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ABSTRACT

Intelligent agents are frequently designed to be personal as-
sistants, helping a single user accomplish a specific task. The
work discussed here explores the idea of building intelligent
agents for use in on-line educational environments, where
helping a user too much can get in the way of the user’s
learning. We offer three categories of agents, designed to
meet the varied and changing needs of a population of hu-
man learners.
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1. INTRODUCTION.

The overarching goal in an educational setting is for the
student to learn. An intelligent agent that is successful in
this type of environment is not the same as in traditional
agent-based settings where agents act as browsing assistants
[14], matchmakers [5, 11], recommenders [2] and filterers of
email and news group messages [7, 13, 12]. The purpose of
an educational agent is not to perform a task for a user or to
simplify a task for a user, but rather to help the user learn
how to accomplish the task.

Malone [15] makes an important distinction between toys
and tools when discussing computer games. He defines toys
to be systems that exist for their own sake, with no external
goals; in contrast, tools are systems that exist because of
their external goals. Good games are difficult to play, in
order to increase the challenge provided to the player. Good
tools should be easy to use, in order to expedite the user’s
external goal.

Good agents are like good tools. Good educational agents
should be both easy to use and should provide challenges
for the human learner. The external goal is for the user
to learn how to perform a given task, so the agent should
make the process of learning how to accomplish that task
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easy — the process, not the task. The work discussed here
explores the idea of building intelligent agents for use in on-
line educational games, where helping a user too much can
get in the way of the user’s learning.

We posit that a learner needs to interact with a variety
of others exhibiting different talents and abilities in order
to maintain interest and to progress. In school, students
learn from teachers, from participating in group projects
where they interact with their peers and from doing their
homework on their own. To support these needs, we define
three categories of agents that a student may interact with:

e instructors: agents that emulate the behavior of a
human expert

e peers: agents that capture the mode of a group of
humans sharing similar behavioral characteristics

e clones: agents that copy the behavior of an individual
human

Students have the opportunity of interacting with only one
or a combination of two or all three categories of agent, just
as at different stages in a learner’s development, she will
need to receive instruction from a teacher, collaborate with
her classmates and practice on her own.

We have two overriding implementation goals: one tech-
nical and one pedagogical. Our technical goal is to minimize
the amount of knowledge engineering that goes into building
and maintaining the agents. Perhaps the largest cost associ-
ated with any educational software product is the amount of
effort required to design and enable domain-specific learn-
ing sequences for users. Our second, pedagogical goal is to
create varied learning experiences for each participant, to
accommodate different types of learners at different stages
of development. We want a participant’s experience to re-
main challenging and exciting as a she progresses.

In order to meet both of these goals, we are using evolu-
tionary computation (EC) to evolve the agents. This method-
ology meets our first goal of minimizing knowledge engineer-
ing because the behaviors of the agents are controlled by
neural networks and the neural networks are trained using
human interactions with our system. This is based on the
premise that the behavior or responses of one human can
be used to teach another human how to behave or respond;
thus an agent emulating one human could be used to teach
other humans how to behave or respond. The methodology
also meets our second goal because of the way in which we
have implemented the evolutionary techniques. While EC



has typically been used to train one agent to emulate a single
user (or type of user), here we use EC to train a population
of agents that can interact with human participants at a
variety of levels.

This paper describes methodologies for constructing the
three categories of agent. As a prototype and to demonstrate
the viability of the techniques, we draw from our prior work
on two Internet games and we take human data collected in
these games as the basis for training the agents. We detail
our methodology and describe examples for constructing in-
stances of the first two agent categories. Then we outline
our current work which is involved in developing a control
system for deciding which agents to deploy under what con-
ditions and bringing these agents to life within an on-line
educational environment.

2. THEORETICAL FRAMEWORK.

A game can be played by using a certain strategy, or set
of strategies — a method and order for applying the rules of
the game, with the intent of achieving the fixed goal. If we
sat down and enumerated all the possible ways of playing a
game, the result would typically be a huge list. So the ques-
tion becomes a matter of search. Given a very large list of
possible strategies, how can we find the ones that will result
in achieving the game’s goal? Many games are dynamic, so
players must adjust to changes in environment, opponents
and teammates; how can we adapt a player’s strategies in
accordance with these changes?

