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Abstract. Firewalls are an important tool in the provision of network security.
Packet filtering firewalls are configured by providing a set of rules that identify
how to handle individual data packets that arrive at the firewall. In large firewall
configurations, conflicts may arise between these rules. Argumentation provides
a way of handling such conflicts that illuminates their origin, and hence can help
a system administrator understand the effects of a given configuration. We look
in particular at the use of a system of metalevel argumentation for firewall con-
figuration, showing how it makes conflicts and their origins especially clear, and
showing how different instantiations of a metalevel argumentation system pro-
vide alternative ways to resolve conflicts.

1 Introduction

Providing network security is a major problem today, both in academic computer sci-
ence which aims to come up with new techniques for securing networks, and in the
practical world of information technology, where system administrators struggle to pre-
vent unauthorised users from breaking into the networks that they manage. Firewalls,
first introduced in 1987 [19], are one of the core components of a network security
implementation. A firewall is a combination of hardware and software that isolates an
organization’s internal network from the Internet at large, allowing some packets to pass
and blocking others [21]. The decision about which packets to pass and which to block
is made according to some policy, and the configuration of a firewall is the business of
implementing this policy.

As we will discuss below, firewall policies are set by specifying a set of rules, and
there are a number of well-recognised problems in doing this. These problems relate to
rules conflicting, having domains that overlap, and include redundancy (where the effect
of a policy differs from that intended because some rules can never have any effect).
Such anomalies arise from the complexity of setting up firewall policies in complex



environments such as large organisations, especially when different parts of the overall
firewall policy are set by different individuals.

In this paper, we discuss how an argumentation-based framework can be used to
analyse a firewall policy. In particular, we examine the use of the metalevel argumenta-
tion framework of [23], choosing this system as the basis of our investigation because
we believe that the metalevel reasoning about the acceptability of arguments helps to
make the reasons for conflict between policies especially clear, and makes it easy to
understand how different strategies for resolving such conflicts work.

The remainder of this paper is organised as follows. Section 2 provides a brief intro-
duction to firewalls and issues in their confiiguration. Section 3 introduces the specific
metalevel argumentation system that we will be using. Section 4 describes several ways
in which this metalevel system can be used to represent firewall configurations and
potentially resolve conflicts in the firewall rules. Then Section 6 concludes.

2 Problems in firewall configuration

There are different types of firewall which function in different ways — packet-filtering
firewalls, application/proxy firewalls, and network address translation. Packet-filtering
firewalls operate at the network layer, not allowing packets to pass through the firewall
unless they match the established policy rule set. Routers can provide a very common
form of packet-filtering firewall. Packet-filtering usually makes decisions based on the
following characteristics:

Source and/or destination IP addresses
Source and/or destination port numbers
Protocol types

Other parameters within the IP header

A network administrator configures the firewall based on the policy, for example block-
ing and allowing packets based on what protocol they match and which IP address they
have as their destination.

Application firewalls, as indicated by the name, work at the application layer. These
devices act as proxy machines for requested services. Requests are sent to a proxy
machine, which then makes those requests to the Internet on behalf of the local client.
A proxy machine acts as a buffer between “bad” remote users and the internal network
client machines. Network Address Translation (NAT) also operates at the network layer,
providing the capability to change the source and/or destination IP address. This is
common when a private address space is used internally. The simplest type of NAT
provides a one-to-one relationship between inside and outside IP addresses. In this type
of NAT, only the IP header related to the IP address needs to be changed. The rest of
the packet can be left unchanged. In the remainder of this paper we will concentrate on
packet-filtering firewalls, but believe that the techniques we develop could be applied
to the other types we have listed above.

Table 1 lists some possible polices for a packet-filtering firewall and how they would
be addressed with a packet-filter firewall. If a firewall were to use this set of rules, when
a packet comes in it would be checked against rule 1. If rule 1 applied to that packet,



Table 1. Polices and corresponding filtering rules

Rule Policy Firewall Setting

1 Block a malicious sender Drop all packets from 55.55.55.55

2 Allow Web services Allow all incoming TCP packets from any IP address, port 80
3 Block DNS services Drop all incoming UDP packets from any IP address, port 53
4  Block all Drop all incoming packets from any IP address

5  Allow FTP services Allow all incoming TCP packets from any IP address, port 21

Table 2. An example of packet filtering firewalls

Rule Action Protocol Source IP  Source port

1 block 55.55.55.55
2 allow TCP * 80
3 block UDP * 53
4 block * *
5 allow TCP * 21

then the action specified by rule 1 would be taken. Otherwise, the packet would be
compared to rule 2. This process is repeated until one of the rules correctly specifies the
packet; the first rule that does is the one that’s applied, ignoring all rules after it. If no
rule matches an incoming packet, some default rule (which might, for instance, be to
let the packet pass since there is no specific rule to block it), would be applied.

