Towards a methodology for describing the relationship between simulation and
reality

Eric Schneider?, Elizabeth I. Sklar!, M. Q. Azhar?, Simon Parsons! and Karl Tuyls'

!Department of Computer Science, University of Liverpool, UK
{eric.schneider, e.i.sklar, s.d.parsons, k.tuyls } @liverpool.ac.uk
2Borough of Manhattan Community College and Graduate Center,
City University of New York, New York, USA
mazhar@bmcc.cuny.edu

Abstract

For research that carries out experiments in simulation, an im-
portant question is how the results will translate into the real
world. This paper proposes a method for comparing results
obtained in simulated versus physical environments, based on
interval relationships between metrics gathered in both set-
tings. The approach is motivated by the fact that the rela-
tionship between absolute measures often does not tell much.
For example, the amount of time taken to complete a task in
simulation versus the same task in the physical world could
always be shorter in simulation because of speed-up factors
embedded in the simulator. Three different metrics are intro-
duced that describe different interval relations, and these are
demonstrated using two case studies.

Introduction

It is common practice in artificial life, evolutionary compu-
tation, multiagent systems and robotics to employ simulation
as a means to evaluate an approach which is intended to be
deployed in some type of real environment. “Real” might
be physical (as in the case of robotics) or might be inter-
active (as in the case of human-agent systems) or might be
real-time (as in the case of systems that respond to live data
feeds, such as financial stock prices, or sensors, such as traf-
fic lights). The advantage of simulation over reality is that
we typically have more control over and easier access to the
simulated environment. This implies that it is simpler to test
algorithms, or whatever we are working on, in the simulated
environment first—i.e., before it is deployed in reality.
Notwithstanding the many issues in transferring results
from simulation to reality (Brooks (1992)), the general wis-
dom is that “if it works in simulation”, then it will work,
to some degree, in reality; and if it doesn’t work in simula-
tion, then it certainly will not work in reality. While there
is a reasonable literature on the notion of verification, espe-
cially in multiagent systems, and some attention paid to the
notion of validation in multiagent-based simulation (though
not enough, in our opinion), these pieces of work do not at-
tempt to measure how good a simulation is with respect to
the reality it is meant to approximate and and how well the
simulation solution will transfer to reality. In other words,

if we say that testing in simulation will ensure that a partic-
ular approach will work in reality to some degree, what does
that mean? To what degree? And what is a degree?

In the work presented here, we address exactly those
questions. Our contention is that a simulation environment
will never fully or exactly emulate everything that happens
in a real environment (agreeing with Brooks (1992)), but if
we have some structured way of measuring and describing
what the degree of closeness is, then we will have a struc-
tured way of being able to define how robust our approach—
tested in simulation—is with respect to reality. Especially in
cases where testing in reality is risky (e.g., nuclear cleanup)
and/or expensive (e.g., planetary exploration), it would be
very useful to know how much we are gaining by the knowl-
edge obtained in the simulation environment. This work is
particularly relevant in the artificial life community because
our methodology can be applied to assess the utility of arti-
ficial approximations or imitations of real phenomena.

This paper is organised as follows. The next section high-
lights prior work on describing the relationship between real
and simulated environments. Then we describe our method-
ology in abstract terms, and outline an example in which
we applied our methodology to some of our own work in
robotics and multiagent systems. Finally, we close with
some discussion and conclusions.

Related Work

As it is often infeasible to develop robot behaviours on phys-
ical hardware, there has been a good deal of investigation
into developing behaviours in simulations. An early ex-
ample of this is Koza (1991), which used genetic program-
ming to recreate the kind of navigation that Mataric (1990)
had hand-coded, and led some to conclude that it would be
straightforward to use evolutionary techniques to learn robot
controllers that could be dropped into real robots that would
then operate as desired in the real world.

Responding to this position, Brooks (1992) raised con-
cerns about the transferability of behaviours learned in sim-
ulations due to significant differences between simulation
and physical environments. First, working purely in simu-

lation, that is without regularly checking the results of the
simulation against what happens in the real world, could
lead to evolutionary techniques focusing on problems that
just don’t exist in the real world. Second, if simulators do
not accurately model the errors that occur in sensing and
actuation, evolutionary techniques that evaluate their output
only in simulation are unlikely to evolve controllers that will
work on real robots.

