according to grade level and gender.

All participants had signed parental permission. Any names of participants men-

tioned in this thesis are fictitious, in order to protect the privacy of the children.

Table 6.1: Breakdown of students.

‘ grade ‘ gender ‘ number of students ‘

4

4
5
5

male
female
male
female

10
12

9
13

The pilot testing took place in a computer lab in the primary school, where

15 iMac computers are connected to the Internet via a high-speed link. All

children in this school make regular use of this lab for various activities, both

113

on- and off-line; thus the setting was familiar and comfortable. The children
visited the computer lab for about an hour once a week and “did CEL” (under
the author’s supervision). In most sessions, due to scheduling constraints, only

children from the same grade were in the lab at the same time.

All the children did not have equal amounts of time to spend in the computer
lab. Generally, the classroom teachers decided who would be allowed to go to the
lab, typically based on other activities that were going on inside the classroom
and whether each child had other classwork that needed to be completed first.
With the fourth grade class, we usually took one group of students to the lab and
they stayed for the entire session. With the fifth grade class, an initial group of
children would come to the lab and then others would arrive and switch places

with their classmates.

For all children, initial sessions required guidance either from the author
or from another child who was already familiar with CEL. However, within 5
minutes or less, every child was able to get around in the community with ease.
On-line help was available, although it was limited. Yet, this level of instruction
was sufficient for computer-literate adults to figure out what to do without further
aid. We found that the children, in general, did not bother to read help screens
anyway or even the simple instructional messages that appear on the playground
or game pages. The kids were far more likely to call out to someone else in the

room and ask for assistance.

The children were able to choose between the games of Keyit and Pickey for

the entire test period. The games Automath and Monkey were available for the

114

final few sessions. All these games are described in chapter 3.

The purpose of the pilot testing was to perform formative assessment of CEL,
to ensure that the system was accessible from a real school setting, that the player
client was usable by children and that the children enjoyed their experiences with
the system. During the initial testing period, the user interface was adjusted as
described in section 4.7.

The remainder of the period was spent validating CEL’s data capture and
storage mechanism. The goal was to demonstrate that CEL can collect the types
of data common to the ILS field and that this data can support the types of
analyses generally performed by researchers in this field.

Data was collected during pilot testing for 19 days!. Figure 6.1 plots the
amount of time that data was collected each day. Typically, we were given an
hour with each class, which included time to set up the lab, organize the children
and take them to the lab, followed by start-up time for them to log in and begin

playing games.

!Note that on days 3, 4 and 6, various system problems occurred and we had to curtail data
collection. Twice, the school’s Internet server went down. Once the Brandeis network went

down.

115

=

o ~ ® © o

=] o [=] =] S
1

total time (minutes)
B o
o o

w
=]

20

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 6.1: Data collection time, per day.

Next, we illustrate our claim that the data collected in CEL can support
the types of analyses generally performed by researchers in the ILS field, as
described in chapter 2. Analysis that supports four of these categories is shared
in this section: activity, interaction, learning and interest. The fifth category of
analysis, coverage, is the subject of chapter 8.

We have selected four students to serve as examples throughout, based on
their representative amount of activity with CEL and performance statistics.
Figure 6.2 illustrates the number of words completed versus average typing speed
for each student in the group for the games of Keyit and Pickey. The sample
students are highlighted. Note that we have chosen one fourth grade boy (id =
119), one fourth grade girl (id = 98), one fifth grade boy (id = 88) and one fifth

grade girl (id = 89).

116

3.51 *
* e * :
3r |
£525) o) |
(%]
E L) % * 89
\i_", 2r * * . ﬁﬁ © :
ko] |
157 "o |
N P | °© 88
1% 5 2 . o gré girls
! |
o © | o grd boys
0.5 . .98 * gr5 girls
119 » gr5 boys
0 1 1 1 T |
0 200 400 600 800 1000

number of words completed

Figure 6.2: Number of words completed versus typing speed, per student.

117

6.1 Activity

One common analysis concerns examination of participants’ activities when using
an interactive learning system. Researchers and teachers want to know what
users are doing with their time on-line. In CEL, students engage in three main
activities: (1) playing games (“game time”), (2) sitting in playgrounds waiting for
something to do (“lonely time”), and (3) doing other things, like editing IDsigns
(“other time”). This data is available in the user behavior tables (see chapter 5).
An example is shown in table 6.2, which contains the amount of time spent in
each of these activities for one of the children involved in the pilot testing (id =

89).

Table 6.2: Activity statistics.

elapsed lonely game
start end time time time other
day | time time (sec) (sec) (sec) (sec)
3 | 11:12AM | 11:32AM 1233 | 424 (34.39%) | 134 (10.87%) | 675 (54.74%)
5 | 10:58AM | 11:31AM 1996 | 890 (44.59%) | 552 (27.66%) | 554 (27.76%)
8 | 11:13AM | 11:36AM 1346 | 406 (30.16%) | 649 (48.22%) | 291 (21.62%)
10 | 11:47AM | 12:01PM 884 | 204 (33.26%) | 383 (43.33%) | 207 (23.42%)
12 | 11:21AM | 11:58AM 2164 | 464 (21.44%) | 656 (30.31%) | 1044 (48.24%)
17 | 10:35AM | 11:55AM 4841 | 1418 (29.29%) | 1731 (35.76%) | 1692 (34.95%)
19 | 11:33AM | 11:57AM 1434 | 269 (18.76%) | 425 (29.64%) | 740 (51.60%)

Figure 6.3 shows this type of data graphically, for the four students in our
sample group. The horizontal axis contains the days that the students par-
ticipated. One day’s activity is represented by a group of three vertical bars,
indicating the amount of time that this student spent in “lonely”, “game” or

another state.

118

id=119 id=98
1001 1001

lonely lonely
90 game 90r game
other other

80

% of time
% of time

2 13 15 16 17 18 4 9 13 15 18
day number day number
(a)id = 119 (b)id = 98
id=88 id=89

1001 1001

lonely lonely

90r game 90r game

other other
80 80
70F 70F

60r

% of time
% of time

3 5 10 12 14 17 19 3 5 8 10 12 17 19
day number day number

(c)id = 88 (d) id = 89

Figure 6.3: Activity charts for sample students.

A summary of the activities for all the students is illustrated in figure 6.4.
One might be interested in looking at the amount of time spent playing games
versus the amount of time sitting in the playground.

Examination of this type of data across all students may help researchers
and system builders determine which elements of a system are more attractive
to students than others. For example, on 5 of 19 days, more than half the overall

time was spent playing games. On 13 of 19 days, more than a third of the time

119

100

lonely
90 game
other

80

70

% of time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
day number

Figure 6.4: Summary activity chart.

was spent playing games.

Analysis of this data on an individual basis may help teachers find out more
about their students’ needs. For example, student 98 (see figure 6.3(b)) spent
more time playing games than sitting in the playground or doing other things.
However student 89 (figure 6.3(d)) spent more time doing other things — pri-
marily editing her IDsign. Since this student was also the fastest typer, these
types of analyses can indicate to a teacher that perhaps this student needs to be

challenged more.

120

6.2

Interaction

In multi-player games, researchers and teachers are interested to find out who

participants are interacting with. As well, if software agents are involved, system

builders want to know if students are interacting with the agents and be able to

compare human-human with human-agent encounters.

During pilot testing, the students interacted with both human playmates

and software agents. To test the various modes, we varied the interactions on

each day, as summarized below:

IN —

EX -

SA -

Internal interaction.
All participants that were logged into CEL were present in the computer
lab.

External interaction.

Several participants were humans not present in the computer lab — some
were other children logged in on classroom computers elsewhere in the same
building, and others were graduate students logged in at various locations
outside the primary school.

Secret agent interaction.

Some “participants” were simple “secret” software agents that were coded
to enter a playground, accept challenges and play games, letting their hu-
man opponents win at least 50% of the time.

Table 6.3 shows which participants were involved during each test day. On some

days,

more than one type of interaction occurred.

121

Table 6.3: Summary of interactions.

number of | number of | grade

day | participant(s) | games played kids level(s)
1] EX 75 11 45
2 | SA 70 7 4
3| SA 11))
4| SA 37 7 4
5 | EX4SA 149 14)
6 | EX4+SA 12 6 4
7 1IN 67 9 4
8 | EX4SA 111 12)
9 | SA 128 10 4
10 | SA 120 9)
11 | EX 60 8 4
12 | EX4SA 88 9 5
13 | EX 117 9 4
14 | EX 85 7 5
15 | IN 52 12 4
16 | SA 54 9 4
17 | EX 227 25 4.5
18 | IN 61 12 4
19 | EX 48 9)

Analysis of interaction conditions varies, depending on the goals of individual
experiments. Some of the types of studies that might be performed include
the change in activity rate under different interaction conditions, the amount
of interaction between different types of participants and the specifics of who
interacts with whom. The next set of figures illustrate these analyses for the
data collected during pilot testing. Note that these graphs do not take into
account the number of participants available in each category, nor was a control

study performed, so the reader is cautioned not to draw any specific conclusions

concerning the success or failure of the different interaction conditions.

122

Figure 6.5 shows the rate of game play under the various conditions, i.e., the
number of games played per minute, averaged across all the students participating

that day.

IN

EX
35r SA

EX+SA

N
N 1
T T

games/minute

=
1
T

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 6.5: Number of games played per minute.

123

Figure 6.6 contains a breakdown of the games played by the kids amongst

themselves (IN), with the secret agents (SA) and with others who were not in the

room (EX).

1001

90

701

60-

401

(% games played)
[8)]
(=]

301

IN
101 EX
SA

o ‘
IN EX SA EX+SA

Figure 6.6: Interactions between types of participants.

124

Figures 6.7 and 6.8 illustrate the interactions between the various factions of
players. In both graphs, the vertical axis shows the players who initiated matches
and the horizontal axis lists the players who accepted. A point indicates that at
least one encounter occurred between that given pair of players.

In figure 6.7, the children are grouped according to grade level and gender;
the same order is used on both axes. It is clear to see that the two classrooms of
children were infrequently in CEL at the same time (which was due to scheduling

constraints, as stated earlier), thereby verifying our methodology.

girls/gr5
boys/gr5 o "
F
girls/gr4 ® B B
=]
=
boys/grd f#‘- =
g ; gE ® - . g
boys/gr4 girls/gr4 boys/gr5 girls/gr5 agents others

Figure 6.7: Who plays whom, grouped by age and gender.

125

Figure 6.8 contains the same data, but organized differently. The four “kids”
sections of figure 6.7 are intermingled, and the children are ordered by typing
speed as recorded during Keyit and Pickey games. The fastest typers are nearer

to the origin.

slowest
typers

Bl =
fastest ﬂl - ! :F—i-

typers m = l H mm
fastest slowest agents others
typers typers

Figure 6.8: Who plays whom, ordered by typing speed.

This type of analysis can prove extremely useful in an open Internet system.
Students of different ages, genders and locations may interface with each other,
and plots like these can help researchers identify clusters of interaction. These
plots may also help highlight the acceptance rates of software agents amongst

different segments of the human population.

126

6.3 Learning

Naturally, everyone wants to know if participants’ performance improves when
using an interactive learning system. CEL can track changes in performance.
As an example, we look at the change in the children’s typing speed as mea-
sured at the beginning and the end of pilot testing. Figure 6.9 plots the change
in typing speed for two of the students in the sample group. The horizontal axis
represents time, in terms of the number of words typed. The vertical axis repre-
sents typing speed, in letters per second. We have normalized both axes for all
the students, in order to make comparisons easily. In the horizontal dimension,

this allows us to take into account the number of games each student played in

id=119 id=89
5 5 T T
4.51 1 45 1
4r q 4+ B
3.5 1 3‘5/
3r] 3F]
g25 g2s
k] g
2 -2
15F 15
1F 1
//
0.5 B 0.5
0 . 0
0 100 0 100 200 300 400 500 600 700
words typed words typed
(a)id = 119 (b)id = 89

Figure 6.9: Tracking learning in sample students.

