An evolutionary approach to guiding students in an educational game

Elizabeth Sklar

Jordan Pollack

DEMO Lab
Department of Computer Science
Brandeis University
Waltham, MA 02454-9110 USA
sklar,pollack@cs.brandeis.edu

Abstract

We describe an evolutionary approach to select-
ing content for educational games in a web-based
learning community. Our approach offers an al-
ternative to methods typically used in educational
domains, with the goal of combining the curric-
ular structure of an engineered application along
with the flexibility of a learner-centered setting.
Our method operates in a real-time environment,
so performance requirements differ from those of
an off-line implementation. We tested our method
during a pilot study involving fourth and fifth
grade students at a public primary school. This
paper details our approach and presents results
from the pilot study.

1. Introduction

Both computer games and educational software provide
an interactive medium with which humans can explore
a domain. In the case of computer games, the domain
might be outer space or the wild west or a fantasy land;
with educational software, the domain might be arith-
metic or geography or spelling. In either case, the pur-
pose of the software system is to guide a user through
the domain in a methodical way, while exposing him to
as much of the domain as possible without losing the
user’s interest and, especially in the case of educational
software, while promoting learning.

In computer games, players are explicitly led from one
“level” to the next and they are generally required to
complete a level before being allowed to move ahead.
Typically, the setting is competitive, in order to en-
tice the player. Although this format has proven to be
highly motivating for both children and adults alike, the
method does not always provide an atmosphere dedi-
cated to learning, nor is the progression customized to
the needs of individual learners.

In educational software, users are often character-
ized according to their experience with the system and
this information is stored in individualized student mod-
els (Greer and McCalla, 1994). Numerous and varied
approaches are taken for student modeling, such as

Bayesian techniques (VanLehn et al., 1998), reinforce-
ment learning (Beck, 1997) and case-based reasoning
(Shiri-A. et al., 1998). Systems use the student model
as a guide for finding an appropriate portion of the do-
main with which to challenge the student. The student
is then conducted through the domain, following a series
of pre-defined paths of increasing difficulty and/or com-
plexity. The student model is updated as the student
progresses.

More recent trends in educational software move away
from fixed, pre-programmed and/or pre-leveled environ-
ments and towards constructivist' environments where
students are able to explore ideas for themselves with-
out having to stick to fixed curricula, and students of
all abilities are provided with opportunities to learn
(Resnick, 1997, Papert, 1993). In a classroom setting,
this notion has been described by Forrester (1992) as
learner-centered learning:

A teacher is no longer a dispenser of knowledge
addressed to students as passive receptors. In-
stead, where small teams of students explore and
work together and help one another, a “teacher”
becomes a colleague and participating learner.
Teachers set directions and introduce opportuni-
ties. Teachers act as guides. [p.11]

The same ideas apply to educational software, where the
software system acts as the teacher. The system should
be adaptive and participate in the learning, guiding users
(students) through educational domains and adjusting as
users advance.

One paradigm that has been gaining popularity is the
educational MUD?2. Originating in the late 1960’s as ana-
log text-based role-playing adventure games, the MUDs
have recently been introduced in educational applica-
tions (Fanderclai, 1995, Gordon and Hall, 1998). Two
notable examples of educational MUDs implemented on
the Internet are Pueblo (Walters and Hughes, 1994) and
MOOSE Crossing (Bruckman, 1997). Both promote vi-
sualization and creative writing skills and have been

IThis term is attributed to Jean Piaget.
2Multi-User Dungeon/Dimension/Domain



shown to draw otherwise uninterested children into lit-
eracy activities.

In these environments, the participants communicate
through the language of the MUD, but otherwise the sys-
tem itself does not guide the learning experience. Hu-
man teachers (or on-line MUD guides) motivate users
to stay “on task”. While these settings benefit learn-
ers by providing ultimate flexibility, we posit that they
are only applicable to a limited number of situations,
where the curriculum is highly open-ended, and so can-
not completely replace the curricular structure offered
by domain-engineered applications.

We use an evolutionary approach to guide students
through an educational domain, with the goal of combin-
ing the curricular structure of an engineered environment
and the flexibility of a learner-centered setting. This pa-
per describes an experiment in which our evolutionary
method is used to supply content for keyboarding (typ-
ing) games in a web-based learning environment. Results
are presented, based on data collected in a pilot study
involving 44 children in a public primary school.

