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Abstract

In this paper, we propose that learning complex behaviors can be
achieved in a coevolutionary environment where one population
consists of the human users of an interactive adaptive software tool
and the “opposing” population is artificial, generated by a coevolu-
tionary learning engine. We take advantage of the Internet, a con-
nected community where people and software coexist. A new kind
of adaptive agent can exploit its interactions with thousands of
users—inside a virtual “niche”—to learn in a coevolutionary
human-robot arms race. Our model is Tron, a simple dynamic game
where introspective self-play quickly leads to collusive stagnation.
We describe an application where thousands of small programs are
sent to play with people through the Java interpreter running in
their web browsers. The feedback provided by these agents is col-
lected in our server and used to augment an ever improving fitness
landscape for local robot-robot games. Speciation and fitness shar-
ing provide diversity to challenge humans with a variety of differ-
ent strategies. In this way, we obtain an evolving environment
where human as well as artificial adaptation are simultaneously tak-
ing place.



1 Introduction

1.1 Evolutionary Learning

Evolutionary learning methods such as Genetic Algorithms (GAs) provide general-purpose
approaches to the problem of machine learning. With them we can build engines that create a suc-
cession of partial results whose success at dealing with a problem —hopefully —increases over
time.

Evolutionary learning calls for three basic ingredients: (a) a representation that is capable of
encoding each candidate solution, (b) mutation and crossover operators that can be applied to
such a representation, and (d)taess functionthat is the standard measure against which to test
each candidate solution during the iterative process [8, 7].

In natural as in artificial evolution, a population moves toward fitness optimality while maintain-
ing variation over all the dimensions of the genetic space, including those dimensions that are not
being selected. This iterated generation/selection process is regulated in genetic algorithms by the
fithess function, which must be applied to each single individual as it is produced.

1.2 Too Many Fitness Evaluations

The need to evaluate the fitness of a large number of individuals is a critical factor that restricts
the range of application of GA's. In many domains, a computer can do these evaluations very fast;
but in others, the time spent by this process may render the GA solution impractical. Examples of
the latter case include a computer playing a game with people and trying to learn from experience
or a robot attempting to complete a task in the physical world.

Robots —provided they are reliable enough —can run repeated trials of the same experiment over
a long time in order to learn using evolutionary computation techniques. Floreano and Mondada
[4, 5] run their robots for several days in order to evolve controllers for basic tasks. Most evolu-
tionary roboticists have preferred to rely on computer simulations to provide them with faster
evaluations, but the crafting of appropriate simulations is also very difficult [12].

1.3 Using Humans for Fitness

Evolution ofinteractive(that which is used by humans) adaptive software faces similar difficul-
ties. On the one hand, it is nearly impossible to design a fitness function whose virtual environ-
ment will prepare it to meet the enormous variation of human responses. On the other hand, if
users themselves are asked to provide fithess evaluations, then hundreds of trials will be necessary
and the process will take a long time. Humans—unlike robots—qget tired of repetitive tasks.
Humans act adaptively; they may react differently each time when faced with the same situation
more than once. If users provide fitness evaluations, adaptive software would need to be able to
filter out such sources of “noise” provided naturally by human users.

Our theory is that the Internet, with millions of human users, could be fertile ground for the evolu-
tion of interactive adaptive software. Instead of relying on a few selected testers, the whole com-
munity of users together constitute a viable gauge of fitness for an evolutionary algorithm that is
searching to optimize its behavior.

CS-97-197 2



1.4 The problem of generalization

Given that it is an arduous task to evaluate fitness for multitudes of individuals, is it possible to
limit the search to just a few? The problem of lack of generalization or lack of transfer to a more
general environment will defeat this alternative. The fact that an algorithm performs well in a cer-
tain group of test cases does not usually mean that it will generalize to a wider range of situations.

Neural networks are thought to have generalization capabilities [3 ch. 3, 23], successfully induc-
ing, for example, a good backgammon player from a set of suggested moves [21]. Supporters of
the Genetic Programing paradigm [11] will suggest that this may be the case for GP as well [17].
In [10], Juillé and Pollack argue that the dynamics of coevolutionary fitness help them get “per-
spicacious” solutions to a problem of recognizing 194 points arranged in a spiral pattern. The GP
function they obtain indeed defines two roughly spiral surfaces that continue outside the boundary
of the original test points.

