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1 Introduction

The aim of this work is to provide a set of examples which may give some in-
sight into the behaviour of ‘real’ statistical mechanical systems. The choice of
examples is motivated partly by reasons of precedence (I have tried to include
the examples which occur most frequently in the literature) and partly to illus-
trate particular aspects of the area of interest. Our main purpose is to provide
exact1 simulations using MAPLE. The investigation of kinetic equations (see e.g.
Bogoliubov, 1962) is, of course, important, but they are, in general, approxi-
mations to the behaviour of the underlying systems. As such any conclusions
which can be drawn are of limit use for the discussion of foundational prob-
lems. However, the restriction to exact simulations is severe. Most interesting
results in statistical mechanics are for cooperative systems and even at equilib-
rium there are only a few exact results (see e.g. Lavis and Bell, 1999) and no
many-body cooperative systems are tractable in terms of following their exact
dynamic behaviour. In addition to the restriction to systems of non-interacting
microsystems we are also forced to consider only linear systems. Calculations
for the evolution of non-linear equations, like the assembly of anharmonic os-
cillators discussed by Bricmont (2001), are normally some type of perturbation
expansion (see e.g. Drazin, 1992) and so of the same limited use as kinetic equa-
tions. Thus we shall consider assemblies of non-interacting microsystems driven
by linear equations. We never-the-less hope to demonstrate that these produce
interesting behaviour, which serves to clarify some of the contentious issues in
statistical mechanics.

For all of our examples we shall investigate the time-evolution of the Boltz-
mann entropy and, in the case of the spin-echo system in Sec. 6, we also consider
the fine-grained and course-grained versions of the Gibbs entropy.

1.1 The Boltzmann Entropy

Consider a system, which at time t has microstate given by the vector x(t) in
the phase-space Γ.2

∗Version 2, c© D. A. Lavis 2003. This file is:www.mth.kcl.ac.uk/∼dlavis/papers/examples-ver2.pdf

and should be referenced as such.
1See Sec. 7.
2Both time and the space Γ may be continuous or discrete and the ‘dynamics’ which drives

x(t) in Γ will be either deterministic, or could be taken to be stochastic.
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Macrostates (observable states) are defined by a set Ξ of macroscopic variables.3

Let the set of macrostates be {µ}Ξ. They are so defined that every x ∈ Γ is in
exactly one macrostate denoted by µ(x) and the mapping x → µ(x) is many-
one. Every macrostate µ is associated with its ‘volume’ V(µ) = Vµ in Γ.4 We
thus have the map x → µ(x) → Vµ(x) from Γ to R

+ or N. The Boltzmann
entropy is defined by

Sb(x) = kb ln[Vµ(x)/Vmin], (1)

where Vmin is the volume of the macrostate of minimum volume.5 This is a
phase function depending on the choice of macroscopic variables Ξ, so how do
we expect that it will behave? The point of view of the typical system approach
(Lebowitz, 1993; Bricmont, 1995) can be expressed as follows:

If the system starts at a phase point associated with low entropy
then we expect the entropy to increase.6 As it increases there is the
possibility of fluctuations, which could be large. When the entropy
gets near to its maximum value then it will still be expected to
fluctuate and those fluctuations could be large but we don’t expect
large fluctuations to occur very often.

This assertion, of course, runs counter to the strict form of the second law,
which does not allow any decreases in entropy of an isolated system.

We shall see in our examples that an important feature of the system, which
is determined by the dynamics, is the accessibility of one macrostate from an-
other. By µ′ being ‘accessible’ from µ we shall mean directly accessible (without
any intermediate macrostates) and µ′ is accessible from µ if there exists an
x ∈ µ which maps with time so that the next macrostate it visits is (in the
case of deterministic dynamics) or has non-zero probability of being (in the case
of stochastic dynamics) µ′. To clarify this point we introduce a number of
definitions. Given a macrostate µ, the set of macrostates which are accessible
from µ is denoted by S(µ). For reversible dynamic systems7 it is normally the
case that the phase points x and J x belong to the same macrostate. Then
Sb(x) = Sb(J x) and if µ′ is accessible from µ then µ is accessible from µ′.
Now divide S(µ) into two subsets S(+)(µ) consisting of those macrostates with
volumes greater or equal 8 to V(µ) and S(−)(µ) consisting of those macrostates
with volumes less than to V(µ). Entropy will increase/decrease in the transition
µ → µ′ if µ′ ∈ S(±)(µ) and the proportions of volume accessible from µ leading
to increase/decrease of entropy are

v(±)(µ) =
V(S(±)(µ))
V(S(µ))

, (2)

3These may include some thermodynamic variables (volume, number of particles etc.) but
they can also include other variables, specifying, for example, the number of particles in a set of
subvolumes. Ridderbos (2002) denotes these by the collective name of supra-thermodynamic
variables.