2. The domain

In earlier work (Sklar and Pollack, 1998, Sklar, 2000),
we built an Internet learning community for chil-
dren called the Community of Evolving Learners
(http://www.demo.cs.brandeis.edu/cel). CEL is lo-
cated on a free web site and is open to anyone via a
Java-enabled browser. Inside CEL, participants engage
in multi-player educational games. The goal is for the
system to adapt as the players learn and to provide con-
tinuous challenges for all players.

The work described here is based on a prototype ver-
sion of CEL which contained two simple keyboarding
(typing) games called Keyit and Pickey. These are both
two-player games in which participants are each given
10 words to type and are scored based on speed and ac-
curacy. For each player, a timer begins when she types
the first letter of a word and time is marked when she
presses the Enter key to terminate the word. Time is
measured using the system clock on her computer, and
her score is reported in hundredths of a second.

The two games are very similar to each other, differing
mainly in user interface. One procedure is used to supply
words to both games, so for simplicity, only Keyit is
discussed here. Keyit is pictured in figure 1.

The words presented to Keyit players are selected from
a database containing approximately 35,000 words. Ev-
ery word in the database is characterized by a vector of
seven feature values: (1) word length, (2) keyboarding

Fie Edt Yiew G0 Comnunia
ESE- P LS n iy
T ™ Boabnars & Locotan [ /e dere i ool A" Whats Ralakard
this iz the game of KE4C
...and this i= ywour natch with E!
ek (LBIREN o cancer the natoh and retumm 1o the slayarsund
click @I 1o l=ave Kayit and enter & new playvarcund
(RIS m o ExiT CEL
atep |
[T ———
R e e

rT— i1 ms  mma

[T [ T

- T ms e

wensevess

e o e b - ]
shig|
- 5 1 Al A

=) s
& i o o

Figure 1: The game of Keyit.

level®, (3) Scrabble?™ score*, (4) number of vowels, (5)
number of consonants, (6) number of 2-consonant clus-
ters and (7) number of 3-consonant clusters. Each word
can be thought of as a point in this 7-dimensional feature
space. Words with similar feature values are considered
to be close to each other in this space; words with dis-
parate feature values are considered far away. Figure 2
illustrates this for the word BLUE, which has close neigh-
bors MEAT and BOIL. The words HIDE, DARK and RED are
further away, respectively.

Note that difficulty is not explicitly defined here, so
that while we designate RED and BLUE as being far away
from each other, we do not need to decide which is harder
than the other. This lessens the amount of domain engi-
neering then is required in an application that pre-defines
curricular paths.

3. Word selection

An evolutionary approach is used to guide selection of
words from the 7-dimensional feature space, geared to
the changing needs of individual users. The basic evo-
lutionary algorithm, from (Holland, 1975), is outlined in

3There are several standards which define an order for intro-
ducing keys to students learning typing. We used the ordering
listed here: http://www.absurd.org/jb/typodrome/. We assign
each word in the dictionary a number equal to the highest key-
boarding level of any of the letters in that word.

4Scrabble?™ is a board game in which players take turns mak-
ing interconnecting words by placing letter tiles on a grid in cross-
word puzzle fashion. Each letter is assigned a fixed value, calcu-
lated according to its frequency of usage in everyday American
English. Players receive a score for each word they place, calcu-
lated by summing the values for each letter in the word.



feature values

ED
[3[2k4[1/2[d[0]

Figure 2: Distance between words in feature space.

table 1. The elements could be, for example, software
agents exhibiting specific game strategies or various so-
lutions to a hard search problem.

Table 1: Basic evolutionary algorithm.

1. Initialize a population of randomly chosen
elements.

2. Let each element perform in the task domain.

3. Evaluate each element’s performance and,
based on the evaluation, select some elements
to be replaced.

4. Produce a new population of elements, using
reproduction techniques to replace the
elements selected in step 3.

5. Tterate, starting from step 2.

This algorithm is adapted to our task of selecting
words for Keyit games. In this context, the elements
of table 1 are words, and the population size is fixed at
10. The adapted method is shown in table 2. Note that
this table contains a simplified form of the procedure,
considering the needs of only one player; later in this
section, the process is further modified to accommodate
two players.

