
Exact Lexicographic Scheduling and Approximate Rescheduling

Dimitrios Letsiosa,∗ , Miten Mistryb,∗∗ , Ruth Misenerb,∗∗

aDepartment of Informatics; King’s College London; United Kingdom
bDepartment of Computing; Imperial College London; South Kensington SW7 2AZ; UK

Abstract

In industrial resource allocation problems, an initial planning stage may solve a

nominal problem instance and a subsequent recovery stage may intervene to repair

inefficiencies and infeasibilities due to uncertainty, e.g. machine failures and job

processing time variations. In this context, we investigate the minimum makespan

scheduling problem, a.k.a. P ||Cmax, under uncertainty. We propose a two-stage

robust scheduling approach where first-stage decisions are computed with exact

lexicographic scheduling and second-stage decisions are derived using approximate

rescheduling. We explore recovery strategies accounting for planning decisions

and constrained by limited permitted deviations from the original schedule. Our

approach is substantiated analytically, with a price of robustness characterization

parameterized by the degree of uncertainty, and numerically. This analysis is based

on optimal substructure imposed by lexicographic optimality. Thus, lexicographic

optimization enables more efficient rescheduling. Further, we revisit state-of-the-

art exact lexicographic optimization methods and propose a lexicographic branch-

and-bound algorithm whose performance is validated computationally.

Keywords: Scheduling, Lexicographic Optimization, Exact MILP Methods,

Robust Optimization, Price of Robustness

1. Introduction

Motivated by industrial resource allocation problems, we consider scheduling

under uncertainty, e.g. a machine may unexpectedly fail, a client may suddenly

∗dimitrios.letsios@kcl.ac.uk
∗∗{miten.mistry11, r.misener}@imperial.ac.uk; Tel: +44 (0) 20759 48315

Preprint submitted to Elsevier August 28, 2020

cancel a job, or jobs are completed earlier than expected. We focus on robust

scheduling, i.e. hedge against worst-case realizations of imprecise parameter val-

ues, such as job processing times and number of available machines, lying in well-

defined uncertainty sets [5, 8, 26, 56]. Because static robust optimization may

produce conservative solutions compared to ones obtained with perfect knowledge

[54], we investigate two-stage robust optimization with recovery [6, 9, 10, 31, 36].

As shown in Figure 1, (i) an initial planning stage computes a solution with nominal

parameter values and (ii) a subsequent recovery stage modifies the solution once

the uncertainty is realized, i.e. after the final parameter values become known.

We elaborate on the fundamental makespan scheduling problem, a.k.a. P ||Cmax

[15, 27, 35]. With perfect knowledge, an instance I of the problem posits a set J
of jobs, each one associated with processing time pj , a set M of parallel identical

machines and the objective is to construct a non-preemptive schedule S of minimum

makespan Cmax = maxi∈M{Ci}, i.e. maximum machine completion time. In a two-

stage setting under uncertainty, the planning stage solves a nominal instance Iinit

producing a solution Sinit and the recovery stage transforms schedule Sinit to a

new schedule Snew for Inew by repairing inefficiencies and infeasibilities, e.g. due

to job processing time variations and machine failures, as illustrated in Figure 2.

In the extreme case, the recovery stage may solve Inew from scratch without ac-

counting for the first-stage decisions in Sinit. This level of flexibility may sacrifice

benefits due to planning and can be resource-consuming. For example, signifi-

cantly modifying machine schedules may incur substantial communication costs in

distributed computing [57]. To mitigate this overhead, we only allow a bounded

number of modifications to Sinit. Technically, we distinguish between binding and

free optimization decisions. Binding decisions are variable evaluations determined

from the initial solution after uncertainty realization. Free decisions are variable

evaluations that cannot be determined from the initial solution, but are essential

to ensure feasibility. For instance, scheduling a job with a modified processing

time is a binding decision because the planning stage already specifies an assign-

ment. Assigning a new job after uncertainty realization is a free decision because

no assignment is given in the planning stage. Further, we study rescheduling with

limited binding decision modifications and thereby stay close to the initial solution.

2

time
Planning Phase

Stage 1

Uncertainty Realization

Disturbances

Recovery Phase

Stage 2

Figure 1: Recoverable robustness setting

Input Iinit

Efficient schedule Sinit for input Iinit

Perturbed input Inew

Recovery
algorithm

Efficient schedule Srec
for input Inew

Figure 2: Makespan recovery problem

By allowing few modifications, first-stage decisions remain critical.

A two-stage robust optimization method should specify (i) a way of producing

the initial solution Sinit, and (ii) a recovery strategy for restoring Sinit and deriving

the recovered solution Srec, after uncertainty realization. Analyzing a two-stage

robust optimization method requires defining (i) the uncertainty set of the problem,

and (ii) the investigated performance guarantee.

Uncertainty Set. The uncertainty set of a robust optimization problem specifies

a range of possible values for the uncertain parameters [33]. We consider a gen-

eralization of well-known Γ-uncertainty sets, where the final parameter values p̂j

vary in an interval [pLj , p
U
j] and at most k parameters can deviate from their nom-

inal values [11]. Here, the uncertainty set is defined by a pair (k, f), where k is

the maximum number of unstable parameters with respect to perturbation factor

f > 1. A parameter pj > 0 is stable if pj/f ≤ p̂j ≤ fpj and unstable, otherwise.

Performance Guarantee. Theoretical performance guarantees are useful for de-

termining when robust optimization methods are efficient [8, 26]. Denote by

C(Inew) the cost, e.g. makespan, of a solution obtained by some robust optimiza-

tion method and by C∗(Inew) the cost of an optimal solution obtained with perfect

knowledge [40]. We consider the so-called price of robustness which is defined

as the ratio between the two and seek a tight, worst-case performance guarantee

ρ = maxInew∈I(C(Inew)/C∗(Inew)) within the set I of all problem instances [12].

3

Related Work. Prior literature shows that scheduling problems become computa-

tionally harder after incorporating uncertainty [28, 29, 56]. Kasperski & Zielinski

[32] survey techniques and negative results for robust scheduling, including P ||Cmax

with uncertain job processing times. Typically, robustness is achieved by optimiz-

ing the worst-case (i) cost or (ii) distance from the achievable optimum with perfect

knowledge, over all scenarios in the uncertainty set. These robust counterparts of

standard deterministic optimization problems are often referred to as minmax and

minmax regret, respectively [33].

With perfect knowledge, P ||Cmax is strongly NP-hard, but admits greedy

constant-factor approximation algorithms and polynomial-time approximation schemes

(PTASs) [15, 35]. When the number of machines is constant, Pm||Cmax is weakly

NP-hard and has fully polynomial-time approximation schemes. With budgeted

uncertainty, where B bounds the deviation of the sum of processing times from

their nominal values, minmax P ||Cmax admits a PTAS when B is constant and a

3-approximation algorithm for arbitrary B [13].

To our knowledge, no prior work analyzes the price of robustness for P ||Cmax

under uncertainty. Determining the price of robustness for fundamental combina-

torial optimization problems has been repeatedly posed as an open question by

domain experts [8, 12, 26]. The current manuscript shows that such an analy-

sis provides useful structural properties and quantifies the effect of uncertainty in

robust solutions for P ||Cmax.

Lexicographic Optimization. LexOpt is at the core of our two-stage scheduling ap-

proach. LexOpt is a subclass of multiobjective optimization minimizing m objec-

tive functions F1, . . . , Fm : S → R+
0 , in decreasing priority order [21, 45]. In other

words, LexOpt optimizes the highest-rank objective F1, then the second most im-

portant objective F2, then the third F3, etc.:

lex min{F1(S), . . . , Fm(S) : S ∈ S}. (LexOpt)

There are indications that LexOpt is useful in optimization under uncertainty.

LexOpt maintains a good approximate schedule when jobs are added and deleted

dynamically [48, 53]. LexOpt is also useful for cryptographic systems against at-

tacks [58]. We consider the LexOpt scheduling problem lex min{C1(S), . . . , Cm(S) :

4

S ∈ S} of computing a schedule S with lexicographically minimal machine com-

pletion times and show that it enables more efficient two-stage robust scheduling.

That is, we identify robust scheduling as a new LexOpt application.

Apart from optimization under uncertainty, designing efficient LexOpt methods

is motivated by LexOpt applications: equitable allocation of a divisible resource

[25, 37], fairness [14], and exploiting opponent mistakes in game theory [42, 50].

Solution strategies include sequential, weighting, and highest-rank objective meth-

ods [16, 19, 21, 44, 45, 51, 52]. There is work characterizing the convex hull of

LexOpt problems [1, 30, 41]. Logic-based methods are also applicable [38].

Contributions and Paper Organization. Our main contribution is a two-stage ro-

bust scheduling approach for P ||Cmax under uncertainty, where first-stage deci-

sions are computed with mixed-integer linear programming and lexicographic opti-

mization, while second-stage decisions are derived using approximation algorithms.

Despite the relevant literature on two-stage robust optimization for various appli-

cations [6, 17, 18, 36], we are not aware of any work on cornerstone scheduling

problems, such as P ||Cmax, combined with a price of robustness characterization.

The manuscript proceeds as follows. Section 2 formally defines P ||Cmax, LexOpt

scheduling, and the considered perturbation types. Section 3 develops a branch-

and-bound algorithm for the LexOpt scheduling problem. Section 4 proposes a

recovery strategy and analyzes the performance of the overall two-stage approach

theoretically. Section 5 substantiates the branch-and-bound method with respect

to state-of-the-art LexOpt approaches adapted to LexOpt scheduling. Further,

Section 5 validates our two-stage method empirically. Section 6 concludes.

After proving that the makespan recovery problem is strongly NP-hard, at

least as hard as solving the problem with full input knowledge, we elaborate on

performance guarantees for two-stage P ||Cmax under uncertainty. Technically, we

investigate a basic recovery strategy that enforces all available binding decisions

and performs only essential actions to regain feasibility. On the negative side, every

recovered solution is a weak approximation if planning produces an arbitrary nom-

inal optimal solution. Specifically, every recovered solution attains an Ω(m) price

of robustness, even in the case of a single perturbation. On the positive side, we

obtain significantly better performance guarantees if the initial solution is LexOpt.

5

For a single perturbation, planning using LexOpt ensures a price of robustness

equal to 2. For multiple perturbations, the initial solution can be weakly reopti-

mizable with a high-degree of uncertainty. However, we show an asymptotically

tight O(f(1 + k
m−k)(f + k)(1 + δ

m)) price of robustness, where k is the number of

unstable jobs with respect to a perturbation factor f and δ/m is the fraction of

additional machines, after uncertainty realization. This result exploits our uncer-

tainty set structure. Therefore, when k, f and δ/m are constant, our approach

achieves an O(1) price of robustness.

The main paper includes the proof of Theorem 3 and part of the proofs for The-

orems 4-5, which bound the price of robustness of our two-stage robust scheduling

approach for P ||Cmax under uncertainty in the case of single and multiple pertur-

bations, respectively, by exploiting the optimal substructure imposed by LexOpt.

All remaining proofs are provided in the supplementary material.

2. Problem Definitions

This section defines the P ||Cmax problem (Section 2.1), the LexOpt scheduling

problem (Section 2.2), and describes the investigated perturbations (Section 2.3).

2.1. Makespan Scheduling Problem

An instance I of the makespan scheduling problem, a.k.a. P ||Cmax, is a pair

(m,J), where J = {J1, . . . , Jn} is a set of n jobs, with processing times p1, . . . , pn,

to be executed by a set M = {M1, . . . ,Mm} of m parallel identical machines. Job

Jj ∈ J must be processed by exactly one machine Mi ∈ M for pj units of time

non-preemptively, i.e. in a single continuous interval without interruptions. Each

machine processes at most one job per time. The objective is to minimize the

last machine completion time. Given a schedule S, let Cmax(S) and Ci(S) be the

makespan and the completion time of machine Mi ∈M, respectively, in S. In the

following mixed-integer linear programming (MILP) formulation, binary variable

xi,j is 1 if job Jj ∈ J is executed by machine Mi ∈M and 0, otherwise.

min
Cmax,Ci,xi,j

Cmax (1a)

Cmax ≥ Ci Mi ∈M (1b)

6

Ci =

n∑
j=1

xi,j · pj Mi ∈M (1c)

m∑
i=1

xi,j = 1 Jj ∈ J (1d)

xi,j ∈ {0, 1} Jj ∈ J ,Mi ∈M. (1e)

Expression (1a) minimizes makespan. Constraints (1b) enforce that Cmax = max1≤i≤m{Ci}.
Constraints (1c) ensure that a machine executes at most one job per time. Con-

straints (1d) impose that each job is assigned to exactly one machine.

2.2. LexOpt Scheduling Problem

The problem lex min{F1(S), . . . , Fm(S) : S ∈ S} minimizes m objective func-

tions F1, . . . , Fm : S → R+
0 over a set S of feasible solutions. The functions are

sorted in decreasing priority order, i.e. Fi is more important than Fi′ , for i < i′.

In a LexOpt solution S∗, F1(S∗) = v∗1 = min{F1(S) : S ∈ S} and Fi(S
∗) = v∗i =

min{Fi(S) : S ∈ S, F1(S) = v∗1, . . . , Fi−1(S) = v∗i−1}, for i = 2, . . . ,m.

