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Abstract. We use simulation to evaluate agents derived from humans
interacting in a structured on-line environment. The data set was gath-
ered from student users of an adaptive educational assessment. These
data illustrate human behavior patterns within the environment, and we
employed these data to train agents to emulate these patterns. The goal is
to provide a technique for deriving a set of agents from such data, where
individual agents emulate particular characteristics of separable groups
of human users and the set of agents collectively represents the whole.
The work presented here focuses on finding separable groups of human
users according to their behavior patterns, and agents are trained to em-
body the group’s behavior. The burden of creating a meaningful training
set is shared across a number of users instead of relying on a single user to
produce enough data to train an agent. This methodology also effectively
smooths out spurious behavior patterns found in individual humans and
single performances, resulting in an agent that is a reliable representative
of the group’s collective behavior. Our demonstrated approach takes data
from hundreds of students, learns appropriate groupings of these students
and produces agents which we evaluate in a simulated environment. We
present details and results of these processes.

1 Introduction

Most work that lies at the intersection of education technology and agent-based
systems employs agents within intelligent tutoring systems as knowledgeable,
automated teachers. Other work has explored the notion of simulated students
[1-3] as a means to better understand the processes that underpin human learn-
ing by constructing models based on theories from pedagogical and/or cognitive
science literature. Some of our earlier work deployed simple agents as learning
peers in simple games, where the agent controllers were built from data collected
in previously played games [4]. The current work extends these ideas by using
data from an on-line educational assessment environment to train agents, and
we employ simulation as a means for evaluating the agents we derive.
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We are not the first to suggest constructing agents to emulate human be-
haviors in on-line systems [5-7]. Previous work has shown that training agents
to emulate humans produces better results if the training set is a composite of
multiple humans grouped according to application-specific metrics [8]. A large
data set is generally desirable when training agents, and grouping human data
sets with similar characteristics helps smooth out anomalies. In the study pre-
sented here, we apply data-mining techniques to interaction logs from a dynamic,
on-line educational assessment environment in order to find effective groupings
within the human data set. We then use the data groups to train agents that can
be deployed in a simulation environment where each agent effectively embodies
a user model that is characteristic of the humans in its training group. Related
work has been reported previously (e.g., [9-11]), but within different user mod-
eling contexts and not with the purpose of subsequently using the models to
control agents in a simulation environment.

Our procedure is as follows. The first step is to partition the interaction
data set that will serve as the basis for training a suite of distinct, agent-based,
probabilistic controllers. This step is crucial to the success of each agent as an
emulator of a specific class of human behaviors. If the data used to train the
agents is not well defined, then there may be two problems. First, the behavior
of individual agents may have too much variation and so an agent would be an
unreliable model of the human users in its group. Second, the agents in the suite
may not be distinct enough from each other (i.e., their behavior patterns may
overlap significantly) and so an agent would be unreliable as a model of only the
users in its group. In this paper, we compare different techniques for partitioning
the data, using standard clustering methods from the data mining literature. The
second step is to produce an agent for each cluster whose actions typify behaviors
characteristic of members of the cluster. The final step is to evaluate the results
by placing all the agents we generated in a simulated assessment environment
and by measuring which agents most closely resemble the human counterparts
they are meant to be simulating. Our results demonstrate that one clustering
technique clearly produces a better approximation of group behavior patterns
than the others, as evaluated through simulation.

2 Owur approach

Figure 1 contains a graph illustrating a generic landscape for an interactive
environment. Imagine that each node represents a state in the environment, such
as a page in a web site, a question in an on-line test or a room in a computer
game. The red and green links between nodes indicate paths that users can follow
based on actions they take in the interactive environment. For example, clicking
on a hyperlink will send a user to another web page, or answering a question
correctly will send a user to another question, or earning game points will send
a user to another room. All users start their interactions with the system in the
same place—at the node on the far left. A sequence of user actions translates



Fig. 1. Sample trajectories.

into a trajectory through the landscape. Three sample trajectories are drawn
with heavy black lines in the figure.

