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Abstract. This paper explores the use of the Myers-Briggs Type Indi-
cator (MBTI) as the basis for defining the personality of an agent. The
MBTI is a well-known psychological theory of human personality. In the
MBTI model, four axes are defined to explain how humans perceive their
environment, how they interact with others and how they make decisions
based on these traits. The work described here presents a preliminary
model of agent behavior in which two of the axes are implemented, com-
bining to reflect four distinct agent personality types. Experiments were
conducted under three environmental conditions: single agent setting,
homogeneous multiagent team, and heterogeneous multiagent team. Re-
sults are presented for each condition and are analyzed in comparison
with the other conditions, as well as within the context of the expected
MBTI behaviors given each environment and the simulated task. It is
demonstrated that agents of each personality type produce very differ-
ent results, distinct for and characteristic of each MBTI personality type.

1 Introduction

We explore the use of the Myers-Briggs Type Indicator (MBTI) as the basis for
defining the personality of an agent. The MBTI is a well-known psychological
theory of human personality developed in the mid 1900’s by Katharine Myers
and Isabel Briggs Myers [1], based on an earlier theory developed by Carl Jung
[2]. Four axes are defined to explain how humans perceive their environment, how
they interact with others and how they make decisions based on these traits.

Jung’s theory states that human mental activity essentially involves receiving
information and processing that information to make decisions. The input of
information (“perceiving”, according to Jung) can be handled in one of two
ways, either by overtly sensing or by using intuition. The process of making
decisions (“judging”, according to Jung) can be driven by logical thinking or by
emotional feelings. Some people derive their energy for these processes from the
influences of the external world around them (extroversion), while others rely
on internal mechanisms such as thoughts or memories (introversion). Briggs
and Myers expanded on these three dichotomies by adding a fourth “lifestyle”
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axis which distinguishes between people whose personalities rely more on either
perception or judging.

Typical results of MBTI tests label individuals using one-character abbrevi-
ations for each pole on each axis, as follows:

– Extraversion (E) versus Introversion (I)
– Sensing (S) versus iNtuition (N)
– Thinking (T) versus Feeling (F)
– Judging (J) versus Perceiving (P)

So, for example, an individual whose personality is labeled ENTJ is someone who
gets their energy from interacting with others, who makes decisions based on ob-
servations of their environment, who solves problems using logical reasoning and
is organized and methodical about what they do. An ENTJ individual makes a
commitment to complete a certain task in a certain way and sticks with their
plan until the task is complete. In contrast, an individual whose personality is
labeled ISFP is someone who gets their energy from inside, who learns from ex-
perience and focuses on facts, and lets emotions influence their decision-making.
An ISFP individual commits to a task, but constantly re-evaluates to decide if
there is a better way to complete the task or a better task to address.

The Meyers-Briggs hypothesis is that all combinations of 42 = 16 personality
types exist in humans, and knowledge of which personality type corresponds
to an individual can help that individual make life and career decisions. For
example, certain personality types tend to be well-suited to particular types of
jobs; certain pairings of personality types tend to work better than others for
business or life partners. People use the MBTI model to influence decisions or
explain how decisions they have made in the past or actions they have taken
have been driven.

We are interested in applying MBTI to agent-based systems by implementing
agents with different personality types. Although there exist in the literature a
range of frameworks and some widely accepted methodologies for agent model-
ing (e.g., [3, 4]), most models abstractly describe how an agent processes inputs
and executes outputs, leaving the details to the discretion of the developer. We
speculate that it may be the case that a developer will, subconsciously, encode
in the agents her own personality type. The work presented here demonstrates
that each personality type performs differently, even on a simple task in a sim-
plified environment. The resulting observation in our simulated environment is
that some personality types are better suited to the task—the same observation
that psychologists make about humans. The implication in the agent modeling
and agent-based simulation communities is that the success or failure of an ex-
periment could be affected by the agents’ inherent personality types, rather than
(necessarily or exclusively) the underlying theory driving the experiment. Thus
the need for a concise model of personality type arises.

In the long term, we envision an additional step in agent modeling in which
personality type plays a factor. When constructing a system, after selecting an
agent’s behavioral model, the agent’s environment, its tasks and goals, the de-
veloper can determine experimentally which (set of) personality type(s) would



best be suited to accomplish those goals. MBTI is generally used to help de-
velop people’s understanding of each other and how differences are not flaws but
features, when recognized as such. MBTI is a tool to help people, organizations
and/or teams learn how best to leverage each other’s personality preferences to
accomplish their goals together. Our aim is to bring these ideas, in the context
of agent design, to the agent modeling and agent-based simulation fields. We
believe that MBTI can provide a clear methodology for expressing and applying
agent personality types.

