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Automated planning of simple persuasion dialogues

Elizabeth Black, Amanda Coles and Sara Bernardini

Department of Informatics, King’s College London, UK
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Abstract. We take a simple form of non-adversarial persuasion dialogue in which
one participant (the persuader) aims to convince the other (the responder) to ac-
cept the topic of the dialogue by asserting sets of beliefs. The responder replies
honestly to indicate whether it finds the topic to be acceptable (we make no pre-
scription as to what formalism and semantics must be used for this, only assuming
some function for determining acceptable beliefs from a logical knowledge base).
Our persuader has a model of the responder, which assigns probabilities to sets of
beliefs, representing the likelihood that each set is the responder’s actual beliefs.
The beliefs the persuader chooses to assert and the order in which it asserts them
(i.e. its strategy) can impact on the success of the dialogue and the success of
a particular strategy cannot generally be guaranteed (because of the uncertainty
over the responder’s beliefs). We define our persuasion dialogue as a classical
planning problem, which can then be solved by an automated planner to generate
a strategy that maximises the chance of success given the persuader’s model of
the responder; this allows us to exploit the power of existing automated planners,
which have been shown to be efficient in many complex domains. We provide
preliminary results that demonstrate how the efficiency of our approach scales
with the number of beliefs.1

1 Introduction

Argument dialogues are an established agreement technology; they provide a princi-
pled way of structuring rational interactions between participants (machine or human)
who argue about the validity of certain claims in order to resolve their conflicting infor-
mation, competing goals, incompatible intentions or opposing views of the world [16].
Such dialogues are typically defined by the moves that can be made and rules to deter-
mine which moves are permissible at any point in the dialogue. Much existing work in
the field focusses on defining argument dialogues that allow achievement of a partic-
ular goal; for example, to persuade the other participant to accept some belief [19] or
to agree on some action to achieve a shared goal [3]. However, successful achievement
of a participant’s dialogue goal normally depends on the strategy it employs to deter-
mine which of the permissible moves to make during the dialogue; the development of
effective argument dialogue strategies is thus an important area of active research [23].

We consider a simple non-adversarial persuasion dialogue in which the persuader
asserts beliefs with the aim of convincing the responder to accept the dialogue topic.

1 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-09764-
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Success depends on the beliefs the persuader chooses to assert and the order in which it
asserts them (its strategy); this is informed by the persuader’s (uncertain) model of the
responder (i.e. its beliefs about the responder’s beliefs). Our proposal is general in that it
allows for any logical formalism and semantics to be used to determine the acceptability
of claims; the beliefs asserted may be logical formulas or abstract arguments.

We define the persuader’s choice of beliefs to assert as a classical planning problem;
this allows us to use an automated planner to search for an optimal strategy given the
persuader’s model of the responder. Our preliminary results show that a planner can
find an optimal strategy for a problem where there are 8 beliefs the persuader can assert
and 28 possible sets of responder beliefs it considers in 70.22 seconds (32.54 seconds
to find the strategy, 37.68 seconds to prove it optimal). We discuss how we might adapt
our encoding of the planning problem and the search strategy of the planner to improve
the scalability.

2 Simple persuasion dialogues

In our simple persuasion dialogues, the persuader aims to convince the responder to
accept the topic of the dialogue by asserting beliefs. We make no prescription as to
which semantics the responder must use to reason about the acceptability of beliefs. We
assume only a finite logical language L and some function for determining the set of
acceptable claims given some knowledge base of L.

Definition 1. We assume a function Acceptable : ℘(L) → ℘(L) which, for a knowl-
edge base Φ ⊆ L, returns the set of acceptable claims of Φ such that:

Acceptable(Φ) = {α ∈ L | α is acceptable given Φ under the chosen acceptability
semantics}

The examples in our paper use a simple argumentation formalism with Dung’s
grounded semantics [5] to determine the acceptability of beliefs (which we define later).
There are, however, many formalisms and associated acceptability semantics that may
be used to instantiate Definition 1, some examples are: logic-based deductive argumen-
tation [2], abstract argumentation [5], assumption-based argumentation [6], defeasible
logic programming [9], ASPIC+ [15], classical logic.

Each dialogue participant has a set of beliefs, which is a subset of L. We assume
some common knowledge, which is a subset of the intersection of the participants’ be-
liefs and is known by the persuader to be part of the responder’s beliefs. The persuader
has a model of the responder, which is a function that assigns a probability to subsets
of L, representing how likely the persuader believes it is that the responder’s beliefs are
that set ([11] considers how such a model might be constructed). Our framework thus
allows for the case where the persuader believes the responder has beliefs the persuader
itself does not believe, but assumes that the persuader is aware of all the beliefs the
responder may hold.

This proposal allows us to capture situations where the persuader is an expert who
aims to convince the responder to accept a certain belief. For example, the persuader



may be a medical expert aiming to convince a patient that they ought to give up smok-
ing, where the common knowledge contains the patient-specific information such as
their age and medical history and the expert’s model of the patient captures the beliefs
it has about the patient’s preferences and values. Based on this model, the expert must
select knowledge to assert to the patient that will convince them to accept that they
ought to give up smoking based on the information specific to their circumstances.