The selection and reproduction phases are illustrated
in figure 3. The selection process (step 3 in table 2) in-
volves comparing the score achieved for each word in G
with the user’s average score over all words encountered
in games of Keyit. The idea is to partition G; into two
groups: those that the user knows how to type, and those
with which the user needs more practice. “Score” is the
total time it takes to type a given word. Words whose
score is lower than the average are deemed “known”
(faster is better); words whose score is higher than aver-
age are labeled “needs practice”.

The reproduction phase (step 4 in table 2) entails re-
placing all the words in G; with appropriate children, to
get Gip1. “Needs practice” words are replaced with oth-
ers nearby in the 7-dimensional space, thereby exploit-

Table 2: Evolutionary word selection method.

1. For a new user, initialize a population, Gi=o,
of 10 randomly chosen words.

2. For an old user, read the user’s performance
data P (which includes the population G;
of the 10 words from the user’s last game).

3. Evaluate the user’s performance with the
words in G;, and, based on the evaluation,
select entries that are “known” and entries
that “need practice.”

4. Produce a new population of words, replacing
all entries in G; to get Giy1. “Known” entries
are replaced with words far away in the
domain space, and “need practice” entries are
replaced with words nearby.

5.  Supply Giy1 to the user’s applet for the
current game.

6. Iterate, starting from step 2, when the next
game occurs.

selection reproduction
"known"
o i
ore large e
muta/.On
words words
Wit
"o e
parents neggts ., children
ractise
Gt P Gt+1

Figure 3: Selection and reproduction.

ing regions with similar feature values to provide more
opportunities to master the similar words while avoid-
ing repetition, where the same words might be offered
again and again until they have been learned satisfacto-
rily. This is equivalent to making a small mutation to
a word’s feature vector. “Known” words are replaced
by randomly jumping to some new area in the feature
space, thereby exploring regions further away. This is
equivalent to making a large mutation to a word’s fea-
ture vector. The general idea is illustrated in figure 4.
The actual implementation of this procedure is com-
plicated by two factors. First, when a game occurs be-
tween two human players, the set of ten words selected
by the system must be appropriate for both players. Sec-
ond, not all points in the 7-dimensional feature space are
valid. If the reproduction phase used a standard oper-
ator like mutation or crossover (i.e. modifying one or
more values in a parent’s feature vector), the resulting
vector would not necessarily correspond to a word in the
dictionary. In fact, some combinations of feature values
are invalid, e.g. word length must equal the number of



BL UE [4/8[6]22[1]0] =< feature values of parent

near: exploit similar regions

IVEAT [4]g[6[2[2[0[0] j

feature values of child

far: explore new regions

RED [3[24[1/2[00) j

feature values of child

Figure 4: Exploitation and exploration in feature space.

vowels plus the number of consonants. To address these
complications, two procedures are introduced: merging
and reproduction through sampling.

3.1 Merging

The merging procedure is implemented so that the con-
tents of Gy41 is appropriate for both players engaged in
the match. The basic process involves combining the
user performance data for both players and creating a
third, composite player that is essentially an average of
the two humans’ performance statistics. For each user,
a performance record P is stored, which includes scores
for all words previously encountered, the population G
of the 10 words from the user’s last game and an average
score (avg) over all words the user has seen.

In table 2, steps 1 and 2 are modified to read perfor-
mance data for both players and then to merge the data,
so that steps 3 and 4 are performed using this composite
data set. The merge process essentially consists of con-
catenating the performance data for both players and
computing a composite average, which is simply the av-
erage of the two avg values from each player’s P. Finally,
step 5 sends the new population of words to both users’
applets. At the end of the merge process, it is guaran-
teed that the composite G; contains at least 10 and at
most 20 words.® At the end of the reproduction process,
Gi41 will contain exactly 10 words.

3.2 Reproduction through sampling

The reproduction procedure must be able to take a par-
ent and produce a child whose feature values are either
near to or far from those of its parent, corresponding
to ezploitation (small mutation) and ezploration (large
mutation), respectively (as illustrated in figure 3). In
theory, a traditional reproduction method like mutation®

5There may be less than 20 words in G; because duplicates are
eliminated when this set is created, so if there were any commonal-
ities between the words of the individual players’ last games, then
these would be removed and |G| would be less than 20.