4In the case where Γ is continuous the volume of µ will normally be its Lebesque measure;
when Γ is discrete the volume will be the number of points in µ.

5The (optional) inclusion of this factor is convenient both for setting a zero to the entropy
and a scale for the volume.

6If it is the macrostate of least volume it will, of course, have to initially increase.
7Meaning that, there exists an operator J on the points of Γ such that, if x′ = φtx then

J−1φtJ x′ = x.
8So we shall be using ‘increase’ to mean increase or be equal to and decrease in the strict

sense.
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where V(S(µ)) denotes the total volume of the members of S(µ) (and similarly for
S(±)(µ)). In some of our examples it is simple to compute v(±)(µ) as functions
of V.

1.2 The Gibbs Entropy

Suppose the system consists of N microsystems.9 The (fine-grained) Gibbs
entropy is given by the functional

Sfgg[ρN(t)] = −kb

∫
ΓN

ρN(x; t) ln{ρN(x; t)}dΓN . (3)

of the (fine-grained) probability density function ρN(x; t) on ΓN . For a measure-
preserving system for which ρN(x; t) satisfies Liouville’s equation Sfgg[ρN(t)]
remains constant with time, as we shall demonstrate explicitly for the spin-echo
system of Sec. 6. The resolution to this problem suggested by Gibbs (1902,
p. 148) (see also Ehrenfest and Ehrenfest-Afanassjewa, 1912) is to course-grain
the phase–space ΓN , in the manner in which macrostates are usually obtained
in the Boltzmann approach. We first note that for a system of non-interacting
microsystems the probability density function factorizes into a product of single-
microsystem densities. We shall for simplicity, and because it is true for all our
examples, suppose that the microsystems are identical. Then

ρN(x; t) =
N∏

i=1

ρ1(x̊
(i); t), (4)

where x̊(i), representing the state of the i-th microsystem, moving in one of N
identical copies of the single-microsystem phase space Γ1. Then

Sfgg[ρN(t)] = −kbN

∫
Γ1

ρ1(x̊; t) ln{ρ1(x̊; t)}dΓ1. (5)

We now divide Γ1 into an enumerable set of hypercubic cells with edge-length in
the direction of the x̊j axis of length �x̊j . The cells, each of volume ν =

∏
j �x̊j ,

are denoted by γk and we define the course-grained probability density by

ρ̄1(k; t) =
∫

γk

ρ1(x̊; t)dΓ1 (6)

and the course-grained Gibbs entropy by

Scgg[ρ̄N(t)] = −kbN
∑

k

ρ̄1(k; t) ln{ρ̄1(k; t)} + kbN ln(ν). (7)

The presence of the (optional) second term in (7) is required if we demand
consistency with the fine-grained entropy in the case where the fine-grained
density is uniform (with possibly different values) over each of the cells. Then,
from (6), ρ̄1(k; t) = νρ1(x̊k; t), where x̊k is any point in γk and substituting into
(5) gives (7).10

9In indication of which we denote the phase space by ΓN .
10Alternatively the final term in (7) could be absorbed if the formula were written in the form

of an integral (rather than summation) over the piecewise constant course-grained density.
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It is not difficult to show that, in general, if we begin with any fine-grained
density and calculate the Sfgg[ρN(t)], and then apply course-graining and cal-
culate Scgg[ρ̄N(t)],

Sfgg[ρN(t)] ≤ Scgg[ρ̄N(t)], (8)

with equality only if the fine-grained density is uniform over the cells of the
course-graining. Now we can conceive of two possible ways of tracing the evo-
lution of entropy in the Gibbs course-grained picture.

(i) We could begin with some fine-grained density giving entropy Sfgg[ρN(0)]
at t = 0 and watch its evolution as time increases.11 If at time t′ ≥ 0 we
course-grain, then

Sfgg[ρN(0)] = Sfgg[ρN(t′)] ≤ Scgg[ρN(t′)]. (9)

However if we course-grain at two instants 0 ≤ t′ < t′′ it is not necessarily
the case that

Scgg[ρN(t′)] ≤ Scgg[ρN(t′′)] (10)

The course-grained entropy will not necessarily show monotonic increase.
However, the graph of the course-grained entropy, will not depend on the
instants at which course-graining is applied.

(ii) If, instead of the strategy adopted in (i) we course-grain at t′ then follow
the evolution of the course-grained density and then re-course-grain at the
later time t′′, (10) will hold. Course-grained entropy will show monotonic
increase. However, the graph of entropy against time will be affected by
the instances at which course-graining is applied.

We comment further on these observation in relation to the spin-echo system in
Sec. 7.

