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Abstract
This paper presents the results of a user study in which the impact of sharing decision making in a human-robot
team was measured. In the experiments outlined here, a human and robot play a game together in which the robot
searches an arena for items, with input from the human, and the human-robot team earns points for finding and correctly
identifying the items. The user study reported here involved 60 human subjects. Each subject interacted with two
different robots. With one robot, the human acted as a supervisor : the human issued commands and the robot obeyed.
With the other robot, the human acted as a collaborator : the human and robot shared decisions and were required to
reach agreement about the robot’s actions in the arena before any actions were taken, facilitated using computational
argumentation. Objective performance metrics were collected and analysed for both types of human-robot team, as well
subjective feedback from human subjects regarding attitudes toward working with a robot. The objective results showed
significant improvement in performance metrics with the human-as-collaborator pairs versus the human-as-supervisor
pairs. Subjective results demonstrated significant differences across many subjective measures and indicated a distinct
preference for the human-as-collaborator mode. The primary contribution of this work lies in the demonstration and
evaluation of a computational argumentation approach to human-robot interaction, particularly in proving the efficacy
of this approach over a less autonomous mode of interaction.
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Introduction

Humans interact with each other in many different
ways. Some modes of interaction are supervisory, where
one person commands another, while other modes are
collaborative. In a supervisory interaction, one person takes
responsibility for making decisions about joint actions
and actions that affect others, whereas in a collaborative
interaction, partners share decision making. Collaborators
exchange ideas and discuss options. Together, they reach
agreement about actions that depend on or are related to
each other. Agreement is facilitated through conversation,
or dialogue, in which each partner communicates ideas
and adjusts their beliefs according to new or altered ideas
presented by others. Some human-robot interaction (HRI)
modes are less autonomous and involve a human supervisor
who maintains the locus of control and tells the robot what to
do (at varying levels of detail). The human leader sets overall
goals and assigns tasks to the robot designed to achieve those
goals. The robot may then define its own series of subgoals
in order to accomplish its assigned tasks. If, for example, a
human tells a robot to go to a particular location, the robot
will execute path-planning behaviours to select waypoints
and motion behaviours to travel to each waypoint, as well
as collision-avoidance behaviours in order to arrive safely.

The restrictive mode of supervisory interaction limits
the potential robustness of a human-robot team because
it does not take full advantage of the sensory, processing
or reasoning capabilities of the robot. If a robot fails at
its assigned task, it will generally only be able to report

that failure has occurred and be unable to elaborate on the
reason(s) for its failure. For example, if a robot cannot go
to a destination assigned by its human supervisor because
there is a fire blocking egress, the typical robot cannot engage
the human in discussion about alternative goals. In addition,
most robots cannot request assistance to accomplish tasks
that they fail to complete. Some work has demonstrated the
effectiveness of a robot that asks for help from a human when
it determines that without help, it will fail to complete its
assigned task (Rosenthal et al. 2010). In that work, the locus
of control for task completion and responsibility for actions
shifts from the robot to the human, allowing the robot to
request assistance from the human and accomplish tasks it
would otherwise have been unable to tackle.

We are interested in situations where the initiative for
collaboration can emanate from either the human or the
robot, where discussion about actions can ensue, reasons for
and against taking particular actions can be passed back and
forth, and the responsibility for actions can flow to either
the human or the robot, until the task is completed. For
example, suppose a human-robot team is asked to fetch an
orange ball from an unfamiliar environment. If the human
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asks a robot to help her look for such a ball which she can
pick up, the robot may wander around their environment
taking pictures and sending them to the human, without
knowing whether it has captured an image of a ball or
a round fruit that is orange-coloured. Feedback from the
human about the content of the image would improve the
likelihood that the human-robot team has obtained a picture
of an orange ball, because humans have better abilities
to distinguish between items that closely resemble each
other. Feedback from the robot about the location where
the image was taken and directions for how to get there
would improve the likelihood that the human-robot team
can retrieve the ball, because robots have better abilities to
map their environment and perform path-planning using the
map. If the robot and human disagree about an aspect of
their task, the ability to communicate the reasons for their
individual opinions—perhaps the evidence that led each to
reach their own conclusion—can be invaluable in resolving
the conflict. Thus, rich discussion enables shared decision
making about the content of candidate images, agreement
about an image that indeed contains an orange ball and
guidance for retrieving the ball.

In the study presented here, we seek to measure the
differences for a human-robot team operating in two distinct
modes. The first mode is the less autonomous “human-as-
supervisor” relationship, where the human issues commands
and the robot executes them. The second mode is a “human-
as-collaborator” relationship, where the human and robot
share decision making. This latter mode is enabled using
computational argumentation-based dialogue (Walton and
Krabbe 1995), which is adapted here to provide the ability
for the human and robot to seek agreement concerning
aspects of their joint task (Sklar and Azhar 2015; Sklar
et al. 2013a). Objective performance metrics were collected
and analysed for both types of human-robot team, as well
subjective feedback from human subjects regarding attitudes
toward working with a robot. The objective results showed
significant improvement in performance metrics with the
human-as-collaborator pairs versus the human-as-supervisor
pairs. Subjective results demonstrated significant differences
across many subjective measures and indicated a distinct
preference for the human-as-collaborator mode. The primary
contribution of this work lies in our demonstration and
evaluation of a computational argumentation approach to
human-robot interaction (HRI). Not only are we the first to
provide an implementation of computational argumentation
applied to HRI, but also we are the first to evaluate this
approach with physical robots and to compare our results
with a simulated robot environment.

The remainder of this article is organised into seven
sections, as follows. First, the Background section defines
computational argumentation∗ and argumentation-based
dialogue, particularly for those readers unfamiliar with
this sub-area of artificial intelligence and philosopny. As
explained in this section, we discuss the notion of “dialogue”
exclusively in the sense of computational argumentation-
based dialogue; we do not imply any application of or
contribution to natural language dialogue. Second, the
Approach section outlines the underlying methodology and
implementation of our computational argumentation-based
dialogue framework for human-robot interaction. Third,

the Experiments section describes the user study that
we conducted in order to demonstrate the effectiveness
of our computational argumentation approach to shared
decision making in a human-robot team. This is followed
by the Results section, which presents outcomes of the
user study. Then, the Related Work section highlights some
relevant literature to illustrate our contributions. Finally, the
Conclusion section closes with a summary, discussion of our
results, and directions for future work.

Background

The theory of interaction adapted for the framework
employed in the work presented here comes from computa-
tional argumentation (Rahwan and Simari 2009), which is
a logic-based formal methodology for structuring evidence
in support of (or attacking) specific conclusions and has
its roots in philosophy and artificial intelligence. Build-
ing on this methodology, computational argumentation-
based dialogue (Walton and Krabbe 1995; Hulstijn 2000;
McBurney and Parsons 2002; Prakken 2006) is a formal-
ism in which participants engage in goal-oriented exchange
following specific protocols. In our work—as mentioned
earlier—we consider the notion of “dialogue” exclusively in
the sense of computational argumentation-based dialogue;
we do not imply any application of or contribution to
natural language dialogue†. Computational argumentation-
based dialogue theory arises from studying people, where
early research in the computational argumentation commu-
nity identified six primary types of dialogue (Walton and
Krabbe 1995). These are distinguished, based on partic-
ipants’ knowledge and their individual and shared goals,
specifically: information-seeking (Walton and Krabbe 1995)
(where one participant asks a question that she does not know
the answer to and believes the other participant can answer),
inquiry (McBurney and Parsons 2001b) (where both partic-
ipants seek an answer to a question that neither knows the
answer to), persuasion (Prakken 2006) (where one partici-
pant tries to alter the beliefs of another participant), negoti-
ation (Rahwan et al. 2003) (where participants bargain over
the allocation of a scarce resource), deliberation (McBurney
and Parsons 2004) (where participants decide together on
taking a particular action) and eristic (Walton and Krabbe
1995) dialogues (where partipants quarrel verbally). Other
types of argumentation-based dialogue have followed in the
literature, including: command (Girle 1996) (where one par-
ticipant tells another what to do), chance discovery (McBur-
ney and Parsons 2001a) (where a new idea arises out of
the discussion between participants), and verification (Cogan
et al. 2005) (where one participant asks a question that she
already knows the answer to and she believes the other
participant also knows the answer, so her aim is to verify
her belief).

∗Computational argumentation is also referred to as logical argumentation,
or simply argumentation, in the artificial intelligence and philosophy
literatures.
†While we agree that natural language dialogue will be important in any
fully autonomous human-robot system, we have not chosen that area in
which to focus our research.
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Argumentation-based dialogue theory has been studied
by researchers in a number of disciplines, including
Law, Medicine, Artificial Intelligence and Multi-Agent
Systems (Nielsen and Parsons 2006; Bench-Capon and
Dunne 2007; Medellin-Gasque 2013). Argumentation-based
dialogues have been developed to help two agents make
decisions about their goals and plans. Two co-operative
agents who share a goal will only accept plans that are
aligned with their beliefs. Plan-based dialogue models have
been developed using a belief, desire and intention (BDI)
architecture (Wobcke et al. 2006) in the agent-oriented
software engineering community. Belesiotis et al. (Belesiotis
et al. 2010) developed an abstract argumentation-based
protocol that allows two agents to discuss their proposals
until an agreement is reached through the persuasion-aligned
planning beliefs of the agents.

A number of researchers have investigated and applied
specific dialogues to a range of different domains and
problems. Black & Atkinson (Black and Atkinson 2011)
developed a dialogue framework where two agents employ
persuasion dialogue to discuss how to act. Black (Black
2007) demonstrated how a general argumentation-based
dialogue framework can be applied in the medical domain
where two doctors engage in inquiry dialogues to expand
their knowledge and make better decisions. Black &
Hunter (Black and Hunter 2009) developed this theoretical
framework for two collaborative agents to engage in inquiry
dialogue as a means to expand their joint knowledge.
Tang et al. (Tang and Parsons 2005) developed formal
mechanisms to employ deliberation dialogue for discussing
actions. Agents decide what actions to undertake and the
order in which the actions should be performed, combining
both agents’ knowledge and overlapping expertise. In later
work, Tang et al. (Tang et al. 2010b) developed a formal
argumentation model to generate plans for a team that
operates in a non-deterministic environment. Medellin-
Gasque et al. (Medellin-Gasque et al. 2012) developed a
formal argumentation model for two common goal-sharing
autonomous agents. In this model, the agents decide on
a plan in which they will propose, justify and share
information about plans, engaging in argumentation-based
persuasion and negotiation dialogue.