Jakobi et al. (1995) introduced the term reality gap to de-
scribe the differences between reality and simulation that
Brooks had described, and went on to provide evidence both
of the existence of the gap and of the possibility of overcom-
ing it. They evolved controllers under three conditions: no
noise, noise equivalent to that measured in the real world
(“observed noise” in their terminology), and much more
noise that is observed in reality. Controllers evolved with
observed noise worked when transferred onto a real robot.
Controllers evolved either with no noise, or with much more
than observed noise, failed on real robots.

There have been efforts to skirt the reality gap rather than
model it explicitly. Vaughan and Zuluaga (2006) propose
using a simulator at various points during the performance
of a physical task—selecting targets and planning paths to
them—in order to find viable solutions, and especially to
avoid dangerous outcomes like colliding with walls or other
obstacles. This use of simulation is similar to real-time
planning methods like the Dynamic Window Approach (Fox
et al., 1997) to collision avoidance. More recently, Farchy
et al. (2013) used “Grounded Simulation Learning” to op-
timize a walk cycle on a humanoid robot. “Grounding” in-
volved learning a controller via a small number of trials on a
physical robot before refining the controller through a much
larger number of trials in a simulator. Further development
occurred over a number of round trips through this process.
Rather than tune the simulator to match observed noise in
the robot’s physical environment, the behaviour of the sim-
ulated robot was constrained to match real world results.

Marques and Holland (2009) define architectures for
“functional imagination” for simulation, that is, architec-
tures in which behaviours developed in simulation are trans-
ferable to physical implementations in some useful way.
They identify a set of necessary and sufficient features for
a simulator to provide “behavioural benefit” to physical per-
formance, but do not directly address the problems raised by
the reality gap, much less how to measure or overcome it.

Koos et al. (2010) note that transferability and efficient
performance in a simulator, which may exploit bugs or poor
models of a physical environment, are conflicting goals.
They propose an evolutionary algorithm that aims to opti-
mize for both objectives. To help achieve this, they define
a “simulation-to-reality disparity factor” for controllers de-
veloped in simulation. This factor is based on the differ-
ences in the controller’s performance observed in simulation
and physical environments according to certain “behavioural

features”. Examples of features are distance covered during
an experiment or the angular orientation of a robot and the
end of its behaviour.

Approach

The question of how well simulation predicts performance
in a physical environment can be examined in a number
of ways. A simple method is to select a particular metric,
e.g., distance travelled in a mobile robot domain, and com-
pute that measurement in the robot’s physical environment
as well as in a simulated environment with the same geomet-
ric specifications. In earlier work (Sklar et al., 2012), we did
just this. We selected six metrics and ran point-to-point com-
parisons between the physical environment and a parallel
simulated environment. Our results showed that, while the
individual metrics—scalar values, i.e., single points within a
distribution—do not line up in absolute terms, they do align
in relative terms. We had the idea that the relationships
between metrics could be expressed as some function that
could be computed from sample results collected in physi-
cal and simulated environments. In this way, one could col-
lect a statistically significant sample in simulation, and then
apply the function to those results and obtain a fair approxi-
mation of what the physical results would be. For example,
we could train a neural network to predict the physical re-
sults based on simulated results, using our sample data set
as the training set.

Here, we continue this line of inquiry, but propose three
additional ways of looking at the relationships between sim-
ulated and physical results:

e First, instead of performing point-to-point comparisons,
we examine the distribution of values for a particular met-
ric and compute an interval that describes the bounds of
the distribution (such as o or maz —min value range).
We can then compare the intervals for individual metrics,
in simulation versus physical environments.

e Second, in addition to considering intervals for individual
metrics, we compare the intervals for sets of metrics.

e Third, we consider rank order comparisons of groups of
metrics. Since simulation is often used to assess the im-
pact of various experimental conditions, we hypothesize
that the best-to-worst ordering of each condition can be
compared in physical and simulated environments and the
ordering itself can be useful even if the point-to-point or
interval relationships do not align.

