
Using artificial intelligence to help bridge students from high school to college

Elizabeth Sklar1,2, Simon Parsons1,2, Sheila Tejada2, Susan Lowes3,
M Q Azhar1, Samir Chopra2, Richard Jansen2, and Ira Rudowsky2

1Dept of Computer Science, Graduate Center, City University of New York, New York, NY 10016 USA
2Dept of Computer and Information Science, Brooklyn College, City University of New York, Brooklyn, NY 11210 USA

3Institute for Learning Technologies, Teachers College, Columbia University, New York, NY 10027 USA
contact author: sklar@sci.brooklyn.cuny.edu

Abstract

This paper describes work from the Bridges to Computing
project at Brooklyn College of the City University of New
York. This project focuses on the transition from high school
to college with the intention of encouraging more students to
study some aspect of computer science. The Bridges project
has both introduced new undergraduate courses into our com-
puter science curriculum and revised existing courses, as well
as developed activities for high school students to help better
prepare them for college-level computer science. Here, we
report on the use of ideas from artificial intelligence imple-
mented within several of these interventions.

Introduction
The Bridges to Computing project at Brooklyn College of
the City University of New York (CUNY) focuses on the
transition years from high school to college, working to bet-
ter inform students about and prepare them for careers in
computing fields. Bridges involves components geared to-
ward advanced high school students, early college students
and advanced college students. Project activities include:

• formal training—via context-based introductory and in-
terdisciplinary undergraduate courses;

• informal training—through after-school and summer
programs for high school students;

• mentoring—from high school students to undergraduates
to graduate students and faculty; and

• community outreach—to the College community and
beyond, by connecting undergraduate computing students
with local schools, small businesses and campus aca-
demic departments.

We describe the activities that have occurred during the
first 18 months of the project, focusing on the academic
components where the use of artificial intelligence (AI) is
emphasized as a means of engaging students. Thus far, the
Bridges project has reached approximately 80 high school
students from Brooklyn public schools, and at Brooklyn
College: 12 advanced undergraduate computing student Am-
bassadors (i.e., peer mentors), and over 500 undergraduate
students through 17 sections of 12 newly developed or up-
dated computing courses.

This paper is organized as follows. First, we describe
the project’s academic programs, describing the formal,
classroom-based activities for undergraduate students and
the informal, after-school activities for high school students.
Then we detail the curricula which include topics within the
field of artificial intelligence. Next, we present evaluation
results from each of the academic activities. Finally, we con-
clude with a summary and directions for future work.

Academic Activities
The project’s academic activities are centered around the
philosophy that a broader cross section of students will be
attracted to computer science (CS) if it can be demonstrated
to be relevant to students’ daily lives and future careers,
helpful to students’ communities and/or interdisciplinary in
one or more ways (Moskal, Laisch, & Middleton 2001;
Sleeter & Grant 1987). Accordingly, the formal and infor-
mal training components of the Bridges project are struc-
tured around five “flavors”, emphasizing the intersection
between computer science and: (1) business, (2) law, (3)
medicine, (4) graphics, and (5) robotics. As discussed be-
low, the last three flavors in particular have produced cur-
ricula that take advantage of AI-based solutions. The for-
mal training components have involved the creation of new
and updated undergraduate courses in two categories: in-
troductory and interdisciplinary computing. The informal
training components have involved a summer program and
an after-school computing preparatory class, both for high
school students.

Formal training: Introductory Computing
The undergraduate introductory computing curriculum at
Brooklyn College consists of three courses, which can
generically be referred to as CS0, CS1 and CS2. For each
of these courses, multiple sections are offered, adhering to
the College’s philosophy of keeping class sizes small. Here,
we refer to “Bridges” and “Non-Bridges” sections of each
course. The Non-Bridges sections are those that follow the
department’s traditional syllabus, typically presenting exam-
ples that are either abstract (i.e., without an applied con-
text), mathematical (e.g., write a program to compute the
Fibonacci sequence), or classic textbook tasks (e.g., write a
program to compute change or implement an address book).
The Bridges sections, while necessarily covering the same



concepts on the standard syllabus, select examples from
within a single themed context—one of the flavors listed
above. Within each of these flavors, particular emphases
have evolved, particularly in the CS0 classes: e-commerce
within the business flavor, cryptography within the legal fla-
vor, biologically inspired systems within the medical flavor,
and games within the graphics flavor.