The work described here presents a preliminary model of agent behavior
where the MBTI personality types are employed as the basis for defining different
agent personalities. As a first step, we focus here on the two axes that do not look
at other agents, namely: sensing (S) versus intuition (N) and judging (J) versus
perceiving (P). We implement agents exhibiting each of the 22 = 4 personality
types: SJ, SP, NJ and NP. The agents are deployed in a simple environment and
given simple tasks to complete. The results show marked differences in the way
agents of each personality type address the given task.

The remainder of the paper is organized as follows. Section 2 outlines our
approach, describing the simulated environment used for experimentation and
explaining how each of the four personality types are implemented within this
environment. Section 3 presents experiments in which agents of each personality
type perform tasks in the simulated environment and produce very different
results, distinct for each personality type. Section 4 describes some related work
in the literature. Finally, we close with a summary and discussion of future work.

2 Approach

This section introduces our simulated environment and describes how each of the
personality types are exhibited within that context. The implementation details
for each of the two personality preference axes studied here are explained.

Our methodology first considers how each personality preference axis (S ver-
sus N and J versus P) applies within the given environment. Then a set of rules is
defined for each axis that modulates the interpretation of input and the produc-
tion of output, according to the characteristic personality preferences of the two
extremes along that axis. Rather than engineering four separate rule sets, one for
each of the four personality types (i.e., SJ, SP, NJ and NP), instead two separate
rule sets are composed: one that distinguishes between S and N, and one that
distinguishes between J and P. Each agent invokes task-dependent functions at
run-time, and the behavior of each function is affected by the combined influence
of the agents’ two separate personality preference rule sets. Details are discussed
below, within the context of our simulated environment.

Our environment is based on an existing model from the artificial life com-
munity in which termites are simulated [5]. The termites’ task is to gather food
from their environment and place it in piles. We modify the baseline termite
model by using pre-determined locations (instead of allowing the number and
locations of piles to emerge as the simulation runs) in order to help illustrate



the distinguishing characteristics of the different agent personality types. The
environment is represented as a two-dimensional grid, where each (x, y) location
in the grid is referred to as a “patch”. The differences between the personalities
should be revealed quantitatively in terms of the amount of food gathered and
delivered to a pile, the number of different patches visited, and the time interval
between gathering a food particle and delivering it to a pile.

The basic agent behavior employs a classic sense-plan-act model [6, 7]. At
each time step in the simulation, an agent senses its environment, then decides
what to do, and then does it. The agents can sense the following properties:

– am I holding food?
– am I “at” food (i.e., on the same patch as a piece of food)?
– distance to food
– distance to pile

They can sense the world around them within a specified radius. Their sensing
function sorts the detected locations of food according to the agents’ priority
system and returns the coordinates of a single patch. A sensing (S) agent returns
the closest patch whereas an intuitive (N) agent returns the patch with the largest
surrounding cluster of nearby patches containing food. The agents can perform
the following actions:

– move forward
– turn
– pick up food
– drop off food
– wiggle (turn randomly and move forward)

Personality preference axis: S versus N. An agent with a sensing (S) per-
sonality preference is concrete. It looks at proximity and focuses on what is
closest. For example, it will move toward the closest food pile, even if it is small.
This agent also looks at the past. It has a short-term (1 timestep) memory of
what it saw in the past. In contrast, an agent with an intuitive (N) personality
preference is more abstract. It looks at density and focuses on what is largest.
For example, it will move toward the largest food pile, even if it is far away. This
agent does not have any memory of the past.

Personality preference axis: J versus P. An agent with a judging (J) person-
ality preference makes a decision about where to go and commits to its decision
until it reaches its target location. It does not attempt to sense (perceive) the
world again until the target is reached. In contrast, an agent with a perceiving
(P) personality preference makes a decision about where to go and commits to
it, but only for one timestep. After moving toward the target for one timestep, it
perceives the world again and potentially changes its target if conditions dictate.



