

King’s Research Portal

DOI:
10.1007/978-3-642-54373-9_7

Document Version
Early version, also known as pre-print

Link to publication record in King's Research Portal

Citation for published version (APA):
Black, E., McBurney, P., & Zschaler, S. (2013). Toward agent dialogue as a tool for capturing software design
discussions. In E. Black, S. Modgil, & N. Oren (Eds.), Theory and Applications of Formal Argumentation: Second
International Workshop, TAFA 2013, Beijing, China, August 3-5, 2013, Revised Selected Papers. (pp. 95-110).
(Lecture Notes in Artificial Intelligence; Vol. 8306). Heidelberg: Springer Berlin Heidelberg. 10.1007/978-3-642-
54373-9_7

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 10. Dec. 2016

http://dx.doi.org/10.1007/978-3-642-54373-9_7
https://kclpure.kcl.ac.uk/portal/en/publications/toward-agent-dialogue-as-a-tool-for-capturing-software-design-discussions(5f722472-9864-47d7-b77f-77a38ebb0792).html

Towards Agent Dialogue as a Tool for Capturing
Software Design Discussions

Elizabeth Black, Peter McBurney, and Steffen Zschaler

Department of Informatics, King’s College London
{elizabeth.black|peter.mcburney|steffen.zschaler}@kcl.ac.uk

Abstract. Software design is an important creative step in the engineering of
software systems, yet we know surprisingly little about how humans actually do
it. While it has been argued before that there is a need for formal frameworks to
help capture design dialogues in a format amenable to analysis, there is almost
no work that actually attempts to do so. In this paper, we take a first step in this
direction by exploring the application of concepts from agent dialogues to the
description of actual design dialogues between human software designers. We
have found that this can be done in principle and present a set of dialogue moves
that we have found useful in the coding of an example dialogue. Through this
formulation of the dialogue, we were able to identify some interesting patterns of
moves and dialogue structures. More importantly, we believe that such a repre-
sentation of design dialogues provides a good basis for a better understanding of
how designers interact.

1 Introduction

Collaborative software design is a process that is little understood. Although there are
good arguments (e.g., [1]) that there is a need for formal description frameworks that
allow design processes to be modelled and analysed, there is little work that addresses
this need.

Here, we take an agent dialogue approach to the problem. We have studied a record-
ing and transcript of a pair of designers working together to determine a software design
that meets a high-level requirements specification that they have been provided with.1

Based on this initial study, we have defined a set of moves for capturing software design
dialogues; we have considered what the effects of making the different types of move
are and the conditions that we expect to see satisfied when each type of move is made.

We have modelled the collaborative software design as an argumentative process,
where the participants exchange arguments in order to reach an agreement on the design
specification that should be implemented. Existing dialogue systems about how to act
focus on deliberation, where agents want to agree on an action to achieve a shared
goal but each may aim to influence outcome of decision in their favour (e.g. [2, 3]),
negotiation, where there is some set of scarce resources that needs to be divided (e.g.

1 Results described in this paper are based upon videos and transcripts initially distributed for the
2010 international workshop “Studying Professional Software Design”, as partially supported
by NSF grant CCF-0845840.

[4]), or they may be command dialogues, where there is some authority relationship
between participants (e.g. [5]). Software design discussions have a different focus. The
main aim is to reach agreement on what the requirements of the system really are and
what features should be implemented in order to meet these requirements.

Our limited analysis of a single software design discussion does not allow us to
make any claims about the completeness or correctness of the dialogue moves that we
propose for describing the software design process; nevertheless, we feel it is a valuable
first step in developing a formal model for capturing and analysing design dialogues and
we are encouraged by the variety of patterns and structures we have already identified
with our framework.

Our paper is structured as follows: Section 2 presents the methodology that we fol-
lowed in defining the dialogue framework and underlying argument model; in Section 3
we present the argument model we are using; Section 4 presents our initial attempt at
defining a dialogue framework to capture software design dialogues; Section 5 gives
a discussion of our experience in annotating the transcript, highlighting some patterns
and challenges that we found; related work is discussed in Section 6; Section 7 gives
some conclusions.

2 Methodology

Our empirical work is based on videos originally recorded for the 2010 International
Workshop on “Studying Professional Software Design” and subsequently made avail-
able to the research community. These are videos (and transcripts) of pairs of design-
ers working out a software design based on a short design prompt giving a high-level
requirements specification. Three videos have been made available, but for the pur-
pose of this paper, we have focused on one of these only; specifically the video called
anonymous-video. This is intentional, as it gives us the opportunity to use the re-
maining two videos for further validation and refinement of our framework in a next
research stage.