We believe that these comparisons are useful additions to
the point-to-point comparisons in describing the predictive
power of a simulation environment with respect to a parallel
physical environment. For example, rather than saying that
simulation results predict physical results “to some degree”,
we can say that the results are comparable with respect to

relations picture
x <y y<uw XXX YYY
T=1Y XXX
YYY
T meets y y meets XXXYYY

zoverlapsy yoverlapsz XXX
YYY
z during y y during x XXX
YYYYYY
X starts y y starts x XXX
YYYYY
z finishes y gy finishes x XXX
YYYYY

Figure 1: Allen’s 13 temporal interval relationships between
two time periods, z and y (from Allen (1983)).

statistical intervals or rank ordering. Next, we describe each
methodology in detail.

Statistical interval comparison

Allen (1981, 1983) describes temporal relations between
events and identifies thirteen possible relationships between
any pair of time intervals. These are listed in Figure 1.

We apply the same idea to any scalar metric that can be
expressed as a statistical interval. For example, it could be
a confidence interval, centered on the mean and bounded by
+n standard deviations; or it could be a guartile interval;
or a min-max interval. Applying the statistical interval rela-
tionship method works as follows:

1. Collect a set of raw data for a particular metric in the sim-
ulated environment—a statistically significant sample—
and another set of data for the same metric in the corre-
sponding physical environment (a smaller sample).

2. Compute the mean, u, and standard deviation, o, of both
samples (note that we assume that the distribution in the
physical environment will be normal, thus the mean and
standard deviation are still valid, albeit not as reliable as
when the data set is larger).

3. Plot the interval [— no, u + no| for both simulated
and physical data sets, as two vertical columns in a 2-
dimensional graph. We select n based on the percentage
of the distribution that we want our interval to cover. For
example, n = 1 will cover 68% of the distribution and

< meets overlaps finishes during

! LI
. : L [i
3)

() (1 2) “

starts

il 1l
(5) 6) @)

starts

during finishes overlaps meets >

LY ULY AT T
8) ©)

(10) at (12

Figure 2: Statistical intervals, using Allen’s relations labels.
See text for explanation.

n = 2 will cover 95% of the distribution!.

Now we can examine the relationships between these in-
tervals, as illustrated in Figure 2. The relations are labelled
using Allen’s terminology, but the order in which the rela-
tions are displayed is sorted so that the equality relation-
ship is in the middle and the further we go from the mid-
dle, the more disparity between the values being compared.
Cases (0) and (12) are when the data is completely unaligned
and one set of values is strictly less (or greater) than the
other. Cases (1) and (11) are when one set of values is less
(greater) than or equal to the other. Cases (2) and (10) are
when the two sets of values overlap. Cases (3) and (9) are
when the upper bounds of both sets are equal, but not the
lower bounds. Cases (4) and (8) are when one set of values
is completely contained in the other set. Cases (5) and (7)
are when the lower bounds of both sets are equal, but not the
upper bounds. Case (6) is when the data is perfectly aligned.

We use the statistical intervals to compare experimental
results under two different conditions. These could be physi-
cal versus simulated, which is what we are particularly inter-
ested in here; however, these could generalise to comparing
other pairs of experimental conditions. For example, con-
sider Case (8). This case indicates that the performance in
one metric (blue) “contains” the performance of the other
(red). This implies that performance under the blue condi-
tion is more variable than under the red condition. If we
are comparing performance in, say, simulation in the left-
hand (red) interval and physical in the right (blue), we might
be able to say that performance (in this metric) was more
variable in the physical setting. If our goal is to derive be-
haviours in simulation (red) that are guaranteed to fall within

'These are standard values for normal distributions.

a certain interval in the physical world (blue), then we can-
not make this claim if the data matches Case (8); however,
if our data (red:simulation; blue:physical) matches Case (4),
then we can make the claim.