Now consider the slightly more formal example in Table 2 and imagine a packet
arriving that uses TCP, coming from 55.55.55.55 on port 80. Rule 1 specifies blocking
it while rule 2 says to allow it. Since rule 1 is positioned before rule 2, the ultimate
action is to block, but it is clear that there is some kind of a conflict occuring. As
another example, the packet using UDP from 55.55.55.55 on port 53 would be blocked;
while three of the rules say to block it, only the first one is technically “enforced”.

The situations highlighted in both of these examples could be considered prob-
lematic, and both are what [1] calls an anomaly in a firewall policy. [1] defines four
anomalies in terms of relations between rules:

Shadowing Rule « is said to shadow rule b if a has higher-priority than b, a and b
specify different actions, and every packet that satisfies b also satisfies a.
In shadowing, the two rules are in conflict on every packet.

Correlation Rule a and b are correlated if a and b specify different actions and some
packets that satisfy a also satisfy b and vice versa.
In correlation, the rules conflict on some packets.

Redundancy Redundancy occurs in two cases. In the first case, redundancy occurs if
two rules a and b are such that all packets that satisfy a satisfy b, a and b specify
the same actions, and b is higher priority than a.



Table 3. Rules and their implementation in Linux

Policy Firewall Setting

Block a malicious sender iptables -A INPUT -p 0 -s 55.55.55.55 -j DROP
Allow Web services iptables -A INPUT -p tcp -dport 80 -j ACCEPT
Block DNS services iptables -A INPUT -p udp -dport 53 -j DROP
Block all iptables -A INPUT -p O -j DROP

Allow FTP services iptables -A INPUT -p tcp -dport 21 -j ACCEPT

In the second case, redundancy occurs if all packets that satisfy a also satisfy b, a
and b specify the same actions, a is higher priority than b, and a is not involved in
any correlation anomalies.
In both cases, the lower priority rule will never be applied.

Generalization Rule a is said to generalize rule b if b has higher priority than a, a and
b specify different actions, and every packet that satisfies b also satisfies a.
In generalization there is shadowing but the conflict is resolved by the priority.

In the example in Table 2, rule 4 shadows rule 5, since every instance of rule 5 is also an
instance of rule 4, and they specify different actions. Rule 1 and rule 2 are correlated,
since a TCP packet from 55.55.55.55 on port 80 is an instance of both rule 1 and rule 2,
and they specify different actions. Rule 4 generalizes rule 2, since every instance of rule
2 is also an instance of rule 4, and they specify different actions. Rule 3 is redundant
because every instance of rule 3 is also an instance of rule 4, and they specify the same
action. In case our examples might seem a little abstract, consider Table 3. This shows
the rules from Table 1 as they would be encoded in the iptables configuration file
that controls the packet filter built into the Linux kernel.

Now, in a small set of firewall rules such as these, it is easy enough to detect and fix
anomalies. However, firewalls, especially in large organizations with many machines on
a network, can include many hundreds of rules. In such a case, detection and correction
of anomalies is much harder. The problem is even more complex when firewalls are
composed of different components, each requiring some part of a policy that is applied
to a whole organisation, and as we shall discuss below, one can easily imagine scenarios
in which decisions about whether to accept or reject specific packets requires complex
reasons that need to combine information from a group of autonomous individuals. See
[9] for a similar scenario in the domain of B2B applications. It is the need to deal with
these complicated cases that is the reason we are using argumentation. In the remainder
of the paper, we will describe how this can be done. In particular, we will use the
metalevel approach presented in [23] since it provides a general approach to handling
anomalies.

3 Metalevel argumentation

The metalevel argumentation framework of [23] is constructed on top of the standard
Dung framework [14]. The idea is to make the conditions under which arguments are



classified — for example as justified, rejected and defeated — and the definition of ex-
tensions — such as grounded, preferred and stable — expressible in a logical language.
The advantage of doing this is that it becomes possible not just to have arguments about
objects in some domain, but arguments (meta-arguments) about the status of those ar-
guments. In this section, we introduce enough of this material to apply it to our firewall
scenario. The description is an abbreviation of the presentation [23] with some minor
modifications and additions (though naturally any faults in the interpretation of the orig-
inal are ours).