2 Simple Markovian and Simple Random-Walk
Models

Suppose that a system has m macrostates and that the macrostate µ(n) for
n = 1, 2, . . . ,m, consists of V(n) = n phase points. In the phase space there
will be 1

2m(m + 1) points. Let a trajectory of the system be a sequence of
random jumps between phase points. Fig. 1 shows a simulation giving the
scaled macrostate volumes for the system with m = 100, starting in µ(1). It is
clear that whereas the initial entropy jump is necessarily positive, the subsequent
behaviour shows wildly fluctuating behaviour. The band of frequently visited
states have scaled volumes spreading over an approximate range [0.3, 1.0] with
frequent fluctuations to lower values.

The problem with this simple Markovian (SM) model arises from the fact
that we have allowed accessibility between all pairs of macrostates. Given that,
for large n, the majority of the phase space will be occupied by points in

11Or decreases, but that’s another story.
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Figure 1: Simulation of the SM model with m = 100.
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Figure 2: The probabilities p(±)(n), for the SRW model, plotted against n for
a the case of m = 100 states.

macrostates of smaller volumes,12 unrestricted transitions will lead to large and
persistent fluctuations in macrostate volume and entropy. If on the other hand
transitions are allowed from a macrostate n only to macrostates n±1 the model
becomes a simple random walk (SRW) and the picture changes. The probabili-
ties that, when the system is in macrostate µ(n), it moves to a macrostate with
larger/smaller entropy are

p(±)(n) = π(n, n ± 1) =




n ± 1
2n

, if 1 ≤ n < m,
1
2 (1 ∓ 1), if n = m,


 = v(±)(n), (11)

12For m = 100 about half the phase space consists of points in macrostates with n < 70.
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Figure 3: Simulation of the SRW model with m = 100.

where13

π(n, n ± 1) = Prob[x(t + 1) = n ± 1|x(t) = n]. (12)

Graphs of p(±)(n) are given in Fig. 2. The probability of a transition leading
to an increase in entropy falls to a value near to a half, converging with the
probability of a drop in entropy, when the system is in a state of volume near
to the maximum. Of course, when the system is in the macrostate of maximum
volume then any transition must lead to a drop in entropy. These forms for the
probabilities illuminate the reduction in fluctuations as macrostate volume (and
entropy) increases as shown in Fig. 3.

This behaviour is much closer to our expectations for the entropy as de-
scribed at the beginning of Sec. 1. Thus we are learning that accessibility
between macrostates plays an important part in the behaviour of the model.14

The probability ρ(n; t) that x(t) = n, for n = 1, 2, . . . ,m satisfies15

ρ(n; t + 1) = ρ(n − 1; t)π(n − 1, n) + ρ(n + 1; t)π(n + 1, n), (13)

and it is easy to see that

ρ�(n) =
V(n)

m∑
k=1

V(k)

=
2n

m(m + 1)
(14)

is an equilibrium, meaning time-invariant, solution of (13).
13As in Parzen (1962) we use the convention that π(n, k) is the transition probability from

state n to state k. A random walk is a Markov chain for which π(n, k) = 0 if |k − n| > 1. In
our examples we also have π(n, n) = 0 for all n.

14In the the spin-echo system of Sec. 6 accessibility is determined by the dynamics of the
model. A transition between two macrostates occurred whenever the location of one dipole
described by the variables (θ, ω) in Γ1 passed from one cell to another. This, of course, meant
that the consequent change in entropy is quite small. Similar contiguity mechanisms also
apply to the other models described here.

15With ρ(n; t) = 0 for all t, when n is not in the range 1 ≤ n ≤ m.
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3 The Dog-Flea Model

Two of the most well-known ‘toy’ models of statistical mechanics are the dog-
flea model 16 of Ehrenfest and Ehrenfest-Afanassjewa (1907) (see also Emch and
Liu, 2002, p. 106–112, which contains further references) and the ring model of
Kac (1959). We shall now see that the dog-flea model is a stochastic version of
a special case of the ring model.

Two dogs called Plus and Minus share a population of N fleas, where for
convenience we suppose that N is even. Each axis of the phase space ΓN

denotes the state of a flea and has two points +1 and −1 indicating that the
flea is on Plus or Minus respectively. A macrostate of the system, for fixed N ,
is specified by one variable n, in the range

[− 1
2N, 1

2N
]
, where N (+) = 1

2N + n

and N (−) = 1
2N −n are respectively the number of fleas on Plus and Minus and

the volume of (number of phase points in) the macrostate is

V(n) =
N !(

1
2N + n

)
!
(

1
2N − n

)
!
. (15)

The Boltzmann entropy17 Sb(n) = kb ln[V(n)] is symmetric in n with maximum
at n = 0 and zeros at n = ± 1

2N .
Now suppose the fleas are numbered 1 to N and the flea-trainer chooses a

number at random in this range and orders that flea to change dogs.