Consider two solutions S and S′ to the above LexOpt problem. S and S′ are

lexicographically distinct if there is at least one q ∈ {1, . . . ,m} such that Fq(S) 6=
Fq(S

′). Further, S is lexicographically smaller than S′, i.e. S <lex S
′ or ~F (S) <lex

~F (S′), if (i) S and S′ are lexicographically distinct and (ii) Fq(S) < Fq(S
′), where q

is the smallest component in which they differ, i.e. q = min{i : Fi(S) 6= Fi(S
′), 1 ≤

i ≤ m}. S is lexicographically not greater than S′, i.e. S ≤lex S
′ or ~F (S) ≤lex

~F (S′),

if either S and S′ are lexicographically equal, i.e. not lexicographically distinct, or

S <lex S
′. The LexOpt problem lex min{F1(S), . . . , Fm(S) : S ∈ S} computes a

solution S∗ such that ~F (S∗) ≤lex
~F (S), for all S ∈ S.

An optimal solution S = (~x, ~C) to an instance I = (m,J) of the LexOpt

scheduling problem minimizes m objective functions F1, . . . , Fm lexicographically,

where Fq is the distinct q-th greatest machine completion time, for q = 1, . . . ,m.

Lemma 1 provides an ordering of the machine completion times in a LexOpt sched-

ule and states valid inequalities.

Lemma 1. In an optimal solution to the LexOpt scheduling problem:

1. Ci ≥ Ci+1, for i = 1, . . . ,m− 1,

7

2. i ·Ci+
[∑m

q=i+1Cq

]
≤
∑n

j=1 pj ≤
[∑i−1

q=1Cq

]
+(m−i+1) ·Ci, ∀ i = 1, . . . ,m.

Equations (2a) - (2g) formulate LexOpt scheduling using Lemma 1.

lex min
Ci,xi,j

C1, . . . , Cm (2a)

Ci ≥ Ci+1 Mi ∈M \ {Mm} (2b)

i−1∑
q=1

Cq + (m− i+ 1) · Ci ≥
n∑
j=1

pj Mi ∈M (2c)

i · Ci +
m∑

q=i+1

Cq ≤
n∑
j=1

pj Mi ∈M (2d)

Ci =
n∑
j=1

xi,j · pj Mi ∈M (2e)

m∑
i=1

xi,j = 1 Jj ∈ J (2f)

xi,j ∈ {0, 1} Jj ∈ J ,Mi ∈M. (2g)

2.3. Perturbations

A two-stage makespan scheduling problem is specified by an initial instance

Iinit = (m,J) and a perturbed instance Inew = (m̂, Ĵ) of P ||Cmax. LetM and M̂
be the set of machines in Iinit and Inew, respectively. We similarly define the sets J
and Ĵ , denoting by pj and p̂j the corresponding processing times in Iinit and Inew

for each job Jj ∈ J ∩Ĵ . With uncertainty realization, instance Iinit is transformed

to Inew. This manuscript investigates the two-stage makespan problem in the case

of (i) a single perturbation, and (ii) multiple perturbations. In the former case, the

effect of uncertainty realization is one of the following perturbations:

1. [Processing time reduction] The processing time pj of job Jj ∈ J is decreased

and becomes p̂j = pj/fj , for some fj > 1.

2. [Processing time augmentation] The processing time pj of job Jj ∈ J is

increased and becomes p̂j = fjpj , for some fj > 1.

3. [Job cancellation] Job Jj ∈ J is removed, i.e. Ĵ = J \ {Jj}.

4. [Job arrival] New job Jj /∈ J arrives, i.e. Ĵ = J ∪ {Jj}.

8

5. [Machine failure] Machine Mi ∈M fails, i.e. M̂ =M\ {Mi}.

6. [Machine activation] New machine Mi /∈M is added, i.e. M̂ =M∪ {Mi}.

These perturbations are frequently encountered in practice and investigated in the

literature [32]. In the case of multiple perturbations, Inew is obtained from Iinit

by applying a series of perturbations. Certain perturbations can be considered as

equivalent. Specifically, in some proofs: (i) cancelling job Jj ∈ J is identical to

reducing pj to zero, i.e. fj → ∞, (ii) failure of machine Mi ∈ M is equivalent to

new arrivals of the jobs in Ji, where Ji is the set of jobs assigned to machine Mi

in schedule Sinit, (iii) job arrivals are treated similarly to processing time augmen-

tations. Let fj be the perturbation factor of job Jj ∈ J . In our uncertainty set, f

is the (k + 1)-th greatest fj , k = |{Jj′ ∈ J : fj′ > f}| is the number of unstable

jobs and δ = max{m̂−m, 0} is the number of surplus machines after uncertainty

realization.

3. Exact LexOpt Branch-and-Bound Algorithm (Stage 1)

This section introduces a LexOpt branch-and-bound algorithm. The supple-

mentary material describes the sequential [19, 16], weighting [51, 52], and highest-

rank objective [44] methods adapted to LexOpt scheduling. The branch-and-bound

algorithm uses vectorial bounds to eliminate subtrees that cannot lexicographically

dominate the incumbent, i.e. the best solution found thus far, by extending ideas for

computing ideal points in multiobjective optimization [21]. In LexOpt scheduling,

we may derive vectorial lower and upper bounds by approximating a multiproces-

sor scheduling problem with rejections that generalizes P ||Cmax. So, we propose

packing-based algorithms for computing vectorial bounds. Next, we describe the

branch-and-bound algorithm, our bounding approach and show their correctness.

Definition 1 (Vectorial Bound). Suppose that ~C(S) = (C1(S), . . . , Cm(S)) is
the non-increasing vector of machine completion times in a feasible schedule S of
the LexOpt scheduling problem. Vector ~L = (L1, . . . , Lm) is a vectorial lower
bound of S if Li ≤ Ci(S), for each 1 ≤ i ≤ m. A vectorial upper bound
~U = (U1, . . . , Um) of S has Ui ≥ Ci(S), for each 1 ≤ i ≤ m.

9

3.1. Branch-and-Bound Description

Initially, we sort jobs in non-increasing processing times, i.e. p1 ≥ . . . ≥ pn. The

search space is a tree with n+1 levels. The root node appears at level 0. The leaves

are the set S of all possible mn possible schedules, i.e. job-to-machine assignments.

Each non-leaf node v at level ` ∈ {0, 1, . . . , n − 1} of the tree represents a fixed

assignment of jobs J1, . . . , J` to the m machines and jobs J`+1, . . . , Jn remain to

be assigned. In addition, node v has m children corresponding to every possible

assignment of job J`+1 to the m machines.

Denote by S(v) the set of all schedules in the subtree rooted at node v. The

branch-and-bound algorithm computes a vectorial lower bound ~L on the lexico-

graphically smallest schedule S∗ ∈ S(v) below node v. Moreover, the primal

heuristic applied in each node is longest processing time first (LPT) [27]. In each

schedule S obtained by LPT, the branch-and-bound algorithm reorders the ma-

chines so that C1(S) ≥ . . . ≥ Cm(S). Note that this lexicographic ordering may

not hold for the partial schedule of jobs J1, . . . , J` associated with node v.

Using the above components, the branch-and-bound algorithm traverses the

search tree via depth-first search. Stack Q stores the set of visited nodes that remain

to be explored. Variable I stores the incumbent, i.e. the current lexicographically

smallest solution. In every step, the algorithm picks the node u on top of Q and

explores its m children. At each v ∈ children(u), if LPT finds a solution S such

that ~C(S) <lex
~C(I), then I is updated. If v is not a leaf, Algorithm 1 computes

a vectorial lower bound ~L of the lexicographically best solution in S(v). When

~C(I) ≤lex
~L, the set S(v) does not contain any solution lexicographically better

than I and the subtree rooted at v is fathomed. Otherwise, v is pushed onto stack

Q. Upon termination, the incumbent is optimal because every other solution has

been rejected as not lexicographically smaller than the incumbent.

3.2. Vectorial Bound Computation

Next, we describe the computation of a vectorial lower bound ~L = (L1, . . . , Lm)

and a vectorial upper bound ~U = (U1, . . . , Um) at a node v in the `-th level of the

search tree. Correctness proofs are provided in the supplementary material. The

algorithm performs m iterations. In iteration i ∈ {1, . . . ,m}, it calculates a lower

bound Li (Algorithm 1) and an upper bound Ui (Algorithm 2) on the i-th machine

10

Algorithm 1 Computation of the i-th vectorial lower bound component

1: Select the job index min{h :
∑h

j=`+1 pj ≥
∑i−1

q=1(Uq − tq)}.
2: Compute the remaining load λ =

∑n
j=h+1 pj .

3: Set τ = maxi≤q≤m{tq}.
4: Return the maximum among:

• mini≤q≤m{tq}+ ph+1, and

• maxi≤q≤m{tq}+ max
{

1
m−i+1

(
λ−

∑m
q=i+1(τ − tq)

)
, 0
}

.

completion time using bounds U1, . . . , Ui−1 and L1, . . . , Li−1, respectively. Recall

that p1 ≥ . . . ≥ pn. W.l.o.g., each machine executes all jobs with index ≤ `

before any job with index > `. So, for each schedule in S(v), a unique vector

~t = (t1, . . . , tm) specifies the machine completion times by considering only jobs

J1, . . . , J` and ignoring the remaining ones. Further, no job Jj with `+ 1 ≤ j ≤ n
is executed before time tq on machine Mq, for 1 ≤ q ≤ m.

Vectorial lower bound component Li. This computation is equivalent to construct-

ing a pseudo-schedule S̃ where some jobs are scheduled fractionally, i.e. fragmented

across machines. Initially, Algorithm 1 fractionally assigns jobs J`+1, . . . , Jh to

machines M1, . . . ,Mi−1, where h is the smallest index such that
∑h

j=`+1 pj ≥∑i−1
q=1(Uq − tq). For each q = 1 . . . i − 1, machine Mq is assigned sufficiently large

job pieces so that its completion time is greater than or equal to Uq. Next, Algo-

rithm 1 fractionally assigns the remaining load λ =
∑n

j=h+1 pj of jobs Jh+1, . . . , Jn

to machines Mi, . . . ,Mm. This assignment minimizes the i-th greatest comple-

tion time in S̃. Assuming that pn+1 = 0, the value Li is the maximum among

mini≤q≤m{tq}+ph+1 and maxi≤q≤m{tq}+max
{

1
m−i+1

(
λ−

∑m
q=i+1(τ − tq)

)
, 0
}

,

where τ = maxi≤q≤m{tq}.

Lemma 2. Consider a node v in the `-th level of the search tree and a machine
index i ∈ {1, . . . ,m}. Algorithm 1 produces a value Li ≤ Ci(S) for each feasible
schedule S ∈ S(v) below v such that Cq(S) ≤ Uq, ∀ q = 1, . . . , i− 1.

Vectorial upper bound component Ui. Like Li, the computation of Ui can be inter-

preted as constructing a fractional pseudo-schedule S̃. Additionally, Algorithm 2

11

Algorithm 2 Computation of the i-th vectorial upper bound component

1: Compute the remaining load λ =
∑n

j=` pj −
∑i−1

q=1(Lq − tq).
2: Sort machines Mi, . . . ,Mm so that ti ≤ . . . ≤ tm.

3: Select the machine index min
{
µ : 1

µ−i+1

(∑µ
q=i tq + λ

)
≤ tµ+1, i ≤ µ ≤ m

}
.

4: Return the minimum among max
{

1
µ−i+1

(∑µ
q=i tq + λ

)
+ p`, tm

}
and Ci(I).

uses the incumbent I. Schedule S̃ combines the partial schedule for jobs J1, . . . , J`

at node v with a pseudo-schedule for the remaining jobs J`+1, . . . , Jn computed

by Algorithm 2. Initially, Algorithm 2 assigns a total load
∑i−1

q=1(Lq − tq) of the

smallest jobs to machines M1, . . . ,Mi−1 so that the completion time of Mq be-

comes exactly equal to Lq, for q = 1, . . . , i − 1. That is, a piece p̃h of job Jh and

jobs Jh+1, Jh+2, . . . , Jn are assigned fractionally to machines M1, . . . ,Mi−1 so that

p̃h +
∑n

j=h+1 pj =
∑i−1

q=1(Lq − tq). Next, Algorithm 2 assigns the remaining load

λ =
∑h−1

j=`+1 pj + (ph − p̃h) of jobs J`+1, . . . , Jh fractionally and uniformly to the

least loaded machines among Mi, . . . ,Mm as follows. Firstly, the partial completion

times are sorted so that ti ≤ . . . ≤ tm. This sorting occurs only for computing the

vectorial upper bound and does not modify any partial schedule of a node in the

search tree. Let µ be the minimum machine index such that (i) the remaining load

λ can be fractionally scheduled to machines Mi, . . . ,Mµ so that they end up with a

common completion time τ = 1
µ−i+1

(∑µ
q=i tq + λ

)
, and (ii) the partial completion

time tq of any other machine among Mµ+1, . . . ,Mm is at least τ , i.e. tµ+1 ≥ τ .

Then, Ui is set as the minimum among max{τ + p`, tm} and Ci(I).

