
TRAINING INTELLIGENT AGENTS USING

HUMAN INTERNET DATA

ELIZABETH SKLARy

ALAN D. BLAIRz

PABLO FUNESy

JORDAN POLLACKy

yDEMO Lab, Dept. of Computer Science,

Brandeis University,

Waltham, MA 02454-9110, USA

E-mail: sklar,pablo,pollack@cs.brandeis.edu

zDept. of Computer Science,

University of Melbourne,

Parkville, Victoria, 3052, AUSTRALIA

E-mail: blair@cs.mu.oz.au

We describe a method for training intelligent agents using human data collected at
a novel Internet learning site where humans and software agents play games against
each other. To facilitate human learning, it is desirable to select proper opponents
for humans so that they will advance and not become bored or frustrated. In the
work presented here, we use human data as the basis for constructing a population
of graded agents, so that in future we can choose opponents (from this population)
that will challenge individual human learners appropriately.

Keywords: human-agent interaction, neural networks, learning

1 Introduction.

Hidden inside every mouse click and every key stroke is valuable information

that can be tapped, to reveal something of the human who entered each action.

Commercial products like MicrosoftWord provide context sensitive \wizards"

that observe their users and pop up to assist with current tasks. Internet sites

like altavista
a recognise keywords in search requests, o�ering alternate sugges-

tions to help users hone in on desired information. At the amazon.com
b book

store, after �nding one title, other books are recommended to users who might

be interested in alternate or follow-up reading. On many sites, advertisements

which at �rst seem benign, slowly adapt their content to the user's input,

subtly wooing unsuspecting surfers.

a
http://www.altavista.com

b
http://www.amazon.com

1

Data mining the click-stream to customize to the individual user is nothing

new. In 1991, Cypher demonstrated \Eager", an agent that learned to recog-

nise repetitive tasks in an email application and o�ered to jump in and take

over for the user 1. In 1994, Maes used machine learning techniques to train

agents to help with email, �lter news messages and recommend entertainment,

gradually gaining con�dence at predicting what the user wants to do next 5.

The work presented here examines these ideas in the context of a com-

petitive Internet learning community 8. In this special type of environment,

humans and software agents act as opponents and the competition inherent in

their encounters serves to motivate the human population and to provide selec-

tion criteria for an evolving population of software agents. While competition

in and of itself can act as a powerful motivator, it must be applied carefully in

a human learning environment | because the ultimate goal is for participants

to learn, not simply to win. Here, winning too frequently can mean that the

human is not being challenged with new situations and therefore is not learn-

ing. Thus, encounters should be arranged so that humans are neither bored

by matches that are too easy nor frustrated by matches that are too hard.

One hypothesis is that the perfect learning opponent is one whose skills are

similar to those of the learner, but are just enough more advanced so that, by

stretching, the learner can win most of the time. The trick then is to provide a

series of perfect learning opponents that can step the learner through the task

domain. But designing a set of perfect learning partners that would work for

all users is an arduous, if not impossible, task.

Our long term aim is to use human input of varying levels as the basis for

constructing a population of graded agents, and then, for individual learners,

to select opponents (from this population of agents) that are just beyond the

human learner, but still within reach. The work presented here focuses on the

initial stages of this project, where we have de�ned a control architecture for

the agents and devised a method for training the agents by observing human

behaviour in a simple task domain.

2 Task Domain.

In earlier work 2, we built a Java version of the real-time video game Tron and

released it on the Internetc (illustrated in �gure 4). Human visitors play against

an evolving population of intelligent agents, controlled by genetic programs

(gp)4. On-line since September 1997, the Tron system has collected data on

over 200,000 games played by over 4000 humans and 3000 agents.

chttp://www.demo.cs.brandeis.edu/tron

2

Tron became popular in the 1980's, when Disney released a �lm featuring

futuristic motorcycles that run at constant speeds, making right angle turns

and leaving solid wall trails { until one crashes into a wall and dies. We ab-

stract the motorcycles and represent them only by their trails. Two players {

one human and one agent { start near the middle of the screen, heading in the

same direction. Players may move past the edges of the screen and re-appear

on the opposite side in a wrap-around, or toroidal, game arena. The size of

the arena is 256� 256 pixels. The agents are provided with 8 simple sensors

with which to perceive their environment (see �gure 1). The game runs in

simulated real-time (i.e. play is regulated by synchronised time steps), where

each player selects moves: left, right or straight.