3.1 Argumentation

The formal structure, taken from [23] is as follows. As [23] points out, the formalization
is based not on Dung’s classic presentation, but on the more recent labelling approach
[10, 11,29, 32] (nicely summarised in [7]). The basic notion is that of a Dung argumen-
tation framework, a tuple (A, Ry where A is a set of arguments and R € A x Ais a
binary relation on A that identifies which arguments attack which other arguments.

In Dung’s approach, as in [23], arguments are taken to be completely abstract enti-
ties with no internal structure, and the attack relation R is given. As a number of authors
have pointed out — for example [4, 20, 26] — it is possible to construct arguments from
some logic, and use the relationship between arguments to determine what attacks what.
For example, given some logical language £ and an inference relation -, we might fol-
low [4] by defining an argument as a pair (H,h) where H is a set of formulae in L,
and H is a minimal set such that H — h. h is the conclusion of such an argument and
H is its support. In such a formulation, it is typical to say that one argument H — h
attacks another H' — i’ if —=h € H', that is if the conclusion of the attacking argument
disagrees with a member of the support of the attacked argument. 4 is then the set of
all arguments that can be constructed from some set of data A, and R is the set of all
attacks between these arguments.

Given a set of arguments and attacks between them, the core of Dung’s idea is that
not all arguments are equal. It is possible to identify some arguments that we should
consider acceptable — their conclusions are valid given what we know — and some
that are not. The labelling approach gives us a simple way to determine whether an
argument is acceptable or not. The approach can be described in terms of a labelling
function L which maps from arguments to a set of labels {IN, QUT, UNDEC}. We then
write in(L) to indicate all arguments that are labelled IN by L, out(L) to indicate all
arguments that are labelled OUT, and undec(L) to indicate all arguments that are labelled
UNDEC.

Defined in this way, there is no relationship between a labelling and the attack rela-
tion over a set of arguments. The two are combined through the idea of legality. For a
labelling L, an argumentation framework (A, R), and an argument x € A:

1. xis legally IN iff x is labelled IN and every y € A that attacks x is labelled OUT.

2. x is legally OUT iff x is labelled OUT and there is at least one y € A that attacks x
and is labelled OUT.

3. x1is legally UNDEC iff there is no y € A that attacks x such that y is labelled IN, and
there is at least one y € A that attacks x such that y is labelled UNDEC.



Note that the UNDEC state occurs when x cannot be labelled IN (because it has at least
one attacker that is not OUT), and cannot be labelled OUT (because it has no IN attacker).
If an argument is not legally labelled, is is said to be illegally labelled. More precisely,
an argument is illegally labelled /, where / € {IN, OUT, UNDEC} if it is not legally labelled
L

With the notion of legality tying labellings to attack relations, it is possible to re-
cover Dung’s idea that extensions, sets of arguments that are somehow coherent, can
be identified within an argumentation framework. We do this through the notions of
admissibility and completeness. An admissible labelling has no arguments that are ille-
gally IN, and no arguments that are illegally OUT. A complete labelling is an admissible
labelling that, in addition, has no arguments that are illegally UNDEC. Then, given a
complete labelling L, we have that:

1. Lis a grounded labelling iff there is no complete labelling with a smaller set of IN
arguments.

2. L is a preferred labelling iff there is no complete labelling with a larger set of IN
arguments.

3. Lis a stable labelling if it contains no UNDEC arguments.

If L is a grounded labelling, then every x € L is in Dung’s grounded extension, if L is
a preferred labelling then every x € L is in the preferred extension, and if L is a stable
labelling then every x € L is in the stable extension.

Based on extension membership we can then define the status of arguments. If x is
in at least one extension, then x is credulously justified, if x is in all extensions, then it
is sceptically justified, and if x is in no extensions, it is rejected.

3.2 Metalevel argumentation

In [23], a metalevel argumentation framework is defined' as a tuple:
<A7 Ra AMaRMacv EC7D>

where A is a set of arguments and R is an attack relation on object level arguments as in
the previous section, and .4,, and R, are sets of arguments and attacks at the metalevel.
C is a set of claims about the arguments in A, that is a mapping from A to statements,
L is the language in which the claims are made, and D is a set of constraints on the
attack relation Ay, that are determined by the claims. As an example, [23] gives a met-
alevel argumentation framework that captures Dung’s original argumentation system. In
this system, L¢ includes a set of constants and a set of predicates. The set of constants
C includes "x" for every x € A (it is common practice to quote object level symbols in
this way to make them constants at the metalevel), and the set of predicates is:

{justified, defeat, rejected}
and has a set of well formed formulae W defined by the following rules:

! This is a less general subset of the system presented in [23], but sufficient for our purposes.