Only a handful of projects have implemented interactive
argumentation-based systems and tested them with human
users. To our knowledge, nobody else has tested them
with robots. Tang et al. (Tang et al. 2010a, 2011, 2012b)
developed an argumentation engine called ArgTrust, which
is based on a formal argumentation framework for agents to
reason about their beliefs, their level of trust in information
from which those beliefs are derived and in the source(s) of
that information. Sklar et al. (Sklar et al. 2015) evaluated a
prototype implementation of ArgTrust to study how people
reason and make decisions in uncertain situations and how
they explain their decisions. The results of the user study
involving 22 participants indicate that an argumentation-
based system such as ArgTrust can help humans carefully
formulate their decisions. Toniolo et al. (Toniolo et al.
2015a,b) developed CISpaces, an argumentation-based tool
designed to assist intelligence analysts in making sense of
complex and incomplete information. The system allows
analysts to exchange arguments encoded through argument

schemes (Walton et al. 2008), which are formally coded
common-sense patterns of reasoning.

We have applied computational argumentation theory
to human-robot interaction, using argumentation-based
dialogue as the means to provide support for answering
a question, to aid in the diagnosis of errors due to
hardware or software failure or unexpected changes in
the environment, or to resolve conflicts (Sklar et al.
2013a; Sklar and Azhar 2015). We developed the ArgHRI
software framework (Azhar 2015), which employs a
version of the ArgTrust engine (Tang et al. 2012b) and
a control layer (Parsons and McBurney 2003), which
sits on top of ArgTrust, to manage multiple layers of
argumentation-based dialogue. Next, we describe ArgHRI,
followed by presentation of the experimental results
that are the focus and primary contribution of this
article. To our knowledge, we are the first to apply
computational argumentation-based dialogue for human-
robot collaboration, from implementation of the formal
theory to evaluation with physical robots and human
subjects.

Approach
Our approach enables a human-robot team to expand
and share knowledge and make decisions together during
execution of a shared task. ArgHRI is the software
framework that we have implemented to support these
activities. The framework comprises:

• a belief system for describing the robot’s environment
and capabilities (domain dependent) and a rule-based
system to maintain its beliefs (domain independent);
• a domain independent argumentation engine that

applies computational argumentation to calculate the
support for a specific conclusion based on the robot’s
beliefs (ArgTrust) (Tang et al. 2012b);
• a domain independent argumentation-based dia-

logue system that implements the dialogue theory
described in the previous section;
• a robot operating environment, which provides

a control architecture for deploying physical and
simulated robots (HRTeam) (Sklar et al. 2011);
• a game engine that provides a domain-dependent

facility for the experimental task domain, the Treasure
Hunt Game (THG); and
• a user interface and game client that enable

interaction between a human user and the robot.

Each of these components is discussed in this section, in the
order in which they are listed above.

Belief system
ArgHRI employs a belief system structured around a
simplified ontology for describing the robot’s beliefs and a
rule-based methodology for maintaining the robot’s beliefs.
The ontology includes a set of predicates that describe the
robot’s internal state, the state of its environment (Table 1)
and its possible actions and capabilities (Table 2). The rule-
based methodology is a formal dialogue game (McBurney
and Parsons 2002), which allows the robot to manage
its beliefs in a structured way and is expressed using
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At(t, loc) which is true if, at time t, the
robot is in location loc

Battery(t, s) which is true if, at time t, the
robot reports battery status s (low,
high); here the battery status is
set to low when it only has 20%
battery and set to high when it has
more than 80% battery.

Found(t, obj) which is true if, at time t, the
robot senses object obj

ObjectAt(t, loc, obj) which is true if, at time t, object
obj is at location loc

Table 1. Example predicates that describe the robot’s beliefs.

GoTo(t, loc) t is the time at which the action begins;
loc is a location

Stop(t) t is the time at which the robot ceases
motion

Sense(t) t is the time at which the robot senses an
object

Table 2. Example predicates that describe the robot’s actions.

fundamental elements of computational argumentation as
specified in related work (Parsons et al. 2003; Sklar and
Parsons 2004). These elements include:

R.Σ = robot’s beliefs about itself and
its environment

R.Γ(H) = robot’s beliefs about the human
R.CS = robot’s commitment store

(record of utterances)
H.CS = human’s commitment store
R.∆ = full set of beliefs that the robot can

reason with:
R.Σ ∪R.Γ(H) ∪R.CS ∪H.CS

The robot’s set of internal beliefs (R.Σ ∪R.Γ(H)) is
considered private, whereas its commitment store, R.CS,
contains all its utterances in a dialogue; so we consider the
commitment store to be public. The robot has access not only
to its own commitment store, but also to the commitment
store of the human with whom it is engaged in a dialogue.
Both R.CS and H.CS are stored by the robot, which
means that the robot can update its beliefs about the human,
R.Γ(H), based on H.CS, what the human has said in the
dialogue. The full set of beliefs that the robot has access to
for reasoning, R.∆, comprises not only its own beliefs, but
also H.CS, which allows the robot, during a dialogue, to
repeat utterances the human makes or ask for clarification
about them, without formally committing them to the robot’s
internal set of beliefs (R.Σ). This formal commitment step,
in which the robot’s beliefs are revised and R.Σ is updated,
occurs at the end of a dialogue. The rules for belief revision
are incorporated in the protocols specific to each dialogue
locution, detailed in the next section.

There are two important features of the ArgHRI belief
system. First, we do not make any attempt to create or
maintain a true and complete model of the human’s beliefs.
We only model what the robot believes the human believes,

R.Γ(H), based on H.CS, what the human has said in the
dialogue. For the purposes of the experiments described
here, we assume that the human tells the truth, though
we acknowledge that such an assumption puts limitations
on our system for real-world deployment. There is a
growing literature on the use of argumentation to model
untruths (Caminada 2009), one area for future investigation.
Second, following the rules of dialogue games (McBurney
and Parsons 2002), participants can only utter beliefs that
they can support in the formal sense of argumentation. This
means that a participant is allowed to utter b, where b is
represented as an atomic fact in the participant’s internal set
of beliefs, or c, where c is a conclusion that can be drawn
from a set of arguments (S, c). Here, S is considered the
support for the conclusion c, such that each element of S
is either an atomic fact (like b) or can be derived from rules
that are part of the participant’s set of beliefs. For example,
the rule:

GoTo(t, loc)→ At(t + 1, loc)

says that if the predicate on the left is true, then the predicate
on the right can be concluded as the result of applying
the rule. Note that an atomic fact, b, can represent fixed
knowledge about the world or about the domain or the robot’s
environment, all of which could be established a priori and
remain unchanged during a robot’s mission; as well, b can
represent information about the robot or its environment
that does change during a mission, e.g., the output of a
Sense(t) action. This restriction on legal utterances is why
it is important that R.Σ includes H.CS.

Argumentation engine
ArgHRI employs the computational argumentation engine
ArgTrust (Tang et al. 2012b), which is a partial implementa-
tion of the formal system from (Tang et al. 2012a), to calcu-
late the support for a specific conclusion based on the robot’s
beliefs, as exemplified above. This is a critical component of
ArgHRI because it is used by the robot to reason about how
a goal might be achieved or to resolve conflicts found within
its internal set of beliefs (R.Σ) or between its beliefs and its
beliefs about the human’s beliefs (R.Γ(H)). Conflicts can
be formally computed in two ways (Sklar and Azhar 2015):
undermining, where the human’s conclusion of an argument
conflicts with the conclusion of the robot’s arguments or vice
versa; and rebuttal, where the conclusion of the human’s
argument conflicts with some element in the support of the
robot’s argument or vice versa.

ArgHRI communicates with ArgTrust using an API in
which ArgHRI sends a set of inputs (beliefs and rules)
and a query (a conclusion to assess) to ArgTrust. ArgTrust
searches the inputs for evidence that supports, or attacks, the
conclusion. The inputs include not only the robot’s beliefs
about the specific situation, but also knowledge about the
domain (e.g., a map of the robot’s environment) and world
knowledge (e.g., “North is north of South”). The output from
ArgTrust is an accept predicate, containing the evidence
that supports the conclusion; a defeat (reject) predicate,
containing the evidence that attacks the conclusion; or an
undecided predicate, containing the conflicting evidence that
prevents the system from either accepting or defeating the
conclusion.
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Two comments should be interjected here. First, the choice
of ArgTrust for computing arguments in ArgHRI was made
largely because the system is one of the few implementations
of formal argumentation that can easily be integrated into
another system as a standalone computation engine. Second,
the specific way in which beliefs are represented provokes
questions about the scalability of the system. However, this
is a general problem for AI-based systems, many of which
employ knowledge representations that will not easily scale.
Addressing this issue is beyond the scope of the research
focus here.

Argumentation-based dialogue system
The argumentation-based dialogue system developed for
ArgHRI is an implementation of a dialogue game (McBur-
ney and Parsons 2002), which originates from well-
founded argumentation-based theory and provides an alter-
native approach to structuring dialogue, supporting less
restrictive conversation policies and more efficient com-
munication (Black 2007). Our formal model is adapted
from (McBurney and Parsons 2002; Parsons et al. 2003),
which prescribes a structure for defining protocols for utter-
ances associated with each type of dialogue, essentially a list
of legal moves that each participant in the dialogue game
is allowed to select from. In related work, we have defined
the protocols for each of the types of dialogue implemented
in ArgHRI (Sklar and Azhar 2015; Sklar et al. 2013a),
including state machines that control the possible sequences
of locutions, from start state to termination state. One of
the advantages of employing argumentation-based dialogue
games is that it has been proven, formally, that the rules for
each type of dialogue guarantee termination (Parsons et al.
2003).

Three types of argumentation-based dialogue have been
implemented in ArgHRI:

• information-seeking: where one participant seeks
answers to questions from another participant, who
is believed by the initiating participant to know the
answers;
• inquiry dialogue: where the participants collaborate

to answer a question or questions whose answers are
not known to any participant; and
• persuasion dialogue: where one participant seeks to

persuade another party with a different opinion to
adopt a belief or point-of-view.

Here are some examples of human-robot scenarios where
each type of dialogue may be applied. The robot could ask
the human for information that the robot does not have and
believes that the human has, in order to prevent errors; this is
an example of an information-seeking dialogue. The robot
and human may agree to seek an answer to an unknown
query because neither of them has enough information to
make an informed decision; this is an example of an inquiry
dialogue. The human could suggest that the robot follow her
plan and discard its own plan, in order to pre-empt failure
predicted by the human; this is an example of a persuasion
dialogue. The robot might discover information that the
human does not possess or that contradicts something that
the robot believes the human believes, in order to correct the

human’s misconception(s) and pre-empt possible failure; this
is another example of a persuasion dialogue.