Figure 6.10 summarizes the change in typing speed for all the students.

A plot like this, read in conjunction with pre- and post-test results, can give

127

researchers and teachers alike a good indication of the learning that has occurred

while students use a particular system.

2.5

15F

III.ll Il“lll IIIII'IIIII.

_0.5,

increase in letters/sec

O

individual users

Figure 6.10: Change in typing speed.

Of course, this data taken alone is not very meaningful. Control studies
need to be performed in order to prove that learning has been a direct result of
using a system. For example, chapter 8 discusses use of an alternative engine for
providing content to games of Keyit and Pickey. Future work in that chapter
highlights the need for a controlled experiment, where students are divided into
three groups and three different game content selection methods are compared,
one per group. Having plots like figure 6.10 can help highlight any difference in

students’ learning rates between the three groups.

128

6.4 Interest

Determining participants’ interest levels in an interactive learning system is quite
important to researchers and system builders. In CEL, participants can indicate
their interest by completing an on-line survey, which is presented upon leaving a
game playground (see figure 6.11). Users are asked to rate their matches on two

scales: enjoyment and difficulty.

[T e e L . R L T | e [

File Edit Wiew Go. Communicator Help
€53 dom S @
FE w§ " Baokmarks & Location:]Ihttp:/fwmz.dm.us.hrmdms.gdujceu-ﬂj‘ @7 What's Related

welcome to CEL, | you'ue just played g@ﬁ!!

how hard was the match?

S

By & Y QL L OO v ¢ had

how much did you enjoy the match?

o

boring & & & @ & S & & exciting!

use “ to change your IDsign

. and have fun!

click SHEML to send us your opinion

to exit CEL

thank you for your time and participationt

please send any questions or comments to:
celuebiics, brandeis. edu

Figure 6.11: Exit poll.

129

As an example, we plotted the data collected during pilot testing in figures
6.12 and 6.13. Although answering these questions is optional, 90% (40 out of

44) of the students completed the on-line survey.

50
45

40

w w
o a

number of responses
N
o

boring 2 3 4 5 6 7 8 exciting!

Figure 6.12: “How much did you enjoy the match?”

number of responses

easy 2 3 4 5 6 7 8 hard

Figure 6.13: “How hard was the match?”

130

6.5 Off-line survey

At the end of the pilot study, we asked each of the children to complete a short,
anonymous paper-and-pencil survey in order to get some feedback from the chil-
dren about their experiences with CEL. The survey contained six questions, and
the wording was geared toward fourth and fifth graders. Forty of the surveys
were returned (90%), from 22 of the fourth grade children and from 18 of the

fifth grade children. The survey is shown in figure 6.14.

CEL Survey Spring 1999

You have been a participant in CEL (Community of Evolving Learners)
this year. CEL is a research project that is supposed to help learners
of all ages come together on the Internet. We would like you to tell us
what you think of CEL. Your answers will help us improve the system
for next year.

Please answer the following questions honestly and do not write your
name on this survey. Thank you!

(1.) What grade are you in?

(2.) Which games did you play in CEL?

(3.) Name 3 things that you like about CEL.

(4.) Name 3 things that you don’t like about CEL.

(5.) Name 3 things that could be changed to make CEL better.

(6.) Ts there anything else you would like to tell us?

Figure 6.14: Post-study survey.

131

The survey results for questions 3 through 5 are tallied in tables 6.4 through
6.6, respectively. The tables should be read as follows: if 21 students said they
liked creating IDsigns, this means that 21 of the children chose to include this
feature in their list of things they liked (it does not mean that the remaining 19

children did not like creating IDsigns).

Table 6.4: Name 3 things that you like about CEL.

creating their IDsign 21 children
learning (to type faster) | 21
contacting others 15
anonymity 8

Table 6.5: Name 3 things that you don’t like about CEL.
nothing! 15 children
when it breaks 8

matches were too hard

not enough games

players can cancel matches
not exciting enough
anonymity

non-anonymity

matches were too easy

== NN N WO]

score reporting is confusing

The children suggested a few interesting improvements, such as allowing
users to select from a set of ready-made IDsigns, in case they do not want to make
their own. We found it ironic that, despite our sensitivity to open competition in
an educational setting, several children’s suggestions involved making the site feel

more competitive: e.g., adding skill levels, ranking pages and prizes. Although

132

Table 6.6: Name 3 things that could be changed to make CEL better.
add more games 16 children
nothing 9

fix it so it would never break

make matches harder

make matches easier

make it run faster

make better games

add computer opponents

create skill levels

add a ranking page

prevent players from canceling matches
allow practice sessions

be able to pick a ready-made IDsign
get prizes

get free stuff on the site

make 3, 4, 6-player games

add more color choices in the IDsigner
add a chat capability

= = = R RN WW W W W orToto

the consensus for question 4 was that the matches were too hard, for question
5, an equal number of children commented that the matches were too easy and
that the matches were too hard.

For question 6 (“Is there anything else you would like to tell us?”), 29 of the
children wrote either “no” or did not respond. A few suggested improvements,
which we tallied along with the responses to question 5. Seven children wrote

statements emphasizing how much they liked the system (“It was really fun.”).

133

Here are some highlights from the survey?:

A fourth grade child wrote: “I would like to play these games next year.”

A fifth grade student wrote: “It was WAY cool.”

A fourth grader wrote that s/he would like it if s/he “could bye [sic] free

stufl there.”

A fourth grade child wrote that s/he liked the fact that s/he “could be who

you want to be with the pichture [sic]” (i.e., the IDsign).

A fourth grader wrote: “It helped me to improve my consintration [sic].”

Two students commented that it is easy to use and to understand.

Several children wrote that they liked that they could play their friends
(these comments were included in the “contacting others” figure in table

6.4).

In summary, we found that the children quite enjoyed using CEL. Indeed,
the most common response to question 4 (“Name 3 things that you don’t like
about CEL”) was the statement that there was nothing they didn’t like about

CEL.

?Note that this school practices “Write to Read”. With this method, early writers are
taught first to express themselves and second to focus on mechanics like spelling, punctuation

and grammar.

134

6.6 Summary

Pilot testing is a useful method for system builders to evaluate the mechanics of
their system and for researchers to confirm that the types of data they would like
to collect are being gathered and can support the claims they would like to make
with their research. Once pilot testing is completed successfully, experimental
research can begin in earnest.

With CEL, the early phase of pilot testing was spent doing formative assess-
ment of the system. Many adjustments to the user interface were made during
this period (see section 4.7.1). Subsequently, data was collected, and the plots
shown in this chapter demonstrate that the types of analyses generally performed
by the ILS field (as laid out at the end of chapter 2) can be supported by this

data.

135

136

Chapter 7

Agents as learning partners

CEL is a multi-user environment, and the activities inside the system are multi-
player games. If not enough people are logged into a playground, then we let
software agents act as artificial learning partners, maintaining an active presence
in the system at all times and thereby sustaining the community. The software
agents in CEL are designed with a flexible architecture so that different control
mechanisms can easily be used to implement agents exhibiting a variety of be-
haviors. We refer to the agents as secret agents because there is no explicit means

for participants to distinguish the artificial players from other humans.

This chapter begins with a functional description of CEL agents and outlines
the types of behaviors that the agents need to embody. Two behavior modules
are discussed, one for playground behavior and one for game behavior. To demon-
strate the flexibility of the CEL agent architecture, we have built two different

control mechanisms for game behavior. During pilot testing (described in chap-

137

ter 6), we used agents that exhibit simple rule-based behaviors. Subsequently,
we took data collected during the pilot study to train more sophisticated agents
controlled by neural networks. We describe the control modules for both types

of agents and present training results.

7.1 Functional description

Inside CEL, secret agents may exhibit three categories of behaviors:
1. system behavior,
2. playground behavior, and
3. game behavior.

System behavior refers to high-level actions like logging into and out of CEL at
particular times of day and selecting different playgrounds. Currently, we have
not implemented a mechanism for this level of behavior, so we leave this for
future work and here only discuss playground and game behaviors. Playground
behavior refers to entering and exiting playgrounds and initiating challenges.
Game behavior refers to the play within a specific game.

A top-level controller for the secret agent decides which behavior to follow,
as indicated in figure 7.1. A different module handles each type of behavior. The
module that operates at any given time is determined based on the current state

of the agent, defined on the basis of the input received from the CEL server.

138

receive command from Server

STATE GAME
playground game
module module

Figure 7.1: Basic control architecture.

Figure 7.1 is highly simplified because there are more than two commands
that can be received (i.e., other than STATE and GAME). The complete set
of commands is listed in table 7.1, along with the requisite responses from the
agent. The precise handling of game commands varies, depending on which game
is being played. The general and playground commands are handled the same

way, no matter which game playground an agent is residing in.

139

Table 7.1:

Commands sent to

agent from CEL server.

command received

from server

response
from agent

general commands SHUTDOWN exit
LOGOUT send LOGOUT command to server
and exit
PONG no response
PING send PONG command to server
SETTIMEOUT change timeout value
GETTIMEOUT send timeout value to server, in the
form of a GETTIMEQUT command
ERROR exit
playground commands | STATE update internal state; wait; and then
send STATE or ASK command to server
REJECT update internal state; wait; and then
send STATE or ASK command to server
game commands GAME this means agent has been invited
to play a match, or agent’s invitation
to another player has been accepted —
now agent must wait for game data to
arrive from server, in the form of an
DATA command,
state — GAME _STATE
DATA this command contains game data;
response is game dependent
MOVE this command contains opponent’s move;
response is game dependent
BADMOVE this means agent’s move was invalid;
response is game dependent
RESULTS this means opponent has finished match;
response is game dependent
ABORT abort match; wait; then send STATE

command to server;

state — PLAYGROUND_STATE

140

7.2 Playground behavior

There are three basic choices for things to do in a playground:
1. invite a playmate to engage in a match
2. wait to be invited by another player
3. leave the playground

We note that human players may also perform unexpected actions, such as
clicking on the “back” button of their browser, selecting a previous page from
their browser’s history list or closing their browser without formally exiting from
CEL. We do not model these types of spurious behaviors in the software agents
and only stick to so-called “normal” expected actions.

The client software used by human players updates its playground state every
5 seconds if the human does not initiate an action herself. (The mechanism for
accomplishing this is detailed in chapter 4.) Thus, if the human player sits at
her computer while in playground mode and does not click on another player to
initiate a match, then every 5 seconds her browser sends a STATE command to
the CEL server and in return, she receives an update message. This message is
either a STATE command, indicating the present state of her playground (i.e., a
list of the playmates who are currently logged into her playground), or a GAME

command, if another player has invited her to engage in a match!. If the human

'If a system error occurs, then an ERROR command may be received, or if the system is

shutting down, a SHUTDOWN command may be received.

141

player clicks on another player to initiate a match, then an ASK command is sent

from her browser to the CEL server. Figure 7.2 illustrates the client’s actions.

client
ERSIE ASK L GAME ___ game state
- CEL server
STATE STATE
playground state

Figure 7.2: Playground behavior.

The software agent follows a similar operating procedure. The control archi-
tecture decides between the three options (listed at the beginning of this section),
and if the choice is to wait to be invited by another player, then the agent waits
5 seconds and sends a STATE command to the CEL server. Otherwise, the agent
sends an ASK command to the server, specifying a playmate to invite for a match.

Creating an agent that acts in a playground is relatively straightforward. All
we really need to model is the likelihood of a player inviting a playmate to engage
in a match (i.e., when a client sends an ASK command to the CEL server). We
could use human data to determine these probabilities. For example, we tallied
the probability of players generating ASK, STATE and EXIT commands for each
of the forty-four participants in the pilot study, as shown in figure 7.3. We could
use these probabilities as the basis for controlling forty-four different playground

agents.