Ifxe C,thenxe W

If x,y € W, then (x,y) € Wg, Wg c W

If x € W and x ¢ Wx, then justified(x) € W

If x € W and x ¢ Wx, then rejected(x) € W

If x,y € W and x,y ¢ Wx, then defeat(x,y) € W

DNk WD =

In other words, the language L allows us to talk about any of the constants (which
will represent arguments in A), attacks between the arguments, whether arguments are
justified or rejected, and whether one argument defeats another. The notion of defeat
is necessary because exactly the kind of thing we want to capture is when there is an
attack between two arguments, but there is something at the metalevel which overrides
the attack. The labelling of arguments thus depends on defeats not on attacks.

We next need to define Ay, which is the union of A1, Ay and Ay where:

a € Ay, C(a) = justified("x") iff xe A
B € Ay, C(B) = rejected('x’) iff xe A
v € Az, C(7) = defear('x",y") iff (x,y) e R

so that arguments in 4, are statements about arguments in .4 being justified, rejected
and defeating one another. Then the set of constraints on claims, D contains:

D1 if C(«) = defeat(X,Y) and C(B) = justified(Y) then (o, 8) € Ruy.
D2 if C(a) = defeat(X,Y) and C(8) = rejected(X) then (5, ) € Ry.
D3 if C(«) = justified(X) and C(5) = rejected(X) then (o, 5) € Ry

which together define the contents of Rj. For example, the first of these says that a
claim that X defeats Y is an attack on the claim that Y is justified. As [23] shows,
computing the justified arguments in .4, will identify the justified arguments in A
consistently across the different definitions of extensions.

As presented so far, and as described in [23], this metalevel argumentation system,
just like Dung’s system [14], has an asbtract notion of an argument. The members of
Ay have no internal structure. However, one can (and we will below) construct the
members of Ay, from a set of statements Ay, in some language £ using an inference
mechanism j,. When this is done, £y, like L¢, will contain constants "x" for every
x € A since £, will be statements about these arguments. For example, a sentence in
Ly might describe how one argument is preferred to another, and an argument in 4y,
that is constructed from such statements might describe how an attack from R is not a
defeat because of this preference. The attacks between these arguments then populate
Ru.

4 Arguing about firewall policies

Having introduced some of the issues in firewall configuration, and the metalevel ar-
gumentation approach of [23], in this section we discuss how the latter can be used
to model some aspects of firewall configuration in order to illuminate anomalies and
potentially provide a means to support system administrators in solving them.



4.1 Scenario

We consider a simple scenario in which an organization operates a hierarchical network
of routers. The root node, R, is the master router which ultimately implements the fire-
wall policy for the organization. The child nodes, R; and R,, are gateways to different
departments within the organization which have different requirements. R; and R are
stakeholders in the implemented policy and send their preferred policies to R. R then
combines these policies to create the overall policy for the organization. If the policies
put forward by R; and R» conflict, R must resolve the conflict in order to create this
overall policy.

Currently this merging of policies would be done by hand. In the simplest case, this
is done by just concatenating the firewall rules. It is not hard, though, to imagine the
process being automated with the routers being under the control of software agents.
Ap is the agent controlling R and Ag, and Ap, are the agents controlling R; and Rs
respectively. Indeed, a process that implements a software-based packet filtering fire-
wall would meet the description of a basic reactive agent [33], receiving a sequence of
percepts in the form of data about incoming packets, and making a sequence of “ac-
cept”/’block” decisions. The policies for R; and Ry are set by system administrators
in the relevant departments, Ag, and Ag, advocate for their policies with A, this agent
merges the policies and the combined policy is set by the system administrator with
overall responsibility for the whole organization, based on information provided by the
agent controlling R.

