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1. Introduction

Anyone interested in the foundations of statistical mechanics has always had

a variety of di�erent and con�icting approaches to choose from (Lavis 1977).

Most of these take, explicitly or implicitly, a relative frequency interpretation

of probability. A notable exception to this, based on Shannon's work on

information theory (Shannon and Weaver 1964), was initiated by Brillouin

(1956) and developed by Jaynes (1957). This approach (usually referred to as

the maximum entropy method) has now been developed to encompass other

aspects of statistics and probability theory (Jaynes 1983). It also provides an

attractive way to teach statistical mechanics (see e.g. Hobson 1971, Turner

and Betts 1974). There are some problems with this approach (Lavis and

Milligan 1985), but they are mainly a matter of philosophical taste. An
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implication of the underlying Bayesian view of probability is that the entropy

of the system is dependent not just on the nature of the system but also on the

experimenter's (inevitably imperfect) knowledge of the system. Not everyone

is comfortable with this.

There are interesting similarities and di�erences between the work of

Jaynes and Frieden, who begins his book with the quote:

All things physical are information-theoretic in origin and this is

a participatory universe � � �. Observer participancy gives rise to

information; and information gives rise to physics.

from J. A. Wheeler. His emphasis is, therefore, on getting rather than sim-

ply having information; that is to say on measurement, though whether he

really believes that the physics would not be there without the measurement

is di�cult to say. It is, of course, a standard part of quantum mechanics

that measurements cannot, in general, be made without a�ecting the sys-

tem, but Frieden seems to be saying rather more than this. On page 2 we

read that `Physics is, after all, the science of measurement. That is, physics

is a quanti�cation of observed phenomena.' [his italics] and on page 3 he

predicates his extreme physical information point of view on the proposition

that `all physical theory results from observation: in particular, imperfect

observation' [his italics]. Frieden's programme is much more ambitious than

Jaynes'. While Jaynes, within the area of the foundations of physics, con-

�ned himself to statistical mechanics, Frieden claims to be able to derive the

fundamental equations of almost all of physics.

In trying to evaluate the success of this project it is reasonable, as in the

case of Jaynes, to distinguish questions of philosophical predilection from

those of method. We shall mainly concentrate on the latter and within this

brief we try to answer two questions:

(1) Does the method of extreme physical information appear to be a promis-

ing approach to physics?

(2) Has Frieden provided a persuasive account of its use?

If we were convinced that the answer to (1) were clearly negative we should

be wasting our time writing this review. However, it seems to us that there

may be something interesting here. It is unfortunate that Frieden's attempt

to describe the method is so seriously �awed both in logic and rigour. In

particular his understanding of the meaning of scalars, vectors and tensors

is very confused, and this is compounded by a rather sketchy notion of the

meaning of a `four-vector'.1

1Not helped by the rather inconsistent notation for vectors. There seems to be an
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2. The Method of `Extreme Physical Information'

Frieden's approach is based on a version of the variational method and we now

give a brief summary of this procedure. Consider a system with variables x =

(x1; x2; : : : ; xM) in the space � and functions q(x) = (q1(x); q2(x); : : : ; qN(x)).

The Lagrangian density L(q(x)) is some function of the set qn and their par-

tial derivatives qnm = @qn=@xm for n = 1; 2; : : : ; N , m = 1; 2; : : : ;M and we

de�ne the Lagrangian functional

L[q] =

Z
T

L(q(x)) dMx; (1)

where T is the hypercube x(0)
m
� xm � x

(1)
m

in �.2 One way of axiomatizing a

physical system for which we have a Lagrangian density L(q(x)) is to assert
that the equations of motion are given by �nding an extremum3 for L[q] as

the function forms of qn(x), n = 1; 2; : : : ; N , are changed subject to their

values being �xed over the boundaries of T. According to the calculus of

variations such an extremum is given when the functions qn(x) satisfy the

Euler-Lagrange equations

MX
m=1

@

@xm

 
@L
@qnm

!
�
@L
@qn

= 0: (2)

Frieden observes that in most physical systems the Lagrangian density is of

the form

L(q(x)) = 1
2

NX
n=1

cn[rqn(x)]
2 + L1(q(x)); (3)

which, from (2), then gives the equations of motion

cnr2
qn =

@L1

@qn
; n = 1; 2; : : : ; N: (4)

Frieden is certainly correct in pointing out (p. 24) that the problem with this

approach to physics is in determining the appropriate Lagrangian density.