Pseudo code. The simulation is controlled by a main loop that iterates over a
fixed number of timesteps3. Each iteration consists of calls to sense(), plan()
and act() functions, one for each of the agents in the simulation. The differences
between agent personality types are evident in the sense() and plan() func-
tions, as detailed below. The plan() function generates a plan and the act()
function executes the plan. The act() function is the same for all agents.

Figure 1 illustrates the perception functionality of the agents. Note that the
term “perception” is used in the classic sense of agent-based or robotic systems,
meaning that its execution causes the agent to use its sensors to evaluate its
environment. For example, a robot might use its sonar to detect distance to
obstacles. The sense() function correlates very well to N versus S. The intuitive
agent looks at every piece of food in its radius of vision and calculates which
patch is surrounded by the most food. The patch with the largest cluster is sent
to the plan() function. On the opposite spectrum, the sensing agent calculates
the distance between itself and each patch of food in its radius of vision. The
closest patch to the agent is sent to the plan() function. The only time the
J and P preferences affect the sensing function is when a decision has been
committed to and is not yet complete. This is the case when an agent with a
judging preference has already set a path in motion and completely bypasses the
sense() function until it reaches its destination.

Figure 2 illustrates the planning functionality of the agents. The plan()
function takes the inputs from the sense() function and decides how to pro-
ceed. The biggest difference in the plan() function is that if sensing agents are
looking for either food or a pile and cannot see one, they rely on their memory
to lead them backwards to where they came from. Intuitive agents do exactly
the opposite: they try to explore new territory. This distinction emphasizes the
exploitation versus exploration trade-off frequently discussed in the evolutionary
computation and artificial life communities. Similar to the sense() function, if
a judging agent has already made a decision and has yet to complete the task at
hand, the decision step is completely bypassed. On the other hand, perceiving
agents always re-evaluate their decisions.

3 Note that the number of timesteps was fixed only for experimental purposes. Other
termination conditions could be used.



function sense() {
if ( not J ) or ( J and plan is empty ) {

holdingFood <- am I holding food?
atFood <- am I at food?
if ( S ) {
locFood <- location of closest food source
locPile <- location of closest pile

}
else { // N
locFood <- location of largest food source
locPile <- location of largest pile

}
}

Fig. 1. Pseudo code for agents’ perception functionality

function plan() {
if ( not J ) or ( J and plan is empty ) {
if ( holdingFood )

if ( distance to locPile = 0 )
plan <- put food down

else // not at pile
plan <- go toward locPile

else // not holding food
if ( atFood )
plan <- pick up food

else
if ( I can see food )

plan <- go toward locFood
else

if ( S )
plan <- go toward last location where food was found

else // N
plan <- go toward a new (unexplored) location

}

Fig. 2. Pseudo code for agents’ planning functionality



Fig. 3. Sample screen shot of “termite world”

3 Results

Our experimental system was implemented as a prototype in NetLogo [8]. An
illustration of the “termite world” is shown in Figure 3. The small dots represent
particles of food. The large circles represent food piles. A single agent is shown
near the center, a very rough visual approximation of an insect. Experiments
were run with different sets of agent populations consisting of five different per-
sonality types: SJ, SP, NJ, NP, and random (for comparison). Each experimental
condition was run for 1000 timesteps. To illustrate the model and set a base-
line for multiagent sets, Section 3.1 shows the results for experiments in which
one agent of each type was simulated. These results were discussed in detail in
[9]. Section 3.2 describes the new results, for homogeneous teams of agents, and
Section 3.3 presents the new results for heterogeneous teams.

3.1 Single Agent Results

The first set of experiments replicated the results from [9] and are shown here
as the basis for comparison with the new results presented in the rest of this
section. The agents’ world is a 200 × 200 patch arena. Five scenarios were run,
each with one agent of each type. The agent started each run in the center of
the arena.

Table 1 contains average values and standard deviation (in parenthesis), over
4 experimental runs. The first data column shows the average number of food
particles collected and deposited in piles. A higher number is better. The SJ agent
delivered the most food particles. The second data column shows the length of
the path traveled. A lower number means that the agent did not explore much
territory, whereas a larger number means that the agent explored more. The



Table 1. Single agent, 200x200 world

food delivered path length path efficiency team size team efficiency
SJ 23.25 (2.22) 764.25 (22.87) 32.87 1 23.25