Lemma 3. Consider a node v in the `-th level of the search tree and a machine
index i ∈ {1, . . . ,m}. Algorithm 2 produces a value Ui ≥ Ci(S) for each feasible
schedule S ∈ S(v) below v such that Cq(S) ≥ Lq, ∀ q = 1, . . . , i− 1.

Theorem 1 states the correctness of our branch-and-bound algorithm.

Theorem 1. The branch-and-bound algorithm computes a LexOpt solution.

4. Approximate Recovery Algorithm with Binding Decisions (Stage 2)

This section presents our recovery (reoptimization) strategy (Section 4.1) and

analyzes the price of robustness for our two-stage approach in the case of single

12

Algorithm 3 Recovery Strategy

1: Perform all binding decisions (job assignments) with respect to schedule Sinit.

2: Schedule free (unassigned) jobs using Longest Processing Time first (LPT).

(Section 4.2) and multiple (Section 4.3) perturbations.

4.1. Recovery Algorithm Description

A reoptimization strategy transforms the initial schedule Sinit to a new schedule

Snew for the perturbed instance Inew. Theorem 2 shows that optimally solving this

problem is already NP-hard.

Theorem 2. The makespan recovery problem is strongly NP-hard, even in the
case of a single perturbation.

To describe our recovery strategy, Definition 2 distinguishes between binding

and free optimization decisions. Binding decisions are job assignments in Sinit

which remain valid for the perturbed instance Inew. Free decisions are assignments

of new jobs or jobs originally assigned to machines which failed due to uncertainty.

Definition 2. Consider a makespan recovery problem instance (Iinit, Sinit, Inew)

with Iinit = (M,J) and Inew = (M̂, Ĵ).

• Binding decisions {xi,j : (xi,j(Sinit) = 1) ∧ (i ∈ M̂ ∩M) ∧ (j ∈ Ĵ ∩ J)}
are variable evaluations attainable from Sinit in the recovery process.

• Free decisions {xi,j : (j ∈ Ĵ) ∧ (@i′ ∈ M ∩ M̂ : xi′,j(Sinit) = 1)} are
variable evaluations that cannot be determined from Sinit but are needed to
recover feasibility.

Our recovery strategy (Algorithm 3) maintains all binding decisions and makes

free decisions using LPT [27]. Theoretically, enforcing the binding decisions ex-

ploits all relevant information in Sinit for solving the perturbed instance Inew, thus

quantifies the benefit of staying close to Sinit. Practically, modifying Sinit may

incur transformation costs and our reoptimization algorithm mitigates this over-

head. The supplementary material presents a more flexible recovery strategy with

a bounded number of binding decision modifications.

13

J1

J2 J3 J4 J5 J6 J7

M4

M3

M2

M1

(a) Weakly recoverable optimal Sinit.

J1

J2 J3

J4 J5

J6 J7M4

M3

M2

M1

(b) Efficiently recoverable LexOpt Sinit.

Figure 3: Illustration of the benefit obtained by LexOpt schedules.

4.2. Single Perturbation

This section analyzes our two-stage approach in the case of a single perturba-

tion. With an arbitrary optimal initial solution, Theorem 3 shows that the recovery

strategy results in a non-constant price of robustness. When the initial solution

is LexOpt, Theorem 4 provides a significantly better performance guarantee. Fig-

ure 3 illustrates a degenerate instance for deriving Theorem 3, highlighting the

significance of LexOpt for P ||Cmax under uncertainty.

Theorem 3. For the makespan recovery problem with a single perturbation, Al-
gorithm 3 achieves an Ω(m) price of robustness with an arbitrary optimal initial
schedule Sinit.

Proof:

Consider an instance Iinit with m machines and n + 1 jobs, where n = k ·m, for

some integer k ∈ Z+, p1 = np and pj = p, for j = 2, . . . , n+ 1. The schedule Sinit

that assigns job J1 to machine M1, jobs J2, . . . , Jn, Jn+1 to machine M2 and keeps

the remaining machines M3, . . . ,Mm idle, is optimal for Iinit. Suppose that Iinit

is perturbed because job J1 is cancelled and let Inew be the new instance (we may

alternatively consider a large reduction of processing time p1). Then, Algorithm

3 produces a schedule Srec with makespan Cmax(Srec) =
∑n

j=1 pj . However, an

optimal schedule Snew for Inew has makespan Cmax(Snew) = 1
m

∑n
j=1 pj . Figure 3

illustrates such two schedules, where Cmax(Srec)
Cmax(Snew) = Ω(m).

Before proving Theorem 4, we state Lemma 4 which relates the optimal makespan

of two instances with a different number of machines and set of jobs. Denote by

C∗max(m,J) the optimal makespan for instance (m,J). Lemma 4 highlights the

14

importance of a LexOpt schedule: consider a LexOpt schedule S∗ for (m,J) and

an arbitrary subsetM′ ⊆M of m− 1 machines, i.e.M′ =M\{M`}. Also, let J ′

be the subset of jobs assigned to the machines inM′ by S∗. Then, the subschedule

of S∗ on M′ is optimal for (m− 1,J ′).

Lemma 4. Consider a makespan problem instance (m,J) and let S be LexOpt
schedule. Given an arbitrary machine M` ∈M, denote by J ′ the subset of all jobs
assigned to the machines in M\ {M`} by S. Then, it holds that:

1. maxMi∈M\{M`}{Ci(S)} = C∗max(m− 1,J ′), and
2. C∗max(m− 1,J) ≤ 2 · C∗max(m,J).

Theorem 4. For the makespan recovery problem with a single perturbation, Algo-
rithm 3 achieves a tight price of robustness equal to 2, if Sinit is LexOpt.

Proof:

The sequel proves the theorem in the case of a job reduction. For other perturba-

tions described in Section 2, the proof is presented in the supplementary material.

The supplementary material also shows that the obtained price of robustness is

tight for every perturbation that we consider.

Consider a LexOpt schedule Sinit for instance Iinit and suppose that the pro-

cessing time of job Jj decreases by δ ∈ (0, pj], i.e. pj ← pj − δ. Cancelling job

Jj ∈ J is equivalent to reducing pj to zero. Suppose that machine M` executes

Jj in Sinit. W.l.o.g., job Jj completes last in M`. Algorithm 3 returns the recov-

ered schedule Srec which keeps the job assignments in Sinit, but decreases pj and

C`(Sinit) by δ. Let Snew be an optimal schedule for the perturbed instance Inew.

We distinguish two cases depending on whether M` completes last in Srec, or not.

First, suppose C`(Srec) < Cmax(Srec) and let J ′ ⊆ J be the subset of jobs

executed by the machines in M\ {M`}. Then,

Cmax(Srec) = C∗max(m− 1,J ′) [Lemma 4.1],

≤ C∗max(m− 1,J \ {Jj}) [J ′ ⊆ J \ {Jj}],

≤ 2 · C∗max(m,J \ {Jj}) [Lemma 4.2],

≤ 2 · Cmax(Snew) [Definition].

Subsequently, consider that C`(Srec) = Cmax(Srec), i.e. Cmax(Srec) = Cmax(Sinit)−
δ. We claim that Srec is optimal for Inew. Assume for contradiction that an op-

timal schedule Snew for Inew satisfies Cmax(Snew) < Cmax(Sinit) − δ. By adding δ

15

extra units of time on job Jj , we derive a feasible schedule S̃ for Iinit from Snew,

such that Cmax(S̃) < Cmax(Sinit). This contradicts the optimality of Sinit for Iinit.

4.3. Multiple Perturbations

Two-stage robust optimization can be viewed as a two-player game where (i)

we solve an initial instance, (ii) a malicious adversary generates perturbations, and

(iii) we transform the initial solution into an efficient solution for a new instance.

Adversarial strategies with multiple perturbations can render the initial solution

weakly reoptimizable. But LexOpt can manage a bounded degree of uncertainty.

For this case, we show that Algorithm 3 produces solutions with a positive perfor-

mance guarantee parameterized by the uncertainty set size. Definition 3 describes

our uncertainty set U(f, k, δ) with three parameters: (i) the factor f indicating

the boundary between stable and unstable job perturbations, (ii) the number k of

unstable jobs, and (iii) the number δ of surplus machines. We assume that the

number k of unstable jobs is bounded by the number of machines m, i.e. k < m.

Definition 3. For a makespan problem instance (m,J) with processing times p1,
. . ., pn, the uncertainty set U(f, k, δ) contains every instance (m̂, Ĵ) with pro-
cessing times p̂1, . . . , p̂n satisfying the following properties:

• Stability/instability boundary. Ĵ can be partitioned into the set Ĵ s of
stable jobs and the set Ĵ u of unstable jobs, where pj/f ≤ p̂j ≤ pj ·f ∀ Jj ∈ Ĵ s.

• Bounded number of unstable jobs. |Ĵ u| ≤ k, assuming that k < m.

• Bounded number of surplus machines. max{m̂−m, 0} ≤ δ.

Suppose C∗max(m,J) is the optimal makespan for the P ||Cmax instance (m,J).

Lemma 5 (i) formalizes the optimal substructure imposed by LexOpt, (ii) bounds

pairwise machine completion time differences in LexOpt schedules, (iii) quantifies

the sensitivity of the optimal makespan w.r.t. the number of machines, and (iv)

quantifies sensitivity of the optimal makespan w.r.t. processing times.

Lemma 5. Let (m,J) be a makespan problem instance with a LexOpt schedule S.

1. If the subset J ′ ⊆ J of jobs is executed by the subset M′ ⊆ M of machines
in S, where |M′| = m′, then the sub-schedule of S on M′ is optimal for
(m′,J ′), i.e. maxMi∈M′{Ci(S)} = C∗max(m′,J ′).

16

Table 1: Performance guarantees of our two-stage approach for different

perturbations, parameterized by the (i) perturbation factor f , (ii) number

k < m of unstable jobs, and (iii) number δ of surplus machines. The term ρ

is the product of the performance guarantees obtained for Types 1-3.

Type Perturbation type Performance guarantee

Type 1 Job cancellations, Processing time reductions 2f · (1 + d k
m−k e)

Type 2 Processing time augmentations f + k

Type 3 Machine activations (1 + dδ/me)
Type 4 Job arrivals, Machine failures max{2, ρ}

2. Assuming that Mi,M` ∈M are two different machines such that job Jj ∈ J
is assigned to Mi in S, then C`(S) ≥ Ci(S)− pj.

3. It holds that C∗max(m−`,J) ≤
(

1 +
⌈

`
m−`

⌉)
·C∗max(m,J) ∀ ` ∈ {1, . . . ,m−1}.

4. Let (m, Ĵ) be a makespan problem instance s.t. J = Ĵ and 1
f ·p̂j ≤ pj ≤ p̂j for

each Jj, where pj and p̂j is the processing time of Jj in J and Ĵ , respectively.
Then, 1

f · C
∗
max(m, Ĵ) ≤ C∗max(m,J) ≤ C∗max(m, Ĵ).

Table 1 lists performance guarantees for our two-stage approach, obtained by

individually analyzing each type of perturbation. Despite distinguishing the ar-

guments for each type of perturbation, we obtain a global price of robustness for

all perturbations simultaneously by propagating the solution degradation with re-

spect to the order of Table 1. Considering perturbations in this order is only for

analysis purposes and does not restrict our uncertainty model. Theoretically, Lex-

Opt is essential only for bounding the solution degradation due to job removals

and processing time reductions. But practically, the optimal substructure imposed

by LexOpt is beneficial in an integrated setting with all possible perturbations.

Section 5 complements the theoretical analysis with numerical experiments high-

lighting the significance of LexOpt in the recovered solution quality. Theorem 5

quantifies the price of robustness for our two-stage approach.

Theorem 5. For the two-stage robust makespan scheduling problem with U(f, k, δ)
uncertainty and k < m, our LexOpt-based approach achieves a price of robustness:

2f ·
(

1 +

⌈
k

m− k

⌉)
· (f + k) ·

(
1 +

⌈
δ

m

⌉)
.

17

Proof:

Next, we analyze the recovered solution after job cancellations and processing time

reductions (Type 1). The supplementary material completes the theorem’s proof

for the other perturbations (Types 2-4). Further, the supplementary material shows

that the obtained price of robustness is asymptotically tight.

Processing time reductions are only recovered using binding decisions. A job

cancellation is equivalent to reducing the processing time to zero. Given the re-

covered schedule Srec, we partition the machines M into the sets Ms of stable

machines, which are not assigned unstable jobs, and Mu of unstable machines,

which are assigned unstable jobs. That is, Ci(Srec) ≥ 1
f · Ci(Sinit), for Mi ∈ Ms,

and ms = |Ms| ≥ m − k. Also, Mu = M \Ms and mu = |Mu| ≤ k. Machine

Mi ∈M is critical, if it completes last in schedule Srec, i.e. Ci(Srec) = Cmax(Srec).

We distinguish two cases based on whetherMs contains a critical machine, or not.

Case 1: Ms contains a critical machine. Let J snew ⊆ J be the jobs assigned to

machines Ms by Srec. Each job in J snew is perturbed by a factor of at most f .