Based on these videos, we have adopted a framework-based analysis methodology
as follows:

1. We started by watching the entire video, followed by a high-level discussion of
points of interest, this led to us identifying the practical reasoning argument scheme
of Atkinson et al. [6] as being appropriate for capturing arguments relating to soft-
ware design (see Section 3);

2. We developed an initial framework of dialogue moves, this was based on a high-
level categorisation of the dialogue kind based on our previous experience defining
dialogue systems;

3. We annotated the transcript of the design dialogue up to timestamp 0:18:19.4 using
the moves identified, making note of any problematic or irregular cases;

4. We developed a simple semantics in terms of the effects of making a move and the
expectations we felt should be met when making a move;

5. Based on this initial semantics and the problematic or irregular cases identified, we
revised the set of dialogue moves;

6. We re-annotated the transcript up to timestamp 0:18:19.4 using the revised set of
dialogue moves, again noting any problematic or irregular cases;

7. We repeated steps 4-6.

In this way, we identified and refined a preliminary framework and used it to capture
the part of the software design dialogue that we studied. Much more investigation is
necessary to determine whether this framework is sufficient to generally model such
dialogues, but it has already allowed us to identify some interesting issues that will help
guide the next step of our work (see Section 5).

In the next section, we present the practical reasoning argument scheme that we use
to capture arguments about software design.

3 Practical arguments

After watching and discussing the video of the design dialogue, we determined that
the high level goal of a software design dialogue is to reach an agreement on a design
specification that allows creation of an artefact which meets the system requirements.
It was apparent that (at least in the dialogue we studied) the main focus is not on what
should be believed (although this may play a part) but on what states of the world should
be brought about and how, or in software engineering terms, what requirements should
be met and what features should be implemented to meet those requirements.

With this in mind, we use the practical reasoning argument scheme of Atkinson
et al. [6] to capture software design arguments.

In current circumstances R, we should perform action α, which will result in
new circumstances S, which will achieve goal G, which will promote value V.

In software design terms:

– R represents the designers’ beliefs about the world, including beliefs about the
stakeholders’ preferences and any requirements specification they have been given;

– α refers to the actual code to be written and steps that need to be taken to produce
this code;

– S sets out the features that the code must implement, i.e. the design of the system;
– G captures the requirements of the system;
– V refers to values that may be held by the designers or the stakeholders.

By arguing about the different elements of the practical reasoning argument scheme,
the designers’ main aim is to reach an agreement on S.

4 Dialogue Moves for Design Dialogues

In this section, we present our current version of the dialogue moves for design di-
alogues, produced by following the methodology in the Section 2. We assume for
simplicity exactly two participants in the dialogue (p1 and p2); we believe it would
be straightforward to extend it to more participants. These participants make moves

throughout the dialogue, which affect one of five different dialogue stores that we as-
sociate with a design dialogue.

In Section 4.1 we first present the format of dialogue moves. Section 4.2 describes
the different dialogue stores those moves may affect. In Section 4.3, we detail what
effect the different types of move have on those stores and whether there are any condi-
tions that we expect to be satisfied when a particular move is made; note, since we are
aiming for a descriptive model, we refer to these conditions that we expect (but do not
require) to be satisfied as the expectations of a move (rather than preconditions).

4.1 Dialogue Moves

Dialogue moves have the following format

(ID, Sender, Type, Scope, Focus, Content, Target)

where:

– ID ∈ N uniquely identifies the move in the dialogue;
– Sender ∈ {p1, p2} uniquely identifies the dialogue participant making the move;
– Type ∈ {propose, question, challenge, justify, withdraw, accept, reject,
commit, uncommit} is the type of the move;

– Scope ∈ {FEATURE,RATING,CRITERIA, TOPIC} indicates whether the move re-
lates to features of the system to be designed (FEATURE), an assessment of those
features (RATING), the criteria that features should be assessed on (CRITERIA), or
is suggesting topics for discussion (TOPIC) and so part of a meta-dialogue;

– Focus ∈ {R, α, S,G,V} denotes which part of the practical reasoning argument
scheme the move refers to;

– Content is a string derived from the locution uttered by the participant;
– Target ∈ N ∪ {null} uniquely identifies an earlier move in the dialogue that this

move refers to, if there is such a move, or is null if there is no such move.

During the dialogue, the moves that the participants make cause things to be added
or removed from the different dialogue stores that we associate with a design dialogue.

4.2 Dialogue Stores

The format of the elements that make up each of the different types of dialogue store is
given in Table 1.

The proposal store, P , keeps track of the proposals being discussed in the dialogue.
If something is present in the proposal store, then the participants aim to decide whether
it should be added to the commitment store or not. A single agent can add something
to the proposal store (with a propose move), but all participants must agree in order to
remove something from the proposal store (with a reject move made by one participant
targeted by an accept move made by the other participant).