Machine learning has often been applied in attempts to
answer these questions. Here, computer programs advance
“automatically”, developing better and more efficient ways
to accomplish given tasks without needing humans to retrain
them manually or update behavioral databases by hand.
Since at least the 1950’s, researchers have experimented with
games including tic-tac-toe [1, 16], checkers [21], chess [22]
and backgammon [3, 26, 18, 17].

The following is an evolutionary approach to machine
learning [4, 8, 10]: rather than try to engineer a winning
strategy, enumerate a manageable number of strategies, use
these to play games and see how well they perform. Then
keep the strategies that do well and use selection and re-
production techniques to replace the ones that do poorly
with other strategies that have not yet been tried. Using
this method, a population of successful strategies is built
up gradually. At any time, the population will represent
some ways of playing the game; eventually, hopefully, the
population will contain the optimal way(s).

The definition of optimal varies depending on researchers’
goals. The goal of the Deep Blue project was to create a
chess player that could beat the human world champion.
The goal of RoboCup is to develop a team of soccer-playing
robots that are capable of defeating the human world cham-
pions [9]. However, as described earlier, in some situations
the goal is not for agents to embody experts but rather hu-
man peers. In an educational game, it is not always bene-
ficial for a human to play with an expert; it is sometimes
more desirable for human learners to interact with players
whose abilities are similar to their own, providing motiva-
tion through appropriate challenges [23, 25].

Our longterm goal is to characterize the types of human
behaviors that occur in various settings and to build agents
that embody these behaviors, automatically deploying them
as needed. Our system will recognize which types of agents

are required at a given time, depending on the behaviors
of the humans who are connected and what activities the
humans are engaged in.

We begin by identifying several characteristics of on-line
game environments:

o single player vs multi-player

e synchronous (i.e., turn-taking) vs asynchronous (i.e.,
players do not wait between turns but may act contin-
uously)

e episodic vs non-episodic (in an episodic game, all play-
ers make a move simultaneously, without knowledge of
their opponents’ moves, then the system processes all
the moves and returns an outcome; examples include
iterated prisoner’s dilemma or silent auctions)

e dynamic vs static environment (in a dynamic game,
changes that occur are not only due to moves of the
other player(s), but the environment itself might be
changing; e.g., in soccer, the ball keeps rolling even af-
ter a player contacts it, whereas in chess, once a player
has made her move, the board remains unchanged un-
til another move is made)

o deterministic vs non-deterministic (i.e., at any given
time, a player has one or many choices of legal move(s)
to make)

o simple vs complex strategy space (the branching factor
in the game tree is a good measure of complexity)

e accessible vs inaccessible (i.e., player has access to all
necessary information required to make an informed
decision about what move to make next)

e discrete vs continuous strategy space (in some games,
moves may be defined discretely, while with others, the
difference between two moves may simply be a matter
of degree)

e time-critical vs non-time-critical (i.e., value of a player’s
move depends on how fast she makes it)

Over the last few years, we have been building and exper-
imenting with different on-line games, each exhibiting some
of these characteristics. Several of the games have been im-
plemented on the Internet, and we have collected a signif-
icant amount of human interaction data with these games.
This data becomes the basis for training the agents using
evolutionary techniques.

We begin by describing two of the games in the ensuing
sections, as background for understanding the training tech-
niques presented in the remainder of the paper.

2.1 Tron.

Tron is a video game which became popular in the 1980’s,
after the release of the Disney film with the same name.
We characterize Tron as: multi-player, asynchronous, non-
episodic, environmentally static, non-deterministic, simple,
accessible, discrete and time-critical.