In fact, the figure is modeled after an educational assessment environment.
Each node represents a question in the assessment, and links indicate possible
paths from one node to another. All students start at the same node, the leftmost
one in the figure. Students who answer a question correctly move along the green
link (up and to the right). Students who answer a question incorrectly move
along the short red link (down and to the right). Thus Figure 1 illustrates the
paths taken by three different students. Student A (left side of the figure) did
well, answering most questions correctly. Student B (middle of the figure) did
poorly at first, rallied, slumped, rallied, and slumped again to the end of the
assessment. Student C (right side of the figure) started off well, but then made
a series of mistakes. The differences in performance of these three students is
clearly visible. Notice in particular that while students B and C ended up at the
same node at the end of the assessment, they took very different paths through
the landscape.

Most assessments report results and group students using the final, or “exit”,
score achieved. In our example, this corresponds to the last node visited, on
the right edge of the landscape. However, with the advent of dynamic, on-line
testing, a much richer data set is available and so reports can provide more
information about student performance than simply an exit score. We believe
that in environments like the one that corresponds to our sample data set, a lot
can be learned from examining the trajectories taken through the landscape. So,
we focus on trajectories and experiment with techniques for grouping students
according to similarities in their trajectories. It is important to note that the
students do not make directed choices about which paths to take, but rather the
system chooses each next node in response to the student’s performance up to
that point. As mentioned earlier, we wish to create a suite of agents that each
mimic certain classes of human behavior. Section 2.1 describes several methods
for partitioning the complete data set into clusters, grouping humans with similar
behavioral characteristics, as exhibited by following similar trajectories through
the landscape. The experiments conducted here are based on a data set of 117
students who had accessed the assessment environment in 2006.



Fig. 2. Hierarchical clustering of student response vectors, using Euclidean distance
with 012 coding. The vertical axis identifies individual students. The horizontal axis
contains h values.

2.1 Partitioning training data

Data clustering is a well-studied field in the literature, and the particular algo-
rithm chosen for a clustering task varies depending on the characteristics of the
data set and the goals of the task. Our aim is to produce a coherent grouping
that will serve to train a suite of agents that are distinct from each other. We
investigated a variety of techniques and here we compare two types: Euclidean
distance based on feature vectors and Hausdorff distance based on geometric
similarity.

Euclidean distance. We generated “feature vectors” to encode the stu-
dent responses in the assessment. For the landscape illustrated in Figure 1, we
generated 94-dimensional feature vectors for each student, each dimension repre-
senting a student’s response to one question. Note that sequences of questions are
chosen for students dynamically, based on the their performance and the connec-
tions defined in the landscape; so students do not (and can not) visit every node.
There are three possible results for any question: correct, incorrect or not seen.
We experimented with different ways to encode results including: O=incorrect,
2=correct, 1=not seen (021 coding), —1=incorrect, 1=correct, 0=not seen (-110
coding), 0 =incorrect, 1=correct, 2=not seen (012 coding), and also a 3-variable
coding: seen ({1]0}), incorrect({1|0}), correct ({1|0}). We employed a hierarchi-
cal clustering algorithm in Matlab [12] using the Euclidean distance between
the feature vectors as the distance measure. Note that according to the metrics
described in the remainder of this paper, the feature vector encoding that pro-
duced the best results is the 012 coding. Thus, for the sake of brevity, we only
present the Euclidean 012 coding results here.

Hausdorff distance. Since our aim is to group students according to the
similarity of trajectories followed on the assessment maps, we decided to employ



Fig. 3. Hierarchical clustering of student trajectories, using Hausdorff distance. The
vertical axis identifies individual students. The horizontal axis contains A values.

clustering techniques on sequential data. Similar work has been reported on
classifying Linux users with respect to their experience level based on command
logs [13] and on clustering financial time series data [14]. We generated the
landscape illustrated in Figure 1 by assigning coordinates to each question in
the educational assessment, and we used the Hausdorff Distance to compute
the dissimilarity between any two paths. After computing the pairwise distances
between each path, we applied a hierarchical clustering algorithm in Matlab.

2.2 Comparing clusterings

We compare the results of different clustering algorithms by measuring the dis-
tance between data points within each cluster and the separation between clus-
ters, seeking to minimize intra-cluster differences (the level of similarity within a
cluster) and maximize inter-cluster differences (the amount of dissimilarity from
one cluster to another).

One way of comparing clustering results is using a type of figure called a den-
drogram. A dendrogram consists of brackets that connect objects hierarchically.
The height (h) of each bracket indicates the distance between any two objects (or
groups of objects) being connected. Figures 2 and 3 show dendrograms for the
Euclidean 012 coding and Hausdorff methods, respectively. The Euclidean 012
method found 8 main clusters at level h = 8 while the Hausdorff method found
8 main clusters at level h = 2. Because lower h values indicate less difference
amongst group members, the Hausdorff method has better results.