We define a simple persuasion situation by the persuader’s and responder’s beliefs,
the common knowledge, the persuader’s model of the responder and the topic of the
dialogue. The set of possible responder belief sets refers to those sets of beliefs that the
persuader believes may be the responder’s beliefs (each of which contain the common
knowledge, which is known by the persuader to be part of the responder’s beliefs). We
assume that the persuader’s model is accurate in the sense that it assigns a non-zero
probability to the responder’s actual set of beliefs.

Definition 2. A simple persuasion situation is a tuple 〈ΣP , ΣR, Ω,m, T 〉 where:

– ΣP ⊆ L is the persuader’s beliefs;
– ΣR ⊆ L is the responder’s beliefs;
– Ω ⊆ ΣP ∩ΣR is the common knowledge;
– m : ℘(L)→ [0, 1] is the persuader’s model of the responder such that

(a)
∑
Φ⊆Lm(Φ) = 1,

(b) for all Φ such that m(Φ) > 0, Ω ⊆ Φ, and
(c) m(ΣR) > 0;

– T ∈ L is the topic of the dialogue.

The possible responder belief sets given a particular model of the responder m is
denoted PossRespBels(m) where: PossRespBels(m) = {Φ | m(Φ) > 0}.

The two participants take it in turn to make moves to one another. The persuader
asserts subsets of its beliefs, not asserting beliefs it knows to be part of the common
knowledge and not repeating beliefs previously asserted. After each asserting move
made by the persuader, the responder replies honestly with a yes or no move, indicating
whether it finds the topic of the dialogue to be acceptable given the union of its beliefs
and those beliefs that the persuader has asserted thus far in the dialogue. If the responder
makes a yes move, then the dialogue terminates successfully. We thus define a well-
formed simple persuasion dialogue as follows.

Definition 3. A well-formed simple persuasion dialogue of a simple persuasion situ-
ation 〈ΣP , ΣR, Ω,m, T 〉 is a sequence of moves [P1, R1, . . . , Pn, Rn] such that:

1. P1 = {T},
2. for all i such that 1 < i ≤ n:

(a) Pi ⊆ ΣP \Ω,
(b) for all j such that 1 < j < i, Pj ∩ Pi = ∅;

3. for all i such that 1 ≤ i < n:
(a) Ri = no,
(b) T 6∈ Acceptable(ΣR ∪ P2 ∪ . . . ∪ Pi);

4. Rn ∈ {yes, no},



5. Rn = yes iff T ∈ Acceptable(ΣR ∪ P2 ∪ . . . ∪ Pn).

If Rn = yes, the dialogue is successful. If Rn = no, the dialogue is unsuccessful.

The persuader has a choice of beliefs it can assert at each point in the dialogue
(determined by its strategy), while the responder’s moves are determined by its beliefs
and those asserted by the persuader. A strategy for the persuader is simply a sequence
of non-intersecting subsets of its beliefs.

Definition 4. A strategy for a persuader with beliefs ΣP , for a dialogue with topic T
where the common knowledge is Ω is a sequence [P1, P2, . . . , Pn−1, Pn] such that:

1. P1 = {T},
2. for all i such that 1 < i ≤ n:

(a) Pi ⊆ ΣP \Ω,
(b) for all j such that 1 < j < i, Pj ∩ Pi = ∅.

A strategy thus corresponds to a sequence of persuader moves in a simple persuasion
dialogue. We give some examples in the following section.

2.1 Simple persuasion dialogue examples

To illustrate our simple persuasion dialogues, we must first specify the acceptability
semantics with which we instantiate Definition 1; for this, we define an argumentation
formalism to which we apply the grounded semantics of Dung [5]. The argumentation
formalism we define allows us to concisely present some examples; we make no claims
about the appropriateness of its properties. Recall that any semantics for determining
the set of acceptable claims given some knowledge base of a logical language can be
used with our proposal; this is only one such example and the argumentation formalism
we present can be replaced with an established formalism (e.g. [2, 5, 6, 9, 15]).

We use a simple propositional language L that is constructed from a set of proposi-
tional atoms {a, b, c, . . .}; α is a strong literal iff α is an atom or of the form ¬β where
β is an atom and ¬ represents strong classical negation; α is a weak literal iff α is of
the form ∼ β where β is a strong literal and ∼ represents negation as failure; α is a wff
of L iff α is a strong literal or α takes the form of a rule φ1 ∧ . . . ∧ φn → ψ where ψ is
a strong literal and each φ1, . . . , φn is either a strong or weak literal.2

An argument constructed from a knowledge base of L has a support and a claim
such that: (1) the support is a subset of the knowledge base; (2) the claim is either a
strong literal that appears as the support or is the head of a rule in the support; (3) for
every rule in the support of the argument, every strong literal that appears in its body is
either the head of another rule in the support or is itself a member of the support; (4)
the support is consistent; and (5) the support is a minimal set satisfying (1-4).

Definition 5. An argument constructed from a knowledge base∆ ⊆ L is a tuple (Γ, γ)
where Γ is the support and γ is the claim such that γ is a strong literal from L and:

2 Note that the symbols ∧ and→ are not being used here to represent classical conjunction or
implication, but rather represent meta-relations between sets of literals.