SFor simplicity, the discussion here is limited to mutation.
Crossover or other gene altering methods could also be used, but
the problems encountered with using mutation in the present do-
main and real-time environment (as detailed in this section) would

could be used for both tasks. To find a nearby entry in
the feature space, one of the parent’s feature values could
be selected at random, and incremented or decremented,
to result in a new vector with only one value different
from the parent vector. To find an entry far away in
feature space, more of the parent’s feature values could
be altered, resulting in a new vector with values distinct
from its parent.

As mentioned earlier, the problem with using this
technique in this domain is that the new vector would
not necessarily be valid or correspond to a word in the
dictionary. Some applications of evolutionary algorithms
handle this kind of situation by applying a correction
to the reproduction operator, ensuring that the result
is valid. For example, a mathematical function (i.e.
modulo) might be used to force the mutation of an in-
dividual feature value to fall within a specified numeric
range. The situation here is complicated by the fact that
even if individual feature values are valid, when taken in
combination, the entire vector may be invalid. A sim-
ple method for overcoming this problem would be to try
a series of mutations iteratively, stopping when a valid
vector was found.

However, with this particular domain, the 7-
dimensional feature space is quite sparse. If bounds
are considered on each feature value (for example, word
length must be between 2 and 25 characters, and key-
boarding level must be between 0 and 10), then there are
over 90 million possible combinations of feature values.
Yet the dictionary used here only accounts for 6074 of
those combinations, less than 0.0065%. This means that
the likelihood of a mutation producing an invalid set of
feature values is prohibitively high. An iterative proce-
dure like the simplistic one mentioned above could take a
long time to run. Because our evolutionary method op-
erates in a real-time environment, where the customers
are (impatient) children, minimizing run-time is vital. A
target maximum of 1 second was chosen for the proce-
dure to run in its entirety.

One approach to the sparse feature space problem
would be conceptually to mutate from one entry in the
domain to another, rather than from one vector to an-
other. As indicated by figure 2, all words in the domain
can be represented as points in 7-dimensional space, thus
it is possible to sort the entire dictionary according to
the entries’ feature values. This would mean computing
a 35000 x 350007 matrix containing the distance in fea-
ture space from each entry to every other entry. Then
when making mutations, the procedure need only look
up entries in this matrix — small mutations would look
for close neighbors and large mutations would look fur-
ther away. However, again, practical considerations ren-

also occur with these other methods.

"The size of the database is approximately 35000 entries. Since
the distance between any two entries is symmetrical, the size of
the matrix really need only be (35000 x 35000)/2.



der this solution infeasible because too much memory is
required to store this matrix®.

An alternative to storing the entire table in memory
would be to load the relevant portion from disk dur-
ing run-time; however testing proved that selective loads
took longer than the 1 second time requirement. An-
other option would be to compute the relevant portion
of the table during run-time; again, testing showed that
this method exceeded the maximum time requirement.

The solution we settled on was to adopt a new re-
production process called reproduction through sampling.
The strategy is to begin by randomly selecting a rela-
tively small sample population from the dictionary and
then to replace the parents in Gy with children chosen
from this sample. The process is defined as follows and
is illustrated in figure 5.

1. Select a random sample of 1000 words from the
35,000 word dictionary:
for i+ 1 to 1000
X < random( 1,35000 ) - 1;
S; <+ dictionary,;

2. Compute the distance between entries in S and Gy:
for j + 1 to 1000
for i<+ 1 to |Gt

dist j  [(Ciey [nit =2t 12) % c] 5

3. Sort each row in the distance matrix:
for i« 1 to |Gy
sort ( dist; ) ;

4. Compute the mean for each row in the distance
matrix:
for i« 1 to |G
meandist; < mean ( dist; ) ;

5. For each row in the distance matrix, save the index
of the value closest to the mean:
for i« 1 to |Gy
xmeandist; «—index of entry in dist; whose
value is closest to meandist;;

6. Generate a child for each element in G;:
for i« 1 to |Gy
if g; has a score
if ( gj.score < avg ) then
j ¢+ pick unused element in S; from
FAR end of dist (explore);
else
j ¢ pick unused element in S; from
NEAR end of dist (exploit);
else
j + pick a new word randomly from S;;
gi < Sj;

8«“Too much” simply means more than is available on the CEL
server for use by this process.

words samples dictionary
10
1000

word onerow in dist matrix

[ 1] | 1]

S0UeIsIp |ews
0UelsIp Ueswl
aouessip abe|

Q
S

o

S

Figure 5: The reproduction algorithm.