The CS0 course is part of the College’s “Core Curricu-
lum” requirements in computing and mathematics. The
course is designed to give students with no computing
background an introductory-level exposure to a cross sec-
tion of topics within computer science and provide them
with some hands-on experience with computers and pro-
gramming. The topic areas include: basic architecture
of computers and networks, algorithms and computer lan-
guages, data representation and storage, event-driven pro-
gramming, control structures (branching and looping), solv-
ability and feasibility, and security, privacy and encryption.
The Non-Bridges sections of CS0 use HTML and Javascript
to teach basic programming concepts (such as control struc-
tures). The Bridges sections employ special interest pro-
gramming environments to introduce basic programming
concepts — RoboLab (Erwin, Cyr, & Rogers 2000) for
robotics, NetLogo (Wilensky 2002) for medical applications
and Scratch (Peppler & Kafai 2007) or Alice (Cooper, Dann,
& Pausch 2003) for graphics and games.

Many sections of CS0 are offered each semester (over 20),
totalling between 400-500 students. These courses are typi-
cally taken by freshmen or sophomores, students who have
not declared a major or students who have decided not to
major in computer science1. The drop-out rate in CS0 is typ-
ically not high, since students need to complete the course at
some time during their college career. What is more unusual
is for students to decide to major in computing as a result
of taking this course and then go on to take CS1 in a subse-
quent semester. One of the goals of the Bridges project is to
increase the number of students who take CS1 after success-
fully completing CS0.

The CS1 course is the first programming course taken by
students who intend to major in computer science. It is
also required by a handful of other science majors. Most
students attending Brooklyn College graduated from public
high schools in Brooklyn and had limited access to computer
science courses; some took “technology” courses that intro-
duced students to a few Microsoft Office applications (e.g.,
Excel), but the overwhelming majority did not have the op-
tion of taking a programming course in high school. CS1
is taught in C++, and the topics covered include: data and
output, control structures and input, functions, arrays and
strings, sorting and searching, and simple classes. CS1 is
taught using either a Microsoft Windows or Mac OS X en-
vironment, employing an integrated development environ-
ment such as Dev C++2 or CodeBlocks3. Many students

1Students who know they want to major in computer science
take CS1, which also fulfills their core curriculum requirement in
computing and mathematics.

2http://www.bloodshed.net/
3http://www.codeblocks.org/

have little experience with computers and are not familiar
with file systems, the DOS command window, network con-
cepts, etc., so it is also necessary to include much of the
basic information conveyed in the CS0 course.

CS1 tends to have a larger drop-out rate, as compared
to CS0. The published national average indicates that only
50% of students opt to continue in computer science after
taking their first course in the major. At Brooklyn College,
during the period Fall 2000 through Fall 2006, the reten-
tion rate in CS1 is 39%. Figure 1 shows the percentage
of students who took CS2 after taking CS1 (labeled “CS1
retention”) and the same for students who stayed with the
major after completing CS2 (labeled “CS2 retention”). One
of the key issues we have identified through surveys admin-
istered as part of the Bridges program is that students are
ill-informed about the differences between CS0 and CS1,
so many students enroll in CS1 when it would have been
more appropriate for them to take CS0. Another goal of the
Bridges project is to improve retention of students in CS1,
not only decreasing the drop-out rate within the CS1 term
but also increasing the number of students who subsequently
complete CS2.

The CS2 course is the second programming course taken
by students who intend to major in computer science. It is
also taught in C++, and it introduces UNIX, using either a
Linux or Mac OS X environment, including a smattering of
basic commands (like ls, cd, etc.). Students are shown how
to use a text editor, such as emacs, vi or pico, and how to
compile (using g++, the Gnu C++ compiler4) and run from
the UNIX command-line. They are introduced to file system
concepts; and the relationships between the familiar graph-
ical desktop and the underlying file structure are explained.
Topic areas include: classes and object-oriented program-
ming concepts, specifications and testing, pointers and ar-
rays, recursion and templates. The CS2 course also has a
significant drop-out rate, and, as above, one of the goals
of the Bridges project is to improve retention of students
through CS2 into the rest of the computer science major.