1. Γ ⊆ ∆;
2. either Γ = {γ} or there exists φ1 ∧ . . . ∧ φn → γ ∈ Γ ;
3. for every α1 ∧ . . .∧αn → β ∈ Γ , for every i ∈ {1, . . . , n} such that αi is a strong

literal, either αi ∈ Γ or there exists φ1 ∧ . . . ∧ φm → αi ∈ Γ ;
4. ifΦ = ({ψ ∈ Γ | ψ is a strong literal}∪{β | there exists α1∧. . .∧αn → β ∈ Γ}),

then
(a) Φ 6`⊥, and
(b) if there exists α1 ∧ . . . ∧ αn → β ∈ Γ such that ∼ ψ ∈ {α1, . . . , αn}, then

ψ 6∈ Φ;
5. Γ is minimal under set inclusion.

We denote the set of all arguments that can be constructed from ∆ as Args(∆).

An argumentA1 attacks an argumentA2 if and only if either: the claim ofA1 is the
negation of the claim of A2, the claim of A1 is something that appears as a weak literal
in the support of A2, or the claim of A1 is the negation of something that appears in the
body of a rule that is part of the support of A2.

Definition 6. An argument (Γ1, γ1) attacks an argument (Γ2, γ2) iff either:

– γ1 = ¬γ2,
– there exists a rule α1 ∧ . . . ∧ αn → β ∈ Γ2 such that ∼ γ1 ∈ {α1, . . . , αn}, or
– there exists a rule α1 ∧ . . . ∧ αn → β ∈ Γ2 such that ¬γ1 ∈ {α1, . . . , αn}.

The argument framework of a particular knowledge base represents the set of all
arguments that can be constructed and the attack relations between those arguments.

Definition 7. The argument framework of a knowledge base∆ ⊆ L, denoted AF(∆),
is the tuple (A,R) where:

1. A = Args(∆),
2. R = {(A1, A2) | A1, A2 ∈ A and A1 attacks A2}.

We apply the grounded semantics [5] to determine the acceptable claims of an ar-
gument framework. To define the grounded semantics, we follow Caminada’s labelling
approach [4], which assigns exactly one label from {in, out, undecided} to each ar-
gument in an argument graph such that the reinstatement labelling conditions given in
the definition below hold. The grounded labelling is the unique labelling that meets the
reinstatement labelling conditions and minimises the number of arguments labelled as
in, which are those arguments that are acceptable under the grounded semantics.

Definition 8. Let (A,R) be an argument framework. A reinstatement labelling of
(A,R) is an assignment of exactly one label from {in, out, undecided} to each of
the arguments in A such that the following conditions hold.

1. An argument is labelled as in iff every argument that attacks it is labelled as out.
2. An argument is labelled as out iff there is no argument that attacks it and is labelled

as in.



a

in

b

in

c

in

d

in

a, d,
a ∧ d∧ ∼ e→ t

out

c, c → e

in

b, c,
b ∧ c∧ ∼ f → t

out

a, a → f

in

d, d → f

in

Fig. 1. The argument framework constructed from the knowledge base given in Example 1. For
brevity, nodes are labelled only with the support of the argument they correspond to. The di-
rected edges represent the attacks between arguments and nodes are annotated with the grounded
labelling.

The grounded labelling of an argument framework (A,R) is the reinstatement la-
belling of (A,R) that minimises the number of arguments labelled as in.

We can now define the acceptable claims of a particular knowledge base ∆ as those
that appear as the claim of an argument that can be constructed from ∆ and are labelled
as in in the grounded labelling of the argument framework constructed from ∆.

Definition 9. Let ∆ ⊆ L be a knowledge base such that AF(∆) = (A,R). A wff
α ∈ L is acceptable given ∆ iff there exists an argument (Φ, α) ∈ A such that (Φ, α)
is labelled in in the grounded labelling of (A,R).

Example 1. Consider the knowledge base ∆ = {a, b, c, d, a ∧ d∧ ∼ e → t, b ∧ c∧ ∼
f → t, c→ e, a→ f, d→ f}. The argument framework AF(∆) is shown in Figure 1.
Thus we see that Acceptable(∆) = {a, b, c, d, e, f}.

Now we have defined a mechanism for determining the acceptable claims from
some knowledge base of L, we present some examples of well-formed persuasion dia-
logues where Definition 1 is instantiated with the definition of acceptable claims from
Definition 9.

Example 2. Consider a persuader with beliefs ΣP , common knowledge Ω, model of
the responder m, for a dialogue with topic t where:

– ΣP = {a, b, c} ∪Ω;



– Ω = {a ∧ d∧ ∼ e→ t, b ∧ c∧ ∼ f → t, c→ e, a→ f, d→ f};
– m({c} ∪Ω) = m({d} ∪Ω) = 0.4, m({a, c} ∪Ω) = 0.2 and for all other Φ ⊆ L,
m(Φ) = 0.

There are three possible responder belief sets to consider: {c}∪Ω, {d}∪Ω, {a, c}∪Ω.

– If ΣR = {c}∪Ω, some examples of well-formed simple persuasion dialogues are:
D1 = [{t}, no, {a, b}, no]; D2 = [{t}, no, {b}, yes].