1.5 Learning game playing

Game playing is one of the traditional domains of Al research. Ever since Samuel’s early experi-
ments with checkers [19], we have hoped that the computer would be able to make good use of
experience, improving its skills by learning from its mistakes and successes.

In his work with the game of backgammon, Tesauro began collecting samples from human games
to provide a fitness measure for training neural networks [21]. Later, he abandoned this methodol-
ogy and used introspectigelf-play[22]. Of the earlier approach, he argued that “building human
expertise into an evaluation function [...] has been found to be an extraordinarily difficult under-
taking” [22, p. 59].

Learning to play a game by self-play involves a problem of transfer as well. The fitness landscape
(even in the coevolutionary case, where the “landscape” is redefined in every generation) might
be an insufficient sample of the larger problem defined by the whole game and the way humans
approach it. While learning backgammon [22, 15] is a success for coevolution, this same

approach has failed in most other cases.

Real-time, interactive games (e.g. video games) have distinctive features that differentiate them
from the better known board games. Koza [11 ch. 12] and others [17] evolved players for the
game of Pacman. There has been important research in pursuer-evader games [16, 13] as well as
contests in simulated physics environments [20]. But these games do not have human patrtici-
pants, as their environments are either provided by the game itself, or emerge from coevolution-
ary interactions inside a population of agents.

1.6 Coevolution of Interactive Adaptive Software

In this paper, we propose that learning complex behaviors can be achieved in a coevolutionary
environment where one population consists of the human users of an interactive adaptive software
tool and the “opposing” population is artificial, generated by a coevolutionary learning engine. An
artificial “niche” must be created in order for the arms race phenomenon to take place, requiring
that:
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» A sufficiently large number of potential human users must exist.

» The artificial population must provide a useful environment for the human users, even
when -in the early stages- many instances perform poorly.

* A (crude) estimation of the artificial population’s performance must be extractable from
its interaction(s) with the human users.

The collective environment of the Internet provides a virtual ecology where a kind of arms race
between human and artificial populations may be possible.

As such, we have created an experimental Java-based learning environment on the Internet for the
game calledron, meeting the requirements mentioned above. First, we know that there is con-
siderable interest in Java-based games in the Internet community. Second, our earlier experiments
with Tron have shown us that, by self-play, we can produce players that are not entirely uninter-
esting when faced by humans. And third, each round of Tron results in a performance measure: a
win, loss or tie. We started this experiment with the hope that the average over many games
against a variety of human users would provide a useful fithness measure, even when a random
population of game players is expected to have enormous variability.

2 System Description

2.1 Tron (Light Cycles)

Tron, a 1982 movie from Walt Disney Studios, showed a game in a virtual world where two futur-
istic motorcycles ran at constant speeds, making only right angle turns and leaving solid wall
trails behind them. As the game advanced, the arena became filled with walls and eventually one
opponent ran to its death by crashing into a wall. Also known as “Light Cycles”, this popular
game has been implemented on all kinds of computers with varying rules and configurations.

Figure 1. Still from the movi&ron
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In our interpretation, the motorcycles are abstracted and represented only by their trails. Both
players start in the middle region of the screen, moving in the same direction. The edges of the
arena are not considered “walls”; players move past them and reappear on the opposite side, thus
creating a “wraparound”, or toroidal, game arena. The size of our arenaR&bB5gixels.

Figure 2. The Tron game arena. Both players need to
avoid trails. The edges are connected.

2.2 Avrtificial (Robot) Players

We have crafted artificial gobot players with the capability to perceive the world in eight direc-
tions. Each robot is provided with eight simple “sensors”; each one evaluates the distance in pix-
els from the current position to the nearest obstacle in eight cardinal directions: Front, Back, Left,
Right, FrontLeft, FrontRight, BackLeft and BackRight. Every sensor returns a maximum value of
1 for an immediate obstacle (i.e. a wall in an adjacent pixel), a lower number for an obstacle fur-
ther away, and 0 when there are no walls in sight.
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Figure 3. A Tron robot has eight sensory inputs.