Another way we compare the clustering results is with metrics that have
been demonstrated to compare clusters of trajectories in related work [15]. Two
metrics are employed. The first is “shape complexity”, or ¢, which is computed



Hausdorff method Euclidean 012 method

cluster|size points o cov cluster|size points o cov
1] 11 121 2.64025 5687.83 1] 6 68 4.87123 8353.60
2| 6 64 2.42758 3871.61 2| 19 204 8.83936 15166.20
3| 19 203 2.22529 6487.44 3| 4 41 2.20674 4062.49
4] 28 298 4.43650 6841.44 4] 8 89 2.14947 7424.48
5| 4 37 4.89523 6909.63 5/ 16 175 3.29415 4157.30
6| 12 108 4.55438 5109.01 6| 15 159 1.60082 4469.70
7| 18 197 4.91468 8704.28 7| 21 223 7.63581 12024.50
8| 19 206 5.40067 8579.10 8| 28 275 7.57357 7320.25
average 3.93682 6523.79 average 4.77139 7872.31

Fig. 4. Cluster similarity measures, showing for each cluster: the number of tra-
jectories in the cluster, the total number of points covered by all the trajectories
in the cluster, the standard deviation for ¢ and the standard devation for cov
(see text for further explanation).

as:
o = disp/length

where disp is the displacement or the distance between the first and last points
in a trajectory and length is the number of points in the trajectory. The second is
“divergence”, or covariance of the first, middle and last points in the trajectory.
Figure 4 compares these values for the Euclidean 012 and Hausdorff methods.
The size of each cluster (number of students belonging) is shown as well as the
average number of points in the trajectories of all student members. The columns
to focus on are the two rightmost, which contain the standard deviation of o
and cowv for the trajectories that comprise each cluster. The absolute numbers are
not important here; what is important is the relationship between the numbers
within each column. Smaller numbers indicate tighter coherence amongst cluster
members—this is our aim. The average o for the Hausdorff is 3.95, whereas for
Euclidean, the average 0 = 4.77. The average covariance for Hausdorff is 6523.79,
whereas for Euclidean, the average cov = 7872.31. Using these metrics, the
Hausdorff distance clustering technique results in better coherence. We note that
a cluster-by-cluster comparison reveals that the Hausdorff coherence is better for
the clusters on either end of the spectrum, while the Euclidean is better for those
in the middle. This is an interesting result which bears further investigation.
One additional factor to take into account with the clustering methods is
the choice of number of clusters. The more clusters there are, the better the
coherence amongst cluster members (and the smaller the standard deviation of
our two metrics). However, there is a trade-off: perfect coherence can be achieved
with clusters of size 1, but being satisified with single-member clusters implies
that clustering is not needed at all. Thus, a balance must be achieved between
the number of clusters and the coherence. Figure 5 illustrates the change ¢ and
cov as the number of clusters decreases. The values in the figure were computed
for the Hausdorff methodology (which will be shown later to be the best overall
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Fig.5. Change in o and div as number of clusters decreases (Hausdorfl clustering
algorithm)

choice of clustering algorithm for our problem). For both metrics, when the
number of clusters reaches 5 and again at 10, the angle of decline becomes less
sharp. To allow for fair comparison between algorithms, we chose a standard
number of clusters for each algorithm: 8.

Recall that our overall goal is to generate clusters that will provide training
sets for a suite of agents, where each agent effectively embodies a user model that
is characteristic of the humans in its training group. Section 2.3 describes how we
trained agents based on the clustered data. Section 2.4 presents evaluation results
that demonstrate the effectiveness of the clustering and training procedure.

2.3 Training agents

The next step in our procedure is to create agents whose behavior typifies that
of each cluster. We did this for clusters generated by the Hausdorff and all
Euclidean coding methods (though we only report here on the best coding,
012). First, we generated a profile for each cluster as follows. For each node in
the landscape, we tally the number of students in the cluster who visited that
node. We compute statistics based on students’ responses to each node as the
basis, aggregated for all members of a cluster into an agent training set. For each
cluster, we generate one representative agent.