– If ΣR = {d}∪Ω, some examples of well-formed simple persuasion dialogues are:
D3 = [{t}, no, {a, b}, yes]; D4 = [{t}, no, {b}, no, {a}, yes].

– If ΣR = {a, c} ∪ Ω, some examples of well-formed simple persuasion dialogues
are: D1 = [{t}, no, {a, b}, no]; D5 = [{t}, no, {b}, no, {a}, no].
We consider two corresponding strategies for this persuader: S1 = [{t}, {a, b}];

S2 = [{t}, {b}, {a}].

– If the persuader follows strategy S1 and ΣR = {c} ∪ Ω or ΣR = {a, c} ∪ Ω,
dialogue D1 will result; if ΣR = {d} ∪Ω, dialogue D3 will result.

– If the persuader follows strategy S2 and ΣR = {c} ∪ Ω, dialogue D2 will result;
if ΣR = {d} ∪Ω, dialogue D4 will result; if ΣR = {a, c} ∪Ω, dialogue D5 will
result.

If the persuader in Example 2 follows strategy S1, it will be successful if the re-
sponder’s beliefs are {c}∪Ω but not if they are {d}∪Ω or {c, d}∪Ω. If the persuader
follows strategy S2, it will be successful if the responder’s beliefs are either {d}∪Ω (as
in dialogue D4) or {c} ∪Ω (in which case the responder would terminate the dialogue
successfully after the persuader moves {b}, as in dialogue D2). Thus the persuader
should prefer S2 over S1.

We see then that there may be multiple possible responder belief sets given which a
particular strategy will lead to success. We define the probability of success of a strategy
(given the persuader’s model of the responder) as the sum of the probabilities assigned
by the persuader’s model to each possible responder belief set under which that strategy
leads to success.

Definition 10. The probability of success of the strategy [P1, P2, . . . , Pn−1, Pn] for a
persuader whose model of the responder is m, for a dialogue with topic T and common
knowledge Ω is

∑
Ψ∈Φm(Ψ) where:

Φ = {ΣR | there exists m such that 1 ≤ m ≤ n and
[P1, no, P2, no, . . . , Pm−1, no, Pm, yes]

is a well-formed simple persuasion dialogue of 〈ΣP , ΣR, Ω,m, T 〉}

Example 3. Continuing Example 2, the probability of success of S1 is 0.4, the proba-
bility of success of S2 is 0.8.

An optimal strategy for a persuader (given its model of the responder) is one that
maximises the probability of success. In the next section we show how we can represent
the persuader’s choice of moves to make in a simple persuasion dialogue as a classi-
cal planning problem so that we can use an automated planner to search the space of
possible strategies to find one that maximises the probability of success.



3 Representing simple persuasion dialogues as a planning problem

In this section we describe how the simple persuasion dialogue can be modelled as
a classical planning problem, which can then be solved by an automated planner to
generate a strategy for the persuader. A classical planning problem consists of four
components: an initial state, I , describing the current state of the world; a desired goal
condition, G; an optimisation metric M ; and the set of actions, A, which determine the
state transitions that can be made. Each action in A has preconditions, which must be
true in a state S for it to be applicable, and effects that occur when it is applied allowing
the generation of a new state S′. A solution to a planning problem is a plan: an ordered
sequence of actions (each of which is applicable in sequence) that transforms I into a
state that satisfies G.

We formally define our model of the planning problem later, but first we discuss
some high-level issues. The major challenge in representing our persuasion dialogue as
a classical planning problem is that the initial state is not known: that is, the persuader
does not know which of the possible responder belief sets hold. We might desire a plan
that will convince the responder regardless of which of the possible belief sets it holds;
in the planning literature such a plan is known as a conformant plan. Many approaches
to solving conformant planning problems have been proposed, the most closely related
to our work is that of compiling conformant planning into classical planning and then
using a classical planner to solve the problem [1].

Whilst conformant planning is sufficient in the case where there exists a sequence
of actions that will achieve the goal no matter which of the possible initial states actu-
ally hold, this is not always the case in our simple persuasion dialogues (as we see in
Example 2 and later in our experimental analysis). Instead what we seek is the plan that
maximises the probability of success. In a sense we are seeking the ‘most conformant’
plan, the one that is most likely to result in the responder being convinced, but accept
that it is not possible to guarantee success. This problem is related to that considered
in [22]; whilst [22] considers a general solution to this type of planning problem, our
compilation is made more efficient by exploiting particular properties of this problem,
specifically that we do not need to consider possible initial states any further once the
responder is convinced from these states.

3.1 Overview of model

To aid in understanding the formal model of our planning problem we give a brief
overview here, making use of a small example. The actions that the persuader can per-
form are to assert a belief or to pass the turn to the responder (we refer to this action
as responder-turn). We allow the persuader to make multiple assertions before the
responder makes a response; this is simply a way of modelling the fact that the per-
suader can assert multiple beliefs simultaneously. Since the first move the persuader
must make is fixed (it must assert the topic) a plan to determine the persuader’s strategy
always starts with a responder-turn (this action must be included since the persuader
does not know what move the responder will make); similarly a plan must always end
with a responder-turn.