In Tron, two futuristic motorcycles run at constant speed,
making right angle turns and leaving solid wall trails behind
them — until one crashes into a wall and dies. In earlier



work [6], we built a Java version of the Tron game and re-
leased it on the Internet' (illustrated in figure 1). Human
visitors play against an evolving population of intelligent
agents, controlled by genetic programs [10]. During the first
30 months on-line (September 1997 through April 1999), the
Tron system collected data on over 200,000 games played by
over 4000 humans and 3000 agents.
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Figure 1: The game of Tron.

In our version of Tron, the motorcycles are abstracted
and are represented only by their trails. Two players — one
human and one software agent — each control a motorcycle,
starting near the middle of the screen and heading in the
same direction. The players may move past the edges of the
screen and re-appear on the opposite side in a wrap-around,
or toroidal, game arena. The size of the arena is 256 x 256
pixels.

Figure 2: Agent sensors.

The agents are provided with 8 simple sensors with which
to perceive their environment (see figure 2). Each sensor
evaluates the distance in pixels from the current position to
the nearest obstacle in one direction, and returns a maxi-
mum value of 1.0 for an immediate obstacle (i.e., a wall in
an adjacent pixel), a lower number for an obstacle further
away, and 0.0 when there are no walls in sight. The game

http://www.demo.cs.brandeis.edu /tron

runs in simulated real-time (i.e., play is regulated by syn-
chronized time steps), where each player selects moves: le ft,
right or straight.

Our general performance measure is the win rate, cal-
culated as the number of games won divided by the num-
ber of games played. Figure 3 illustrates the distribution
of performances within the human population, grouped by
(human) win rate for the fifty-eight humans who played the
most games on the site during the first 30 months of the
experiment.

15
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Figure 3: Distribution of win rates of human players
who participated in the Tron Internet experiment.

22 Keyit.

Keyit is a simple two-player typing game in which partic-
ipants are each given ten words to type as fast as they can
(see figure 4) [23]. We characterize Keyit as: multi-player,
asynchronous, episodic, environmentally static, determinis-
tic, simple, accessible, discrete and time-critical.

Both players are presented with the same set of words,
selected automatically from a dictionary, displayed one at a
time and in the same order. For each player, a timer begins
when she types the first letter of a word and stops when
she presses the Enter key to terminate the word — at which
time, the system presents her with the next word to type.
Players are scored based on speed and accuracy.

Each word in the dictionary is characterized by a vector
of seven feature values: word length, keyboarding level?,
Scrabble score, number of vowels, number of consonants and
number of 2 and 3-consonant clusters. These feature values
are used in attempt to capture the relative difficulty of each
word.

Our general performance measure is the typing speed,
calculated in letters per second. During the first half of
1999, we conducted a 6-month classroom study involving
forty-four 10-12 year old students. Figure 5 illustrates the
distribution of performances within the student population,
grouped by typing speed.

?Based on a standard order for introducing keys to students
learning typing.
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Figure 4: The game of Keyit.

3. METHODOLOGY.

This section describes the methodology used to evolve
agents that can play each of the games discussed in the
previous section. All the agents are controlled by neural
networks, and here we outline the architecture of each net-
work as well as the training methods employed. Note that
these are similarly structured, despite the variants between
the domains.

The task for a Tron agent is as follows: given the state
of the arena, as determined by evaluating the eight sensors,
decide whether it is best to turn left or right or to keep
going straight. Play is controlled through simulated time
steps, and this decision is made at each time step.

For training Tron agents, we used game data collected on
the Internet site. This includes the content of each game,
i.e., every turn made by either player, the global direction
of the turn and the time in the game at which the turn
was made. There were 58 humans who played more than
500 games on our Internet site during the first 30 months
of data collection. In earlier work [24], we trained agents
to play Tron using games played by these humans as the
training set. Note that we split this data set in half and
reserved one half for post-training evaluation.

The Tron agents are controlled by a full-connected, two-
layer, feed-forward neural network, as illustrated in figure 6a.
Each network has 8 input nodes (one for each of the sensors
in figure 2), 5 hidden nodes and 3 output values. Each
output represents a value of merit for choosing each of the
three possible actions (left, right, straight); the one with
the largest value is selected as the action for the agent.