Alternatively, we might be interested in comparing met-
rics resulting from experimental conditions that differ in
ways other than simulated versus physical. For example, we
might be interested in comparing how a robot interacts with
a person when the robot is programmed using two different
behaviours, called behl and beh2. Experimental results
could be obtained from people interacting with a physical
robot that exhibits both behaviours, as well as with a simu-
lated robot that also exhibits both behaviours. If the statisti-
cal interval relationship for one metric resulting from behl
(red) compared with beh?2 (blue) falls into Case (2) for the
physical robot, and does the same for the simulated robot,
then we can be confident that the simulation environment
produces results reliably similar to the physical environment
in order to be able to use the simulated environment for eval-
uating this particular metric.

Statistical interval set comparison

Our statistical interval comparison provides a structured way
of describing the relationship between the values obtained
under two different experimental conditions of an individ-
ual metric. Typically, though, experimental results examine
more than one metric. Thus, we define a statistical inter-
val set methodology with which to compare the performance
under two different experimental conditions of a set of met-
rics. In particular, it is useful to know how consistent the
relationships are from one metric to another in a set. For
example, we might be able to say that all metrics in the set
which measure “time” are Case (0), but all metrics in the set
which measure “distance” are Case (12).

Rank ordering comparison

Another way we look at the relationships between physi-
cal and simulation is to examine the rank ordering in values
of an individual metric obtained under a set of different ex-
perimental conditions. Take again the example of distance
travelled. Supposed we want a robot to visit ten points in
its environment, and we have five different ways of deciding
the order in which the robot visits the points. Let’s call these
v1 through v5. We run experiments in both simulated and
physical environments, and we compute the distance trav-
elled for all five visiting methods. Then we sort the distance
values, from shortest to longest, and obtain a rank-order for
the corresponding visiting methods. We can do this for ex-
periments conducted both in simulation and in the physical
environment. If the rank-ordering is the same between the
simulated and physical environments, then we can be con-
fident that simulation is an effective method for comparing
experimental conditions along the metric chosen. For exam-
ple, in the sample human-robot experiment described above,

if the distance travelled for the robots using v1 is the short-
est and the distance travelled for the robots using v3 is the
longest, in both physical and simulated environments, then
we can be confident that the simulation environment pro-
duces results reliably similar ot the physical environment in
order to be able to use the simulated environment for evalu-
ating this particular metric across this set of behaviours.

Case Studies

We demonstrate the utility of our methodology with two
case studies. The first case study involves a series of exper-
iments that evaluate several different task allocation mech-
anisms for a multi-robot team. The second case study in-
volves a series of experiments that evaluate two different
mechanisms for interaction in a human-robot scenario. First
we describe each case study, and then apply our four com-
parison methods to each: point-to-point comparison, statis-
tical interval comparison, statistical interval set comparison
and rank ordering comparison.

Case Study 1: Multi-robot task allocation

This case study involves a team of robots tasked to visit a
number of farget points in a constrained arena, organised
such that one robot visits each point once. Our research in
this case study concerns assessment of a number of differ-
ent mechanisms by which tasks are allocated to robots. The
results, with respect to allocation mechanisms, have been
presented elsewhere (()zgelen et al., 2013; Schneider et al.,
2014). Here, we are concerned with the comparison of re-
sults obtained in parallel physical and simulated settings.
Our experimental testbed employs a dual system architec-
ture, based on Player/Stage2 (Gerkey et al., 2003; Vaughan
and Gerkey, 2007), in which both physical and simulated en-
vironments share common underlying system components.
The details of our framework have been described elsewhere
(Sklar et al., 2011). There are two primary differences be-
tween the physical (Player) and simulated (Stage) instantia-
tions of our framework: one is with respect to localisation
and the other is with respect to robot driving. Localisation
refers to robots knowing where they are in their environ-
ment, in terms of a coordinate-based frame of reference. In
the physical setup, this information is provided by a network
of cameras, suspended above the arena, which track the
robots and report their (x,y, #) positions to all team mem-
bers, through a central server process. In contrast, in the
simulation setup, localisation is “perfect” because the simu-
lator knows where all the robots are at all times. Thus, the
physical environment is more noisy with respect to robots
knowing where they are. Driving refers to robots know-
ing how to move, i.e., which motor(s) to turn on for how
long. In the physical setup, a robot controller process com-
municates abstract motion commands (e.g., “forward”) to a

http://playerstage.sourceforge.net/

I
]

il
]