This again is a random walk with transition probabilities

π(n, n ± 1) =
N ∓ 2n

2N
, −1

2
N ≤ n ≤ 1

2
N. (16)

The probabilities p(±)(n) that entropy and the macrostate volume increase/decrease
are the probabilities that |n| decreases/increases respectively. That is

p(±)(n) =




π(n, n ∓ 1), if 0 < n ≤ 1
2N ,

1
2
(1 ∓ 1), if n = 0,

π(n, n ± 1), if − 1
2N ≤ n < 0,

(17)

where now the random variable for the system is x(t) = n. We denote by
p(+)(V̄) the function p(+)(n) when, through (15), it is plotted against V̄. These
probabilities, together with the scaled volumes given by (2) are shown in Fig.
4. Unlike the SRW model, v(±)(n) 	= p(±)(n). This is because the model has a

16A vermin-free version of this model replaces the dogs by urns and the fleas by balls.
17In this case, of course, Vmin = V

(
± 1

2
N

)
= 1.
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Figure 4: The probabilities p(±)(V̄) and the volume ratios v(±)(V̄), for the dog-
flea model, plotted against V̄ for a population of N = 100 fleas.

structure imposed by the numbering of the fleas. Each point in V(n) corresponds
to exactly one distribution of the numbered fleas. This restricts the number of
points in V(n ± 1) which are accessible. It still has the same monotonically
decreasing character as that shown in the SRW model and we would expect
that, if the dogs begin their day with most fleas on one dog, then as the flea
trainer carries out his task, the macrostate volume, and hence the entropy, will
increase, rapidly at first, until they are near to their maximum values when they
will be subject to small fluctuations. The expected numbers of fleas on Plus and
Minus at time t + 1, given that there are N (±)(t) at time t, are

〈N (±)(t + 1)〉 = π(n, n ± 1)
[
N (±)(t) − n

|n|
]

+ π(n, n ∓ 1)
[
N (±)(t) +

n

|n|
]

= N (±)(t)
[
1 − 1

N

]
+ N (∓)(t)

1
N

. (18)

Replacing N (±)(t) by their expected numbers gives

〈N (±)(t + 1)〉 = 〈N (±)(t)〉
[
1 − 1

N

]
+ 〈N (∓)(t)〉 1

N
. (19)

which have the solution

〈N (±)(t)〉 =
1
2

+
(

1 − 2
N

)t [
N (±)(0) − 1

2
N

]
. (20)

Figs. 5 and 6 show simulations, together with results derived from (20), with
100 fleas beginning with 93 on Minus. In Fig. 5 we see that the numbers of fleas
on the two dogs converge towards 50, where they exhibit small fluctuations
about the expected values given by (19). Fig. 6 shows the behaviour of the
scaled entropy and of its value derived from (19). The probability ρ(n; t) that
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Figure 5: The numbers of fleas N (±)(t) on the dogs Plus and Minus plotted
against time t for a population of N = 100 fleas, beginning with seven fleas on
Plus. The smooth curve gives the values of 〈N (±)(t)〉 derived from (20).
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Figure 6: The scaled entropy S̄b, for the dog-flea model, plotted against time
t for a population of N = 100 fleas, beginning with seven fleas on Plus. The
smooth curve gives the value derived from (20).

x(t) = n again satisfies (13), except that now the transition probabilities are
given by (16). It is not difficult to show that this equation is now satisfied by
the equilibrium distribution

ρ�(n) =
V(n)

n=N/2∑
n=−N/2

V(n)

=
1

2N

N !(
1
2N + n

)
!
(

1
2N − n

)
!
. (21)
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For this distribution a number of significant results can be established (see Emch
and Liu, 2002, p. 106–112):

(i)

Prob[x(t) = n|x(t + 1) = k] = π(n, k)

= Prob[x(t + 1) = k|x(t) = n]. (22)

The backward transition probability is equal to the forward transition
probability, which is a form of statistical time-reversibility.

(ii) With

Π(k, n,m) = Prob[x(t − 1) = k and x(t + 1) = m|x(t) = n], (23)

Π(n − 1, n, n − 1) : Π(n − 1, n, n + 1) : Π(n + 1 : n : n − 1) : Π(n + 1, n, n + 1)

=
1
2N + n
1
2N − n

: 1 : 1 :
1
2N + n
1
2N − n

. (24)

It follows that, in this equilibrium distribution, the most probable se-
quences of three states are reversions towards the long-term mean values
n = 0, N (+) = N (−) given by (20).

(iii) Let ν(n; τ) be the probability that a trajectory starting with x(0) = n will
return to state n for the first time at time τ . We define, for fixed n the
mean and variance of the recurrence time

〈τ〉n =
∞∑

τ=1

τν(n; τ) and Varn(τ) =
∞∑

τ=1

{〈τ〉n − τ}2
ν(n; τ), (25)

It was shown by Kac (1947) that

(a)
∞∑

τ=1

ν(n; τ) = 1, (26)

which means that every state has a probability of one of recurring at
some time.

