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Abstract. For accurate self-localization using probabilistic techniques, robots
require robust models of motion and sensor characteristics. Sucblsrare sen-
sitive to variations in lighting conditions, terrain and other factors like rolat b
tery strength. Each of these factors can introduce variations in the lereise
considered by probabilistic techniques. Manually constructing modelsisé iis
time-consuming, tedious and error-prone. We have been develomhgidees

for automatically acquiring such models, using the AIBO robot and a neadifi
RoboCup Four-Legged League field with an overhead camera. Thir pi-
scribes our techniques and presents preliminary results.

1 Introduction

Robots in RoboCup have two main requirements in order to ¢ffi@gtive soccer. They
have to be able to self-localize with reasonable accuragyaf@l they have to be able
to detect and track the ball [13]The current state-of-the-art in localization is to use
Bayesian filter models [22, chap. 3—4], and a particularyytar approach is the parti-
cle filter [23]. This is especially popular in RoboCup be@iisallows robots to track
multiple position hypotheses, helpful when robots are latykidnapped by referees,
while running on modest computational hardware. To appyyBayesian filter model,
a robot requires a model of its own motion, which it uses taljgtenew poses from
old ones following motion, and a model of its sensor behavitich the robot uses to
choose between multiple possible poses. The sensor madedity also important for
detecting and tracking the ball.

Now, it is clear that the sensor and motion models are of itapae to obtaining
effective behavior from any robot, but they are especiattpaortant in vision-based
soccer-playing robots. As a number of authors have pointedfor example [6, 15],
vision-based robots have much less sensor data to work wéthrobots equipped with
sonar or laser range-finders (at least when the vision isdbasdandmark detection
as it so often is in RoboCup). This comparative paucity oksemlata argues for the
importance of making each datum as accurate as possiblegtthib should be noted

! Successful soccer-playing robots clearly need to be able to do a ltherfthings as well, but
these other things — effective moving of the ball, tactical positioning, anddioated team
play, for example — have good self-localization and ball-detection asqopéisites.



Fig. 1. An AIBO with a color marker.

that if sensor data is too accurate, the performance of thieledilter degrades slightly
[23]). The paucity of sensor data also argues for making tbtam model as accurate
as possible — with infrequent sightings of landmarks, rebdwve to run for several
seconds at a time without sensor data [15], and during timet tian only update their
notion of where they are using motion data. Furthermore,mntrecking the ball, the
robot may not see a landmark for considerably longer, andilbbave to rely on what

is effectively dead-reckoning from its last confirmed piosit

This requirement on the vision sensor model holds not onlyrfodels of the kind
that we deal with here, which use information about distaamzkbearing to landmarks,
but also for models that deal only with bearing [12] (and reegork [15] shows that
distance information helps to improve the precision of lizegion provided that the
distance information is adequately calibrated).

In this paper, we are concerned with the Sengo ERS-7, the robot used by our
Legged League team MetroBétJo construct both motion and sensor models for the
AIBO we are usually reduced to taking measurements “by hand gqoednteeasure”
[18]—running the robot for a given time and measuring how fanoved, or having
the robot estimate how far it is from a landmark and compattiagy with the measured
distance. This gives relatively few measurements from lvkdcconstruct and evaluate
models, and the work described here is a response to thatigitu

In this paper we describe how we have been using a globahvisistem, a system
which uses an overhead camera, and from that image datanieésrthe position of
the robot, to automatically acquire motion and sensor ddtie. approach allows us to
collect data sufficiently easily and rapidly — several h@utidata points in an hodr
— that we can use data-intensive machine learning techsitpueonstruct models of
motion and sensor error.

2 Experimental setup

For our experimental work, we have adapted a modified setinedefrom the RoboCup
E-League [1]. The E-League makes use of a simplified smadiisiague environment,
where global vision data is provided by a common vision seifiis data is sent to

2http://agents.sci.brookl yn. cuny. edu/ met robot s

3 A limit set, effectively, by the fact that at the moment we have to havedhetrwrite image
data to its memory stick, which takes several seconds, and then uploedate by ftp and
that we use just a single robot. A group of several robots could colétatfdster, as suggested
in [11].
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Fig. 2. The experimental setup.

both teams using UDP broadcast. Teams decide how to moveabeis, and package
instructions for the robots into a common format. Theseisions are then combined
into messages by the communication server, and broadd#ag tobots via an infra-red
transmitter. Each robot on each team unpacks the messafijes tmt what to do next.

