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Abstract

Applying intelligent agent technologies to support human learning activities has been the subject

of recent work that reaches across computer science and education disciplines. This article dis-

cusses agent-based approaches that have been designed to address a range of pedagogical and/or

curricular tasks. Three types of agents are identified in the literature: pedagogical agents, peer-

learning agents, and demonstrating agents. Features of each type are considered, as well as the

systems in which these agents are incorporated, examining common and divergent goals, system

and agent architectures, and evaluation methodologies. Open issues are highlighted, and future

directions for this burgeoning interdisciplinary field are suggested.

1 Introduction

Historically, computer systems have been used in many different ways to assist in human learning.

In the late 1970s, traditional computer-aided instruction merged with artificial intelligence (AI) to

create the field of intelligent tutoring systems (ITS), which exhibited features such as customizing

for individual users by tracing problem-solving sessions and responding dynamically (Brown &

Burton, 1978; Clancey, 1986). In the 1980s, intelligent tutoring work centered around memory

modeling (Schank, 1981; Kolodner, 1983), rule construction (Anderson, 1982), and representation

of students’ misconceptions (Soloway et al., 1981; VanLehn, 1983). Systems developed and tested

in the 1990s employed a range of techniques, such as granularity-based reasoning (McCalla &

Greer, 1994), Bayesian methods (VanLehn et al., 1998), case-based reasoning (Shiri et al., 1998)

and reinforcement learning (Beck, 1998), to model students and improve their on-line educational

experiences. At the same time, early work in the field of autonomous agents was beginning to

appear (Maes, 1994; Wooldridge & Jennings, 1995), and it would not be long before the first

agents found their way into intelligent tutoring and other types of computer-based systems

designed to promote human learning.

Broadly speaking, computer-based systems have been applied in the field of human learning for

three different purposes: (1) to replicate human behavior, (2) to model human behavior, or (3) to

augment human behavior. The first class of system uses a ‘black box’ approach in which the goal is

to approximate the outcomes of human behavior. This class seeks to replicate or replace human

activity, cognition or even physiology, to varying extents. Expert systems (also referred to as

‘knowledge-based’ systems) and some robotic systems fall into this category. Computer scientists

and engineers are often focused on building systems of this class. The second class of system takes

a ‘white box’ approach in which the goal is to imitate the processes underlying human behavior.

This class is developed with the purpose of modeling humans in order to better understand how,

and perhaps why, humans act as they do. The aim is not to replace, but to investigate human
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activity. Research in this area is often driven by social scientists, particularly psychologists or

sociologists. The third class of system aims to augment human behavior where the goal is to

facilitate the acquisition of knowledge within a domain of interest, helping the learner become

proficient and gain experience in that area. The aim is to provide artificial partners for joint

human activity. These systems are typically developed in collaboration with educationalists

and trainers.

Across these three categories, two different perspectives are taken: passive and active. The

passive perspective is typically employed by the first two classes of systems, where the human

learner is either (1) replaced or (2) studied, but is not (necessarily) a participating player in the

system’s use. The active approach is typically taken by the third class of system, in which the

human learner is a participant and thus a direct beneficiary of the system. We note that the three

system classes and two perspectives are not mutually exclusive; a single system may employ

multiple classes and perspectives. For example, understanding gained from the second class of

exploratory system (a model of processes underlying human behavior) may be used to build the

first class of system (an agent replacing human behavior), which in turn, may be used as the

foundation of an artificial learning peer in the third class of system (augmenting human behavior).

Thus, work in the broad area of computer-based human learning systems may bring together

techniques and researchers from a wide range of disciplines, united by the common goal of aiding

human learners.

The focus of this article is primarily on the third class: facilitating systems that take an active

perspective by directly involving the human learner as a user. In particular, the emphasis here is on

implementations that employ intelligent, autonomous agents. The goal of this article is to highlight

ideas and systems representative of the work being developed within the agent-based systems

community. The list is not meant to be exhaustive, nor can it be, since new systems are appearing

every day. We do not discuss pedagogical issues or learning environments from an education

researcher’s or developmental psychologist’s viewpoint, but rather we focus on design, imple-

mentation and evaluation aspects from a technical, computer science, agent-based research, and

development viewpoint.

This article is organized as follows. We begin by defining agent-based systems (Section 2), to

provide a brief overview for the uninitiated reader and to ensure common terminology for the

initiated. Section 3 briefly describes features of computer-based systems for human learning,

distinguishing agent-based from other approaches. Section 4 discusses systems designed to support

human learning, offering a tripartite categorization of such systems in which intelligent agents are

employed. Then, Section 5 discusses system architectures commonly used in agent-based systems

for human learning. Section 6 delves into the topic of testing and evaluation, briefly outlining key

components of assessment in human learning and evaluation of computer-aided learning systems.

Finally, we close by highlighting current open issues.

2 Agent-based systems

Within the field of computer science, the precise definition of an intelligent agent is often debated

(Wooldridge, 2002), yet there is general agreement that an agent is ‘anything that can be viewed as

perceiving its environment through sensors and acting upon that environment through effectors’

(Russell & Norvig, 2002) (see Figure 1). The most fundamental property of any agent is that it is

autonomous—it decides for itself what to do (Wooldridge, 2002). The agent is equipped with some

high-level set of goals, and every time it has a choice of action, it chooses the action that, so far as

it knows, is the one that best achieves its goals. This implies that the agent has some internal set of

rules guiding its decision-making and cannot be directly told what to do by another agent, or by a

human user in an interactive agent-based system. If one agent (or a human user) wishes to change

the behavior of another agent, it can only do so indirectly—by making some change that alters the

best way for the second agent to achieve its goals. For example, the first agent might convince the

second that it is in its best interest to agree to do whatever the first agent is asking at the time.
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Agents maintain a set of beliefs, describing the internal model of their state and the environ-

ment in which they act. Agents’ goals can loosely be thought of as desires, things that the agent

wishes to bring about; and associated with these desires are various levels of commitment. Desires

become intentions once agents commit to bringing them about, and this typically results in the

agent devising a plan to achieve them. In the classical view, agent behavior consists of three

abstract phases: sensing, planning, and acting. This view stems from seminal work in AI (Arkin,

1998) implemented in the robot Shakey in the 1960s (Nilsson, 1969, 1984). In the first phase, an

agent senses its external environment and its internal stance. In the second phase, an agent plans

what it should do next, using information that includes sensor data and knowledge of its goals. In

the third phase, the agent performs the action selected in the second phase. Early work showed

that implementing these three phases as distinct, sequential tasks in an iterative cycle, in what is

called a deliberative control architecture (Albus et al., 1987), is impractical in dynamic environ-

ments and produces unsatisfactory results, particularly with real robots (Brooks, 1984). As a

result, reactive control architectures (Arkin, 1995) were developed: reactive systems do no plan-

ning—agents just sense their environment and follow a set of rules that indicate what actions

should be taken in response to the sensed data. The realization that reactive and deliberative

approaches do not always work alone, but can be combined to produce superior results (Arkin,

1998, 1989), led to the development of hybridmethods. Hybrid models typically use reactive

methods to take care of low-level operations, like obstacle avoidance, and deliberative approaches to

provide higher-level functionality like planning, joined together with some type of mediation process

that coordinates between the two. Hybrid approaches have become dominant within robotics and are

often implemented in a behavior-based architecture (Arkin, 1998), where low-level actions (such as

‘move forward’) are grouped together and linked to intensions (such as ‘chase ball’).

If an agent has a physical body that can move around and interact in the natural, physical

world, then we refer to that agent as an autonomous robot or simply a robot. Agents that exist only

as entities within a software system are referred to as virtual agents. Note that other definitions of

‘robot’ exist within the broader, interdisciplinary field of robotics, which includes mechanical

devices that are not autonomous, for example, tele-operated machines and industrial ‘robot’ arms.

Some researchers refer to robots as ‘embodied agents’, but this term is also used to describe

simulated agents that emulate human form and motion. In this article, we use the generic term

‘agent’ primarily to refer to virtual agents and will specify ‘robot’ when referring to physical,

autonomous, intelligent, mobile devices. A multiagent system (MAS) is a physical or virtual

environment in which multiple agents interact with each other, either directly or indirectly.