6 2

5

7 1

3

0

4

Figure 1 Agent sensors. Each sensor evaluates the distance in pixels
from the current position to the nearest obstacle in one direction, and
returns a maximum value of 1:0 for an immediate obstacle (i.e. a wall
in an adjacent pixel), a lower number for an obstacle further away,
and 0:0 when there are no walls in sight.

Our general performance measure is the win rate, calculated as the num-

ber of games won divided by the number of games played. The overall win

rate of the agent population has increased from 28% at the beginning of our

experiment (September 1997) to nearly 80%, as shown in �gure 2(a). During

this time, the number of human participants has increased. Figure 2(b) illus-

trates the distribution of performances within the human population, grouped

by (human) win rate. While some segments of the population grow a bit faster

than others, overall the site has maintained a mix of human performances.

0

500

1000

1500

2000

2500

3000

range of days: from September 1997 to January 1999

nu
m

be
r o

f p
la

ye
rs

 in
 e

ac
h

gr
ou

p

10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

(a) Agent win rate. (b) Distribution of human population.

Figure 2 Results from the Internet experiment.

The data collected on the Internet site consists of these win rate results

as well as the content of each game (referred to as the moves string). This

3

includes the length of the game (i.e. number of time steps) and, for every turn

made by either player, the global direction of the turn (i.e. north, south, east

or west) and the time step in which the turn was made.

3 Agent Training and Control.

We trained agents to play Tron, with the goal of approximating the behaviour

of the human population in the population of trained agents. The training

procedure, which uses supervised learning 6;10, is as follows. We designate a

player to be the trainer and select a sequence of games (i.e. moves strings)

that were played by that player, against a series of opponents. We replay these

games; after each time step, play is suspended and the sensors of the trainer

are evaluated. These values are fed to a third player (the agent being trained),

referred to as the trainee, who makes a prediction of which move the trainer

will make next. The move predicted by the trainee is then compared to the

move made by the trainer, and the trainee's control mechanism is adjusted

accordingly.

The trained agents are controlled by a feed-forward neural network (see

�gure 3). We adjust the networks during training using the backpropagation

algorithm 7 with Hinton's cross-entropy cost function 3. The results presented

here were obtained with momentum = 0:9 and learningrate = 0:0002.

nodes

straighttanh sigmoid

left

right

sensors

input

nodes
hidden

output
nodes

Figure 3 Agent control architecture. Each agent is controlled by a feed-forward neural
network with 8 input units (one for each of the sensors in �gure 1), 5 hidden units and 3
output units { representing each of the three possible actions (left, right, straight); the one
with the largest value is selected as the action for the agent.

4 Challenges.

The supervised learning method described above is designed to minimize the

classi�cation error of each move (i.e. choosing left, right or straight). How-

ever, a player will typically go straight for 98% of time steps, so there is a

danger that a trainee will minimize this error simply by choosing this option

100% of the time; and indeed, this behaviour is exactly what we observed in

many of our experiments. Such a player will necessarily die after 256 time

4

steps (see �gure 4a). Conversely, if turns are emphasized too heavily, a player

will turn all the time and die even faster (�gure 4b).

(a) a trainee that

makes no turns

(b) a trainee that only

makes turns

(c) a trainee that

learns to turn

(d) the trainer

Figure 4 A comparison of di�erent trainees. All had the same trainer; trainee variations
include using 12-input network and di�erent move evaluation strategies. All games are played
against the same gp opponent. The player of interest is represented by the solid black line
and starts on the left hand side of the arena.

The discrepancy between minimizing move classi�cation error and playing

a good game has been noted in other domains 9 and is particularly pronounced

in Tron. Every left or right turn is generally preceded by a succession of

straight moves and there is a natural tendency for the straight moves to drown

out the turn, since they will typically occur close together in sensor space. In

order to address this problem, we settled on an evaluation strategy based on

the frequency of each type of move. During training, we construct a table

(table 1) that tallies the number of times the trainer and trainee turn, and

then emphasize turns proportionally, based on these values.

Table 1 Frequency of moves table, for the best human trainer.

trainee

left straight right

left 852 5360 161
trainer straight 5723 658290 5150

right 123 4668 868

5 Experiments and Results.

We trained two populations of players: one with gp trainers and one with

human trainers. Although our goal is to approximate the behaviour of the

human population, we initially tuned our training algorithm by training agents

to emulate the behaviour of the gp players from the Internet site. These gps

are deterministic players (so their behaviour is easier to predict than humans'),

thus providing a natural �rst step toward our goal. Separate training and

evaluation sets were compiled for both training e�orts, as detailed in Figure 5.