4.2 A first metalevel argumentation model

Now suppose that R; has a policy to deny all DNS traffic in order to enhance system
security, while R has a policy to allow HTTP traffic in order to support web services.
We can model R;’s policy as:

secure_system
secure_system = —allow_DNS
—allow_DNS = —allow_UDP

using a simple logical language?. In addition to the justification of R;’s policy this
captures the fact that disallowing DNS traffic is achieved by blocking UDP traffic. From
this set of policy information, it is possible for Ag, to construct the argument:

({secure_system, secure_system = —allow_DNS, (1)
—allow_DNS = —allow_UDP}, —allow_UDP)

% See [28] for a full description, but in short the language allows for default rules with con-
junctions of formulae as antecedents and single formulae as consequents. The default impli-
cation is denoted here by =, and inference is by generalised modus ponens which combines
a1 A ...y = B with ag,...,q, to give 5. Generlized modus ponens is the only inference
rule.



which has the conclusion to block UDP traffic. We will call this argument n since it
concerns name resolution. Similarly, Ry’s policy can be modelled as:
allow_WS
allow_WS = allow_TCP
giving Ag, the argument:
({allow_WS, allow WS = allow_TCP}, allow_TCP)
with the conclusion that TCP traffic should be allowed. We will call this argument ¢.
We can imagine that Az engages both A, and Ag, in an inquiry dialogue to discover
their requirements (for example following the protocol in [25]), a process that results in
both # and ¢ (including all the information on which they are based) being passed to Ag.
In addition, A knows that:
allow_WS = allow_DNS
allow_DNS = allow_UDP
since web services require name resolution and hence require UDP. In addition to n and

t, Ag can thus construct an argument w (an argument about the requirements of web
services):

({allow_WS, allow_WS = allow_DNS, allow_DNS => allow_UDP}, allow_UDP)
Clearly w and n attack one another>. In the formulation given above, we then have:

A = {w,n,t},
R = {(Wa n)v (”v W)}
which has a single grounded extension {z} which does not specify what to do about
UDP traffic. Before we consider how we can use argumentation to represent different
solutions to this scenario, let’s work through the full metalevel formulation. The previ-
ous section gave a metalevel formulation of a standard Dung framework. In this, the set
of metalevel arguments includes statements about the justification and defeat of every
argument in .4, and statements about defeat for every attack in R. Thus we have:
Ay = {defeat("w’, 'n"), defeat("'n", 'w"),
Justified("w"), justified('n"), justified("t"),
rejected("w"), rejected('n"), rejected("t")}
The constraints on claims then result in the following set of attacks:

Ry = {(defeat('n", 'w"), justified("w")), (justified("w"), rejected("w")),
(rejected("w"), defeat("w", 'n")), (defeat("w’", 'n"), justified('n")),
(Justified('n"), rejected('n")), (rejected('n"), (defeat("'n’, "'w")),
(Justified("t"), rejected("t"))}

3 The form of attack here is a rebut, an attack between the conclusions of arguments. While

rebuts can be problematic in some argumentation systems [12], they do not cause problems
when arguments are, as here, chains of defeasible rules.



def(n, w) —— just(w) —— reject(w)

T :

reject (N) <«——— just(n) <«—— def(w, n)

— reject(t)

Fig. 1. The metalevel argument graph for the basic firewall example. Each argument corresponds
to an argument or an attack at the object level. A box is drawn around arguments that can legally
be labelled IN

The first six of these attack relations form a cycle in the argument graph shown in
Figure 1, (this is the weather example from [23, page 19] without the preference argu-
ment), which has no consistent labelling. The last pair of arguments listed in Ry, can be
labelled consistently so that ¢ is justified. The result, then, is the single stable extension:

E = {justified("t")}

and the corresponding single stable extension of the object level (as we already identi-
fied just considering the object level system) is {}.

We see the advantage of A, using a metalevel framework, rather than just a standard
Dung framework which would enable it to reach the same conclusion, that Az can use
the metalevel framework to explain the the resulting policy to the adminstrator with
overall responsibility for the organization. The argument graph in Figure 1 makes it
clear that the fact there is no justified argument for w or n is the symmetry between
them. Each attacks the other, and there is no reason to privilege one attack over the
other.

4.3 Metalevel argumentation using preferences

While the resolution of the conflicting policies achieved above is correct from the per-
spective of argumentation theory, it is not very satisfying from an application point of
view — the resulting policy is unhelpful since it provides no decision on UDP traffic.
A natural way to improve the situation is to express some kind of preference between
web services and security (in our case) to resolve the conflict between w and n one
way or the other. This is not a new idea, having been introduced at the object level in
argumentation systems such as [3,27].

As discussed in [23], preferences can easily be introduced into a metalevel argu-
mentation framework. If we follow the approach described in [23], we consider that
stating a preference w »p n — that the argument in favor of allowing UDP to support
web services is strictly preferred to the argument in favor of blocking UDP to enhance
security — is equivalent to stating a metalevel argument that n does not defeat w.