Most undergraduate courses in dynamics introduce variational methods,

if at all, at the end with the form of the Lagrangian density provided by

implicit intention to use boldface roman symbols for vectors of dimensionM � 4 and bold

italic symbols for three-dimensional vectors, but this convention is not used consistently.
2We shall denote the volume element dx1 � dx2 � � � � � dxM by dMx. It is to be

regretted that Frieden denotes this quantity by dx. The possibility of confusion with the

in�nitesimal vector element in � is obvious, particularly when, as on page 305, he uses dr

as a three-dimensional volume element and d� as a three-dimensional vector in the same

equation.
3Normally a minimum.

3



post hoc reasoning. One of the avowed aims of Frieden's book is to `present a

systematic approach to deriving Lagrangians' [his italics] (p. 24). His starting

point is to construe the Lagrangian functional as a quantity K[q], which is

`called the `physical information' of the system' (p. 71) and which has the

form

K[q] = I[q]� J [q]; (5)

where I[q] is the Fisher information. For one variable x distributed with a

probability density function p(x)

I[p] =

Z
[p0(x)]2

p(x)
dx: (6)

Since the probability density function p(x) is nonnegative q(x) =
q
p(x) is a

real function and (6) can be re-expressed in the form

I[q] = 4

Z
[q0(x)]2dx: (7)

To within a constant, which can obviously be included, this is of the form

required for the square-gradient term in the Lagrangian density and the gen-

eralization

I[q] =

NX
n=1

Z
in(x) d

M
x; where in(x) = 4N jrqn(x)j2 ; (8)

is not something to cause a problem.4 The di�culty is, of course, to have

a plausible argument for the remaining term of the Lagrangian density, or

equivalently of the total information, represented respectively in (3) by L1

and in (5) by J . One line of approach, in the spirit of Jaynes, or of many

problems in control theory, would be to try to incorporate this term as an

integral constraint. This Frieden rejects as `ad hoc' (p. 69). He claims to

have a `natural way' [his italics] (p. 69), of obtaining J and the bulk of the

book is devoted to an attempt to substantiate this claim.

As indicated above Frieden's approach is based on measurement. He

interprets I[q] as the amount of information contained in the data collected

during the measurement process and J [q] as the bound information, de�ned

as the amount of information in the phenomenon. It is therefore reasonable,

at �rst sight, to go along with his argument (p. 71) that

J [q] � I[q]; (9)

4Although, in the interests of clarity, it may have been better to write i(qn(x)) rather

than in(x), the same being the case in (15), below. The factor of N is missing in the �rst

appearance of these formulae on page 72, but has made an unexplained appearance by

page 91. In the interests of consistency we include it from the beginning.
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since a measuring process cannot extract more information from the phe-

nomenon than is present. The problem with this is that the two quantities

are functionals not numbers. They are susceptible to numerical evaluation

only when the forms of the function qn(x), n = 1; 2; : : : ; N are known. Un-

less, of course, we were to understand (9) to be true for all functions.

Frieden next postulates his `axiom 1' (p. 70) that `perturbed amounts of

information' satisfy the formula

�J [q] = �I[q]: (10)

Why this should be true, rather than, for example, an inequality like (9),

is by no means obvious. But at least, if we interpret, as Frieden does, this

formula as a variational principle for K[q] with respect to variation of the

functions qn(x), then we have the Euler-Lagrange equations

MX
m=1

@

@xm

 
@K
@qnm

!
�
@K
@qn

= 0 (11)

to solve for the functions qn(x), where

K[q] =

Z
K(q(x)) dMx: (12)

For ease of discussion we denote the functions which satisfy (11) as q(e)
n
.

The usefulness of axiom 1 depends of having an independent argument

for obtaining J (q(x)) and then the functional

J [q] =

Z
J (q(x)) dMx: (13)

Then, of course, the inequality (9), with the functions qn(x) set to the forms

q
(e)
n

(x), would be a theorem which needed to be proved. In his attempt

to resolve this situation Frieden now makes an assumption (p. 71) which is

both crucial to the development and also either completely equivalent to (9)

or totally unjusti�ed. He supposes that

I[q]� �J [q] = 0; (14)

where � � 1 is a constant. This statement can, of course, be interpreted in

at least two di�erent ways. If it were to be taken to be true

(i) just for the functions q(e)
n

(x), derived from (11), then it would be triv-

ially equivalent to (9) (also taken with qn(x) given by q(e)
n

(x)) and in

need of proof.
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(ii) for all functional forms qn(x), then it doesn't follow from (9) since �

should also then be a functional of q with a value, greater than or equal

to unity for all functions qn(x).