Example 4. Following from Example 2, the strategy S1 is captured by the plan

(responder-turn) (assert a) (assert b) (responder-turn)

and the strategy S2 is captured by the plan

(responder-turn) (assert b) (responder-turn) (assert a) (responder-turn)

At each state in a simple persuasion plan (i.e. after each action is made), we can
consider the formulas the responder is reasoning with to determine whether it finds the
topic acceptable, i.e. the union of its beliefs and the beliefs asserted so far by the per-
suader; we refer to this set as the responder’s reasoning set. Although the persuader
does not know what this set is in a particular state, since we assume that the respon-
der’s beliefs are one of the possible responder belief sets, the persuader does know that
the responder’s reasoning set is a member of the following set (where m is the per-
suader’s model of the responder): {Φ ∪ Ψ | Φ are the beliefs asserted so far and Ψ ∈
PossRespBels(m)}.

The general idea is to monitor in each state during planning, given the beliefs that
have been asserted so far and the persuader’s model of the responder: (a) the probability
that the responder’s reasoning set is each of the possible sets that may occur (i.e. {Φ∪Ψ |
Φ ⊆ ΣP and Ψ ∈ PossRespBels(m)}), and (b) the probability that the responder will
terminate the dialogue successfully either in the current state or some previous state of
the plan (i.e. the probability of success of the plan).

Table 1 shows how the two strategies discussed in Example 2 are evaluated by our
approach. We see that there are 12 possible sets that may occur as the responder’s rea-
soning set. Let us consider strategy S1. In the initial state, the responder’s reasoning set
is simply its beliefs (as the persuader has not yet asserted anything) and so (according
to the persuader’s model of the responder) there is a 0.4 probability that the responder’s
reasoning set is {c}∪Ω, a 0.4 probability that it is {d}∪Ω, and a 0.2 probability that it
is {a, c} ∪ Ω. Since none of these sets cause the responder to find the topic acceptable
(and so the responder is sure to make a no move), after the first (responder-turn)
action these probabilities stay the same.

After the (assert a) action, if the responder’s reasoning set had been {c} ∪ Ω
or {a, c} ∪ Ω in the previous state it would now be {a, c} ∪ Ω, thus the probability
assigned to {c} ∪ Ω is now 0 and the probability assigned to {a, c} ∪ Ω is now 0.6.
If the responder’s reasoning set had been {d} ∪ Ω in the previous state it would now
be {a, d} ∪ Ω, thus the probability assigned to {d} ∪ Ω is now 0 and the probability
assigned to {a, d} ∪Ω is 0.4.

After the (assert b) action, if the responder’s reasoning set had been {a, c} ∪ Ω
in the previous state it would now be {a, b, c} ∪ Ω, thus the probability assigned to
{a, c} ∪ Ω is now 0 and the probability assigned to {a, b, c} ∪ Ω is now 0.6. If the
responder’s reasoning set had been {a, d} ∪ Ω in the previous state it would now be
{a, b, d} ∪ Ω, thus the probability assigned to {a, d} ∪ Ω is now 0 and the probability
assigned to {a, b, d} ∪Ω is 0.4.

If the responder’s reasoning set is {a, b, d}∪Ω, then it will find the topic acceptable
and terminate the dialogue successfully, thus we increase the probability of success
in the state after the final (responder-turn) action by 0.4 (the probability that the
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Strategy S1:
Initial state 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(responder-turn) 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(assert a) 0 0 0.6 0.4 0 0 0 0 0 0 0 0 0
(assert b) 0 0 0 0 0 0 0.6 0 0.4 0 0 0 0
(responder-turn) 0 0 0 0 0 0 0.6 0 0 0 0 0 0.4
Strategy S2:
Initial state 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(responder-turn) 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(assert b) 0 0 0 0 0.4 0.4 0.2 0 0 0 0 0 0
(responder-turn) 0 0 0 0 0 0.4 0.2 0 0 0 0 0 0.4
(assert a) 0 0 0 0 0 0 0.2 0 0.4 0 0 0 0.4
(responder-turn) 0 0 0 0 0 0 0.2 0 0 0 0 0 0.8

Table 1. For Example 2, at each state during planning, shows the updates to: (a) the probabilities
assigned to the sets that may occur as the responder’s reasoning set and (b) the probability of
success.

responder’s reasoning set in the previous state was {a, b, d}∪Ω) and set the probability
assigned to {a, b, d} ∪ Ω to 0 (as, if the plan were to continue after this point, the
responder could no longer be reasoning with this set, as if it had been it would have
ended the dialogue successfully). The probability of success of the plan that captures
Strategy S1 is thus 0.4.

The effect of an asssert action is to update the probabilities assigned to the possi-
ble responder’s reasoning sets (i.e. those with a non-zero probability), as a consequence
of the asserted belief being added to these sets. The effect of a responder-turn move
is to update the probability of success assigned to the plan when a possible respon-
der reasoning set would cause the topic to be acceptable, and to assign the probability
associated with that set to zero. In the following section we formally define the condi-
tions and effects of these two actions and specify how a planning problem instance is
constructed from a simple persuasion situation.