In Section 4, we categorize and discuss three primary types of agents employed in human

learning systems today, falling into the class of systems that augment human behavior. Primarily,

these agents take on active roles, though some are passive in order to make observations before

acting. These three types of agents are: pedagogical agents that provide overt instruction to

learners (Section 4.1), agents that collaborate and act as peer learners (Section 4.2), and agents that

demonstrate aspects of phenomena by interacting with a physical or simulated world (Section 4.3).

We note that some of the systems presented as examples in one section could also fit into another
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Figure 1 A canonical view of an intelligent agent
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section. But first, the next section provides an overview of the components of computer-based

human-learning systems, to explain how agent-based approaches fit into traditional work.

3 Human learning systems

The primary goal in any human learning environment is for the learner to advance. Software appli-

cations built to facilitate human learning, in contrast to applications constructed with other goals in

mind, are not designed to simplify or perform a task for a user, but rather to help a user acquire a set of

skills, learn how to accomplish a set of tasks, understand new concepts, learn how to solve problems,

and/or practice any or all of the above (Sklar, 2003). These goals are strikingly different from other

(i.e., non-educational) interactive agent-based systems where agents are ‘assistants’, designed specifi-

cally to perform tasks for a user. Agents that operate as automated assistants are typically personalized

to individual users and historically have addressed a variety of tasks, such as browsing the web

(Lieberman, 1995), sorting email, and filtering news group messages (Cypher, 1991; Goldberg et al.,

1992; Lashkari et al., 1994; Lang, 1995), or finding other users who share similar interests (Foner, 1997;

Kuokka & Harada, 1997; Balabanovic, 1998). Automated assistants are designed to relieve a user’s

burden by taking over repetitive duties or by streamlining access to complex, overwhelming data sets.

In studying and developing these types of systems, the typical kinds of research questions asked center

around discovering and measuring ways to make tasks easier for a user to perform. Figure 2a illus-

trates typical components of a non-educational interactive agent-based system, where agents employ a

user model (which might be simply a set of user-defined preferences or could be a more sophisticated

representation of user behavior such as a Bayesian network) to provide system adaptivity by

responding dynamically to the needs of the user and/or changes in her environment.

Whereas non-educational interactive agent-based systems are designed to be good assistants,

simplifying a user’s experiences, systems built for human learning should provide challenges for
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Figure 2 Comparison of interactive system components: (a) interactive agent-based system, (b) interactive
agent-based learning system (adapted from Sklar & Richards, 2006), and (c) intelligent tutoring system (from
Beck et al., 1996)
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the user. The overriding system goal is for the user to learn how to perform a given task, so the

system should make the process of learning how to accomplish that task easy—the process of

learning the task, not the task itself (Sklar, 2003). This viewpoint was elegantly expressed by

(Malone, 1981a, 1981b) within the context of computer games. He makes an important distinction

between ‘toys’ and ‘tools’, defining toys to be systems that exist for their own sake, with no

external goals, and tools to be systems that exist because of their external goals. Good tools should

be easy to use, in order to expedite the user’s external goal. Good games should be difficult to play,

in order to increase the challenge provided to the player. Interactive learning systems should also

increase the challenge, to keep learners engaged in a continuous learning process.

The general term interactive learning system (ILS) includes not only the more specific (and

perhaps more familiar) term ITS, but also provides a broader definition encompassing environ-

ments that are designed for more exploration on the part of the student than ITSs (which are

typically more structured and scripted according to carefully engineered, domain-dependent

models). A typical ILS includes the following components (Mark & Greer, 1993; Sklar, 2000):

> domain knowledge: a representation of the topic that the student is learning;
> teaching component: an instructional model that is used to guide the student through the

knowledge domain;
> user interface: the interaction mechanism that lies between the human student and the

computerized system;
> student knowledge: a ‘user model’ of the student in relation to the domain knowledge, indicating

how much of and how well the student knows the domain; and
> system adaptivity: the means by which the system adapts automatically to the student’s

behavior, backtracking when the student makes mistakes and moving ahead when the student

demonstrates proficiency with portions of the domain.

Figure 2b illustrates these components and their relationships to each other. This structure is

quite similar to that of a non-educational interactive agent-based system, such as that shown in

Figure 2a; the student model provides a function similar to that of the user model and the teaching

component is added to enhance system adaptivity for the changing needs of the learner. In both

cases (educational and non-educational systems), different types of agent technology can be

included at different levels. For example, where interface agents are used in non-learning appli-

cations to help a user navigate a complex domain, pedagogical agents are implemented in a

learning application to guide users through a problem space. Understanding and embracing the

special characteristics that learning tasks require of an application is necessary in order to adapt

techniques from non-learning applications to those designed for education and training. Figure 2c

illustrates the traditional components in an ITS (Beck et al., 1996). The main difference is the use

of a specific expert model that works in tandem with a pedagogical model to select learning

experiences for the student, often from a predefined database of cases describing common student

misconceptions. In an agent-based learning system, the teaching component is embedded in system

adaptivity and can often adapt while the system runs. The key difference is that in a traditional

ITS, system control is essentially ‘deliberative’, whereas in an agent-based environment, system

control is essentially ‘behavior-based’.

4 Types of agent-based systems for human learning

Within the class of facilitating agent-based human learning systems, we have found that there are

three primary types of agents. The first are pedagogical agents (Johnson, 1995), personalized

assistants that interact directly with a learner and explicitly guide her through the domain.

Referring back to Figure 2b, pedagogical agents are most overtly involved in the teaching component

and user interface. Typically they consult the student model in order to understand the learner and

provide feedback that encourages the learner within her appropriate ‘zone of proximal development’

(Vygotsky, 1978). Pedagogical agents usually have full access to the domain knowledge; i.e., they know
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all the ‘right answers’, though depending on the teaching style that is embodied, how and when they

share their knowledge with the student varies. They provide system adaptivity by responding to the

student’s needs dynamically. In immersive implementations, they also react to changes in the envir-

onment. The second type of agents are peer-learning agents, interactive partners in the learning process

itself (Kim, 2005; Sehaba & Estraillier, 2005). These agents are built into the user interface and, as with

pedagogical agents, have knowledge of the user (through the student model). However, they do not

have complete access to the domain knowledge; as peer learners, they have similar grasp of the

knowledge being acquired as the student. While these agents may have teaching capabilities (imple-

mented in a teaching component), their instructional behaviors are much less engineered for guiding

learning overtly than pedagogical agents. For example, educational or training games are a common

type of scenario for these type of agents, where they act as players alongside the human learners. These

agents provide system adaptivity by reacting dynamically to both the student and the environment

(such as a game). The third type of agents are demonstrating agents, where the agents themselves are

interactive mediums for learning, for example, agent-based simulations (Repenning & Citrin, 1993) or

educational robotics (Goldman et al., 2004; Sklar et al., 2005). These agents embody the domain

knowledge and are removed from the other components of the learning system (i.e., there is no teaching

component or student model). In a way, these agents are the user interface. Any system adaptivity is put

in by the user, i.e., in creating different programs for a robot. An open area for future work is the

development of systems that combine this third type of agent with one or both of the others.

4.1 Pedagogical agents

Much like a narrator in a movie who provides voice-over to explain scenes but never actually

appears in the film, a pedagogical agent ‘pops up’ when the learner indicates (directly or indirectly)

that she needs help. There are a number of design issues in constructing this type of agent. The first

is appearance, deciding what the agent will look like and how it will interact with the user. An

agent might be animated and engage with the user through natural language conversation. A more

primitive agent might appear as simply an icon and provide feedback to the user through text

bubbles. Animated agents offer the opportunity for more engaging and immersive experiences for

the user, though these naturally require more development time. A second design issue is initiative,

determining when the agent should become visible to the user. The question of initiative is

important in any interactive system, regardless of whether it is educational or agent-based. There

are generally three methods used to determine when an agent should appear to a user: directly,

upon request by the user, for example by clicking a ‘help’ button; indirectly, by the system monitoring

the learner’s performance and automatically detecting when she seems to need assistance; and mixed

initiative, which relies on a combination of the first two. With most agent-based systems for human

learning, the second method is used. The third design issue is purpose, identifying the reason(s) for

using agents in a system. The earliest agent-based systems for human learning were designed in

response to issues in traditional ITSs, providing a means for the ‘tutor’ to be an integrated participant

in the learner’s experience (Johnson, 1995). The purpose of these systems was to provide pedagogical

assistance with academic subjects or professional development, such as military training. More recent

systems broaden the areas of application to include organizing and monitoring access to course

materials, providing advice on degree planning, and facilitating group learning. In this section, we

offer examples of systems that focus on each of these issues.