(b) 〈τ〉n =
1

ρ�(n)
=

2N

V(n)
. (27)

The recurrence times for n = 0 are relatively small but for n = 1
2N

they are large, even for modest values of N .18

(c) For large N and n ≈ N/2 the variance is of the order of the 〈τ〉n. So
the large mean recurrence time has limited significance.

18For N = 10, 〈τ〉0 = 256/63 and 〈τ〉5 = 1024; for N = 100 〈τ〉0 ≈ 12.56 and 〈τ〉50 ≈
12.68 × 1029.
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Figure 7: The evolution of the magnetization and the Boltzmann entropy, for
the ring model, with N = 1000, m = 56, N (+)(0) = 12. The mean-field value is
given by the broken line and, for t > 100, the dotted line represents the situation
when the rotation is reversed at t = 100.

4 The Ring Model

Suppose that we codify the dog-flea model by taking a ring of N sites and place
in a random way an up-spin on a site for every flea on Plus and a down-spin on
a site for every flea on Minus. The flea jumping is now represented by choosing
at random one point equidistant between two sites as a spin-flipper. Then all
the spins move one site clockwise, with the one passing through the flipper
being flipped. If the location of the spin-flipper is relocated randomly before
each rotation the model is exactly equivalent to the dog-flea model. It can be
generalized by randomly distributing m spin-flippers; this corresponds to the
flea-trainer choosing a team of m fleas with instructions to change dogs.

Now suppose that, having chosen the initial locations of the spin-flippers, we
leave them fixed. After the initial distribution of spins and flippers, the model
is deterministic. It is reversible simply by rotating the spins in the anticlockwise
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direction and periodic with period N if m is even and 2N if m is odd. This is
a version of the Kac ring model.19 The ‘magnetization’ at time t is

σ(t) =
N (+)(t) − N (−)(t)

N
=

2n(t)
N

(28)

and the Boltzmann entropy is given by the same formula as for the dog-flea
model. Suppose that each spin were equally likely to be flipped. Then the equa-
tions of motion would be

Ñ (±)(t + 1) = Ñ (±)(t)
[
1 +

m

N

]
+ Ñ (∓)(t)

m

N
t = 0, 1, 2, . . . (29)

and it is not difficult to show that

σ̃(t) = σ(0)
(

1 − 2m

N

)t

. (30)

The expectation-value equations (19) for the dog-flea model are just the case
m = 1 of (29), which would, of course, arise from the dog-flea model if m fleas
were instructed to change dogs on each occasion. The (unjustified) equally-
likelihood assumption, leads to a ‘mean-field theory’ where magnetization evolves
monotonically from its initial value to zero and the Boltzmann entropy evolves
monotonically to its maximum value. As with any mean-field theory fluctua-
tions are smoothed out. Figs. 7 show the evolution of a ring of 1000 spins with
56 spin-flippers including the situation with the rotation reversed at t = 100,
returning the system to its initial state. (The broken curves are the mirror im-
ages of the right-hand half of the curves.) Fig. 8 shows the Boltzmann entropy
for the case of 100 spins with 6 spin flippers. These figures clearly show the
reversibility and recurrence of this deterministic model. The simplicity of the
model allows us to effect reversibility with the consequent fall in entropy in a
way which could not be achieved with more ‘realistic’ systems. The recurrence,
for which the time is simply related to the number of spins, again would not
occur on realizable time scales for more complicated systems.

5 The Baker’s Transformation

This is the transformation, shown in Fig. 9, where a unit square is stretched to
twice its width and then cut in half with the right-hand half used to restore the
upper half of the unit square. As the mapping φ on the cartesian coordinates
(x, y) of the unit square it is given by

φ(x, y) =




(2x, 1
2
y), mod 1, 0 ≤ x ≤ 1

2
,

(2x, 1
2
(y + 1)), mod 1, 1

2
≤ x ≤ 1.

(31)

A convenient way of writing this transformation is to express x and y as binary
strings:

x = 0 · x1x2x3 . . . ,

y = 0 · y1y2y3 . . . ,
(32)

19See Dresden (1962), Thompson (1972), Bricmont(1995,2001) and Edens (2001) for further
discussion of the model and its variants.
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Figure 8: The evolution of the Boltzmann entropy, for the ring model, with
N = 50, m = 6, N (+)(0) = 2. The mean-field value is given by the broken line.

φ:

φ−1:

Figure 9: The baker’s transformation and its inverse.

where xj and yj take the values 0 or 1. Then the baker’s transformation takes
the form

φ(0 · x1x2x3 . . . , 0 · y1y2y3 . . .) = (0 · x2x3x4 . . . , 0 · x1y1y2 . . .),

with

φ−1(0 · x1x2x3 . . . , 0 · y1y2y3 . . .) = (0 · y1x1x2 . . . , 0 · y2y3y4 . . .).