SP 12.00 (2.00) 309.50 (3.70) 25.79 1 12.00
NJ 11.75 (0.96) 880.50 (9.57) 74.94 1 11.75
NP 2.25 (1.50) 329.25 (3.20) 146.33 1 2.25
random 0.25 (0.50) 332.50 (1.00) 1330.00 1 0.25

larger number is better, because it shows that the agent covered more of its
environment; since the food particles do not move during the simulation (unless
the agent moves them), the agent will only be able to gather more food particles
if it also explores more area. The NJ agent traveled the furthest. The third
data column shows the agent’s “path efficiency”. This divides the length of the
path traveled by the number of food particles delivered, producing a value that
indicates how much the agent was able to accomplish given its effort expended.
Lower values are better. The SP agent is the most efficient. This is because it goes
to the closest food location from its current position, so it does not spend a lot of
time wandering around. The fourth data column contains the team size, i.e., the
number of members on the team. In the case of these single agent baseline runs,
the size of the team is, of course, 1; but the table format is used throughout this
section, so this columns is included for consistency.

The final data column shows the “team efficiency”. This is an indication of
how efficiently the team members perform as a group. It is calculated as the total
amount of food delivered by the team divided by the number of team members.
For example, if a team of 4 agents can deliver 100 particles of food in the same
time that a larger team of 10 agents delivers the same amount of food, then
the first team is considered more efficient; i.e., (100/4 = 25) > (100/10 = 10).
Higher values are better. In the case of a single-agent team, the team efficiency is
the same as the amount of food delivered (shown here in the first data column);
but again, the table format is used for consistency, to enable easy comparison
with the tables that appear later in this section.

Figure 4 shows the paths each agent in a single agent experiment takes while
collecting food and bringing it back to the piles. The agents’ actions create
straight or squiggly lines, depending on their approach and commitment. This
figure illustrates where each agent’s focus lies. For both sensing agents, SJ and
SP, Figure 4b and 4c, respectively, their paths are short and they do not stray
far from their starting point. The graphs illustrate how the focus of sensing types
is based on proximity and that they prefer to concentrate on the details in front
of them. On the other hand, intuitive types tend to focus on the bigger picture
and try to look for patterns or clusters. Their paths are typically longer because
they are willing to travel further out to find the largest cluster of food. Notice
how both the NJ and the NP do not stay near their starting points for long.
They are quickly pulled towards the largest pile. This again illustrates how the
N’s focus is not defined by proximity, but cluster size.



(a) SJ (b) SP

(c) NJ (d) NP random

Fig. 4. Typical paths taken by each agent personality. Different path shapes and lengths
reflect different decisions about where to go.

Looking at both the NJ’s and NP’s paths side by side and the SJ’s and SP’s
paths side by side, it is also clear that aside from the length of their paths, there
are other differences between the types. The other differences can be attributed
to the judging and perceiving function. As explained in Section 1, judging types
prefer to make a decision and commit to it. Perceiving types prefer to continue
researching and are not committed to their decisions. Looking at the NJ’s and
NP’s paths, we can see that the NJ’s paths taken are all straight, whereas the
NP’s paths are mixed with both straight and squiggly lines. This shows how the
NJ senses for food, is able to find the largest cluster of food within its line of
sight and makes a decision of where to go. The agent continues in a straight line
till arriving at its destination. On the other hand, the NP re-evaluates its path at
every step. Since moving forward may bring new information about the largest
cluster, the old decision is no longer valid. The re-evaluation and continuous
research is illustrated by the squiggly path. To think of it a little differently, the
NP first tries to find the largest cluster that exists in its environment. The NJ

looks for the local maximum, where “local” is defined by its line of sight.

Having explained the differences between each of the types, it is not only
understandable but expected that each agent type should perform differently.
According to our experiments, the SJs collected the most food with SPs in sec-
ond place, NJs in third, NPs in fourth and the random agent coming in last.
Regardless of which agent came in first and which last, their functions are con-
sistent with their types. Assuming they can see food, both agents with judging
preferences have regular intervals between each return trip to the pile. The SP’s



time between trips gets increasingly longer as it is forced to travel farther and
sense the world more frequently. Since the NP is always looking for clusters the
interval is dictated by how far it has to travel between each cluster and when it
decides it has found the largest cluster.