Let J sinit denote the same jobs before uncertainty realization. Jobs in J sinit are

executed on Ms in Sinit and appear in J snew with smaller processing times. Then,

Cmax(Srec) = max
Mi∈Ms

{Ci(Srec)} [Ms contains a critical machine],

≤ max
Mi∈Ms

{Ci(Sinit)} [Processing time reduction],

= C∗max(ms,J sinit) [Lemma 5.1],

≤ f · C∗max(ms,J snew) [Lemma 5.4],

≤ f · C∗max(ms,Jnew) [J snew ⊆ Jnew],

= f · C∗max(m−mu,Jnew) [ms = m−mu],

≤ f ·
(

1 +

⌈
mu

m−mu

⌉)
· C∗max(m,Jnew) [Lemma 5.3],

≤ f ·
(

1 +

⌈
k

m− k

⌉)
· Cmax(Snew). [mu ≤ k]

Case 2: Only Mu contains critical machines. Consider an unstable critical ma-

chine Mi ∈ Mu in Srec, i.e. Cmax(Srec) = Ci(Srec). If only one job is assigned to

18

Mi, then schedule Srec is optimal. Now, assume that at least two jobs are assigned

to Mi in Srec . Since processing times are only reduced, Ci(Srec) ≤ Ci(Sinit). Be-

cause k < m, there exists a machine M` ∈Ms. Furthermore, since Sinit is LexOpt,

Lemma 5.2 ensures that C`(Sinit) ≥ Ci(Sinit)− pj , for each Jj ∈ J assigned to Mi

by Sinit. As Sinit contains at least two jobs, there exists a job Jj assigned to Mi

by Sinit such that pj ≤ 1
2 · Ci(Sinit). Hence, Ci(Sinit) ≤ 2 · C`(Sinit). We conclude

that Cmax(Srec) ≤ 2 · C`(Sinit). Because M` ∈Ms, similarly to Case 1, we get:

Cmax(Srec) ≤ 2f ·
(

1 +

⌈
k

m− k

⌉)
· Cmax(Snew).

5. Numerical Results

Section 5.1 describes our system specifications and the generation of benchmark

P ||Cmax instances. Section 5.2 evaluates the LexOpt branch-and-bound algorithm.

Section 5.3 presents the generation of perturbed instances, i.e. the effect of uncer-

tainty realization. Section 5.4 evaluates the price of robustness of our two-stage

robust scheduling approach.

5.1. System Specification and Benchmark Instances

We ran all computations on an Intel Core i7-4790 CPU 3.60GHz, 15.6 GB RAM

machine running Ubuntu 14.04 64-bit. Using Python 2.7.6 and Pyomo 4.4.1, we

solve MILP models with CPLEX 12.6.3 and Gurobi 6.5.2. The source code and test

cases are available on GitHub [34]. We have randomly generated P ||Cmax instances.

Well-formed instances admit an optimal schedule close to a perfect solution where

all machine completion times are equal, i.e. Ci = Ci′ for Mi,Mi′ ∈M. Degenerate

instances have a less-balanced optimal schedule. This section investigates well-

formed instances and we complete the analysis with degenerate instances in the

supplementary material.

Well-formed instances depend on 3 parameters: (i) the number m of machines,

(ii) the number n of jobs, and (iii) a processing time seed q. Using the parameter

19

Table 2: Well-formed Instances

Instances m n q

Moderate 3, 4, 5, 6 20, 30, 40, 50 100, 1000

Intermediate 10, 12, 14, 16 100, 200, 300, 400 10000, 100000

Hard 10, 15, 20, 25 200, 300, 400, 500 10000, 100000

values in Table 2, we generated moderate, intermediate and hard well-formed in-

stances. For each combination of m, n and q, we generate 3 instances based on 3

different distributions of processing times: uniform distribution pj ∼ U({1, . . . , q}),
normal distribution pj ∼ N (q, q/3) and a symmetric of normal distribution s.t.

p ∼ N (q, q/3) and pj = q − p if p ∈ [0, q], or pj = 2q − (p− q) if pj ∈ (q, 2q]. Each

processing time is rounded to the nearest integer. Further, (symmetric) normal

processing times outside [0, 2q] are rounded to the nearest of 0 and 2q.

5.2. LexOpt Branch-and-Bound Algorithm Evaluation

This section numerically evaluates our branch-and-bound algorithm. We com-

plement our evaluation with the sequential, highest-rank objective, and weighting

methods adapted to LexOpt scheduling. Our termination criteria for each MILP

solving is: (i) 103 CPU seconds time limit, and (ii) 10−4 relative error tolerance,

where the relative gap (Ub− Lb)/Ub is computed using the best-found incumbent

Ub and the lower bound Lb.

The sequential method solves m MILP instances with repeated CPLEX calls,

using the CPLEX reoptimize feature in each call to exploit information obtained

from previous calls. If 103 CPU seconds in total elapse, then the method terminates

when the ongoing MILP run is completed. The highest-rank objective method solves

the LexOpt scheduling problem using the CPLEX solution pool feature. Initially,

the standard MILP model for P ||Cmax is solved. Next, the tree exploration goes

on and populates a pool with 2000 solutions. The weighting method computes a

schedule S of minimal weighted value W (S) =
∑m

i=1B
m−i · Ci(S). We set B = 2

and solve the resulting MILP models with CPLEX and Gurobi.

Figure 4 plots performance profiles of LexOpt methods on well-formed instances

in order to compare running times and computed solutions [20]. The sequential

and weighting methods perform similarly in terms of running time and number

20

of solved instances. But, the sequential method produces worse feasible solutions

since lower-ranked objectives are not optimized in the case of a timeout. The

highest-rank objective method has worse running times than the sequential and

weighting methods on moderate instances, because populating the solution pool is

a significant part of the overall running time. However, the highest-rank objective

method attains significantly better running times than the sequential and weighting

methods on intermediate and hard test cases, because populating the solution

pool is a small fraction of the overall running time. The highest-rank objective

method does not prove lexicographic optimality as it only generates 2000 candidate

solutions. Nonetheless, it produces the best heuristic results for most test cases.

Figure 4 shows that our branch-and-bound algorithm proves global optimality

faster than the other methods when it converges, i.e. when it does not timeout.

Note that the branch-and-bound algorithm converges for > 60% of the moderate

test cases and > 30% of the intermediate and hard instances. For intermediate

and hard instances, the branch-and-bound algorithm consistently produces good

heuristic solutions, i.e. better solutions than the sequential and weighting methods.

5.3. Generation of Perturbed Instances

Recall that an instance of the makespan recovery problem is specified by: (i)

an initial makespan problem instance Iinit, (ii) an initial solution Sinit to Iinit, and

(iii) a perturbed instance Inew. We generate the initial P ||Cmax instances according

to Section 5.1. For each instance Iinit, we generate a set S(Iinit) of 50 schedules

using the CPLEX solution pool feature. In general, two different schedules S1, S2 ∈
S(Iinit) have weighted values W (S1) 6= W (S2), where W (S) =

∑m
i=1B

m−i ·Ci(S).

For each makespan problem instance Iinit, we construct a perturbed instance Inew

by generating random disturbances. A job disturbance is (i) a new job arrival, (ii)

a job cancellation, (iii) a processing time augmentation, or (iv) a processing time

reduction. A machine disturbance is (i) a new machine activation, or (ii) a machine

failure. We randomly generate dn = d0.2 · ne job disturbances and dm = d0.2 ·me
machine perturbations. The type of each job disturbance is chosen uniformly at

random among the four options (i) - (iv). A new job Jj ∈ Ĵ has processing time

p̂j ∼ U({1, . . . , q}), using the parameter q that produced the original instance

Iinit. A job cancellation deletes an existing job chosen uniformly at random. To

21

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

1 1.002 1.004 1.006 1.008
0

0.2

0.4

0.6

0.8

1

branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

(a) Moderate instances: time (s) on log2 scale (left), upper bounds on [1, 1.009] (right).

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1
branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
0

0.2

0.4

0.6

0.8

1

branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

(b) Intermediate instances: time (s) on log2 scale (left), upper bounds on [1, 1.1] (right).

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1
branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

(c) Hard instances: time (s) on log2 scale (left), upper bounds on [1, 2] (right).

Figure 4: Performance profiles for the well-formed test set with 103 s timeout.

increase or decrease the processing time of job Jj ∈ J , we randomly select p̂j ∼
U({pj + 1, . . . , 2 · q}) or p̂j ∼ U({1, 2, . . . pj − 1}), respectively. The type of a

machine disturbance is chosen uniformly at random among options (i)-(ii). A new

machine activation increases the number of available machines by one. A machine

cancellation deletes an existing machine chosen uniformly at random.

22

1.0 1.5 2.0 2.5 3.0
Normalized planning weighted value

1

2

3

4

5

N
or

m
al

iz
ed

 re
co

ve
re

d
m

ak
es

pa
n

(a) Binding Recovery

1.0 1.5 2.0 2.5 3.0
Normalized planning weighted value

1

2

3

4

5

N
or

m
al

iz
ed

 re
co

ve
re

d
m

ak
es

pa
n

(b) Flexible Recovery

Figure 5: Well-formed instances scatter plots illustrating the recovered solu-

tion makespan with respect to the initial solution weighted value.

5.4. Two-Stage Robust Scheduling Evaluation

In the two-stage robust makespan scheduling problem, solution Sinit is trans-

formed to a feasible solution Srec for instance Inew. Figure 5 correlates the makespan

of Srec with the closeness of Sinit to LexOpt. We quantify the closeness of Sinit to

LexOpt using the weighted value W (Sinit) =
∑m

i=1B
m−i · Ci(Sinit). The closest

to LexOpt the schedule Sinit is, the lowest the value W (Sinit) we get. For each

instance Iinit, we recover every solution Sinit ∈ S(Iinit) by applying our binding

and flexible recovery strategies from Section 4.1. For the flexible recovery strat-

egy, we set g = 0.1n, i.e. at most 10% of the binding decisions can be modified.

Suppose that the normalized weighted value of an initial solution Sinit ∈ S(Iinit) is

WN (Sinit) = W (Sinit)
W ∗(Iinit)

, where W ∗(Iinit) is the best weighted value in the CPLEX

solution pool for instance Iinit. Similarly, assume that the normalized makespan of

Srec equal to CN (Srec) = Cmax(Srec)
C∗max(Inew) , where C∗max(Inew) is the makespan of the best

recovered schedule for instance Inew. Figure 5a shows that the makespan of solu-

tions obtained with our binding recovery strategy tends to improve as the weighted

value of the initial solution decreases. Figure 5b verifies this trend for the flexi-

ble recovery strategy. These results highlight the importance of LexOpt towards

efficient two-stage robust scheduling. Our findings also motivate scheduling under

uncertainty where the planning and recovery stages are investigated together.

23

6. Conclusion

Practical scheduling applications frequently require an initial, nominal schedule

which is recovered after uncertainty realization. But significantly modifying the

nominal schedule might not be desirable in domains such as distributed computing

[57] and timetabling [46]. To this end, we use exact LexOpt scheduling for planning

and approximate rescheduling for adaptability [2, 7, 17, 49].

We provide new insights on the combinatorial structure of robust scheduling.

LexOpt handles highly-symmetric mixed-integer optimization problems [3, 23, 22,

47], but our results also highlight LexOpt benefits on scheduling under uncertainty.

By exploiting optimal substructure imposed by LexOpt, we propose a two-stage

robust makespan scheduling approach whose performance is substantiated with a

price of robustness characterization. Numerical results with randomly generated

instances demonstrate that the closest to LexOpt the initial solution is, the better

the recovered solution quality we get. Beyond scheduling, extensions to uncer-

tain min-max partitioning problems, e.g. facility location and network design, with

generalized cost functions are possible [55].

Faced with the lack of strong lower bounding techniques for LexOpt scheduling,

we develop a new branch-and-bound algorithm, based on vectorial bounds. The

algorithm (i) avoids iterative MILP solving of sequential methods, (ii) bypasses

precision issues of weighting methods, and (iii) reduces the symmetry of highest-

rank objective methods. This approach is broadly relevant to LexOpt.

Acknowledgments

We gratefully acknowledge support from Engineering & Physical Sciences Research

Council Research (EPSRC) [EP/M028240/1] and a Fellowship to RM [EP/P016871/1].

[1] Adams, W., Belotti, P., & Shen, R. (2016). Convex hull characterizations of

lexicographic orderings. J Glob Optim, 66 , 311–329.

[2] Ausiello, G., Bonifaci, V., & Escoffier, B. (2011). Complexity and approxima-

tion in reoptimization. In S. B. Cooper, & A. Sorbi (Eds.), Computability in

Context chapter 4. (pp. 101–129). Imperial College Press.

24

[3] Balas, E., Fischetti, M., & Zanette, A. (2012). A hard integer program made

easy by lexicography. Math Program, 135 , 509–514.

[4] Bauke, H., Mertens, S., & Engel, A. (2003). Phase transition in multiprocessor

scheduling. Physical Review Letters, 90 , 158701.

[5] Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization.

Princeton University Press.

[6] Ben-Tal, A., Goryashko, A., Guslitzer, E., & Nemirovski, A. (2004). Ad-

justable robust solutions of uncertain linear programs. Math Program, 99 ,

351–376.

[7] Bender, M. A., Farach-Colton, M., Fekete, S. P., Fineman, J. T., & Gilbert,

S. (2015). Reallocation problems in scheduling. Algorithmica, 73 , 389–409.

[8] Bertsimas, D., Brown, D. B., & Caramanis, C. (2011). Theory and applications

of robust optimization. SIAM Review , 53 , 464–501.