Figure 1: Retention rates at Brooklyn College for CS1 and
CS2, from Fall 2000 through Fall 2006

4http://gcc.gnu.org/



Figure 2: Students from the high school programs

Formal training: Interdisciplinary Computing

As part of the Brooklyn College core curriculum, advanced
students who have already chosen their major are required to
take two interdisciplinary courses. We have developed and
implemented an interdisciplinary course called Exploring
Robotics as part of this effort and connected to the Bridges
Project. This course was offered for the first time in Fall
2006 and has proven to be tremendously popular. At an av-
erage of 20 students per section, we have offered 5 sections
in Fall 2006, 1 in Winter intersession 2007, 5 in Spring 2007,
3 in Summer 2007 and 8 in Fall 2007.

Informal training: Summer Institute

In July 2006 and July 2007, we ran 8-day free summer pro-
grams for high school students. We recruited students from
local public high schools in Brooklyn and approximately 35
students attended each summer. The goal was to give stu-
dents who have limited or no access to computer science
courses in their high schools an opportunity to learn about
the field, its broad applications and interdisciplinary nature,
and to gain hands-on experience with 1-2 technologies. We
divided the eight-day institutes into 3 “taster” days and 5
“pick” days. During the taster days, students attended 5
half-day sessions, one for each of the five Bridges flavors.
In the afternoon of the 3rd day, they selected one flavor to
concentrate on for the remaining pick days; the rest of that
afternoon was spent on a community-building activity, away
from computers but using a computer-based theme. The pick
days culminated in an evening Showcase where students in-
vited family and friends to see posters and demonstrations of
what they had built. More than half of the students brought
guests. Feedback from parents was tremendous. Parents
were pleased that their children had been able to come to a
college campus and interact with faculty in a friendly, non-
threatening environment. They hoped the experience would
help their children be more motivated to apply to college.

Informal training: Computing Preparatory Course

In Fall 2006 and Fall 2007, high school students were invited
to attend a Computing Preparatory Course during after-
school hours. Some of the high schools have given students

high school credit for attending the class5. The intended
purpose of the class is to give students more in-depth ex-
perience with the topics introduced during the summer; in
practice, there are many who attend the Computing Prep
course who did not attend the Summer Institute. The ses-
sions are lab-based, so students can work at their own pace.
Undergraduate mentors assist, which facilitates the largely
individually-tutored environment. The course is structured
so that approximately every 4-6 weeks a new topic is intro-
duced, again following the five Bridges flavors. Topics cov-
ered include: HTML and Javascript, cryptography, simula-
tions using NetLogo, robotics using RoboLab, games using
Scratch or Alice.

AI-centric Curricula
This section details the three flavors that have broadly intro-
duced artificial intelligence: robotics, biologically-inspired
simulations and multi-agent games.

Robotics and Agents
At all levels, undergraduate and high school, students are in-
troduced to the notion of artificial intelligence through the
intelligent agent paradigm. An agent is an automonous en-
tity that exists in some kind of environment, either virtual
or physical. It receives inputs through sensors that per-
ceive properties of their environment and/or themselves, and
it generates output through actuators that effect change on
their environment and/or themselves. The AI is the part that
comes in between receiving input and generating output—
this is where something intelligent should happen. Students
are intrigued by the notion that they can construct sets of
rules that govern the behavior of an agent. They are intro-
duced to concepts such as state and Markov processes, rule-
based systems and probabilistic reasoning.

(a) LEGO Mindstorms RCX (b) Surveyor SRV-1

Figure 3: Robot platforms

In the high school components and the CS0 course, LEGO
Mindstorms robots are employed (see figure 3a). Students
are taught about simple sensor inputs (e.g., light level and
bump), how physical properties can be translated into nu-
meric values and how those numeric values can be input
to a program that emulates intelligent behavior on the part
of their agent. They are given a variety of tasks designed
to introduce them to: the RoboLab6 programming environ-

5The same arrangement is being negotiated for all participating
high schools.