Table 3 lists the conditions under which the robot can
initiate each of these three types of dialogue. The conditions
consider a belief, b, and make a decision based on the
membership of b in two elements of the robot’s belief set:
its internal beliefs (R.Σ) and its beliefs about the human’s
beliefs (R.Γ(H)).

b ∈ R.Γ(H) ¬b ∈
R.Γ(H)

?b ∈
R.Γ(H)

b ∈
R.Σ

agreement
(no dialogue)

disagreement
(persuasion)

lacking
knowledge
(information-
seeking)

¬b ∈
R.Σ

disagreement
(persuasion)

agreement
(no dialogue)

lacking
knowledge
(information-
seeking)

?b ∈
R.Σ

lacking
knowledge
(information-
seeking)

lacking
knowledge
(information-
seeking)

shared lack
of knowledge
(inquiry)

Table 3. Cases for different types of dialogues (from (Sklar and
Azhar 2015)). The notation b ∈ R.Σ means that the robot
believes b (or ¬b, accordingly). If the membership is in R.Γ(H),
then the meaning is that the robot believes that the human
believes b (or ¬b). The concept that a participant does not have
any knowledge about b, i.e., is unable to decide whether they
believe b or ¬b, is represented by ?b.

A control layer manages the dialogue game and incorpo-
rates the following components outlined by (McBurney and
Parsons 2003, 2009):

• commencement rules: a set of rules that defines
the pre-conditions or circumstances under which the
dialogue can begin;

• locutions: the complete set of possible moves
consisting of statements (utterances or locutions)
issued by one player (participant) and directed toward
the other player;

• combination rules: a set of rules (protocols) that
governs which moves a player can make in each
dialogical context;

• commitments: a set of rules that define the
circumstances under which each player expresses
commitment to a proposition and a public commitment
store for each player (i.e., R.CS);

• speaker order: a set of rules that defines the order in
which a speaker may make utterances; and

• termination rules: a set of rules that enable a dialogue
to reach a termination condition, where either both
players agree, by accepting the same proposition, or
both players reach a stalemate, by failing to accept the
same proposition exhausting all possible moves.

Note that acceptance can mean that both players agree
to either b or ¬b. An individual player cannot commit to
both b and ¬b. A commitment store is updated after every
utterance (R.CS and H.CS), and the robot’s beliefs (R.Σ
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and R.Γ(H)) are updated after the termination of each
dialogue.

Robot operating environment
The robot actualised for ArgHRI is controlled through the
HRTeam robot operating environment (Sklar et al. 2011,
2013b). HRTeam was developed to support experimental
research in human/multi-robot interaction in both physical
and simulated environments. This software framework was
employed in ArgHRI in a single-robot mode. The HRTeam
framework is structured around a client-server architecture
that comprises an agent layer (for intelligent reasoning), a
robot layer (for actuating robot behaviours) and a centralised
server for passing messages between nodes on each layer.
The robot layer is built on Player/Stage (Gerkey et al. 2003),
which supports easy transfer between systems employing
physical or simulated robots. As detailed in the Experiments
section, later in this article, ArgHRI employed both the
physical and simulation operating modes of HRTeam.

The architecture of ArgHRI is integrated into HRTeam and
provides the intelligent agent layer as the implementation of
the decision-making capabilities of the robot. In other words,
the R entity mentioned above is implemented in this layer.
Figure 1 shows the HRTeam arena (a) and robot (b) that were
employed in ArgHRI and used for the experiments described
here.

(a) arena

(b) robot

(c) treasure

Figure 1. The ArgHRI + HRTeam arena and robot.

Game domain
We have adapted the Treasure Hunt Game (THG) (Jones
et al. 2006; Sklar and Azhar 2015) as an experimental
domain for our research. The motivation is to emulate
a controlled urban-search-and-rescue-like environment for
studying human-robot interaction (Lewis et al. 2003; Marge
et al. 2009).

Our version of the THG (Sklar and Azhar 2015) involves
two players, a human and a robot, who function together as
a team. Their task is framed as a real-time strategy game
in which they must locate objects, or “treasures,” in an
arena that is accessible to the robot but not to the human.
An example treasure is shown in Figure 1(c). This is a
game because the team achieves a score based on their

performance, time is a factor and the robot has limited
resources. The robot cannot simply perform an exhaustive
search of the arena to find all the treasures. Thus, the human
and the robot have to decide how best to make use of those
resources and locate as many treasures as possible in order
to maximize their score.

The robot operates inside the arena with the ability to
move around the arena, use sensors (e.g., cameras) to gather
information about the arena and remotely communicate with
the human player. The human operates outside the arena
and has the ability to receive limited information about the
arena from the robot and to communicate with the robot.
Thus the type of human-robot interaction in our THG is
categorized as a remote interaction, since the human and the
robot are in different locations and not in each other’s line of
sight (Goodrich and Schultz 2007).

The robot has an energy level associated with it that
decreases as the robot performs the following actions:

• When the robot moves, it expends energy and its health
points decrease.

• When the robot gathers sensor data, it expends energy
and its health points decrease.

• When the robot transmits sensor data to the human, it
expends energy and its health points decrease.

The shared mission of the THG is for the human-robot team
to find and correctly identify as many treasures as possible
before the robot loses all of its health points. The human-
robot team’s score in the game is the number of points
earned by correctly identifying treasures. They lose points
by incorrectly identifying treasures.

A game engine runs independently of the ArgHRI system,
to keep track of which treasures are placed where in the
arena. The human-robot team can submit guesses (i.e.,
〈treasure, location〉 tuples) to the game engine. The game
engine returns a value (true or false) indicating if the guess
is correct or not and updates the team’s score.

User interface
The ArgHRI user interface, pictured in Figure 2, consists of
the following panels:

(a) Map Panel: This panel displays a map of the arena,
i.e., a 2D visualization of the physical arena. The
interface module draws the robot’s up-to-date location
on the map.

(b) Image Panel: This panel displays the five most recent
images received from the robot, taken in the room last
visited by the robot.

(c) Dialogue History Panel: This panel displays the
history of current and past dialogues between the robot
and the human. This is like a “chat log” and contains
participants’ commitment stores (R.CS and H.CS).

(d) Dialogue Panel: This panel provides the input facility,
through which the human interacts with the robot. This
is a constrained interface, to avoid having to work with
the complexities of natural language (an obvious area
for expansion in future work, but beyond the scope of
the present research).

(e) Game Status Panel: This panel displays up-to-date
game score information, the robot’s “health points”,
and a tally of the treasures found during each game.
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Figure 2. The ArgHRI user interface.

Experiments
The primary goal of this article is to present the results of
a user study which we conducted in order to demonstrate
the effectiveness of our computational argumentation-based
dialogue approach to shared decision making in a human-
robot team. The study investigates two factors. The first
factor considers two different interaction modes: human-
as-collaborator (where computational argumentation-based
dialogue is employed to share decisions) versus human-as-
supervisor (the control, where decisions are not shared). The
second factor considers two different operating conditions:
physical versus simulated robots.

The first factor—human-as-collaborator vs human-as-
supervisor—was tested using a within-subjects design; each
human subject interacted with two different robots, one
implementing each interaction mode. Testing this factor
was the primary purpose of our study: to demonstrate
the effectiveness of our computational argumentation-based
dialogue approach to shared decision making in a human-
robot team, as compared to a “control” mode in which
decisions were not shared.

The second factor—physical vs simulated—was tested
using a between-subjects design; each human subject
interacted either with two physical or two simulated robots.
There were two reasons for assessing the impact of this
factor. One was a practical consideration: human subjects
could participate with robots operating in the simulated
condition from several test sites, whereas in order to work
with the physical robots, participants had to travel to a
remote lab facility. The second purpose was because it is very
common in robotics research to test theories with simulated
robots. We were interested to ascertain whether significantly
different outcomes would result from working with physical
versus simulated robots.

The outcomes are reported and discussed in detail in the
Results section. But first, in this section, we explain the
experimental setup in detail.

Modes
As above, the experiments described here compare the
performance of a human-robot team playing the THG in two
different interaction modes:

• human-as-collaborator mode: the human and robot
interact as collaborating peers, sharing decisions
about what the robot should do, using computational
argumentation-based dialogue, and reaching agree-
ment before the robot takes any actions; and

• human-as-supervisor mode: the human and robot do
not share decisions, and the human interacts with the
robot in a supervisory capacity, providing commands
to the robot which the robot obeys without question.

These two modes were implemented and presented to
human subjects as two different robots. Robot “Fiona”
enacted the human-as-collaborator mode, sharing decisions
with the human using computational argumentation-based
dialogues where the human and robot had to reach agreement
about the robot’s actions before the robot executed any
actions. Robot “Mary” enacted the human-as-supervisor
mode, obeying the human but not sharing decisions: the
human dictated tasks to the robot and Robot Mary performed
the tasks she was given. According to the hierarchy
defined by (Parasuraman et al. 2000), Robot Fiona provides
multi-faceted mid-level automation support, by offering
“decision/action alternatives”, helping to narrow down the
selection and executing “suggestions if the human approves”
(levels 2–5) (Parasuraman et al. 2000, p.287). In contrast,
Robot Mary provides low-level automation of decision and
action selection, wherein the human “must take all decisions”
(level 1) (Parasuraman et al. 2000, p.287) (though the robot
in our case takes all the actions). We note that Robot Mary
is not tele-operated. Both Fiona and Mary are autonomous
robots that perform their own low-level path-planning and
motion decisions; the contrast is in the higher-level goal
setting, where Fiona shares decisions about goals with her
human teammate whilst Mary accepts goals as set by her
human teammate without sharing decision-making.

Each human subject was exposed to both modes,
following a within-subjects experiment design. To mitigate
learning and order effects, half the human subjects played
games in the collaborative mode first (with Robot Fiona); the
other half played games in the supervisory mode first (with
Robot Mary).

Conditions
As above, experiments were conducted using two different
operating conditions. Under one condition, human subjects
played games with physical robots operating in a physical
arena. Under the other condition, human subjects played
games with simulated robots operating in a virtual version
of the same arena used for the physical experiments. The
two different operating conditions were facilitated using the
HRTeam framework (described earlier) which supports this
dual functionality such that the robot controller software is
the same, whether the robot is a physical entity (as pictured
in Figure 1b) or simulated. Each human subject was exposed
to one condition, following a between-subjects experiment
design.

Decision points
In order to conduct a controlled experiment, we engineered
a series of three decision points to test the shared decision-
making capabilities of the human-robot teams. First, the team
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decides where to go—which rooms should be visited in order
to look for treasure (since an exhaustive search is not possible
given the robot’s energy limitations, as engineered for the
experiments). Second, the team decides how to get there—
the order in which the agreed-upon rooms should be visited.
Third, the team decides what is found there—whether the
sensor data collected by the robot (e.g., images) contain
treasures.