[9] Bertsimas, D., & Caramanis, C. (2010). Finite adaptability in multistage linear

optimization. IEEE Transactions on Automatic Control , 55 , 2751–2766.

[10] Bertsimas, D., & Georghiou, A. (2018). Binary decision rules for multistage

adaptive mixed-integer optimization. Math Program, 167 , 395–433.

[11] Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and network

flows. Math Program, 98 , 49–71.

[12] Bertsimas, D., & Sim, M. (2004). The price of robustness. Oper Res, 52 ,

35–53.

[13] Bougeret, M., Pessoa, A. A., & Poss, M. (2019). Robust scheduling with

budgeted uncertainty. Discrete Applied Mathematics, 261 , 93–107.

[14] Bouveret, S., & Lemâıtre, M. (2009). Computing leximin-optimal solutions in

constraint networks. Artificial Intelligence, 173 , 343–364.

[15] Brucker, P. (2007). Scheduling algorithms (5th Ed.). Springer.

25

[16] Burkard, R. E., & Rendl, F. (1991). Lexicographic bottleneck problems. Oper

Res Lett , 10 , 303–308.

[17] Chassein, A., & Goerigk, M. (2016). On the recoverable robust traveling

salesman problem. Optimization Letters, 10 , 1479–1492.

[18] Chassein, A., Goerigk, M., Kasperski, A., & Zieliński, P. (2018). On recover-

able and two-stage robust selection problems with budgeted uncertainty. Eur

J Oper Res, 265 , 423 – 436.

[19] Cramer, J., & Pollatschek, M. A. (1979). Candidate to job allocation problem

with a lexicographic objective. Manage Sci , 25 , 466–473.

[20] Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with

performance profiles. Math Program, 91 , 201–213.

[21] Ehrgott, M. (2006). Multicriteria optimization. Springer.

[22] Fischetti, M., Lodi, A., & Salvagnin, D. (2009). Just MIP it! In Matheuristics

(pp. 39–70). Springer.

[23] Fischetti, M., & Toth, P. (1988). A new dominance procedure for combinato-

rial optimization problems. Oper Res Lett , 7 , 181–187.

[24] Gent, I. P., & Walsh, T. (1996). The TSP phase transition. Artif Intell , 88 ,

349–358.

[25] Georgiadis, L., Georgatsos, P., Floros, K., & Sartzetakis, S. (2002). Lexico-

graphically optimal balanced networks. IEEE/ACM T Network , 10 , 818–829.

[26] Goerigk, M., & Schöbel, A. (2016). Algorithm engineering in robust optimiza-

tion. In L. Kliemann, & P. Sanders (Eds.), Algorithm Engineering - Selected

Results & Surveys (pp. 245–279). Springer volume 9220 of Lecture Notes in

Computer Science.

[27] Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM

Journal on Applied Mathematics, 17 , 416–429.

26

[28] Gupta, D., & Maravelias, C. T. (2019). On the design of online production

scheduling algorithms. Comput Chem Eng , 129 , 106517.

[29] Gupta, D., Maravelias, C. T., & Wassick, J. M. (2016). From rescheduling to

online scheduling. Chem Eng Res Des, 116 , 83–97.

[30] Gupte, A. (2016). Convex hulls of superincreasing knapsacks and lexicographic

orderings. Discrete Applied Mathematics, 201 , 150–163.

[31] Hanasusanto, G. A., Kuhn, D., & Wiesemann, W. (2015). K-adaptability in

two-stage robust binary programming. Oper Res, 63 , 877–891.

[32] Kasperski, A., & Zielinski, P. (2014). Minmax (regret) scheduling problems.

Sequencing and scheduling with inaccurate data, (pp. 159–210).

[33] Kouvelis, P., & Yu, G. (2013). Robust discrete optimization and its applications

volume 14. Springer Science & Business Media.

[34] Letsios, D., & Misener, R. (2017). Source code. https://github.com/

cog-imperial/two_stage_scheduling.

[35] Leung, J. Y. (Ed.) (2004). Handbook of Scheduling - Algorithms, Models, and

Performance Analysis. Chapman and Hall - CRC.

[36] Liebchen, C., Lübbecke, M., Möhring, R., & Stiller, S. (2009). The concept of

recoverable robustness, linear programming recovery, and railway applications.

In Robust and online large-scale optimization (pp. 1–27). Springer.

[37] Luss, H. (1999). On equitable resource allocation problems: A lexicographic

minimax approach. Oper Res, 47 , 361–378.

[38] Mistry, M., DIddio, A. C., Huth, M., & Misener, R. (2018). Satisfiability

modulo theories for process systems engineering. Comput Chem Eng , 113 ,

98–114.

[39] Mitchell, D. G., Selman, B., & Levesque, H. J. (1992). Hard and easy distri-

butions of SAT problems. In AAAI. San Jose, CA. (pp. 459–465).

27

https://github.com/cog-imperial/two_stage_scheduling
https://github.com/cog-imperial/two_stage_scheduling

[40] Monaci, M., & Pferschy, U. (2013). On the robust knapsack problem. SIAM

J Optim, 23 , 1956–1982.

[41] Muldoon, F. M., Adams, W. P., & Sherali, H. D. (2013). Ideal representations

of lexicographic orderings and base-2 expansions of integer variables. Oper

Res Lett , 41 , 32–39.

[42] Nace, D., & Orlin, J. B. (2007). Lexicographically minimum and maximum

load linear programming problems. Oper Res, 55 , 182–187.

[43] Nasrabadi, E., & Orlin, J. B. (2013). Robust optimization with incremental

recourse. Preprint arXiv , 1312.4075 .

[44] Ogryczak, W. (1997). On the lexicographic minimax approach to location

problems. Eur J Oper Res, 100 , 566–585.

[45] Pardalos, P. M., Žilinskas, A., & Žilinskas, J. (2016). Non-convex multi-

objective optimization. Springer.

[46] Phillips, A. E., Walker, C. G., Ehrgott, M., & Ryan, D. M. (2017). Integer pro-

gramming for minimal perturbation problems in university course timetabling.

Annals of Operations Research, 252 , 283–304.

[47] Salvagnin, D. (2005). A dominance procedure for integer programming . Master

thesis, University of Padua.

[48] Sanders, P., Sivadasan, N., & Skutella, M. (2009). Online scheduling with

bounded migration. Mathematics of Operations Research, 34 , 481–498.

[49] Schieber, B., Shachnai, H., Tamir, G., & Tamir, T. (2018). A theory and

algorithms for combinatorial reoptimization. Algorithmica, 80 , 576–607.

[50] Schmeidler, D. (1969). The nucleolus of a characteristic function game. SIAM

J Appl Math, 17 , 1163–1170.

[51] Sherali, H. D. (1982). Equivalent weights for lexicographic multi-objective

programs: Characterizations & computations. Eur J Oper Res, 11 , 367–379.

28

[52] Sherali, H. D., & Soyster, A. L. (1983). Preemptive and non-preemptive multi-

objective programming: relationships and counter examples. J Optim Theory

Appl , 39 , 173–186.

[53] Skutella, M., & Verschae, J. (2016). Robust polynomial-time approximation

schemes for parallel machine scheduling with job arrivals and departures. Math

Oper Res, 41 , 991–1021.

[54] Soyster, A. L. (1973). Convex programming with set-inclusive constraints and

applications to inexact linear programming. Oper Res, 21 , 1154–1157.

[55] Verschae, J. (2012). The Power of Recourse in Online Optimization. Ph.D.

thesis Technische Universität Berlin, Germany.

[56] Wiebe, J., Cećılio, I., & Misener, R. (2018). Data-driven optimization of

processes with degrading equipment. Ind Eng Chem Res, 57 , 17177–17191.

[57] Yu, Z., & Shi, W. (2007). An adaptive rescheduling strategy for grid workflow

applications. In IPDPS (pp. 1–8). IEEE.

[58] Zufiria, P. J., & Álvarez-Cubero, J. A. (2017). Generalized lexicographic mul-

tiobjective combinatorial optimization. Application to cryptography. SIAM J

Optim, 27 , 2182–2201.

29

Supplementary Material for “Exact Lexicographic Scheduling
and Approximate Rescheduling”

Dimitrios Letsiosa,∗ , Miten Mistryb,∗∗ , Ruth Misenerb,∗∗

cDepartment of Informatics; King’s College London; United Kingdom
dDepartment of Computing; Imperial College London; South Kensington SW7 2AZ; UK

Contents. This document contains omitted parts of the manuscript Exact Lexico-

graphic Scheduling and Approximate Rescheduling. The document is a companion

to the original manuscript for readers interested in complementary technicalities

which have been omitted to better convey our main message, i.e. the importance

of LexOpt in scheduling under uncertainty and relevant challenges. These techni-

calities are essential for the completeness of the presented study. The manuscript

itself and this supplementary document cover the topics in a similar order.

Appendix A provides omitted parts required for designing, analyzing, and eval-

uating the exact LexOpt methods. Appendix B shows that the makespan recovery

problem is NP-hard. Appendices C and D complete the robustness analysis of our

two-stage approach in the case of a single and multiple perturbations, respectively.

Appendix E presents a more flexible recovery strategy. Appendix F completes our

numerical evaluation with degenerate instances. Finally, Appendix G provides a

table with the notation used in both documents.

Appendix A Exact LexOpt Methods

Section A.1 proves valid inequalities and Section A.2 adapts the sequential,

weighting, and highest-rank objective methods for the LexOpt scheduling prob-

lem. Section A.3 provides a pseudo-code, Section A.4 describes a primal heuristic,

Section A.5 provides correctness proofs for the vectorial bounds and Section A.6

states a correctness proof for our branch-and-bound algorithm.

∗dimitrios.letsios@kcl.ac.uk
∗∗{miten.mistry11, r.misener}@imperial.ac.uk; Tel: +44 (0) 20759 48315

Preprint submitted to Elsevier August 28, 2020

A.1 LexOpt Scheduling Reformulation Lemma

Lemma 1. In an optimal solution to the LexOpt scheduling problem:

1. Ci ≥ Ci+1, for i = 1, . . . ,m− 1,

2. i ·Ci+
[∑m

q=i+1Cq

]
≤
∑n

j=1 pj ≤
[∑i−1

q=1Cq

]
+(m−i+1) ·Ci, ∀ i = 1, . . . ,m.

Proof:

In any feasible schedule, the machines can be renumbered so as to satisfy the

first property. For the second property, observe that
∑m

i=1Ci =
∑n

j=1 pj . Since

Ci ≥ . . . ≥ Cm, we get that
∑i−1

q=1Cq + (m− i+ 1) ·Ci ≥
∑n

j=1 pj . Similarly, given

that C1 ≥ . . . ≥ Ci, we conclude that i · Ci +
∑m

q=i+1Cq ≤
∑n

j=1 pj .

A.2 State-of-the-Art LexOpt Methods

Sequential Method. This method (Algorithm 4) iteratively minimizes the objective

functions C1, . . . , Cn w.r.t. to their priority order, over the set S of feasible schedules

[16, 19]. Let v∗i be the value of Ci in a LexOpt solution. The i-th iteration computes

v∗i by solving MILP (1) with the extra constraint that the first (i − 1) objectives

should be respectively equal to v∗1, . . . , v
∗
i−1. Warm-starting iteration i with the

solution at iteration (i− 1) improves the efficiency of the method.

Algorithm 4 Sequential Method

1: v∗1 = min{C1 : (~x, ~C) ∈ S}.
2: for i = 2, . . . ,m do
3: v∗i = min{Ci : x ∈ S, C1 = v∗1, . . . , Ci-1 = v∗i-1}
4: Return the solution computed in the last iteration.

Weighting Method. This method (Algorithm 5) minimizes a weighted sum
∑m

i=1wi·
Ci of the objectives C1, . . . , Cn [51]. Typically, wi = Bm−i for i = 1, 2, . . . ,m,

where the big-M parameter B > 1 is a sufficiently large constant [52]. Note that

the highest-rank objectives are associated with the largest weights. Further, this

weighted sum can measure the distance of any solution from the LexOpt solution.

For our numerical results, we set B = 2.

A2

Algorithm 5 Weighting Method

1: Select big-M parameter B = 2.
2: for i = 2, . . . ,m do
3: Set machine weight wi = Bm−i.

4: Solve min{
∑m

i=1wi · Ci : (~x, ~C) ∈ S}.

Highest-Rank Objective Method. This method (Algorithm 6) computes the pool P
of all optimal solutions for the mono-objective problem v∗1 = min{C1 : (~x, ~C) ∈ S}
of minimizing the highest-rank objective function C1, i.e. the makespan, and returns

the lexicographically smallest solution lex min{~C(S) : S ∈ P} in P [44]. A very

large solution pool can be efficiently approximated with a smaller set of solutions

using the CPLEX solution pool feature. In LexOpt, maintaining a single solution in

the pool is sufficient, if the current solution is always replaced by a lexicographically

smaller solution. A simple greedy lexicographic comparison algorithm checks when

such an update is essential.

Algorithm 6 Highest-Rank Objective Method

1: Solve v∗1 = min{C1 : (~x, ~C) ∈ S}.
2: Compute the solution pool P = {(~x, ~C) ∈ S : C1 = v∗1}.
3: Return lex min{~C : (~x, ~C) ∈ P}.

