ON NON-ABELIAN ZETA ELEMENTS FOR G,,

DAVID BURNS AND TAKAMICHI SANO

ABSTRACT. We introduce explicit non-commutative generalizations of several natural con-
structions in commutative algebra including the notions of determinant modules of perfect
complexes and of higher Fitting invariants of finitely generated modules.

We then use these constructions to define and study a natural notion of ‘non-abelian
zeta element’ for the multiplicative group G, over finite Galois extensions of global fields,
thereby extending the theory for abelian extensions that we developed in earlier joint work
with Kurihara.

In particular, we formulate a precise and explicit conjectural link between these non-
abelian zeta elements and the non-commutative determinant modules of certain natural
‘Weil-étale cohomology’ complexes. We prove that this conjecture is equivalent to a special
case of the equivariant Tamagawa number conjecture, and also show that it is a conse-
quence, in the relevant cases, of either the p-adic Stark conjecture of Serre and Tate or the
p-adic Gross-Stark conjecture. We show that these connections, and our earlier work with
Kurihara, lead to unconditional proofs of our conjecture for several important classes of
number fields, including absolutely abelian fields and some classes of non-abelian Galois
extensions of degree divisible by a prime p at which the relevant p-adic L-series possess
trivial zeroes. In addition, we give an unconditional proof of the analogous statement for
global function fields and a proof, in general modulo a standard vanishing conjecture on
p-invariants and in some interesting cases unconditionally, of a natural p-adic analogue of
our conjecture.

In another direction, we show that our central conjecture and its p-adic analogue entail
very detailed information about the arithmetic properties of generalized (non-abelian)
Stark and p-adic Stark elements. These properties include explicit families of integral
congruence relations between canonical ‘non-abelian Rubin-Stark elements’ and between
canonical ‘non-abelian p-adic Gross-Rubin-Stark elements’ that we define (which both
refine and extend recent conjectures in the abelian case of Mazur and Rubin and of the
second author) and in addition explicit formulas in terms of these elements for the non-
commutative higher Fitting invariants of the integral Selmer groups of G,.

In this way we obtain both a clear and very general approach to, and a notable refine-
ment of, many aspects of the existing theories of refined Stark and p-adic Stark conjectures.
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1. INTRODUCTION

In this article we shall formulate and discuss strongly refined versions of Stark’s seminal
conjectures on the algebraic properties of the values at zero of Artin L-series.

The general approach that we use is a natural extension of that introduced in the context
of abelian L-series in our earlier joint work with Kurihara [11, 12].

In particular, an essential aspect of this approach is the (unconditional) definition of nat-
ural notions of ‘non-abelian zeta element’, of ‘Selmer group’ and of ‘Weil-étale cohomology
complex’ associated to the multiplicative group G,, over finite Galois extensions of global
fields.

A further key feature of the theory developed here is the introduction of explicit gener-
alizations of several classical notions of commutative algebra to a natural non-commutative
setting.

These generalizations may themselves be of some independent interest and include, per-
haps most notably, an elementary and seemingly natural theory of non-abelian determinant
modules of perfect complexes (which avoids any use of either relative algebraic K-theory, of
Deligne’s theory of virtual objects or of the theory of localized Whitehead groups of Fukaya
and Kato) and a natural theory of the higher non-commutative Fitting invariants of finitely
generated modules.

Having introduced these notions, our central conjecture is stated as Conjecture 9.2 and
simply asserts that, for any finite Galois extension L/K of global fields, the canonical
non-abelian zeta element of G,, with respect to L/K is a ‘locally-primitive basis’ of the
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non-abelian determinant module of the Weil-étale cohomology complex of G,, with respect
to L/K.

Despite the straightforward nature of this prediction we are able to show that it is equiv-
alent to the equivariant Tamagawa number conjecture for the pair (h(Spec(L)),Z[G]), a
conjecture which we note has hitherto only ever been discussed using the rather involved
formalism of relative algebraic K-theory and virtual objects. (We also remark in passing
that the algebraic techniques introduced here can be used to give a similarly explicit rein-
terpretation of both main conjectures in non-commutative Iwasawa theory and the general
case of the equivariant Tamagawa number conjecture, and thereby to the derivation of a
wide range of explicit arithmetic results and predictions in much greater generality than is
discussed here, and that these aspects of the theory will be discussed elsewhere.)

To describe direct links between Conjecture 9.2 and previously formulated refinements
of Stark’s conjecture we find it convenient to introduce a natural notion of ‘higher non-
abelian Stark element’ which, in turn, we can show specializes to give a natural notion of
‘non-abelian Rubin-Stark element’.