2.3 Learning Tron by Self-Play

In earlier exploratory experiments [6], we used a genetic algorithm to learn the weights of a per-
ceptron network to play tron. It became evident that while this simple architecture is capable of
coding players that could perform interestingly when facing human opponents, such “good”
weights were difficult to find in evolutionary or coevolutionary scenarios. Collusion [14] was

likely to appear in most evolutionary runs in the form of “live and let live” strategies such as that

shown in Figure 4.
I Iﬁ
i

Figure 4. “Live and let live”: Two robot Tron players
make tightest spirals in order to stay as far from the
opponent as possible. This form of collusion is a frequent
suboptimal equilibrium that prevents learning robot
strategies by self-play in a coevolutionary arms race.
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2.4 GP representation for Tron Robots

In the present study, we use Genetic Programming (GP) [11] as a means for coding artificial Tron
players. The set of terminals is { A, B,..., _H (the eight sensors)Cafidatndom constants
between 0 and 1)}. The functions are {+, -, * (arithmetic operations),% (safe division), IFLTE (if
a< b then-else), RIGHT (turn right) and LEFT (left turn)}. A maximum depth of 7 and a maxi-
mum length of 512 limit the valid s-expressions.

A robot player reads its sensors and evaluates its s-expression every three steps during a game. If
a RIGHT or LEFT function is output, the robot makes the corresponding turn; otherwise, the
robot will keep going straight.

2.5 The Tron Applet

We have written a Java applet and launched our game on the Internet. The architecture of the sys-
tem takes advantage of the Java’s ability to run a “client” on the user’s local machine and a
“server” on our host (Web server) machine. As shown in Figure 5, the Java Applet runs on the
user’s local machine; the Foreground and Background servers execute on our machine.

The Tron applet receives a GP s-expression (from our server), representing a Tron-playing strat-
egy. The applet runs, playing one game with the human user, until a crash occurs. When the game
ends, the applet opens a connection to our server, reports the results of the game and receives a
new s-expression for the next game. This cycle continues until the human decides to quit playing.

We use a two-level server architecture to maintain two separate Tron-playing robot populations
simultaneously, as illustrated in Figure 5. The Foreground Server plays games with humans, while
the Background Server engages in self-play to filter brand new robot players that will be incorpo-
rated into the foreground population when the foreground process is ready for a new generation.

robots best robots
VRS 7 ™
Java results Foreground | new robots | Background
User Applet Population Population
-_— -
keyboard internet local
network
PC SERVER BACKGROUND

SERVER

human-robot games
robot-robot games

Figure 5. Scheme of information flow

The interaction between robots and humans occurs at a relatively slow pace: a few hundred games
may happen every day. An evolving population idles, waiting while these games are accumulated
to evaluate its individual agents. The role of the background process is to replace the usual repro-
duction stage, exploiting all this idle time to produce the best robot players that self-play can give
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us. Instead of raw crossover and mutations, the new individuals of the population will have been
trained and filtered through self-play.

2.6 Foreground Server

The foreground portion of the Tron system controls the interplay between robots and humans. It
maintains a population of 100 robots. Every time a player requests a new game, the server sup-
plies one of these robots at random. When a user finishes a game, the foreground process saves
the outcome in its database.

A generation in the foreground process lasts until all 100 robots have played a minimum number
of games. The new robots that are playing for the first time in the current generation play a mini-
mum of 10 games, while the “veterans” that have survived from previous generations play only 5
games. When all robots have completed their minimum number of games, the generation is fin-
ished and the next generation is started.

To start a new generation, the 100 current robots are sorted by fitness. The worst 10 are eliminated
and replaced by 10 fresh robots, supplied by the background process. A new generation begins.

The fitness of robots is a shared fithess measure designed to promote speciation[2, 9] by giving
points for doing better than average against a human player, and negative points for doing worse
than average. For each rolpahe fitness is calculated as

0 playedh)
O lost(h, r) lost(h) 1 10

Dplayedh, r - playedh)

fitnesgr) =
{ h:playedh, r) > 0}

(1)

[

where lost,r) is the number of games lost by each human oppdreggainst, playedf,r) is the
total number of games between the two, Qs the total games lost hyand played{) is the
number of games thdt has played. The measure is summed across all games played, not just
those that belong to the current generation. The exponential factor on the right is a confidence
measure that devalues the average scores of humans that have only played a few games.

An inherent exploitation/exploration bias occurs when we make 10 new robots play 10 times per
generation and 90 veteran robots play 5 times each. This means that 20% of the games are played
by the rookie robots, who have not been evaluated yet.