(33)

It is clear that the mapping is reversible with φ−1 = JφJ and J(x, y) = (y, x). It
can also be shown (Lasota and Mackey, 1994, p. 54–56) to be volume-preserving
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Figure 10: A gas of N = 100 particles moving under the baker’s transformation.

and thus that the Poincaré (1890) recurrence theorem applies. One way of
representing the transformation is to write the bits for the initial point as

. . . y5y4y3y2y1|x1x2x3x4x5 . . . . (34)

Then φ corresponds to moving the vertical bar one step to the right. Now
suppose that a trajectory starts at a randomly chosen point in the small square
γ given by 0 ≤ x < 2−m, 0 ≤ y < 2−m. This simply means that in (34) there
are m entries of zero on each side of the bar. The trajectory will return to γ
when, after some translations of the bar, this again happens. We now calculate
the mean recurrence time to γ. Let f(n) be the probability that the point is
in γ for the first time (following the starting value) after n steps and let g(n)
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be the probability that after n steps the phase point is in γ irrespective of the
intermediate values. Then, with g(0) = 1,

g(n) =
n∑

k=1

f(k)g(n − k) (35)

Multiplying by zn and summing over n gives

G(z) = F(z) + F(z)G(z), (36)

where

F(z) =
∞∑

n=1

f(n)zn, G(z) =
∞∑

n=1

g(n)zn. (37)

Now

g(n) =




1
2n , 1 ≤ n ≤ 2m,

1
22m , 2m ≤ n.

(38)

So

G(z) =
22m(1 − z) + z2m+1

22m(2 − z)(1 − z)
(39)

and, from (36),

F(z) =
22m(1 − z) + z2m+1

22m(3 − z)(1 − z) + z2m+1
. (40)

Of course, F(1) = 1 and F′(1) = 22m is the mean recurrence time to γ. In the hi-
erarchy of special dynamic properties: ergodic, mixing, Kolmogorov, Bernoulli,
each implies the one preceding it. The baker’s transformation is Bernoulli.20

To show this divide the unit square into the partition B2 = {b0, b1}, where b0 is
the set where 0 ≤ x < 1

2
and b1 the set where 1

2
≤ x < 1. Then (x, y) will be in

bx1 . The complete record of the labels of a trajectory is the string (34) (without
the bar). This is distinct for each trajectory of points and the members are
uncorrelated so the partition is Bernoulli.

A rather more interesting application of the baker’s transformation is to
consider a ‘gas’ of N points. Then we can start all the points in some small
subset of the unit square and watch them evolve. Suppose the square is divided
into 22m equal square cells and all the particles begin in the bottom left-hand
cell. Fig. 10 shows the evolution for a gas of N = 100 particles with m = 4
(256 cells). Now we suppose that the macrostates correspond to identifying the
number of particles Nij in each of the cells i, j = 1, 2, . . . , 2m. Then

V({Nij}) =
N !∏

i,j Nij !
1

22m
, Vmin =

1
22m

. (41)

Fig. 11 shows the evolution of the Boltzmann entropy (scales as usual by it
20A system is Bernoulli if there is a Bernoulli-partition Bn of the invariant space Σ of the

transformation. of Σ. This is defined in the following way. Let Bn be a partition of the Σ into
n subsets. We label the members of Bn with the integers [0, 1, . . . , n−1] and, for any trajectory
and some �t, record the infinite sequence of numbers S = {. . . , s−2, s−1, s0, s1, s2, . . .}, where
the trajectory is in the set bsk labelled sk at time k�t. The partition is Bernoulli if all
sequences S are uncorrelated and no two distinct trajectories have the same sequence.
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Figure 11: The evolution of the Boltzmann entropy of N = 100 particles moving
under the baker’s transformation. The broken line shows the return to the initial
state when the transformation J(x, y) = (y, x) is applied at t = 20.

maximum value). The entropy will return to its initial value if all the particles
arrive in the same cell. The mean time for this to occur can be calculated by
the same procedure given above but with (38) replaced by

g(n) =




1
2n(N−1) , 1 ≤ n ≤ 2m,

1
22m(N−1) , 2m ≤ n.

(42)

This then yields the result that the mean time for the entropy to return to its
initial value is 22m(N−1) steps. For m = 4, N = 100 this approximates to 10238

steps.