At the heart of our setup is the Mezzanine visual trackindpge [9]. Suitably cal-
ibrated, this software provides 2D tracking of objects —abkshingx, y coordinates
and orientation — provided that the objects are color code@#sy recognition from
above. Mezzanine provides accurate tracking even with uaspphisticated camera
hardware and can handle considerable image distortion.uifertly use an XCam?2
WideEye from X10, an inexpensive wide-angle security cafhérhe original vision
tracking system used by the E-League was Doraemon [2], wiriwvides robust posi-
tion estimates even when the camera is mounted at an anger than directly over-
head. We are using Mezzanine because it more accuratelyelsahe type of fish-eye
images obtained from the wide-angle camera that is neederter to get the whole
soccer pitch in a single field-of-view.

As mentioned above, instead of the type of small, wheeledtsabat have typically
been used in the E-League, we have been working with 308y ERS-7 robots. To
make them visible to Mezzanine, we simply attach a color evaré the back of the
robot as in Figure 1. Since theBO is equipped with a wireless ethernet card, we can
send data between the robot and the computer that is ruriméngontrol code and the
data logger (both are the same machine, though logicaltindty and we can send the
position data from Mezzanine directly to the robot as welle Betup is as in Figure 2.

The idea of the experimental setup is to provide a completaigmated mechanism
for data-collection. The control module polls Mezzaninelézation data and simulta-
neously sends instructions to theso telling it how to move around the pitch, and
when to gather data from its internal camera. When the robobigng, we can con-
tinuously collect data about its position, and collate gosition data with the motion
commands sent to the robot. As we discuss below, this datheeared, amongst other
things, to learn a motion model for the robot.

In addition to collecting this motion data, we can colleais@ data from the robot.
Of particular interest, given the fact that the data usechbyrobot for self-localization

4\yww. x10. com
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Fig. 3. The motion model for walking forward: (a) scatter plot of rates of motiothe = and

y directions ¢ on the horizontal axisy on the vertical) when walking forward; (b) histogram
of motion in thex direction when walking forward; (c) Gaussian mixture fitted to the forward
motion data; and (d) Gaussian mixture scaled and plotted with histogramnadribdata.

is visual data, is the collection of camera images. Curyen# do this by causing the
robot to pause—thus allowing us to get an accurate idea ofevbach picture was
taken without having to synchronise the clocks on the robdttae machine running
Mezzanine—and then take a picture (which takes a few seconaste to the robot’s
memory stick) and then upload the picture to the data logger.

3 Reaults

We used the setup described in the previous section to cohstiodels for the robot's
standard trot gait and the error in its perception of the leegbeague markers. The
robot gait is that from the motion module of the Carnegie brelUniversity Legged

League team CMPack’'04 from the 2004 RoboCup competition [4]

3.1 Motion model

Data for the motion model was collected by making seo walk forwards and back-
wards for 10 seconds at a time, while Mezzanine measureatrdioates of the robot
at one second intervals. From these measurements, we cetninet velocity of the



robot over the relevant period in the three coordinate toas of the global frame of
reference used by Mezzanmé&ince the robot takes time to accelerate and decelerate,
we effectively had two sets of data—measurements for thet rmbging continuously,

and measurements for the robot when it was speeding up oingjaawn.

For both forwards and backwards motion, we then plotted todriam of around
3600 velocity measurements, obtaining two-peaked digtohs — the lower valued
peak corresponding to times when the robot was changingtyeand the larger peak
corresponding to constant velocity motion — that were ayipnately Gaussian. We
then learnt the parameters of a two-Gaussian mixture thed fihe data. This learning
was carried out using the standand algorithm [5]. A sample of this procedure for the
2 component of forward motion (that is the component in theation of motion) is
provided in Figure 3. Looking at Figure 3 (a) the two sets ohmwements are clear,
and these emerge as two distinct peaks in the histogram iwd=ig) (b) and (d). As
Figure 3 (c) and (d) show, the two-Gaussian mixture clos&dytliie data.

The two forward motion distributions have meansréfand204, and standard de-
viations of22 and28 respectively, while the two backward motion distributidres/e
means oR7 and174, and standard deviations T and23, respectively.

3.2 Sensor model

Our second use of the experimental setup was to measurerthiérethe robot'’s esti-
mates of its distance from the Legged League beacons. Tdgjauh first used the ex-
perimental setup to have the robot move around the pitchdgghictures, and recording
the robot’s position when these pictures were t4k&ve used these images to build a
color map and to calibrate a distance coefficient, basedenumber of pixels counted
for each beacon shape and the robot’s distance measuredtebeacon by hand.
We then used the experimental setup to have the robot takela lamger set of images,
again recording the position at which each picture was takeneach of this second set
of images we had the perception system of the robot calcthatdistance to the bea-
con, and we compared this with the real distance as measytbé ylobal vision—the
difference is then the error in the local vision system.