In any event (14) is of only limited use.5 The serious work in most of the

book is done by assuming `a zero-condition on the microscopic level'. This

is achieved by two more axioms. Axiom 2 asserts that6

J (q(x)) =

NX
n=1

jn(x); (15)

and axiom 3 asserts that

in(x)� � jn(x) = 0; for all x and n. (16)

It is a little di�cult to know how to interpret this equation. It is certainly

true that it implies (14), in either the sense (i) or (ii), but the converse is

far from being the case. If we were to understand (16) as a set of equations

to be used to �nd the appropriate functional forms for qn(x) with a given

predetermined form for jn(x), then, as was pointed out by Kibble (2000),

there is no reason to suppose that the resulting forms will agree with those

derived from the Euler-Lagrange equations (11).

However, this is not the way that Frieden approaches the problem. He

has no independent method of de�ning the functions jn(x). So he sets out to

derive them by some combination of the use of (11) and (14) or (16). He has

two di�erent approaches to doing this, which he designates as (a) and (b)

(pp. 75�76). These will be discussed with particular examples in Section 4..

3. Invariance Principles

Since Frieden places great emphasis on the use of invariance principles we

shall brie�y discuss this aspect of the method.

3.1. Using Four-Vectors

On pages 84�89, in a section entitled rather grandly `Derivation of Lorentz

group of transformations', Frieden imposes the condition that the Fisher

5In the derivation of the Schrödinger and Klein-Gordon equations.
6A similar decomposition of the integrand I(q(x)) of the Fisher information follows

from (8).
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information given by (8) must be invariant in form for any allowed linear

transformation x0 = Bx in �. Since

rqn(x) = Brq
0

n
(x0); d3r0dt0 = detfBgd3rdt; with d3r = dx dy dz;

(17)

it follows that the condition is satis�ed if B is unitary with detfBg = 1. At

this point he observes that `the most well-known rotation matrix solution is

the Lorentz transformation' with x = (ict; x; y; z)

B =

0
BBBBBB@


 �(
u=c) 0 0

�(
u=c) 
 0 0

0 0 1 0

0 0 0 1

1
CCCCCCA

(18)

where 
 = 1=
q
1� u2=c2. On this basis he makes the wholly unwarranted

inference that x must always be a four-vector, that is a vector which trans-

forms according to the Lorentz transformation. On page 89 we read that `An

information density that is not covariant could not have implied the Lorentz

transformation'. How are we to understand this statement? If `covariant' is

taken just to mean that x transforms according to a unitary transformation

then this does not imply that B is of the form (18), even if we give no physi-

cal meaning to u=c. There are unitary transformations with detfBg = 1 for

all values of M . If on the other hand `covariant' means that x transforms

according to the Lorentz transform then the statement reads like a badly

expressed tautology. In any event the whole discussion hardly supports the

title of the section. It is di�cult to avoid the suspicion that part of his mo-

tive is to smuggle into the analysis c as the speed of light. It also gives him

an excuse for using vectors with imaginary components, a practice rightly

condemned by Kibble (2000).

3.2. Using Fourier Transforms

In Section 3.8 Frieden uses a discussion of an optical measurement device

to show (in his opinion) that

(i) A unitary transformation of coordinates naturally arises during the

course of measurement of many (perhaps all) phenomena.[his italics]

(ii) The method of extreme physical information, as de�ned in (3.16) [the

variational principle, equivalent to our (10)] and (3.18) [our equation

(14)] is implied by the unitary transformation and the perturbing e�ect

of the measurement. [his italics]
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Frieden uses the well-known relationship between Fourier transformation of a

light-wave and Fraunhofer di�raction (see e.g. Longhurst 1957). He considers

a plane light wave of wavelength � shining on a particle moving on a line with

coordinate x and subject to a potential V (x). The intensity of the light after

interacting with the particle is u(x) and, having passed through a single slit,

the Fraunhofer di�raction pattern on a screen at distance R is U(x0) with

the relationship

U(x0) =

Z
u(x) exp

 
2�ix x0

�R

!
dx: (19)

This arrangement is taken to be a process of measuring the location of the

particle and u(x) is understood as being related to the quantum mechan-

ical probability amplitude  in object space with U(x0) being related to

the quantum mechanical probability amplitude � in measurement space.

He now performs the change of variables � = hx
0
=�R, with  (x) = u(x)

�(�)
p
h = U(x0), so that (19) becomes

�(�) =
1p
2��h

Z
 (x) exp

�
ix�

�h

�
dx; (20)

where �h = h=2�.

This is an outline of Frieden's argument in support of (i), with the unitary

transformation being Fourier and  (x) the complex-valued amplitude used

in de�ning the Fisher information. The reason for introducing the parameter

h is at �rst sight a little puzzling, particularly as he tells us that `h is what

we call `Planck's parameter'. It is later found to be a constant; see Sec.