2.7 Background Server

The role of the background process is to supply the foreground process with good robot players
for each new generation: the best that can be produced given the results that have been accumu-
lated. We proceed as follows: every time the foreground population begins a new generation, the
background receives the 15 best fit robots from the foreground process. This group of 15 robots
comprises part of a training set against which a new population of 1000 random robots is gener-
ated and evolved. When the foreground process finishes one generation, it receives the 10 best
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robots that emerge from this procedure, adding them to its own population, and the cycle restarts
(Figure 6).

The background process plays all the individuals in its population against the training set of 25
robots. Fitness is evaluated, and the bottom half of the population is replaced by random mating
with crossover of the best half. The fithess function is defined as follows,

pointqr, r")

Fitnessr(r) = ostr)

{r' OT: point{r,r") >0}

(2)

whereT is the training set, pointsf’) = {0 if r loses againgt, 0.5 if they tie and 1 if wins} and
lost(’) is the number of games lost By Thus we give more points for defeating good players
than bad players.

As indicated above, the training set consists of two parts. The first 15 members are fetched from
the foreground process. The remaining 10 members of the training set are replaced each genera-
tion with a fitness sharing criteria. The new trainingTses initialized to the empty set and then

new members are added one at a time, choosing the highest according to the following shared fit-
ness function:

pointqr, r’)

Fitnessr (r =
’T EI H n I\ «pn I D
Aot E {pointgr”, r"):r" 0T} O

3)

This selection function is adapted from [18] and acts to decrease the relevance of a case that has
already been “covered”, that is, when there is already a player in the training set that beats it.

When the best players from the foreground population re-enter the background as members of the
training set, their genotype is isolated: they do not reproduce explicitly. They do so only implicitly
as they disfavor players they can beat, and favor players that beat them. This is an arbitrary imple-
mentation decision whose effects we have not addressed yet (see section 5).
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generation n Foreground generation n+1
> best 90

Background

=100

population

best 1

best 10

generation 1 generation k

L4l

training set

1000

population

Figure 6. Scheme of foreground and background
evolutionary populations.

3 Results

Our server has been operational for two months, and so far we have collected the results of 22,494
games. Twenty thousand games is a small number compared with the number of games played by
the background process, which plays 25,000 games per generation, approximately one generation

per hour. We are letting the system continue to run, but present here analysis of the data obtained
thus far.

3.1 Robot Learning

Our basic performance measure is\lie rate that is, the fraction of games that the Tron-playing
robots have won. The average win rate over the total number of games played is 0.33, meaning
that 33% of all games completed have resulted in robot victories.

The following graph uses a sampling rate of 1000 to plot the evolution of the win rate over time.
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Tron games won/total (sampling rate=1000)
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—_— Raw data
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Figure 7. Evolution of the win rate

The graph in figure 7 illustrates two important factors. First, there are oscillations. This is a natu-
ral phenomenon in a coevolutionary environment, and occurs here more noticeably since one of
the evolving populations consists of randomly selected human players. Each of the 416 individu-

als sampled here has a different level of exp@rtlm played a different number of games, and
S0 ory.

The second important feature is that there is a visible trend toward improvement. The winning
rate has gone up from roughly 28% to 35% over the time that the system has been operational.

3.2 Human Learning

Humans learn very fast, so the Tron system, like all interactive adaptive software, is chasing a
moving target. The graph in Figure 8 illustrates the human learning rate. It shows the win rate of
our system against all the first games of new players, then all their second games, and so on.

Ox[?
-0
1. Smoothing obtained by convolution wigh , hormalized: 2000.
2. Another variable factor is the speed of the game in the client machine, which goes down due to the low
speed of Java interpreters inside Internet browsers.
3. We have called the low peak at 8000 games the “khith anomaly” because it consists mostly of games by
the same one person, with login name “khith”.
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Human learning: first 50 games of each person
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Figure 8. Averaged learning of human play'}ers

45 50

The graph shows how quickly learning occurs in humans. The robots win 67% of the first games,
but then only 52% of the second games, etc. By the 10th game, the rate descends to 44%. (We
have used smoothing to average over the noisy data toward the right side of the graph.)

3.3 Overall Improvement

It would be desirable to factor out the influence of human learning from Figure 7 in order to visu-
alize the learning rate of the Tron-playing robots. To do this, we examine only the first 10 games
of every person that has played 10 or more games with our system, as shown in Figure 9.

Oinxc?