3.2 Formal model of the simple persuasion planning problem

To represent our simple persuasion dialogues as a planning problem, we use PDDL2.1
[8], a standard language for encoding the information required by automated planners
(i.e. the actions that can be performed, the initial situation, the goal and the optimisation
metric). PDDL2.1 allows the use of typed objects, predicates and functions to define
the preconditions and effects of actions. We define two types of object: the wff type



(can-assert ?w− wff) True if ?w is a persuader’s belief that has
not yet been asserted

(acceptable ?sow− setOfWffs) True if the topic is acceptable given ?sow

(add ?w− wff ?sow1 ?sow2− setOfWffs) True if the adding ?w to the set ?sow1
gives the new set ?sow2

(belief-asserted) Flag to ensure that the persuader asserts
at least one belief each turn

(initial-move) Flag to ensure the first action of a
plan is a (responder-turn)

(responder-moved) Flag to ensure the last action of a
plan is a (responder-turn)

(prob-resp-reasoning-with ?sow− setOfWffs) Function that assigns probabilities to the
sets that may occur as the responder’s
reasoning set

(prob-of-success) Function that updates the probability of
success of a plan

Table 2. Predicates and functions used to define the actions assert and responder-turn.

is used to capture wff of L; the setOfWffs type is used to capture sets of wff of L.
The predicates and functions used to define our actions are given in Table 2 (variables
in PDDL2.1 begin with a ? and are annotated with their type). Recall that we take the
initial state to be where the persuader has opened the dialogue by asserting the topic (as
all simple persuasion dialogues start in this manner), thus a plan must always start with
a (responder-move) action. A plan must also always end with a (responder-move)
action, to allow the persuader to consider the responder’s possible responses.

We now define how a planning problem instance is constructed for a simple persua-
sion situation; this determines the initial state that the planner must plan from.

Definition 11. For a persuader with beliefs ΣP , for a dialogue with common knowl-
edge Ω, topic T , where its model of the responder is m we construct a planning prob-
lem instance as follows:

– for every belief α ∈ ΣP , there is an equivalent wff object: α;
– for every set of beliefs Υ ∈ {Φ∪ Ψ | Φ ⊆ ΣP and Ψ ∈ PossRespBelSets(m)} (i.e.

for every set that may occur as the responder’s reasoning set), there is an equivalent
setOfWffs object: Υ ;

– for all α ∈ ΣP , (can-assert α) is true ;
– (acceptable Φ) is true if and only if T ∈ Acceptable(Φ);
– (belief-asserted) is true (since we assume we are in the state where the per-

suader has asserted the topic);
– (initial-move) is true;
– (responder-moved) is not true;
– for all Υ ∈ {Φ ∪ Ψ | Φ ⊆ ΣP and Ψ ∈ PossRespBelSets(m)}:
• if Υ ∈ PossRespBelSets(m),
(= (prob-resp-reasoning-with Υ ) x) where x = m(Υ );



• otherwise
(= (prob-resp-reasoning-with Υ ) 0);

– (= (prob-of-success) 0) ;
– the goal is (responder-moved);
– the optimisation metric is to maximise (prob-of-success).

The PDDL2.1 definition of our actions is shown in Figure 2. The persuader can
assert a wff object ?w as long as it can assert ?w (i.e. it has not asserted it already)
and it is not the initial move. The main effect of an asssert action is to update the
probabilities assigned to the sets that can occur as the responder’s reasoning set. For
each set ?sow1 that was assigned a non-zero probability p in the previous state, asserting
the belief ?w has the effect of setting the probability assigned to ?sow1 to zero and
increasing the probability assigned to ?sow1 ∪ {?w} (i.e. ?sow2) by p (so that if ?w is
already a member of ?sow1, the probability assigned to ?sow1 does not change).

A responder-turn action can be made as long as a belief has been asserted (so
two or more responder-turn actions cannot occur in sequence). The main effect of
a responder-turn action is to update the probability of success assigned to the plan.
For each of the possible responder’s reasoning sets ?sow that was assigned a non-zero
probability p in the previous state, if that set causes the responder to find the topic
acceptable, responder-turn has the effect of increasing the probability of success by
p and setting the probability assigned to ?sow to zero.

Given this formal model of our planning problem, a planner can search for a plan
that maximises the probability of success. In the following section we present some
preliminary results that explore the efficiency of the automated planning process.

3.3 Experimental results

We used the planner Metric-FF [12, 13] to generate plans for our model. The combi-
nation of features required by the model means that this is the most appropriate plan-
ner: standard (‘STRIPS’) planners support only conjunctions in preconditions, whereas
we require quantification and conditional effects3. We also require numeric fluents,
the values of prob-resp-reasoning-with, and optimisation based on a metric func-
tion. In fact, because the updates to the values of prob-resp-reasoning-with and
prob-of-success are state-dependent, Metric-FF is not able to optimise our prob-
lem off-the-shelf; however, we implemented a simple wrapper which allows us to use
Metric-FF to perform the optimisation as follows4. The wrapper first calls Metric-FF to
solve the problem with the goal:

(and (responder-moved)
(> (prob-of-success) 0)

)

3 In theory it is possible to compile these away to create a STRIPS representation, with the
possibility of using different planners, we leave this to future work.