4.1.14.' If h is used in a change of variables it surely must be a constant. In

seeking further enlightenment we refer to Section 4.1.14, which consists of

two and a half lines. It claims to show that �h is a `universal constant' and

this is partly because (the extremum value of) `J is regarded as a universal

constant'. We are directed for enlightenment on this point to Section 3.4.14

where we discover this is because J `can only be a function of whatever free

parameters the functional K contains (e.g. h, k, c)... The absolute nature

of the scenario suggests, then, that we regard the extreme value of J as a

universal physical constant.'7 He then goes on to argue that if J is a function

only of c then c is a universal constant because J is a universal constant. This

seems to be where we came in. He refers to this argument as `an unusual

`bootstrap' e�ect'.

It seems to us that it is not only unusual but invalid. It is di�cult to

escape the conclusion that the introduction of h, like the earlier introduction

7A reference is given, but it consists only of the acknowledgement of discussions with

the person referenced, so it provides no supporting evidence.
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of c, is a way of covertly including a physical parameter. This impression

is reinforced when we read that the new variable � introduced in the same

change of variables `turns out to be the particle momentum'.8 On the basis

of this discussion the next subsection claims to con�rm equation (3.18) [our

equation (14)] using unitarity. With N = 2 and  (x) = q1(x) + iq2(x), (8)

gives9

I[ ] = 8

Z �����d (x)dx

�����
2

dx: (21)

The argument is that since measurement is a unitary (Fourier) transforma-

tion `the Fisher information I, expressed equivalently in momentum10 space,

represents the `bound' information for the particle.' This might lead us to

suppose that, using (20),

J [�] = 8

Z �����d�(�)d�

�����
2

d� =
8

�h
2

Z
x
2 j (x)j2 dx: (22)

But this would not lead to (14). Instead Frieden simply substitutes the

inverse of (20) into (21) to give

J [�] =
8

�h
2

Z
�
2 j�(�)j2 d�: (23)

Then, of course, it is trivially obvious that (14) follows with � = 1. He now

proceeds to use the same trick to `con�rm' the variational formula (10). He

de�nes J [�] by (23) and takes the variation �J [�]. He then inserts the Fourier

transform into the variation �I[ ] with I[ ] given by (21). That this leads

to �I[ ] = �J [�] is hardly a surprise.

4. Particular Examples

In this section we consider some of Frieden's accounts of the application

of the extreme physical information method to di�erent physical situations,

dividing them according to whether he uses his approach (a) or (b). Since

(a) is used in the later parts of the book we shall discuss it after considering

(b).

8To �nd out how this happens in Frieden's scheme we are referred forward to pages

115�117. This argument is considered below.
9For no very obvious reason Frieden drops the factor of 8. Since, however, it reappears

at other places in the book we shall leave it in.
10He makes free use of � being the momentum in spite of the fact that this is only

`established' in the next chapter.
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4.1. Approach (b)

This method is used in Appendix D for Schrödinger's equation and in Chapter

4 for the Klein-Gordon equation. The `macroscopic level condition' (14) is

�rst used to de�ne J [q] and the required functional forms for qn(x) are then

given by the Euler-Lagrange equations. This approach is extended in the

latter part of Chapter 4, where the functional used for the Klein-Gordon

equation is reused at the microscopic level to obtain the Dirac equation. This

allows Frieden to claim that in some circumstances (16) and (11) produce

distinct and equally valid sets of equations.

Naively one might suppose that it is straightforward to use (14) to de�ne

J [q]; we have simply J [q] = I[q]=�. However, from (5), K[q] = (��1)I[q]=�

and, since in all cases of the use of this approach Frieden takes � = 1, we

then have K[q] = 0, for all choices of q. This is a conclusion that the author

rejects as `mere tautology' (p. 106) and he has a most ingenious method of

circumventing it. This consists in what he conceives to be the use of `the

invariance, or symmetry principle governing each phenomenon' (p. 107). In

practice this means using Fourier transformation and other manipulations to

ensure that when J [q], obtained initially from (14) (with � = 1), is substi-

tuted into (5) it has been transmuted so that it is no longer identical to I[q].

The way this is done in particular cases will now be discussed.