Og O
1. Smoothing obtained by convolution wigh
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First 10 games of every human
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Figure 9. Performance of Tron during first 10 games with
each opponeht

The raw data is very noisy since each point is the score of a single human. Some players log into
the Tron system for the first time and win their first 10 consecutive games, showing a computer
winning ratio of 0. Others lose their first 10 games and showing a computer winning ratio of 1.
Most players perform somewhere in between. But both smoothing and a linear adjustment show
that there is an overall trend toward robot improvement. Starting at around 40%, the computer
winning ratio has increased to nearly 64%.

3.4 The Best Robots

Using our raw approximate measure (the win ratio), we obtain a score for each one of our robot
players. But since luck determines the opponents of each robot, this ratio will only be an estima-
tion that approaches a true value as the number of games played increases. In table 1, we have
listed the best robot players, out of those who have played at least 50 games.

_%g
1. Smoothing obtained by convolution wigh , hormalized: 1024.
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Ranking Robot | Wins/ | Games
Id No. | Games| Played

1 330008 0.74 54
2 330001| 0.74 54
3 330003 0.71 53
4 330004 0.70 56
5 280004| 0.67 100
6 280006 0.62 94
7 330006 0.61 53
8 320002| 0.61 58
9 170002| 0.59 194
10 170008| 0.58 185
16 | 100009| 0.56 | 243
61 | 10053| 035| 288

Table 1: Best robots

At the moment, this table is dominated by strategies born in generation 33 (the current generation
is 37). There are also two robots born in generation 28 and two more from generation 17. The rate
for the four 33rd generation champions will probably decrease as the population of human players
adapts to them. The most experienced robots above a 50% success rate are 5 individuals born in
generation 10, who have won more than half of their games. In contrast, the best robot from the
original population (generation 1) has played 288 games with a success rate of just 35%.

4 Strategy Analysis

4.1 The current champion
Following is the GP s-expression for the current champion, R.330008:

(+ (IFLTE _C _A (IFLTE (% 0.44444 (IFLTE _F _A (% (IFLTE
(RIGHT_TURN) 0.66667 _C (* 0.41270 0.84127)) (LEFT_TURN))
0.46032)) _F (% (IFLTE (RIGHT_TURN) 0.66667 (RIGHT_TURN) (*
0.41270 0.84127))(LEFT_TURN)) (LEFT_TURN)) _A) E)

This can be roughly reduced to pseudocode as:

if FRONT >= LEFT then go straight

else
if FRONT >= REAR_RIGHT then turn right
else if 0.97 <= REAR_RIGHT then turn right
else turn left
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The code still leaves us wondering what the strategy is. Why should an obstacle closer in the front
than to the left be an indication to go straight, when common sense dictates that it should be the
other way around? The complex behavior of this player arises from its interactions with its chang-
ing environment.

When inserted in a Tron arena, this code begins with a defensive strategy: it does tight turns to
keep itself as far away from its opponent as possible. It will keep doing these closed turns as long
as its opponent does the same. It will deviate from this conservative behavior, if its opponent devi-
ates, and switch to a more aggressive strategy. This technique protects the species (it is not sur-
prising that 5 out of the 10 best players from its generation behave similarly) while trying to inflict
damage on other strategies.

The Tit-for-Tat strategy described by Axelrod [1] for the Iterated Prisoner’s Dilemma (IPD) game
uses a similar approach. It maintains cooperation for as long as the other player does. But it retal-
iates after a defection, defecting as well. IPD induced this behavior by assigning more total payoff
to two players cooperating than to one defection plus one win. In our case, the outcome of cooper-
ation is a tie, which splits one point between the two players: the result is a zero-sum payoff
matrix. Given this, one should not be surprised to obtain, from fithess sharing, both cooperating
and non-cooperating species.

=

Figure 10. Next of kin: R. 330007 (gray) vs. R. 330008
(black) begin going straight (left), then make tight turns
to stay as far away from each other as possible (right).
This game ends eventually in a draw after the game arena
is filled entirely.
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Figure 11. Tit-for-Tat: R. 330003 (gray) vs. R. 330008
(black). R. 330008 begins cooperating as in Figure 10,
but as soon as 330003 deviates, it will change too, caging
its opponent in a dead end to win the game.

Playing a few games manually against this robot shows that it performs some clever maneuvers,
but also makes mistakes. Our conclusion here is that the Tron-playing robots have not yet evolved
to play as well as they could against humans.

Ko ¥
-
C

Figure 12. Humans are difficult: R. 330008 (gray) vs. one
of us (black). On the left, the robot seems to be making
harmless loops. When the human approaches, however, it
cuts its path and makes him lose. On the second game we
see R. 330008 escape a trap but later on loss
unnecessarily.

