Toward a model for handling noise in human-robot communication

Elizabeth I. Sklar and Elizabeth Black

Department of Informatics, King’s College London, UK
{elizabeth.sklar,elizabeth.black}@kcl.ac.uk

Abstract. Human-robot interaction necessarily involves some means for the parties to communicate with each other. Whereas agent-to-agent communication is typically facilitated through electronic messaging and an agreed-upon language, communicating with humans introduces sources of noise that can disrupt the interaction in multiple ways. Consider that a human has an idea in her head, which she wishes to communicate to someone else. She must first encode this idea using some kind of language, and then transmit it. Does the recipient acquire the complete message and understand the meaning that was intended to be conveyed? The work presented here extends a theoretical model of computational argumentation designed to support human-robot interaction by incorporating a methodology for handling noise in communication. A running example illustrates the depth and complexity of the noise issue, and serves to demonstrate the potential of the proposed methodology.

1 Introduction

Consider the following scenario. Rosie is a nurse’s aide robot tasked with looking after a patient, Hubert. Rosie evaluates the following rule to determine an action:

\[
\text{if } \text{Hubert needs to take his medication at 10am. (} b_1 \text{)} \\
\text{and } \text{It is now 10.05am. (} b_2 \text{)} \\
\text{and } \text{Hubert has not taken his medication yet. (} b_3 \text{)} \\
\text{then Rosie will give Hubert his medication. (} c \text{)}
\]

Using computational argumentation\(^1\) [31], we can express this rule as:

\[\{b_1, b_2, b_3\} \rightarrow c\]

where \(c\) is called the conclusion for the argument \((S, c)\), and \(S = \{b_1, b_2, b_3\}\) is called the support for the conclusion. In classical argumentation, given an argument \((S, c)\) where \(S = \{b_1, \ldots, b_n\}\), if we believe that each of the elements of the support \(b_1, \ldots, b_n\) is true, then we have reason to believe that the conclusion \(c\) is also true. But what if we are unsure about the verity of a given proposition? In

\(^1\) In the literature, computational argumentation may also be called logical argumentation or formal argumentation.
earlier work [34], Sklar & Azhar used the notation ?bi to represent the situation where we do not know whether a belief, bi, is true or false. If Rosie has not spoken with or observed Hubert, then she would not know whether he has taken his medication or not, and she would not be able to determine whether to take action c or not:

{b1, b2, ?b3} →?c

In general, the presence of any ?bi in Rosie’s set of beliefs is an indication that information should be gathered about bi, particularly if a decision hinges on knowing the verity of bi. In our example, Rosie believes that Hubert knows b3, whether he took his medication or not. Using the human-robot argumentation framework of [34], we represent the following:

\[
\begin{align*}
R.\Sigma & = \text{Rosie’s set of beliefs} \\
R.\Sigma \ni ?b_3 & = \text{Rosie’s lack of knowledge about b}_3 \\
R.\Gamma(H) & = \text{Rosie’s beliefs about Hubert’s beliefs} \\
R.\Gamma(H) \ni (b_1 \lor \neg b_3) & = \text{Rosie’s belief that Hubert has knowledge about b}_3
\end{align*}
\]

From these belief stores, we deduce that Rosie should initiate an information-seeking dialogue [38] to obtain knowledge of b3 from Hubert (Table 2, [34]). Following the protocol for an information-seeking dialogue (Figure 3b, [34]), Rosie will execute the first move in this argumentation-based dialogue game [20]:

R.question(b3)

to which Hubert, assuming he is following the rules of the dialogue game, will respond with one of:

\[
H.\text{assert}(b_3) \quad \text{or} \quad H.\text{assert}(\neg b_3) \quad \text{or} \quad H.\text{assert}(?b_3)
\]

And the rest of the dialogue game plays out, as detailed in [34].