Table 3 illustrates the relationship between one parent
and one child word list. An integer distance was used
(during the pilot study) because of memory limitations
on our initial server. However, a more capable server is
in use now and future work will compare use of a real-
valued mean-squared distance.

4. Results

In early 1999, we conducted a pilot study where 44 fourth
and fifth grade students used the two typing games in
CEL (Keyit and Pickey) over a period of five months.
Data collected in this study is presented here. The do-
main coverage for each user was examined, to determine
if the evolutionary word selection method led players
into more of the domain space than a pre-leveled ap-
plication might. Additionally, the relationship between
typing speed and various word features was analyzed, to
determine which features, if any, emerged as more highly
correlated (to typing speed) than others. Finally, the
change in typing speed for each participant, as tracked
by our system, is shown.

4.1 Domain coverage

Of the seven feature values that define the domain, only
Scrabble score and keyboarding level are examined here,
since the remainder are also a function of word length (as
is Scrabble score) and so can be considered redundant in



Table 3: Distance between corresponding words from
one parent and child generation.

parent child dist
1 four four

[4,3,7,2,2,0,0] [4,3,7,2,2,0,0] 0
2 who aim

[3,5,9,1,2,1,0] [3,8,5,2,1,0,0] 1
3 race peas

[4,7,6,2,2,0,0] [4,6,6,2,2,0,0] 1
4 vies dates

4,7,7,2,2,0,0] [5,4,6,2,3,0,0] 2
5 away fives

(4,5,10,2,2,0,01 [5,7,11,2,3,0,0] 2
6 singed calorie

[6,9,8,2,4,1,0] [7,7,9,4,3,0,0] 2
7 forked debated

[6,3,14,2,4,1,01 [7,8,11,3,4,0,0] 3
8 enumerates ragged

[10,9,12,5,5,0,01 [6,3,9,2,4,1,0] 2
9 manipulated perused

[11,9,16,5,6,0,0] [7,6,10,3,4,0,0] 1
10 fosters
[7,4,10,2,5,2,0]

numerics
[8,9,12,3,5,1,0] 3

this analysis.

The chart in figure 6(a) is a sample domain coverage
chart, plotting Scrabble score versus keyboarding level.
A point exists in the domain space for each circle on the
plot. For each point that a user has been exposed to, the
circle is filled (o). Thus the open circles (o) represent
portions of the domain space that the user has not seen.
This sample chart illustrates the coverage that a user
might experience in a pre-leveled environment, where
(e.g.) she must complete all problems in keyboarding
level 0 before seeing any in keyboarding level 1.

Figures 6(b) and 6(c) contain domain coverage charts
for two of the students involved in the pilot study. Both
students have been exposed to a large portion of the
domain. Student 89, who is the fastest typer, has seen
more of the domain than the slowest typer, student 119.
This result illustrates that the system adapts according
to the capabilities of the individual user, showing more
of the domain to the student who is ready to see it.
As well, the students’ experiences are more varied than
with a standard pre-leveled curriculum, as figure 6(a)
exemplifies.

10

keyboarding level

10

keyboarding level

10

keyboarding level

pre-leveled coverage

- O00O0O0O0O0O0O0O0OD0OD0OD0OD0OD0OD0OD0ODO0OD0ODO0D0O0D0OOO0OO0O0
O0000000000O00O0O0O0O0O0O0O0O0OD0OD0OD0ODO0OD0OD0ODODODOOO0O [o)Ne)
r O0000000000O0O0OO0O0OO0OOOOOOOOOOO0OO0O