JL

]
Sl

(a) Clustered start
i

(c) Target points A

(b) Distributed start

I
2] [

(d) Target points C (e) Target points E

L

Figure 3: Scenario definitions. (a) and (b) show starting
locations. (c), (d), and (e) show target point set locations.

second driver process which converts the abstract motion
command to platform-specific byte codes and transmits the
codes to the physical robot. This abstraction of motion com-
mands means that the only platform-specific element of the
system is down at the driver level. In contrast, in the sim-
ulation setup, the same robot controller process sends the
abstract motion commands to a robot driver in the simulator.
Thus, the physical environment is again noisier than simu-
lation and is also slower, because there is an extra level of
communication (from the driver to the physical robots) that
does not exist in simulation.

The experiments we conducted measured results in six
different scenarios. All scenarios involved n = 3 robots
and m = 8 target points. There were two sets of starting lo-
cations, one “distributed” and one “clustered”, and three sets
of target point locations (A, C and E). The starting locations
and the target points can be seen in Figure 3. Experiments
were conducted with each scenario using each of four dif-
ferent task allocation mechanisms. Here, we will refer to
these generically as TAM1 through TAM4, because detail-
ing the mechanisms is not the point of this paper (as above,
details were reported elsewhere). Each combination was run
6 times in the physical environment and 30 times in the sim-
ulation environment.

start location : {Clustered, Distributed } x
targetpoint set : {A,C,E}x
mechanism : {TAM1, TAM2, TAM3, TAM4} x

6 physical = 144 runs

environment : { 30 simulation = 720 runs

For each run of each experiment, we recorded the fol-
lowing 6 metrics: (1) deliberation time, the total time re-
quired to allocate the target points; (2) execution time, the
total time required to visit all the target points; (3) distance
travelled, the total distance travelled by all robots to visit
their assigned target points; (4) idle time, the total amount
of time that robots were not executing a task, i.e., because

they had no (more) target points to visit; (4) delay time, the
amount of time robots spent avoiding collisions with oth-
ers (explained below); and (6) near collisions, the number
of times robots detected another’s presence and stopped to
negotiate right-of-way. Because each experiment involves
many robots moving in a restricted area, they naturally get
in each other’s way. When robots are close enough to require
evasive action, our system detects a “near collision,” and the
robots stop moving. Then the robot closest to its goal (cur-
rent target point) is given the right-of-way. The other robot
waits until its path is clear, and then continues on its way.
The time that a robot was stopped for this reason is its de-
lay time. In addition to measuring delay time, we counted
the number of times that robots were delayed in this manner
(near collisions).

Case Study 2: Human-robot interaction

This case study involves a human-robot team collaboratively
looking for “treasures” hidden in an environment that the
robot can explore but the human cannot enter. In order for
the team to complete the task—finding and correctly identi-
fying all the treasures—the human and robot have to work
together. There are tasks that only the robot can perform,
such as wandering around in the environment and captur-
ing images of what it “sees” there; and there are tasks that
only the human can perform, such as identifying a particular
treasure within an image (which is provided by the robot).
Our research in this case study concerns assessment of an
argumentation-based dialogue mechanism for facilitating
human-robot collaboration. The results, with respect to in-
teraction mechanism, have been presented elsewhere (Azhar
et al., 2013; Sklar et al., 2013). Here, we are concerned with
the comparison of results obtained in parallel physical and
simulated settings.

The experimental setup is similar to that employed by
Case Study 1. The robot explores the same physical en-
vironment as the multi-robot team. The physical robot is
implemented using Player and the simulated version of the
robot is implemented in Stage. The experiments we con-
ducted measured not only the same 6 performance metrics
described for Case Study 1, but also a number of metrics
that assess the usability and impact of two interaction mech-
anisms. Here, we will refer to these generically as IM1 and
IM2, because detailing the mechanisms is not the point of
this paper (as above, details were reported elsewhere). We
conducted a user study for Case Study 2, which involved 60
human subjects: 27 collaborated with a physical robot, and
33 collaborated with a simulated robot.