In particular, by these means we can show that Conjecture 9.2 extends all of the conjec-
tures that were formulated for abelian L-series in our earlier work with Kurihara [11] and
therefore simultaneously refines, extends and provides a seemingly definitive version of, the
conjectures that are formulated by the first author in [7].

We also mention that our approach leads to concrete improvements of several earlier
results in this context. For example, it allows us to remove an important technical hypothesis
(concerning the cohomological-triviality of roots of unity) from the main result of [7] and
also to greatly simplify the proof of the latter result.

Using the connections discussed above we are able to deduce that, upon appropriate
specialization, Conjecture 9.2 incorporates natural non-abelian generalizations of, amongst
other things, the Rubin-Stark Conjecture (from [44]), the congruences for derivatives of L-
series that were formulated (independently) by Mazur and Rubin in [39] and by the second
author in [45] and the annihilation results that are proved by Rubin in [43].

We can also show that, at the same time, Conjecture 9.2 predicts explicit formulas for
the higher (non-commutative) Fitting invariants of the Selmer groups of G,, over arbitrary
finite Galois extensions L/K of global fields and incorporates strongly refined versions of
the conjectures studied both by Stark in [47, 48] and by Chinburg in [14].

Having established its equivalence to a special case of the equivariant Tamagawa number
conjecture, previous work of several authors leads directly to the verification of Conjecture
9.2 for several important classes of fields, including both all absolutely abelian fields (as
first proved in [11]) and all global fields of positive characteristic.

In addition, we are able to provide important ‘new’ evidence in support of Conjecture
9.2 by combining results of the first author in [9] with the approach developed in the joint
work with Kurihara [12] and results of Darmon, Dasgupta and Pollack [17], and of Ventullo
[51], to prove the conjecture for several classes of fields in the technically difficult case of
non-abelian CM Galois extensions of totally real fields of degree divisible by a prime p at
which the associated p-adic L-series possess trivial zeroes.

As a further application of our general approach, in the final part of the article we
restrict to the setting of finite CM Galois extensions of totally real fields and define a



natural generalization of the ‘p-adic Gross-Rubin-Stark elements’ that were introduced (in
the setting of abelian extensions) by the first author in [9] and a natural p-adic analogue of
the notion of non-abelian zeta elements for G,,.

We use these elements to develop a natural analogue of the above theory in which the
roles of Dirichlet regulators and Artin L-series are respectively replaced by Gross’s p-adic
regulators and the Deligne-Ribet p-adic Artin L-series of totally even p-adic characters (as
discussed by Greenberg in [25]). We also prove that the central conjecture of this p-adic
theory is valid modulo Iwasawa’s conjecture on the vanishing of cyclotomic p-invariants and
even, for some interesting families of extensions, unconditionally.

In a little more detail, the main contents of this article is as follows. In Part T (compris-
ing §2-§6) we introduce natural non-commutative generalizations of relevant constructions
in commutative algebra. This entails, amongst other things, defining canonical integral
structures on the reduced exterior powers of finitely generated modules over semisimple
algebras and introducing natural notions of ‘non-abelian Rubin lattice’, of ‘locally-free pre-
envelope’ (in the general sense of Enochs [20]), of non-commutative ‘Fitting lattices’ and
higher non-commutative Fitting invariants and a natural, and explicit, notion of non-abelian
determinant modules of perfect complexes. In Part II (comprising §7 and §8) we establish
the general arithmetic setting in which we shall apply these generalized constructions and,
in particular, define both canonical Selmer groups for G,, and the notion of higher non-
abelian Stark element and use class field theoretic techniques to prove that the unit groups
of global fields possess canonical families of locally-free pre-envelopes, to define the relevant
Weil-étale cohomology complexes and to introduce a natural notion of ‘non-abelian reci-
procity map’ (which extends the reciprocity maps that have been independently introduced
in the abelian case by Mazur and Rubin in [39] and by the second author in [45]). In Part
IIT (comprising §9-§13) we introduce the key notion of ‘non-abelian zeta element’, state our
central conjecture (Conjecture 9.2) regarding these elements, derive a wide range of con-
crete consequences of this conjecture, state the main supporting evidence that we can offer
in support of our central conjecture and then in the remainder of the article prove all of
these results. Finally, in Part IV (comprising §14-§16) we develop a precise p-adic analogue
of the above theory in which the roles of Artin L-series and Dirichlet regulators are played
by p-adic Artin L-series and the p-adic regulators of Gross respectively.