6http://www.ceeo.tufts.edu/robolabatceeo/



ment, the design-write-test-debug software develop cycle,
basic programming concepts such as branching, looping and
data storage, and basic computer and robot hardware con-
cepts such as memory, power, sensors and motors.

In the CS1 and CS2 courses, students’ exposure to
robotics is primarily through examples and simulated robots
(virtual agents), though both classes are given at least one
assignment using a physical robot. The Surveyor SRV-17 is
currently being used. This small, reasonably-priced robot
has an on-board web camera and is controlled from a laptop
via radio communication (see figure 3b). The classes each
meet for 4 hours per week, with lecture and lab sessions
alternating. An example of a task for a simulated robot is
one in which students must devise a control algorithm for a
robot that can move around in a virtual 2-dimensional grid,
using commands such as “left”, “right”, “up” and “down”.
The robot has a fixed amount of fuel and expends some of
its energy with every command. The robot’s world is in-
habited with randomly placed pieces of “treasure”, and stu-
dents’ controllers should maximize the amount of treasure
captured by the robot before it runs out of energy. This task
is assigned in both CS1 and CS2 courses, but the program-
ming requirements are different. For example, in CS1, stu-
dents use a 2-dimensional array of characters to store the
robot’s world; whereas in CS2, students must create several
classes to represent the robot and its world. Students are ex-
posed to basic AI concepts, such as state, decision trees and
search strategies.

Biologically-inspired Simulations
The overarching idea behind the Biomedical computing fla-
vored sections of CS0, CS1 and CS2 is to show how comput-
ers can be used in fields that are broadly related to medicine.
In the flavored sections of CS1 and CS2, for example,
students work on several examples that manipulate patient
records and DNA sequences rather than the more traditional
examples. Especially in CS1, which is a required course for
many science majors, the idea is to get students to appreci-
ate how computers, and in particular programs that they can
write, might be used in the pursuit of the science they are
studying. Across all three courses, however, the bulk of the
examples that the students work on are agent-based simula-
tions of small biological worlds. We deal with simple agent
models, and so this work closer to artificial life than classic
artificial intelligence.

In CS0 and the high school components, we use NetLogo8

(Tisue & Wilensky 2004; Wilensky 2002) to create such
simulations. NetLogo is built on top of Java, and provides
an environment for writing agent-based programs — every
entity in the environment is an agent, and one programs the
agents by providing them with a set of actions that they can
perform. NetLogo comes with a library of simulation mod-
els, including classics such as the Boids (Reynolds 1987)
flocking model, and a simple predator-prey scenario (in the
case of NetLogo, this involves wolves and sheep. Both these
models are depicted in Figure 4.

7http://www.surveyor.com/
8http://ccl.northwestern.edu/netlogo/

Figure 4: Sample NetLogo simulation: predator-prey

In both these classes, we start by introducing the students
to the models, and allowing them to explore the way in
which changing parameters (which NetLogo allows one to
do while the simulation is running by moving sliders on the
interface) alters the behavior of the model. Thus the stu-
dents learn how the shape of the flock will change, or the
balance between predator and prey will alter, as they change
the speed with which flocking agents can turn, or the proba-
bility that prey animals will reproduce.

Following this exploration period, students are encour-
aged to create their own models. These are typically ecosys-
tems that bear a strong similarity to the wolf/sheep model9,
though some are more ambitious — a recent example being
a route-finder for the New York subway system10.

In CS1 and CS2, the students write the simulations from
scratch in C++, and without the support that NetLogo pro-
vides, the results are less impressive simulations. However,
we still manage to have the students produce small ecosys-
tem examples with simple rules guiding the behavior of the
agents. As with the robotics flavor, we insist that students in
CS2 use more advanced programming techniques in devel-
oping their simulations than the students in CS1.

Multi-agent Games

Games are an excellent motivational tool for encouraging
students at all levels. They provide a method to introduce
basic concepts in computer science, programming and ar-
tificial intelligence. For creating games we have adopted
the Scratch environment. Scratch11 (Peppler & Kafai 2007)
is a graphical programming language, similar to Alice12

(Cooper, Dann, & Pausch 2003). It allows programmers
to create 2D interactive games. The characters or agents in
each game are called sprites. Sprites can be programmed
to sense information, react to the environment and to other
sprites, as well as interact with the user. Students cre-

9For some reason many of them involve fish.
10Examples can be found at http://bridges.brooklyn.

cuny.edu.
11http://scratch.mit.edu/
12http://www.alice.org/



ate scripts or programs for each sprite by stacking together
graphic blocks.