Table 2 shows baseline results with the new system, modified from [9] to
accommodate multi agent teams. These baseline results are, as above, for single
agents; the data is averaged over 16 runs. The agents’ world is smaller, 100×100
patches. Each agents’ visual radius is also smaller, 30 patches long (as opposed
to 50 patches in the original model). This allows the agents to collect nearly all
the food in the environment within the alloted time and illustrates the Sensing
type’s memory and the Intuitive type’s interest in undiscovered territory. Two
starting conditions were simulated for each agent type: first, starting the agent
at the origin and second, starting the agent at a random location in its world.
The first line in each pair for each agent type is the first condition; the second
line is the second condition. The data shown is averaged over 16 runs for each
starting condition and each agent type. The differences between the two starting
conditions are negligable.

Table 2. Single agent, 100x100 world

food delivered path length path efficiency team size team efficiency

SJ 28.25 (1.53) 632.04 (83.44) 22.37 1 28.25

26.81 (5.09) 601.12 (97.31) 22.42 1 26.81
SP 14.75 (0.86) 302.97 (31.91) 20.54 1 14.75

13.56 (2.00) 294.43 (52.11) 21.71 1 13.56
NJ 18.25 (1.53) 656.67 (35.07) 35.98 1 18.25

15.94 (6.38) 594.40 (127.86) 37.30 1 15.94
NP 3.25 (1.53) 311.44 (32.82) 95.83 1 3.25

3.13 (1.09) 294.99 (30.76) 94.40 1 3.13
random 0.56 (0.51) 308.41 (23.59) 548.29 1 0.56

0.69 (0.79) 295.93 (26.99) 430.44 1 0.69

The results are consistent with the original experiment: the SJs collected
the most food, and the NP and random agents collected the least. The SP and
NJ agents collect similar amounts of food, with the former slightly edging out
the latter in the original experiments, and the order reversed in the replicated
experiments. The difference in the size of the world and the smaller vision radius
accounts for these differences. The NJ agent travels the furthest. The SP agent
has the best path efficiency, while the SJ agent displays the best team efficiency.

3.2 Multiagent Experimental Results, Homogeneous teams

Table 3 contains results from multi agent simulations. Each simulation contains
a homogeneous team of 5 members. Runs were conducted using the same two



starting conditions, as above: starting at the origin and starting in a random
location. The first line in each pair for each agent type is the first condition;
the second line is the second condition. The data shown is averaged over 16
runs for each starting condition and each agent type. Other than the agent
starting positions, the 16 runs also differed by the locations of food patches
in the environment. The differences between the two starting conditions are
negligible.

Table 3. Multi agent, homogeneous, starting at origin, 100x100 world

food delivered path length path efficiency team size team efficiency
SJ 15.60 (1.65) 649.13 (39.73) 41.61 5 3.12

15.71 (1.45) 599.43 (32.07) 38.15 5 3.14

SP 9.80 (0.53) 280.50 (12.57) 28.62 5 1.96
10.18 (0.54) 277.35 (16.87) 27.26 5 2.04

NJ 12.90 (1.00) 614.08 (49.44) 47.60 5 2.58
12.95 (1.32) 613.42 (53.39) 47.37 5 2.59

NP 2.00 (0.57) 294.48 (14.65) 147.24 5 0.40
2.21 (0.44) 283.10 (16.78) 127.96 5 0.44

random 0.68 (0.23) 288.99 (11.58) 428.13 5 0.14
0.64 (0.28) 304.21 (16.34) 477.20 5 0.13

Although the results between starting at the origin and random positions
are negligible on average, the differences illustrate the competitiveness of the
environment and agents. For example, by placing five SJ agents at the origin at
the same time, they will all view the exact same starting world and focus on
the same piece of food. As we explained in Section 2, the Judging preference
means that each agent will set a plan and not sense again until it reaches its
destination. In other words, each of the agents will target the same exact piece
of food, but only one agent will actually get it. The second agent will realize
there is nothing to pick up and will sense the world again.

Table 3 shows the results of five different experiments. Each experiment has
5 agents of the same personality type. Notice that the results are similar to our
findings for the single agent environment. SJs still collect the most food, and SPs
are the most efficient for each step they take. As we explained in Section 3.1,
this makes sense even with the competition of a multiagent system. Since SJs are
committed to their plan, they only sense the world and make decisions when they
do not have a target. Although they compete with other like agents, once they
are far enough away from the other agents in the space, they do not miss many
opportunities. SPs remain the most efficient because as soon as the environment
changes they are aware of those changes. This means that in a very competitive
space, they immediately see the change and update their target accordingly.