This example illustrates a scenario where a human and robot work cooperatively, where the robot can be proactive and can guide the human’s actions [15]. Such robots must be able to justify their decisions and explain why particular actions are appropriate. In turn, humans must be able to challenge the robots’ decisions and justifications; and they must be able provide input into the robot’s decision-making process. It is critical that robots are able to take the initiative [6, 13], so that they can introduce new ideas or suggest new tasks or actions, without being prompted by a human. Computational argumentation is a well-studied theoretical methodology that can act as an effective, structured mechanism to allow humans and robots to offer input into one another’s reasoning [24] because it formally characterises both human [22] and logic-based reasoning [8].

However, today’s models of computational argumentation—like the one above which was developed to support human-robot interaction ([34]), as well as others which were developed to support agent-agent and human-agent interaction—make the assumption that the communication that occurs between the human

\[2\] We define truth for the ? operator as: \(T \land ? = ?, F \land ? = ?, \neg ? = (T \lor F)\)
and the robot is perfect: if $R$ transmits $b_i$, then $H$ receives and interprets $b_i$, with the meaning of $b_i$ just as $R$ intended to convey. But as we well know, in an implemented system deployed in the real world, communication is far from perfect. There may be errors in the way a message is encoded (translated from an abstract thought or idea into natural language), transmitted (sent and received along some communication channel) and decoded (translated from natural language and interpreted). Such errors will likely distort the meaning of the message, where perhaps the receiver misinterprets and thus understands something very different from what the sender intended.

Consider simulated robot environments. Here, a robot has perfect knowledge of its position (location) within its environment (typically represented as some kind of “grid” world). When the robot moves, it knows exactly where it started from and where it ends up. In contrast, in physical robot environments, the job of localisation\(^3\) is non-trivial due to noise in the robots’ vision or other sensor systems used to estimate a robot’s position. There may also be noise in the actuators, so that a motion model is required to estimate how far a robot moves as the result of an action. These kinds of errors due to noise compound over time. A number of probabilistic approaches have been explored for robot localisation, incorporating error models that attempt to characterise the sources of noise and improve the estimation of a robot’s position. Here, we attempt to do the same thing for human-robot communication, by characterising the possible sources of error and devising a methodology for incorporating that error, probabilistically, in the communication system. We liken simulated robot environments to agent-based environments—which is where argumentation has largely developed in recent years. In agent-based environments that employ argumentation, the communication of beliefs is assumed to be perfect: if sending agent $A_g_i$ utters $b$, then receiving agent $A_g_j$ hears and understands exactly $b$. But in physical robot environments and in environments where robots (and agents) interact with people, the world is a noisy place.

Returning to our example, we can ask a range of questions, such as: Did Hubert hear Rosie’s question correctly? Did Hubert understand Rosie’s question correctly? Did Hubert formulate his answer correctly? Did Rosie hear Hubert’s answer correctly? Did Rosie understand Hubert’s question correctly? This paper considers these issues surrounding noise in communication between a human and a robot. The model presented is theoretical and aims to extend the framework that was detailed in [34]—and implemented and evaluated in [1]—here incorporating a methodology for handling noise in human-robot communication. This extension has yet to be implemented, but the theory proposed here serves as a guideline for ongoing work (see Section 5). The remainder of this paper is organised as follows. Section 2 provides a precise definition of how our model considers noise in human-robot communication. Section 3 reviews background

\(^3\) Localisation in robotics refers to the task of determining where the robot is in its environment; for example, this might be represented as an $(x, y)$ coordinate in a 2-dimensional discretised world or as $(x \pm \epsilon_x, y \pm \epsilon_y)$, where $(\epsilon_x, \epsilon_y)$ represents some level of uncertainty in the robot’s position.
on computational argumentation and argumentation-based dialogue, respectively, within the context of human-robot interaction. Section 4 describes our methodology for handling noise in human-robot communication. Finally, we close with a summary and outline ongoing and future work.