Each node represents a question in the assessment, and each question is
designed to elicit information about students’ abilities. The assessment is a
multiple-choice test, and each possible incorrect answer is associated with one
or more bugs that (likely) exist in a students’ knowledge if s/he chose the corre-
sponding incorrect answer. There is an overall mapping from each type of bug
evaluated in the assessment to each node in the landscape. For example, take the
simple landscape illustrated in Figure 6a. All students start at the node labeled
g0 € @ in the figure. There are one or more bugs, each of which we will refer to
as b; € B, that each node (question g;) is assessing. Essentially a table with |Q)|
rows by |B| columns is engineered when the assessment is designed, assigning a



(a) example landscape (b) example influence diagram

Fig. 6. Agent training structures.

Boolean value to each cell in the table indicating which errors are revealed by
each question. We use this table to pose two types of questions:

1. a modeling question—what is the probability that a student possesses bug
b;, given that they answered question q; incorrectly, i.e., what is Pr(b;|g;)?
2. a prediction question—what is the probability that a student will answer
question g, incorrectly, given that they possess bug bj, i.e., what is Pr(g;|b;)?

Note that there is not a one-to-one correspondence between bugs and questions.
Thus we rephrase our two questions:

1. modeling—what is the probability that a student possesses the bugs in set
B, given that they answered the questions in set Q incorrectly?

2. prediction—what is the probability that a student will answer the questions
in set Q incorrectly, given that they possess the bugs in set B?

The influence diagram [16, 17] shown in figure 6b provides a graphical illustration
of this situation. There are two types of variables represented: bugs {bg, b1, ba}
and questions {qo, q1}. Question ¢g is designed to assess whether a student pos-
sesses the bugs in set B’ = {bg, b1 }; question ¢; is designed to assess whether a
student possesses the bugs in set B” = {b1,b2}.

We use the interaction data set described earlier along with the influence
diagram associated with the landscape contained in Figure 1 to compute proba-
bility tables, one per cluster. We tally the number of students within the cluster
who visited each node and the percentage of them who answered the question
incorrectly, indicating particular bugs. Thus, for each cluster, we have a table
that indicates how likely it is that a member of that cluster possesses each bug.
This is essentially a user model which becomes the heart of the control function
for each “cluster agent.”
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Fig. 7. Correlation between agents and humans. The z-axis represents o values for
the human trajectories within each cluster and the y-axis represents o values for the
trajectories of the corresponding agents.

2.4 Evaluating agents

Finally, we evaluate the efficacy of our methodologies by simulating an assess-
ment using each agent generated. We performed 999 evaluation trials for each
agent—since the agents are controlled probabilistically, they will not behave ex-
actly the same way in each simulation run. We evaluate our efforts in four ways.
First, we wish to determine how well each agent fits the cluster profile from which
it was modeled. The correlation between the behaviors of the trained agents and
the groups of humans the agents are emulating is illustrated. Second, we high-
light the separation between agents (i.e., distinctiveness of behavior patterns).
Third, we show that the method of training agents as emulators, rather than
taking the raw human data as the basis of user models, provides more coher-
ent results. Fourth, we provide visualizations that compare compounded agent
trajectories with humans in corresponding clusters.

Correlation between agents and humans. We use the shape complexity
(o) metric described earlier to compare the relationship between trajectories
generated by agents with those generated by humans. Figure 7 plots the average
o for each cluster based on the trajectories exhibited by humans (z-axis) against
the corresponding value for trajectories generated by the agent representing each
cluster in the 999 evaluation runs. The correlation with the Hausdorff technique
is quite high.

Separation between agent behaviors. We also want to compare the sep-
aration between agents, recalling our goal to produce a suite of agents, each
of which represents different behavior patterns. Figure 8 shows the mean and
standard deviation of o for each of the clusters computed for each clustering
technique. The black bars represent the clusters based on human trajectories;
the grey bars represent the trajectories generated by the agents in the 999 evalu-
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Fig. 8. Separation between agents, using o.

5 overlaps, 35% 4 overlaps, 15%
(a) Hausdorff (b) Euclidean (012 coding)

Fig. 9. Separation between agents, using y values.

ation runs. Once again, the Hausdorff produces superior results because greater
distinction between each cluster can be seen in the lefthand plot.