6 The Spin–Echo System

Consider the simple model in which a magnetic dipole of moment µ is fixed at
its centre but is free to rotate in the presence of a constant magnetic field B.
The equation of motion of the dipole will be

µ̇(t) = g µ(t) ∧ B, (43)

where g is the gyromagnetic ratio. It is not difficult to show that motion of the
dipole is a precession at a constant angle to B. In particular, if µ is located
at the origin of a cartesian coordinate system with B in the direction of the
negative z-axis and if initially µ lies in the x − y plane, its subsequent motion
remains in the x − y plane and is given by

µ(t) = (µ cos(θ(t)), µ sin(θ(t))), (44)

where

θ(t) = θ(0) + ωt, ω = B g. (45)

Suppose that at some time t = τ the magnetic field B is turned off and a field
B′, in the direction of the x–axis is turned on for a time t′ = π/B′g. The
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effect of this will be to rotate the dipole through an angle π about the x-axis,
translating it position from θ(τ) = θ(0) + ωτ to θ′(τ) = 2π − θ(0) − ωτ , a
reflection in the x-axis. Then after a further time21 τ

θ(2τ) = θ′(τ) + ωτ = 2π − θ(0). (46)

If the dipole begins pointing along the x – axis then it returns to its initial posi-
tion (the echo effect). There is nothing remarkable about this result. A similar
effect could have been produced by reversing the direction of rotation. However,
we are interested, as in our previous examples, in an assembly of microsystems.
Consider the collection µi, i = 1, 2, . . . , N of such dipoles with angular velocities
ωi in the range [ωmin, ωmax] and plot their evolutions in the θ − ω plane. Sup-
pose that, N = 500, τ = 100, ωmin = 0.75 and ωmax = 1.25 and that the ωi are
chosen randomly in [ωmin, ωmax] with θ0 = 0 for all the dipoles. Then we have
the situation shown in Fig. 12. The ‘gas’ of dipole phase points spreads into
the single–dipole phase space Γ1. Since the angular velocities have been chosen
randomly the assembly is quasi-periodic. The system is Hamiltonian and will
satisfy the Poincaré recurrence theorem. For ‘most’ initial points, if the position
is not reflected at some time τ , the phase point (θ,ω) = (θ1, . . . , θN , ω1, . . . , ωN)
in the 2N -dimensional phase space ΓN nevertheless returns to within a neigh-
bourhood of its initial value.22 Of course, if the initial angular velocities are
chosen to be commensurate, the system will be periodic and will return exactly
to its initial point.

There would be nothing particularly special about this model, if it were not
for the fact that it has been realized experimentally. Although the system is
not cooperative, the realization of a controlled return to its initial state for a
many-component system is a considerable achievement. Hahn (1950) used a
sample of glycerin in a magnetic field. By manipulating the components of the
magnetic field he was able to start with the dipole moments of the protons
in the x–direction, make them precess around the z–axis and then reflect the
directions of the dipoles in the x–axis to achieve the echo effect with the dipoles
returning to their initial alignment.23 This system has aroused some interest
in relation to questions of reversibility in statistical mechanics (Ridderbos and
Redhead, 1998; Ridderbos, 2002). Here our purpose is not so much to enter
these disputes as to provide simulations which could lead to clarification of the
argument. We shall calculate not only the Boltzmann entropy but the fine-
grained and course-grained versions of the Gibbs entropy.

As in the case of the baker’s transformation, described in Sec. 5, the Boltz-
mann entropy is obtained by defining macrostates by course-graining. We divide
the single–dipole phase space Γ1 into nθ×nω rectangular cells with edges parallel
to the θ and ω axes and of lengths �θ = 2π/nθ and �ω = (ωmax−ωmin)/nω re-
spectively. We label the cells by the indices ηθ = 1, 2, . . . , nθ, ηω = 1, 2, . . . , nω.
For a particular phase point (θ,ω), in ΓN , let N(ηθ, ηω;θ,ω) be the number of
dipoles with phase points in Γ1 in the cell (ηθ, ηω). We define the macrostate
S(θ,ω) as the set of points (θ′,ω′) such that

N(ηθ, ηω;θ′,ω′) = N(ηθ, ηω;θ,ω), ηθ = 1, 2, . . . , nθ, ηω = 1, 2, . . . , nω

21We neglect the time t′ needed to produce the reflection.
22The recurrence time will, of course, be dependent on the size of the neighbourhood.
23The variations in the angular velocities were achieved from small variations in the strength

of the magnetic field throughout the sample.
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Figure 12: An assembly of N = 500 rotating dipoles.

(47)

and thus

V(θ,ω) = Ω(θ,ω)[�θ�ω]N , Vmin = [�θ�ω]N , (48)
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Figure 13: The evolution of the Boltzmann entropy of the dipole assembly. After
t = τ = 100 the broken line gives the echo.

where

Ω(θ,ω) =
N !

nθ∏
ηθ=1

nω∏
ηω=1

[N(ηθ, ηω;θ,ω)]!

(49)

From (1),

Sb(θ,ω) = kb ln[Ω(θ,ω)], (50)

The maximum value of Sb is given when each cell is occupied by an equal number
of dipoles and in Fig. 13 we show the Boltzmann entropy, with nθ = nω = 100,
scaled by its maximum value, for the same evolution that is shown in Fig. 12.
The continuous and broken lines for t > 100 correspond respectively to the
evolutions without and with the echo-effect.