This article constitutes a natural continuation of earlier joint work with Masato Kurihara
and both authors are extremely grateful to him for his generous encouragement and for many
insightful discussions. It is also a great pleasure for the first author to thank Dick Gross,
John Tate and Cornelius Greither for discussions concerning this project. In addition, the
authors are grateful to Alice Livingstone Boomla and Andreas Nickel for their comments
on an earlier version of this article.

PART I: NON-COMMUTATIVE ALGEBRA
2. EXTERIOR POWERS

In this section we discuss the basic properties of a natural construction of non-commutative
exterior powers.
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2.1. Commutative exterior powers. In this section we quickly review the basic theory
of exterior powers over commutative rings.

Let R be a commutative ring, and M be an R-module. Then for every positive integer
r, an element f € Hompg(M, R) induces the homomorphism

r r—1
/\RM — /\R M
which is defined by

/\me—>2 lemzml/\ AM_1 Amgig A Am.

This homomorphism is also denoted by f. Using this construction, we define the following
pairing;:
r s r—s .
/\RM X /\RHomR(M, R) — /\R M; (m,NZ5f) — feo---o fi(m),
where r and s are non-negative integers with r > s. We then set

(NZifi)(m) = (fs o -0 f1)(m).

We shall also use the following convenient notation: for any natural numbers r and s
with s < r we write [Z] for the subset of S, comprising permutations ¢ which satisfy both

o(l)y<---<o(s) and o(s+1)<---<o(r).
We can now record two results which will play an important role in the sequel.

Lemma 2.1. For all my, ma,---, my in M and fi, fo, -+, fs in Homgr(M, R) one has
(/\z 1 l)(/\] lmj) Z Sgl’l( )det(fl( Mes(4) ))1§i7j§SmU(s+1) ARERNA Mg (r):
o€l]]
In particular, if r = s, then we have
(NZF£) (N Zmy) = det(fi(m;)))1<i j<r-
Proof. This is verified by means of an easy and explicit computation. O

Lemma 2.2. Let E be a field, and A be an n-dimensional E-vector space. Consider the
E-linear map

d:A— EF
where ® = @;" | ¢; with p1,...,om € Homg(A,E) (m < n), then we have

im ( /\ /\ A— /\" "4 {/\E "ker(®), if ® is surjective,
1<z<m

, otherwise.

Proof. Suppose first that ® is surjective. Then there exists a subspace B C A such that
A =ker ®® B and ® maps B isomorphically onto E®™. We see that A, <i<m®i induces an
isomorphism

/\:B B



Hence we have an isomorphism

Alﬁiﬁm@i : /\7;14 = /\7;*7” ker & QF /\ZB ; /\T;*m ker ®.

In particular, we have

im(/\lgigm% : /\ZA - /\T;_mA) = /\Z:m ker ®.

Next, suppose @ is not surjective. Then @1, ..., ¢, € Homg(A, E) are linearly dependent.
Hence we have A,,.,,»i = 0. O

2.2. Morita theory. In this subsection, as a preliminary to subsequent subsections, we
review some facts from Morita theory ([16]), restricting in an important special case.

Let E be a field, and fix a d-dimensional E-vector space V. Set A := Endg(V), then V
has a natural structure of left A-module. Define the dual of V' by V* := Hompg(V, E), then
V* has a structure of right A-module, given by

(v* - a)(v) :==v"(a-v),
where a € A, v* € V, and v € V. We define the pairings
(‘,‘)EZV* X V—)E,
(,)a: VXV = A
by
(v, v) g = v™(v),
(v, V)4 (V") := v* (V) - v,
where v,v" € V and v* € V*. The pairing (-,-)g (resp. (-,-)4) induces an isomorphism of
E-vector spaces (resp. two-sided A-modules):
V*oaV S E
(resp. V @p V* 5 A).
The functor V* ® 4 - from the category of left A-modules to that of E-vector spaces gives
an equivalence of categories. We call this “Morita functor”.

2.3. Semisimple rings. We now review some basic facts about semisimple rings. In the
sequel we write ((A) for the centre of a ring A.

For a ring A, a nonzero left A-module M is called simple if M has no nonzero proper
submodules. M is called semisimple if it is a direct sum of simple modules. A is called
semisimple if every nonzero left A-module is semisimple. A is called simple if it has no
nonzero proper two-sided ideals. A is artinian if the left ideals of A satisfy the descending
chain condition. It is known that every simple artinian ring is semisimple. It is also known
that every semisimple ring A is decomposed as a finite direct sum of simple artinian rings

Al, N ,Akl
i=k
A~ @Ai.
=1

This decomposition is unique up to isomorphism. The converse also holds: a ring which is
isomorphic to a finite direct sum of simple artinian rings is semisimple.
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Let A be a simple artinian ring. Fix a simple left A-module M, and put D := End 4(M).
Then D is a division ring. Since every simple left A-module is isomorphic to M, D does
not depend on M up to isomorphism. We have a canonical ring isomorphism

A5 Endp(M);  a— (m— am).