In Figure 5 the script for the behavior of the blue fish is
displayed in the center column. Blocks of different types
can be dragged from the left column and stacked together
to create a program. In the FishChomp game (upper right
corner), the user interacts with the blue fish by moving the
mouse. In order to increase the score and move on to the
next level, the blue fish must eat the swimming divers. Each
of the divers are also agents with their own programs.

Figure 5: Sample Scratch game

Evaluation
Project evaluation involves collecting and examining two
types of data sets. The first data set consists of pre- and post-
surveys, administered to all students enrolled in Bridges
sections of undergraduate courses and all students who at-
tend high school activities. Following standard IRB13 pro-
cedures, survey completion is optional, and students are pro-
vided with information about the Bridges project to help
them make informed decisions about whether to complete
surveys or not. A random set of Non-Bridges sections of the
undergraduate courses have also received surveys.

The purpose of the surveys is primarily to: (1) identify
the demographics of the student populations, particularly
focusing on gender, language spoken at home, higher ed-
ucation obtained by family members, etc.; and (2) deter-
mine if students’ perception of the field of computer sci-
ence, and of computer scientists, changes by participating
in interventions that are actively interdisciplinary. The data
presented in the following figures summarizes nearly 500
undergraduate and high school students who completed sur-
veys between Fall 2006 and Summer 2007. Figure 6 shows
the breakdown between the genders of students surveyed.
The high school programs have more than 50% female stu-
dents. Partly this is attributable to our recruitment strategy,
which involves working with school guidance counselors,
science and math teachers to target female students with
recognized aptitude in problem solving. The undergradu-
ate classes follow the international trend, whereby female
students drop out in larger numbers than male students as
the major courses advance. We note that the retention rate
for female students in CS1 increased between Fall 2006 and

13Institutional Review Board

Spring 2007, the first two semesters of the Bridges program.
Figure 7 shows the wide range of languages spoken at home
by students in the Brooklyn College community. A total
of 38 dialects are spoken. Just over half (59%) of students
speak English at home.

Figure 6: Gender breakdown of students surveyed

Figure 7: Languages spoken at home by students surveyed

Measuring change in attitude is difficult. We have been
experimenting with several types of pre-/post-survey ques-
tions in an attempt to capture student’s changes in perception
of the field of computer science. A post-survey administered
in Spring 2007 asks students to describe uses for computer
science; these results show that students have gained a broad
understanding of CS as an interdisciplinary field, with appli-
cations ranging from urban search and rescue robots to med-
ical data mining. Another interesting survey question asked
students to list 3 words that describe a computer scientist.
We collected data on this question for both pre- and post-
surveys in Spring 2007. Table 1 gives some indication of
change. Words in the first column of the table that are fol-
lowed by an asterisk (*) include all words that can be derived
from the word stem; for example, “educat*” could be “ed-
ucated” or “educator”. Some words are conglomerates; for
example, “smart” encompasses “smart”, “intelligent”, “bril-
liant”, “genius”, etc. It is interesting to note the changes. In



particular, the number of students who indicated that com-
puter scientists are “smart” decreased. This could be either
because the instructors made a bad impression and students
left their courses thinking that their professors were not so
intelligent after all, or — the interpretation we prefer — be-
cause after taking the courses, students feel the subject mat-
ter is more approachable and therefore one does not have to
be a genius to major in computer science. We also note that
the number of students who indicated that computer scien-
tists are “geeks” (or “anti-social”, etc.) also decreased; one
student even went so far in the post-survey as to indicate that
computer scientists are cool!

word pre post word pre post
smart 136 112 solv* 9 12
educat* 8 1 patient 43 34
math* 24 16 methodical 1 2
logical 17 24 determined 7 8
program* 10 10 precise 6 7
geek 20 14 creative 27 16
anti-social 3 0 innovative 5 9
cool 0 1 interest* 7 4
boring 5 6 curious 7 4

Table 1: Pre- and Post-survey results: “Write down 3 words
that describe a computer scientist”, undergrad Spring’07.