In Appendix D Frieden sets out to derive Schrödinger's equation for a

particle of mass m moving on a straight line. The position of the particle x

is a random variable and it is subject to a conservative potential V (x), with

the total energy W conserved. With N = 2 and the complex wave function

 (x) = q1(x)+i q2(x) we have the Fisher information (21).11 Using (14) with

� = 1 he now uses the inverse of the Fourier transform (20) to express the

bound information in the form (23). The aim now is to use the variational

principle (10) to derive Schrödinger's equation. To do this both I[ ] and

J [�] must be functionals of the same function. So � must be transformed to

 or vice-versa. This would lead, of course, to the inconvenient result that I

and J are identically equal. To avoid these di�culties Frieden now proceeds

to transform the bound information by the following steps. From (23),

J [�] =
4

�h
2 h�

2i =
8m

�h
2 hEkini =

8m

�h
2 hfW � V (x)gi

=
8m

�h
2

Z
fW � V (x)gj (x)j2dx = J [ ]: (24)

Using the �nal form for J [ ] Schrödinger's equation follows from the vari-

ational formula. The problem with this argument is that he is implicitly

11He leaves the identi�cation of N = 2 to the �nal lines of the appendix, but this does

not a�ect the logic of his argument.
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assuming what he is setting out to prove. That �(�) given by (20) is

the momentum-space wave-function is either a consequence of Schrödinger's

equation or a supposition used to derive it. In any event h�2i is the expected
value of the squared momentum leading to expected kinetic energy only if

 (x) in (20) giving �(�) is already a solution of Schrödinger's equation. So

these steps cannot be used in the general functional form.

In Chapter 4 a similar procedure is used to �rst derive the Klein-Gordon

equation and then the Dirac equation. Here M = 4 with x = (ix; iy; iz; ct)

and N is even with  n(r; t) = qn(r; t) + iqn+N=2(r; t), n = 1; 2; : : : ; N=2.12 A

crucial element of the derivation is the proposed form of normalisation of the

Klein-Gordon wave-function in space-time. For general N , this is given by

his equations (4.10) and (4.11) and is equivalent to

c

N=2X
n=1

Z
j n(r; t)j2d3rdt = 1: (25)

Even when N = 2, which is the case he discusses on page 121, this condition

is inconsistent with the Klein-Gordon equation. This is most easily seen in

momentum-energy space. Equation (25), with N = 2 , implies that  1, as a

function of the four variables (r; t), is square-integrable and, from Parseval's

theorem, this is also the case for its Fourier transform �1, as a function of

momentum � and energy E. But any such �1 must (as a distribution) satisfy

the momentum-energy space version

(E
2 � �2 �m

2
)�1(�; E) = 0; (26)

of the Klein-Gordon equation. So �1(�; E) = 0 unless E2 ��2 = m
2. There

are no square-integrable functions with this property, other than the zero

function.

The author's motivation for adopting (25) is contained in his assertion

that the conventional normalisation condition is inconsistent. This condition

he takes to be (p. 121)Z
j 1(r; t)j2d3r = 1: (27)

This is simply wrong. The correct normalization is the Wigner form (Segal

1965)Z n
 1(r; 0)! 1(r; 0) + _ 1(r; 0)!

�1 _ 1(r; 0)
o
d3r = 1; (28)

12Setting N = 2 is adequate for the Klein-Gordon equation but he uses N = 4 and

N = 8 for the Dirac equation.
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where ! is the pseudo-di�erential operator
p
m2 �r2.

However, as we proceed through his analysis, other problems also arise.

Starting with the Fisher information

I[ ] = 4Nc

N=2X
n=1

Z �
1

c2
j _ n(r; t)j2 � jr n(r; t)j2

�
d3rdt; (29)

the same argument is used as for the Schrödinger equation to obtain

J [�] =
4N

�h
2

*
E

2

c2
� �

2

+
; (30)

where under the Fourier transformation r is conjugate to �=�h and ct to E=c�h.

As in the case of his derivation of Schrödinger's equation we must bear in

mind that the right-hand side is still a functional of the, as yet, arbitrary

set �n(r; t), n = 1; 2; : : : ; n=2. We have already discussed the rather curious

argument which Frieden uses to come to the conclusion that J is a `universal

constant'. Even if this were true it could only be the case for (30) with the

�n satisfying the Klein-Gordon equation. So the argument that since

the two factors in (4.13) [our equation (30)] are independent,

each must be a constant. Then parameter �h must be a universal

constant (p. 116)

could at most be valid only in this circumstance. Obviously h�2i and hE2i
are constant for particular wave-functions since all the variables have been

integrated out. This has nothing to do with them being independent and J

will also depend on the wave-function chosen: so it cannot be argued from

this that �h is a universal constant.