Results

Having presented each of our cases studies, here we apply
our method for comparing the results of experiments to both
case studies in turn. We start with the human-robot interac-
tion scenario since it is simpler.

3500

200/ 3000
2500) .
- W |
-

.

(a) Deliberation time (b) Total distance

Figure 4: Deliberation time and distance travelled for the
human-robot interaction case study. The left plot shows
deliberation time, the right plot shows distance travelled.
Each plots compares results for physical (red) and simulated
(blue) across both forms of dialogue.

Human-robot interaction

Figure 4 shows the statistical interval method applied to the
human-robot interaction scenario for two metrics, delibera-
tion time and the total distance travelled. In this figure, we
compare results obtained using physical robots against re-
sults obtained in simulation (red vs blue bars) to see if there
are systematic differences. We see that for fotal distance
travelled, the results obtained fall into interval relationship
Case (12), where the results in simulation are consistently
less than those on physical robots (and since we are using
twice the standard deviation to construct the intervals, we
can conclude that this difference is significant). For deliber-
ation time, the results for IM1 fall into relationship Case (4)
with the simulation results contained within the physical re-
sults (so any result in simulation is within what is found in
practice) whereas the results for IM2 fall into relationship
Case (2).

Figure 5 illustrates our “sets of intervals” analysis. Here
for each metric, we compare experimental conditions—i.e.,
the two interaction mechanisms. The key difference be-
tween this method and the method demonstrated above is
that the statistical interval method (above) compares the red
vs blue bars for each experimental condition, whereas here,
the statistical interval set method compares the relationship
between the two red bars vs the relationship between the two
blue bars. Each cell in the heatmap in Figure 5 contains the
number of pairs of results (i.e., two red bars for the physi-
cal plot at the top) which fall into each interval relationship
case (numbered 0..12 across the x-axis of the plot). In this
case, there is only one comparison (between the two condi-
tions), so there is only one entry in each row in the heatmap.
But the idea of the heatmap is to make it easy to spot cor-
respondences between physical and simulation results. Fig-
ure 5 shows that simulation and physical agree exactly on
the comparative results for the two interaction mechanisms.

Figure 6 provides a way of looking at the rank order over
metrics. These are rank-ordered, so that the top-valued con-

Delib. time .

Execution time

Distance

Delib. time .

Execution time

Distance

(b) Simulation

Figure 5: Heatmap showing sets of interval relationships
for the task allocation case study. Darker values represent
higher counts.

v [m2

Delib. time

Exec. time

Distance

Figure 6: Rank order of metrics for the human-robot inter-
action case study. Values are ordered from left to right.

dition is in the left column and the bottom-valued condition
is in the right column. Since there are only two experimen-
tal conditions, this is not a complex plot; but as above, the
idea is to make it easier to spot correspondences between
physical (top row in each plot) and simulation (bottom row).
Figure 6 shows perfect alignment in rank-ordering for the
metrics illustrated.

Multi-robot task allocation

Figure 7 shows the comparison of the individual statistical
intervals for one of the metrics and all the task allocations
mechanisms. Here we use two standard deviations to define
the intervals. In this particular case, it is easy to see that for
this metric there is a consistent relationship between phys-
ical and simulated results across both start conditions. In
all cases, the relationship between the intervals is Case (12),
which allows us to say that the execution time for simula-
tions is significantly less than that for physical robots.
Figure 8 shows the sets of intervals in heatmap form, a
more complex picture than in Figure 5. Figure 8§ (a) sum-
marises all the results on physical robots for two task al-
location mechanisms, and (b) summarises all the results

100

TAMILP TAML'S TAMZ-P TAVZ-S TAM-P TAM S TAMA P TAMA'S

(a) Clustered start

TAMLP TAMLS TAMZP TAM2-S TAMS P TAMS S TAMA P TAMAS

(b) Distributed start

Figure 7: Execution time for the task allocation case study.
The left plot shows the clustered start condition, the right
plot shows the distributed start condition. Each plots com-
pares results for physical (red) and simulated (blue) across
all four task allocation mechanisms.