142

100 *—————————————————————————————————Wﬁﬁﬁﬁﬁﬁﬁﬁﬁf—

exit
ask
State

T

80

60

T

T

40

probability (%)

20

T

individual players

Figure 7.3: Command probability.

7.3 Game behavior

Game behavior is of course dependent on the particular game being played.
Additionally, different humans will exhibit varying levels of ability as well as
various characteristics of play.

Figure 7.4 illustrates the command sequences exhibited while in a game
state, by either human or secret agent players. While playing a game, a sequence
of MOVE commands flows between the player, the CEL server and the player’s
opponent or partner (depending if the game is competitive or collaborative).

Note that this drawing (figure 7.4) is somewhat simplified, as the game’s
matchmaker is also involved. Each MOVE command received by the CEL server is

passed along to the matchmaker, where the move is evaluated. If the moveis legal,

143

client

MOVE
MOVE
game CEL server
applet
I
RESULTS STATE playground state
game state

Figure 7.4: Game behavior.

then the matchmaker sends the same MOVE command back to the originating
player and also to the player’s mate. If the move is illegal, then the matchmaker
generates a BADMOVE command and sends that only to the originating player.
When the game is over, the RESULTS command is also forwarded by the CEL

server to the matchmaker, to mark the completion of the match.

The content and timing of MOVE commands is specific to each game, accord-
ing to the rules of play. We use Keyit as an example. The game play for Keyit
is as follows: the system provides ten words to each player, one at a time, to
type as fast as she can, with 100% accuracy. Players participate asynchronously,

completing each word at their own pace.

During pilot testing, we implemented a very simple Keyit agent that waits
until the human has typed each word; then the agent pauses for a variable amount
of time and returns its score? for the same word. The agent’s score is calculated
based on the human’s performance and is chosen to be slightly faster or slower

than the human’s. This is done to create the motivational illusion that the

2Score is the time it takes to type the word, in hundredths of a second.

144

human’s opponent is of comparable ability to the human and so that the human

will win matches with these agents approximately half the time.

While these simple Keyit agents performed adequately during the pilot
study, it is obvious that their restricted capabilities limit their usefulness as
effective learning partners. Because the architecture for CEL agents is flexible,
we can easily substitute a more sophisticated control mechanism. The remain-
der of this chapter discusses just such a control mechanism which is designed to

emulate the behavior of humans.

7.4 Training agents to emulate humans

An earlier project provided us with background for extending the simple Keyit
agents to exhibit more sophisticated, human-like behaviors. In this section, we
first describe the earlier project and then detail our methodology and results

from extending that work to Keyit.

In a follow-on project to the Tron Internet experiment (mentioned in sec-
tion 3.3.6), we trained agents to play Tron, with the goal of approximating the
behavior of the human population in the population of trained agents [Sklar
et al., 1999]. These agents were controlled by feed-forward neural networks and

were trained using supervised learning [Pomerleau, 1993; Wyeth, 1998].

We trained the Tron-playing agents using two methods. First, we trained
agents to emulate the performance of individual humans, based on a one-to-

one correspondence between human trainers and network trainees. Second, we

145

trained agents to emulate the performance of a small population of humans,
grouped together according to a similar performance statistic. This scenario was
based on a many-to-one correspondence between human trainers and network
trainees. The training procedure involved replaying Tron games, allowing the
trainees to observe and predict moves. Based on the accuracy of the trainees’
predictions, the network weights were adjusted using the backpropagation algo-

rithm [Rumelhart et al., 1986].

We evaluated our training efforts in two ways. First, we compared the
performance of the networks to their trainers’, looking for correlations. We found
that it was very difficult to train a network to emulate the precise behavior of an
individual human. However, the performance of the population of trainees was
comparable to the performance of the human population. We speculated that
some of the artifacts of the Tron domain likely contributed to the discrepancies
between the artificial trainees and their human counterparts.

Second, we examined the effectiveness of our method as a general means
toward training software agents. It is important for artificially trained agents to
experience a wide variety of behaviors, otherwise they will not be robust and will
only perform well in situations similar to those experienced during training. The
conclusion drawn is that a population of humans can act as effective trainers
for a graded population of agents, because there is naturally a wide variation
in behaviors both across an entire population of humans and within a single

stochastic human player.

As well, the training procedure proved to be a valid technique for capturing

146

regularities within a large database of game moves. Indeed, we found that some
of the trainees performed better than their trainers. In the game of Tron, if a
match lasts for n moves, a player can make n-1 good moves and then lose the
game with one bad move. When such games are observed by trainees, they learn
more “good” play from the n-1 moves than they do “bad” play from the one false
move. In this way, the training method serves to filter out infrequent mistakes
of the human trainers.

Now we carry these techniques into the CEL domain. We used the data
collected during the pilot study as the basis for training agents to play Keyit. The

control architecture, training methods and results are detailed in the following

pages.

7.4.1 Architecture

In Keyit, the basic task can be described as follows: given a word, characterized
by its corresponding set of seven feature values (described in chapter 5), output
the length of time to type the word. In addition to the 7 feature values, we also
consider the amount of time that has elapsed since the previous word was typed.

The agents are controlled by feed-forward neural networks. The network
architecture is shown in figure 7.5. There are 8 input nodes, corresponding to
each of the seven feature values (normalized) plus the elapsed time (mentioned
above). The elapsed time is partially normalized to a value between 0 and (close
to) 1. There are 3 hidden nodes and one output node, which indicates the time

to type the input word, in hundredths of a second.

147

word length
keyboarding level
scrabble score

number of vowels
time

number of consonants
number of 2-consonant
clusters

number of 3-consonant
clusters

_elapsed time
since last entry

input hidden layer output

Figure 7.5: Neural network architecture.

7.4.2 Training

As with the Tron experiment, we trained players in two ways, first using a one-
to-one correspondence between human trainer and network trainee, and second
employing a many-to-one correspondence between groups of human trainers and
network trainees. For the second method, we grouped human trainers according
to their overall average typing speed.

For each human involved in the pilot study, we scanned the CEL log files,
picking out all games of Keyit®, and gathered the moves from each game into a
file, one per person. A “move” includes the timestamp (the time in seconds that
the move occurred), the word being typed and the amount of time (in hundredths

of a second) that the player took to type the word. Then we calculated the time

*Data from Pickey games was also used, because the two games are so similar.

148

elapsed between moves (based on consecutive timestamps) and, along with the
seven feature values for each word, created two files (one for training and one for

testing), placing alternate moves in each file.

We used all the data collected during the pilot study. The humans were
learning throughout this period, so the networks were trained to approximate
the average performance of each human across the entire time period. Figure 7.6
contains data for all the players involved in the pilot study, plotted in ascending
order according to typing speed (in letters/second). The plot also indicates the
groupings of players, used for the many-to-one training scenarios. The players
are clustered according to typing speed, in increments of 0.5 letters/sec. The

four players from our standard sample are highlighted.

4r
o gr4 girls
357 o grd boys -
* gr5girls x*
_ 3| = gr5boys L
@ oo
%2.57 O * |
9 R 89
5 2 o+
= ot ¥ ‘
b o |
$15r 119 o |
73 ‘ o#*©° ‘ 88
17 : DDDO*DDD :
Ho |
|
050" 98
0] e e S e S S

individual players

Figure 7.6: Average typing speeds of players.

149

We trained the networks using supervised learning, as in the Tron follow-on
experiment, adjusting the networks during training using backpropagation. The
results presented here were obtained with a learning rate of 0.00001. All the
networks were trained for 10,000 epochs, but progress generally leveled off after
2500 epochs.

Throughout the training sequence, we kept track of the prediction error for
the network — the difference between the typing time predicted by the network
and the actual typing time of the training set. We saved one “best” network
for each training sequence, corresponding to the set of weights which resulted in
the smallest prediction error. After the training sequences were completed, we
evaluated the best networks for each effort by comparing its prediction with the

human’s data, for both the training set and the (reserved) test set of data.

7.4.3 Results

We look at the results of the training efforts in several ways. First, we look at the
training period and show how the network improved its predictive ability during
training. Figure 7.7 shows the performance of the networks trained for the four
sample students (88, 89, 98 and 119). The plots in the top row illustrate the
prediction error for the networks. The solid curve plots the error based on the
test data set; the dashed curve plots the error based on the training data set.
The plots in the bottom row show how the error in typing speed improves over
time, when the networks are confronted with the test data set (solid curve) and

the training data set (dashed curve).

150

The networks learn quite quickly, sometimes within 500 epochs. It is inter-

esting to note that in some cases, as with students 98 and 119, the difference

in prediction error between the training and test data sets is relatively marked;

however the difference in typing speeds is negligible.

id = 119

id=88
— test

id=89
— test

5 10 15
epochs (x100)

ig=110

--- taining
— test

N

difference in speed (ieters/sec)

difference in speed (ietters/sec)

P

10 15
epochs (x100)

id=08

--- taining
— test

difference in speed (ieters/sec)

10 15
epochs (x100)

id=88

--- taining
— test

difference in speed (ieters/sec)

b v @ s o

10 15 20 E3
epochs (x100)

id=89

--- taining
— test

5 20 E3

10 15
epochs (x100)

Another way in which

correlation between the trainers and the best trainees.

10 15 20 E3
epochs (x100)

Figure 7.7: Improvement during training.

we examine the training effort is by studying the

Figures 7.8 plots the

typing speed for the trainees (horizontal axes) versus their trainers (vertical axes),

for both the test and training data sets, for the one-to-one and many-to-one

training efforts.

The correlation coefficients are listed in table 7.2, illustrating the average re-

lationship between trainers and trainees across both populations. The correlation

is much higher for the many-to-one trainees than the one-to-one trainees.

The final way in which we study the results takes a population-based ap-

151

4 45
2
3.5¢ % 2350 %
2 8 & g ¢
2 . 5 3
g 3 \d = o
T25 @ go Bast . ¢
z %e & ° g
£ 2 Lo S 2f .
s o o B 4 g "
= o @ L
\515 ém g1.5 .
g - :583" < qf
] 4 o
= Q
05) o o o training set S05F 4 o training set
test set = test set
0 " 0 " ,
0 1 2 3 4 0 1 2 3 4
trainees (networks), letters/sec trainees (networks), letters/sec
(a) one-to-one (b) many-to-one

Figure 7.8: Correlation between trainers and best trainees.

Table 7.2: Correlation coefficients.

population-based
training set | test set (test set)
one-to-one 0.636388 | 0.420413 0.800293
many-to-one 0.990960 0.996515 0.996515

proach. One objective with this project is to generate a population of agents,
demonstrating a range of abilities. Figure 7.9 compares the average speeds of the
human population with those of the agent populations, for both training schemes.
The average speeds for the agent population were based on data collected dur-
ing the testing runs only. Table 7.2 shows the correlation coefficients. In the
one-to-one case, this population-based correlation is higher than the individual

correlation; in the many-to-one case, the comparison is equivalent.

152

The comparison is made by first sorting both populations according to speed
and then calculating the correlation coefficients. In the one-to-one case, sorting
the trainees re-orders the comparisons that are made when computing the cor-
relation coefficient, and so the correlation is higher. In the many-to-one case,
the population-based correlation between trainers and trainees is precisely the
same as in the individual case, because the training went so well that sorting the

trainees does not change their order and so the two comparisons are equivalent.