Johnson (2001) presents Q1a comprehensive review of his research on animated pedagogical agents

(APAs), highlighting issues that are faced when developing computer-based learning companions.

Questions are addressed such as when to initiate dialog, how to include non-verbal communication,

and how to design for a wide range of client technologies. Animated agents can mimic human gestures

and emotion-driven expressions, which can help engage students more than static avatars. Several

agents were developed and tested, including: Soar Training Expert for Virtual Environments (STEVE)

(Rickel & Johnson, 1998), Agent for Distance Learning, Light Edition (Adele) and Herman the Bug.

STEVE was constructed for adult learners, embedded in an immersive three-dimensional environment
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that included sound and was designed for training naval personnel. Adele was built for university

students, to be accessed over the Internet using standard workstation platforms and web technology.

Herman the Bug was created for young students, a ‘talkative’ agent that gave advice about plants while

teaching about botany. Animated agents can provide a number of advantages, such as navigational

guidance, interactive demonstrations, gesturing for attention, and use of other non-verbal commu-

nication devices. Empirical results using APAs are positive, with some cautions. For example, there is

evidence that young students may be distracted from the learning task by the agent’s interface;

however, the authors believe that a well-designed agent can keep students on task and avoid this pitfall.

In a more recent example of an application built for adult learners, Blake et al. (2007) describe

an ‘intelligent scaffolding agent’ for use in human training environments. The role of the agent is

to devise an appropriate level of assistance for the human in order to enhance the performance of

the learner. At first, the agent provides multiple ‘training aids’, but gradually removes these as the

learner acquires skill with her assigned tasks. In this system, the domain knowledge is organized

into specific scaffolded levels, and the agent consults the student model to determine which level

should be presented to the learner at any given time. This architecture combines the advantages of

traditional ITSs, where the tutor’s actions are carefully engineered, with agent-based systems,

where the tutoring agent’s actions are behavior-driven, by engineering the portion of domain

knowledge accessed by the agent, adjusting that portion dynamically as the learner advances and

implementing the agent that interfaces with the learner using behavior-based methods.

Much of the work involving APAs focuses on interactive pedagogical drama (Marsella et al.,

2000), where the agents become actors in a pseudo theatrical environment and learners either

become immersed as participants in the drama or act as observers, like members of an audience.

There are advantages to each approach; the former approach requires learners to act in the drama,

which can be challenging and motivating, while the latter gives learners opportunities for reflection

and perhaps impartial analysis. Fassbender and Richards (2006) have designed VirSchool to allow

a student to explore a topic area, such as philosophy, facilitated as an adventure-style quest.

Johnson (2001) and Marsella et al. (2000) use an interactive pedagogical drama for a system called

‘Carmen’s Bright IDEAS’ in which an adult human is guided through scenarios designed to

improve problem-solving skills. Carmen, a character in the drama, is the mother of a pediatric

cancer patient; she has a job and has another (healthy) child to mind. When using the system, the

learner observes Carmen’s thoughts and can choose actions for her, in sessions with a counselor,

discussions with her child’s doctor, interactions with her boss, and so on. The pedagogical goal is

for the human user of the system to improve her problem-solving skills and gain insight into

similar situations in her own life. The underlying architecture of Carmen’s Bright IDEAS has been

developed into a generalized framework called Thespian (Si et al., 2005a, 2005b) and applied to

other domains. The Tactical Language Training System (TactLang) (Johnson et al., 2004) is a

military language training system in which the learner engages in role-playing activities to acquire

knowledge of the language, idiom and customs of particular geographic regions. One example is a

drama, which unfolds in a village cafe in the Middle East, and the learner interacts with characters

who are speaking Arabic. The system architecture integrates PsychSim, a multiagent system for

mental modeling (Pynadath & Marsella, 2005), with a storyline and basic script as well as ped-

agogical goals and social norms to guide agent–agent and agent–human interactions. The premise

is that this type of modular system architecture could aid in rapid deployment of other interactive

pedagogical dramas applied to other domains, by plugging in different domain knowledge modules

(i.e., scripts) to be accessed by the more generic behavior-based agents.

The Internet has opened up opportunities to explore the application of agent-based systems

designed specifically for human distance learners. APAs have been implemented in these types of

systems as well. For example, Lucas et al. (2005) define APAs in their MAIDEQ2 system to assist

students in distance learning environments. An APA perceives that the user needs assistance based on

a model of the learner and the learning goals of the system. The agents pop up and provide guidance

to the learner regarding the use of a calculator. The APAs work in conjunction with the initial loader

(instantiated by the FIPAQ3 -OS Agent-Loader) and a graphical interface agent called the CalcAgent for
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handling the display, input, and output to the calculator. Examples of other systems designed to

support distance learning in a variety of ways are described in the next few paragraphs.

Some systems combine the first and third classes of agent-based systems for human learning, as

described in Section 1, by designing a pedagogical agent’s behavior to replicate a human expert

from whom a novice can learn. One example is the Online Mediator Education System (Tanaka et

al., 2006), where students are able to practice their legal negotiation skills with the assistance of a

mediator agent. Within the legal profession, a technique known as alternative disputation reso-

lution (ADR) is becoming a common alternative to courtroom trials. To become competent in

ADR, law students typically undergo training with an experienced mediator. However, this is

costly and time-consuming. An advice agent that embodies the role of a mediator was created by

Tanaka et al. (2006). Typical of systems in law-related fields, a case-base (i.e., a database of cases)

is used to find examples, together with a mediation model, issue points, similarity measure, and

rule-based advice model. The advice agent uses the cases and models to provide guidance and

evaluation to trainees. It appears on the screen as a talking head, complete with facial expressions

and speech with intonation. Preliminary evaluation studies show that about half of the recom-

mendations given by the on-line case-based training system were accepted by the participants. The

developers note that more cases and rules are needed to improve this outcome, eventually leading

to a system that can provide recommendations directly to the affected parties.

A growing number of systems have been developed to support a range of distance-learning

needs that are not directly focused on acquisition of domain knowledge, but rather on aspects such

as organizing and monitoring access to course materials. Teachers face challenges of monitoring

progress and sustaining morale when students participate with a learning system remotely. These

problems are exacerbated when there are large numbers of students for a teacher to monitor. One

example of a system that seeks to address these issues is the agent-based intelligent tutoring system

(ABITS) (Mowlds et al., 2006), which instantiates rule-enhanced agents guided by a belief desire

intention (BDI) architecture (Bratman, 1987) to identify personal preferences, learner type, and

learning style. An individualized student model is used in conjunction with an agent who is

assigned to each student and assists the student in achieving his/her goals. The agent observes the

student’s interaction with the e-learning system to formulate its beliefs about the student’s level of

involvement with the online course. The student’s learning style is also added to the agent’s set of

beliefs via analysis of the responses to a learning style questionnaire. Support provided by ABITS

includes: weekly emails to the student summarizing what s/he has achieved, with the aim of

providing positive feedback and reinforcement; reminders from the agent regarding due dates for

assessments, which require acknowledgement of receipt from the student; and tailored quizzes and

recommended reading material. To further support the ability to suggest appropriate course

material, ABITS also offers an alterative architecture that includes machine learning agents that

can adapt the system based on observing student behavior. For example, the researchers observed

that students typically used the weekly lesson title or sub-title descriptions as the source of key-

words to search for relevant material. As a consequence, researchers built adaptive agents to

automate this search and recommend further reading for the students to undertake.

Most students typically require assistance with more than just the curricular content and

learning materials of one particular class—most students also need academic advising to guide

them through their entire degree. Getting timely access and advice is a challenge particularly faced

by distributed and remote students. This problem has been addressed using agent technology in

the ‘e-Advisor’ system (Lin et al., 2006, 2007) which allows masters students to perform initial and

opportunistic planning, that is, dynamic planning performed as needed, to develop a personalized

educational program. A number of knowledge models are used, including: ontologies, program

regulations, course models, student models, prerequisite relations, and a preference-based opti-

mization model to enable selection of the best plan from a range of plans. Notification, planning,

interface, evaluation, and monitoring agents are provided to form a modular multiagent system.