In the human-as-collaborator mode, for the first and
second decision points, the human and the robot begin by
each independently planning a travel sequence (the robot
uses the A* path planner (Hart et al. 1968)). Then, they
engage in computational argumentation-based dialogue to
share the decision about which plan the robot should follow.
This allows the teammates to identify any conflicts in their
respective plans and reach agreement about how to resolve
those conflicts and arrive at a mutually agreeable plan—
which is the one that the robot actually executes. For the
third decision point, the robot sends images to the human
and they use computational-argumentation based dialogue to
share decisions about whether any treasures are contained in
the images. Again, mutual agreement must be reached about
the content of the image before a guess is submitted to the
game engine.

In the human-as-supervisor mode, for the first and second
decision points, the human plans the robot’s sequence of
travel using a visual representation of the map and the robot’s
current location in the map (without any computational
assistance from the system, e.g., numeric coordinates or
distance estimates), based on the assumption that human
participants are capable of spatial reasoning and utilizing
common sense to determine feasible robot paths within
a simple static environment. Note that once these two
decisions are made (i.e., which rooms should be visited and
the order in which they should be visited), the robot employs
the A* path planner to compute its shortest path from one
room to the next. For the third decision point, the robot
sends images to the human, but the human determines the
content of each image and decides alone whether to submit
any guesses to the game engine.

The first two decision points comprise a deliberation
phase, measuring the time it takes for the team (in either
mode) to decide on a travel plan. These two decision
points are reached only once per game, in order to conduct
a controlled experiment. After the travel plan has been
formulated, the robot starts moving. The time from when
the robot begins moving until the game is over is referred
to as the execution phase. The third decision point could
be reached multiple times per game, as participants sought
to identify multiple treasures during each game. Detailed
analysis of the decision points and dialogues that were used
in this study is beyond the scope of this article, but has been
presented elsewhere (Azhar and Sklar 2016).

Metrics
There were several types of data collected during the
user study, including objective performance metrics and
subjective survey responses. The objective performance
metrics described how well the team played the game. These
include: (i) deliberation time; (ii) execution time; (iii) the
length of the path traversed by the robot; and (iv) the score

in the game. Two sets of subjective survey responses were
collected during the experiment: one after playing a game
with Robot Mary and one after playing a game with Robot
Fiona. The second survey (after completing both games)
included some additional questions about the user’s overall
experience. The subjective survey responses were presented
using a Likert response format (Likert 1932) with seven
alternatives, where 7 was the most favourable, 4 was neutral
and 1 was the least favourable. Ten questions asked about
the user’s perception with respect to how much each robot
helped the human to complete their task successfully, how
easy it was to collaborate with each robot, how much the
user trusted each robot, and how much the user was affected
by the dialogue. Sample questions are listed in Table 4. The
questions were presented to users in random order.

Thus our experiments involved two independent variables:
interaction mode (human-as-collaborator (col) or human-as-
supervisor (sup)) and operating condition (physical (phy) or
simulated (sim) robots); and multiple dependent variables:
four performance metrics and six survey responses (detailed
below).

Research hypotheses
In our experiments, we expected to see statistically
significant differences between the two interaction modes,
but no significant differences between the two operating
conditions.

We pose the following hypotheses about interaction mode
with respect to the objective performance metrics:

H1. Deliberation time will be longer for human-as-
collaborator than human-as-supervisor mode.
(H0 : col = sup; HA : col > sup)

H2. Execution time will be faster for human-as-
collaborator than human-as-supervisor mode.
(H0 : col = sup; HA : col < sup)

H3. Distance travelled will be shorter for human-as-
collaborator than human-as-supervisor mode.
(H0 : col = sup; HA : col < sup)

H4. Game score will be larger for human-as-collaborator
than human-as-supervisor mode.
(H0 : col = sup; HA : col > sup)

The reasoning behind hypothesis H1 is that it will take more
time for the human and robot to discuss options and reach
agreement using our argumentation-based dialogue system
than were the human simply to send commands to the robot.
The reasoning behind the remaining hypotheses (H2–H4) is
that the human and robot will combine abilities and reach
agreement about the best plan, which will result in faster
execution time, shorter distance and higher game score.

We pose the following hypotheses about interaction mode
with respect to the subjective survey metrics:

H5. The user’s perception of the success of human-robot
games will be more positive for human-as-collaborator
than human-as-supervisor mode.
(H0 : col = sup; HA : col > sup)

H6. The user’s perception of the ease of collaboration in
human-robot games will be more positive for human-
as-collaborator than human-as-supervisor mode.
(H0 : col = sup; HA : col > sup)
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H5 I think that I can collaborate successfully with a
robot in the treasure hunt game.

H6 I think that collaborating with a robot will make
my task easier than working on the task alone.

H7 I think that a robot can be a trustworthy
collaborator.

H8 I don’t think that I have to expend a lot of effort to
communicate with a robot.

H9 How well would you say you understood the task
while interacting with Robot Mary/Fiona?

H10 How mentally demanding was the task while
interacting with Robot Mary/Fiona?

Table 4. Sample survey questions and corresponding research
hypotheses.

H7. The user’s perception of their level of trust in the robot
for human-robot games will be higher for human-as-
collaborator than human-as-supervisor mode.
(H0 : col = sup; HA : col > sup)

H8. The user’s perception of the effort to engage in
dialogue to support human-robot games will be higher
for human-as-collaborator than human-as-supervisor
mode.
(H0 : col = sup; HA : col > sup)

H9. The user’s perception of their understanding of the
task will be higher for human-as-collaborator than
human-as-supervisor mode.
(H0 : col = sup; HA : col > sup)

H10. The user’s perception of their mental demand will be
higher for human-as-collaborator (col) than human-as-
supervisor (sup) mode.
(H0 : col = sup; HA : col > sup)

In addition, the survey given after both games included
some questions about the whole experiment. These questions
attempted to obtain users’ feedback on the complexity of
the task they were asked to solve; their explicit preferences
for one robot or the other, in the context of simple or
complex tasks; and their perception of how much the human-
as-collaborator robot helped them. The questions were as
follows:

FS1. “Given a simple task, I prefer Robot Mary/Fiona.”
FS2. “Given a complex task, I prefer Robot Mary/Fiona.”
FS3. “How difficult was each scenario to understand?”
FS4. “How hard was it to make a decision (or come up with

a plan to solve the game)?”
FS5. “How much did the Robot Fiona’s feedback help you

resolve problems?”
FS6. “How much did the Robot Fiona’s feedback help your

decision making?”

Some of these survey questions were inspired by the NASA-
TLX measurement instrument (Hart and Staveland 1988;
Hart 2006), particularly to assess participants’ perceived
levels of mental demand and task complexity.

Participants
Our study involved 60 participants. There were 27
participants (20 male and 7 female) who played games with

physical robots. There were 33 participants (22 male and 11
female) who played games with simulated robots. Most of
the 60 participants ranged in age from 18 to 24 (74%), while
the remaining 26% of the participants were aged 25 to 39
years old. About 97% of the participants were undergraduate
students. Overall, about half of the participants had no prior
experience with robots. Those participants who interacted
with a robot previously had less than one year of experience.

Each human subject received monetary compensation
(US$10) for participating for an hour. Additional monetary
compensation (US$10) was given for travel time and
transportation fare for the human subjects who played games
with physical robots in our laboratory (because they were
required to travel some distance to get to the lab).

Results
This section presents the results from the experiments
described above. We analysed the effects of the two exper-
imental factors (interaction mode and operating condition),
investigating whether any differences in outcomes were due
to interaction mode (col vs sup) or operating condition (phy
vs sim), or combinations thereof, as illustrated in Figure 3.
Our analysis is presented in three sections: (1) objective
performance metrics; (2) subjective survey data; and (3) a
transcript of an example dialogue sequence, in order to
demonstrate the type of interactions that resulted.

operating condition:
physical simulation

interaction mode: (phy) (sim)
collaborator (col) col-phy col-sim
supervisor (sup) sup-phy sup-sim

Figure 3. Factor analysis (2× 2) of experimental data.

Objective metrics
Before performing statistical tests on the objective perfor-
mance metrics, we used the Shapiro-Wilk test (Shapiro and
Wilk 1965) to assess the data for normality. The results
are shown in Table 5, for both experimental factors taken
together and separately. In most cases, there is a greater
than 95% probability that the sample data we have collected
is drawn from a normal distribution (p < 0.05). The only
cases where the normality is really questionable is with
respect to distance travelled (H3), particularly in the human-
as-supervisor interaction mode. The mean and standard
deviation for each objective metric are plotted in Figure 4.
The left column plots the data grouped into 2× 2 factors for
analysis, as shown in Figure 3. The right column plots the
data for each factor independently. In general, we are looking
for statistically significant differences between the two inter-
action modes (human-as-collaborator (col) and human-as-
supervisor (sup)), but not between the two operating modes
(physical (phy) and simulated (sim)).

We conducted pairwise comparisons of the means of
the four objective metrics using 2-way analysis of variance
(ANOVA). In all cases, the critical value of Fcrit = 6.86
was used, for (1, 116) degrees of freedom and α = 0.01,

Prepared using sagej.cls



10 Journal Title XX(X)

deliberation time (H1)
phy-col phy-sup sim-col sim-sup

0.83 0.70 0.95 (0.155) 0.83
col sup phy sim

0.91 0.80 0.84 0.93
execution time (H2)

phy-col phy-sup sim-col sim-sup
0.91 0.90 0.96 (0.208) 0.96 (0.257)

col sup phy sim
0.96 0.90 0.95 0.92

distance travelled (H3)
phy-col phy-sup sim-col sim-sup

0.93 (0.058) 0.96 (0.464) 0.94 (0.063) 0.96 (0.217)

col sup phy sim
0.93 0.99 (0.756) 0.98 (0.319) 0.92

game score (H4)
phy-col phy-sup sim-col sim-sup

0.86 0.93 (0.066) 0.92 0.95 (0.146)

col sup phy sim
0.92 0.96 (0.073) 0.93 0.95

Table 5. W scores for Shapiro-Wilk tests (the probability that
the sample data we have collected is drawn from a normal
distribution). Cases where p > 0.05 are noted in parentheses.

F (df)
col vs sup 55.33 (1, 116) significant
phy vs sim 1.10 (1, 116) not significant
int vs ope 1.73 (1, 116) not significant

Table 6. ANOVA results comparing deliberation time (H1).

indicating that if the F values computed from the data
are greater than Fcrit, then the results are statistically
significant (i.e., there is a greater than 99% probability that
the results did not occur by chance).