Although homogenous sets of agents collect a lot of food, it is interesting to
see how each agent type on average collects less, compared to the single agent



environment; this difference is reflected in the disparate values for “team effi-
ciency” in Table 3 as compared to Table 2. This is because a single SJ agent can
focus on what it does best, without any distractions and without the environ-
ment changing. In a competitive space, like agents start by focusing on similar
targets; e.g., all 5 SJs try to collect nearby food first. When the 5 agents deplete
nearby food, they are forced to look farther out; and they now operate like an
NJ does, traveling longer distances before picking up food. Although one might
think that starting at random positions would lessen the impact on the mean,
in practice, it does not. The reason is that our environment drives agents back
to a nest once they have collected food, resetting the gains made by starting at
a random position.

3.3 Multiagent Experimental Results, Heterogeneous teams

As we described in Section 3.2, homogenous sets of agents are extremely com-
petitive, thereby diminishing the overall productivity of the team. In this section
we explore different combinations of agent types working in teams, to try and
maximize the amount of food collected by a team of agents and the team ef-
fectiveness. To demonstrate that not all agents are competitive, Table 4 shows
that in an environment with only two agents, one SJ and one NJ, since their
foci are different, their overall perfomance is similar to that of a single agent
environment.

Table 4. Multi agent, heterogenous (1 SJ, 1 NJ)

individual team

food delivered path length path efficiency size efficiency
SJ 27.00 (1.93) 681.47 (39.54) 25.24 2 22.88

25.75 (3.92) 618.50 (67.39) 24.02 2 21.16
NJ 18.75 (1.13) 659.33 (64.90) 35.16 2 22.88

16.56 (2.53) 675.35 (86.45) 40.78 2 21.16

If we extend this idea, we see that diverse teams of agents are able to collect
more food per agent than homogenous teams. In the above example, a single
SJ and NJ on the board produces a total team efficiency of 22. Over the 231
different heterogenous experiments we ran, the five groupings that distributed
the work of collecting food the most efficiently are shown in Table 5. Notice that
the groupings with the highest team efficiencies do not always collect the most
food.

Instead if we focus on the most food collected, Table 6 shows the top 5 het-
erogenous sets of agent populations. As discussed earlier, the competitiveness
of each similar agent brings the team efficiency down. As is the ultimate ques-
tion in many projects when deciding if more resources are necessary or more
time, we show here that putting more agents to the task does not boost the



Table 5. Top 5 team efficiency

food team path team
SJ SP NJ NP random collected size efficiency efficiency

1 0 1 0 0 45.75 2 29.31 22.88
1 1 0 0 0 37.50 2 24.64 18.75
1 1 1 0 0 49.75 3 32.09 16.58
0 1 1 0 0 33.00 2 29.81 16.50
1 0 1 1 0 48.00 3 33.73 16.00

overall performance. In this environment we might have simply collected more
food by extending the time limit instead of adding more that one agent of each
personality type.

Table 6. Top 5 food collection

food team path team
SJ SP NJ NP random collected size efficiency efficiency
5 5 5 5 0 94.50 20 81.85 4.73
5 5 5 0 0 94.25 15 67.51 6.28
5 5 5 1 0 94.00 16 73.05 5.88
5 5 5 5 1 93.63 21 84.86 4.46
5 5 5 0 1 92.81 16 71.64 5.80

Finally, we examine path efficiency, to determine which groupings produce
agents that explore the space effectively. Table 7 lists the five groupings with
the best (lowest) path efficiency. It is interesting to see that these teams have
reasonable team efficiency values, including the most efficient team with a value
of 22.88; however, these teams are in the bottom third in terms of the amount of
food collected. These results highlight the conclusion that agents with different
personality types can be shown to behave differently in a simulated environment.
Future work involves categorizing heterogeneous groupings of agents according
to their ability to accomplish particular tasks.

4 Related work

There is a fair amount of research into the use of personality types in agent-based
systems. Most approaches focus in one of two directions. The first, more preva-
lent focus is on creating personalities for agents that interact with human users
in social environments. In these cases, the research involves encoding personal-
ity type or temperament to increase social acceptance. Dryer [10] explains that
personality types can be used to enhance human-machine interaction. Lin and
McLeod [11] introduce personality into their work, but instead of incorporating



Table 7. Top 5 path efficiency

food team path team
SJ SP NJ NP random collected size efficiency efficiency
1 1 0 0 0 37.50 2 24.64 18.75
1 0 0 1 0 31.25 2 29.05 15.63
1 0 1 0 0 45.75 2 29.31 22.88
1 1 0 1 0 41.50 3 29.33 13.83
0 1 1 0 0 33.00 2 29.81 16.50

type as the part of the mechanism underlying agents’ actions, they train their
engine to recognize temperaments and information associated with each temper-
ament. They use this training to filter results more effectively and provide better
recommendations. Allbeck and Badler [12] use the “Big Five” theory to embody
personality traits and make the motions of each agent flow more realistically and
believably.