Another open area of research in distance learning environments examines ways to facilitate

group-based and collaborative learning where students participate from physically distributed
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locations. The introduction of an agent can help to play the role of a teacher or group guide. One

example of a system that uses an agent-based architecture to facilitate a computer supported

collaborative learning environment is Intelligent Multiagent Infrastructure for Distributed

Systems in Education (Khandaker & Soh, 2007). In this system, agents are instantiated to

represent individual students and a teacher, while a ‘group agent’ enables communication and

group activity. The teacher agent performs some analysis of student agent actions in order to

advise the human instructor about how to respond.

This section has highlighted a number of issues in the design and implementation of pedago-

gical agents, describing examples to illustrate each. The modes of interaction and agent appear-

ance differ, with more developed systems leaning toward the inclusion of APAs that employ

natural language methods and gestures for conversing with human learners. Authors acknowledge

the labor involved in constructing these types of agents and strive to capitalize on behavior-based

agent architectures in order to implement modular systems in which some components can be re-

used when knowledge domains change. The audiences for systems involving pedagogical agents

vary widely, from young students in school classrooms to adult learners in business or military

settings. Distance learning is a growing area of application, where the community has recognized

that needs are not only academic but also organizational.

4.2 Peer-learning agents

There are many learning environments where agents interact with human learners as peers. These

agents appear less intrusive than pedagogical agents. Many agent-based learning systems leverage

game technology to provide both motivation and a situated, simulated training environment (Lave

& Wenger, 1991). Human learners engage with agents as opponents or partners. These agents act

more like peers than pedagogical agents, which are more like tutors or instructors. The primary

issues faced when constructing peer-learning agents are: developing realistic situated environments

in which the human learner and agent peer interact, offering believable agents, and providing

natural modes of interaction.

To address the issue of developing situated environments, which can become very expensive,

many projects take advantage of a number of free or off-the-shelf game engines. For example, the

TactLang mission environment (mentioned earlier) employs a modified version of the game engine

Unreal Tournament, known as Gamebots (Adobbati et al., 2001). Many games include simulation

components (Aldrich, 2003) that provide practical experience and game elements that offer an

environment of engagement, discovery, and competition (Bartles, 2003). Simulations can be

particularly useful for providing training in several categories of skills: internalizing processes,

understanding systems, decision making, perspective shifting, team building, and cooperation

(Galarneau, 2004). Wilkinson (2002) stresses the importance of realistic simulation settings for

learners, where errors can be expected and the experience of failure helps learners progress in a

safe environment. The notion of safety is particularly critical for the mission rehearsal exercise

(MRE) project (Swartout et al., 2001). Safety is also a key consideration in the training simulation

being developed by Richards et al. (2005, 2007) where agents are created in a game environment to

allow the user to explore various risk scenarios. This project is focused on addressing issues

concerning the agents’ acquisition and reuse of knowledge and the language, cognitive, and

behavioral abilities of the agents to provide a more believable, engaging, and immersive learning

environment. The more recent work on Airport World (Richards et al., 2007) has been used to

train customs officers employed at airports to identify high-risk situations. The game setting is

similar to that of TactLang in which users interact with virtual (animated) characters in an

immersive, virtual reality environment.

A number of development toolkits and game environments including programmable game

engines are available, each with various strengths and weaknesses. A good overview and list of

game engines is provided by Isakovic (Johnson & Onwuegbuzie, 2004). A shorter discussion is

provided in Barles et al. (2005). Game engines often include: a rendering engine to output 2D or
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3D graphics, an animation package, a physics engine (or other functionality to handle object

collision), a sound synthesizer and a scripting language. Some incorporate more sophisticated

tools and techniques such as networking, threading, scene graphs, and ideas from AI such as

agent-based behaviors, rule bases, and knowledge bases. The developer may be able to choose

functionality from a range of options. For instance, Garage Games1 provides tools for creating

2D, 3D, and console games using the Torque game builder and game engine together with aca-

demic resources useful for teaching games development. Different types of games can be developed

depending on the game engine, for example Torque supports development of First Person Shooter

(FPS) Games. Neverwinternights2 allows game development, using the Aurora Toolset and game

engine, of third person perspective computer role-playing games. Neverwinternights is a dungeons

and dragons fantasy game which was the first massively multiplayer online RPG (MMORPG).

Now eclipsed by games such as World of Warcraft, it remains quite revolutionary in allowing users to

host their ownMMORPG server and to create their own worlds and adventures with up to 64 of their

friends3. Middleware such as the general purpose Gamebryo4 System Development Kit has allowed

the development of robust and complete games and even supported the development of more cus-

tomized and purpose-built toolkits such as The Elder Scrolls IV: Oblivion which use the gamebryo

engine5. Similarly the IdTech Engine, developed by Id Software in association with Valve6 and

launched in the first FPS Wolftenstein 3D in 1991 (ID Software, 2009), has been an integral part of

successful games such as Call of Duty, Soldier of Fortune, Half-Life, Medal of Honor: Allied Assault,

Star Trek: Elite Force, Heretic, Hexen, DOOM, and QUAKE. Simulation games have also been used

in business environments, for example, in teaching administrative skills.

Game engines have been employed to incorporate the practice of storytelling to guide the human

learning process within an agent-based system. In Richards et al. (2006), the narrative engine is used to

interpret user actions into narrative terms that enrich the experience. Through a decomposition and re-

composition process, the user may choose from a wide range of options that can be explored in

parallel or sequentially. The narrative engine is used in conjunction with the Unreal Tournament game

engine to provide training to customs officers. In contrast, Mott et al. (2006) use the hierarchical task

network planner technique to determine the order and nature of events together with the game engine

HalfLife to develop the ‘Crystal Island’ learning environment, where the student becomes a medical

detective as she explores an island and learns about disease.

To address the issue of providing believable agents, one strategy currently being explored by

many comes from examining human characteristics, such as emotion and empathy, and extending

agents to handle and even emulate such traits. van den Broek (2005) developed empathic tech-

nology agents that mimic human empathy in a study concerning stress levels in individuals, where

stress was detected through analysis of human voice recordings. In this study, the goal was not to

use agents to teach the subjects, like pedagogical agents would, but rather to add human abilities

to the agent controller so that the results would be more sociologically valid, a key concern and

common shortcoming of laboratory-style testing with humans. In addition, related to better

understanding humans is the work of Sehaba and Estrailier (2005), who use an agent approach to

help rehabilitate children with autism. A multiagent system is used to model the knowledge of

therapists, the child’s profile and the dynamics of the interactions between the therapists and the

child. Jarrold (2007) conducted a comprehensive study of autistic behaviors with human subjects

and used the results to build and test a rule-based system to mimic the responses of autistic

children. Spoelstra and Sklar (2007) built a simulation of human learners in groups, as part of the

1 http://www.garagegames.com/
2 http://nwn.bioware.com/
3 http://nwn.bioware.com/about/description.html
4 http://www.emergent.net/
5 http://www.elderscrolls.com/games/oblivion_verview.htm
6 http://www.valvesoftware.com/
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SimEd project (Sklar et al., 2004). Their model was constructed from examination of a wide range

of pedagogical literature on human learning environments and interactions in group learning.

They compared the results of different group compositions with varying the number of ‘high’ and

‘low’ ability learners in a group, as well as group size, and the presence or absence of group

rewards in learning. Models of emotion were incorporated to reflect the learner’s responses to easy

and hard lessons.

A key difference between agent systems for human learning and other agent systems is the need

for human communication languages as well as agent communication languages (ACL). In gen-

eral, it is unrealistic to expect a human to communicate with a software agent using a standard

(e.g., FIPA7-compliant) ACL. The burden is on the system developer to create a communication

channel that bridges the human-agent gap. It is common to use a personal agent to bridge this gap.

Lazzari et al. (2005) use personal agents in their remote assistant for programmers (RAP) system

to allow human users to interact with other humans and other parts of the system, each repre-

sented by other types of agents. Personal agents are created for each online and offline user.