We trained agents using supervised learning [19, 27], des-
ignating a player to be the trainer and replaying a sequence
of games that were played by that player against a series
of opponents. We suspended play after each simulated time
step and evaluated the sensors of the trainer. These val-
ues were fed to a third player, the trainee (the agent being
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Figure 5: Distribution of typing speeds of students
who participated in the Keyit classroom experi-
ment.

trained), who would make a prediction of which move the
trainer would make next. The move predicted by the trainee
was then compared to the move made by the trainer, and
the trainee’s control mechanism was adjusted accordingly,
using the backpropagation algorithm [20].
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Figure 6: Agent control architectures.

The task for a Keyit agent is as follows: given a word,
characterized by its corresponding set of seven feature val-
ues, output the length of time to type the word. In addition
to using the feature values for input, we also consider the
amount of time that has elapsed since the previous word was
typed.



For training Keyit agents, we used game data collected
on the Internet from the 44 students who participated in
the classroom study described in the previous section [23].
For each student, we gathered all the moves from all games
of Keyit. A “move” includes a timestamp, the word being
typed, the amount of time that the player took to type the
word and the time that had elapsed between moves. We split
this data set in half and reserved one half for post-training
evaluation.

The Keyit agents are controlled by fully-connected, two-
layer feed-forward neural networks. The network architec-
ture is shown in figure 6b. There are 8 input nodes, cor-
responding to each of the seven feature values (normalized)
plus the elapsed time. The elapsed time is partially nor-
malized to a value between 0 and (close to) 1. There are 3
hidden nodes and one output node, which contains the time
to type the input word, in hundredths of a second.

Again, we used supervised learning to train the agents,
designating a player to be the trainer and replaying a se-
quence of games. For each move in a game, the network
predicted the trainer’s speed for that move based on the
feature vector of the word to type and the length of time
that elapsed since the last move. Based on the accuracy of
the trainees’ predictions, the network weights were adjusted
using backpropagation.

4. EXAMPLES.

This section presents examples of using our methodology
to create each of the three types of agents: clones, peers and
instructors.

41 Clones.

Clones are agents that capture the behavior of an individ-
ual human. The goal in training a clone is for it to emulate
the human as closely as possible. Playing a game with one’s
clones is a form of self-play or solitaire, but here enabled in
a multi-player game. This mode has the added advantage of
allowing players to spot weaknesses in their own games. For
the human learning task, we consider this to be a means of
practicing skills alone, like doing homework on one’s own.

We have trained clones for both Tron and Keyit. From the
Tron data set, fifty-eight clones were produced and figure 7a
shows the results. The win rate of each trainee is compared
with its trainer. From the Keyit data set, forty-four clones
were produced, as illustrated in figure 7b. The typing speed
for the trainees (horizontal axis) versus their trainers (verti-
cal axis) is shown, for both the test and training data sets.
For both graphs, if the results were perfect (i.e., noiseless),
then each mark on the plots would fall on a line of slope 1.

4.2 Peers.

Peers are agents that represent the behavior of a group
of human users. A human interacting with a set of peers
is akin, in the human learning realm, to a student doing
a group project within her classroom. Here, students are
grouped by age (because they are in the same classroom)
and then, within the classroom, groups may be defined in a
variety of ways. For example, groups may be formed by the
teacher according to ability — putting all the “smart” kids
in the same group or putting one smart kid in each group.

For the purpose of training agents as peers, we select a
performance metric (e.g., win rate of a game), and then
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Figure 7: Training clones.

group together the behavioral data for all humans exhibit-
ing the same (or similar) metric. We then train the agents
using this composite data set. The result is a population of
peers, where individual peers are intended to be representa-
tive of all the humans within a single grouping. The whole
population of peers is meant to be representative of all the
groupings.