Delib. time

Execution time

Distance

Idle time .

Delay time
Collisions

Delib. time

Execution time

Distance!

Idle time

Delay time

Collisions

(b) Simulation

Figure 8: Heatmap showing sets of interval relationships
for the task allocation case study. Darker values represent
higher counts.

in simulation for the same two mechanisms. Each row in
the heatmaps summarises all the results for a single metric
across the different start configurations and the different sets
of task points. For each experiment we generate the statis-
tical intervals, establish which of the interval relationships
that they fall into, and then count how many experiments
stand in each of the thirteen interval relationships. Each cell
then displays the relevant count, with darker cells reflecting
a higher count.

What we are looking for here is similarity between phys-
ical and simulated experiments. For these two mechanisms,
we can see strong agreement in terms of deliberation time:

o
B
Near
Collisions
,
Delay time
S

[rame [| tam2 [l Tam3 [TAM4

Figure 9: Rank order of metrics for the task allocation case
study. Values are ordered from left to right.

both physical and simulation have all comparisons falling
into Case (0); good agreement on distance: all of simulation
and most of physical fall into Case (0); and lesser agreement
on delay time and collisions: simulated results all fall into
Case (0), physical are split between Cases (0), (4) and (6);
and idle time: all simulated are Case (3), while physical are
split between Cases (3) and (7). These relationships allow
us to identify when simulations will be good predictors of
behaviour on real robots.

These relationships between mechanisms are shown even
more clearly in Figure 9, which shows the application of
the idea of rank-ordering to the results. In particular, this
figure shows, for each metric, the relative performance of
each mechanism across environments. Rankings are indi-
cated by placement in the graphs, with the top-valued exper-
imental condition (task allocation mechanism, in this case)
on the left and the worst performer on the right. There are
two rows for each metric: the top row indicates ranks for
runs performed in the physical environment while the bot-
tom indicates those for the simulation environment. These
results show quite clear agreement of rank orders in physical
and simulation environments. Deliberation time, execution
time, and distance travelled show exact agreement. The re-
maining metrics—idle time, delay time, and number of near
collisions—are “misaligned” by at most one rank order.

Summary and Future Work

The interval relationships developed in this work, and the
corresponding graphical representations give an immediate
and, at the same time, nuanced indication of the way phys-
ical and simulation environments relate to one another. We
have presented three different ways of comparing results ob-
tained in parallel physical and simulation environments, and
we have demonstrated these methods of comparison in two
different case studies.

There are a number of open issues that have emerged as
result of our preliminary work presented here. First, it is
a logical question to ask what the methods presented here
provide that traditional #-tests from statistics do not tell us.
Second, another natural question to ask is how the methods
presented here hold up in the face of significant stochastic-
ity in results (e.g., where 30 runs does not offer convergence
or demonstrate normal distributions), as well as handling
of outliers. Finally, the methodology presented examines
scalar values that vary from run to run, but do not trend over
time. In the case of domains that involve learning, such as
any attempt to model human behaviour, certain statistics will
improve as the human learns. This kind of situation, where
the metric being compared is a function rather than a scalar
value, will require different treatment. These questions will
be investigated in future work.

Acknowledgements

Thanks to Gal Kaminka who first suggested Allen’s inter-
vals in connection with our work. Part of this work was
completed while some of the authors were with Brook-
Iyn College and Hunter College of the City University of
New York (CUNY). We gratefully acknowledge the work of
our CUNY colleagues including Ofear Balas and Michael
Squitieri who contributed to the software development and
running of some of the experiments contained this paper.
This work was partially supported by grant #I1S-11-16843
from the US National Science Foundation (NSF).

References

Allen, J. F. (1981). An interval-based representation of temporal
knowledge. In 7th International Joint Conference on Artifi-
cial Intelligence, pages 221-226.