0000000000000 0O0OO0OO0OOOOOOOOOO
r 0O00000000000O0OO0OOOODOODOOO0OO

0000000000000 00O0O0O0ODO0OOOOO0 o]
FOO0O000000000000D00D0D0O0DO0OOO0O
O0O000000000D0DO0DO0DO0DO0OO
Fr#®®0000000000000O0
L T I I I ) ®
I ® ® @

5 10 15 20 25 30 35

Scrabble score
(a) sample
id=89

- OB00PBIBRROBIIS®BI®IB®ROBOB®OOOOOOO
ORI RRIARAIAIAIAOBOBOOB®OO [o)Ne)
r ORI DRIRIRIROIRO®I®RO®®OO0O0000

00 RBIRDRRDIRIBIRRIAIRIA®R®ROBROOB®BOOO0OO
r ORI BDRBRAO0ORS®ROBROOB®OO

00RO’ O00BRBO0O0000O0 )
FOOPIBIBRBRBIBI®®B®AO®OOOB®OOOOO
C00@@®@@®00B000000O0
FOO00O@®88®8BBO0OB®OO000O0
0088800000000 0]
FOO00000 [e] [eXe)

5 10 15 20 25 30 35
Scrabble score

(b) id = 89 (fast)
id=119

r O000000®000000000®00O000OD000O0
0000083 RRBIPIBRABROBOBBA®OO0O0O00O000O0 [eNe}
r 002808 RO®O0OB®0O00000000000O000O0
00082 PPB@B®O@S®BD®O0OO0O00O00O00O0DO0OOO0OO0
I 0008®@®@®0®000000000OD0OO0O0OO
000@®@8008®00B0BO00O000O0O0O o
r0O0ee@®@8808@®0000000000O0
0080080808000 0000O0
FO0O0®0000@8®8000000O0
0000000000000 (o)

FO000000 o] oo

5 10 15 20 25 30 35
Scrabble score

(c) id = 119 (slow)

Figure 6: Domain coverage charts.



4.2  Feature correlation

The relationships between word length, Scrabble score,
keyboarding level and typing speed are examined here,
in order to ascertain if any one of these three features
appears to correlate more closely with typing speed than
any of the others. There should be a direct correla-
tion between word length and typing speed. It has been
demonstrated that an artifact of typing long words exists
such that the speed per letter is slower than for shorter
words (Larochelle, 1982). Thus, even when the time it
takes to type a word is normalized for the length of the
word, so that speed is measured in letters per second,
longer words still take more time to type than shorter
words.

Figure 7 shows plots for the same two students men-
tioned above. On each graph, there is a point for each
word typed by the corresponding student. The straight
line is a linear least-squares fit of all the points. The
artifact (i.e. longer words take longer to type) is readily
apparent in the figure.

id=89
10 .
gl
3 6
©
[4
Q
T 4f
ol
ob— . . . . . .
2 4 6 8 10 12 14 16
word length
(a) id = 89 (fast)
id=119
10 ;
al
3 6f
o
2]
g
T 4r
ol
o M
2 4 6 12 14

8 10
word length

(b) id = 119 (slow)
Figure 7: Word length vs typing speed.
Figures 8 and 9 show the relationships between key-

boarding level and Scrabble score with typing speed, for
the same pair of students.

id=89
10 .
8r .
i
o 6 P P
P P P
o oy I
g S B
T 4 P P .
P ;
J R ! :
H i N
H i
, : !
% 2 4 6 8 10
keyboarding level
(a) id = 89 (fast)
id=119
10 ;
al
2 6
&
2]
8
o 4
2r
P S N
A R B M
0 . i : ! : ;
2 4 6 8 10

keyboarding level

(b) id = 119 (slow)

Figure 8: Keyboarding level vs typing speed.

id=89

10

letters/sec

5 10 15 20 25 30
Scrabble score
(a) id = 89 (fast)

id=119

letters/sec

5 10 15 20 25 30
Scrabble score

(b) id = 119 (slow)

Figure 9: Scrabble score vs typing speed.



Figures 7 through 9 appear to indicate that typing
speed correlates more directly with word length and
Scrabble score than with keyboarding level. Figure 10
shows the correlation coefficient, for each user, between
typing speed and each of these features. Each point on
the chart corresponds to one of these statistics per user
(i.e. there are three points per user). Faint lines con-
nect the points for each feature, to make it easier for the
viewer to group the points. Horizontal lines are drawn
to indicate the mean correlation coefficient for each fea-
ture, across all users. A correlation coefficient closer to
-1 indicates a higher negative correlation between two
variables — e.g. that longer word length is indicative of
slower typing speed, per letter.