We have trained peers in both of our test domains. From
the Tron data set, ten peers were produced, by dividing the
58 individual humans into 10 groups based on their win rates
(e.g., group 1 had 0-10% win rate, group 2 had 10-20% win
rate, etc.). Figure 8a shows the correlation between trainers
(humans) and trainees (peers). The axes are the same as in
figure 7. While the correspondance is fairly good overall, it is
interesting to note that the human with the highest win rate
produced a clone with one of the lowest win rates. We spec-
ulate that the human player’s behavior patterns were noisy
and thus it was difficult to train a reasonable agent. We are
investigating this further by comparing various behavioral
statistics from the human population with the correlation
coefficients in the training exercise.

From the Keyit data set, eight peers were produced, by
dividing the 44 students into eight groups based on typing
speed. Group 1 — the slowest group — had a typing speed
of less than 0.5 letters per second. Group 8 — the fastest
group — had a typing speed of over 3.5 letters per second.
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Figure 8: Training peers.

Figure 8b compares the average speeds of the trainers and
trainees, again using the same axes as in the previous figures.

4.3 Instructors.

Instructors are agents that emulate the behavior of a hu-
man expert. This translates into a teacher being available
to provide a student with the right answer to a problem or
the “right” way to accomplish a task.

In some domains, there is always a right answer or a cor-
rect response, such as the correct spelling of a word (in
Keyit) or the solution to a arithmetical expression. In other
domains, such as Tron, the “right” move at a given time
is not deterministic. We make the assumption that a good
Tron player — one with a high win-rate — exhibits the right
way to play the game.

Thus, for a simple domain like Keyit, we can define the
behavior of an instructor merely by setting the typing speed
and producing the correctly spelled word after a fixed amount
of time has passed. For a complex domain like Tron, we de-
fine instructors by using the technique described in section
4.2 and only use the humans with the highest win rates to
train the agents.

5. DISCUSSION.

The clone and peer agents correlate better with their hu-
man trainees within the Keyit domain than in the Tron do-

main. We believe that there are several factors contribut-
ing to this situation. First, the Keyit game uses a simple,
static environment, whereas the Tron environment is dy-
namic. Second, the amount of training data we had for
Tron was much greater than that for Keyit, and the human
population participating in the Tron experiment had much
wider demographics; these factors account for the naturally
occuring variations found in such a large data set. One as-
pect of our current efforts is to improve on the correlation
between trainers and trainees in dynamic environments.

While we have developed agents for the domains described,
we are currently working on methods of deploying the agents
and, in particular, knowing which type of agent to deploy
under which conditions. Ideally, we would like our system to
choose the proper agent for a user to interact with, given the
user’s behavior with the system. This is not a simple task.
It depends not only on a user’s performance with the sys-
tem, but also on the user’s motivation. The correct choice
of agent at the right time will mean the user is continually
challenged and, through this challenge, motivated.

We have designed a simple control mechanism that prob-
abilistically chooses which type of agent to deploy (figure 9).
The next step is to learn the correct probabilities for each
student and adjust them as the student progresses. This
will be done using a simple network and an evolutionary
algorithm.

controller

clone peer instructor

Figure 9: Simple control architecture.

After we complete the control system, we will embed it
in our existing on-line educational system®. We are contin-
uing to develop educational games — more complex than
those described here — exhibiting the variety of features in
our framework and reinforcing particular curricular topics,
as advised by classroom teachers. Pilot studies will be con-
ducted with students, in cooperation with teachers, to test
the effectiveness of the system, both from pedagogical and
motivational standpoints.

6. SUMMARY.

We have provided a theoretical framework for building
software agents geared towards education. The basis for our
work is the pedagogical belief that students need to experi-
ence a variety of learning opportunities, by themselves, with
peers and with teachers. Thus we have defined three cat-
egories of agents and presented examples for constructing
these agents using techniques from evolutionary computa-
tion. We include in our framework a scheme for characteriz-
ing the features of on-line interactive environments in order
to help measure the progress of our work and the robust-
ness of the agents produced. The next step is to deploy

3http:/ /satchmo.cs.columbia.edu/tip



these agents in a live environment and pilot test them with
students in classrooms.
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