2 Communication and Noise

Typically, interaction between humans and robots is predicated on some form of intentional communication—a means for participants to send messages to each other. There are many different modes of communication, and we describe a taxonomy of properties that distinguishes between modes, summarised in Table 1. Messages in human-robot interaction may be transmitted in open ways, such as broadcast, where the recipients may be any other parties within range. Messages can also be transmitted in restricted ways, such as directed to specific agents, using peer-to-peer mechanisms, or particular groups of agents, using mechanisms like subscription-based forums. The medium for communication may be written (e.g., a document or an image), oral (e.g., speech) and/or gestural (e.g., hand signals). The means of transmission may be ambient (e.g., speech, gestures), physical (e.g., paper) or electronic (e.g., MP3, TXT or PDF file). Participants in the dialogue may be located in the same physical space (co-located) or not (remote). Thus, a particular communication mode can be described as a tuple:

\[ \langle \text{recipients}, \text{medium}, \text{transmission}, \text{locations} \rangle \]

for example, sending email to a colleague in another office is:

\[ \langle \text{peer-to-peer}, \text{written}, \text{electronic}, \text{remote} \rangle \]

<table>
<thead>
<tr>
<th>recipients</th>
<th>medium</th>
<th>transmission</th>
<th>locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>peer-to-peer ((n = 1))</td>
<td>oral (speech)</td>
<td>ambient</td>
<td>co-located (shared)</td>
</tr>
<tr>
<td>forum ((n &gt; 1))</td>
<td>gestural (signal)</td>
<td>physical</td>
<td>remote (not shared)</td>
</tr>
<tr>
<td>broadcast ((n &gt; 1))</td>
<td>written (document)</td>
<td>electronic</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Properties of communication modes. Categories are listed in columns, and possible values for each property category are listed in rows within each column.

The long-term aim for human-robot communication is to employ natural language, though most applications today use scripts and/or some type of constrained vocabulary and message format (e.g., controlled or simplified English [3, 9, 17, 18, 26, 30]). The issues we identify in this paper focus on abstracted forms of message content. We do not model specific aspects of natural language or non-verbal forms of communication, such as gestures, facial expressions and body language (though others in the HRI and Virtual Agents communities do look at
these aspects). Instead, we consider communication as the transmission of meaning from one agent to another (human or robot). Thus, in our abstract model, the notion of mis-communication, errors or noise in communication, could be caused by poor choice of vocabulary, misleading hand signals, static-laden audio channels, etc. Our model generalises to cover any of the above.

2.1 Noise

Our focus is on incorporating in our model multiple forms of noise that may occur in human-robot communication. Figure 1 illustrates possible sources of noise in a 3-step communication process in which agent \( A_g_i \) sends a message to agent \( A_g_j \) about belief \( b \): (1) \( A_g_i, \text{encode}(b) \); (2) \( A_g_i, \text{transmit}(A_g_j, b) \); and (3) \( A_g_j, \text{decode}(b) \). The first step refers to the process by which the sending agent, the “speaker”, translates her belief into a language for message transmission: there may be errors in the way this encoding occurs (e.g., poor choice of vocabulary). The second step refers to the transmission of the message across a communication medium. The third step refers to the recipient decoding meaning from the message that was received.

Noise in message transmission (step ②) depends on the communication mode. For example, when communicating via physical medium in the same location, i.e., ⟨ forum, oral, physical, co-located ⟩, noise in the message transmission is affected by distance between participants, ambient noise in the room and whether individuals suffer from hearing loss.

Noise in message interpretation (steps ① and ③) is always possible and may be caused by the speaker’s inaccurate model of language or of the intended receiver’s language abilities, which can be manifest in differences in the ontologies of the speaker and a receiver. In the case that the speaker or receiver is a robot, noise may be caused by the robot’s natural language processing or speech generation capabilities. Noise in message interpretation is less likely when the message format employed is more constrained.