Deliberation time (H1). Table 6 contains the ANOVA
results for comparing the deliberation time objective
metric. The hypothesis that col>sup in both operating
conditions (phy and sim) holds, as shown in the first
row of the table. This demonstrates that the deliberation
time was significantly longer in the human-as-collaborator
mode, where the human and robot discussed actions
prior to executing them, as opposed to the human-as-
supervisor mode, where no discussion took place. No
statistically significant difference was detected between
the two operating conditions, as shown in the second row
of the table. No statistically significant effect was found
between the two experimental factors, interaction mode
(int) and operating condition (ope), as shown in the third
row of the table.

Execution time (H2). Table 7 contains the ANOVA results
for comparing the execution time objective metric. The
hypothesis that col<sup in both operating conditions
(phy and sim) holds (as shown in the first row of the
table). This says that the execution time was significantly
shorter in the human-as-collaborator mode, where actions
were discussed, as opposed to the human-as-supervisor
mode, where the robot had no inputs into its action

deliberation time (H1):

execution time (H2):

distance travelled (H3):

game score (H4):

Figure 4. Mean and standard deviation of objective metrics.

F (df)
col vs sup 24.25 (1, 116) significant
phy vs sim 87.90 (1, 116) significant
int vs ope 3.91 (1, 116) not significant

Table 7. ANOVA results comparing execution time (H2).

choices. Statistically significant differences were also
found between the two operating conditions, as per the
second row of the table. In both interaction modes, the
overall execution time is shorter in the physical condition
than the simulated condition. These results indicate
that the timing of the motion model in the simulation
condition is not well calibrated to the physical condition. No
statistically significant effect was found between the two
experimental factors, interaction mode (int) and operating
condition (ope), as shown in the third row of the table.
Thus the difference between operating conditions has no
impact on our research hypothesis about execution time
as affected by interaction mode.

Distance travelled (H3). Table 8 contains the ANOVA
results for comparing the distance travelled objective
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F (df)
col vs sup 27.32 (1, 116) significant
phy vs sim 36.51 (1, 116) significant
int vs ope 0.08 (1, 116) not significant

Table 8. ANOVA results comparing distance travelled (H3).

F (df)
col vs sup 15.02 (1, 116) significant
phy vs sim 0.00 (1, 116) not significant
int vs ope 0.52 (1, 116) not significant

Table 9. ANOVA results comparing game score (H4).

metric. The hypothesis that col<sup in both operating
conditions (phy and sim) holds (as shown in the first row
of the table). This says that the distance travelled was
significantly shorter in the human-as-collaborator mode,
where actions were discussed, as opposed to the human-
as-supervisor mode, where the robot had no inputs into
its action choices. Statistically significant differences were
also found between the two operating conditions, as
shown in the second row of the table. In both interaction
modes, the overall distance travelled is longer in the
physical condition than the simulated condition. This is
because the robot’s localisation in the physical condition
is noisier than in the simulated condition (where the
robot has perfect information about its position in the
arena). Thus the simulated robot travels along a smoother
trajectory because it does not need to correct its position,
whereas the physical robot has to adjust its position
and thus travels a more jagged trajectory. No statistically
significant effect was found between the two experimental
factors, interaction mode (int) and operating condition
(ope), as shown in the third row of the table. Thus the
difference between operating conditions has no impact
on our research hypothesis about distance travelled as
affected by interaction mode.

Game score (H4). Table 9 contains the ANOVA results
for comparing the game score objective metric. The
hypothesis that col>sup in both operating conditions (phy
and sim) holds (as shown in the first row of the table). This
says that the overall score was significantly higher in the
human-as-collaborator mode as opposed to the human-
as-supervisor mode. No statistically significant difference
was found between the two operating conditions (as per
the second row of the table). No statistically significant
effect was found between the two experimental factors,
interaction mode (int) and operating condition (ope), as
shown in the third row of the table.

Summary of Objective metrics (H1–H4). In summary,
all four objective metrics showed statistically signifi-
cant results when comparing the human-as-collaborator
(Robot Fiona) to the human-as-supervisor (Robot Mary)
mode. Even if we choose to apply the conservative Bon-
ferroni correction (Shaffer 1995), the differences are still
significant for α = 0.001‡. While the Fiona-human teams
took longer to deliberate than the Mary-human teams,
the Fiona-human teams completed games faster, travelled

less distance and achieved higher game scores than the
Mary-human teams.

In the cases of the deliberation time and game scores,
there were no statistically significant differences between
the games played with physical versus simulated robots.
However, the execution times and distances travelled were
different, due to poor calibration of the simulator and noise
in localisation for the physical robots.

Subjective metrics
The subjective metrics are analysed in two parts. First,
we consider the responses to survey questions that
correspond to hypotheses H5-H10. Second, we consider
the responses to the six questions on the final survey
which asked participants for feedback about the whole
experiment (FS1-FS6).

The first set of questions were presented to participants
directly after playing a game with each robot, so we
can compare how each user felt about the two robots
they interacted with. Figure 5 illustrates the differences
in responses between human-as-collaborator (col) and
human-as-supervisor (sup), computed as col−sup and
normalised over the number of responses. Positive values
(> 0) indicate that a higher percentage of participants
provided more favourable responses in human-as-
collaborator mode than in human-as-supervisor mode.
Detailed analysis of the differences corresponding to each
hypothesis appears below.

In order to assess the statistical significance of
these differences, we examine the distributions of raw
responses, illustrated in Figure 6. The left column plots
the data grouped into 2× 2 factors for analysis, as
shown in Figure 3. The right column plots the data for
each factor independently. In general, we are looking for
statistical significance in the differences between the two
interaction modes (human-as-collaborator and human-
as-supervisor ). We expect the two operating conditions
(physical and simulated) to have similar responses.

We conducted pairwise comparisons of the means
of the four subjective metrics using 2-way analysis of
variance (ANOVA). Although a Likert response format
was used in the survey and the data collected is ordinal
in nature, there is evidence in the literature defending
the robustness of ANOVA for analysing Likert response
format data (Glass et al. 1972; Carifio and Perla 2007).
The critical value of Fcrit = 6.86 was used for degrees
of freedom = (1, 116) and α = 0.01, indicating that if the
F values computed from the data are greater than Fcrit,
then the results are statistically significant (i.e., there is a
greater than 99% probability that the results did not occur
by chance). For some metrics, the degrees of freedom
were higher than (1, 120) in the second term, in which
case Fcrit = 6.635 was used for α = 0.01.

Now we discuss each hypothesis in turn.

Success of human-robot games (H5). From Figure 5 we
see that participants’ perceived success of the games

‡For the subjective metrics, the Bonferroni correction would adjust the value
of α from 0.01 to 0.01/4 = 0.0025, > 0.001.
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Figure 5. Differences in responses between
human-as-collaborator (col) and human-as-supervisor (sup),
computed as col−sup, normalised over the number of
responses. Positive values (> 0) indicate that a higher
percentage of participants provided more favourable responses
in human-as-collaborator mode than in human-as-supervisor
mode.

they played was slightly more favourable for human-as-
supervisor mode under the physical operating condition,
but more favourable for human-as-collaborator mode
under the simulated operating condition. Table 10 contains
the ANOVA results for determining statistical significance
across the 2× 2 experimental factors. Results supporting
the hypothesis that col>sup in both operating conditions
(phy and sim) are not statistically significant. The
hypothesis that the two operating conditions (phy vs sim)
are not different does hold. No statistically significant
effect was found between the two experimental factors,
interaction mode (int) and operating condition (ope), as
shown in the third row of the table.

F (df)
col vs sup 4.31 (1, 236) not significant
phy vs sim 0.53 (1, 236) not significant
int vs ope 6.03 (1, 236) not significant

Table 10. ANOVA results comparing perceived success (H5).

Ease of collaboration (H6). From Figure 5 we see that
participants’ perceived ease of collaborating with the robot
was more favourable for human-as-collaborator mode
under both operating conditions. Table 11 contains the
ANOVA results for determining statistical significance
across the 2× 2 experimental factors. The hypothesis that
col>sup in both conditions (phy and sim) holds (as shown
in the first row of the table). This demonstrates that the
perceived ease of collaboration was significantly higher
in the human-as-collaborator mode as opposed to the
human-as-supervisor mode. In other words, participants
felt that it was easier to collaborate with the robot operating
in human-as-collaborator mode. The hypothesis that there
is no significant difference between phy and sim also
holds, as shown in the second row of the table. No
statistically significant effect was found between the two
experimental factors, interaction mode (int) and operating
condition (ope), as shown in the third row of the table.

success of human-robot games (H5):

ease of collaboration (H6):

level of trust (H7):

effort to engage in dialogue (H8):

task understanding (H9):

mental demand (H10):

Figure 6. Heatmaps for subjective metrics. Darker cells
indicate more popular responses. The subjective survey
responses were presented using a Likert response
format (Likert 1932) with seven alternatives, where 7 was the
most favourable, 4 was neutral and 1 was the least favourable.

Level of trust (H7). From Figure 5 we see that participants’
level of trust in the robot was more favourable for human-
as-collaborator mode under both operating conditions.
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F (df)
col vs sup 18.47 (1, 356) significant
phy vs sim 0.70 (1, 356) not significant
int vs ope 0.85 (1, 356) not significant

Table 11. ANOVA results comparing ease of collaboration (H6).

Table 12 contains the ANOVA results for determining
statistical significance across the 2× 2 experimental
factors. The hypothesis that col>sup in both conditions
(phy and sim) holds, as shown in the first row of the table.
This demonstrates that the level of trust was significantly
higher in the human-as-collaborator mode as opposed
to the human-as-supervisor mode. The hypothesis that
there is no significant difference between phy and sim
also holds, as shown in the second row of the table. No
statistically significant effect was found between the two
experimental factors, interaction mode (int) and operating
condition (ope), as shown in the third row of the table.

F (df)
col vs sup 52.50 (1, 356) significant
phy vs sim 0.42 (1, 356) not significant
int vs ope 0.07 (1, 356) not significant

Table 12. ANOVA results comparing level of trust (H7).

Effort to engage in dialogue (H8). From Figure 5
we see that participants’ perceived amount of effort
required to engage in dialogue with the robot was
more favourable for human-as-supervisor mode under
the physical operating condition, but more favourable
for the human-as-collaborator mode under the simulated
operating condition. Table 13 contains the ANOVA results
for determining statistical significance across the 2× 2
experimental factors. The hypothesis that col>sup in both
conditions (phy and sim) does not hold, as shown in
the first row of the table. This demonstrates that the
level of effort to engage in dialogue was not significantly
different for the human-as-collaborator mode compared to
the human-as-supervisor mode—participants felt that they
did not have to expend more effort in order to engage in
the dialogue afforded by the human-as-collaborator mode
in comparison with the human-as-supervisor mode. This
result is unexpected, because we thought that participants
would feel that they were having to try harder in the
human-as-collaborator mode (just as it can feel more
difficult to work with a colleague who voices their opinion
versus one who just does whatever you ask); but the
results show the contrary. The hypothesis that there is
no significant difference between phy and sim also holds,
as shown in the second row of the table. No statistically
significant effect was found between the two experimental
factors, interaction mode (int) and operating condition
(ope), as shown in the third row of the table.