A.3 Branch-and-Bound Algorithm Pseudocode

Algorithm 7 LexOpt Branch-and-Bound Algorithm using Vectorial Bounds

1: Q: empty stack
2: r: root node
3: push(Q, r)
4: I = {+∞}m
5: while Q 6= ∅ do
6: u = top(Q)
7: for v ∈ children(u) do
8: if v is leaf then
9: S: schedule of v

10: I = lex min{I, S}

A3

11: else
12: S: heuristic schedule computed via LPT
13: I = lex min{I, S}
14: ~L: vectorial lower bound of node v
15: if ~L ≤lex

~C(I) then
16: push(Q, v)

M4

M3

M2

M1

t4

t3

t2

t1 U1

U2

(a) Partial schedule associated with node v.

J`+1 J`+4

J`+2 J`+5

J`+3 J`+6

(b) Remaining jobs.

Figure 6: Computing vectorial lower bound component Li at node v in the `-
th search tree level, by scheduling jobs J`+1, . . . , Jn in the partial schedule of
v. Jobs J`+1, . . . , Jh are rejected in the intervals [tq, Uq], for q = 1, . . . , i− 1.
Li is computed by fractionally scheduling jobs Jh+1, . . . , Jm on machines
Mi, . . . ,Mm and lower bounding the completion time of machine Mi.

A.4 Longest Processing Time First Heuristic

The primal heuristic applied in each node v of the branch-and-bound tree

is Longest Processing Time First (LPT) (Algorithm 8). LPT keeps the assign-

ment of jobs J1, . . . , J`, where ` is the level of node v, and greedily schedules jobs

J`+1, . . . , Jn with the order p`+1 ≥ . . . ≥ pn. In each step, LPT assigns the next

job to the least-loaded machine, i.e. makes the lexicographically best decision.

Algorithm 8 Longest Processing Time First (LPT) at level `

1: ~t: Initial machine completion times
2: for j = (`+ 1), . . . , n do
3: i = arg minMq∈M{tq}
4: Ci ← ti + pj

5: Sort the machines so that C1 ≥ . . . ≥ Cm.

A.5 Correctness of Vectorial Bounds

This section proves Lemmas 2-3 and, thus, shows that Algorithms 1-2 correctly

compute vectorial bounds.

A4

Lemma 2. Consider a node v of the search tree and a machine index i ∈ {1, . . . ,m}.
Algorithm 1 produces a value Li ≤ Ci(S) for each feasible schedule S ∈ S(v) below
v such that Cq(S) ≤ Uq, ∀ q = 1, . . . , i− 1.

Proof:

Schedule S and pseudo-schedule S̃ (of Algorithm 1) assign jobs J1, . . . , J` to the

same machines and the vector ~t = (t1, . . . , tm) specifies machine completion times

w.r.t. these jobs. All remaining jobsR = {J`+1, . . . , Jn} are scheduled differently in

S̃ and S. In S̃, the jobs in R̃ = {J`+1, . . . , Jh} are fractionally assigned to machines

M1, . . . ,Mi−1 and the jobs in R \ R̃ = {Jh+1, . . . , Jn} to Mi, . . . ,Mm. Denote by

R′ ⊆ R the corresponding subset of jobs assigned to machines M1, . . . ,Mi−1, in S.

That is, the jobs in R \R′ are assigned to Mi, . . . ,Mm in S.

Observe that
∑

Jj∈R′ pj =
∑i−1

q=1 (Cq(S)− tq) ≤
∑i−1

q=1 (Uq − tq) ≤
∑

Jj∈R̃ pj ,

where the first equality holds by definition, the first inequality by the assump-

tion Cq(S) ≤ Uq, for q = 1, . . . , (i − 1), and the second inequality because Algo-

rithm 1 fits machines M1, . . . ,Mi−1 at least up to their respective upper bounds.

Moreover, we have that maxJj∈R\R′{pj} ≥ max
Jj∈R\R̃{pj} = ph+1. Otherwise,

maxJj∈R\R′{pj} < ph+1, which implies that R′ contains all jobs J`+1, . . . , Jh+1.

Hence,
∑

Jj∈R′ pj ≥
∑h+1

j=`+1 pj >
∑

Jj∈R̃ pj , i.e. a contradiction.

Since S assigns a job of processing time maxJj∈R\R′{pj} ≥ ph+1 to a machine

in Mi, . . . ,Mm, Ci(S) ≥ mini≤q≤m{tq}+ maxJj∈R\R′{pj} ≥ mini≤q≤m{ti}+ ph+1.

Clearly, Ci(S) ≥ maxi≤q≤m{ti}. Further, using a standard packing argument and

the fact that
∑

Jj∈R\R′ pj ≥
∑

Jj∈R\R̃ pj , if the quantity Λ =
∑n

j=h+1 pj−
∑m

q=i(τ−
tq) is positive, where τ = maxi≤q≤m{tq}, then Ci(S) ≥ maxi≤q≤m{tq} + Λ

m−i+1 .

We conclude that Li ≤ Ci(S).

Lemma 3. Consider a node v of the search tree and a machine index i ∈ {1, . . . ,m}.
Algorithm 2 produces a value Ui ≥ Ci(S) for each feasible schedule S ∈ S(v) below
v such that Cq(S) ≥ Lq, ∀ q = 1, . . . , i− 1.

Proof:

Recall that jobs J1, . . . , J` are identically assigned in schedule S and pseudo-

schedule S̃ of Algorithm 2. Moreover, a vector ~t = (t1, . . . , tm) specifies the ma-

chine completion times of S and S̃ w.r.t. these jobs. Let R = {J`+1, . . . , Jn} be

A5

the set of remaining jobs. Denote by R̃ = {J`+1, . . . , Jh} ⊆ R and R′ ⊆ R the

subset of jobs assigned to machines Mi, . . . ,Mm in S̃ and S, respectively. By ar-

guing similarly to the proof of Lemma 2,
∑

Jj∈R\R̃ pj ≥
∑

Jj∈R\R′ pj . In addition,

max
Jj∈R\R̃{pj} ≥ maxJj∈R\R′{pj}.

The total load of jobs J`+1, . . . , Jn assigned to machines Mi, . . . ,Mm in S is

clearly
∑

Jj∈R\R′ pj ≤ λ =
∑n

j=`+1 pj −
∑i−1

q=1(Lq− tq). To compute Ui, Algorithm

2 assigns part of λ fractionally and uniformly to the least loaded machines among

Mi, . . . ,Mm. In particular, it sorts these machines so that ti ≤ . . . ≤ tm and assigns

λ units of processing time to machines Mi, . . . ,Mµ so that they end up having the

same completion time τ = 1
µ−i+1

(∑µ
q=1 tq + λ

)
. Using a simple packing argument

and the fact that maxJj∈R{pj} = p`, we get Ci(S) ≤ max{τ + p`, tm}.

A.6 Optimality of Branch-and-Bound Algorithm

Theorem 1. The branch-and-bound method computes a LexOpt solution.

Proof:

Consider a tree node v. Let ~L = (L1, . . . , Lm) and I be the computed vectorial lower

bound and the incumbent, when branch-and-bound Algorithm 7 explores v. We

show the invariant that if node v is pruned, then ~C(S) ≥lex
~C(I), for every schedule

S ∈ S(v). Node v is pruned when L ≥lex
~C(I), i.e. (i) L1 > C1(I), (ii) Lq = Cq(I)

∀ q = 1, . . . , i − 1 and Li > Ci(I), for some i ∈ {2, . . . ,m − 1}, or (iii) Li = Ci(I)

∀ i = 1, . . . ,m. In case (i), because C1(S) ≥ L1, it holds that ~C(S) >lex
~C(I)

∀ S ∈ S(v). In case (ii), either C1(S) > L1, or C1(S) = L1 ∀ S ∈ S(v). Let

S1(v) ⊆ S(v) be the subset of schedules satisfying C1(S) = L1 = C1(I). Algorithm

2 computes U1 = C1(I). By Lemma 2, either C2(S) > L2, or C2(S) = L2, for each

S ∈ S1(v). Let S2(v) ⊆ S1(v) be the subset of schedules with C2(S) = L2. We de-

fine similarly all sets S1(v), . . . ,Si−1(v). By Lemma 2, for any schedule in Si−1(v),

it holds that Cq(S) = Lq = Cq(I) ∀ q = 1, . . . , i−1 and Ci(S) ≥ Li > Ci(I). Thus,

for each S ∈ S(v), ~C(S) >lex
~C(I). Finally, in case (iii), for each S ∈ Sm−1(v),

Cq(S) = Cq(I) ∀ q = 1, . . . ,m and ~C(S) = ~C(I). The theorem follows.

A6

p1 p2 pn

pn+1

M1

M2

M3

Mm

(a) Job cancellation, Processing time reduc-
tion.

p1 p2 pn

pn+1

pn+(m−1)

M1

M2

Mm

(b) Job arrival, Processing time augmenta-
tion, Machine failure.

pn+1 p1 p2 pn

pn+2 pn+(m+1)

pn+m

M1

M2

Mm

(c) Machine activation.

Figure 7: Schedule Sinit in the NP-hardness reduction of the makespan
recovery problem from P ||Cmax. Different perturbation types are considered
individually. The original jobs J1, . . . , Jn have processing times p1, . . . , pn.
Each dummy job Jn+1, . . . , Jn+(m+1) has processing time

∑n
j=1 pj .

Appendix B NP-Hardness of Makespan Recovery Problem

This section shows the NP-hardness of the makespan recovery problem via a

reduction from P ||Cmax. That is, the makespan recovery problem is at least as

hard as P ||Cmax. Given a minimum makespan schedule Sinit for an initial instance

Iinit of P ||Cmax, the makespan recovery problem asks the existence of a feasible

schedule with makespan Tnew for a perturbed instance Inew. Thus, the knowledge

of Sinit does not mitigate the computational complexity for solving Inew.

Theorem 2. The makespan recovery problem is strongly NP-hard, even in the
case of a single perturbation.

Proof:

We prove the lemma for each type of perturbation of Section 2 individually. Given

instance I = (m,J) of P ||Cmax with target makespan T , we construct an instance

(Iinit, Sinit, Inew) of the makespan recovery problem with target makespan Tnew by

adding dummy jobs. Let p1, . . . , pn be the processing times of the n jobs in J .

Figure 7 shows a construction for each perturbation type.

A7

Job Removal, Processing Time Reduction. The initial instance Iinit consists of m

machines, the n original jobs and a dummy job of processing time pn+1 =
∑n

j=1 pj .

Optimal schedule Sinit for Iinit assigns all jobs J1, . . . , Jn to machine M1, job Jn+1

to machine M2 and leaves M3, . . . ,Mn empty. We obtain instance Inew from Iinit

by removing job Jn+1 and setting Tnew = T . Since Inew consists only of the jobs in

I, Inew admits a feasible schedule of makespan Tnew iff there exists a schedule of

makespan T for I. The case of a processing time reduction can be treated similarly,

by decreasing pn+1 down to 0 from
∑n

j=1 pj .

Job Arrival, Processing Time Augmentation, Machine Failure. We construct an

initial instance Iinit with m machines, the n original jobs and m − 1 dummy jobs

Jn+1, . . . , Jn+m−1 of processing time p` =
∑n

j=1 pj , for ` = n + 1, . . . ,m − 1.

The schedule Sinit assigning jobs J1, . . . , Jn to machine M1 and a dummy job to

every other machine is optimal for Iinit. We perturb Iinit by adding job Jn+m of

processing time pn+m =
∑n

j=1 pj and setting Tnew =
∑n

j=1 pj + T . In instance

Inew, we ask the existence of a feasible schedule Snew of makespan Tnew. Since

T <
∑n

j=1 pj , if such a schedule exists, every pair of dummy jobs must executed

by different machines. Thus, I admits a schedule of makespan T iff there exists a

schedule with makespan Tnew for Inew. For a processing time augmentation and a

machine removal, we use the same arguments, but different constructions. In the

former case, we add a dummy job Jn+m in Iinit with pn+m = 0, which becomes∑n
j=1 pj in Inew. In the latter case, we perturb Iinit by removing M1.

Machine Activation. We construct a initial instance Iinit with m machines, all n

original jobs, and m + 1 dummy jobs Jn+1, . . . , Jn+(m+1) s.t. p` =
∑n

j=1 pj , for

` = n+1, . . . , n+(m+1). The initial schedule Sinit assigns a dummy job and all n

original jobs on machine M1, two dummy jobs on machine M2 and one dummy job

on each machine M3, . . . ,Mm. Since any feasible schedule assigning at least two

dummy jobs to one machine has makespan ≥ 2 ·
∑n

j=1 pj , Sinit must be optimal for

Iinit. We perturb Iinit by adding a new machine and setting Tnew =
∑n

j=1 pj + T .

Because T <
∑n

j=1 pj , any feasible schedule for Inew of length Tnew must assign one

dummy job to every machine. Thus, there exists a feasible schedule of makespan

Tnew for Inew iff I admits a feasible schedule of makespan T .

A8

Appendix C Robustness Analysis for a Single Perturbation

This section completes the proofs of Lemma 4 and Theorem 4 for analyzing the

price of robustness of our two-stage approach in the case of a single perturbation.