2.2 Modelling noise probabilistically

Given the three possible sources of noise outlined above, we consider the possibility of incremental changes to a belief, \( b \), as it makes its way from the sender’s
mind to the receiver (see Figure 1):

\[
\begin{align*}
\text{encode}(b) & \Rightarrow b' = b + \epsilon \\
\text{transmit}(b') & \Rightarrow b'' = b' + \sigma \\
\text{decode}(b'') & \Rightarrow b''' = b'' + \delta
\end{align*}
\]

where \( \epsilon \) is the encoding error; \( \sigma \) is the transmission error; and \( \delta \) is the decoding error. It is useful to represent each of these possible sources of error separately because, as described above, there are different reasons for error in each case.

We model the probability that error occurs in each case (i.e., \( Pr(\epsilon) \) is the probability that there is an encoding error, etc.). These are independent probabilities because the presence of one type of error does not cause another type of error\(^4\) (i.e., an encoding error does not cause a transmission error, etc.).

If there is an error in encoding \( (b') \), it is likely that the decoded message \( (b'') \) will not match the original \( (b) \); but the cause of that error will originate with the encoding process, not the decoding process. This model allows that there could also be additional decoding errors; but the occurrence of any error specific to the decoding process is not conditional on a previous error. This reasoning applies to all three types of error.

For example, suppose that there is a 90% probability of error in transmission, but only 10% probability of error in each of the remaining three steps. Thus we would have: \( Pr(\epsilon) = Pr(\delta) = 0.10 \) and \( Pr(\sigma) = 0.9 \). To determine the probability that \( b''' \) differs from \( b \), we would compute the probability of no error, as follows:

\[
Pr(b = b'') = (1 - Pr(\epsilon)) \times (1 - Pr(\sigma)) \times (1 - Pr(\delta)) \quad (1)
\]

Working this out for our example, we have the probability that there is no error:

\[
Pr(b = b'') = (1 - 0.1) \times (1 - 0.9) \times (1 - 0.1) = 0.081
\]

and the probability that there is error:

\[
Pr(b \neq b'') = 1 - Pr(b = b'') = 0.919
\]

Of course, this is high because the probability of transmission error is high (90%).

Now that we have a model for representing the different types of error and how that error propagates when a message is communicated, we move on to describe how this model is used to extend the argumentation-based framework for human-robot interaction. We employ computational argumentation and argumentation-based dialogue because these are well-studied techniques that provide a solid foundation for reasoning and for shared decision making. The

\(^4\) Of course, the different types of errors might be correlated; but causation and correlation are two different things, and we use independent probabilities here because there is no causation relationship between types of communication errors.
advantage of computational argumentation over other methods of negotiation is
that argumentation defines a verifiable structure for associating evidence with
conclusions. Thus argumentation is a natural methodology to select for interaction
with humans, because humans will often ask “why” a decision is taken; and a robot that makes decisions using argumentation will easily be able to provide
the evidence that supports its decisions.

3 Argumentation-based Dialogue

Much of the existing work on argumentation-based dialogue is classified according
to Walton and Krabbe’s influential two-party dialogue typology [38], which
categorises dialogue types according to an initial state and the dialogue goals of the
participants. We detail three types of dialogue here\(^5\): information-seeking [38],
where one agent asks a question that it believes another agent knows the answer
to; persuasion [29], where one agent tries to alter the beliefs of another agent;
and inquiry [19], where two agents collaboratively seek the answer to a question
that neither knows the answer to. Following [34], we apply these models to human-robot dialogue. In this section, we begin by explaining our terminology
and reviewing some key elements of computational argumentation and then delve
into aspects of noise and its potential impact on argumentation-based dialogue.

3.1 Computational Argumentation: Terminology

Computational argumentation is a well-studied form of reasoning that explicitly
identifies both the justifications for any claim that is made by a particular argument,
called its support, and any conflicts that exist between arguments [31, 2]. One can represent a set of arguments and the conflicts, or attacks, between them
as a directed graph (referred to as an argumentation framework); such a graph
can then be evaluated according to one of a range of argumentation semantics, in
order to determine which arguments it is coherent to accept [8]. These semantics
are based on the intuitive principles that it is not rational to accept any two
arguments that are in conflict with each other, and that an argument which is
attacked can only be accepted if all of its attacking arguments are themselves
attacked by an accepted argument. Argumentation thus provides an intuitive
mechanism for dealing with inconsistent, uncertain and incomplete knowledge,
and, through structured argument dialogues, supports intelligent agents in reaching
agreements, making decisions and resolving conflicts of opinion [24].