4r 4r
° humans ° humans
350 =® agents o° 350 =® agents °
-1 o
3r ° 3t
00° o .
©2.5F 00 oo” ©2.50 a
2 00°° oo 2 ° .
ao2r o ao2r
2 oo°°°° MLl 2 o o
215} ooog“““"" 215}
0000 uﬂ]
ooooooooonuuu“ °
1r pooa? 1+
of] o
oguuu““u
O.Sfan 0.5 a
Ol S S 0 . . R . .
individual players individual players
(a) one-to-one (b) many-to-one

Figure 7.9: Correlation between populations of trainers and best trainees.

153

7.5 Discussion

In extending the simple Keyit agents to use a neural network controller, we were
pleased to find that our training efforts in the CEL domain corroborated the
earlier results of the Tron follow-on experiment. We summarize our observations.
First, it is difficult to emulate exactly the behavior of individual humans. Second,
it is better to approximate the behavior of a population of humans. Finally, it is
best to train on a group of humans who exhibit similar features.

Future work will involve building agents that adapt their performance on-
line. One method for accomplishing this would be to train an agent using data
from the first few games, deploy the agent and then continue to train it further,
by incorporating moves from subsequent games of its human trainer.

Future work will also involve adding complexity to the playground behavior
module, in two ways. First, rather than using a rule-based controller where the
frequency of issuing ASK commands is based on a fixed probability, a network
controller will be implemented. This controller will be trained on the human
data collected in CEL and will look at sequences of actions committed by the
players being modeled. Second, a longer term project concerns making intelligent
choices for which playmates to invite to engage in matches by incorporating
student models to guide selection rather than choosing playmates randomly, as

is implemented currently.

154

Chapter 8

Domain coverage

Both computer games and educational software provide an interactive medium
with which humans can explore a domain. In the case of computer games, the
domain might be outer space or the wild west or a fantasy land; with educational
software, the domain might be arithmetic or geography or spelling. In either
case, the purpose of an instructive interactive learning system is to guide a user
through the domain in a methodical way, exposing him to as much of the domain

as possible, without losing the user’s interest.

This is typically done by characterizing each user according to his experience
with the system and then moving him around the domain by providing a series of
pre-defined challenges of increasing difficulty and/or complexity. With computer
games, this methodology is often explicit; players must complete one “level”
before being allowed to go on to the next. Although this format has proven

to be highly motivating for both children and adults alike, the method does

1585

not always provide an atmosphere dedicated to learning. Additionally, there
are concerns about the appropriateness of such a formula for use in educational
settings [Soloway, 1991].

The current trend in educational software moves away from pre-programmed
and/or pre-leveled instructive environments, like traditional frame-based tutor-
ing systems or leveled games, and towards constructivist environments where
students are able to explore ideas for themselves without having to stick to fixed
curricula [Papert, 1993]. In a classroom setting, this notion has been described

as learner-centered learning:

A teacher is no longer a dispenser of knowledge addressed to students
as passive receptors. Instead, where small teams of students explore
and work together and help one another, a “teacher” becomes a col-
league and participating learner. Teachers set directions and intro-
duce opportunities. Teachers act as guides. [Forrester, 1992], p.11.

The same ideas can apply to educational software, where a software system acts
as a teacher. The system should be adaptive and participate in the learning,
guiding students through educational domains and adjusting as they advance.
The work described in this chapter brings adaptive behavior to educational
games as a mechanism for supporting a learner-centered on-line environment
[Sklar & Pollack, 2000a]. An evolutionary approach, guided by user performance,
is used to select the content of matches for two simple keyboarding games, Keyit
and Pickey (described in chapter 3). The purpose is to demonstrate the flexibility
of CEL in being able to support experimental methodologies such as the adaptive

approach used here.

156

8.1 The domain

In both Keyit and Pickey, players are presented with ten words to type. These
words are selected from a database containing approximately 35,000 words. Every
word in the database is characterized by a vector of seven feature values (these
are detailed in chapter 5, section 5.1.1). Each word can be thought of as a
point in this 7-dimensional feature space. Words with similar feature values are
considered to be close to each other in this space; words with disparate feature
values are considered far away. Figure 8.1 illustrates this for the word BLUE,
which has close neighbors MEAT and BOIL. The words HIDE, DARK and RED are

further away, respectively.

feature values

D
[3[214]172]00]

Figure 8.1: Distance between words in feature space.

157

8.2 Selection algorithm

An evolutionary approach is used to guide selection of words from the 7-dimensional
feature space, geared to the changing needs of each individual user. The basic
steps of a general evolutionary algorithm are outlined in table 8.1 [Holland, 1975].
The elements could be, for example, software agents exhibiting specific game

strategies or various solutions to a hard search problem.

Table 8.1: Basic evolutionary algorithm.
1. Initialize a population of randomly chosen elements.

2. Let each element perform in the task domain.

3. Evaluate each element’s performance and, based on the
evaluation, select some elements to be replaced.

4. Produce a new population of elements, using reproduction
techniques like mutation and/or crossover to replace the
elements selected in step 3.

5. TIterate, starting from step 2.

Our approach modifies this algorithm for the task of selecting words for Keyit
and Pickey matches. In our context, the elements (referred to in table 8.1) are
words, and the population size is fixed at 10. The modified algorithm is shown in
table 8.2. Note that the algorithm shown here is in a simplified form, considering
the needs of only one player; as described later in this chapter, the algorithm
is further modified to accommodate the needs of two players. The algorithm is

invoked by the matchmaker (see section 4.5 in chapter 4), when a player clicks

158

on the “start” button in a game applet. The selection and reproduction phases

are illustrated in figure 8.2.

Table 8.2: Evolutionary word selection algorithm.
1. For a new user, initialize a population, Gg, of 10 randomly
chosen words.

2. For an old user, read the user’s performance data, which includes
scores for all words previously encountered, the population of
10 words from the user’s last game (G¢), and an average score
for all words the user has seen.

3. Evaluate the user’s performance with the words in Gy, and,
based on the evaluation, select entries that are “known” and
entries that “need practice.”

4. Produce a new population of words, replacing all entries in
Gt to get Giyi, using large mutations to replace “known” entries,

and small mutations to replace entries that “need practice”.

5. Supply Giy1 to the user’s applet for the current game.

6. Iterate, starting from step 2, when the next game occurs.

The selection process (step 3 in table 8.2) involves comparing the score
achieved for each word in G with the user’s average score over all words en-
countered in games of Keyit and Pickey. The idea is to partition G; into two
groups: those that the user knows how to type, and those that the user needs
more practice with. “Score” is typing speed, calculated in hundredths of a sec-
ond. Words whose score is lower than the average are deemed “known” (faster is

better); words whose score is higher than average are labeled “needs practice”.

The reproduction phase (step 4 in table 8.2) entails replacing all the words

159

sel ection reproduction

Ilknownll
N9 words
ol v
sC arge m
uta[,'On
words words
p et
Scor e s sme \ott
parents "needs children
practise’

Figure 8.2: Selection and reproduction.

in Gy with appropriate children, to get Gy41. “Needs practice” words are replaced
with others nearby in the 7-dimensional space, thereby exploiting regions with
similar feature values to provide more opportunities to master the similar words
while avoiding repetition, where the same words might be offered again and again
until they have been learned satisfactorily. This is equivalent to making a small
mutation to a word’s feature vector. “Known” words are replaced by randomly
jumping to some new area in the feature space, thereby exploring regions further
away. This is equivalent to making a large mutation to a word’s feature vector.

The general idea is illustrated in figure 8.3.

The actual implementation of this algorithm is complicated by two factors.
First, when a game occurs between two human players, the set of ten words
selected by the system must be appropriate for both players. Second, not all
points in the 7-dimensional feature space are valid. If the reproduction phase used

a standard operator like mutation or crossover and modified one or more values in

160

BLUE EEE < feature values of parent

near: exploit similar regions

MEAT [4]8[622]0[0] j

feature values of child

far: explore new regions

RED (3[24[1]2]00 j

feature values of child

Figure 8.3: Exploitation and exploration in feature space.

a parent’s feature vector, the resulting vector would not necessarily correspond
to a word in the dictionary. In fact, some combinations of feature values are
invalid, e.g., word length must equal the number of vowels plus the number
of consonants. To address these complications, two procedures are introduced:

merging and reproduction through sampling.

8.2.1 Merging

The merging procedure is implemented so that the contents of Gy1 is appropriate
for both players engaged in the match. The basic process involves combining the
user performance data for both players and creating a third, composite player
that is essentially an average of the two players’ performance statistics. In table
8.2, steps 1 and 2 are modified to read performance data for both players and
then merge the data, so that steps 3 and 4 will be performed using this composite
data set. Finally, step 5 sends the new population of words to both users’ applets.

The data entities used by the merge process are detailed in chapter 5, section

161

5.2.2, and the notation used here is the same, with the following additions:

P; = performance data for player 1

P, = performance data for player 2

P. = performance data for composite player

R = abbreviated notation for: <n,><reg><r;> ... <r,_1>

G = abbreviated notation for: <ng><go><gi> ... <gng-1>
G" = composite game data that is sent to both players’ applets

G"" is analogous to Gyy1 in step 5 of table 8.2. At the end of the merge process,
it is guaranteed that G’ contains at least 10 and at most 20 words. At the end
of the reproduction process, G" will contain exactly 10 words. The algorithm is

shown in table 8.3.

Table 8.3: Merging algorithm.

1. Read user performance data for player 1: Py «— {R’, G’ avg’}
2. Read user performance data for player 2: P, — {R”, G" avg”}

3. Merge user performance data for player 2 with rates for player 1,
creating one composite player:
Pc — merge(P1,P>) = {R" G" avg"}
The source code for the merge function is shown in table 8.4.

4. If there are less than 10 elements in G"’,
then fill G with randomly chosen words until |G| = 10.

162

Table 8.4: Pseudo code for merge().

function merge () {

/* merge rates */
R — R/;
fori«— 1ton/
if r{’.elemid is found in {rg’...r.} then
(where rj’”.elemid = r{’.elemid)
rj’”.count — rj’”.count + r/’.count;;
rj’”.sum — rj’”.sum + r{’.sum;
else

/* merge game data */
ge g
G/// — G/,
for i« 1tony
if g/’.elemid is found in {g{’ .. .g:{é,,} then
(where gj".elemid = g/’.elemid)
g{".count — g{".count + g’.count;

i i " .
gj -sum < gr.sum + gi.sum;

else
m m .
n/g/ — ng —|—”1,
gn/// 1 g

/* merge averages */
avg” — (avg' + avg”)/2;

} /* end of function merge() */

163

8.2.2 Reproduction through sampling

The reproduction procedure must be able to take a parent and produce a child
whose feature values are either near to or far from those of its parent, cor-
responding to ezploitation (small mutation) and ezploration (large mutation),
respectively (as illustrated in figure 8.3). In theory, a traditional reproduction
method like mutation' could be used for both tasks. To find a nearby entry in
feature space, one of the parent’s feature values could be selected at random and
then incremented or decremented, to result in a new vector with only one value
different from the parent vector. To find an entry far away in feature space,
more of the parent’s feature values could be altered, resulting in a new vector

with values disparate from its parent.

As mentioned earlier, the problem with using this procedure in this domain
is that the new vector would not necessarily be valid or correspond to a word in
the dictionary. Some applications of evolutionary algorithms handle this kind of
situation by applying a correction to the reproduction operator, ensuring that
the result is valid. For example, a mathematical function (i.e., modulo) might
be used to force the mutation of an individual feature value to fall within a
specified numeric range. The situation here is complicated by the fact that even

if individual feature values are valid, when taken in combination, the entire vector

!For simplicity, the discussion here is limited to mutation. Crossover or other gene altering
methods could also be used, but the problems encountered with using mutation in the present
domain and real-time environment (as detailed in this section) would also occur with these other

methods.

164

may be invalid. A simple method for overcoming this problem would be to try a

series of mutations iteratively, stopping when a valid vector was found.