Personal agents handle a range of tasks such as selecting answer types, submitting queries, finding

answers, finding experts, receiving expert ratings, selecting experts, receiving answers, and rating

answers. Some of these tasks are performed in conjunction with other agents in the system. As in

the case of RAP, personal agents are tailored to the particular human user based on a user profile,

stereotype or model, and often require a high degree of sophistication. This is clearly true in

the case of the user observation agent (UOA) employed in the studies of the behavior of autistic

children by Sehaba and Estrailier (Sehaba & Estraillier, 2005). This agent takes input from

an integrated software and hardware system known as FaceLab to capture features of the human

subject’s face and orientation of gaze. In addition, the UOA takes into account actions with

the mouse, touch screen, and keyboard.

Kim (2005) uses agents as learning companions, motivated by the pedagogical strategy of

providing a learner with peer support. This work reveals that the competency of the learner has a

large impact on the nature of the interaction with agents as learning companions, referred to as

‘PALs’. Strong students, identified by their grade point average, preferred for the PALs to take a

leading role and expected to be given correct advice. Weak students preferred to control the PAL

and asked for assistance only when they wanted it and were satisfied with some wrong answers, as

they found that a PAL that was always correct was intimidating. These interesting findings

emphasize the varied influence of agents for human-based learning. Not only will differences in

settings and interfaces affect learners, but also the personalities of the learners themselves will be a

factor.

This section has highlighted three issues in the design and implementation of peer-learning

agents, providing illustrative examples. This application area is largely dominated by game set-

tings, where the agent peer and human learners interact as collaborative or competitive players.

The main difference between a pedagogical agent and a peer learner is that the pedagogical agent

acts much more like an overt teacher, monitoring students’ actions, and providing instructional

assistance when observing that the student has made mistakes or is becoming lost; whereas, the

peer learner acts more like a classmate, learning and making mistakes along with the student.

An interesting area of research is examining the effectiveness of different reasoning models within

peer learners to understand whether students respond better to peer agents that appear more or

less intelligent. Some systems integrate peer and pedagogical agents, providing a peer agent that

makes mistakes and a pedagogical agent that offers corrections, allowing the human learner to

observe and learn from the mistakes of the peer. Researchers are finding that believability of the

peer agent is important, and many are studying ways to incorporate emotion models in these

agents so that they can express satisfaction, frustration, and other emotions throughout their

shared learning process.

7 Foundation for Intelligent Physical Agents, http://www.fipa.org
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4.3 Demonstrating agents

The notion of agency is useful for teaching and demonstrating a wide range of phenomena in the

world. From introductory programming concepts (Blank et al., 2005) to dynamic systems

(Wilensky & Resnick, 1999), innovative researchers and teachers have developed many different

types of agents that interact with students of all ages. These environments take advantage of the

popular and proven constructionist (Papert, 1991) pedagogical paradigm, motivating students and

helping them to learn by doing. Here we highlight two complementary directions within this

paradigm that concentrate on the use of agency to provide meaningful learning experiences:

multiagent simulation and educational robotics. These types of demonstrating agents are very dif-

ferent from the types of pedagogical and peer-learning agents described in the previous two

sections. There is no explicit model of the teacher or the student. The student acts as a pro-

grammer, developing her own methods of controlling the agents. In these systems, the agents are

the manipulatives: ‘objects that can be touched and moved by students to introduce or reinforce a

[mathematical] concept’ (Hartshorn & Boren, 1990), which have been shown to be effective in

mathematics education (Suydam & Higgins, 1977).

Educational agent-based and multiagent simulation systems allow students to program agents

using simple commands and to view graphically, and instantly, the effects of their code. This not

only teaches students about programming concepts, but also provides powerful lessons in mod-

eling. Students observe the world, invent rules about it, program the rules and analyze how well

their rules represent the phenomena in the world that they are attempting to model. One of the

more widely used agent-based simulation environments in education settings is NetLogo8

(Wilensky, 2002), developed by Uri Wilensky and others at Northwestern University (Sklar, 2007).

Branching out from StarLogo (Resnick, 1997), NetLogo provides participatory modes of inter-

action. Both StarLogo and NetLogo are based on Seymour Papert’s LOGO environment

(Feurzeig et al., 1970) in which novice programmers control a ‘turtle’ by giving it simple com-

mands such as ‘go forward’. Sengupta and Wilensky (2005) use NetLogo to assist physics students

to better understand the field of electromagnetics at the micro level. By modeling concepts such as

electrons and atoms as agents, students are able to discover emergent phenomena for themselves

and learn to predict behaviors of or within a system in ways that result in deeper learning and

understanding. The NetLogo Investigations in Electromagnetics study demonstrates how learning

in the domain can be broken down. In this particular domain, ‘thinking in levels using multiagent

based models allows the students to establish concrete relationships between submicroscopic

objects (e.g., electrons) which are shrouded in mathematical equations in traditional physics

instruction’ (Sengupta & Wilensky, 2005). Blikstein and Wilensky (2005) also employed the

NetLogo environment as a way of helping students to understand some of the difficult concepts

involved in Materials Science. The MaterialSim system is a modeling for understanding frame-

work that uses multiagent modeling languages, in which each agent is a basic computational

construct with simple rules which control their behavior and from which more complex higher

level behaviors emerge. The study included classroom observations, pre- and post-interviews and

data analysis of the usage session.

REAL (Bai & Black, 2006; Bai et al., 2007) is a framework that uses a multiagent system com-

prising a reflective agent, pedagogical agent, expert agent, and communication agent to model the

human roles of user, teacher, domain expert, and a coordinator, respectively. The REAL framework

includes a simulated gaming environment that allows learners to reflect on what they know by

exploring their own ideas. Users specify behaviors for agents in the system via propositional networks

or procedural rules. (Bai & Black, 2006) want to go beyond an educational game system, which may

be engaging but not necessarily result in constructive reasoning. The REAL system allows students to

debug their own thinking processes by looking at their thoughts represented in the system from

different perspectives. The system can incorporate machine-learning techniques such as Bayesian

8 http://ccl.northwestern.edu/netlogo
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networks and concept maps. The agents are implemented using a BDI architecture. The work differs

from NetLogo in the use of a game environment and the visualization of propositional statements.

Examples of other multiagent simulation environments include Swarm9 (Epstein & Axtell,

1996), RePast10 (North et al., 2006) and AgentSheets11 (Repenning & Citrin, 1993). Only

AgentSheets was constructed explicitly for use in education settings, where students give agents

behaviors using a menu-driven interface. Swarm, based on the simple notion of ants gathering

sugar in a nest, and RePast, a Java implementation with Swarm-like properties, have been quite

widely used to model, test and refine a broad range of complex economic, social, computational,

and scientific theories. Both of these environments require skilled programmers to implement and

control the behaviors of agents, and so are not as accessible in most educational settings.

Educational robotics refers to the use of robots in classrooms to teach a wide variety of topics,

not necessarily robotics in particular (Sklar & Parsons, 2002). With the advent of the LEGO

Mindstorms Robotics Invention System12 in the late 1990s, today robots are being used all over

the world to engage students from early primary through undergraduate classrooms (Klassner &

Anderson, 2003; Blank et al., 2005; Sklar et al., 2005). As outlined in Sklar et al. (2005), some

university courses focus more on hardware and engineering design aspects of robotics, while

others concentrate on control mechanisms, agency, behavior-based paradigms, and multiagent

systems. A broad range of experience reports have been published detailing lessons learned using

robotics with younger students, in primary and secondary school classrooms and after-school

programs (e.g., Martin, 1994; Wagner, 1999; Goldman et al., 2004).

As well as hands-on, hardware-based approaches, a number of simulators have been developed

to give students who do not have access to robot hardware an opportunity to explore the concepts

behind controlling robots or to speed up development by providing a rapid-prototyping envir-

onment where debugging can occur more quickly than on real robots. Chu et al. (2005) developed

RoboXAP, an agent-based simulation environment for children, designed to be used in con-

junction with the popular RoboLab (Erwin et al., 2000) graphical programming interface and

LEGO Mindstorms robot. The motivation was to give students an opportunity to learn about

agent-based programming by using RoboLab in a ‘safe and friendly’ place—they can ‘try out’

programs in the simulator before loading them onto the robot platform and before being faced

with real-world, physical constraints, and issues such as noise.