The question store, Q, keeps track of questions that have been posed during the
dialogue. A single participant can add something to the question store (with a question

move). A single participant can remove something from the question store by answering
a question with a propose move or with a withdraw move if it was the participant that
posed the original question. Elements in the question store have to keep track of who
posed them (Sender), since only the same participant can withdraw that question.

The challenge store, CH, keeps track of proposals and commitments that have been
challenged during the dialogue. A single participant can add something to the challenge
store (with a challenge move). A single participant can remove something from the
challenge store by answering a challenge with a justify move, or with a withdraw move
but only if it was the participant that made the original challenge move. Elements in the
challenge store have to keep track of who posed them (Sender), since only the same
participant can withdraw that question.

The commitment store, CO, keeps track of the commitments the participants have
made during the dialogue. All participants must agree in order to add something to the
commitment store (with a commit move made by one participant targeted by an accept
move made by the other participant). Elements in the commitment store record the ID
of the move that first put forward the commitment, rather than of the move that accepted
it. All participants must agree in order to remove something from the commitment store
(with an uncommit move made by one participant targeted by an accept move made by
the other participant).

The argument store, A, keeps track of the arguments that the participants have
made during the dialogue. A single participant can add something to the argument store
(with a justify move). Things are not removed from the argument store, the idea being
that inconsistencies can be dealt with by applying an argumentation semantics (e.g. [7])
to evaluate the dialectical acceptability of the arguments in the store.

4.3 Effects and Expectations of Moves

Each type of move has effects, i.e. what is added and removed from the different stores,
and also some expectations, i.e. what we expect (but do not require) to see when a
particular type of move is made in terms of the different elements of the move and
contents of the different stores. The effects and expectations of each of the different
types of move are given in Table 2. Note that we are using the notion of an expectation
rather than a pre-condition to highlight the fact that these operators are used to record
observed human behaviour, which invariably will invalidate some of these expectations.
We hope, however, that in future work we may be able to learn a set of reasonable
expectations from examples of good design dialogues and use these to help us identify
good or less promising cases of design dialogues.

Propose moves are expected to have no target or to target a previous question. If a
propose move targets a previous question, it causes that question to be removed from
the question store. All propose moves cause an item to be added to the proposal store.

Question moves are expected not to target a previous move and have the effect of
adding an item to the question store.

We expect a challenge move to target either a previous proposal or a previous com-
mitment made; this is reflected by our annotation of the transcript. Making a challenge
move causes an item to be added to the challenge store.

Dialogue Format of element Description
store
Proposal (ID, Scope, Focus, Content) ID is the identifier of the move that
store, P made the proposal; Scope, Focus and

Content give the details of the proposal.
Question (ID, Sender, Scope, Focus, Content) ID is the identifier of the move that
store, Q made the question; Sender is the

identifier of the participant who made
that move; Scope, Focus and Content
give the details of the question.

Challenge (ID, Sender, Target) ID is the identifier of the move that
store, CH made the challenge; Sender is the

identifier of the participant who made
that move; Target identifies the
previous move that is being challenged.

Commit- (ID, Scope, Focus, Content) ID is the identifier of the move that
ment store, first put forward the commitment;
CO Scope, Focus and Content give the

details of the commitment.
Argument (ID, Scope, Focus, Content, Target) ID is the identifier of the move that put
store, A forward the justification; Scope, Focus

and Content give the details of the
argument; Target identifies what (if
anything) is being justified.

Table 1. Format of elements in the dialogue stores; first column gives the type of dialogue store,
second column gives the format of an element in that type of dialogue store, third column gives
an explanation of the different parameters of the element.

In our first iteration of defining the move semantics, we felt that a justify move
would always target a previous propose move. In fact, we have identified justify moves
that target previous question moves, commit moves, reject moves and that have no tar-
get; thus we have currently no expectations of a justify move. When a justify move is
made it causes an item to be added to the argument store. If a justify move is made that
targets a previous proposal that is also the target of a previous challenge, it causes that
challenge to be removed from the challenge store.

A commit move has no effect on its own, since it must be explicitly targeted by
a subsequent accept move made by the other participant to cause an item to be added
to the commitment store. We initially felt that a commit move would always target a
previous proposal. In fact, we identified very few commit moves: one that targeted a
previous proposal, one that targeted a previous question and two that had no target, thus
there are no expectations of commit moves.

We expect that a reject move may target either a previous proposal or a previous
commitment. We have seen only one reject move in our annotation of the transcript,
which targets a proposal. Making a reject move on its own has no effect, since it must
be explicitly targeted by a subsequent accept move made by the other participant in
order to cause something to be removed from the proposal store.