4 This wrapper, our formal model of the planning problem and some example problem instances
can be downloaded from http://www.inf.kcl.ac.uk/staff/lizblack/automated-planning-simple-
persuasion.html.
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If a plan exists to solve the problem (i.e. if there is a strategy that has a greater than 0
probability of success), Metric-FF will return some such plan. The wrapper then updates
the problem instance so that the goal is now

(and (responder-moved)
(> (prob-of-success) X)

)

where X is the probability of success of the plan returned by Metric-FF in the previous
step, and calls Metric-FF to solve the problem again with the new goal. This process
continues until the planner reports that the problem is unsolvable with a probability of
success higher than the last plan found; we know therefore that the previous plan found
by the planner is optimal.

For our experiments we generated problem instances with #beliefs possible be-
liefs that the persuader can assert. The possible responder belief sets are all the elements
of the power set of the persuader’s beliefs, to which we have assigned equal probability
(so we assume the persuader believes that the responder’s beliefs are some subset of
its own but has no a priori beliefs about which is more likely and is not aware of any
common knowledge). Each possible set of beliefs was randomly determined to make
the topic acceptable with probability θ. Our first set of experiments scaled #beliefs,
while keeping θ = 0.3. The second set of experiments set #beliefs to 8 and varied
θ. For each parameter setting we generated a single problem instance and recorded: the
time taken to find the optimal plan, the cumulative time taken to find the optimal plan
and prove it optimal, the number of runs of the planner required to find the optimal
plan and prove it optimal, the probability of success of the optimal plan. All experi-
ments were run on a 3GHz machine with a memory limit of 27GB. Results of both
experiments are shown in Table 3.

Note that what we are evaluating here is the time taken to find an optimal plan, not
the time taken to generate the problem instance. Generating the problem instance is
not trivial; in particular, determining the sets that make the topic acceptable is typically
costly (depending on the acceptability semantics chosen to instantiate Definition 1, an
existing implementation such as ASPARTIX [7] could be used for this). We expect
that the work done in generating the problem instance can be reused for other problem
instances, and will explore this in future work.

Our experiments show that we can optimally solve problems with up to 29 possible
responder belief sets; problems of this size are very difficult for humans to solve even
close to optimally, and this shows real benefits of automation. Scalability does remain
a challenge, however; in particular memory usage seems to be the bigger concern than
time. The size of the problem, and the search space, grows exponentially with the num-
ber of persuader beliefs that can be asserted; the number of possible responder belief
sets also grows exponentially with the number of persuader beliefs and reasoning about
all of these is challenging. We plan to work on more efficient encodings that will allow
significantly greater scalability. We also expect improved performance for problems
where there are fewer possible responder belief sets.

Our first experiment shows that planning gets more difficult as the space of possible
solutions increases, but the overall time remains reasonable for problems with up to 8



#beliefs 1 2 3 4 5 6 7 8 9
findOptPlan < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1.3 32.54 1220.09
proveOpt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.16 2.46 70.22 2464.46
#runs 3 3 6 6 8 12 20 30 34

probSucc 1 1 1 0.81 1 0.94 0.80 0.94 0.97

%acceptable 49.6 25.8 23.1 17.6 15.6 13.3 11.3 9.4 4.3 3.5 2.7 1.2
findOptPlan 5.76 15.71 48.41 33.65 20.97 20.71 9.26 19.16 5.22 4.77 8.69 3.17
proveOpt 14.69 54.67 73.02 68.7 49.89 49.46 32.61 39.77 8.41 7.47 10.86 4.14
#runs 24 31 28 30 32 25 20 17 11 17 17 11

probSucc 1 0.85 0.72 0.82 0.79 0.80 0.76 0.75 0.24 0.23 0.23 0.26

Table 3. Shows: seconds to find the optimal plan (findOptPlan); seconds to find the optimal
plan and prove it optimal (proveOpt); number of runs of planner to prove plan optimal (#runs;
probability of success of the optimal plan (probSucc). Top part of table shows results for first
experiment (where we varied the number #beliefs of persuader beliefs and the probability
that a set causes the topic to be acceptable was fixed as 0.3); bottom part of table shows results
for second experiment (where we varied the probability that a set causes the topic to be accept-
able and the number #beliefs of persuader beliefs was fixed as 8) and gives the percentage
%acceptable of the 28 possible responder belief sets that were determined to make the topic
acceptable as we varied the probability θ that a set causes the topic to be acceptable.

persuader beliefs. In general the most time consuming step is the final run to prove the
solution optimal; finding the optimal solution often takes less than half as long as prov-
ing it optimal, a future direction is to scale to larger problems by finding solutions that
have a certain probability of success but are not necessarily optimal. The difficulty of
the problem clearly depends on which sets cause the topic to be acceptable; this is cur-
rently assigned randomly by our problem generator, we control only the proportion of
such sets. We intend to run experiments where acceptability status of sets is determined
from the underlying logic, to investigate whether this improves performance.

Results of our second experiment support what might be expected. If a large per-
centage of the possible sets make the topic acceptable then planning is relatively quick
because solutions are abundant; so, although the planner might run many times, it is rel-
atively easy to find a solution that improves on the previous one quickly. As the number
of belief sets that make the topic acceptable becomes low, it is harder to find solutions
to the planning problem as there are fewer, but (because the number is so low) search
space pruning is more powerful as the planner can recognise early during plan gener-
ation that a plan cannot lead to a better state and prune it without further exploring.
There is somewhat of a phase transition between these two extremes, at approximately
10-25% of belief sets acceptable, where neither of these advantages prevails. Varia-
tion in the results appears because of the random assignment of acceptable sets by our
problem generator, which impacts on the the difficulty of the problem.