Lemma 4. Consider a makespan problem instance (m,J) and let S be LexOpt
schedule. Given a machine M` ∈ M, denote by J ′ the subset of all jobs assigned
to the machines in M\ {M`} by S. Then, it holds that:

1. maxMi∈M\{M`}{Ci(S)} = C∗max(m− 1,J ′), and

2. C∗max(m− 1,J) ≤ 2 · C∗max(m,J).

Proof:

Suppose that maxMi∈M\{M`}{Ci(S)} > C∗max(m − 1,J ′). Let S∗ be a minimum

makespan schedule for (m− 1,J ′), i.e. Cmax(S∗) = C∗max(m− 1,J ′). By schedul-

ing the jobs in J ′ as in S∗ and assigning the jobs in J \ J ′ to M`, we obtain

a feasible schedule S̃ for (m,J) s.t. S̃ <lex S, which is a contradiction. Next,

starting from an optimal schedule S∗ for (m,J), we produce a new schedule

S̃ by moving all jobs of machine Mm to machine Mm−1. Clearly, S̃ is a fea-

sible for (m − 1,J) and the makespan has at most doubled w.r.t. S∗. Hence,

C∗max(m− 1,J) ≤ Cmax(S̃) ≤ 2 · Cmax(S∗) = 2 · C∗max(m,J).

Theorem 4 (con’t). For the makespan recovery problem with a single perturba-
tion, Algorithm 3 achieves a tight price of robustness equal to 2, if Sinit is LexOpt.

Proof:

The proof of the theorem for a processing time reduction or a job removal is pre-

sented in the main manuscript. Here, we proceed with the remaining perturbations

of Section 2 and show the tightness of our analysis. Let Iinit = (m,J) be the initial

instance with a LexOpt schedule Sinit.

Job Arrival, Processing Time Augmentation. Suppose that Iinit is perturbed with

the arrival of job Jn+1. The recovered schedule Srec maintains the assignments

in Sinit for J1, . . . , Jn and assigns job Jn+1 to a least loaded machine M` =

A9

arg minMi∈M{Ci(Sinit)}. In an optimal schedule Snew for Inew, it clearly holds

that Cmax(Snew) ≥ max{C`(Snew), pn+1}. Consider the auxiliary schedule S̃ ob-

tained from Snew by removing job Jn+1. Since S̃ is feasible for Iinit, Cmax(Snew) ≥
Cmax(S̃) ≥ Cmax(Sinit). Hence, Cmax(Srec) = max{C`(Sinit)+pn+1, Cmax(Sinit)} ≤
Cmax(Sinit)+pn+1 ≤ 2·Cmax(Snew). The case where Iinit is perturbed by increasing

pj can be handled using the same arguments and treating the extra piece of Jj as

a new job assigned to the machine executing Jj in Sinit.

Machine Activation, Machine Failure. Consider the case where Iinit is perturbed

because machine Mm fails. Let J ′ be the subset of jobs assigned to Mm in Sinit.

Clearly,
∑

Jj∈J ′ pj ≤ Cmax(Sinit). The recovered schedule Srec keeps the assign-

ments in Sinit for the jobs in J \ J ′ and assigns the jobs in J ′ to M1, . . . ,Mm−1

using LPT. Thus, Cmax(Srec) ≤ Cmax(Sinit) +
∑

j∈J ′ pj ≤ 2 · Cmax(Sinit). Let

Snew be an optimal schedule for Inew. Since Inew has fewer machines than Iinit,

Cmax(Sinit) ≤ Cmax(Snew). Hence, Cmax(Srec) ≤ 2 ·Cmax(Snew). In the case where

Iinit is modified with the activation of a new machine Mm+1, Srec has identical

assignments with Sinit, while Mm+1 is left idle. By Lemma 4.2, Cmax(Srec) =

C∗max(m,J) ≤ 2 · C∗max(m+ 1,J) = 2 · Cmax(Snew).

Tightness. Consider an instance Iinit = (m,J) with n = m+ 1 jobs of equal pro-

cessing time p. In a LexOpt schedule Sinit, machine M1 executes jobs J1 and J2,

machine Mi processes job Ji+1, for i = 2, . . . ,m, and Cmax(Sinit) = 2p. Assume

that Iinit is disturbed because (i) job Jn is removed, (ii) pn is decreased down

to zero, or (iii) Mm+1 is activated. In every case, Cmax(Srec) = 2p. However,

an optimal schedule Snew for Inew, assigns exactly one job to each machine and

Cmax(Snew) = p. Next, consider an instance Iinit = (m,J) with n = 1+(m−1) ·m
jobs, where p1 = m and pj = 1, for j = 2, . . . , n. In a LexOpt schedule Sinit, J1

is assigned to machine M1, exactly m unit jobs are processed by machine Mi, for

i = 1, . . . ,m, and Cmax(Sinit) = m. Suppose that Iinit is perturbed because (i)

job Jn+1 with pn+1 = m arrives, (ii) pn is augmented and becomes m + 1, or (iii)

machine M1 fails. In each case, Cmax(Srec) = 2m. But, in an optimal schedule

Snew for Inew, a long job is assigned to the same machine with a unit job, and

every other machine contains m+ 1 unit jobs, i.e. Cmax(Snew) = m+ 1.

A10

Appendix D Robustness Analysis for Multiple Perturbations

This section completes the proofs of Lemma 5 and Theorem 5 for analyzing the

price of robustness of our two-stage approach in the case of multiple perturbations.

Lemma 5. Let (m,J) be a makespan problem instance with a LexOpt schedule S.

1. If the subset J ′ ⊆ J of jobs is executed by the subset M′ ⊆ M of machines
in S, where |M′| = m′, then the sub-schedule of S on M′ is optimal for
(m′,J ′), i.e. maxMi∈M′{Ci(S)} = C∗max(m′,J ′).

2. Assuming that Mi,M` ∈M are two different machines such that job Jj ∈ J
is assigned to Mi in S, then C`(S) ≥ Ci(S)− pj.

3. It holds that C∗max(m−`,J) ≤
(

1 +
⌈

`
m−`

⌉)
·C∗max(m,J) ∀ ` ∈ {1, . . . ,m−1}.

4. Let (m, Ĵ) be a makespan problem instance s.t. J = Ĵ and 1
f ·p̂j ≤ pj ≤ p̂j for

each Jj, where pj and p̂j is the processing time of Jj in J and Ĵ , respectively.
Then, 1

f · C
∗
max(m, Ĵ) ≤ C∗max(m,J) ≤ C∗max(m, Ĵ).

Proof:

1. Assume for contradiction that maxMi∈M′{Ci(S)} > C∗max(m′,J ′). Starting

from an optimal schedule S∗ for (m′,J ′), we construct a feasible schedule S̃ for

(m,J) by assigning the jobs J ′ as in S∗ and the jobs J \J ′ according to S. Then,

S̃ <lex S, which contradicts that S is a LexOpt schedule.

2. Assume for contradiction that C`(S) < Ci(S)−pj , i.e. C`(S) < max{C`(S)+

pj , Ci(S) − pj} < Ci(S). Consider the schedule S̃ obtained from S by moving Jj

from Mi to M`. Then, Ci(S̃) = Ci(S)−pj , C`(S̃) = C`(S)+pj , and Ci′(S̃) = Ci′(S),

for Mi′ ∈M \ {Mi,M`}. That is, S̃ <lex S, which contradicts that S is LexOpt.

3. Starting from an optimal schedule S∗ for (m,J), we produce a schedule S̃ by

moving all jobs on machinesMm−`+1, . . . ,Mm to the remaining machines via round-

robin. For i = 1, . . . , `, the jobs of Mm−`+i are moved to machine Mi mod (m−`),

where M0 = Mm−`. Machine Mi ∈ {M1, . . . ,Mm−`} receives jobs from at most

d`/(m − `)e machines. Schedule S̃ uses m − ` machines and its makespan has

increased by a factor at most 1 + d `
m−`e w.r.t. S∗. Hence, C∗max(m − `,J) ≤

Cmax(S̃) ≤
(

1 +
⌈

`
m−`

⌉)
· Cmax(S∗) =

(
1 +

⌈
`

m−`

⌉)
· C∗max(m,J).

A11

4. Starting from an optimal schedule S∗ for (m,J), we construct a schedule

Ŝ for (m, Ĵ) with identical assignments. If machine Mi executes a job of pro-

cessing time pj in S∗, then Mi executes a job of processing time p̂j in Ŝ. Since
1
f · p̂j ≤ pj ≤ p̂j , we have that 1

f ·Ci(Ŝ) ≤ Ci(S∗) ≤ Ci(Ŝ), for each machine Mi.

Theorem 5 (con’t). For the two-stage robust makespan scheduling problem with
U(f, k, δ) uncertainty and k < m, our LexOpt-based approach achieves a price of
robustness:

2f ·
(

1 +

⌈
k

m− k

⌉)
· (f + k) ·

(
1 +

⌈
δ

m

⌉)
.

Proof:

The proof for a processing time reduction or a job removal is presented in the

main manuscript. Here, we proceed with the remaining perturbations of Section 2

and show the tightness. For analysis purposes, we consider the perturbations in

the order of Table 1. To propagate the solution degradation when analyzing each

perturbation type, we consider that Cmax(Sinit) ≤ ρCmax(S∗init). That is, the initial

schedule Sinit to be recovered is ρ-approximate for Iinit, where ρ ≥ 1 is arbitrary.

Job Cancellations, Processing Time Reductions (Type 1). Consider an instance

Iinit with m machines, (m−k) ·m jobs of length f , and k jobs of length m ·f , where

f, k = o(m). Optimal schedule Sinit assigns m jobs of length f on each of the first

m−k machines, one job of length m·f on each of the remaining k machines, and has

makespan Cmax(Sinit) = m · f . We perturb Iinit by decreasing the processing time

of each job assigned to M2, . . . ,Mm−k down to 1, and cancelling the jobs assigned to

the last k machines. The recovered schedule has makespan Cmax(Srec) = m ·f . But

an optimal schedule Snew assigns to each machine a job of length f and m− k− 1

unit-length jobs, i.e. Cmax(Snew) = (m−k−1)+f . Figure 8 illustrates this tightness

example, where Cmax(Srec)
Cmax(Snew) = m·f

(m−k−1)+f = m·f
(m−k)(1+ f−1

m−k)
= O((1 + k

m−k)f).

Processing Time Augmentations (Type 2). Recall that job Jj ∈ J is stable if p̂j ≤
fpj and unstable if not. Also, let F = maxJj∈Ĵ {p̂j}. Since Inew ∈ U(f, k, δ), at

most k processing times become equal to F and all remaining jobs are increased by a

factor at most f . Given that Srec is identical with Sinit, except that some processing

times are increased, Ci(Srec) ≤ f · Ci(Sinit) + k · F for each Mi ∈ M. Given an

A12

f f
f f

f f
m · f

m · f

M1
M2

Mm-k
Mm-k+1

Mm

(a) LexOpt schedule Sinit.

f f f
11 1

11 1

M1
M2

Mm−k
Mm−k+1

Mm

(b) Recovered schedule Srec.

f 11 1
f 11 1

f 11 1

M1
M2

Mm

(c) Optimal schedule Snew.

Figure 8: Makespan recovery instance for which the O(f · (1+d k
m−k e)) factor

is tight under job cancellations and processing time reductions.

1 11 1
1 11 1

1 11 1

M1
M2

Mm

(a) LexOpt schedule Sinit.

F F f f
11 1

11 1

M1
M2

Mm

(b) Recovered schedule Srec.

F 1 1

F 1 1
f 1 1

f 1 1

M1

Mk
Mk+1

Mm

(c) optimal schedule Snew.

Figure 9: Makespan recovery instance for which the O(f + k) factor is tight
under processing time augmentations.

optimal schedule S∗init for Iinit and that the processing times in Inew are one-to-one

greater than or equal to the ones in Iinit, Ci(Sinit) ≤ ρ·Cmax(S∗init) ≤ ρ·Cmax(Snew).

In addition, Cmax(Snew) ≥ F . Hence, Cmax(Srec) ≤ (f + k)ρ · Cmax(Snew).

For the tightness, consider instance Iinit (Figure 9) with m machines and n =

m2 unit-length jobs. In Sinit, each machine executes m jobs and Cmax(Sinit) = m.

After uncertainty realization, k jobs assigned to M1 get processing time F , every

other job on M1 gets processing time f , and all other processing times remain the

same in Iinit and Inew. Suppose that F = f + m, F = Θ(m), f = o(m) and k =

o(m). Schedule Srec performs identical assignments with Sinit, i.e. Cmax(Srec) =

k ·F+(m−k)·f . In an optimal schedule Snew for Inew, each machine Mi with i ≤ k
processes a job of length F and k unit length jobs, while each machine Mi with

i > k executes a job of length f and m+k unit length jobs, i.e. Cmax(Snew) = F+m.

Thus, Cmax(Srec)
Cmax(Snew) = k·F

F+k + (m−k)·f
f+m+k = k · 1

1+ k
F

+ f · 1

1+ f+2k
m−k

= O(f + k).

Machine Activations (Type 3). Denote by Ms the set of available machines in

A13

Sinit and byMu the set of newly activated machines after uncertainty realization.