Frieden now examines the expectation value term on the right of (30). In

spite of the fact that J [�] is still a functional he argues that, since the �uc-

tuations of � and E change with boundary conditions and J [�] is, according

to him, a universal constant, then the combination of variables E2
=c

2 � �
2

must be constant. This has, for him, two fortunate consequences:

(i) By a little dimensional analysis he persuades us that the constant in

question is mc enabling him to obtain the standard energy-momentum

formula

E
2 = c

2
�
2 +m

2
c
4
: (31)

This in turn allows the identi�cation of E with energy and � with

momentum.
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(ii) By substitution from (31) into (30) and using the (incorrect) normal-

ization condition (25) he obtains

I[ ] = 4N

�
mc

�h

�2
= J [�]: (32)

It may seem that discovering that what you thought was a functional of the

set �n has in fact the same constant value for all choices of �n would be

a problem. Not, however, if you are prepared to recycle the normalization

condition (25) to give J as a functional of  n in the form

J [ ] =
4Nm2

c
3

�h
2

N=2X
n=1

Z
j n(r; t)j2d3rdt: (33)

It might be argued that I[ ] is exactly the same, which would lead to dif-

�culties. However, if we choose to stick with the form (29) the variational

principle (10) yields the Klein-Gordon equation

c
2�h

2r2
 n � �h

2 � n �m
2
c
4
 n = 0; (34)

for each of the N=2 components.

In the latter part of Chapter 4 Frieden takes the expressions (29) and

(33) for I[ ] and J [ ] and uses the microscopic level condition (16), with

� = 1 to extract the Dirac equation.

4.2. Approach (a)

This method is used in Chapters 5�8, for electromagnetism, the Einstein �eld

equations, classical statistical mechanics and 1=f noise, respectively; and in

Chapter 9 to draw conclusions concerning the distribution of the magnitudes

of the physical constants. It consists in inserting some general functional

forms for jn(x) into (11) and the microscopic level condition (16) and then

solving to make these functions and the value of � explicit. The main problem

with this approach is the doubtful pedigree of (16) and some rather serious

mathematical errors. In the interests of brevity we shall con�ne our attention

to Chapters 7, 8 and 9.

In Section 7.3 Frieden presents a derivation of the Boltzmann distribution.

In this case the only variable of the system is the energy E. He decides at

the outset that he prefers the Fisher information to have a negative sign and

thinks that he can do this by making the substitution x = iE into (8), with

M = 1.13 It seems to us that his substitution makes the Fisher information

13He then uses x for this new variable arguing at the end that it is in fact equivalent to

E. We shall use E from the outset.
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imaginary not negative, but in the interests of the discussion we go along

with his formula which is14

I[q] = �4
NX
n=1

Z
fq0

n
(E)g2dE: (35)

He then chooses the general form

J [q] = 4

NX
n=1

Z
Jn(qn(E))dE; (36)

for the bound information and the Euler-Lagrange equations (11) give

q
00

n
(E) =

1

2

dJn

dqn
; n = 1; 2; : : : ; N: (37)

Frieden now applies integration by parts to re-express (35) in the form

I[q] = 4

NX
n=1

Z
qn(E)q00

n
(E)dE: (38)

There is a problem with this. At the beginning of the book (p. 5) he

tells us that the `limits of integrals [which he omits] are �xed and, usually,

in�nite'. But, of course, in this case the energy is `bounded below but of

unlimited size above' (p. 183). This means that if E is in the range [E0;1)

he has implicitly assumed that

lim
E!1

qn(E)q0
n
(E) = 0; qn(E0)q

0

n
(E0) = 0: (39)

The latter is inconsistent with the Boltzmann distribution. Now, from (14),

(36) and (39),

I[q]� �J [q] = 4

NX
n=1

Z
fqn(E)q00

n
(E)� �Jn(qn(E))gdE: (40)

As indicated above this method now involves extracting the microscopic

level conditions

qn(E)q00
n
(E) = �Jn(qn(E)); n = 1; 2; : : : ; N; (41)

from (40). It is now straightforward to show that15

14The elusive factor of N has again disappeared.
15The method used by Frieden to establish this result leads him to the conclusion that

the constants An are positive, but this is not necessarily the case since substitution of

Jn(qn) from (42) into each of (37) and (41) leads to (43) for any value of An.
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Jn(qn) = Anq
2�
n
; (42) q

00

n
(E) = �Anfqn(E)g2��1: (43)

Frieden now has the problem of assigning a value to �. He argues (p.

183) that � = 1 because this would lead, via the relationship q2
n
(E) = pn(E)

between the qn(E) and the probability pn(E) to J [q] being

a normalization integral, this represents particularly weak prior

information in the sense that any PDF obeys normalization. A

phenomenon that only obeys normalization is said to exhibit

`maximum ignorance' in its independent variable.