Given this error data, we then carried out exactly the same &f learning as in the
previous section, and the steps in this process are as eejicFigure 4.

3.3 Discussion

The main thrust of the work described here has been the udeaxternal camera
to measure robot pose and the subsequent use of this informiat conjunction with

information computed on board the robot, to develop a matiodel for the robot and
a sensor error model. This is rather different to most engstiiork on developing vi-
sion models within RoboCup, for example [3, 10, 16, 17, 24jick has tended to con-
centrate on the automated segmentation of images, edpewitd an eye to handling

5 Taking due account of the orientation of the robot in that frame of eefes.
8 |n fact we combined taking pictures with the motion measurements regfairede motion
model.
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Fig.4. The sensor error model (a) histogram of the error established frergltbal vision; (b)
the model learnt from the data (adjusted for a measurement of 1200 mm

changing illumination of the playing field, or work such agJ2avhich has concentrated
on automatically identifying landmarks from sensor data.

Of course, there are problems with using the overhead caasem measure of
“ground truth”, since, as [14] points out, overhead cantssed global vision systems
tend to suffer from quantization problems and are advedédgted by noise in the im-
age. However, these problems are much reduced for us in ¢mopavith [14] thanks
to the unique beacons used by the Legged League — [14] stildiessnall size league
setup. These beacons greatly simplify the problem of leiregi a robot by uniquely
anchoring points on the image. Furthermore, while an oocasierror in robot local-
ization can have catastropic effects on the way that thetqolags soccer, which is the
concern in [14], in our work an error will only introduce ali more noise, and create
distributions with slightly more variance.

Our work described here is clearly related to the simultasdearning of sensor and
motion models described by [18, 19]. That exciting work piges to supercede what
we are doing here, but for now is only capable (at least agtregn the literature) of
learning models that work in the same single dimension — énclise of [18, 19] that
is motion towards and away from a beacon, along with sendirtgeodistance to the
beacon. In contrast our approach, while requiring datareate¢o the robot — which is
clearly a limitation in some domains — can aquire multi-divsienal models (and so,
for example, can easily acquire models for theirection and rotation).

4 Futurework

We began this work not just to obtain data from which we coe#dth motion and sensor
models off-line, but in order to be able to learn them on-lingarticular, we wanted to
be able to run the robot, have it self-localize, and thensidihe parameters that control
its motion and sensor models in order to improve its selfli@ation in much the way
that [11] adjust parameters in order to optimize the robdt(@@ough clearly in a less
autonomous way). This is still our aim, and we are continténgork towards it. At the
moment, as an intermediate between our overall goal and w&iave reported here,



we are using the experimental setup we have described toatgabur use of particle
filtering to localize theaiBo while it is playing soccer.

There have been many previous evaluations of localizaionexample [7] exam-
ine a range of different probabilistic algorithms, whild,[&nd [20] evaluate RoboCup
specific approaches, and [8,12] look at the quality of l@edion on theAiBO in a
RoboCup setting. However, all of these use rather contseetiarios. For example, [6]
required the robot to be manually placed around the pitcliderahat the true location
be known, while [8] controlled the robot with a joystick arlst@ined measurements by
moving the robot over a known location and seeing where thetrihought it was as it
passed over that location. [12] comes closest to what we arking on, using a laser
range-finder to monitor continuously the real location a&f tbbot, but never carried
this out during a game (the addition to the robot to allow #eet to detect the robot
presumably prevented this). As a result, we have no datacoextient to which actually
playing, and thus, as described above, having to focus dbateaffects the quality of
the localization.

5 Summary

This paper has described the use of a global vision systenmasas of automatically
acquiring motion and vision sensor data for a legged robespie the fact that these
models are essential in order that robots can accuratdijosalize, there has been little
work to try and acquire them automatically. In addition teschbing the process by
which we collect the data in order to construct the motion sersor models, we have
demonstrated the kinds of results that it is possible toinlethis way. In particular,
we gave two components of the motion model forraBo ERS-7 that we learnt in this
way, and the error model for the extraction of the beacon$errbur-Legged League
pitch. While the learning process currently involves somméan intervention, and is
run on an off-board computer, there is no especial reasortmehgrocess could not be
completely automated and run on-board.
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