[pref(w, n)] —— def(n, w) ——[just(w) | — reject(w)

1 l

reject -——— just(n) -«—— |def(w, n)

— reject(t)

Fig. 2. The metalevel argument graph for the firewall example with preferences. Each argument
corresponds to an argument or an attack at the object level. A box is drawn around arguments that
can legally be labelled IN

The formal description of the metalevel system is that of the previous section, with
the same set of arguments and attacks at the object level:
A = {w,n,t},
R = {(Wa n)7 (l’l,W)}
but with an additional argument — the argument that w is preferred to » at the metalevel
(the claim language L¢ contains an additional predicate to express this preference:
Ay = {defear("'w’, 'n"), defeat("'n", 'w"),
Justified ( ), justified("n"), justified("t"),
rejected("w"), rejected('n"), rejected('t"),
preferred("w’, 'n")},
The set of metalevel attacks also has an additional member, the attack of preferred("w", 'n")
on defeat('n’, "'w")

Ry = {(defeat('n’, "w"), justified("w")), (justified("W"), rejected("w")),
(rejected("w"), defeat("w", 'n")), (defeat("w’, 'n"), justified('n")),
(Justified("'n"), rejected("n )) rejected('n'), (defeat("n’, 'w")),
(preferred("w','n"), defeat('n", 'w")),

(Justified("t"), rejected("t"))}

As Figure 2 shows, this additional attack now breaks the cycle (this section of the
argument graph is now exactly the weather example from [23, page 19]), and we have
a single stable extension at the metalevel:

= {justified("'w"), defeat("'w", 'n"),
rejected('n’), (preferred(r '), justified("t")}

with the corresponding object level extension {w, 7}, with a policy that allows TCP and
UDP.



Again, we believe that this metalevel structure provides a means to explain the out-
come to the adminstrator. Comparing Figure 2 and Figure 1, it is clear that the prefer-
ence for w over n “fixes” the cycle of arguments so that defeat("'n', "w") does not hold,
resulting in w being justified.

4.4 Structured metalevel argumentation

As noted above, the idea of using preferences to resolve conflicting arguments is not
new. What the metalevel approach brings that is new is the ability to clearly see what
the preferences are doing, that is how they resolve the conflict. Examining the metalevel
arguments and attacks, it is clear that the preferences resolve the conflict by defeating
defeat(n,w), and in turn preventing that argument from making w unjustified. In ap-
plications such as ours, where the justification for using argumentation is to be able to
explain to users the structure of the problem and how to reason about it, this ability to
use the metalevel system to explain how arguments are resolved at the object level is a
powerful feature.

Furthermore, metalevel argumentation can capture more than just the application
of preferences. Appendix A, for example, shows how we can use the same metalevel
argumentation framework to apply ideas from value-based argumentation [8] to capture
a situation in which different parties have different views about which policy to adopt.

However, even value-based argumentation doesn’t fully exploit the power of the
metalevel framework. The astute reader will have spotted that though we have described
how structured arguments can be used at the object level to connect firewall rules to
arguments — as in the argument labelled (1) for example — we have yet to explore the
construction of arguments at the metalevel. Allowing reasoning at this level allows us
to construct arbitrary arguments at the metalevel that can resolve conflicts at the object
level.

Consider, as an example, this variation on the use of preferences, where A has the
following information in its Ay,:

prefer(promote WS, be_secure

achieves("w’, promote WS

prefer(X,Y) A achieves(Z,X) A achieves(W,Y) = preferred(Z, W)

)

)

achieves('n’, be_secure)
)

preferred(Z, W) A (W,Z) = (preferred(Z, W), defeat(W,Z))

where X, Y, Z and W are variables, A is conjunction, and achieves is a predicate that
captures the relationship between an object level argument and a metalevel proposition.
This is metalevel information about a preference for arguments about firewall policies
that promote web services over security, about the specific policies supported by the
object level arguments w and n, about how to combine preferences and information
about arguments in general (if you prefer one policy to another, then you prefer the
argument that supports it), and about how preference relates to defeat.
From this information, it is clear that A can construct an argument for

(preferred("w', 'n"), defeat("n", "'w"))



which of course is the crucial piece in the use of preferences to resolve the circle of
attacks in the metalevel representation of the conflict between w and n (see Figure 2
again). Abstracting from this, we have a general mechanism by which we can program
Ag, to figure out how to resolve conflicts in object level arguments — we provide it with
knowledge in Ay, from which it can construct metalevel arguments about which attacks
are themselves defeated.