However, with this particular domain, the 7-dimensional feature space is
quite sparse. If bounds are considered on each feature value (for example, word
length must be between 2 and 25 characters, and keyboarding level must be
between 0 and 11), then there are over 90 million possible combinations of feature
values. Yet the dictionary used here only accounts for 6074 of those combinations,
less than 0.0065%. This means that the likelihood of a mutation producing an
invalid set of feature values is prohibitively high. An iterative procedure like
the simplistic one mentioned above could take a long time to run. Because this
evolutionary algorithm operates in a real-time environment, where the customers
are (impatient) children, minimizing run-time is vital. A target maximum of 1

second was chosen for the algorithm to run in its entirety.

One approach to the sparse feature space problem would be conceptually to
mutate from one entry in the domain to another, rather than from one vector to
another. As indicated by figure 8.1, all words in the domain can be represented
as points in 7-dimensional space, thus it is possible to sort the entire dictionary
according to the entries’ feature values. This would mean computing a 35000 X
35000% matrix containing the distance in feature space from each entry to every
other entry. Then when making mutations, the algorithm need only look up

entries in this matrix — small mutations would look for close neighbors and large

2The size of the database is approximately 35000 entries. Since the distance between any

two entries is symmetrical, the size of the matrix really need only be (35000 x 35000)/2.

165

mutations would look further away. However, again, practical considerations
render this solution infeasible because too much memory is required to store this
matrix.

An alternative to storing the entire table in memory would be to load the
relevant portion from disk during run-time; however testing proved that selective
loads took longer than the 1 second time requirement. Another option would
be to compute the relevant portion of the table during run-time; again, testing
showed that this method exceeded the maximum time requirement.

The final solution was to adopt a new reproduction process called reproduc-
tion through sampling. The strategy is to begin by randomly selecting a relatively
small sample population from the dictionary and then to replace the parents in
G"" with children chosen from this sample. An overview is shown in figure 8.4

and the details are in table 8.5.

?“Too much” simply means more than is available on the CEL server.

166

words samples dictionary

10

1000

word onerow in dist matrix

] | [

0UeKSIP |fews
S0uUels|p Ueswl
souessip abre|

explore

®
X

=3
=
=

Figure 8.4: Sampling illustration.

167

Table 8.5: Reproduction algorithm.

. Select a random sample of 1000 words from the 35,000 word dictionary:
for i+ 1 to 1000

x «— random(1,35000);

Si < dictionary, ;

. Compute the distance between all entries in S and G
for j «— 1 to 1000

fori«— 1 to ng’

distij — [(Yir (]} — i)/ (maxi — ming)]2) « k]

. Sort each row in the distance matrix:
fori— 1to n’g”
sort (dist;);

. Compute the mean for each row in the distance matrix:
fori«—1tony
meandist; «— mean(dist;);

. For each row in the distance matrix, save the index of the value closest
to the mean:
fori«—1tony
xmeandist; < index of entry in dist; whose value is closest
to meandist;

. Generate a child for each parent in G
fori«—1tony

if g
if (g".score < avg) then

J < pickDist(i,FAR); /* explore */
else

J < pickDist(i,NEAR); /* exploit */

else

has a score

] < pickRandom(); /* new word */

m _ ...
g —Sis

168

An example is shown in table 8.6, illustrating the relationship between one
parent and one child word list. This data was taken from the data set of one of

the students involved in the pilot study.

Table 8.6: Distance between words in successive generations.

parent child dist
1 four [4,3, 7,2,2,0,0] four 4,3, 7,2,2,0,0] 0
2 who [3,5, 9,1,2,1,0] aim [3,8, 5,2,1,0,0] 1
3 race [4,7, 6,2,2,0,0] peas [4,6, 6,2,2,0,0] 1
4 vies [4,7, 7,2,2,0,0] dates [5,4, 6,2,3,0,0] 2
5 away [4,5,10,2,2,0,0] fives [5,7,11,2,3,0,0] 2
6 singed [6,9, 8,2,4,1,0] calorie (7,7, 9,4,3,0,0] 2
7 forked [6,3,14,2,4,1,0] debated [7,8,11,3,4,0,0] 3
8 enumerates [10,9,12,5,5,0,0] ragged [6,3, 9,2,4,1,0] 2
9 manipulated [11,9,16,5,6,0,0] perused [7,6,10,3,4,0,0] 1
10 fosters [7,4,10,2,5,2,0] numerics [8,9,12,3,5,1,0] 3

8.3 Results

Data collected in the pilot study described in chapter 6, from the games of Keyit
and Pickey, were used for the analysis here. The domain coverage for each user
was examined, to determine if the evolutionary approach to word selection led
players into more of the domain space than a pre-leveled application might. Ad-
ditionally, the relationship between typing speed and various word features was
analyzed, to determine which features, if any, emerged as more highly correlated

(to typing speed) than others.

169

8.3.1 Domain coverage

The seven feature values that define the domain are: word length, Scrabble
score, keyboarding level, number of vowels, number of consonants, number of 2-
character consonant clusters, number of 3-character consonant clusters. (These
are described in detail in chapter 5.) Scrabble score and keyboarding level are
used for analysis here, since the remainder are a function of word length (as is
Scrabble score) and so can be considered redundant in this analysis.

The chart in figure 8.5 is a sample domain coverage chart, plotting Scrabble
score versus keyboarding level. A point exists in the domain space for each circle
on the plot. For each point that a user has been exposed to, the circle is filled
(o). Thus the open circles (o) represent portions of the domain space that the

user has not seen. This sample chart illustrates the coverage that a user might

pre-leveled coverage

10+ 000DD00D0O00D000000000000000
O0O000O0OOOOOOOO0O0O00O0O00000000000O00O00O [e)e}
87 O0O00OO0OOOOOOOO0O00OO00000000000O0OO
]
> OO0O0O0O0O0O0OOOOOOO0OO0OO0OO0O0O0OO0O0O00O0O0O0O0OO
[}
o 6* O0OO0O0OOOOOOOOOOO0OODODO0O0O0O0O00O0OO0
c
kel 00000DDDDODOOODD00000000 o
=
©
O 4-0000000000000000000000
Qo
5 O0O00O0O0OOOOOOOOO0OOOO
R
27@@800000000000000
PPOOOOOOORRS® ®
Oreeceeeee & oo
.

5 10 15 20 25 30 35
Scrabble score

Figure 8.5: Sample domain coverage chart.

170

experience in a pre-leveled environment, where (e.g.) she must complete all prob-
lems in keyboarding levels 0 and 1 before seeing any problems from level 2.
Figure 8.6 contains domain coverage charts for the four sample students
from the pilot study (see chapter 6). All the students have been exposed to a
large portion of the domain. Students 88 and 89, who are faster typers than

the other two, have seen more of the domain. The slowest typer, 119, has more

concentrated domain coverage.

id=119 id=98
10t ©00000080000000G0800000000 10t ©00000000000008G0000000000
00000EE®8EBBEEEBB0B0BEB000000000 00 00PeOEEE8EAB8E8B8EOB00B000000000 00
8 ©0OeeP@0EE@@EE0B0D000000000000 8 ©Ce0ePE0EEEEREBEO@B0000000000
% 000800880000000000000000000 % 000080080000000000000000000
> 6 ©008E®808000000000000000 > 6 ©®eee®888®280000800800000
% 000@e@e00@B00B0BO0000000 o % 00@0@8B0B00@B0000000000 o
8 4focessesancacosocaoocco 8 4focsssecascasccacaoocco
> 00®O00EO®OBO0000000 > 000®®EP0BB®OB000000
= 2/00080000880000000 = 2/00@@8000080800000
0000000000000 © 0coooee®0000000 O
Qfococooooo o 00O Qfoocooooo o 0o
.
5 10 15 20 25 30 35 5 10 15 20 25 30 35
Scrabble score Scrabble score
(a)id = 119 (b)id = 98
id=88 id=89
10t ©000800008808EEEO08BO0000000 10t 0800888 ®OBEEEEBBCBO0®0000000
00PeBEEE8E000E8880080EBBO900O000 00 0CPEOOEE08E000E88808888B0B0B00®00 00
8 0©080ePEEEEEEREBEE@B0000000000 8 ©Ce0e0e0PEEERENEREEEER0000000
% 000000080000000000000000000 % 000080080000000000000000000
> 6 ©0e0e®eEE®@®E000800000000 > 6 ©Oe®eceses8@2880088800800000
% 0C0eeeeEe@B000B000000000 o % 0C0eeeeee8B0@OEO00B000000 o
S 4fosssscsascasccocsoocco 8 4focssscsascasscocscocco
> 000®®®0®BB®00B00000 > 000®®®®®0080000000
= 2/00@@808@0800000000 = 2/000008©@008000000
0000000000000 © ®00®8800000000 O
Qfococooooo o 00O Qfoocooooo o 0o
.

5 10 15 20 25 30 35
Scrabble score

(c)id = 88

5 10 15 20 25 30 35
Scrabble score

(d)id = 89

Figure 8.6: Domain coverage charts for sample users.

171

8.3.2 Feature correlation

The relationships between word length, Scrabble score, keyboarding level and
typing speed are examined here, in order to ascertain if any one of these three
features appears to correlate more closely with typing speed than any of the
others. There should be a direct correlation between word length and typing
speed. It has been demonstrated that an artifact of typing long words exists
such that the speed per letter is slower than for shorter words [Larochelle, 1982].
Thus, even when the time it takes to type a word is normalized for the length of
the word, so that speed is measured in letters per second, longer words still take
more time to type than shorter words.

Figure 8.7 shows plots for two of the sample students. On each graph, there
is a point for each word typed by the corresponding student. The straight line
is a linear least-squares fit of all the points. The artifact (i.e., longer words take

longer to type) is readily apparent in the figure.

id=119 id=89

EN
EN

w
T

w
T

letters/sec

N
T

letters/sec

N
T

=
T

=
T

o
o

5 10 15 20 25 5 10 15 20 25

word length word length
(a)id = 119 (b)id = 89

Figure 8.7: Word length vs typing speed.

172

Figure 8.8(a) contains the fitted lines for all of the students involved in the

pilot study. The lines for the four students shown in figure 8.7 are highlighted.

The same behavior pattern, where per letter typing speed is reduced (slower) for

longer words, is consistent with every user. Figures 8.8(b) and 8.8(c)* show the

relationships between Scrabble score and keyboarding level with typing speed,

respectively.

89
at at
3 3f gat 88
° °
2 2
[} [} 98
Tof Bor
Y gl 119\
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 5 10 15 20 25 0 10 20 30 40
word length Scrabble score
(a) word length (b) Scrabble score
5- 5
89
4 39 4
3f 88 ®3f._ 88
° °
2] 2]
2 98 \ 2
E 2r \ E 2F 98
1+ 119 1+
T ——
% 2 8 10 % 20 40 60 80

4 6
keyboarding level

(c) keyboarding level

accumulative keyboarding level

(d) accumulative keyboarding level

Figure 8.8: Feature correlation with typing speed.

*The accumulative keyboarding level shown in figure 8.8(d) is explained ahead.

173

The preceding plots (8.8(a) through 8.8(c)) appear to indicate that typing
speed correlates more directly with word length and Scrabble score than with
keyboarding level. Figure 8.9(a) shows the correlation coefficients, for each user,
between typing speed and each of these features. Fach point on the chart corre-
sponds to one of these statistics per user (i.e., there are three points per user).
Faint lines connect the points for each feature, to make it easier for the reader
to group the points. Horizontal lines are drawn to indicate the mean correlation
coefficient for each feature, across all users. A correlation coefficient closer to -1
indicates a higher negative correlation between two variables — e.g., that longer

word length is indicative of slower typing speed, per letter.