Algorithm 3 keeps the schedule Sinit for the machines in Ms and leaves the ma-

chines in Mu idle, i.e. Cmax(Srec) ≤ ρ · C∗max(m,J). By definition, Cmax(Snew) =

C∗max(m + k,J). Hence, by Lemma 5.3, we conclude that Cmax(Srec) ≤ (1 +

dk/me)ρ · Cmax(Snew). For the tightness of this bound, consider an instance with

m machines and n = m · (m+ k) unit jobs. In Sinit, each machine processes m+ k

unit jobs and Cmax(Sinit) = m+k. In Srec, all newly activated machines are empty

and Cmax(Srec) = m+ k. But an optimal schedule Snew for Inew assigns exactly m

jobs on each machine, i.e. Cmax(Snew) = m. That is, Cmax(Srec)
Cmax(Sinit)

= 1 + k
m .

Job Arrivals, Machine Failures (Type 4). Consider a set of free jobs arriving after

uncertainty realization. Algorithm 3 schedules these jobs according to LPT. We

partition the setM of machines into the setMs of stable machines, not executing

free jobs, and the set Mu of unstable machines, assigned free jobs, in Srec. Since

Jinit ⊂ Jnew and Minit =Mnew, if there is a machine Mi ∈ Ms with Ci(Srec) =

Cmax(Srec), then Cmax(Srec) = Cmax(Sinit) ≤ ρ · C∗max(Iinit) ≤ ρ · Cmax(Snew). If

there is not such a machine in Ms, we use the analysis for LPT by Graham [27].

Since the last completing job Jj begins at bj , all machines are occupied until bj

in Srec. Thus, Cmax(Srec) = bj + pj ≤ 1
m

∑
Jj′∈Jnew pj′ + pj ≤ 2 · Cmax(Snew).

In both cases, Cmax(Srec) ≤ max{2, ρ} · Cmax(Snew). The case where a machine

Mi ∈ M fails can be treated similarly by considering the jobs originally assigned

to Mi in Sinit as free. In the case where ρ > 2, we may design a makespan problem

instance such that the arrival of a new job with a tiny processing time has the ef-

fect that the recovered schedule remains ρ-approximate. The tightness example for

LPT implies that Algorithm 3 cannot result in a price of robustness better than 2.

Appendix E Flexible Recovery Strategy

Next, we present a more flexible recovery strategy (than Algorithm 3) that

modifies a bounded number of binding decisions [18, 43]. To this end, we formu-

late the makespan recovery problem as a MILP. Let J B = {Jj ∈ Jinit ∩ Jnew :

∃i with xi,j(Sinit) = 1} be the binding decisions, i.e. the jobs appearing both in Iinit

and Inew. Algorithm 3 keeps the assignments in Sinit for the binding jobs J B and

A14

greedily schedules the free jobs J F = J \ J B with LPT to produce Srec. A more

flexible recovery strategy migrates a bounded number g of binding jobs. These

migrations produce better recovered solutions at the price of extra computational

effort and higher transformation cost. Denote by J Bi ⊆ J B and µj the subset of

binding jobs assigned to machine Mi and the machine index which job Jj ∈ J B is

assigned to, respectively, in Sinit. Our flexible recovery strategy solves MILP (1)

with the additional constraint
∑

Jj∈JB
∑

Mi∈M\{Mµj } xi,j ≤ g.

Appendix F Numerical Results with Degenerate Instances

This section complements our numerical results with degenerate instances of

P ||Cmax. Section F.1 describes the generation of these instances. Sections F.2-

F.3 evaluate the LexOpt branch-and-bound algorithm and the robustness of our

two-stage approach using the new instances.

F.1 Generation of Degenerate Instances

Degenerate instances have less balanced optimal solutions than well-formed in-

stances. To produce degenerate instances, we sample integer processing times that

can be encoded with b bits. Instances with small κ = b/n values are easier to

solve than instances with larger κ values [4]. The phase transition from “easy” to

“hard” instances becomes sharper as n increases and occurs at the threshold value

κ∗ = log2m
m−1 . Instances with small κ admit exponentially many perfect solutions

(where all machine completion times are equal). Instances with κ > κ∗ have less or

no perfect solutions. Similar phase transitions occur for other fundamental com-

binatorial optimization problems, e.g. satisfiability [39] and the traveling salesman

problem [24], where instances near the threshold value tend to be the most difficult.

We derive degenerate instances by varying two parameters: (i) the number m

of machines and (ii) the number n of jobs. Further, we use a processing time seed

q = 2bκ(m)·nc with κ(m) = (log2m)/(m − 1). Table 3 reports this information for

moderate and intermediate degenerate instances. For each combination of m, n

and the corresponding q = 2bκ(m)·nc value, we generate 3 instances by sampling

processing times from the set {1, . . . , q} using the uniform, normal and symmetric

of normal distributions, similarly to the well-formed instances.

A15

Table 3: Degenerate Instances

Instances m n q

Moderate

3 20, 25, 30, 35 215, 219, 223, 227

4 25, 30, 35, 40 216, 220, 223, 226

5 30, 35, 40, 45 217, 220, 223, 226

6 35, 40, 45, 50 218, 220, 223, 225

Intermediate

10 40, 50, 60, 70 214, 218, 222, 225

12 45, 55, 65, 75 214, 217, 221, 224

14 55, 65, 75, 85 216, 219, 221, 224

16 60, 70, 80, 90 216, 218, 221, 224

F.2 LexOpt Branch-and-Bound Algorithm Evaluation

We evaluate our branch-and-bound algorithm on degenerate instances in com-

parison with the sequential, weighting and highest-rank objective methods. For

MILP solving, we use (i) 103 CPU seconds time limit and (ii) 10−4 error tolerance,

similarly to the numerical results obtained with well-formed instances. Figure 10

shows performance profiles for evaluating the running times and quality of com-

puted solutions on degenerate instances. We observe that degenerate instances

are significantly harder to solve than well-formed instances of identical size. For

instance, no solver converges for any intermediate degenerate instance, while every

solver converges for > 30% of the intermediate well-formed instances. In terms of

solver comparison, we derive similar results to those obtained for well-formed in-

stances. The sequential method performs similarly to the weighting method. The

highest-rank objective method produces the best heuristic results. Our branch-and-

bound method produces the second best heuristic result for intermediate degenerate

instances and computes LexOpt solutions quickly when it terminates.

F.3 Two-Stage Robustness Assessment

Next, we investigate the impact of LexOpt to the quality of the recovered solu-

tion for degenerate instances. For each degenerate instance Iinit derived according

to Section F.1, we compute 50 diverse initial solutions using the CPLEX solution

pool feature. To quantify the closeness of an initial solution to LexOpt, we use the

weighted value W (S) =
∑m

i=1B
m−i · Ci(S). Further, we obtain a perturbed in-

stance Inew by generating random disturbances, similarly to well-formed instances.

Then, we fix every initial solution by applying our binding and flexible recovery

strategies in Section 4.1. As in the case of well-formed instances, Figures 11a and

A16

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

1 1.002 1.004 1.006 1.008
0

0.2

0.4

0.6

0.8

1

branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

(a) Moderate instances: time (s) on log2 scale (left), upper bounds on [1, 1.008] (right).

1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1
0

0.2

0.4

0.6

0.8

1

branch and bound
weighting cplex
weighting gurobi

sequential
highest rank objective

(b) Intermediate instances: upper bounds on [1, 1.1]. No solver converges for any interme-
diate degenerate instance within the specified time limit.

Figure 10: Performance profiles for the degenerate test set with 103 s timeout.

1.0 1.5 2.0 2.5 3.0
Normalized planning weighted value

1

2

3

4

5

N
or

m
al

iz
ed

 re
co

ve
re

d
m

ak
es

pa
n

(a) Binding Recovery

1.0 1.5 2.0 2.5 3.0
Normalized planning weighted value

1

2

3

4

5

N
or

m
al

iz
ed

 re
co

ve
re

d
m

ak
es

pa
n

(b) Flexible Recovery

Figure 11: Degenerate instances scatter plots illustrating the recovered solu-
tion makespan with respect to the initial solution weighted value.

11b plot the normalized makespan CN (Srec) obtained by our recovery strategies

and the normalized initial solution weighted value WN (Sinit) for every recovered

solution. Clearly, the recovered solution improves if the initial solution weighted

value decreases. Moreover, flexibility enables more efficient recovery. Interestingly,

degenerate instances are recovered more efficiently than well-formed ones.

A17

Appendix G Table of Notation

Table 4: Nomenclature

Name Description

Makespan scheduling problem
I = (m,J) Instance
i, q, µ Machine indices (q, µ typically used as auxiliary machine indices)
j, h, ` Job indices (h, ` typically used as auxiliary job indices)
m Number of machines
Mi ∈M Machine Mi in the set M = {M1, . . . ,Mm} of all machines
n Number of jobs
Jj ∈ J Job Jj in the set J ∈ {J1, . . . , Jn} of all jobs
pj Processing time of job Jj
Cmax Makespan
Ci Completion time of machine Mi

xi,j Binary variable indicating an assignment of job Jj to machine Mi

S = (~y, ~C), S′, S̃ Schedules (S′, S̃ typically used as auxiliary schedules)
S∗ LexOpt schedule
S Set of all feasible schedules

LexOpt scheduling problem
≤lex Operator for lexicographic comparison
Fi i-th greatest completion time, i.e. i-th objective function
v∗i Value of Fi in a LexOpt schedule S∗

Tq Set of tuples (i1, . . . , iq) with q pairwise disjoint machine indices
wi Weight of objective function Fi (weighting method)
P Solution pool (highest-rank objective method)

Branch-and-bound algorithm
Q Stack of visited unexplored nodes
I Incumbent, i.e. lexicographically best-found solution
u, v, r Nodes (r is the root) in the branch-and-bound tree
S(u) Feasible solutions below node u in the branch-and-bound tree
` Node level, i.e. job index, in the branch-and-bound tree
ti Partial completion time of machine Mi in a branch-and-bound node
R Subset of jobs scheduled below a branch-and-bound node

Li, ~L Component Li of vectorial lower bound ~L = (L1, . . . , Lm)

Ui, ~U Component Ui of vectorial upper bound ~U = (U1, . . . , Um)
τ Time point
p̃j Piece of job Jj
λ,Λ Amount of processing time load

Makespan recovery problem
Iinit Initial instance (minit,Jinit)
Inew Perturbed instance (mnew,Jnew)
Sinit Initial optimal schedule for Iinit
Srec Recovered schedule for Inew
Snew Optimal schedule for Inew
ρ Approximation ratio

Uncertainty modeling

A18

U(f, k, δ) Uncertainty set
f Perturbation factor
k Number of unstable jobs
δ Number of new machines
C∗max(m,J) Optimal objective value of makespan problem instance (m,J)

Binding recovery strategy
T , Tnew Target makespan for instance I and perturbed instance Inew
Tnew Target makespan for perturbed instance Inew
M′ Subset of machines
m′ Number of machines in M′
J ′ Subset of jobs
η Reduction of pj
(m̂, Ĵ) Neighboring instance of (m,J)

p̂j Processing time of job Jj in (m̂, Ĵ)
Ms,Mu Stable machines Ms and unstable machines Mu =M\Ms

ms,mu Number of stable (ms) and unstable (mu) machines
J sinit Subset of stable jobs in Iinit
J snew Subset of stable jobs in Inew
F Maximum processing time in Inew

Flexible recovery strategy
JB ,J F Subset of binding (JB) and free (J F = J \ JB) jobs
JBi Binding jobs originally assigned to machine Mi

µj Machine executing job Jj in Sinit
g Limit on migrations of binding job

Numerical results
κ Phase transition parameter
κ∗ Critical value of phase transition parameter
b Number of bits for generating processing times
q Processing time seed
U Discrete uniform distribution
N Normal distribution
W Weighted value, i.e. weighted sum of objective functions
Ub, Lb Best-found incumbent (Ub) and lower bound (Lb)
dm, dn Number of machine (dm) and job (dn) disturbances
WN Normalized weighted value
W ∗ Best computed weighted value
CNmax Normalized makespan
C∗max Best recovered makespan

A19

	Introduction
	Problem Definitions
	Makespan Scheduling Problem
	LexOpt Scheduling Problem
	Perturbations

	Exact LexOpt Branch-and-Bound Algorithm (Stage 1)
	Branch-and-Bound Description
	Vectorial Bound Computation

	Approximate Recovery Algorithm with Binding Decisions (Stage 2)
	Recovery Algorithm Description
	Single Perturbation
	Multiple Perturbations

	Numerical Results
	System Specification and Benchmark Instances
	LexOpt Branch-and-Bound Algorithm Evaluation
	Generation of Perturbed Instances
	Two-Stage Robust Scheduling Evaluation

	Conclusion
	Exact LexOpt Methods
	LexOpt Scheduling Reformulation Lemma
	State-of-the-Art LexOpt Methods
	Branch-and-Bound Algorithm Pseudocode
	Longest Processing Time First Heuristic
	Correctness of Vectorial Bounds
	Optimality of Branch-and-Bound Algorithm

	NP-Hardness of Makespan Recovery Problem
	Robustness Analysis for a Single Perturbation
	Robustness Analysis for Multiple Perturbations
	Flexible Recovery Strategy
	Numerical Results with Degenerate Instances
	Generation of Degenerate Instances
	LexOpt Branch-and-Bound Algorithm Evaluation
	Two-Stage Robustness Assessment

	Table of Notation