4.2 Cooperation and Speciation
The following table summarizes the balance of robot forces at the end of generation 33:
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12345 6 7 8 91D
1tt345 6 7 8 9 10
2| t345 6 7 8 9 10
3 CC5 6 78 9 10
4 C56 7 8 9 10
5 cccoceoccocc
6 ccoccoccocc
7 cccc
8 ccc
9 ccC
10 C

Table 2: Games between the top 10 players of generation 33.

Table 2 indicates the outcomes of games between the 10 players of the background process that
were selected to be incorporated as rookies in generation 33. The robot number indicates which
player won. A “t” indicates a tie where no cooperation was observed; C and C’ are cooperative
ties that fill the entire arena.

We observe that three species survived to be represented in this sample. Players 1 and 2 are non-
cooperative; they exhibit aggressive behavior even playing with themselves. They are beaten by
players 3-10. Players 3 and 4 cooperate with each other, but not with anyone else. Players 5-10 are
cooperative only between themselves. In contrast, generation 1 contains only one species among
its top 10 players. We have not made a thorough analysis of cooperative and speciation phenom-
ena, but a quick glance through a few generations shows us that cooperative and non-cooperative
species are present in most of them.

5 Conclusions

We have shown that evolutionary techniques can be successfully applied in the context of an envi-
ronment of connected human users. The variable input of random players with diverse expertise
and interests exhibits exploitable average trends. The trend toward collusion through cooperation
in coevolutionary agents can be broken in adaptive software environments by incorporating the
raw fitness evaluation emerging from its end-users.

Once an ecological niche is created, and by this we mean that a piece of adaptive software like our
Tron game must attract a collectivity of users, a coevolutionary arms race will occur where human
and artificial learning chase each other. We can observe human learning rates by averaging all per-
formances of players at same levels of experience, and we can observe agent learning rates by
looking at their performances against new incoming opponents along time.
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The exploration vs. exploitation trade-off is linked to the problem of creating a niche. On one side
we want to offer users our best level of performance, but on the other we need to take risks with
un-tested versions. We address this problem in two ways. First, we have set our parameters so that
only 20% of the games will be played by rookies. Second, we exploit the slow pace of human
interactions, evolving new robots in the background, so that our novice robots will be as good as
possible.

Regarding the algorithmic setup, several details were chosen arbitrarily. The way the background
population is reset every time the front end completes a generation is questionable, and other
approaches may be better, such as not resetting it at all, or doing it when the dynamics of its own
evolutionary process indicate so. Genetic isolation between front and back end populations is an
arguable factor, since it prevents new players from capitalizing on older genotypes.

The issue of diversity is a central point throughout our coevolutionary setup that needs to be
emphasized. Shared fitness functions stimulate diversity by promoting original candidates in

every new generation. Resetting the background population and genetic isolation are also promot-
ing diversity, creating new solutions from scratch in each cycle.

Diversity and speciation are key in addressing the problem of transfer, or lack of generalization,
by widening the spectrum of solutions produced by an introspective learner that needs strategies
to cope with a wider environment than the one defined by a limited fitness function that describes
only a few points of a larger problem.

The shared fitness function of robots vs. humans (eq. 1) addresses the problem of diversity of lev-
els of expertise among the user population, but also attempts to prevent cooperative phenomena at
this level, as robots are given points not for winning or losing, only for doing better or worse than
the average of the other robots.

As perceived by each individual user, our virtual Tron is playing differently every time. The
switching of random Tron programs for each individual game is responsible for this effect. At the
same time, the overall level of play is going up over the days. This heterogenous behavior is part
of the success; when we say that a certain robot is winning 74% of its games, this is a valid indi-
cator of its level of plagiven the collective of all other robot$ we were to send the same iden-

tical robot over and over, humans would quickly learn strategies against it, and the system as a
whole would be boring.

Finally, there are severe representational limitations to our Tron agents coming from the little per-
ception they have. Whereas humans observe the entire state of the game in every screenshot,
robots only “see” the nearest object in eight fixed directions. They have no perception of the posi-
tion and heading of their opponents, and are incapable of analyzing the game board as a whole in
order to make their decisions. Still, this work shows that computer learning can be successfully
applied to the domain of complex dynamic games where human beings are the current experts.
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