Scrabble score is a function of word length, since each letter in the word
contributes to the score individually. Conversely, keyboarding level is computed
independently of word length. So it is not surprising that word length and Scrab-
ble score exhibit similar statistical characteristics. Indeed, the higher correlation
for word length dependent statistics and typing speed confirm the statement
made in the previous section: that long words take more time to type, on a per

letter basis, than short words.

For comparison, a modified keyboarding level was computed in which key-
boarding level is also defined as a function of the length of the word (as is Scrabble
score and obviously word length). Instead of calculating keyboarding level to be
chosen as the highest level of any letter in a word, the levels of all the letters in
the word were totalled (the same way that Scrabble score is computed). This ac-

cumulative keyboarding level was computed for all the data, after the pilot study

174

was finished. The purpose was to determine if keyboarding level really correlated
so poorly to typing speed as was indicated in figure 8.9(a), or if the method of
computing keyboarding level (where word length was not a factor) skewed the
correlation results away from keyboarding level. After all, since the data was
collected during keyboarding games, it would seem logical that keyboarding level
should be highly correlated to typing speed.

The correlation results, with the accumulative keyboarding levels, are shown
in figures 8.8(d) and 8.9(b). It was found that the correlation coefficient for
accumulative keyboarding level is —0.256054, a better correlation than that with
the original keyboarding level (—0.163075). However, word length and Scrabble

score still correlate significantly higher than keyboarding level.

175

O,
— ‘iW Q
% €] Q i
‘5020 .© o o i
= L\ o . o ' o
S A 2o\ b sy J e Jy L Sooy
o ! : . Q V
c -0.4+ u 6, 0 ®
5 o Y Shelely I
=) e : ® 9 ¢
E o 4 Q o
(]
=-0.6 f
8 o
-0.8f — word length
- e- Scrabble score
keyboarding level
-1

individual students

(a) typing speed vs word length, Scrabble score and
keyboarding level

0.2r
O,
— .">)
c (@) o i
L-02F .°© o6
EE i o e ©
§ 2o A yayee T eng eV L] Beg,
. Q
C_0-47 i 6.0) ’ ©
5 o Y Shelely I
=) e . ® 9 ¢
«© o 4 [} o
(]
=-0.6 !
8 o
-0.8f — word length
-e- Scrabble score
keyboarding level
-1

individual students

(b) typing speed vs word length, Scrabble score and
accumulative keyboarding level

mean std. deviation median
word length -0.353444 0.130214 -0.371364
Scrabble score -0.345417 0.127598 -0.326716
keyboarding level -0.163075 0.116377 -0.153707
accumulative key- -0.256054 0.119275 -0.240934

boarding level

Figure 8.9: Correlation coefficients.

176

8.4 Discussion

The primary advantages of using an evolutionary approach for guiding problem

selection in an educational game include:

¢ Students guide themselves through the domain, based on their own perfor-
mance with the system, which means that students whose learning patterns

are non-standard may benefit.

e Students may reach areas of the domain that they may not see otherwise,
where a standard pre-leveled system may prevent them from leaving an
area without successfully completing all the problems in that area. This
could be seen as providing an uncertain goal, one of Malone’s pointers for

helping to motivate learners in an educational game.

e Costs and effort to implement the game are reduced, because the domain

need not be analyzed at such a fine grain level as engineered systems require.

The fact that word length and Scrabble score correlate to typing speed much
more directly than keyboarding level (both original and accumulative) is a result
which bears further study. The indication is that future words should be chosen
more on a basis of word length and Scrabble score than keyboarding level.

It has been suggested that frequency of word usage in the English language
should also be a feature in the domain space for word games®. Although this

is partially encoded in the frequency of letter count that is part of Scrabble

®Suggested by Andrew Howard.

177

score, use of a precise statistic may be beneficial. While touch typing courses
commonly require learners to type non-linguistic sequences of characters, people
will generally say that they can type words they know faster than words they
don’t know. Future work will involve adding this dimension to the feature space
and studying the resulting correlations.

The results shown in this chapter indicate that the use of an evolutionary
approach is a viable alternative to pre-leveled methods. In future work, control
studies must be performed in order to validate this statement. For example, some
students’ games would be supplied with words chosen by the method described
here, others would be chosen at random and others would be chosen according
to a standard pre-leveled curriculum.

The flexible design of the CEL system permits studies like this one to be
enabled easily. The modular “plug and play” architecture allows researchers to
substitute different game content selection engines without needing to build an
entire system. The benefit of using an evolutionary approach like this inside
CEL is that patterns of usage may emerge that could not otherwise be revealed
in a highly-engineered system or a system that did not have access to the large

number of users that an Internet system offers.

178

Chapter 9

Conclusion

This thesis has described the CEL system which was built to enable an Internet
learning community that can support the types of activities, experiments and
data collection common to the ILS field. The work presented addresses three
specific needs that have previously not been met satisfactorily by other interac-
tive learning systems: accessibility, flexibility and extensibility. This concluding
chapter begins by defending these three claims. Then we discuss CEL in relation

to current Internet community issues and close with an outline of future work.

9.1 Accessibility

We have demonstrated that CEL is accessible to Internet users, first by testing
on a variety of platforms and then through a pilot study conducted at a public
primary school. The client software used by participants runs inside a standard

Internet browser and is compliant with Netscape 3.0 (or higher), which is more

179

widely available than later versions. No additional software is required on the
client site, which means that schools do not have to shoulder the burden of
keeping up with special downloads and upgrades in order to provide students

with access to CEL.

The CEL client is designed to operate on computers with limited memory
and low network bandwidth. Java applets that are part of the client are kept
small, which serves not only to prevent participants from running out of memory
on their computers but also minimizes the amount of time it takes for applets to
load. Socket connections which facilitate communication between clients’ com-
puters and the CEL server are kept open for short time periods, preventing the

type of failures that occur when longterm connections are required.

9.2 Flexibility

We have demonstrated CEL as a flexible platform that can house a variety of
interactive learning activities. CEL can support multi-player collaborative or
competitive, real-time or turn-taking activities. All activities currently built for
CEL are two-player educational games. We have described examples of each of
these in chapter 3. Keyit and Pickey are competitive, asynchronous, two-player
typing games. Automath is a competitive, asynchronous, two-player arithmetic
game. Monkey is a collaborative, asynchronous, two-player word game. Loois is a
collaborative, turn-taking, two-player construction game. Tron is a competitive,

real-time two-player spatial reasoning game. The first three games are based on

180

a traditional drill-and-practice format. The fourth and fifth games are based on

constructionism. All are designed to support learner-centered learning.

9.3 Extensibility

We have demonstrated that CEL puts forth an easily extensible model. In build-
ing the system, we first created and tested the game of Keyit. All subsequent
games were implemented by extending the four base Java classes created for
Keyit: PlaygroundGame, Matchmaker, MatchmakerThread and SecretAgent. This
thesis contains brief descriptions of each these classes. Full software documenta-
tion can be found in [Sklar, 2000], which in future will be available on our web
site, along with the Java class files, so that others can download the classes and
contribute their own activities to the CEL community. The extensible nature of
CEL saves teachers and researchers from needing to build an entire multi-user

system from scratch.

9.4 Issues in Internet communities

Throughout this thesis, we have touted accessibility as a desirable feature because
(1) researchers can reach a potentially very large number of subjects, (2) teachers
can share activities, and (3) students can interact and learn from each other
without needing to be in the same physical location. However, there are other
aspects of accessibility that are less favorable, namely safety and privacy. This

section discusses these concerns as they relate to CEL. First we review the issues

181

of Internet safety and privacy. Then we explain how the environment works to
protect its users, by providing an alternate method for identity (through IDsigns)

and facilitating only indirect communication between participants.

9.4.1 Safety and privacy in CEL

Unrestricted communication on the Internet is a worry for parents, who are
concerned about whom their children are communicating with and what kind of
information their children are revealing about themselves — both actively and
passively. In June 1998, the Federal Trade Commission (FTC) reported that a
majority of sites failed to tell visitors how they used the personal information that
they were collecting. Typically, sites did not ask for children to obtain permission
before providing information. “The commission now recommends that Congress
develop legislation placing parents in control of the online collection and use of
personal information from their children.” [CNN, 1998]

Over the last two years, since that report was issued, many sites have added
shrink-wrapped consent forms (similar to the form employed in CEL), as well
as on-line explanations of how the information collected from participants is
being used. Most of these sites, including ours, ask children under age 18 to
obtain permission from a parent or guardian before joining an on-line community.
However, there is no fool-proof way to ensure that children are actually getting
this permission. Some sites ask for new users to enter a credit card number, under
the assumption that children would not have access to such information without

parental involvement — but this assumption is weak. Creating and providing a

182

fictitious identity is extremely easy to do and attractive to many. Beth Givens,
who runs Privacy Rights Clearing House in California, says: “A lot of people
give false information, and quite proudly. It becomes a game.” [CNN, 1998]

Even though everyone in a community may be using an alias and a fictitious
identity, an anonymous exchange of inappropriate ideas or language may still oc-
cur. On sites that allow open chat, there is no protection to prevent users from
exchanging personal information such as addresses, phone numbers, etc. Some
educational sites geared towards children employ an adult user to monitor all
communication, censoring inappropriate material and ensuring that the students
stay “on task”. But this approach is not practical in a real-time Internet system,
where participation occurs on a 24-hour basis. Providing a safe environment in
which young students can interact is of primary concern. In CEL, all communi-
cation is accomplished through the moves of the games participants are playing;
no direct chat is implemented, and thus all users are safe.

Privacy is another issue of concern. Many sites collect data by observing
mouse clicks and do not ask for explicit permission from their users. Amazon'
gathers statistics on the products that their customers order and then uses this
data to present recommendations. Their handling of the privacy issue is typical.

On their home page, they provide a link to a separate page that contains their

privacy policy, stating:

"http://www.amazon.com

183

By using our Web site, you consent to the collection and use of this
information by Amazon.com. If we decide to change our privacy
policy, we will post those changes on this page so that you are always
aware of what information we collect, how we use it, and under what
circumstances we disclose it. [Amazon, 2000]
Further, they state that they reserve the right to sell this information to “trust-
worthy third parties”, but you may send them email requesting that data col-
lected under your account is never sold.
In CEL, our login screen contains a warning, which appears every time a
user logs in, not just the first time, and it appears in full at the bottom of the

screen, without requiring users to click to another, out-of-sequence page, in order

to see the text:

By logging in, I consent to being involved in this experiment using
the pseudonymous name that I have entered above. I understand that
data is collected on every game I play, and I hereby give the DEMO
Lab at Brandeis University permission to analyze and publish this
data for scientific purposes.

For our pilot study, we provided parents with information about CEL and
our experiments. In turn, the parents gave us written permission to use their
children’s input.

The work presented in this thesis specifically advocates the use of the In-
ternet as a virtual laboratory in which to collect data from thousands of users.
There is an inherent conflict between privacy and need for input in any study
involving humans. Proper treatment of information gathered on the Internet is
warranted, and this data should be handled according to standard practices, such

as those in place at any psychology laboratory or hospital.

184

9.4.2 Identity in CEL

As a means toward protecting user privacy and providing anonymity, CEL im-
plements an alternative method for identifying users. The most common form of
user identification in virtual communities is a username that individuals create
for themselves when logging onto a site for the first time. A few on-line com-
munities provide graphical icons with which users identify themselves to others.
Generally (if not exclusively, aside from CEL), these graphics have already been
created and users select pictures from a list and then designate the pictures to
represent themselves. On some sites, the system assigns the picture without any
input from the user. At least one protective children’s site lets children choose
text user names from a list and then designate the names to represent themselves.

In CEL, users are identified by IDsigns (see chapter 3). In the pilot study
outlined in chapter 6, we found that the children were extremely creative with
their IDsigns and that this element of the system was very popular. A wide

variety of IDsigns were created, some of which are shown in figure 9.1.