The second data set consists of enrollment data. Here we
are particularly interested in retention. As illustrated in fig-
ure 1, historically, students tend to leave the major in droves
after taking CS1, while higher retention is obtained for stu-
dents who complete CS2. Through a combination of better
advising students regarding their placement in CS1 vs CS0
as well as providing a more applied, socially relevant, inter-
disciplinary and hands-on learning environment for CS1, it
is hoped that these numbers will improve. It is too early in
the project timeline to be able to determine if the Bridges
sections of undergraduate courses have had the desired ef-
fect. The first sections were offered in Fall 2006; a compar-
ison with Spring 2007 enrollment data is forthcoming.

Summary
We have described our efforts to broaden the demographic
of students participating in computing courses, focusing on
the introductory level and bridging students who are under-
prepared in high school into computer science major courses
in college. Our methodology includes a hands-on, cross-
disciplinary approach to teaching, with context-based, lab
classes at the undergraduate level and after-school programs
at the high school level, centering on five applied areas
within computer science. We have introduced concepts
from artificial intelligence within at least three of these “fla-
vored” areas, in an attempt to engage students early on with
problem-solving and understanding that AI is not just the
name of a Hollywood movie.

Although the project is not quite two years old, we have
already taken a few “lessons learned.” These have to do with
logistical issues. First, the high school computing prepara-
tory class has had strong enrollments in the Fall, but these

dwindle in the Spring as the weather gets warmer and stu-
dents begin participating in outdoor sports teams and prepar-
ing for high-stakes state exams given in late Spring. Second,
the undergraduate students tend to register for courses based
on what fits into their schedule, not according to which fla-
vor is more interesting to them. As a result, we are consid-
ering offering multi-flavored sections, so that students get
a sense of computing applied in a broad, interdisciplinary
way. Third, teaching computing applied to a particular con-
text works well only if the contextual application can be eas-
ily explained—if the instructor has to provide a lot of scaf-
folding in order for the students to understand the example,
how it pertains to computing and/or how a computing solu-
tion can be applied, then students lose interest in the subject
and do not gain understanding of the underlying computing
concepts (let alone their connection to a context). Fourth,
hands-on instruction is not necessarily a natural way to teach
for all faculty. Some training may be needed in order to
adapt such a methodology widely across a department so
that instructors understand how to use lab time effectively.
Finally, hands-on instruction not only has pedagogical gains,
but also social gains—faculty get to know students better
and vice versa. Students feel less threatened by faculty and
view them as more approachable.

Acknowledgements
This work was supported by NSF BPC #05-40549.

References
Cooper, S.; Dann, W.; and Pausch, R. 2003. Teaching
objects-first in introductory computer science. In Proceed-
ings of SIGCSE.
Erwin, B.; Cyr, M.; and Rogers, C. B. 2000. LEGO en-
gineer and ROBOLAB: Teaching engineering with Lab-
VIEW from kindergarten to graduate school. International
Journal of Engineering Education.
Moskal, B. M.; Laisch, D.; and Middleton, N. 2001. Sci-
ence related degrees: Improving the retention of women
and minorities through research experience, mentoring and
financial assistance. In Proceedings of the ASEE Confer-
ence.
Peppler, K., and Kafai, Y. B. 2007. From supergoo to
scratch: Exploring media creative production in an infor-
mal learning environment. Journal on Learning, Media,
and Technology 149–166.
Reynolds, C. W. 1987. Flocks, herds, and schools: A dis-
tributed behavioral model. Computer Graphics 21(4):25–
34.
Sleeter, C. E., and Grant, C. A. 1987. An analysis of mul-
ticultural education in the USA. Harvard Educational Re-
view 57:421–444.
Tisue, S., and Wilensky, U. 2004. Netlogo: A simple en-
vironment for modeling complexity. In Proceedings of the
International Conference on Complex Systems.
Wilensky, U. 2002. Modeling nature’s emergent patterns
with multi-agent languages. In Proceedings of EuroLogo.