Task understanding (H9). From Figure 5 we see
that participants’ perceived understanding of the tasks
undertaken in the games was more favourable for human-
as-collaborator mode under both operating conditions.

F (df)
col vs sup 0.71 (1, 236) not significant
phy vs sim 2.42 (1, 236) not significant
int vs ope 1.56 (1, 236) not significant

Table 13. ANOVA results comparing effort for dialogue (H8).

Table 14 contains the ANOVA results for determining
statistical significance across the 2× 2 experimental
factors. The hypothesis that col>sup in both conditions
(phy and sim) holds, as shown in the first row of the
table. This demonstrates that the participants’ perceived
understanding of the task was significantly higher for the
human-as-collaborator mode compared to the human-
as-supervisor mode. The hypothesis that there is no
significant difference between phy and sim also holds,
as shown in the second row of the table. No statistically
significant effect was found between the two experimental
factors, interaction mode (int) and operating condition
(ope), as shown in the third row of the table.

F (df)
col vs sup 21.36 (1, 116) significant
phy vs sim 5.59 (1, 116) not significant
int vs ope 2.51 (1, 116) not significant

Table 14. ANOVA results comparing task understanding (H9).

Mental demand (H10). From Figure 5 we see that
participants’ perceived mental demand was greater
for human-as-supervisor mode under both operating
conditions. Table 15 contains the ANOVA results for
determining statistical significance across the 2× 2
experimental factors. There are no statistically significant
differences between the two interaction modes (col and
sup) under either operating condition (phy or sim). This
demonstrates that the participants’ perceived mental
demand was not more stressed when working with
the robot in human-as-collaborator mode as compared
to the human-as-supervisor mode; this result was also
unexpected, as with the result for H8. No statistically
significant effect was found between the two experimental
factors, interaction mode (int) and operating condition
(ope), as shown in the third row of the table.

F (df)
col vs sup 0.18 (1, 116) not significant
phy vs sim 3.77 (1, 116) not significant
int vs ope 0.14 (1, 116) not significant

Table 15. ANOVA results comparing mental demand (H10).

Summary of Subjective metrics (H5–H10). In summary,
the six objective metrics showed mixed results. Those
that showed statistically significant differences between
the human-as-collaborator versus human-as-supervisor
mode were the metrics reflecting ease of collaboration,
level of trust and task understanding: in both these cases,
the human-as-collaborator interaction mode scored more
favourably. As with the objective metrics, if we choose to
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apply the Bonferroni correction, the differences are still
significant for α = 0.001§.

Other results were generally positive (perceived
success, effort to engage in dialogue, task understanding
and mental demand), but not statistically significantly
different when analysed across the 2× 2 factors.

Final survey questions. Finally, we turn to the results
from the final survey questions (FS1-6), listed at the
end of the previous section. Statistical analysis of these
results are contained in Table 16. The table lists the
mode (most popular) answer for each ordinal metric. Data
for FS3-6 was reported using a 7-point Likert response
format, where 7 was the most positive, 4 was neutral
and 1 was the most negative. There were no statistically
significant differences found between the physical (phy)
and simulated (sim) operating conditions.

We make the following observations from the results:

• For both simple (FS1) and complex (FS2) tasks,
under both operating conditions, participants over-
whelmingly preferred the human-as-collaborator
mode (col).
• Participants found the task environment easy, with a

slight preference toward easier from the users who
participated in the physical user study (FS3, 1 vs 3)
• Statistically significant differences between operat-

ing conditions were noted with respect to partici-
pants’ responses about how hard it was to come up
with a plan to solve the game: those working with
physical robots reported that it was somewhat easy
(3), whereas those working with simulated robots
reported that it was somewhat difficult (5). But since
both of these responses are just one mark either
side of neutral, the differences are not strong.
• The majority of participants found the human-as-

collaborator mode, very helpful (7) in resolving
problems (FS5), in both operating conditions.
• Participants found the human-as-collaborator mode

helpful in resolving problems (FS6), with a
preference toward very helpful in the simulated
operating condition (5 vs 7).

The responses to FS6 coincide with the responses to
FS3 and FS4. Participants using the simulated operating
condition found the task more difficult than the participants
using the physical operating condition. We surmise that
the participants using the physical operating condition,
who saw the arena and the robots in situ before they
played any games, had a better conception of the task
environment. However, note that these participants played
games in a remote location from the arena (in an adjacent
room), so even though robots were moving around next
door, these participants did not have line-of-sight to
those robots and were only able to perceive and interact
with them through the same interface (Figure 2) as the
participants using the simulated condition.

Dialogue sequence
We conclude the presentation of results by sharing an
example scene for a persuasion dialogue between one
of the human participants (User12) from the physical

mode Fisher
phy sim odds (p)

FS1 col col 1.84 (0.397) not significant
FS2 col col 1.23 (1.000) not significant
FS3 1 3 3.00 (0.195) not significant
FS4 3 5 3.08 (0.042) not significant
FS5 7 7 0.80 (1.000) not significant
FS6 5 7 1.24 (1.000) not significant

Table 16. Fisher exact tests to determine if there were
statistically significant differences in the results obtained under
the physical (phy) versus simulated (sim) operating condition for
final survey questions (FS1-FS6). The mode (most popular)
values are listed in the first two columns, followed by the Fisher
score (odds) and p values.

operating condition and Robot Fiona at the “how to get
there” decision point. Robot Fiona’s belief state is as
follows:

beliefs description

b ∈ R.Σ Robot Fiona believes that she
should search R4→ R5→ R6→
R3

¬b ∈ R.Γ(H) Robot Fiona believes that the
human believes that the robot
should R3→ R4→ R6→ R5

Robot Fiona recognizes a conflict, and so it initiates a
persuasion dialogue because the human and the robot
have differing beliefs.

dialogue
move

scripted text in chat-style interface

control layer There is a conflict about Search
Order

assert(R,H, b) Robot Fiona: There is a conflict
in our plans, we need to reach
an agreement. I would like to go
to Rooms: 4→ 5→ 6→ 3→. To
get the reason for why I disagree
with your plan, click “Why”. If you
want to continue with my plan,
click “Agree”. If you would like
to continue with your plan, click
“Disagree”.

The user then interface provides the human collaborator
with the following three choices from the possible dialogue
moves for the persuasion dialogue:

dialogue
move

scripted text in chat-style interface

control layer Do you agree with the robot?
◦ Agree
◦ Disagree
◦ I would like to know why?

Here according to the persuasion dialogue protocol,
the human’s choice would affect Robot Fiona’s actions.
If Robot Fiona’s agenda is different from the human’s
agenda, then an explanation is given. Robot Fiona
determines an efficient path plan in which to visit all

§For the objective metrics, the Bonferroni correction would adjust the value
of α from 0.01 to 0.01/6 = 0.00167, > 0.001.
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rooms that it needs to visit using the A* algorithm (Hart
et al. 1968). Robot Fiona’s agenda is based on its
current location and amount of battery power. The human
then has the option of agreeing or disagreeing with the
robot’s agenda. If the human accepts the robot’s belief,
by selecting “Agree,” then Robot Fiona would execute its
plan. If the human rejects the robot’s belief, by selecting
“Disagree,” then Robot Fiona would accept and execute
the human’s suggested plan¶.

In this example, the human challenges Robot Fiona’s
belief by first selecting “I would like to know why?,” and the
persuasion dialogue continues as follows:

dialogue
move

scripted text in chat-style interface

challenge
(H,R, b)

User12: I would like to know why
you would like to visit Rooms: 4→
5→ 6→ 3

assert
(R,H, S(b))

Robot Fiona: According to my
calculation, going to Rooms: 4→
5→ 6→ 3 has a lower cost than
your plan of going to Rooms:
3→ 4→ 6→ 5. Please “Agree” or
“Disagree” with my plan.

Here, Robot Fiona provides supporting evidence for its
belief in response to the human’s challenge. The human
accepts the robot’s supporting evidence by selecting
“Agree,” and the persuasion dialogue continues as follows:

dialogue
move

scripted text in chat-style interface

accept(H,R, b) User12: I agree with your plan of
going to Rooms: 4→ 5→ 6→ 3.

control layer persuasion dialogue terminates
At the conclusion of the dialogue, Robot Fiona’s beliefs
and its beliefs about the human’s beliefs are updated as
follows:

beliefs description
b ∈ R.Σ Robot Fiona believes that she

should search rooms 4→ 5→ 6→
3.

b ∈ R.Γ(H) Robot Fiona believes that she
should search rooms 4→ 5→ 6→
3

Robot Fiona successfully persuaded the human that
its path was more efficient and would reduce the task
completion time. The persuasion dialogue terminated
in agreement. In contrast, Robot Mary (human-as-
supervisor mode) would have agreed with the human’s
initial inefficient plan of searching room 4 first, then rooms
5, 6 and 3.

Related Work
HRI environments can be divided into two general
categories based on a time/space matrix (Dix et al.
2004), according to when and where a human and a
robot work together: proximate interaction and remote
interaction (Goodrich and Schultz 2007). Proximate
interaction takes place when a human and robot are co-
located in each other’s line of sight. Remote interaction
is when a human and a robot are in different locations
and not in each other’s line of sight. HRI developed for

social applications are considered proximate interactions,
since both human and robot are co-located and interact
with each other face-to-face. Human-robot communication
for proximate interaction needs to consider both non-
verbal (e.g., gesture, gaze) and verbal (e.g., message
content) aspects. In contrast, HRI during a search-and-
rescue operation is considered a remote interaction, since
the human and robot teammates are typically in different
locations and out of sight of each other. Thus human-
robot communication for remote interaction does not
necessarily require support for non-verbal cues, but is
primarily dependent on a rich exchange of information that
can aid teamwork.