4 Related work

Recent works on argument dialogue strategy [3, 10, 21] also use a model of the other
participant. The dialogue of [3] allows participants to agree on some action to achieve
a shared goal. The authors provide a strategy that requires a certain model of the other
participant’s preferences and depends on a particular argumentation formalism, whilst a
strategy generated by our approach maximises the chance of success taking into account
the uncertainty over the responder’s beliefs and we allow for any reasoning mechanism.

Different tactics for making concessions in argumentation-based negotiation are
presented in [10], which use a model of the other participant’s (perhaps distinct) de-
feat relation over the arguments that can be used to support or attack offers; here we
instead use a model of the responder’s beliefs, and assume its mechanism for determin-
ing the acceptability of claims is known to the persuader. In case this mechanism is
argument based, our approach can account for the construction by the responder of new
arguments by combining its existing beliefs with those asserted by the persuader; this
is not possible in [10], which does not consider the structure of arguments.

In [21], a variation of the minimax algorithm is used with a recursive model of the
opponent to determine dialogue strategy in an adversarial abstract persuasion setting.
Uncertainty over the opponent model is also allowed for in [21]. The authors present
results regarding the effectiveness of their approach (i.e. whether the strategy leads
to success) but do not present results regarding the efficiency of their algorithm; we
consider the time taken to find a guaranteed optimal strategy (albeit in a simpler non-
adversarial setting). The experiments in [21] assume 10 arguments distributed between
the two agents, which is comparable to the size of problem we have shown our ap-
proach to be efficient for. Whilst we assume that the persuader is aware of all beliefs
the responder may believe, [21] uses virtual arguments to allow the for the case where
the responder has beliefs that the persuader is unaware of; this is something we will
consider adopting in our model.

The application of the minimax algorithm to dialogical argumentation is also con-
sidered in [14], which proposes a general framework for specifying argument dialogue
systems using propositional executable logic; this allows a finite state machine to be
generated, which represents all possible dialogues from a particular initial state. Such a
finite state machine can then be analysed with the minimax algorithm to determine an
optimal strategy for a participant, although this requires certain knowledge of the other
participant’s private state. Efficiency results are also given in [14]; these are better than
the results we achieve here but we are considering a set of possible initial states (i.e.
the different possible responder belief sets) while [14] considers a situation in which
the persuader and responder beliefs are known. It will be interesting to explore more
closely the relationship between our approach and [14].

In [17] and in [18], argument-based negotiation is considered as a planning problem.
Each of these proposals allow plans of arguments specific to negotiation to be generated,
where the arguments that can be generated are specified by the domain; our approach is
more general than this, since our domain does not depend on a particular argumentation
formalism, and so could also be used to determine a persuasive line of argument within
a negotiation context.



Finally, [20] also considers the generation of a persuasive line of argument as a
planning problem. The focus of that work is on generating natural language discourse;
it is concerned with eloquence and style of language, as well as the logical structure of
arguments, whilst we consider only the acceptability of logical formulas.

5 Discussion

Our proposal allows an automated planner to find an optimal strategy for a simple
persuasion dialogue; a key advantage is that it is general in the sense that it does
not prescribe the logical formalism and semantics for determining acceptability of
claims, allowing for both abstract and structured argumentation, as well as other non-
argumentation based formalisms. Our preliminary results show that the efficiency of the
planner does not scale well beyond 8 persuader beliefs; however, we expect a significant
improvement when we reduce the number of possible responder belief sets considered.

The major obstacle to scalability in our current approach is that we are not exploit-
ing any knowledge about the responder belief sets that we know are either not possible
or not likely. Whilst the current model allows reasoning with these as zero probabil-
ity states, it does not reduce the size of the task. We intend to explore more efficient
encodings of the planning problem to allow exploitation of such knowledge, and also
to consider exclusion of unlikely possible responder belief states to further improve
scalability. Better exploitation of the native ability of planners to handle sets, through
the explicit reasoning over beliefs as individual entities rather than as black-box sets,
is also an avenue to improve performance. Finally, we intend to investigate how the
search algorithms and heuristics of the planner itself can be modified to allow better
performance in this particular domain, or indeed what inspiration we can gain from this
problem for improving general planning strategies across different types of problems.

Our optimisation metric currently only considers the success of the dialogue. We
could also consider that the persuader may have some preferences regarding the beliefs
it shares with the responder. By assigning values to each belief that represent how will-
ing the persuader is to make it known to the responder, we could adapt our optimisation
metric to also take into account the beliefs the persuader has had to share.

We intend to model more complex types of argument dialogue as planning prob-
lems. In particular, we are interested in the case where both participants are making
assertions with the aim of achieving their individual (and potentially conflicting) dia-
logue goals. The dynamic and uncertain nature of these dialogues presents interesting
challenges for classical planning; nevertheless, we believe this work demonstrates the
feasibility of using automated planners to generate strategies for such dialogues.
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