One particularly interesting kind of reasoning that one might perform at this level
is reasoning about trust. Az might wish to resolve the conflict between w and n based
on what it knows about the trustworthiness of Ag, and Ag,. In [24], we described an
argumentation system that could be used to infer the degree of trust between agents, and
how this derived information could be combined with beliefs from those agents. Such
reasoning could be employed in the metalevel argumentation framework to identify
attacks on defeat('n’, 'w") or defeat("w", 'n"). For example:

trust(self , Ag,
—trust(self,Ag,
trust(self ,X) A —trust(self,Y

source('n", Ag

= more_trustworthy(X,Y)

1

source("w', Ag,

—_— — — — ~— ~—

source(X,Y) A source(W,Z) A more_trustworthy(Y,Z) = preferred(X, W)
from which Ag could, using elements from the previous example, construct an argument
for:

(preferred('n’,"w"), defeat("w', 'n"))

which would provide an alternative way to resolve the object level conflict between w
and n — the fact that » is provided by a more trustworthy source than w is an argument
against w defeating n.

4.5 Discussion

The examples in the previous section have demonstrated how metalevel argumentation
can be used to represent firewall policies in such a way that a conflict in the rules
is exposed at the metalevel, and how different approaches to metalevel reasoning can
be used to resolve this conflict. The key advantage that we see to using the metalevel
approach is the fact that it makes clear where conflicts arise, and how they are resolved
(when they are resolved). In firewall configuration, the final decision about how to set
the firewall up is going to be taken by a human system adminstrator — someone who
is not an expert in argumentation — and so any additional clarity will make their job
much easier. Of course it remains to be seen how much, if at all, the metalevel approach
helps in making decisions about resolving firewall anomalies, but we aim to address
this in future work through human subject experiments.

We also note that we started by discussing four kinds of anomaly in firewall rules —
shadowing, correlation, redundancy and generalization. Our examples are all instances
of shadowing. Showing that metalevel argumentation can help in general with detecting



and resolving firewall anomalies will require that we also demonstrate that the approach
can deal with the other forms of anomaly. This, again, is work we aim to carry out in
the future.

5 Related Work

Given the importance of security, the central role that firewalls play in ensuring security,
and the complexity of configuring firewalls, there has been considerable work on ap-
proaches to support this configuration. [1] implemented a set of algorithm in “Firewall
Policy Advisor”, a user-friendly tool. These use a firewall policy tree to deal with cen-
tralized and distributed firewalls [2]. [34] introduced FIREMAN, a static analysis toolkit
to check anomalies in individual firewalls as well as among distributed firewalls.

Similar work based on a logic background has been done. [16] proposed a formal
logic in understanding the actual meaning of the firewall rules. Logic may be used to
prove the properties and detect a number of anomalies within the rule sets. [18, 17]
used ordered binary decision diagrams (BDD’s) to represent a rule set as a boolean
expression to analyze the rule sets. However, the system does not allow the definition of
rules using a logic programming syntax. [15] presented a tool based on constraint logic
programming (CLP) for analyzing firewall rules. They implemented it using Eclipse
CLP, which makes it easy to express and extend the knowledge base of the system. [5]
described a technique based on Argumentation for Logic Programming with Priorities
(LPP). This allows administrators using high-level abstractions specifying their network
security requirements. In [6], they extend their previous work to automatically generate
firewall policies from higher-level requirements.

More work associate with firewall configuration has been published. [13] developed
harnessing models for policy conflict analysis, taking into account the semantic infor-
mation. [35] proposed a policy algebra framework for security policy enforcement in
hybrid firewalls, allowing the basic algebra used into the rule sets, such as addition,
conjunction, subtraction, summation. [22] presented a firewall analysis engine named
Fang, based on a combination of a graph algorithm and a rule-base simulator.