0.2r
O,
- o o]
g [e] o Jc
5-0.2r .© o © /
= o . e} o
I ) AR o AR S 2000
o . Q
-0.4r 5. 0O : ©
5 o o [ehgele] | R u
E ¢} 4 Q R o
£-06 /
o 0]
—-0.8{| — word length
- e - Scrabble score
keyboarding level
-1 individual students
mean stdev median
word length -0.353 0.130 -0.371
Scrabble score -0.345 0.128 -0.327
keyboarding level -0.163 0.116 -0.154

Figure 10: Correlation coefficients, for all users.

Scrabble score is a function of word length, since each
letter in the word contributes to the score individu-
ally. Conversely, keyboarding level is computed inde-
pendently of word length. So it is not surprising that
word length and Scrabble score exhibit similar statis-
tical characteristics. Indeed, the higher correlation for
word length dependent statistics and typing speed con-
firm the statement made in the previous section: that
long words take more time to type, on a per letter basis,
than short words.

For comparison, a modified keyboarding level was
computed in which keyboarding level is also defined as a
function of the length of the word (as is Scrabble score
and obviously word length). Instead of calculating key-
boarding level to be chosen as the highest level of any
letter in a word, the level of each letter in the word was
totalled (the same way that Scrabble score is tallied).

This accumulative keyboarding level was computed for
all the data, after the case study was finished. The pur-
pose was to determine if keyboarding level really corre-
lated so poorly to typing speed as was indicated in fig-
ure 10, or if the method of computing keyboarding level
(where word length was not a factor) skewed the cor-
relation results away from keyboarding level. After all,
since the data was collected during keyboarding games,
it would seem logical that keyboarding level should be
highly correlated to typing speed.

Figure 11 shows the correlation results with the ac-
cumulative keyboarding level. The mean correlation co-
efficient for accumulative keyboarding level is —0.256,
better than that with the original keyboarding level
(—0.163). However, word length and Scrabble score
still correlate significantly higher than keyboarding level.
This is a very interesting result. The conclusion drawn
is that in future, words should be chosen more on the ba-
sis of word length and Scrabble score than keyboarding
level.

0.2r
O,
= > A ° o
o I
Lo02t ,° d 8 Y
5 o oo T o i ?
§ el _OQE___Q AR T AN RV Co00
g _0'47(, 14 0%80° © A
= [ ® o O
t_U o d 9} o
£-06 »
o (o]
—-0.8{| — word length
-e - Scrabble score
keyboarding level
-1 individual students

mean stdev median
word length -0.353 0.130 -0.371
Scrabble score -0.345 0.128 -0.327
keyboarding level -0.256 0.119 -0.241

Figure 11: Correlation coefficients, for all users, with
accumulative keyboarding level.

4.3 Learning

Finally, we look at the change in the children’s typing
speed between the beginning and the end of the study.
The children engage in many keyboarding activities, so
we cannot attribute their progress exclusively to their
usage of CEL. However, we can track their progress, as
illustrated in figure 12. Most of the children (85%) im-
proved, shown as a (positive) increase in typing speed.



i IIIl III |I_I_ IIlI Il |II||I|II 1

increase in speed/letter (sec/100)

individual users

Figure 12: Change in typing speed.

5. Discussion

The primary advantages of using an evolutionary ap-
proach to guide problem selection in an educational game
include:

e Students guide themselves through the domain,
based on their own performance with the system,
which means that the system adapts in real-time to
the needs of each individual.

e Students may reach areas of the domain that they
might not see otherwise, where a standard pre-leveled
system may prevent them from leaving an area before
it is completely mastered.

e Costs and effort to implement the game are reduced,
because the domain paths need not be pre-defined in
the way that structured educational systems require.

The results presented here indicate that the use of
an evolutionary approach is a viable alternative to pre-
leveled methods. In future work, control studies must
be performed in order to validate this statement. For
example, some students’ games would be supplied with
words chosen by the evolutionary method, others would
be chosen at random and others would be chosen accord-
ing to a standard pre-leveled curriculum.