When dealing with varying robotic platforms, even with a relatively simple one like the LEGO

Mindstorms, it is effective for students to be able to classify and specify behavior patterns for their

robots. Behavior patterns can range from basic actions, such as ‘move forward for 4 s’, to complex

activities such as ‘open a gate’. Owing to the complexity of defining and implementing robot

behaviors, many control architectures are designed to build complex behaviors out of simple, low-

level commands (Mataric, 1998). Another approach by (Goldman, 2005) provides a custom

behavior-based interface to RoboLab and an XML-based translator for downloading on to the

Sony AIBO robot. Azhar et al. (2006) describe an agent-oriented behavior-based interface fra-

mework designed to enable learners to specify introductory programming concepts at various

levels of abstraction, across multiple platforms within a simulation environment that can be used

for testing ideas and programs developed.

The work of Holz et al. (2006) combines virtual reality with hardware to create a Mixed Reality

Agent. A museum guide was created that combines a virtual agent displayed on a computer screen

sitting on top of a physical agent robot. The physical agent allows the museum guide to move

around a building, while the virtual agent allows the robot to have a persona that is expressive and

adaptable. For example, the interface can be adapted to the type of user, children or adults, or the

9 http://www.swarm.org
10 http://repast.sourceforge.net
11 http://agentsheets.com
12 http://www.legomindstorms.com
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virtual reality can be adapted to content where a lion may introduce a display of carnivore skulls

or the face of the Mona Lisa may introduce some Italian paintings. BDI reasoning is used to

determine where the robot should move to and also which avatar and animation is appropriate.

A new type of mixed interface system that combines demonstrating agents with human learners

in an interactive drama is I-Shadows (Brisson et al., 2007). In I-Shadows, an agent-based system

creates virtual characters that are displayed on a screen and children interact with the virtual

agents using physical shadow puppets. Both physical and virtual worlds exist side-by-side, with

events that occur in the physical world being reported to the virtual world, and vice versa.

Individual agents take on roles in the puppet drama (such as ‘hero’ and ‘villian’), and each agent is

instantiated using the same architecture but with different parameters.

This section has presented two approaches to the use of demonstrating agents in educational

settings: agent-based simulation and robotics. While there are numerous examples of each type of

system implemented in non-educational settings, the last 10 years has shown tremendous growth

in these types of environments designed particularly for use in classrooms and other human

learning situations. Probably the most critical design issue when developing demonstrating agents

is the identification of the audience and thoughtful analysis of the skills of learners before and

after engaging with the system. In most cases, learners are novice programmers so the system has

to provide subtle lessons in introductory programming in order for the students to control the

agents in desired ways—even if the domain knowledge for which the system was built is not

programming. The modes of interaction between human learner and demonstrating agent differ,

being either virtual, physical, or mixed (as in I-Shadows). Some systems involve programming

multiple agents at a time (as in NetLogo), while others focus on single agents (as do most

educational robotics systems). In systems with a virtual component, such as NetLogo and I-

Shadows, the environment is constrained and the programmer (i.e., human learner) does not have

to worry about external factors that might interfere with agents’ behaviors, whereas in a physical

environment, learners have to cope with issues such as noise and battery life. Systems incorpor-

ating demonstrating agents tend to stand apart from the systems discussed earlier in which ped-

agogical or peer-learning agents are implemented. While some systems employ simulation to

create a believable environment for human learners (e.g., Swartout et al., 2001; Richards et al.,

2005), these are not truly hybrid systems because the human learners do not program controllers

for the agents in the simulation. An open area of research is the development of systems where

human learners can program demonstrating agents while also interacting with pedagogical and/or

peer-learning agents for assistance in the learning process.

5 System architecture comparison

System architectures can vary widely depending on the purpose of the system, preferences of

programmers and designers, and technical practicalities related to implementation. From a general

software engineering perspective, traditional system architectural ‘design patterns’ (Gamma et al.,

1995) include: data abstraction, communicating processes, implicit invocation, repository, inter-

preter and layered (Shaw, 1996), and client-server or peer-to-peer. From the systems highlighted in

this paper, we identify three architectural design patterns: single agent, multiple heterogenous

agents, and multiple homogeneous agents.

In the single agent approach, one agent possesses multiple capabilities and comprises all the

components illustrated in Figure 2b. This pattern is probably the most traditional and could be

used to describe early systems before multiagent approaches gained prominence. However, this

pattern is not limited to traditional systems and its use is not uncommon today. The single ‘agent’

approach can be used loosely, to refer to the overall purpose of the system, i.e., an agenthelping a

human learn; or can be more tightly connected to the use of classic agent architectures, such as

BDI. Some systems allow instantiation of multiple instances of a single agent, in order to support

multiple students working together at the same time, for example STEVE (Rickel & Johnson,

1998). We still label these systems as using the ‘single agent’ approach, however, since they are
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primarily designed to operate in a single agent environment, whereas the multiple homogenous

systems (described below) instantiate agents that cannot accomplish the system goal alone.

In the multiple heterogenous agents approach, multiple agents each have their own goals and

tasks to perform and can work together to achieve larger system-level goals. Various archi-

tectural design patterns for multiagent coordination, such as broker, embassy, monitor, and

mediator are discussed in Hayden et al. (1999). We include a student agent, as many of the

systems reviewed include an agent that explicitly represents (models) the learner. A very com-

monly used design pattern is to divide the system into multiple components (as in Figure 2b)

and have each be handled by a specialized agent. The popularity of this pattern is not surprising

as the architecture provides a modular way of decomposing a system into small, manageable

components. This pattern achieves the software engineering design goals of low coupling and

high cohesion (Sommerville, 1992) by using independent and event-driven software modules in

the form of different agents. An example is the dynamic adaptive learning system (Sun et al.,

2005) that uses a student agent, an evaluation agent, a record agent, a learning object agent, and

a modeling agent. In this system, the agents cooperate to determine the appropriate learning

objects to be presented to the student. Each agent is complex with it’s own internal architecture,

e.g., the learning object agent contains layers for managing communication, learning paths, and

learning objects.

In the multiple homogeneous agents approach, multiple agents all have the same role and

operate in parallel. These are the simulated and physical demonstrating agent systems described in

Section 4.3. Typically, these types of systems do not contain the components outlined in Figure 2b,

such as a student model or teaching component. As discussed in the earlier section, demonstrating

agents comprise or embody the entire learning system, which in the terms of Figure 2b, consists

only of domain knowledge and a user interface. These systems do not possess any reasoning

capabilities about the learner. An example is NetLogo, where each agent is actually programmed

by the student. The agents themselves are typically quite primitive, with reactive behaviors that

respond to other agents and their environment but do not perform any sophisticated reasoning.

However, complex system-wide behaviors can emerge through these interactions.

Figure 3 illustrates the agent-based architectural patterns, alongside the component model from

Figure 2b. The single agent pattern is achieved by implementing one agent that handles all the

capabilities inside the shaded box. The multiple heterogenous agents pattern is achieved by

implementing multiple agents, frequently one for each of the components within the shaded box.
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Figure 3 MAS architectural pattern

Agent-based systems for human learners 15



These are shown on the top row and include separate agents to interface with the domain data-

base(s), to model the student, to implement a particular teaching style, and to communicate with

the human user (i.e., student). Sometimes there is a central ‘control agent’ that oversees smooth

operation of the entire system. On the right, there is one box with a double border containing the

demonstrating agents, and we note that there are hybrid systems, particularly those employing

simulated agents, that combine demonstrating agents with the other components or types of

agents. However, there is no work that we are aware of which implements a physical agent in the

same system as the other types of components (or agents), or one in which a pedagogical agent

helps the user learn how to control a simulated agent.

Another way of comparing systems is by examining the role that agents play in interacting with

humans. There are essentially two categories: observational and participatory. Systems with

observational agents are likely to include, as represented in Figure 3, one or more knowledge

bases, databases, and/or ontologies. These may be external to or embedded within an agent. These

agents tend to be very complex and contain sophisticated reasoning capabilities. Systems with

participatory agents include demonstrating agents as well as pedagogical agents that interact

directly with the learner. Some systems are mixed, containing agents of each type.