A robot maintains a (possibly inconsistent) set of beliefs, \(R.\Sigma\), which is a set of \(\text{uff}\) of some logical language \(\mathcal{L}\). We assume that \(\mathcal{L}\) is sufficiently expressive
to represent intentions to perform actions, as well as beliefs about the state of the
world. The robot also maintains a model of what it believes are the beliefs of others with whom it interacts. We use the notation of [33] to express this
notion: \(R.\Gamma’(H)\) represents the robot’s beliefs about the human’s beliefs. Note

\(^5\) Our model could also be applied to other dialogue types from the literature.
that we have built our model from the robot’s perspective (the entity that we can control) and do not attempt to model the human’s beliefs explicitly (i.e., \(H.\Sigma\) or \(H.\Gamma(R)\))\(^6\). Following [28], the robot’s commitment store (CS) contains locutions uttered in dialogues with the human (coming from either participant), represented as \(R.CS(H) \subseteq L\). As in [34], we view an agent’s commitment store, \(Ag.CS\), as containing the agent’s public knowledge, since it contains information that is shared with other agents through the dialogue (like a chat log).

We assume that agents use an argumentation formalism and semantics to determine justified claims from their beliefs:

\[
\text{justified}(\Sigma) = \{ b \in L \mid \text{acceptable}(b, \Sigma) \}
\]

meaning that \(b\) is acceptable given \(\Sigma\), according to the chosen argumentation formalism and semantics. We make no prescription as to which formalism and semantics are used, asserting only that the set of justified claims is consistent. There are many formalisms and associated acceptability semantics that may be used. For example, \(\Sigma \subseteq L\) may represent an ASPIC+ knowledge base [23] and we may specify that \(b\) is acceptable if and only if \(b\) is the claim of an admissible argument from the Dung-style argument framework [8] constructed from \(\Sigma\) and a particular ASPIC+ argumentation system.

### 3.2 Dialogue: Protocols and Axiomatic Semantics

Argumentation-based dialogues are typically specified in terms of protocols, establishing pre-conditions (initial state) and post-conditions (dialogue goals), and axiomatic semantics [21]: the moves that can be made and the rules that determine when moves can be made and what effect making a move has on the dialogical commitments of the participants. Table 2 shows the protocols for the three dialogue types described in [35, 36]\(^7\). Once the pre-conditions have been met for a particular type of dialogue, then the participant initiating the dialogue can open with a move as prescribed by the axiomatic semantics defined for that dialogue. For example, a persuasion dialogue opens with an assert move uttered by the participant who initiates the dialogue. The hearer can then either accept the belief that was asserted, challenge the belief, or assert the opposite belief (i.e., assert\((\neg b)\) in response to assert\((b)\)). Table 3 illustrates two sample moves.

---

\(^{6}\) This is because we have no way of knowing exactly what the human is really thinking.

\(^{7}\) Note that our formal notation differs from [35, 36]: our \(R.\Sigma\) is equivalent to their \(\Delta_R\) and our \(R.\Gamma(H)\) is equivalent to their \(\Gamma_R(H)\).
employing the axiomatic semantics outlined in adapted as if executed by Rosie (assert) and Hubert (accept). For full details on the protocols and axiomatic semantics for the three dialogue types listed in Table 2, the reader is referred to [34]; and for additional dialogue types to [35, 36].

4 An Argumentation-based Communication Model that incorporates Noise

Our aim is to represent the impact of noise from the communication on the interactions between the human and the robot. For our model, we have identified three key aspects of the process of using argumentation-based dialogue for human-robot interaction where noise will come into play: (1) belief maintenance—where the robot maintains its sets of beliefs during and after a dialogue; (2) dialogue choices—where the robot decides whether to initiate a dialogue and which moves to select during a dialogue; and (3) argument acceptability—where the robot determines the justified claims for a set of arguments. We describe each in turn, below.