It has been suggested that frequency of word usage
in the English language should also be a feature in the
domain space for word games. Although this is partially
encoded in the frequency of letter count that is part of
Scrabble score, use of a precise statistic may be ben-
eficial. While touch typing courses commonly require
learners to type non-linguistic sequences of characters,
people will generally say that they can type words they
know faster than words for which they do not know the
meaning. Future work will involve adding this dimension

to the feature space and studying the resulting correla-
tions.

The next step is to apply this technique to more
sophisticated applications and more complex domains.
We are currently building broader activities, including a
spelling bee and a collaborative anagrams game, using
the same method for supplying game content. Addition-
ally, we are investigating using our method with domains
that do not lend themselves to leveling, such as geogra-
phy. Here, engineering paths through a curriculum is
difficult and so our method may prove particularly use-
ful.

Finally, it may be considered that the evolutionary ap-
proach described here is actually co-evolutionary. The
evaluation stage, wherein words are designated to be
replaced by exploration or exploitation, does not use
a fixed function, as does a standard evolutionary algo-
rithm. The evaluation is made by comparing the typing
speed for each word in the parent generation to the user’s
overall average typing speed. As the user advances, her
typing speed increases; and this increase happens at dif-
ferent rates for different users. Thus the evaluation is a
relative one — the word lists evolve along with the users
who type them.

6. Acknowledgements

Thanks to Alan Blair for help with things mathemati-
cal, to Richard Watson for advice on the evolutionary
content and to Simon Levy for constructive comments
on the text. This work was supported by the Office of
Naval Research under N00014-98-1-0435.

References

Beck, J. (1997). Modeling the student with reinforce-
ment learning. In Proceedings of the Machine Learn-
ing for User Modeling Workshop, Sixth Interna-
tional Conference on User Modeling.

Bruckman, A. (1997). MOOSE Crossing: Construc-
tion, Community, and Learning in a Networked Vir-
tual Community for Kids. PhD thesis, MIT.

Fanderclai, T. (1995). Muds in education: New environ-
ments, new pedagogies. Computer-Mediated Com-
munication Magazine, 2(1).

Forrester, J. (1992). System dynamics and learner-
centered-learning in kindergarten through 12th
grade education. Technical Report D-4337, MIT.

Gordon, A. and Hall, L. (1998). Collaboration with
agents in a virtual world. In Workshop on Current
Trends and Applications of Artificial Intelligence in
FEducation: 4th World Congress on Expert Systems.



Greer, J. E. and McCalla, G. 1., (Eds.) (1994). Student
Models: The Key to Individualized Educational Sys-
tems. Springer Verlag, New York.

Holland, J. H. (1975). Adaption in Natural and Artifi-
cial Systems. University of Michigan Press.

Larochelle, S. (1982). A comparison of skilled and
novice performance in discontinuous typing. In
Cooper, W., (Ed.), Cognitive Aspects of Skilled
Typewriting, pages 67-94, New York. Springer-
Verlag.

Papert, S. (1993). The Children’s Machine. BasicBooks.

Resnick, M. (1997). Turtles, termites, and traffic jams:
explorations in massively parallel microworlds. MIT
Press.

Shiri-A., M., Aimeur, E., and Frasson, C. (1998).
Case-based student modelling: unaccessible solu-
tion mode. In Conference internationale sur les

nouvelles technologies de la communication et de la
formation (NTICF’98).

Sklar, E. (2000). CEL: A Framework for Enabling Ex-
perimentation in an Internet Learning Community.
PhD thesis, Brandeis University.

Sklar, E. and Pollack, J. B. (1998). Toward a commu-
nity of evolving learners. In Proceedings of the Third

International Conference on the Learning Sciences
(ICLS-98).

VanLehn, K., Niu, Z., Slier, S., and Gertner, A. (1998).
Student modeling from conventional test data: A
bayesian approach without priors. In Proceedings

of the 4th Intelligent Tutoring Systems Conference
(ITS’98), pages 434-443.

Walters, J. and Hughes, B. (1994). Camp marimuse:
Linking elementary and college students in virtual
space. In Proceedings of the National Educational
Computing Conference.