Ty
pe

E
ff

ec
ts

E
xp

ec
ta

tio
ns

p
ro
p
os
e

(I
D
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t)

ad
de

d
to

P
If
T
a
rg

et
6=

n
u
ll

,t
he

n
If

pr
es

en
t,
(T

a
rg

et
,
,S

co
p
e,
F
oc
u
s,

)
re

m
ov

ed
fr

om
Q

(T
a
rg

et
,
,S

co
p
e,
F
oc
u
s,

)
∈
Q

qu
es
ti
on

(I
D
,S

en
d
er
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t)

ad
de

d
to

Q
T
a
rg

et
=

n
u
ll

ch
a
ll
en

g
e

(I
D
,S

en
d
er
,T

a
rg

et
)

ad
de

d
to

CH
T
a
rg

et
6=

n
u
ll

(T
a
rg

et
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t)

∈
P

∪
CO

ju
st
if
y

(I
D
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t,
T
a
rg

et
)

ad
de

d
to

A
N

on
e

If
pr

es
en

t,
(
,
,T

a
rg

et
)

re
m

ov
ed

fr
om

CH
co
m
m
it

N
on

e
(b

ec
au

se
ne

ed
s

to
be

ag
re

ed
by

ot
he

rp
ar

tic
ip

an
tw

ith
an

ac
ce

pt
m

ov
e)

N
on

e
re
je
ct

N
on

e
(b

ec
au

se
ne

ed
s

to
be

ag
re

ed
by

ot
he

rp
ar

tic
ip

an
tw

ith
an

ac
ce

pt
m

ov
e)

(T
a
rg

et
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t)

∈
P

u
n
co
m
m
it

N
on

e
(b

ec
au

se
ne

ed
s

to
be

ag
re

ed
by

ot
he

rp
ar

tic
ip

an
tw

ith
an

ac
ce

pt
m

ov
e)

(T
a
rg

et
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t)

∈
CO

a
cc
ep
t

If
th

er
e

ex
is

ts
a

pr
ev

io
us

di
al

og
ue

m
ov

e
T
a
rg

et
6=

n
u
ll

(T
a
rg

et
,S

en
d
er
,T

y
p
e′
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t,
T
a
rg

et
′)

,t
he

n:
–

if
T
y
p
e′

=
re
je
ct

,t
he

n
(T

a
rg

et
′ ,
S
co
p
e,
F
oc
u
s,
C
on

te
n
t)

re
m

ov
ed

fr
om

P
;

–
if
T
y
p
e′

=
co
m
m
it

,t
he

n
(T

a
rg

et
′ ,
S
co
p
e,
F
oc
u
s,
C
on

te
n
t)

ad
de

d
to

CO
;

–
if
T
y
p
e′

=
u
n
co
m
m
it

,t
he

n
(T

a
rg

et
′ ,
S
co
p
e,
F
oc
u
s,
C
on

te
n
t)

re
m

ov
ed

fr
om

CO
.

w
it
h
d
ra

w
If

pr
es

en
t,
(T

a
rg

et
,S

en
d
er
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t)

re
m

ov
ed

fr
om

Q
E

ith
er

(T
a
rg

et
,S

en
d
er
,
)
∈
CH

If
pr

es
en

t,
(T

a
rg

et
,S

en
d
er
,
)

re
m

ov
ed

fr
om

CH
or

(T
a
rg

et
,S

en
d
er
,S

co
p
e,
F
oc
u
s,
C
on

te
n
t)

∈
Q

Ta
bl

e
2.

T
he

ef
fe

ct
s

an
d

ex
pe

ct
at

io
ns

of
m

ak
in

g
a

m
ov

e
(I
D
,S

en
d
er
,T

y
p
e,
S
co
p
e,
F
oc
u
s,
C
on

te
n
t,
T
a
rg

et
);

th
e

fir
st

co
lu

m
n

gi
ve

s
th

e
T
y
p
e

of
m

ov
e

be
in

g
m

ad
e,

th
e

se
co

nd
co

lu
m

n
gi

ve
s

th
e

ef
fe

ct
s

of
m

ak
in

g
a

m
ov

e
of

th
at
T
y
p
e,

th
e

th
ir

d
co

lu
m

n
gi

ve
s

th
e

ex
pe

ct
at

io
ns

of
a

m
ov

e
of

th
at
T
y
p
e.

N
ot

e:
S
en

d
er

=
p
1

iff
S
en

d
er

=
p
2

;S
en

d
er

=
p
2

iff
S
en

d
er

=
p
1

.