185

il =

e

: OF

As we suspected would happen, the children quickly discovered that they
could make short words inside their IDsigns. Upon this occurrence, they were
cautioned not to use their real names. We found it quite amusing when one boy
created an [Dsign that had one of his classmates’ first names in it, which led
many children to believe they were playing games with the classmate.

We found it interesting to observe that there were no discernible differences
between age or gender groups in the types of designs created. Boys and girls of
all ages (those in the sample, and even adult participants) were equally likely to
create patterns, faces or figures. Indeed, the heart design shown in figure 9.1 —
a stereotypical “girl drawing” — was created by a boy.

In future work, we may conduct a study on identity in CEL. We can follow
the trends of single users, examining how (and if) they change their IDsigns over
a period of time and across a number of sessions with CEL. We can look for
trends in the population of CEL users, for example, design features that might

align with demographics, such as age, gender or location.

9.4.3 Communication in CEL

Another feature of CEL that works to protect users is our indirect method of
facilitating communication between participants. This is in contrast to most
Internet communities where direct communication happens openly in chat rooms.
Instead, CEL participants interact with each other and/or with software agents,
through a limited language — i.e., the moves of the games they play. This

restricted mode of communication serves two purposes. First, it protects the

187

privacy of young participants, as discussed in the preceding paragraphs. Second,
the software agents that were described in chapter 7 interact successfully in CEL
because the hurdle of natural language processing that normally accompanies the
task of building an agent to act as a human is avoided. In the CEL system, the
computer becomes a mediator, both actively in the form of agents as artificial
playmates, and passively in the form of the server passing interactions from one
human player to another.

In future work, we plan to explore the concept of non-conversational collabo-
rative learning. This idea diverges from typical computer supported collaborative
learning (CSCL) systems, where open conversation is permitted and advocated.
However, the CEL environment may facilitate learning partnerships that might
not occur in a conversational setting, perhaps between two children who do not

speak the same language.

9.5 Future work

Aside from the projects mentioned earlier in this chapter, current and future

work with the CEL system falls into three areas:

1. enlarging the game set,
2. improving site visualization, and

3. matching playmates appropriately.

Much of the future with CEL relies on enlarging the game set and involving

researchers who work in the areas of education, psychology and cognitive sci-

188

ence. Currently, we are building an arithmetic game that is more complex than

Automath, a spelling bee and a geography quiz.

9.5.1 Visualization

In CEL, visualizing who is logged into the community is done through the IDsigns
and the playground. This mechanism aligns with the requirements for web site
visualization laid out in [Minar & Donath, 1999]: individuals are represented and
the display is animated. Unlike Minar and Donath’s work, the visual display in
CEL is updated in pseudo real-time, because users need to know who is logged
in to which game at any given time.

Currently, there is no spatial structure on the site —i.e., relating one game to
another. Future work will examine defining each game as a room and giving each
user an omniscient vantage point. On the games menu page (figure 3.3), users
will be able to see who is logged into any game and thus select which playground
to enter based on who is already there or how many other players are present.

This type of viewpoint is given on games sites like Yahoo? and Yahooligans®.

9.5.2 Player clustering

The most significant next project that we have planned for CEL is to implement
a matching algorithm that builds playgroups based on appropriate membership

— not just according to who is logged on at any given moment, which is the

http:/ /games.yahoo.com

®http:/ /www.yahooligans.com

189

method used now. The idea is to form playgroups for each student such that the
playmates therein can provide appropriate challenges to motivate learning.

Playmates will be assigned based on users’ student models and participants
will only be able to “see” playmates who are “appropriate”. This notion of
restricting players’ views to a subset of playmates distinguishes CEL from other
game playing web sites. Typically, users can see everyone else who is currently
logged in; this is the method used at the Yahoo games site, for example.

Of course, given the unpredictability of human behavior, it will be impossible
to surmise precisely what a potential playmate’s behavior will be, but an educated
guess can be made. A record of predictions and outcomes will be maintained in
order to obtain a measure of the reliability of the predictive mechanism, as it
applies to each user. Taking this prediction reliability rating and each user’s per-
formance profile as input, users will be clustered and playgroups will be formed.
These groupings are highly dynamic, as users enter and exit the system and as
games are played and the performance profile and prediction ratings change.

A playgroup can be represented conceptually as an undirected graph, where
each player is a vertex in the graph. Edges are drawn between players who are
considered to be appropriate playmates. Edges are updated as players enter and
exit games, as games are played and as users progress.

An example is shown in figure 9.2. A player only sees those players that are
in his playgroup. In the example shown, this means that even though players
1 and 2 are both connected to the same game at the same time, they do not

see each other’s IDsigns in their playgrounds because the system does not deem

190

(7)
@ G
A
B
(3) (4)

Figure 9.2: Sample playgroup graph.

Player 1’s playgroup contains mates 4 and 7; player 2’s playgroup contains
mates 6 and 7; player 3’s playgroup contains mate 6; player 4’s playgroup con-
tains mates 1 and 6; player 5 has no playmates; player 6’s playgroup contains
mates 2, 3, 4 and 7; player 7’s playgroup contains mates 1, 2 and 6.

them to be appropriate playmates. Connections are bi-directional, so (e.g.) if
player 1 sees player 7, then player 7 also sees player 1. However, links are not
transitive: players 1 and 7 see each other, players 7 and 2 see each other, but

players 1 and 2 do not.

Two algorithms will be explored for defining playgroups, (which is equivalent
to determining the edges of the graph in figure 9.2). Each uses a different ap-
proach, one absolute and one relative. In the first approach, all players are ranked
according to an absolute scale and only vertices of players whose ranks are within
a certain epsilon (€) of each other are connected. This algorithm maintains an
auxiliary index on the list of players, sorted by rank. Edges are drawn on the
graph by sliding a window of width 2 * ¢ down the indexed list of players and

connecting all players that are inside the window. The second method computes

191

a relative distance between every pair of players in the graph and only connects
vertices of players whose distances are within a certain epsilon of each other.

There are two reasons to favor use of the second method. First, relative
matching may produce more accurate outcomes in terms of shared experiences
that are beneficial to both players. Second, in some domains, it may be difficult
to define an absolute ranking.

In addition to these methodologies, known clustering algorithms will be ap-
plied: Cobweb [Fisher, 1987], Unimem [Lebowitz, 1987], c4.5 [Quinlan, 1993],
MML [Wallace, 1990], LSI [Deerwester et al., 1990] and other statistical meth-
ods. A comparison of the performance of these algorithms, measured in terms of
run-time and effectiveness of output, will determine the method that works best
for CEL.

This work will also be expanded to include software agents. If the above
calculations are performed and it is deemed that no appropriate human partners
are currently logged into CEL, then the system can select an appropriate human
partner from those who are not logged into the system and instantiate an appro-
priate software agent, trained on that human’s performance data (as described

in chapter 7).

192

9.6 Finally

Comments from the teachers who participated in our pilot study were quite
positive. They felt that their students had become stronger typers, and they
are enthusiastic about expanding CEL to cover new domains. “CEL is easily

” one teacher said.

configured for the material and skills I want to reinforce,’

The computer gaming environment seems naturally competitive, and we
were concerned that the competitive aspects of the environment might be per-
ceived negatively by educators, however, one stated: “It’s the best way ['ve
seen students compete academically without causing a lot of problems.” An
additional remark was a feature we had not considered: “Their experience in
non-threatening test-taking was increased.”

CEL has been shown to have the flexibility to host a variety of different types
of interactive activities. Since CEL resides on the Internet, researchers can use
CEL to collect data from a very large population of subjects with varying ages,
genders, abilities and locations. This experimental setting contrasts with that
of most interactive learning system studies, which typically involve use of one
particular activity, implemented in a controlled setting and accessed by a limited
number of homogeneous subjects. The extensible design of CEL positions the

system well for future contributions from others interested in experimenting with

this unique type of safe, fun and interactive environment for children.

193

194

Bibliography

[Amazon, 2000] Amazon (2000).
http://www.amazon.com/exec/obidos/subst/misc/policy/privacy.html/002-
0198712-6193016.

[Amory et al., 1998] Amory, A., Naicker, K., Vincent, J., & Adams, C. (1998).
Computer Games as a Learning Resource. In Proceedings of the World Con-
ference on Educational Multimedia, Hypermedia & Telecommunications (Fd-

Media98).

[Anderson, 1982] Anderson, J. R. (1982). Acquisition of Cognitive Skill. Psy-
chology Review, 89.

[Anderson, 1993] Anderson, J. R. (1993). Rules of the Mind. Lawrence Erlbaum
Associates, Hillsdale, NJ.

[Anderson et al., 1995] Anderson, J. R., Corbett, A. T., Koedinger, K., & Pel-
letier, R. (1995). Cognitive tutors: Lessons learned. The Journal of Learning
Sciences, 4:167-207.

[Beck, 1997] Beck, J. (1997). Modeling the Student with Reinforcement Learn-
ing. In Proceedings of the Machine Learning for User Modeling Workshop,
Sizth International Conference on User Modeling.

[Bell et al., 1995] Bell, P., Davis, E. A., & Linn, M. C. (1995). The Knowledge
Integration Environment: Theory and Design. In Proceedings of Computer
Supported Collaborative Learning (CSCL’95).

[Brody, 1993] Brody, H. (1993). Video Games That Teach? Technology Review,
November/December.

[Brown & Burton, 1978] Brown, J. S. & Burton, R. B. (1978). Diagnostic Models
for Procedural Bugs in Basic Mathematical Skills. Cognitive Science, 2(2).

[Bruckman, 1997] Bruckman, A. (1997). MOOSE Crossing: Construction, Com-
munity, and Learning in a Networked Virtual Community for Kids. PhD thesis,
MIT.

195

[Bruckman & DeBonte, 1997] Bruckman, A. & DeBonte, A. (1997). MOOSE
Goes to School: A Comparison of Three Classrooms Using a CSCL Environ-
ment. In Proceedings of CSCL’97.

[Brusilovsky et al., 1996] Brusilovsky, P., Schwarz, E., & Weber, G. (1996).
ELM-ART: An Intelligent Tutoring System on World Wide Web. In Frasson,
C., Gauthier, G., & Lesgold, A., editors, Intelligent Tutoring Systems (Lecture
Notes in Computer Science, Vol. 1086), pages 261-269. Springer Verlag.

[Cherry, 1978] Cherry, C. (1978). On Human Communication. MIT Press, Cam-
bridge, 3rd edition edition.

[Clancey, 1986] Clancey, W. J. (1986). Intelligent Tutoring Systems: A Tutorial
Survey. Technical Report STAN-CS-87-1174, Stanford University.

[CNN, 1998] CNN (4 June 1998).
[Conati & VanLehn, 1996] Conati, C. & VanLehn, K. (1996). POLA: a student

modeling framework for Probabilistic On-Line Assessment of problem solving
performance. In Proceedings of the Fifth International Conference on User

Modeling (UM-96).

[Dede et al., 1996] Dede, C., Salzman, M., & Loftin, B. (1996). ScienceSpace:
virtual realities for learning complex and abstract scientific concepts. In Pro-
ceedings of IFEF Virtual Reality Annual International Symposium.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Lan-
dauer, T. K., & Harshman, R. (1990). Indexing by Latent Semantic Analysis.
Journal of the American Society for InformationScience, 41(6):391-407.

[Duncan et al., 1990] Duncan, C. H., VanHuss, S. H., Warner, S. E., & O’Neil,
S. L. (1990). College keyboarding/typewriting : complete course. South-Western
Publishing Co., Cincinnati, OH.

[Fanderclai, 1995] Fanderclai, T. (1995). MUDs in Education: New Environ-
ments, New Pedagogies. Computer-Mediated Communication Magazine, 2(1).