Our use of metalevel argumentation sets our work apart from all of the work cited.
All approaches to reasoning about firewall rules yet published have concentrated on
object level reasoning. Our work is the first we are aware of to look at reasoning about
firewall rules at the metalevel. However, as we start to look at bringing in reasoning
about trust at the metalevel, we are clearly beginning to overlap with the work of Vil-
lata et al. [30, 31] who have written quite extensively about how to represent and resolve
arguments that attack arguments about the trustworthiness of agents. If this kind of rea-
soning were to be incorporated into our framework, it would require a second level of
metareasoning — the first metalevel would be used to make statements about the trust-
worthiness of arguments and the effect of such statements on object-level defeats, and
the second metalevel would make statements attacking these statements of trustworthi-
ness. Resolving arguments at the second level would then inform which statements hold
at first level, and hence what arguments were preferred at the object level,



6 Conclusions

This paper has discussed the application of metalevel argumentation to the problem of
modelling firewall configurations. In particular, we have shown how to use the metalevel
argumentation system of [23] such that object level arguments are concerned with which
packets to accept and block in a firewall, and the metalevel arguments identify — and
potentially resolve — conflicts between these object level arguments due to shadowing
anomalies in the firewall rules. We have argued that since a human system administrator
will ultimately have to set the firewall policy, the use of a metalevel formalism — which
makes explicit the (metalevel) arguments that explain why conflicts in rules arise and
how they may be resolved — is appropriate. However, our planned future work to model
anomalies other than shadowing will be required to tell if metalevel argumentation is
sufficient to capture all forms of firewall anomaly, and human subject experiments will
be required to test our hypothesis that the metalevel arguments aid human understanding
and decision making.
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Appendix: Metalevel argumentation with values

In a Value based Argumentation Framework, we are concerned with values promoted
by each attack and their relative strengths. This is necessarily subjective and audience
dependent [8, 23] and provide a way for R to reason about implementing policies spe-
cific to Ry and R,. To see how this might work, consider a variation on the example
discussed above, where the network is that of a research university*. R, belongs to a
research computing facility (IT) which uses BitTorrent (BT) to provide updates to the
host machines. This is deemed to be mission-critical by IT. Ry belongs to the Chancel-
lor’s office (CO), which has deemed BitTorrent to be a legal liability and thus seeks to
deny any BT traffic.

Let ¢ denote the policy “Deny BitTorrent” and a denote the policy “Allow BitTor-
rent”. As in the examples in Section 4, we have a situation in which there are mutual
attacks between the arguments. In a value-based framework, we can annotate the poli-
cies to introduce values associated with the arguments by different parties. For example,

“ This is, of course, a fictional university and bears no ressemblance to any institution at which
the authors may have worked.



“Deny BitTorrent” may be associated with the “Preventing Piracy” (p) value, while “Al-
low BitTorrent” may be associated with the “Allowing Mission Critical Services” (m)
value. R may use reasoning specific to audiences pertinent to Ry and Rs. If Ry serves
research related computing facilities, the relevant audience is the advocates for the cor-
responding policy, IT (71). And if Rs is controlling access to student dormitories, then
the relevant audience is the advocates for the corresponding policy, CO (rz). Further,
each audience indicates which values are more important: r; prefers p to m, while ro
prefers m to p.

We can formulate this as a value-based framework (VAF) in the language of met-
alevel argumentation as (following [23]):

(A = {C,(l},R = {(C, a)’ (a,c)},
V = {p,m},{val(c) = p,val(a) = m}, P = {r1 = {(m,p)}, r2 = {(p,m)}})

which leads to two audience-specific VAFs (aVAFs) for r; and ro. Our set of claims
then includes the values, val(c) = p and val(a) = m, and the preferences over values,
preferred,, (m, p) and preferred,,(p, m).

We can then formulate the audience specific metalevel argumentation framework
for r1 as follows.

A ={c,a},
R = { (C, a)v (C,Cl)},
Ay = { preferred,, ("m", 'p"), defeat("m’, "p"), defeat('p", 'm"),
Justified("m"), justified('p"), rejected('m’), rejected("p*)},
Ry = { (preferred, ("m", 'p"), defeat("p’, 'm")),
(defeat("p',"m"), justified("m")),
(Justified("'m"), rejected("m")),
(rejected("m"), defeat("'m", "p")),
(defeat("m’, "p"), justified("m")),
(Justified("'m"), rejected("m")),
(rejected("m"), (defeat("p", 'm"))}.
and a corresponding metalevel argumentation framework can be formulated for 5. This

leads to two audience specific frameworks for r; and ro. The preferred extensions, for
each audience, are:

E., = {preferred,, (am,c,),justified(a), defeat(a, c), rejected(c)}
and
E,, = {preferred,,(cp, an), justified(c), defeat(c, a), rejected(a)}.

With the audience-specific extensions, the system administrator may reason that the
CO prefers values promoted by preventing piracy over allowing mission critical ser-
vices, while the IT prefers values promoted by allowing mission critical services over
preventing piracy.
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