Imposing the condition that pn(E) is normalized over [E0;1)with the pn(E)!
0, as E !1, now gives

pn(E) = �n expf��n(E � E0)g; (44)

where �n = 2
p
�An. Apart from the problem of establishing that the param-

eters An are positive, the di�culty with this argument is the reasoning used

to set � = 1. Maximum ignorance (otherwise called the principle of indif-

ference (Keynes 1949)) leads to a uniform distribution, with respect to some

measure, over the probability space, not the Boltzmann distribution. In stan-

dard accounts of statistical mechanics (Lavis and Bell 1999) the Boltzmann,

or canonical, distribution is that for a system known to be in thermal contact

with a heat reservoir at temperature T . In the approach of Jaynes (1957),

the known information is the expectation value hEi of the energy and this

is used, together with normalization, to give Lagrangian constraints on the

maximum entropy procedure leading to (44). Frieden introduces knowledge

of hEi only at the point where he needs to establish that �n = 1=kT . This he

does by appealing to the equipartition theorem.16 A more elegant account

of this is given by Jaynes (1957).

The Maxwell velocity distribution17 is, of course, a consequence of the

Boltzmann distribution when the energy consists of the sum of a kinetic en-

ergy, quadratic in the velocities, and a potential energy which is a function

only of the con�guration variables. In spite of this Frieden presents an in-

dependent derivation of the velocity distribution, taking the fact that the

results agree as `a veri�cation of the overall theory' (p. 192). The analysis

is very similar to that described above except that: (i) He chooses M = 3

with the three variables variously called x1; x2; x3 or x; y; z (p. 189) being

the (real) components of the momentum. (ii) For no obvious reason he now

16True only when the Hamiltonian is a quadratic function of its variables (Huang 1963),

although Frieden chooses to assume, more strongly, that the system is a perfect gas.
17Referred to by Frieden as the Maxwell-Boltzmann velocity law.
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takes the functions Jn to be explicit functions of the vector x = (x1; x2; x3).

(iii) He carries over the condition � = 1 from his derivation of the Boltz-

mann distribution. The result of these changes leads to the replacement of

(43) by r2
qn(x) = �fn(x)qn(x). The arbitrary functions fn(x), which are a

consequence of (ii) are now assumed to be of the form An+Bnx
2 to order to

give solutions expressed in terms of Hermite polynomials. These he argues

`represent stationary solutions en route to the Gaussian equilibrium solution'

(p. 191), drawing our attention to the fact that such forms have been found

as solutions that follow from the Boltzmann transport equation. He �nds

it `rather remarkable' (p. 191) that these results can be obtained using his

method. Given the sequence of rather arbitrary assumptions he has made to

achieve his ends, we do not �nd it particularly remarkable.

The latter part of Chapter 7 is concerned with the time-dependent be-

haviour of the Shannon entropy for a `system of one or more particles moving

randomly within an enclosure' (p. 194). He takes this quantity to be

H(t) = �
Z
p(rjt) lnfp(rjt)gd3r; (45)

where p(rjt) is the `probability density for �nding a particle at position r =

(x; y; z) within the enclosure at the known time t' (p. 194). However, this

quantity H(t) is not the entropy of the assembly of particles. Let the number

of particles be N . Then at equilibrium the entropy is given (Lavis 1977), to

within multiplicative and additive constants, by

S = �
Z
�(x;�) lnf�(x;�)gdMxdM�; (46)

where x is the M(= 3N )-dimensional vector of the positions of all the par-

ticles and � is the corresponding M -dimensional momentum vector. The

formula (46) reduces to (45) (at equilibrium) only if the phase space proba-

bility density function is uniform in momenta and satis�es a molecular chaos

condition in position.

It is, of course, possible to determine the time evolution of entropy-like

quantities only when we are given the equation which determines the evolu-

tion of the density function. The Boltzmann H-theorem dH=dt � 0; quoted

by Frieden on page 194, applies when the distribution function for the mo-

mentum, or velocity (not position as in (45)) satis�es the Boltzmann trans-

port equation (Huang 1963). If (46) is generalized to non-equilibrium sit-

uations then the probability density function �(x;�; t) satis�es Liouville's

equation

@�

@t
+rx:(�X) +r�:(�Y ) = 0; (47)
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where _x = X, _� = Y are the equations governing the �ow in phase space.

From this it is not di�cult to show that when the �ow is measure-preserving,

that is rx:X + r�:Y = 0, then the form of entropy given by (46) is time-

invariant.