We also examine a different mode of comparison in order to illustrate more
clearly the distinction between cluster-based behaviors. Instead of looking at o,
we examine the mean and standard deviation of y values for the trajectories
within each cluster. The landscape is shaped such that all trajectories extend
horizontally along the same range of x values, but do not cover the same extent
vertically. We compare the vertical extent of each cluster by plotting a box out-
lining one standard deviation around the mean y value. These plots are shown
in Figure 8 for both Hausdorff and Euclidean 012 methods. According to this
comparison, the Euclidean 012 method appears to perform better than the Haus-
dorff because it has fewer boxes that overlap and the total amount of overlapping
area is less. However, in the Euclidean 012 plot, agent 5’s extent is completely
subsumed by that of agent 6, which is a worse result. Another disadvantage of
this plotting method is that it does not represent the complete picture because



comparison using o comparisons using y values
(a-b) Hausdorff vs Euclidean 012 (c) All methods

Fig. 10. Coherence with agents, as compared to humans. Plot (a) uses ¢ for compari-
son. Plots (b) and (c) use the average variance of y-values for comparison.

the distribution of y values, weighted by frequency of occurrence, is not normal
and more closely matches a Poisson distribution. Thus, we are exploring other
methods of comparing separation between agent behaviors.

Coherence within agent behaviors. Figure 10 illustrates the coherence
amongst the behaviors of an agent versus humans within a single cluster. Because
the agents behave probabilistically, based on the influence diagram and table
explained in Section 2.3, a single agent will act (slightly) differently each time
it executes in the simulated assessment. The variance of y values is examined
for each agent. The smaller the variance of y values, the more coherence there
is in the agent’s behavior. The lefthand plot (a) compares the Hausdorff and
Euclidean 012 methods. The Euclidean 012 method produces better coherence.
The plot also compares coherence in the agent’s behavior to the coherence across
the set of trajectories belonging to the humans in the cluster. In both cases
(Euclidean 012 and Hausdorfl), there is better coherence in the agent behaviors.
This is what we have been striving for. The improvement in coherence is even
more marked in the righthand plot (b), which compares the Hausdorff and all
four Euclidean coding methods. Clearly the Euclidean 012 method produces
superior results.

Visual comparison. Finally, a sampling of trajectories for each cluster and
corresponding agent are shown in Figure 11, using the Hausdorff method, and
in Figure 12, using the Fuclidean 012 method. For each row in the figures, the
first (leftmost) plot shows the trajectories (blue lines) over 999 test runs of the
agent. The remaining plots in the row show a representative sample of human
student trajectories (black lines) for each cluster. The point is that the blue lines
represent a composite set of black lines within the same cluster.



Cluster 2:

Fig. 11. Comparing agent and human trajectories, clustered using Hausdorff method.

Cluster 2:

Fig.12. Comparing agent and human trajectories, clustered using Euclidean 012
method.



3 Conclusion

We have described a methodology for generating agent-based simulations of hu-
man behavior in a structured interactive environment. We employed interaction
data from an on-line educational assessment environment and created clusters
of students with similar behaviors, and then trained agents whose actions typ-
ify cluster members. We explored two methods of clustering, one based on a
feature-vector comprised of right/wrong answer choices made by each student
and employing a Euclidean distance metric to determine groupings. The second
is a graphical approach, based on examining the paths students take through
the underlying landscape of the assessment and employing a Hausdorff distance
metric to determine groupings. From these, we generated a profile for each clus-
ter based on bugs in student knowledge exhibited by the assessment responses.
We used these profiles to train agents to emulate cluster members, and finally,
we evaluated the efficicacy of these methods by comparing the trajectories pro-
duced by agents acting in a simulated assessment to those of humans produced
in the real assessment. Our results show that when we use shape complexity (o)
as the basis for comparison, the Hausdorff method is superior to the Euclidean
methodologies. Interestingly, attempts to make comparisons based on other met-
rics, such as the variation in y values aligns the Hausdorff and Euclidean 012
methods more closely. Still, however, the Euclidean 012 method always produces
better results than the other Euclidean encodings explored.

Our current work involves extending these methods to other types of data,
both from within the education sector and outside it. The type of generic land-
scape illustrated in Figure 1 can be used to represent the underlying structure
of a wide range of interactive environments. Being able to generate agents that
emulate human behavior in such environments has broad application and can be
used not only for evaluating clustering techniques, as illustrated here, but also
for producing controllers for agents that might be deployed as actors within such
interactive environments.
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