And the left-hand, this kind of implies-
[0:10:28.6]
Male 2: Really, it’s just a-
[0:10:30.7]
Male 1: Two-two lanes? Is there a left-turn
lane, or is it a suicide left? (31, p1, question, Feature, G, left-turn-lane, null)

Table 3. Interrupted move by Male 2

Initially we felt that accept moves would target only reject, commit, or uncommit
moves made by the other participant; in these cases they act as an explicit confirmation
that an item is to be removed from the proposal store (when targeting a reject move),
added to the commitment store (when targeting a commit move), or removed from the
commitment store (when targeting an uncommit move). We found, however, that accept
moves are also made that targeted challenge moves, justify moves and commit moves;
in our current model, such accept moves have no effect, since the targeted moves do not
need explicit acceptance to affect their respective store. We expect that an accept move
targets some previous move.

We expect that a participant may withdraw something that they themselves have
posed as a challenge or a question from either the challenge or question store. We have
so far only identified one instance of a withdraw move, where the participant withdraws
a previous challenge they made.

5 Discussion

While we have used a relatively fine-grained approach to annotating the discussion tran-
script with our operators, such an annotation necessarily leads to a level of abstraction;
that is, some details of the dialogue are lost in the encoding. For example, we have cho-
sen not to annotate moves that seemed to be interrupted (e.g., the interrupted Male-2
move in Table 3). In the transcript we have looked at for this paper, the interrupted move
seems indeed inconsequential for the further dialogue; the other participant just contin-
ues his own train of thought. However, in other dialogues this may not be the case:
For example, the interruption may occur because the partial move has triggered an idea
in the other participant. In these cases it may become necessary to define additional
annotations to encode interrupted or partial moves.

More importantly perhaps, our annotations abstract completely from how each move
was implemented by the respective participant. It would perhaps also be of interest to
understand how particular kinds of moves are signalled by human designers; however
this is out of scope for our study. We take a more symbolic-interactionist approach
as we are primarily interested in understanding the ‘protocol’ of design dialogues. As
a consequence, in some cases we have even annotated moves that are not explicitly
present in the transcript. These are derived from the definitions of our dialogue moves:
it appears that some moves happen implicitly. For example, a commit move may be
accepted implicitly by not challenging it.

[0:13:15.9]
Male 2: I think we have-we can probably
numerate the rules we’re going to need too. (59, p2, propose, enumerate-rules, Topic, S, null)
Or do we care? (60, p2, challenge, enumerate-rules, Topic, S, 59)

Table 4. Male 2 challenging his own proposal

Our analysis currently only looks at the spoken conversation as captured in the tran-
script. We did, in a number of instances, refer to the video-recorded design session to
disambiguate a particular move, but in general almost no information beyond the spo-
ken text was used. In particular, we have not encoded the designers’ interactions at and
with the white board and their use of this as a (temporary) store of knowledge. It seems
obvious, that this is an important dimension of the design dialogue that bears further
analysis. However, it is not entirely clear whether and how the use of the whiteboard
could be fit into our current model. Some initial work on whiteboard usage exists [8], but
this takes a more conversation-analytic approach focussed on the mechanics of interac-
tion. As a result Mangano et al. have developed a novel tool for intelligent whiteboards
to support some of the specific interaction styles observed.

Beyond these methodological issues, we have also identified a number of features
in the interaction between the designers. This seems to be a key benefit of the encoding
that we have defined, in that it lets us focus on such interaction features / patterns in
order to extract protocols of interesting forms of interaction. In particular, we have
found the following features:

– Self-challenge. Commonly in argumentation dialogues, we might expect that a pro-
posal can only be challenged by the other participant. However, interestingly, in the
dialogue we have analysed we have found situations in which one participant seems
to be challenging his own proposal (e.g., Table 4).

– Vagueness of commit. It is not always clear from the transcript or actual video
whether a particular move is a proposal or a commit move. For example, moves
45 and 49 shown in Table 5 are such ambiguous cases. It would be interesting to
see whether the designers themselves have a clear idea of what they have commit-
ted to. If yes, then we need further research to understand better how commits are
expressed. If they do not agree what they have committed to, there may be some
benefit in tooling that can assist in making commitments explicit without interrupt-
ing the flow of interaction too much.

– Non-strict protocol. We have defined previously that a propose move in response
to a question move removes that question from the question store. This assumes
that every question can be answered with a single proposal. However, we can find
cases where more than one proposal move occurs in response to a question move
(e.g., moves 2 and 3 both answer move 1, see Table 6). This seems to indicate
that a different protocol would be more appropriate, whereby questions are not
removed from the question store by a propose move. Instead, a question can be
considered answered if the proposal store contains at least one proposal referencing
the question move.

[0:11:56.3]
Male 1: Do we want to assume one
lane of traffic coming in, and? (45, p1, commit, roads-should-not-have-lanes,

Feature, G, 38)
. . .
[0:12:12.9]
Male 1: So we have a model of behavior
where we have these cars turning
left, these stopped, these cars going
straight, and then when this (49, p1, propose, details-intersection-protected-
stops these cars can then go left-turn, Feature, G, null)

Table 5. Ambiguous commits: Should Move 45 be a propose? Should Move 49 be a commit?