5

evaluation set = agents100

Internet datatim
e

U

data for GP trainees

training set evaluation set

data for human trainees

agents1000 = GPs > 1000 Internet games
(69 agents)

humans500 = humans > 500 Internet games
(58 humans)

agents100 = GPs < 1000 Internet games, and

(135 agents)
> 100 Internet games

GPs

evaluation set

agents1000
vs

agents100agents1000

humans500
vs

vs
agents1000

training set

Figure 5 Data sets for training and evaluation. The 69 gps who had played more than 1000
games on the Internet site (agents1000) were used as trainers; the 135 who had played more
than 100 but less than 1000 games (agents100) were used for evaluation purposes. The 58
humans who had played more than 500 games on the Internet site (humans500) were used
as human trainers. Each gp trainer played against agents1000 to produce a training set
and against agents100 to produce an evaluation set. The games played by humans500 were
alternately placed into training and evaluation sets, and then the evaluation set was culled
so that it consisted entirely of games played against members of the agents100 group.

We examine our training e�orts in three ways. First, we look directly at

the training runs and show the improvement of the networks during training.

Second, we present the win rates of the two populations of trainees, obtained

from playing them against a �xed set of opponents, and consider: does our

technique produce controllers that can play Tron at all? Finally, we make a

comparison between trainers and the trainees, addressing: does our technique

produce a population that approximates the behaviour of its trainers?

0 1 2 3 4 5

x 10
6

0

0.1

0.2

0.3

0.4

0.5

number of training cycles

co
rre

la
tio

n
co

ef
fic

ie
nt

best trainer and trainee
worst trainee
worst trainer

0 1 2 3 4 5

x 10
6

0

0.1

0.2

0.3

0.4

0.5

number of training cycles

co
rre

la
tio

n
co

ef
fic

ie
nt

best trainer and worst trainee
best trainee
worst trainer

(a) humans (b) gps

Figure 6 Change in correlation coe�cient during training runs.

Our measure of improvement during training is based on the frequency of

moves table and how it changes. Referring back to table 1, if the trainee were

a perfect clone of its trainer, then all values outside the diagonal would be 0

and the correlation coe�cient between the two players would be 1. In reality,

the gp trainees reach a correlation of 0:5 or so, while the human trainees

peak at around 0:14. For comparison, we computed correlation coe�cients for

6

127 random playersd, resulting in a much smaller correlation of 0:003. Figure 6

shows the change in correlation coe�cient during training for selected trainees.

0
0

10

20

30

40

50

60

70

80

90

100

w
in

 ra
te

 (%
)

individual players, in sorted order by win rate

original
trainees

0
0

10

20

30

40

50

60

70

80

90

100

w
in

 ra
te

 (%
)

individual players, in sorted order by win rate

original
trainees

(a) humans (b) gps

Figure 7 Win rates of trainer and trainee populations. The horizontal lines denote bound-
aries for grouping players (according to win rate); the human trainers produce a population
of trainees with a distribution across these groupings fairly similar to their own.

The win rates in the evaluation games for the trainers and trainees are

plotted in �gure 7. Here, the players are sorted within each population ac-

cording to their win rate, so the ordering of individuals is di�erent within

each trainer and trainee population. The plot demonstrates that a variety of

abilities has been produced.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

win rate of trainers (%)

w
in

 ra
te

 o
f t

ra
in

ee
s

(%
)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

win rate of trainers (%)

w
in

 ra
te

 o
f t

ra
in

ee
s

(%
)

(a) humans (b) gps

Figure 8 Win rates of trainers compared to trainees.

An interesting way of examining the trainees is shown in �gure 8, where

the win rate of individual trainees is plotted against the win rate of their

corresponding trainers. Notice that the best human trainer has given rise to

the best trainee (see �gures 9a and 9b), while the best gp trainer has produced

di.e. players that choose a move randomly at each time step.

7

the worst trainee (see �gures 9c and 9d). A few of the trainees play very poorly.

These are cases where the network either fails to make any turns or makes

turns at every move (in spite of the strategy described in section 4). Also, in

a number of cases, the trainee outperforms its trainer.

Finally we step away from statistics and highlight some of the trainers and

their trainees by showing selected games against the same opponent. Note two

situations where a trainer that is a bad player produces a trainee that plays

well (�gures 9e and 9f), and a trainer that is a good player produces a trainee

that plays poorly (�gures 9g and 9h).

(a) trainee (b) trainer (c) trainee (d) trainer

best human trainer is also best trainee best gp trainer is also worst trainee

(e) trainee (f) trainer (g) trainee (h) trainer

bad player can produce good trainee good player can produce bad trainee

Figure 9 Sample games of individual trainers and trainees. All games are played against
the same gp opponent. The player of interest is represented by the solid black line and starts
on the left hand side of the arena.