4.1 Belief maintenance

As described in the previous section, we represent the robot’s beliefs in multiple partitions: $R.\Sigma$ contains the robot’s private beliefs about itself, others and the world; $R.\Gamma(H)$ contains the robot’s beliefs about what the human believes; $R.CS$ contains a record of the utterances made by the robot during their dialogue; and $H.CS$ contains a record of the human’s utterances. These belief structures are maintained using different sets of rules for each partition, as described below.

**R.CS and H.CS.** The commitment stores (or chat log), $R.CS$ and $H.CS$, contain a record of the locutions that have been issued by both participants in the dialogue. Every time an utterance is made, the commitment store is incremented to contain this new statement; thus the commitment store is updated during a dialogue. The commitment store encapsulates the messages that are transmitted, after they are encoded. For example, if the robot believes $b$, then $b \in R.\Sigma$. 

---

<table>
<thead>
<tr>
<th>move</th>
<th>pre-conditions</th>
<th>post-conditions</th>
</tr>
</thead>
</table>
| $R.\text{assert}(b)$ | 1. $b \in R.\Sigma$
2. $(S,b) \in A(R.\Sigma)$
3. $b \notin R.\Gamma(H)$ | 1. $R.CS \leftarrow \text{assert}(b)$ |
| $H.\text{accept}(b)$ (terminates dialogue) | 1. $b \notin R.\Gamma(H)$
2. $b \in R.CS$
3. $b \in R.\Sigma$
4. $(S,b) \in A(R.\Sigma)$ | 1. $H.CS \leftarrow \text{accept}(b)$
2. $R.\Gamma(H) \leftarrow \{b\}$
3. $A(R.\Gamma(H)) \leftarrow \{(S,b)\}$ |

Table 3. Example dialogue moves. The notation $(S,b) \in A(R.\Sigma)$ means that the agent $R$’s knowledge base contains an argument with support $S$ and conclusion $b$. 


When $R$ transmits a message about $b$, incorporating the encoding error, then $R.CS \leftarrow b' (= b + \epsilon)$.

$R.\Gamma(H)$. Because we do not model the human’s beliefs explicitly (i.e., $H.\Sigma$), we use $R.\Gamma(H)$ as a proxy for the human’s beliefs—i.e., what the robot believes the human believes. We carry the same logic (above) to the human’s commitment store. If the robot hears $x$ from the human, then we have $H.CS \leftarrow x$. Our model of noise assumes that $x$ is an encoded version of the belief stored in $H.\Sigma$, without any encoding noise, i.e., $x - \epsilon$. Using notation consistent with above, this means that we have: $b' \leftarrow H.CS$ because $b \in R.\Gamma(H)$, where $b = b' - \epsilon$.

$R.\Sigma$. The robot’s private beliefs are only updated after a dialogue has ended. Depending on the argumentation formalism and semantics in use, different rules apply for maintaining this belief partition. The main assertion here is that the robot maintains a set of consistent justified claims. This means that the robot cannot believe $b$ and $\neg b$ at the same time, nor can it believe $b$ and $?b$ at the same time, nor $\neg b$ and $?b$. This is where the noise factor adds a complication. For example, what is the relationship between $b$ and $b''''$? The update methodology first estimates $\Delta b = b - b''''$. We set a threshold, $\mathcal{T}$, such that if $\Delta b < \mathcal{T}$, then $b$ is close enough to $b''''$ that they are considered the same. Thus:

if $(b \in R.\Sigma) \land (\Delta b \geq \mathcal{T})$ : $R.\Sigma \leftarrow \{b''''\}$
else : $R.\Sigma$ does not change

Although, by the definition of our noise model, we do not know what $b$ is when we have received and decoded a transmission as $b''''$, we can estimate $b$ using the probabilistic model described in Section 2.2 (obviously assuming we know the probabilities of each of type of error, $\epsilon$, $\sigma$ and $\delta^8$).