A successful human-robot team with a common goal
needs to support interaction where humans and robots
can complement each other’s expertise and seek each
other’s help (Groom and Nass 2007). For example, a robot
in a search-and-rescue scenario can seek a human’s
help with identifying human victims. Communication is
an absolute requirement for successful human-robot
collaboration and a very challenging problem (Goodfellow
et al. 2010)(Hoffman and Breazeal 2004). As humans,
we naturally use dialogue to communicate with other
humans. Thus, dialogue has been viewed as a natural
means of communication for humans to interact with
robots. A human may interact with robots as a supervisor,
operator, mechanic, peer or bystander (Scholtz 2003).
In order for general deployment of multi-purpose robots
that can collaborate with humans at work or home,
a spoken dialogue interface will be necessary to
provide valuable feedback to untrained and non-technical
partners (Cakmak and Takayama 2014). Current issues in
the human-robot dialogue domain could be divided into
three major categories, which are: the “when to say it”
problem, the “how to say it” problem, and the “what to
say” problem. The “when to say it” problem deals with the
timing of dialogue delivery (e.g., turn taking (Chao and
Thomaz 2016; Thomaz and Chao 2011; Jonsdottir et al.
2008)). The “how to say it” problem addresses the best
ways for a robot to deliver that content (e.g., using text,
gestures, embodied cues (Mutlu 2011)(Simmons et al.
2011), speech or different modalities). The “what to say”
problem addresses ways to determine the concepts that
should be conveyed during dialogue.

One of the challenges of NL parsers for robotics is that
they require a large amount of corpus data to train the
system, which is lacking in the domain of human-robot
collaboration (Scheutz et al. 2011).

Human-robot dialogue may also benefit from generating
dialogue content based on a user’s level of experience
(e.g., novice, expert) (Torrey et al. 2006; Fong et al. 2001).
Fischer (Fischer 2011) studied how robot dialogue could
be designed to reduce uncertainty about the capabilities of
the robot and the collaborative task addressed by human
partners. However, the author used a Wizard-of-Oz study
and didn’t show how a dialogue framework can support

¶This decision was made in observance of Asimov’s Three Laws of
Robotics (Asimov 1950). A non-fiction reason for favoring the human
in unresolved conflicts is that in the real-world, a human is held legally
responsible for the actions made by a robot; so we make that explicit here.
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such dialogue. Experimental robots have been deployed
in a museum as a tour guide (Thrun et al. 2000), in the
classroom as a tutor (Castellano et al. 2013; Krause et al.
2014), and in the office as a receptionist (Gockley et al.
2005). These examples primarily utilize limited (if any)
choices about what concept(s) to discuss and scripted
dialogue content for human-robot communication, thereby
avoiding the “what to say” problem. However, such models
do not scale for robots that operate in highly dynamic HRI
environments (e.g., search-and-rescue).

During human-robot collaboration, a human and
robot work together to make decisions about their
joint actions. In this article, joint actions, or shared
tasks, are those actions in which both the robot
and the human communicate as a team to achieve
a common goal (Hoffman and Breazeal 2004). As
with two humans, human-robot team communication
requires sharing information and taking initiative. The
style of communication varies based on collaborative
task, interaction, and environment. The communication
requirements for human and robot collaboration involving
dialogue differ in types of shared tasks for human-robot
interaction (Fong et al. 2001). In (Yanco and Drury
2002), the authors defined a taxonomy of human-robot
interaction. The categories were based on autonomy
level/amount of intervention, ratio of people to robots, and
level of shared interaction among human-robot teams. The
autonomy level indicates the robots’ level of autonomy,
and the intervention level measures human intervention
during a human-robot interaction. The authors suggest
that the sum of robot autonomy and human intervention
measurements should equal 100 percent. For instance,
tele-operated robots have the least amount of autonomy
(0 percent) and the greatest degree of human intervention
(100 percent). On the other hand, museum tour-guide
robots have full autonomy and require almost no human
intervention (Nourbakhsh et al. 2005).

Humans may interact with robots as a supervisor,
operator, mechanic, peer or bystander (Scholtz 2003).
Supervisory interaction is the same as when one human
supervises another human. The interaction is monitoring
robots and evaluating their actions to achieve some
goal(s). Here the robot software automatically generates
actions. Supervisors, however, may step in to refine
the robot’s planning system, goals, and intentions to
achieve any desired goals. Operator interaction allows an
operator to choose robot-appropriate control mechanisms,
behavior, or takes over full control to tele-operate the
robot using the software. Scholtz pointed out the fact
that the operator cannot change the goal or intention.
Thus interaction support is needed for action, perception,
and evaluation levels. Mechanic interaction refers to
the role in which a human physically changes robot
hardware (e.g., fixing a camera). It is similar to an
operator role except for the hardware part. When changes
have been made, software and hardware need to be
observed to validate the robot’s desired behavior that
requires support for actions, perceptions, and evaluation.
Bystander interaction refers to an implicit interaction with
robots (e.g., interacting passively with Roomba, a home-
cleaning robot, or museum tour guide robot). A robot might

have some available controls for bystanders. The research
on emotion and social interaction investigates how to
make available robot capabilities evident to bystanders.
The Peer interaction assumes that supervisors have
control over only changing the goals and intentions. Then
teammates can give commands to robots in order to
achieve higher goals and intentions. For observations, we
need support for the perception and evaluation levels.
Human members interaction will not involve low-level robot
behaviors (i.e., obstacle avoidance), but rather high-level
behaviors (i.e., follow me). In case of emergency, a peer
can take the role of operator or have the ability to hand off
problems to a more qualified operator.

The Human-Robot Interaction Operating System
(HRI/OS) (Fong et al. 2006), an interaction infrastructure
based on a collaborative control model (Fong et al.
2001), was introduced to provide a framework for humans
and robots to work together. The software framework
supports human and robot engagement in a task-
oriented dialogue about each others’ abilities, goals,
and achievements. HRI/OS was designed to support
the performance of operational tasks, where tasks were
well-defined and narrow in scope. In space exploration,
operational tasks include: shelter and work hangar
construction, habitat inspection, and in-situ resource
collection and transport. HRI/OS is an agent-based
system that incorporates embodied agents (humans and
robots) and software agents employing a goal-oriented
Open Agent Architecture for inter-agent communication
and delegation (Cohen et al. 1994). The Open Agent
Architecture (OAA) (Cohen et al. 1994) introduces the
Inter-agent Communication Language (ICL) for interface,
communication, and task coordination using a language
shared by all agents (Cohen et al. 1994) regardless of
platform and the low-level languages in which they are
programmed. (Fong et al. 2006) have identified robots
as capable of resolving issues, rather than immediately
reporting task failure, through dialogue with humans in
cases where robots lack skills or their resources have
proved inadequate to the task. For example, a robot that
has difficulty interpreting camera data might ask a human
to lend visual processing ability to the task. This often
allows tasks to be completed in spite of limitations of
autonomy. (Fong et al. 2005) have investigated how peer
interaction can help communication and collaboration,
and the authors concluded that engaging in a dialogue
where robots can ask task-oriented questions of humans
through remote interaction such as teleoperation can be
beneficial.

Research in both mixed-initiative dialogue and
grounded dialogue are important to enhance peer-
based collaboration. An early example of mixed-initiative
dialogue for human-robot collaboration employs a
Bayesian network (Hong et al. 2007) and demonstrates
the benefits of human-robot engagement in a collaborative
conversation to address ambiguity in natural language.
Peltason and Wrede (Peltason and Wrede 2010) introduce
Pamini, a pattern-based, mixed-Initiative human-robot
interaction framework, to support flexible dialogue
modelling that adopts task-state protocols with dialogue
acts and interaction patterns. The research in grounded
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dialogue investigates how to generate dialogue in context
and (Knepper et al. 2015) find evidence of benefits when
a robot seeks help during failure. The aid comes from a
human team member when the robot does not know how
to solve a problem during human-robot collaboration.

Recent research in mixed human-robot teams (Gom-
bolay et al. 2015) compares human interaction between
human-robot collaboration and human-human collabora-
tion to identify human-robot team efficiency and considers
how to maximize the human desire to work with robot
team members. One of Gombolay’s experiments con-
trolled the level of human decision-making authority for
three different scenarios: (1) manual control—the human
makes all the decisions (e.g., supervisory mode); (2) semi-
autonomous—human and robot make decisions together
(i.e., collaborative mode); and (3) autonomous—robot
makes all the decisions. The results from the experiments
support our finding that semi-autonomous (e.g., collabo-
rative) decision-making can benefit the human-robot team
during collaboration.

Butchibabu (Butchibabu 2016) proposes a Maximum
Entropy Markov model (MEMM) to support dialogues
during planning and task allocation and demonstrates that
goal-based information sharing requires more context-
based communication (e.g., can you help me find the
red ball?) than reactive-implicit information (e.g., no red
ball found). Our work presented here, however, does
not address task planning and task allocation, but solely
investigates the impact of shared-decision making that
employs computational argumentation.

The domain of human-robot collaboration also lacks
comprehensive experiments that investigate users’ per-
ceptions of a robot operating as a peer, a collaborator that
can argue, but agree. For HRI systems to be truly collab-
orative, participants must be able to exchange ideas and
engage in opportunistic dialogue that can adjust dynam-
ically as the situation unfolds, including spontaneously
changing which peer is leading the dialogue. For example,
upon experiencing or anticipating failure or discovering
new opportunities, the robot needs to be able to take the
initiative (Carbonell 1971; Horvitz 1999) in an ongoing or
new conversation. Our approach applies argumentation-
based dialogue to enable two-way feedback for human-
robot peer collaboration.

Conclusion
The research presented here does not claim that
computational argumentation-based dialogue is the
only methodology appropriate for enabling shared
decision making in human-robot teams. Rather, this
work suggests that computational argumentation-based
dialogue is a strong candidate to facilitate shared
decision making and that it can aid people in human-
robot settings. This research also does not claim
that the computational argumentation-based dialogue
presented here is the only possible implementation
of a computational argumentation-based theoretical
framework. The system described here applies a
formal logic-based argumentation dialogue framework to
the practical domain of human-robot collaboration, a

contribution to both the fields of human-robot interaction
and computational argumentation.

In this research, we accept that there are many
applications in HRI that do not require peer interaction.
In many cases, supervisory interaction will be sufficient.
Collaborative interaction will be required of an HRI system
that needs robot autonomy with guidance from humans, in
situations such as urban search-and-rescue, humanitarian
demining and nuclear power plant inspection. Such
interaction can also be useful in domestic and healthcare
domains, where robots of the future will be caregivers in
private homes and residential care facilities. Human-robot
collaborators will benefit from systems that have the ability
to seek information from each other in order to minimize
uncertainty, expand individual and shared knowledge, and
challenge or persuade each other.

Our research suggests several opportunities for appli-
cation of computational argumentation-based dialogue for
collaborative interaction in the a variety of human-robot
scenarios:

• Complex tasks: When a robot and human collab-
orator do not know how to address all the issues
in a complex task, both parties can engage in an
inquiry dialogue to explore problems surrounding
the complex task.

• Computationally expensive decisions: A robot
is better equipped to perform computationally
expensive tasks faster than a human collaborator.
The human collaborator can gather information
from the robot employing an information-seeking
dialogue.

• Lack of knowledge: Humans may lack knowledge
about a robot’s capabilities or information about
its physical environment. Similarly, the robot may
lack knowledge that humans may have. The human
collaborator can employ an information-seeking
dialogue to inquire about information from the robot
collaborator and vice-versa.