We now calculate the fine-grained Gibbs entropy. Suppose that the initial
probability density function is concentrated and uniform over the interval θ ∈
[0, θ0] (θ0 < 2π). Then

ρ1(θ, ω; 0) =
H(θ) − H(θ − θ0)
θ0(ωmax − ωmin)

, (51)

where H(θ) is the Heaviside unit function. Now the periodicity of (45) can be
manifested explicitly in the form

θ(t) = F[θ(0) + ωt], (52)

where

F[x] = 2π × Non-Integer Part
( x

2π

)
. (53)
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Figure 14: The evolution of the fine-grained probability density function
ρ1(θ, ω; t) with the echo occurring at t = τ = 100.

Then

ρ1(θ, ω; t) =




H(θ − F[ωt]) − H(θ − F[θ0 + ωt])
θ0(ωmax − ωmin)

,

F[ωt] < F[θ0 + ωt],

H(θ − F[ωt]) − H(θ − F[θ0 + ωt]) + H(θ) − H(θ − 2π)
θ0(ωmax − ωmin)

,

F[θ0 + ωt] < F[ωt].

(54)
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Figure 15: The evolution of the course-grained Gibbs entropy of the dipole
assembly. After t = τ = 100 the broken line corresponds to the echo.

If the echo transformation θ → 2π − θ is applied at the time τ the one-spin
probability density function for t > τ is given, in terms of (54) by ρ1(2π −
θ, ω, 2τ − t). The evolution of this fine-grained probability density function with
τ = 100 is shown in Fig. 14.

Substituting from (54) into (5) gives

Sfgg[ρN(t)] = kbN ln{θ0(ωmax − ωmin)}, (55)

This result is simply an expression of the well-known result that the fine-grained
Gibbs entropy is invariant with respect to time. The course-grained Gibbs
entropy is now calculated using the same course-graining as was used to obtain
the macrostates for the Boltzmann entropy. Scgg[ρN(t)] will have a maximum
value when the hatched area in Fig. 12 is spread evenly over the cells. Then
ρ̄1(k; t) = (�θ�ω)/{2π(ωmax−ωmin)}. Substituting into (7) (with ν = �θ�ω)
gives

(Scgg)max = kbN ln{2π(ωmax − ωmin)}. (56)

We adopt the strategy (i) of Sec. 1.2 and course-grain the fine-grained density
as time evolves (rather than performing successive re-course-grainings). The
results for nθ = nω = 100 are shown in Fig. 15. Ridderbos and Redhead (1998)
have shown24 that the course-grained entropy tends to its maximum value (56)
as t → ∞ and our simulations in Fig. 15 support this result.

7 Some Comments

The purpose of this work has been to provide results for simulations of a num-
ber of simple models which have relevance to statistical mechanics. In Sec. 1
we commented that approximations used to solve statistical mechanical models,

24Thus proving the system is mixing.
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while often practically very useful, tend to vitiate inferences of a more funda-
mental kind. In general, of course, computational work suffers from the same
defects and in the light of this we should consider the weight which can be given
to our results. The most serious problem would be if temporal iteration led to
an accumulation of numerical errors. This will not be the case for the models of
Secs. 2–4, where the phase space is discrete and the volumes of the macrostates
are integer. The only approximation here is in the calculation of the entropy
for the purpose of graphical representation. For both the spin–echo system and
baker’s transformation the phase space is a subset of R

2. The iteration of the
spin–echo system is given by (45) and since all the variables are real there will be
some numerical rounding which will also affect the calculation of the number of
phase-points in the cells for the Boltzmann entropy and the course-grained den-
sities for the course-grained Gibbs entropy. However, our results would indicate
that using MAPLE with hardware accuracy and with the level of course-graining
used the results are not significantly compromised.25

The most interesting case is the baker’s transformation. The initial state of
a microsystem is given by a binary string like (34). Each iteration is equivalent
to moving the bar one step to the left and the cell in which the microsystem
is situated is given by the m bits each side of the bar. For enough information
to be contained in the initial string so that the cell for the the j–th iteration
is predictable the binary strings for the cartesian coordinates must be accurate
to j + m places. This level of accuracy will also give the maximum number of
iterations which can be performed with the possibility of reversing the direction
and returning with certainty to the initial cell. This latter observation provides
a good computational test. We found for our system that with m = 4 we could
perform around twenty iterations and return the system along the same set of
cells. This is shown if Fig. 11. Of course, the unreversed part of the curve for
t > 20 will rely on bits which were not contained in the initial point.26

There is much discussion in the literature of the models treated in this work;
in particular in relation to rival viewpoints about the appropriate form for non-
equilibrium entropy. However, because of the analytic difficulty, there is a lack
of hard information about the way these behave over time. Of course, our results
do not prove anything about that. But, we suggest that they provide evidence
that typically the Boltzmann entropy behaves in the way suggested in Sec. 1
and that the behaviour of the course-grained Gibbs entropy can be described in
a similar way.
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