Lisetti [13] defines a taxonomy for socially intelligent agents, stressing emo-
tion as a strong component of personality. She describes state machines that
illustrate how an agent can shift from one emotion, such as “happy”, to another
emotion, such as “concerned”. These shifts can occur for different reasons in
agents with different personality types. For example, a “determined” agent that
is “frustrated” may shift into an “angry” state and use that anger to work itself
back into a “happy” state; whereas a “meek” agent may shift from “frustrated”
to “discouraged” and never return to “happy”.

The second focus is on modeling complex interactions between agents and
their environment and describing variations in agent behaviors as personalities.
Castelfranchi et al. [14] present a simulation framework called “GOLEM” in
which agents of different personality traits are modeled. GOLEM provides an
experimental framework for exploring the effect of personality traits on social
actions, such as delegation. Agents develop models of each other, labeled as
personality traits, and use these models to motivate their interactions. Talman
et al [15] model personality along two axes: “cooperation” and “reliability”.
These different traits are implemented in a logical framework where agents play
a game and reason about each others’ “helpfulness”, or lack thereof. Agents can
recognize different personality types and respond effectively, customizing their
actions appropriately for different personalities.

Both of these last two examples use the notion of personality as a means
for agents to model each other and make decisions about how to effect (or not)
cooperative activity with others. Another approach is given in [16] where per-
sonality is closely tied to emotion, as with the first type of focus listed above. In
this work, agents’ internal decision-making processes are guided by personality
types. Agents are deployed in a simulated military combat scenario in which
factors such as “cowardice” and “irritability” are modeled and act as motiva-
tors for certain types of actions. For example, an agent labeled as cowardly may



be driven by fear and run away from threats when attacked; whereas an agent
driven by anger might move forward and face the enemy.

All of the work discussed above is highly context dependent: personality traits
are designed in tandem with the environment in which agents are simulated
and the tasks that agents are addressing. The advantage of the MBTI model
is that it is generic and can, in theory, be adapted to any environment and
task. While the instantiation details of agents’ personalities will necessarily be
tailored to a particular environment, the abstract definition of the personality
traits themselves is not specific.

Campos et al. [17] is the most closely aligned with our work, mainly because
of their use of the MBTI model to leverage personality type and test agent
performance in the same environment with different personalities. Similarly, the
authors also started with two axes to illustrate personality, though they chose the
S-N and T-F dichotomies. Even with our implementation of the S-N function we
differ. Campos et al. implemented the dichotomy as a mechanism for developing
a plan, a hybrid between the S-N and J-P dichotomies. We instead use the S-N

function to weight inputs and allow the J-P function to develop the plan.

5 Summary

In the work presented here, we have shown how each personality type functions,
illustrating the differences between them and explaining the factors that drive the
differences. Since our goal was to see which personality type collected the most
food within a given timeframe, we were able to conclude that the SJ personality
type is the “winner”. In proving that one personality type outshined the others,
we are able to conclude that different personality types are in fact better for
different tasks—at least in this highly simplified example.

Our next step is to enhance the agent model to include all four MBTI axes,
producing a total of 16 personality types. As mentioned in Section 1, here we
only looked at the two preferences that did not require other agents. Once we
include the extroverted (E) and introverted (I) preferences, we aim to demon-
strate how some personality types are better suited to working alone and others
are better suited to working with others. Including the thinking (T) and feeling
(F) preferences should illustrate how certain agents are more empathetic than
others and may be better suited for missions that involve helping others, such
as robot-assisted search and rescue (e.g., [18]).

Once the model is expanded to simulate all sixteen types, different and more
complex environments and tasks will be explored in order to illustrate the differ-
ences between personality preferences. Group dynamics will also be examined,
where the interactions of agents with different personality types can be shown
to bring complexity to coordination even in groups that have previously been
seen as homogeneous—because personality types were not implemented. We will
then be able to test different combinations of heterogeneous agent groupings to
see which groups work most efficiently together for which types of tasks.
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