[0:05:29.7]
Male 1: Well, I want to start by hearing (1, p1, question, Feature, G,
your summary of this your-summary, null)
[0:05:36.4]
Male 2: Gotcha, well. Looks like basically
two pieces: the interaction and the code
for map that’s able to manipulate road systems (2, p2, propose, Feature, G, interaction, 1)
with a whole bunch of details. (3, p2, propose, Feature, G, map, 1)

Table 6. Non-strict protocol: Multiple proposals in response to a question

– Missing move types. We have found some types of moves that did not fit well into
our framework. For example, the designers occasionally follow the consequences
of a proposal by talking through the logical implications (see for example minute
15:38.5). This has been called mental modelling before and it would be good to be
able to capture this kind of move as well. Similarly, in some cases the participants
make meta-moves to control the structure of the dialogue beyond simply proposing
or rejecting new topics. For example, in Table 7, the participants seem to agree on
delaying the discussion of a particular topic without actually removing it from the
topic list. Finally, there are some moves that we have classified as questions, but
which actually seem to be used as proposals. This could be the participant’s way of
expressing that some ideas are more tentative than others (see also [9]).

[0:15:30.1]
. . .
Concerned with too much detail before
we even-otherwise we’re going to cut
stuff out. – proposal of delay –
[0:15:38.5]
Male 1: Sure, yeah, yeah. Let’s look
for (error)erm. (74, p1, accept, ??, Topic, G, ??)

Table 7. Delaying a topic

[0:16:32.6]
Male 2: It sounds like more and more (78, p2, accept, intersection-controls-signals,
like the intersection is kind of [inaudible] Feature, S, 75)
because basically it’s going to have given
S1 goes green, it’s going to have to delegate (79, p2, justify, intersection-controls-signals-
the actions of what S2 and S3 are; is it safe since-delegate-actions,
from stuff like that Feature, S, 75)
[0:16:41.1]
Male 1: Exactly, exactly. (80, p1, accept, intersection-controls-signals-

since-delegate-actions, Feature, S, 79)
Somebody is controlling the interactions. If you (81, p1, justify, intersection-controls-signals-
think of this as kind of an encapsulated entity since-somebody-controls-interactions,
then it’s not going to know about this. Feature, S, 75)
[0:16:51.0]
Male 2: Exactly, yeah exactly. (82, p2, accept, intersection-controls-signals-

since- somebody-controls-interactions,
Feature, S, 81)

So how do you share that information across all (83, p2, justify, intersection-controls-signals-
the signals. since-alllows-share-information-across-signals,

Feature, S, 75)
[0:16:55.6] Male 1: Exactly. (84, p1, accept, intersection-controls-signals-

since-alllows-share-information-across-signals,
Feature, S, 83)

[0:16:56.4]
Male 2: Because at that point the rules more (85, p2, justify, intersection-controls-signals-
apply to the intersection itself as opposed to any since-rules-apply-to-intersection-not-signal,
one individual signal. Feature, S, 75)

Table 8. Chains of justification

– Patterns of interaction. Some interesting patterns can already be established from
our initial work. A particularly interesting one occurs from move 78 to move 85,
where the same proposal is justified in a number of different ways by the two par-
ticipants although they already seem to have accepted the proposal very early on in
the interaction (see Table 8).

We have found a number of other interesting things, which we are not discussing
here as the space is limited. It seems clear that agent dialogue techniques can be used in
principle to capture design dialogues. At the same time, however, this can only be the
foundation for more in-depth research into the different patterns of interaction used in
these dialogues.

6 Related Work

In his panel contribution [1], Finkelstein was the first, as far as we can identify, to pro-
pose that there is a need for formal representations of design dialogues (considering
this term in the widest sense to also include, for example, requirements-analysis dia-
logues). Together with Fuks, in [10] he provides a first proposal of such a formalisation

based on argumentation theory. However, while this is an interesting early proposal of
an agent-dialogue protocol, it is less clear how faithfully it represents actual human di-
alogues. In particular, it would appear that the operators and protocol rules are based
on generalisations drawn from the authors’ considerable experience with requirements
analysis rather than specific observations and annotations of transcripted dialogues. In
contrast, our framework has been developed and refined based on our study of the tran-
script and video of a real software design dialogue. Moreover, the model of Finkelstein
and Fuks adopts the dialogue system DC of James MacKenzie [11], a system devel-
oped by philosophers of argumentation for analyzing fallacious or apparently fallacious
arguments over beliefs; this purpose would seem to be inappropriate for representing
dialogues over design, dialogues which presumably have as their end-purpose some
actions or some plans for actions.