This result provides one of the main problems for non-equilibrium sta-

tistical mechanics and a number of di�erent proposals have been made for

a generalized form of entropy (see e.g. Lavis 1977, Lavis and Milligan 1985,

Dougherty 1993, 1994). It doesn't seem to us that Frieden makes any sig-

ni�cant contribution to this work. His formula (45), based as it is simply

on a probability density p(xjt) which is a function just of the position of

one particle is neither the Boltzmann nor the Gibbs form of entropy. Using

the equation (7.69) which he gives for `conservation of �ow' it is not possi-

ble to say anything about the sign of dH=dt and the upper bound which he

achieved is valid, at most for jdH=dtj. In any event, the �nal simpli�cation

presented on page 203 is invalidated by an error in the vector manipulation.

The 3 � 3 matrix   y, formed from the three-dimensional column vector

 and its hermitian conjugate, is replaced by the scalar  y = j j2. This

mistake unfortunately invalidates the `remarkably simple result' contained in

equation (7.114).

In Chapter 8 Frieden sets out to show that the power spectrum S(!) of

an intrinsic random function18 X(t) is of the form S(!) = A=!. After some

discussion19 he concludes that the Fisher information is

I[S] = 4

Z 


0

1

S(!)
d!: (48)

He then, following the procedure for his approach (a), supposes the bound

information is of the form

J [S] = 4

Z 


0
F (S(!); !)d!: (49)

The variational equation (11) and the microscopic level equation(16) then

give

1

S2
= �

@F

@S
; (50)

1

S
= �F: (51)

It is obvious by substituting from (51) into (50) that the only solution to

this pair of equations is � = 1, F (S; !) = 1=S; and there is no mechanism

for determining the form of S(!).

18X(t) is an intrinsic random function if it is not stationary, but, for all � � 0, X(t +

�) �X(t) is stationary.
19The details of this become irrelevant in the light of subsequent errors.
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Frieden, however, thinks he has a method. Substituting for one of the

factors S�1 in (50) from (51) he obtains

�F

S
= �

@F

@S
; (52)

which has the general solution F (S; !) = G(!)S��. He then uses an argu-

ment based on scale invariance to show that G(!) = B!
1�� and substituting

into (51) he obtains the �nal solution

F (S; !) = A
��1

!
1��

S
��
; (53) S(!) = A!

�1
: (54)

He admits as a `minor point' (p. 214) that these steps do not lead to a

solution for S(!) when � = 1. What he fails to notice, however, is that (53)

satis�es (50) only when � = 1. The formula (54) is a consequence of the

assumed scaling form

S(!)d! = S(!=�)d!=�; for all � > 0, (55)

for the spectrum and has nothing to do with the application of the method

of extreme physical information.

The idea that the universal physical constants are distributed according

to some probability law is interesting and, in Chapter 9, Frieden sets out

to show that the law is of the form p(x) = A=x. To do this he invokes the

extreme physical information approach (a) with x = (ix; 0; 0; 0). He seems to

believe that this step means that his coordinates are `relativistic invariants

i.e. four-vectors' (p. 220). He also supposes that this allows him to have the

Fisher information with a negative sign. As we have already mentioned in

connection with a similar step in Chapter 7, it seems to us that the e�ect is to

make this quantity imaginary. In any event the steps in the implementation

of the extreme physical information method are largely irrelevant since his

probability law, as in Chapter 8, follows directly from the assumed scaling

form for p(x). Of course, the inverse probability law cannot be normalized

over all positive x and Frieden decides to limit the range of x to the interval

[1=b; b] for some b > 0. On normalization this gives

p(x) =
1

2x ln(b)
; for 1=b � x � b. (56)

This choice of limits impose some obvious symmetry properties on the distri-

bution, one of which is that it is evenly weighted about x = 1. Frieden claims

that `Why the value 1 should have this signi�cance is a mystery' (p. 226).

We �nd it di�cult to share his awe at a result which he has built into his

distribution. It may be that there is some physical truth in the application of
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the distribution (56) to the physical constants. It does not seem to us, how-

ever, that the method of extreme physical information makes a contribution

to understanding this either in terms of its derivation or interpretation.

5. Conclusions

The application of the ideas of information theory to physics is interesting;

and the use of Fisher information to provide the gradient terms in the La-

grangian for a variational procedure is of some importance. The crucial step,

however, is to provide in some rational and widely-applicable manner the

remaining terms of the Lagrangian. Frieden believes he is able to do this by

using the idea of bound information. We have shown, however, that there

are errors in his procedure, both at the level of the derivation of the de�ning

equations (14) and (16) and also in particular applications. In the case of

the latter we have not discussed all the systems contained in the book. We

thought it was more useful to deal in greater depth with some particular

cases; similar di�culties can be uncovered in the other chapters.

We regret to say that we �nd this book to be fundamentally �awed in

both its overall concept and mathematical detail. It cannot be read as a

textbook providing a valid approach to physics. It could, perhaps, however,

be a source of stimulation for some new and interesting work.
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