Table 1 compares the systems highlighted here, particularly those discussed in Section 4. The

systems are grouped based on type (pedagogical, peer-learning, or demonstrating), and two other

axes are presented: agent role and architectural pattern. The only clear distinction is with the

demonstrating systems: all are participatory in terms of agent role, and the multihomogeneous

architectural pattern appears only in this type. Otherwise, there is a healthy mix of techniques in

the pedagogical and peer-learning systems.

Table 1 Comparison of systems discussed

Agent role Architectural pattern

Pedagogical
ABITS (Mowlds et al., 2006) Observational Multiheterogeneous
Intelligent Scaffolding Agent (Blake et al., 2007) Observational Single
Carmen’s Bright IDEAS (Marsella et al., 2000) Participatory Single
DAL (Sun et al., 2005) Observational Multiheterogeneous
e-Advisor (Lin et al., 2006, 2007) Participatory Multiheterogeneous
I-MINDS (Khandaker & Soh, 2007) Mixed Multiheterogeneous
MAIDE (Lucas et al., 2005) Mixed Multiheterogeneous
Online Mediator Education System (Tanaka et al., 2006) Mixed Single
STEVE (Rickel & Johnson, 1998) Participatory Single
TactLang (Johnson et al., 2004) Mixed Single
VirSchool (Fassbender and Richards, 2006) Participatory Multiheterogeneous

Peer-learning
Airport World (Richards et al., 2007) Participatory Multiheterogeneous
Autism Project (Sehaba & Estraillier, 2005) Mixed Multiheterogeneous
Crystal Island (Mott et al., 2006) Participatory Multiheterogeneous
PAL (Kim, 2005) Participatory Single
RAP (Lazzari et al., 2005) Participatory Multiheterogeneous
SimEd (Spoelstra & Sklar, 2007) Observational Multihomogeneous

Demonstrating
I-Shadows (Brisson et al., 2007) Participatory Multihomogeneous
MIRA (Holz et al., 2006) Participatory Multiheterogeneous
NetLogo (Wilensky, 2002; Blikstein & Wilensky, 2005;

Sengupta & Wilensky, 2005)
Participatory Multihomogeneous

REAL (Bai & Black, 2006; Bai et al., 2007) Participatory Multihomogeneous
RoboXAP (Chu et al., 2005) Participatory Single

Refer to Section 4 for descriptions of systems listed.
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6 Testing and evaluation

One of the more prominent issues that separate human learning systems from other agent-based

and interactive systems development is the aspect of testing and evaluation. Simply installing

technology in educational settings does not ensure better learning outcomes. It is expected that not

only the software learning environment be fully debugged and tested, but also, particularly among

education researchers, the system must be evaluated with respect to its effectiveness as a learning

environment. This section provides a brief description of evaluation in the broader context of

interactive learning systems, with emphasis on aspects of interest to developers of agent-based

systems for human learning.

While there is no fixed standard for evaluating the effectiveness of interactive learning systems,

there are two generally accepted categories of assessment (Littman & Soloway, 1988; Mark &

Greer, 1993):

> formative assessment tests the design and behavior of a system in-progress, generally performed

by computer scientists, system designers, and builders; and
> summative assessment evaluates the effectiveness of a completed system, generally performed by

educators and/or psychologists.

Researchers begin by identifying what is being evaluated. Design and performance aspects need

to be examined differently. The nature of the testing will vary depending on whether the goal is to

assess the theoretical basis underlying the system or the software components themselves.

Within formative assessment, each of a learning system’s components (identified in Figure 2b) can

be evaluated individually. Domain knowledge should be checked for accuracy and coverage. The

teaching component can be evaluated for the range of instructional method(s) offered, its level of

adaptability and the degree to which its instruction is based on proven educational and psychological

methods. The user interface can be examined by comparing multiple user interfaces for the same

underlying engine and looking, in particular, for improvement in student learning. System adaptivity

can be compared using interactions at different skill levels. The control component can be evaluated

using various system performance measures, such as speed. Finally, and probably the most important,

improvement in student knowledge (i.e., learning) can be measured using the same criteria in a

computer-based environment that are employed within standard educational and/or psychological

testing. These include: (1) validity—does the test show evidence that it measures what it says it

measures? (2) reliability—are multiple results for the same subject consistent? (3) objectivity—is the

test administered and scored the same way for every participant? (4) standardization—can results be

translated into a meaningful representation of student performance?

Pedagogical drama is a specialized case of the more general area known as interactive drama,

which includes immersive environments for entertainment as well as education. Recent work has

examined drama management (DM) within interactive drama systems (Roberts & Isbell, 2007)

and included discussion about the application of DM research to educational systems. (Roberts &

Isbell, 2007) list a number of measures against which a DM system could be evaluated: speed (of

system operation), coordination (among players and non-player characters in a system), replay-

ability, authorial control, player autonomy, ease of authoring, adaptability, soundness, invisibily,

and measurability (of user’s satisfaction with the system). All of these could be adapted for use in

evaluating the immersive systems described here, where the learner takes on the role of a player,

the teacher takes on the role of an author, and non-player characters are either learning peers,

advisers or tutors, or background elements of the system.

The techniques for performing assessments vary depending on which component is being

evaluated, the phase in the system development cycle in which the evaluation is being performed

and who is performing the evaluation. Similar to typical HCI lifecycle models, such as the star life

cycle (Preece et al., 1994) that involves evaluation after each step, evaluation of learning systems

typically follows an iterative cycle. Beginning with system development and extending through to

experimental research, steps may be revisited at any time during the formative phases of system
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development. Once summative assessment begins, in the experimental research phase, the system

cannot change; otherwise, the summative results will be invalid. Pilot testing often occurs late

during formative assessment, bridging the gap to summative assessment. There are three methods

of pilot testing (Sklar, 2000): (1) one-to-one, which is performed early in the development cycle,

with one student, instructor, trainer, or researcher providing feedback; (2) small-group, which is

performed later in the development cycle, with a small group of students, instructors, or trainers

providing feedback; and (3) field, which is performed near the end of development, emulating

experimental conditions with teachers or trainers and students in a ‘live’ (i.e., classroom) setting.

Other techniques are more pertinent during summative assessment. In criterion-based evalua-

tion, a general list of guidelines is developed and systems are evaluated based on their adherence to

these guidelines, for example, program construction, behavior, and characteristics. While devel-

oping relevant criteria is not an easy task, this method may prove useful in formative assessment

and in comparing different systems. With expert knowledge and behavior assessment, system

performance is compared with that of a human expert performing the same task. Software systems

may be subjected to a standard certification process, through careful examination by qualified

human experts. In sensitivity analysis, the responsiveness of a system is tested on a variety of

different user behaviors. This may be particularly useful for evaluating system adaptivity. After

system development and pilot testing are complete, experimental research can begin. The condi-

tions should be the same as those during the field testing phase.

Two mechanisms for collecting evaluation data are common:

> quantitative, in which numerical data is analysed, frequently by comparing scores on pre- and

post-tests and surveys, to measure changes in student performance and attitudes; and
> qualitative, in which interviews and surveys are conducted and observations are made.

Mixed methods research (Johnson & Onwuegbuzie, 2004) combines the two, but traditionally,

at least in the education arena, researchers tend to adhere to the methods of one category or the

other. Quantitative methods rely on standards testing styles, with multiple choice questions and

Likert scale surveys. System logs are also examined. Qualitative, or ‘open’, methods encompass

data taken in both written and oral forms, as part of interviews, questionnaires and open surveys

containing short-answer questions (rather than multiple choice). Transcripts are ‘coded’ and

analysed based on measures such as frequency of broad term usage, often borrowing techniques

from natural language processing in order to compute semantic similarity between answers.

Reviewing the literature describing agent-based systems issues, written from an agents research

perspective (as opposed to an education research perspective), the primary type of evaluation is

formative assessment, particularly testing the accuracy and functionality of system design, and

early pilot testing. Within the sampling of literature referenced in this article, a wide range of test

environments have been used, including primary, secondary and undergraduate classrooms,

research laboratories, industrial workplaces, military bases, and distance learning (or ‘e-learning’)

settings. As well, there are broad differences in the maturity of systems presented. Some have

completed only the design phase while others have been fully implemented. Many have undergone

some aspects of formative testing, including architecture and system design reviews, and user

interface studies. Few have reached the summative testing phases, but some have conducted focus

groups and pilot studies.