As we have mentioned before, the videos that form the basis of our work, have been
captured as part of a workshop on “Studying Professional Software Design”. Other
researchers have also studied these videos from a variety of perspectives, leading to a
number of special issues of journals [12,13]. The work collected in these special issues
and in other venues has looked at the videos from a variety of perspectives—including,
for example, conversation analysis [9], decision-making in product design [14,15], topic
analysis [16], and others.

To the best of our knowledge, there is no work that attempts to provide a formalised
representation of design dialogues using, for example, dialogue systems. The works that
come, perhaps, closest to ours are [14, 15]. In [14], the authors attempt a description of
the strategies used by the designer in the three videos. However, their framework is
much more coarse-grained and is not based on an annotation of individual statements.
Consequently, while it enables a high-level classification of design dialogues, it is less
useful for identifying recurring patterns in the interaction. The work in [15] is based
on a much more detailed coding of the design dialogues, much closer to our use of
dialogue moves. Their evaluation, however, again focuses on the macro level of design
strategies rather than the micro level of individual design interactions.

Within the academic community that studies artefact design, the closest work to our
paper is the book by the architect Andrew Dong [17]. Drawing on speech act theory
(e.g., [18]), Dong presents a theory of successful collaborative design dialogues which
involves a three-stage model of interaction (summarized in [17, Chapter 7]). In Stage
1, Aggregation, the participants gather materials to form a frame or a collection of con-
straints and objectives for the design concept. In the software engineering domain, such
constraints would include the system specification and requirements. In Stage 2, Ac-
cumulation, the participants jointly and incrementally reify and materialize the design
concept; i.e., they flesh out the design. In Stage 3, Appraisal, the participants assess,
from their potentially differing and subjective perspectives, the concept and its realiza-
tion. These stages are abstractions, of course, and in real design interactions participants
may move between them many times as the interaction progresses [15]. Although he
does consider the performative nature of utterances in materializing a design concept
(i.e., for Stage 2), his framework remains at a much higher level of abstraction than our
work here. Despite this, it is easy to see that the utterance annotation we have presented
here could be readily categorized by Dong’s three stages.

Within the field of agent communications and agent argumentation, considerable
recent work over the last decade has explored formal dialogues, and particularly dia-
logues over actions (see [19] for a review). McBurney et al. presented a formal frame-
work for agent deliberation dialogues—dialogues about what to do in some situation—
in [20]. Atkinson et al. [6] proposed an argumentation scheme and associated critical
questions for proposals over actions, which has been influential in later work. Atkin-
son and Bench-Capon, for example, gave this schema a novel semantics [21]; Black
and Atkinson [2] considered the strategic selection of utterances in dialogues over ac-
tion; Atkinson et al. [5] considered dialogues involving commands; and Medellin et
al. [22] considered dialogues between agents co-ordinating separate plans. Since [6],
these works all have in common a representational structure we have also drawn upon
in Section 3: actions are understood as taking us from some initial (or present) state to
some future, successor state, in which latter state certain propositions are true; being
true, these propositions promote or demote certain values. The true propositions are ob-
jectively true (i.e., agreed by all, at least in principle), while any subjective assessment
of the future state arising from the successful execution of the action is confined to the
values and their preference ordering. In all the works cited, the focus of attention in the
dialogues being modeled or presented is on the possible actions, and how participants
may or should compare and assess alternative actions.

In our current work, however, we notice that the participants to the software design
dialogue seem to take the actual actions they will select for granted. Being experienced
software developers they each know what specific actions are needed to produce any
desired software outputs (at least within the range of outputs covered by the design
brief), and they know (or they assume) that each other participant knows this too. Con-
sequently, the dialogue between them can ignore the specific actions, and focus on the
outcomes of the action; that is, on the successor state and the propositions which will
be true in that state, and (to a lesser extent) on the values promoted or demoted by those
outcomes. It may be that, having agreed the desired outcomes, they may turn their atten-
tion to the specific actions required to achieve these outcomes. We believe this different
focus marks out such design dialogues as a specific sub-type of deliberation dialogues:
they are collaborative dialogues about what actions to take, where the agreed intended
purpose of the actions is the joint creation of an artefact.

7 Conclusions

We have presented an initial study exploring the use of ideas from agent dialogues to
formally describe dialogues between designers of software systems. The overall goal
of this research is to provide ways in which such design dialogues can be captured for
further analysis—for example, it may be possible to understand common problems and
provide tool support to alleviate them or we may be able to learn strategies of successful
designers and teach them to novice designers.