6 Discussion.

The overwhelming dominance of the straight move inherent in the Tron do-

main makes it di�cult for most controllers to learn when to turn. Indeed, this

characteristic proved to be extremely challenging, and initially we produced

hundreds of networks that never learned to turn. The evaluation strategy that

8

we settled with (based on the frequency of moves table) has allowed players

to learn e�ectively. However, we believe that this method works to produce

players that turn only when necessary, and cannot result in more varied be-

haviours such as those illustrated in �gures 4d, 9b and 9h. While this precise

evaluation strategy is highly domain dependent, the technique may be quite

valuable for training in domains where one input tends to swamp others and

for learning to generalize human behaviour in more complex domains.

We make several observations about the results we have obtained, specu-

lating on the discrepancies between trainers and trainees and addressing the

issues raised at the beginning of section 5. How can we explain a trainer that

wins 2% of the time, yet produces a trainee that wins 50% of the time (see

�gure 8a)? The trainee is not being trained on whether it wins or not | in

fact the trainee doesn't know if it wins at all. The trainee learns only from a

sequence of moves. If the trainer makes nine good moves and then a bad one

ends the game, the trainee has still gained from 90% of this experience.

Does our method produce controllers that can play a decent game of Tron?

Yes { and one conclusion we can draw from our statistics is that a population of

humans can act as e�ective trainers for a graded population of agents, because

there is naturally more variation in behaviour both across an entire population

of humans and within a single stochastic human player. It is important for

arti�cially trained players to experience a wide variety of behaviours, otherwise

they will not be robust and will only perform well against players with styles

similar to those of their trainers.

Were we able to produce a population that approximates the behaviour

of its trainers? This is a di�cult question to answer. While the correlation

between individual gp trainers and trainees based on choice of move is much

higher than that for humans, the correlation between win rates of individual

trainers and traineese is better for humans. We speculate that the discrep-

ancies may be due to artifacts of the domain and the nature of each type of

controller. Features that contribute include: gps are deterministic players (vs.

non-deterministic humans), and gps share a limited view of their environment,

using the same sensors that are employed by the trainee networks. The hu-

man players, in contrast, have a global view of the playing arena which is not

practical for arti�cial controllers in this context.

Humans often produce di�erent responses when presented with the same

situation multiple times. Clearly then, it is not possible for a deterministic con-

troller to model the behaviour of the humans exactly. Further work is exploring

adding some measure of non-determinism to the controller. Nonetheless, we

propose to take advantage of networks that are able to �lter out mistakes that

eagainst the same opponent

9

humans make and thus achieve performance superior to that of their trainers

| as was the case for 19 of the 58 human trainees.

Our ultimate goal is to produce a population of graded agents, taking

human behaviour as the basis for constructing the graded population, and then

to select opponents from this population that are appropriate learning partners

for humans at various stages of advancement. The methods demonstrated here,

albeit in a limited domain, represent a �rst step in building such a population

of agents.

Acknowledgments.

Support for this work was provided by the O�ce of Naval Research under

N00014-98-1-0435 and by a University of Queensland Postdoctoral Fellowship.

References.

1. Cypher, A., Eager: Programming Repetitive Tasks by Example, Proceedings

of CHI'91 (1991).

2. Funes,P., Sklar,E., Juill�e,H. & Pollack,J., Animal-Animat Coevolution: Using

the Animal Population as Fitness Function, Proceedings of SAB'98 (1998).

3. Hinton,G., Connectionist learning procedures, Arti�cial Intelligence 40 (1989).

4. Koza,J., Genetic Programming: On the Programming of Computers by Means

of Natural Selection, (MIT Press, 1992).

5. Maes,P., Agents That Reduce Work and Information Overload, Communica-

tions of the ACM 35(7) (1994).

6. Pomerleau,D., Neural Network Perception for Mobile Robot Guidance (Kluwer

Academic, 1993).

7. Rumelhart,D., G.Hinton & R.Williams, Learning representations by back-

propagating errors, Nature 323 (1986).

8. Sklar,E., Agents for Education: Bringing Adaptive Behavior to an Internet

Learning Community, Dissertation Proposal, Brandeis University, (1999).

9. Tesauro,G., Practical issues in temporal di�erence learning, Machine Learn-

ing 8 (1992).

10. Wyeth,G., Training a Vision Guided Robot, Machine Learning 31 (1998).

10