Allen, J. F. (1983). Maintaining Knowledge about Temporal Inter-
vals. Communications of the ACM, 26(11).

Azhar, M. Q., Schneider, E., Salvit, J., Wall, H., and Sklar, E. 1.
(2013). Evaluation of an argumentation-based dialogue sys-
tem for human-robot collaboration. In Workshop on Au-
tonomous Robots and Multirobot Systems, St Paul, MN, USA.

Brooks, R. A. (1992). Artificial life and real robots. In /st Euro-
pean Conference on Artificial Life, pages 3—10. MIT Press.

Farchy, A., Barrett, S., MacAlpine, P., and Stone, P. (2013). Hu-
manoid robots learning to walk faster: From the real world
to simulation and back. In 12th International Conference on
Autonomous Agents and Multiagent Systems, pages 39-46.

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window
approach to collision avoidance. IEEE Robotics & Automa-
tion Magazine, 4(1):23-33.

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The
Player/Stage Project: Tools for Multi-Robot and Distributed
Sensor Systems. In /1th International Conference on Ad-
vanced Robotics.

Jakobi, N., Husbands, P., and Harvey, 1. (1995). Noise and the
reality gap: The use of simulation in evolutionary robotics.
In Advances in Artificial Life, pages 704—720. Springer.

Koos, S., Mouret, J.-B., and Doncieux, S. (2010). Crossing the re-
ality gap in evolutionary robotics by promoting transferable
controllers. In /2th Annual Conference on Genetic and Evo-
lutionary Computation, pages 119—-126. ACM.

Koza, J. R. (1991). Evolving emergent wall following robotic be-
havior using the genetic programming paradigm. In First Eu-
ropean Conference on Artificial Life, pages 110-119, Cam-
bridge, MA. MIT Press.

Marques, H. G. and Holland, O. (2009). Architectures for func-
tional imagination. Neurocomputing, 72(4-6):743-759.

Mataric, M. J. (1990). A distributed model for mobile robot
environment-learning and navigation. Technical report, MIT
Artificial Intelligence Laboratory.

Ozgelen, A. T., Schneider, E., Sklar, E. L., Costantino, M., Epstein,
S. L., and Parsons, S. (2013). A first step toward testing
multiagent coordination mechanisms on multi-robot teams.
In Proceedings of the Workshop on Autonomous Robots and
Multirobot Systems.

Schneider, E., Balas, O., Ozgelen, A. T., Sklar, E. 1., and Par-
sons, S. (2014). An Empirical Evaluation of Auction-based
Task Allocation in Multi-Robot Teams (Extended Abstract).
In 13th International Conference on Autonomous Agents and
Multiagent Systems, Paris, France.

Sklar, E., Ozgelen, A. T., Munoz, J. P., Gonzalez, J., Manashirov,
M., Epstein, S. L., and Parsons, S. (2011). Designing the
HRTeam framework: Lessons learned from a rough-and-
ready human/multi-robot team. In Workshop on Autonomous
Robots and Multirobot Systems, Taipei, Taiwan.

Sklar, E., Ozgelen, A. T., Schneider, E., Costantino, M., Munoz,
J. P, Epstein, S. L., and Parsons, S. (2012). On transfer
from multiagent to multi-robot systems. In Workshop on Au-
tonomous Robots and Multirobot Systems, Valencia, Spain.

Sklar, E. 1., Azhar, M. Q., Parsons, S., and Flyr, T. (2013). A
Case for Argumentation to Enable Human-Robot Collabo-
ration (Extended Abstract). In Proceedings of Autonomous
Agents and Multiagent Systems (AAMAS), St Paul, MN, USA.

Vaughan, R. and Zuluaga, M. (2006). Use your illusion: Senso-
rimotor self-simulation allows complex agents to plan with
incomplete self-knowledge. In From Animals to Animats 9,
volume 4095 of Lecture Notes in Computer Science, pages
298-309.

Vaughan, R. T. and Gerkey, B. (2007). Really Reusable Robot
Code and the Player/Stage Project. In Brugali, D., editor,
Software Engineering for Experimental Robotics. Springer.