• Dynamic environments: Humans can seek informa-
tion using an information-seeking dialogue or use
an inquiry dialogue from the robot when dynamic
changes occur in the environment (e.g., sudden
appearance of an unexpected obstacle). Dialogues
can be embedded inside an inquiry dialogue to
explore changes in a task due to the dynamic nature
of an operating environment.

• Multiple unknowns: A task can be considered
complex where there are multiple unknowns. In this
case, a human and robot may need to engage in
information-seeking and inquiry dialogues.

• Conflict resolution: When the human user and
the robot hold opposing beliefs, thereby causing
a conflict, there is an opportunity for persuasion
dialogue. For example, when a human and a robot
have different agendas (see the dialogue sequence
at the end of the previous section), the robot will
attempt to convince the human of the efficacy
of its agenda by providing an “effective agenda”
justification.
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We have described a user study that evaluates the
impact of computational argumentation-based dialogue
as a means to support shared decision making for
human-robot teams performing in a Treasure Hunt Game
scenario. Our underlying computational argumentation-
based dialogue framework, ArgHRI, was outlined. The
user study is discussed in detail. Overall, 60 human
subjects participated and two interaction modes were
compared: humans collaborating with a robot that
employed argumentation-based dialogue to facilitate
interaction (“Robot Fiona”), and humans supervising
another robot that did not use dialogue (“Robot Mary”).
Results showed that, with respect to all of the objective
performance metrics collected and some of the subjective
survey results, the collaborative mode (with Robot Fiona)
was statistically significantly better than the supervisory
mode (with Robot Mary). The subjective metrics which
showed statistically significant differences reflected ease
of collaboration, level of trust and task understanding,
where the human-as-collaborator mode was preferred.

We can conclude that even for a simple task like
the one presented here, an HRI system capable of
supporting collaboration through argumentation-based
dialogue can be beneficial to system performance and
user experience. This result comes despite expectations
that supervisory interaction would be preferred for simple
tasks in which human collaborators do not require much
help. The work presented here demonstrates that human-
robot collaboration, enabled through argumentation-
based dialogue, can support expansion of individual
or shared knowledge. It can aid in the resolution of
disagreements and thus prevent human or robot errors.
It may reduce task completion time and increase success
for a collaborative task.

Future work will involve extending this research in sev-
eral directions. There is a need for human-robot dialogue
support for more complex task domains in which there are
common goals. There is a need for human-robot dialogue
support for collaborative interaction between humans and
multi-robot teams that have different goals. There is a
need for bridging the computational argumentation-based
dialogue framework presented here to natural language
research and exploring natural language implementations
of argumentation-based dialogue.

Human-robot dialogue that can aid shared decision
making, supports the expansion of individual or shared
knowledge, and resolves disagreements between collab-
orative human-robot teams will be much sought after as
human society transitions from a world of robot-as-a-tool
to robot-as-a partner. The work presented here demon-
strates a version of collaborative interaction enabled
through argumentation-based dialogue, allowing humans
and robots to work together as partners.

Acknowledgments
The authors are grateful to the anonymous reviewers for
their insightful comments that have helped improve the
presentation of this work. The authors would also like to
thank Dr Isabel Sassoon for her advice on aspects of the
statistical analysis.

This work was partially funded by the US National
Science Foundation (NSF) under grants #IIS-1116843,
#IIS-1338884 and #CNS-1117761, by the US Army
Research Office under the Science of Security Lablet
grant (SoSL), by the US Army Research Laboratory
under the Network Science Collaborative Technology
Agreement, by a University of Liverpool (UK) Research
Fellowship, and by a US-UK Fulbright-King’s College
London Scholar Award. The opinions in this paper are
those of the authors and do not necessarily reflect the
opinions of the funders.

References

Asimov I (1950) I, Robot. New York, NY, USA: Bantam Dell.
Azhar MQ (2015) Toward an argumentation-based dialogue

framework for human-robot collaboration. PhD Thesis, City
University of New York, New York, NY, USA.

Azhar MQ and Sklar EI (2016) Analysis of empirical results on
argumentation-based dialogue to support shared decision
making in a human-robot team. In: Proceedings of the
25th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN). New York, NY, USA:
IEEE, pp. 861–866.

Belesiotis A, Rovatsos M and Rahwan I (2010) Agreeing
on plans through iterated disputes. In: Proceedings of
the 9th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), volume 1. Richland,
SC: International Foundation for Autonomous Agents and
Multiagent Systems, pp. 765–772.

Bench-Capon TJM and Dunne PE (2007) Argumentation in
artificial intelligence. Artificial intelligence 171(10–15): 619–
641.

Black E (2007) A Generative Framework for Argumentation-
Based Inquiry Dialogues. PhD Thesis, University College
London, London, UK.

Black E and Atkinson K (2011) Choosing Persuasive Arguments
for Action. In: Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS), volume 3. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems, pp. 905–
912.

Black E and Hunter A (2009) An inquiry dialogue system.
Autonomous Agents and Multi-Agent Systems 19(2): 173–
209.

Butchibabu A (2016) Anticipatory communication strategies
for human robot team coordination. PhD Thesis,
Massachusetts Institute of Technology, Cambridge, MA,
USA.

Cakmak M and Takayama L (2014) Teaching people how to
teach robots: The effect of instructional materials and dialog
design. In: Proceedings of the 2014 ACM/IEEE International
Conference on Human-robot Interaction (HRI). Bielefeld,
Germany: New York, NY, USA: ACM Press, pp. 431–438.

Caminada MWA (2009) Truth, Lies and Bullshit; distinguishing
classes of dishonesty. In: Proceedings of the Workshop on
Social Simulation at the International Joint Conference on
Artificial Intelligence (IJCAI). Pasadena, CA, USA, pp. 39–
50.

Prepared using sagej.cls



Azhar and Sklar 19

Carbonell JR (1971) Mixed-Initiative Man-Computer Instructional
Dialogues. Technical report, Bolt Beranek and Newman
Incorporated (BBN), Cambridge, MA, USA.

Carifio J and Perla RJ (2007) Ten Common Misunderstandings,
Misconceptions, Persistent Myths and Urban Legends about
Likert Scales and Likert Response Formats and their
Antidotes. Journal of Social Sciences 3(3): 106–116.

Castellano G, Paiva A, Kappas A, Aylett R, Hastie H, Barendregt
W, Nabais F and Bull S (2013) Towards Empathic Virtual
and Robotic Tutors. In: Artificial Intelligence in Education,
Lecture Notes in Computer Science Volume 7926. Berlin:
Springer, pp. 733–736.

Chao C and Thomaz A (2016) Timed petri nets for fluent turn-
taking over multimodal interaction resources in human-robot
collaboration. International Journal of Robotics Research
35(11): 1330–1353.

Cogan E, Parsons S and McBurney P (2005) What Kind of
Argument Are We Going to Have Today? In: Proceedings
of the 4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS). Ütrecht, The
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Systems (AAMAS). Ütrecht, The Netherlands: New York,
NY, USA: ACM Press, pp. 552–559.

Tang Y, Sklar EI and Parsons S (2012b) An argumentation
engine: ArgTrust. In: Ninth International Workshop on
Argumentation in MultiAgent Systems (ArgMAS). Valencia,
Spain.

Thomaz A and Chao C (2011) Turn-Taking Based on Information
Flow for Fluent Human-Robot Interaction. AI Magazine
32(4): 53–63.

Thrun S, Beetz M, Bennewitz M, Burgard W, Cremers AB,
Dellaert F, Fox D, Hähnel D, Rosenberg C, Roy N, Schulte
J and Schulz D (2000) Probabilistic algorithms and the
interactive museum tour-guide robot minerva. International
Journal of Robotics Research 19(11): 972–999.

Toniolo A, Li H, Norman TJ, Oren N, Ouyang RW, Srivastava
M, Dropps T, Allen JA and Sullivan P (2015a) Enabling
intelligence analysis through agent-support: The cispaces
toolkit. In: Proceedings of the 14th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS).
Istanbul, Turkey: International Foundation for Autonomous
Agents and Multiagent Systems, pp. 1907–1908.

Toniolo A, Norman TJ, Oren N, Etuk A, Dropps T, Allen
JA, Cerutti F, Ouyang RW, Srivastava MB and Sullivan
P (2015b) Supporting reasoning with different types
of evidence in intelligence analysis. In: Proceedings
of the 14th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). Istanbul, Turkey:
International Foundation for Autonomous Agents and

Multiagent Systems, pp. 781–789.
Torrey C, Powers A, Marge M, Fussell SR and Kiesler S (2006)

Effects of adaptive robot dialogue on information exchange
and social relations. In: Proceedings of the 1st ACM
Conference on Human-Robot Interaction (HRI). Salt Lake
City, UT, USA: New York, NY, USA: ACM Press, pp. 126–
133.

Walton D and Krabbe ECW (1995) Commitment in Dialogue:
Basic Concepts of Interpersonal Reasoning. Albany, NY,
USA: State University of New York Press.

Walton D, Reed C and Macagno F (2008) Argumentation
Schemes. Cambridge, UK: Cambridge University Press.

Wobcke W, Ho V, Nguyen A and Krzywicki A (2006) A bdi
agent architecture for dialogue modelling and coordination
in a smart personal assistant. In: Proceedings of the
2005 NICTA-HCSNet Multimodal User Interaction Workshop
- Volume 57, MMUI ’05. Sydney, Australia: Darlinghurst:
Australian Computer Society, Inc. ISBN 1-920-68239-2, pp.
61–66.

Yanco H and Drury J (2002) A taxonomy for human-robot
interaction. In: Proceedings of the AAAI Fall Symposium on
Human-Robot Interaction, AAAI Technical Report, volume
FS-02-03. Falmouth, MA, USA: Palo Alto, CA, USA: AAAI
Press.

Prepared using sagej.cls


	Introduction
	Background
	Approach
	Belief system
	Argumentation engine
	Argumentation-based dialogue system
	Robot operating environment
	Game domain
	User interface

	Experiments
	Modes
	Conditions
	Decision points
	Metrics
	Research hypotheses
	Participants

	Results
	Objective metrics
	Deliberation time (H1).
	Execution time (H2).
	Distance travelled (H3).
	Game score (H4).
	Summary of Objective metrics (H1–H4).

	Subjective metrics
	Success of human-robot games (H5).
	Ease of collaboration (H6).
	Level of trust (H7).
	Effort to engage in dialogue (H8).
	Task understanding (H9).
	Mental demand (H10).
	Summary of Subjective metrics (H5–H10).
	Final survey questions.

	Dialogue sequence

	Related Work
	Conclusion