Despite the growing interest in the inclusion of intelligent agent technology in e-learning

environments (e.g., Conole, 2002; Logan et al., 2002; Songa et al., 2004), Mahmood and Ferneley

(2006) believe, with respect to animated agents for e-learning, that ‘empirical investigations of

their use in online education are limited’ and that ‘there is now a sense of urgency in identifying

how to incorporate pedagogical agent technology appropriately in e-learning environments’ (pp.

153–154). In response to this need, (Mahmood & Ferneley, 2006) have conducted an empirical

exploratory study to investigate appropriate use of pedagogical agents and propose a general

framework which evaluates: animated agent roles, dialogue context, visual context, pedagogical

context, animated agent service quality and usefulness, presence context, and profile context.
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Many systems that are designed do not get past the prototype phase for various reasons. First,

gaining access to human subjects, particularly minors, may be difficult. Hurdles can include:

availability of a representative population, costs for setup, recruitment, human ethics require-

ments, and access to a control group. One of the more serious issues is that learning systems take

so long to develop, by the time they are operational, the customer does not need or want them any

more. This is frequently due to the large costs (in time and money) associated with building a

teaching component into a system, which adds to the typically unwieldy costs of developing

software on time and within budget (Brooks, 1975). Nonetheless, just as one would expect user

evaluation to be found in research publications concerning user interfaces, there is a higher

expectation in the work reported on agent-based human learning systems that an evaluation with

real users will be conducted, will be well designed and analyzed carefully.

7 Open issues and future directions

The types of research, application development, and studies being performed using agent tech-

nology for human learning are varied. In some cases, the central theme of a project is to explore

and extend current agent technologies and capabilities. In other cases, agent theory is not being

developed but rather is being applied and the research focuses on the application of theories.

Differences in learners’ ages and genders must be considered when designing agents that will

interact as pedagogical tutors or peer learners. While most learning systems using games are

focused on making the learning more palatable for children, the motivation of researchers building

systems for adults (e.g., Richards et al., 2005) is quite different. Kearsley (2004) emphasizes that

adult learners tend to focus more on the process of learning, in which strategies such as reflection,

role-playing, simulation, and case studies are most useful, with instructors acting as facilitators.

Using virtual environment technologies in conjunction with agent components allows production

of less expensive, more flexible, and more accessible systems that offer increased control of the

environment together with increased relevance to the real world.

Many studies have highlighted differences in the way females and males approach, interact

with, and think about technology. (Inkpen, 1994) found gender differences in the way children

approach game environments. Girls tended to perform better when another person was also

playing on the same machine, but boys performed better when the other player was on a different

machine. Girls were found to have less physical contact with their human partner or the mouse

compared to boys. Brunner et al. (1998) showed that females tend to view technology as a tool

used to facilitate human interaction, whereas males tend to view technology as an object that can

be used to extend their abilities and/or power. These gender-based attitudinal differences will

affect a student’s experience with a learning environment; as well, these issues generalize to any

interactive agent-based system.

A more philosophical question addresses the intersection of agent-based technologies and

interactive learning systems. What does each do for the other? Agent-based systems, since the

infant stages of the field (Maes, 1995; Wooldridge & Jennings, 1995), have been highly focused on

finding effective, modular means to interact intelligently with human users in a personalized, but

not annoying way. The notion of an automated assistant is quite natural in a learning or tutoring

environment. The difficulty comes in building generalizable systems because effective tutoring, by

both humans and agents, involves deep understanding of the knowledge domain being taught and

the student being guided.

Knowledge engineering, identifying and fixing common bugs in students’ learning paths and

constructing tutoring agents that reflect the experience of a master teacher is a daunting endeavor,

shadowed by the desire to avoid repeating the mistakes of expert systems. Agents have been shown

to learn to adapt in dynamic environments, such as robotic soccer (Stone et al., 2005) and elec-

tronic markets (Walia et al., 2003). If we view the human learner as an agent’s changing envir-

onment, perhaps tomorrow’s solutions will include agents that can learn to teach. An even greater

challenge, which is the shared vision of Sklar (2000) and Richards et al. (2006), is an agent system
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that progresses with the learner, advancing its knowledge in growing domains and assisting the

learner also to do so. One approach uses an incremental rule and case-based knowledge acqui-

sition technique known as ripple down rules, the goal is to allow the trainer to incrementally add

new objects, scenarios, knowledge (rules), and even agents to perform new tasks, as they interact

with the system (Richards et al., 2006). Another approach employs evolutionary computation for

producing agents that adapt dynamically as the human learner progresses (Sklar, 2000).

MAS architectures demonstrate how a society of agents can work together to achieve a goal,

much as a team or group of humans do. However, as with much AI research, the focus in MAS

research tends to be on understanding human social behaviors in order to mimic this in computer

systems (e.g. Jars et al., 2004). However, we believe that a key area for future human learning

systems is the use of MAS in pedagogical environments, with an emphasis on the social interac-

tions between humans and groups of agents, as well as among agents themselves. One such area

ripe for exploring the social side of agent technology is what has become known as social software,

which includes Wikis, WebLogs, and online Communities of Practice.

Social software has emerged via the web, driven by and concurrently sustaining global

knowledge-sharing communities. Agent systems are likely to play a major role in this area, similar

to their envisaged role in turning the current web into the next generation, together with other

semantic web technologies (Berners-Lee & Fischetti, 1999). As with most of the current web

content, the knowledge in social systems is captured for human consumption only. Social soft-

ware, however, not only lacks semantics but also, in most cases, lacks structure and syntax making

automated reasoning by software agents difficult. Pacuit (2007) explores the use of agents in social

software environments, focusing on traditional MAS, logic, and game theory. This approach

seems based on his definition that ‘social software is an interdisciplinary research program that

combines mathematical tools and techniques from game theory and computer science in order to

analyze social procedures’ (p. 2). This definition contrasts with the view purported in the edu-

cational or knowledge management literature where the emphasis is on modeling social networks

(Scott, 1991) to identify communication patterns such as bottlenecks or cliques and the man-

agement of mentoring and team building programs. To date, there appears to be little work

investigating the role of agents in social software to facilitate human learning.

In keeping with the knowledge management view, Anderson (2005) talks about distance

learning being the potential ‘killer application’ for social software. In particular, Anderson focuses

on educational social software and gives a number of definitions from the literature such as ‘tools

which support communication using the five devices of identity, presence, relationships, con-

versations, and groups’ (p. 4). In the future, we can expect agent-based systems that contain

sophisticated agents embodying these five devices or multiple agents that work together to provide

such a learning tool.

Further outstanding issues have been identified by Mahmood and Ferneley (2006). These

include: (1) potentially conflicting roles of various animated agents, which becomes more of a

problem as more agents join the dialogue; (2) degradation in quality of service where multiple

teachers/experts may be needed to provide support due to inconsistencies, in format, style, and

content, and the effort required to identify and reconcile such differencies; (3) assurance of the

integrity of (animated) agents; and (4) development of personalized presentation styles based on

users’ profiles that include learning styles, career background, and interests.

In summary, this article has attempted to characterize the types of agent-based systems that are

being developed to support a wide range of human learners from young children in formal

classroom or informal after-school settings to lifelong (adult) learners in workplaces. Many dif-

ferent approaches bring a spectrum of agent theories into practice by their application to this

challenging domain. Common interaction methods and system architectural patterns are high-

lighted. The particular challenges for building applications in the area of agent-based systems for

human learning encompass not only those faced by developers of any type of interactive agent-

based system, but also unique aspects tailored to learners—users who are advancing as they

interact with a system, users who may have academic, social or motivational deficiencies, and users
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who may have limited technical sophistication. In this domain, system testing requirements are

more rigorous than those for general interactive systems—not only is formative evaluation per-

formed, to test whether or not the software works, but also summative evaluation, to test whether

(and how well) the software is helping users learn. By pointing out these special needs of agent-

based systems designed for human learners and highlighting open issues, it is hoped that this

article helps to lay the groundwork for establishing a common vocabulary and shared dialogue for

developers within this exciting and promising application area.
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