### 4.2 Dialogue choices

The decisions about which dialogue to initiate and which moves to make during a dialogue are based on the evaluation of pre-conditions, outlined in Section 3.2. As shown in Table 2, the pre-conditions are based on evaluating the membership of $b$ in $R.\Sigma$ and $R.\Gamma(H)$. Here we adapt the rules expressed in Equation 2.

We compute the nearest neighbours of $b$ in $R.\Sigma$ and $R.\Gamma(H)$: $\text{nn}(b, R.\Sigma)$ and $\text{nn}(b, R.\Gamma(H))$, respectively. If the distance between $b$ and each nearest neighbour is less than the threshold $\mathcal{T}$, then we consider that $b$ belongs to each set. Assuming that beliefs are either quantitative or qualitative, we can borrow any of a number of sophisticated techniques from data mining and text mining to compute the distance between beliefs, using scoring mechanisms that attempt to quantify similarity between qualitative values. Thus we modify the rules expressed in Table 2 accordingly. The results are shown in Table 4.

For deciding which moves to select during a dialogue, the same concept applies. We leave the extrapolation of the specifics, combining this thresholding

---

8 These values can be learned, but describing the steps for doing so is beyond the scope of this paper.
if (nn(b, R.Σ) < T) ∧ (nn(b, R.Γ(H)) < T) : agreement (no dialogue)
if (nn(b, R.Σ) ≥ T) ∧ (nn(b, R.Γ(H)) < T) : information seeking
if (nn(b, R.Σ) < T) ∧ (nn(b, R.Γ(H)) ≥ T) : persuasion
if (nn(b, R.Σ) ≥ T) ∧ (nn(b, R.Γ(H)) ≥ T) : inquiry

Table 4. Dialogue selection, using nearest neighbours

concept with axiomatic semantics from prior work (as cited in Section 3.2, to
the details required for implementation.

4.3 Argument acceptability

The third aspect of our model is the consideration of the acceptability of argu-
ments within the context of noise. There is a growing literature on the notion of
probabilistic argumentation, and here we consider the equation-based approach
of [10]. This method adapts the labelling approach of [5], whereby arguments
are assigned labels as follows: out is for arguments that have at least one at-
tacker; in is for arguments where all attackers are out; and und(ecided) is for
arguments that have no attackers that are in and at least one attacker that is
und. As outlined in [10], the probabilistic interpretation of the labels equates
to: 0 for arguments that are labelled out, 1 for arguments that are labelled in,
and a value between 0 and 1 for arguments that are labelled und.

Thus, using the probabilistic annotation of beliefs, as outlined in Section 2.2,
we can evaluate a label for each argument. Then we employ the above method
to justify claims and determine the acceptability of an argument, given the
framework of multiple arguments.

5 Summary

A wide range of approaches have addressed the significant challenges in human-
robot communication [11, 12]. Prior work where robots were deployed as re-
ceptionists [16], museum guides [37] and classroom tutors [7] largely relied on
scripted dialogues to enable human-robot communication. However, a scripted
dialogue model is not flexible or scalable for most situations where humans and
robots work together to achieve a common goal. Thus the suggestion to employ
computational argumentation-based dialogue as a means to support more flexible
interaction is warranted.

Here, we have introduced a novel model for incorporating noise in argumenta-
tion-based communication between humans and robots. This model builds on
our prior work devising argumentation-based dialogue to support human-robot
interaction and investigation of different types of dialogue to support collabora-
tive decision making. Future work will consider this model in the context of
environments with multiple robots and humans \cite{4,27,25} and will extend our current model of the “other” to incorporate mental state \cite{14} and personality type \cite{27,32}. Our next steps with this work involve implementation and experimental evaluation of our model with a deployed robot receptionist, situated in a noisy lobby.

References