In this paper, we have studied one transcript from a design dialogue captured as
part of the “Studying Professional Software Design” workshop held in 2010. We have
shown that it is indeed feasible to capture key elements of design dialogues using the
notion of moves from agent dialogues and have proposed a specific schema of moves

to do so. We feel that this is a promising application of agent-dialogue ideas as it opens
a range of different research directions—for example:

– How do designers keep track of the various stores, and in particular of committed
decisions? Even from the relatively limited study reported here it seems that they
may loose track of some of the decisions made earlier. If this is indeed the case, can
we make use of the representation of design dialogues proposed to provide some
form of tool support to software designers?

– What are typical strategies of design dialogues? Are there some strategies which
are more often seen in successful design dialogues? One way of capturing good
design dialogues may be through a refinement of the notion of expectations that
we have introduced in Sect. 4.3: These may be able to model the way experienced
designers work. When we find that expectations are frequently not valid in a design
dialogue, this may then be a sign of a less experienced designer and there may be
ways in which support can be derived from this observation.

Similarly, we believe that design dialogues are a novel form of dialogue, not previ-
ously discussed in the literature on agent dialogues. The focus here is less on bringing
together knowledge distributed over a set of agents nor on deciding on a particular
course of action. Instead, design dialogues aim for a balance between agreeing on the
overall goals and values as well as actions towards a set of new circumstances (the
implementation), all of which are up for discussion. Interestingly, the specific actions
seem of least interest in the software-design dialogues as they are implied by the imple-
mentation details chosen.

References

1. Finkelstein, A.: Modeling the software process: “not waving but drowning”: Representation
schemes for modelling software development (panel session). In: Proc. 11th Int’l Conf. on
Software Engineering (ICSE’89), New York, NY, USA, ACM (1989) 402–404

2. Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: Proceedings of the
Tenth International Conference on Autonomous Agents and Multi-Agent Systems. (2011)

3. Hitchcock, D., McBurney, P., Parsons, S.: A framework for deliberation dialogues. In: 4th
Biennial Conf. of the Ontario Society for the Study of Argumentation. (2001)

4. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., Sonenberg, E.:
Argumentation-based negotiation. Knowledge Engineering Review 18(4) (2003) 343–375

5. Atkinson, K., Girle, R., McBurney, P., Parsons, S.: Command dialogues. In Rahwan, I.,
Moraitis, P., eds.: Proceedings of the Fifth International Workshop on Argumentation in
Multi-Agent Systems (ArgMAS 2008). (2008) 9–23

6. Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of practical
argument. Synthese 152(2) (2006) 157–206

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence 77 (1995) 321–
357

8. Mangano, N., van der Hoek, A.: The design and evaluation of a tool to support software
designers at the whiteboard. Automated Software Engineering 19(4) (2012) 381–421

9. McDonnell, J.: Accommodating disagreement: A study of effective design collaboration.
Design Studies 33(1) (2012) 44–63

10. Finkelstein, A., Fuks, H.: Multiparty specification. SIGSOFT Softw. Eng. Notes 14(3) (April
1989) 185–195

11. MacKenzie, J.D.: Question-begging in non-cumulative systems. Journal of Philosophical
Logic 8 (1979) 117–133

12. Petre, M., van der Hoek, A., Baker, A.: Editorial. Design Studies: Special Issue Studying
Professional Software Design 31(6) (2010) 533–544

13. Baker, A., van der Hoek, A., Ossher, H., Petre, M.: Guest editors’ introduction: Studying
professional software design. IEEE Software 29(1) (2012) 28–33

14. Christiaans, H., Almendra, R.A.: Accessing decision-making in software design. Design
Studies: Special Issue Studying Professional Software Design 31(6) (2010) 641–662

15. Tang, A., Aleti, A., Burge, J., van Vliet, H.: What makes software design effective? Design
Studies 31(6) (2010) 614–640 Special Issue Studying Professional Software Design.

16. Baker, A., van der Hoek, A.: Ideas, subjects, and cycles as lenses for understanding the soft-
ware design process. Design Studies: Special Issue Studying Professional Software Design
31(6) (2010) 590–613

17. Dong, A.: The Language of Design: Theory and Computation. Springer, Berlin, Germany
(2008)

18. Austin, J.L.: How To Do Things with Words. Oxford University Press, Oxford, UK (1962)
(Originally delivered as the William James Lectures at Harvard University in 1955.).

19. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In Rahwan, I., Simari,
G., eds.: Argumentation in Artificial Intelligence. Springer, Berlin, Germany (2009) 261–280

20. McBurney, P., Hitchcock, D., Parsons, S.: The eightfold way of deliberation dialogue. Inter-
national Journal of Intelligent Systems 22(1) (2007) 95–132

21. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoning as presumptive argumentation using
action based alternating transition systems. Artificial Intelligence 171(10–15) (2007) 855–
874

22. Medellin-Gasque, R., Atkinson, K., Bench-Capon, T., McBurney, P.: Strategies for question
selection in argumentation about plans. Argument and Computation (2013) In press.