[Fisher, 1987] Fisher, D. (1987). Knowledge Acquisition via Incremental Con-
ceptual Clustering. Machine Learning, 2:139-172.

[Forrester, 1992] Forrester, J. (1992). System Dynamics and Learner-Centered-
Learning in Kindergarten through 12th Grade Education. Technical Report
D-4337, MIT.

[Funes & Pollack, 1998a] Funes, P. & Pollack, J. B. (1998a). Componential
Structural Simulator. Department of Computer Science Technical Report CS-
98-198, Brandeis University.

196

[Funes & Pollack, 1998b] Funes, P. & Pollack, J. B. (1998b). Evolutionary Body
Building: Adaptive physical designs for robots. Artificial Life, 4:337-357.

[Funes et al., 1997] Funes, P., Sklar, E., Juillé, H., & Pollack, J. B. (1997). The
Internet as a Virtual Ecology: Coevolutionary Arms Races Between Human
and Artificial Populations. Department of Computer Science Technical Report
(CS-97-197, Brandeis University.

[Funes et al., 1998] Funes, P., Sklar, E., Juillé, H., & Pollack, J. B. (1998).
Animal-Animat Coevolution: Using the Animal Population as Fitness Func-
tion. In From Animals to Animats 5: Proceedings of the Fifth International
Conference on Simulation of Adaptive Behavior.

[Gonzalez, 2000] Gonzalez, A. (April 26, 2000). Digital divide closes — but
schools aren’t ready. USA Today.

[Gordin et al., 1996] Gordin, D. N., Gomez, L.. M., Pea, R. D., & Fishman, B. J.
(1996). Using the World Wide Web to Build Learning Communities in K-12.
The Journal of Computer-Mediated Communication, 2(3).

[Gordon & Hall, 1998] Gordon, A. & Hall, L. (1998). Collaboration with Agents
in a Virtual World. In Workshop on Current Trends and Applications of Ar-
tificial Intelligence in Education: 4th World Congress on FExpert Systems.

[Gruber & Voneche, 1977] Gruber, H. E. & Voneche, J. J., editors (1977). The
FEssential Piaget. BasicBooks.

[Hasbro, 1999] Hasbro (1999). Scrabble 101.

[Healy, 1999] Healy, J. M. (1999). Failure to Connect: How Computers Affect
Our Children’s Minds — and What We Can Do About It. Touchstone Books.

[Holland, 1975] Holland, J. H. (1975). Adaption in Natural and Artificial Sys-
tems. University of Michigan Press.

[Hughes, 1995] Hughes, B. (1995). Educational MUDs: Issues and Challenges.

[Johnson & Johnson, 1989] Johnson, D. W. & Johnson, R. (1989). Cooperative
Learning, Values, and Culturally Plural Classrooms. In Cooperation and com-
petition: Theory and research. Interaction Book Company.

[Kinshuk & Patel, 1997] Kinshuk & Patel, A. (1997). A Conceptual Framework
for Internet based Intelligent Tutoring Systems. Knowledge Transfer, 11.

[Klawe & Phillips, 1995] Klawe, M. & Phillips, E. (1995). A Classroom Study:
Electronic Games Engage Children as Researchers. In Proceedings of Computer

Supported Collaborative Work (CSCL’95).

197

[Klawe et al., 1996] Klawe, M., Westrom, M., Davidson, K., & Super, D. (1996).
Phoenix Quest: lessons in developing an educational computer game for girls
... and boys. In Proceedings of ICMTMY6.

[Koedinger & Anderson, 1993] Koedinger, K. & Anderson, J. (1993). Effective
use of intelligent software in high school math classrooms. In Proceedings of
the World Conference on Artificial Intelligence in Fducation.

[Kohn, 1986] Kohn, A. (1986). No Contest: The case against competition.
Houghton-Mifflin.

[Kolodner, 1983] Kolodner, J. L. (1983). Maintaining organization in a dynamic
long-term memory. Cognitive Science, 7.

[Koza, 1992] Koza, J. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cambridge, MA.

[Larochelle, 1982] Larochelle, S. (1982). A Comparison of Skilled and Novice Per-
formance in Discontinuous Typing. In Cooper, W., editor, Cognitive Aspects
of Skilled Typewriting, pages 67-94, New York. Springer-Verlag.

[Lebowitz, 1987] Lebowitz, M. (1987). Experiments with Incremental Concept
Formation: UNIMEM. Machine Learning, 2:103-138.

[Littman & Soloway, 1988] Littman, D. & Soloway, E. (1988). Evaluating ITSs:
the cognitive science perspective. In Polson, M. C. & Richardson, J. J., editors,
Foundations of Intelligent Tutoring Systems. Lawrence FErlbaum Associates,

Hillsdale, NJ.

[Mark & Greer, 1993] Mark, M. A. & Greer, J. E. (1993). Evaluation Method-
ologies for Intelligent Tutoring Systems. Journal of Artificial Intelligence and
FEducation, 4:129-153.

[McCalla & Greer, 1994] McCalla, G. I. & Greer, J. E. (1994). Granularity-
Based Reasoning and Belief Revision in Student Models. In Student Mod-
els: The Key to Individualized Fducational Systems, pages 39-62, New York.
Springer Verlag.

[McGrenere, 1996] McGrenere, J. L. (1996). Design: Educational Electronic
Multi-Player Games; A Literature Review. Department of Computer Science
Technical Report 96-12, University of British Columbia.

[Minar & Donath, 1999] Minar, N. & Donath, J. (1999). Visualizing the Crowds
at a Web Site. In Proceedings of CHI’99.

[Papert, 1980] Papert, S. (1980). Mindstorms: Children, Computers, and Pow-
erful Ideas. BasicBooks.

198

[Papert, 1991] Papert, S. (1991). Situating Constructionism. Constructionism.

[Papert, 1993] Papert, S. (1993). The Children’s Machine. BasicBooks.

[Pea, 1993] Pea, R. (1993
cations of the ACM, 36

. The collaborative visualization project. Communi-

5):60-63.

[Pomerleau, 1993] Pomerleau, D. (1993). Neural Network Perception for Mobile
Robot Guidance. Kluwer Academic.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufman, San Mateo.

[Reeves, 1999] Reeves, T. (1999). A Research Agenda for Interactive Learning in
the New Millenium. In Proceedings of the World Conference on Fducational
Multimedia, Hypermedia & Telecommunications (EdMedia99).

[Resnick, 1997] Resnick, M. (1997). Turtles, termites, and traffic jams: explo-
rations in massively parallel microworlds. MIT Press.

[Rowe et al., 1967] Rowe, J. L., Lloyd, A. C., & Winger, I'. E. (1967). Gregg
typing, 191 series. Gregg Division, McGraw-Hill, New York.

[Rumelhart et al., 1986] Rumelhart, D., Hinton, G., & Williams, R. (1986).
Learning representations by back-propagating errors. Nature, 323.

[Russell & Norvig, 1995] Russell, S. J. & Norvig, P. (1995). Artificial intelligence
: a modern approach. Prentice Hall, Englewood Cliffs, N.J.

[Schank & Cleary, 1995] Schank, R. & Cleary, C. (1995). Engines for Education.

Lawrence FErlbaum Associates, Hillsdale, NJ.

[Schank, 1981] Schank, R. C. (1981). Failure-driven memory. Cognition and
Brain Theory, 4(1).

[Shiri-A. et al., 1998] Shiri-A., M. E., Aimeur, E., & Frasson, C. (1998). Case-
Based Student Modelling: unaccessible solution mode. In Conference interna-
tionale sur les nouvelles technologies de la communication et de la formation

(NTICF’98).

[Sklar, 2000] Sklar, E. (2000). The Design of the CEL System. Department of
Computer Science Technical Report, in progress, Brandeis University.

[Sklar et al., 1999] Sklar, E., Blair, A. D., Funes, P., & Pollack, J. B. (1999).
Training Intelligent Agents Using Human Internet Data. In Proceedings of
Intelligent Agent Technology (IAT-99).

199

[Sklar et al., 1998] Sklar, E., D.Blair, A., & Pollack, J. B. (1998). Co-
Evolutionary Learning: Machines and Humans Schooling Together. In Work-
shop on Current Trends and Applications of Artificial Intelligence in Fduca-
tion: 4th World Congress on Fxpert Systems.

[Sklar & Pollack, 1998] Sklar, E. & Pollack, J. B. (1998). Toward a Community
of Evolving Learners. In Proceedings of the Third International Conference on
the Learning Sciences (ICLS-98).

[Sklar & Pollack, 1999] Sklar, E. & Pollack, J. B. (1999). Demonstrating a Com-
munity of Evolving Learners. In Interactive Presentation at Computer Sup-
ported Collaborative Learning (CSCL-99).

[Sklar & Pollack, 2000a] Sklar, E. & Pollack, J. B. (2000a). An evolutionary ap-
proach to guiding students in an educational game. In Proceedings of the Sixth
International Conference on Simulation of Adaptive Behavior (SAB-2000).

[Sklar & Pollack, 2000b] Sklar, E. & Pollack, J. B. (2000b). A Framework for
Enabling an Internet Learning Community. Journal of International Forum
of Educational Technology & Society, Special Issue on On-line Collaborative
Learning Fnvironments, to appear.

[Slavin, 1992] Slavin, R. E. (1992). When and why does cooperative learning
increase achievement? Theoretical and empirical perspectives. In Hertz-
Lazarowitz, R. & Miller, N., editors, Interaction in cooperative groups: The
theoretical anatomy of group learning, pages 145-173. Cambridge University
Press.

[Slavin, 1995] Slavin, R. E. (1995). Cooperative Learning: Theory, Research, and
Practice. Allyn & Bacon.

[Snyder, 1994] Snyder, T. (March 1994). Blinded By Science. The Ezecutive
FEducator.

[Soloway, 1991] Soloway, E. (1991). How the Nintendo Generation Learns. Com-
munications of the ACM, 34(9).

[Soloway et al., 1981] Soloway, E. M., Woolf, B., Rubin, E., & Barth, P. (1981).
Meno-II: An intelligent tutoring system for novice programmers. In Proceed-
ings of the Seventh International Joint Conference on Artificial Intelligence

(LJCAI).

[Stanchev, 1993] Stanchev, 1. (1993). From decision support systems to computer
supported collaborative work. Elsevier Science Publishers.

[Stern et al., 1997] Stern, M., Woolf, B., & Kurose, J. F. (1997). Intelligence on
the Web? In Proceedings of the 8th World Conference of the AIED Society
(AIED’97).

200

[Suthers & Jones, 1997] Suthers, D. & Jones, D. (1997). An Architecture for
Intelligent Collaborative Educational Systems. In Proceedings of the 8th World
Conference of the AIED Society (AIFD’97).

[Turing, 1963] Turing, A. (1963). Computing Machinery and Intelligence. Com-
puters and Thought.

[Typodrome, 1997] Typodrome (10 January 1997).

[VanLehn, 1983] VanLehn, K. (1983). Human procedural skill acquisition: The-
ory, model, and psychological validation. In Proceedings of the National Con-
ference on Al

[VanLehn et al., 1998] VanLehn, K., Niu, Z., Slier, S., & Gertner, A. (1998).
Student modeling from conventional test data: A Bayesian approach with-

out priors. In Proceedings of the 4th Intelligent Tutoring Systems Conference
(I1T5°98), pages 434-443.

[Wallace, 1990] Wallace, C. S. (1990). Classification by Minimum-Message-
Length Inference. In Proceedings of the International Conference on Com-
puting and Information.

[Walters & Hughes, 1994] Walters, J. & Hughes, B. (1994). Camp MariMUSE:
Linking Elementary and College Students in Virtual Space. In Proceedings of
the National Fducational Computing Conference.

[Wyeth, 1998] Wyeth, G. (1998). Training a Vision Guided Robot. Machine
Learning, 31.

201