(This can be proved by a more general version of Morita theory which we described in §2.2.)
Set F':= ((D). Then F is a field, and canonically isomorphic to ((A). An extension field F
of F is called splitting field of A if D ®p E is isomorphic to a matrix ring M,,(F) for some
m. If F is such a field, then we say “F splits A”. If F splits A, or equivalently, if D = F,
then we say ‘A is split’. There always exists a splitting field £ of A, and one can take the
extension F/F finite and separable. The integer m does not depend on the choice of F,
and is called Schur index of A. If F is a splitting field of A, then we have an isomorphism

A ®F E ~ EndD(M) ®F E ~ Mn(DOp) ®F E~ Mn(Mm(E)) = Mnm(E)’

where n is the dimension of the left D-vector space M. By this isomorphism, we can embed
A into M,,,,(F). The reduced norm

Nrdy : A— F

is defined by Nrd(a) := det(a), where a € A is regarded as an element of M,,,(E). One
checks that det(a) is in F', and does not depend on the choice of the splitting field E, so
Nrdy is well-defined.

Another description of the reduced norm is as follows. Take a splitting field F of A, and
a simple left A ® p E-module V. One sees that left multiplication gives an isomorphism

A®p E = Endg(V).

Embedding A into Endg (V') by this isomorphism, and taking determinant on Endg(V'), we
get the reduced norm, which coincides with the definition above.

We extend the reduced norm to End4 (M) for arbitrary finitely generated left A-module
M. We define

NrdEndA(M) : EHdA(M) — F
by

Ends(M) = Endag, 5(M @r E) 5 Endp(V* @ g, (M 0r E) S E,
where the second arrow is induced by the Morita functor. One checks that the image of this
map is in F. If M = A and identify A°P with End4(A), then Nrdgyq,(4) coincides with the
reduced norm Nrd 4o» (= Nrd 4) defined before.

Since every semisimple ring is decomposed as a finite direct sum of simple artinian rings,
the above construction of the reduced norm for simple artinian rings is extended to semisim-
ple rings.

We note that the above construction of the reduced norm for semisimple rings A induces
a reduced norm on K;(A) (which we also denote by Nrd,4):

Nrdy : Ki(A) — F*
(cf. [16, §45A]).



2.4. Non-commutative exterior powers: definitions. In this subsection, we construct
exterior powers over non-commutative rings.

The general idea is as follows. For a non-commutative ring A, suppose that there exists
a functor ® from the category of A-modules to that of R-modules for some commutative
ring R, which leads the equivalence of the categories. Then, for an A-module M, define the
exterior power of M over A by AR®(M).

If A is a split simple artinian ring, then the Morita functor induces an equivalence between
the categories of finitely generated left A-modules and of finite dimensional vector spaces
over ((A). This is the key observation of our construction of non-commutative exterior
powers.

2.4.1. We start with the basic definition in the case of simple Artinian rings.

Definition 2.3. Let A be a simple Artinian ring. Take a splitting field F of A, and a left
simple Ag-module V, where Ap := A ®¢(4) E. For a left A-module M and a non-negative
integer r, we define the r-th reduced exterior power of M over A by

r rd "
A M=\, (V*©a, M),
where d := dimg(V), Mg := M ®¢4)E, and V* := Hompg(V, E). We note that this depends
on E, but is independent of V' up to isomorphism.

Let A, V, M and E be as in the definition above and fix an E-basis {vy,...,vg} of V.

Then for any subset {m;}i1<i<, of M we set
. rd r

(1) /\zigml = Algigr(/\lgjgdv; ® ml) € /\E’ (V* ®Ag ME) = /\AM
Here we regard m; as an element of Mg by identifying m; with m; ® 1 and write vy, ..., v}
for the basis of V* that is dual to vy, ..., vq4.

We then define the subspace of ‘primitive elements’ (AyM)P"™ of A",M to be the E-
linear span of all elements of the form /\fjmi with each m; in M.

2.4.2. To make the analogous constructions for linear duals we write A°P for the opposite
ring of A.

We note Hom (M, A) has a natural structure as left A°°-module and we can consider
the exterior power over A°P. We also note that V* is a simple left A%’-module, and that its
dual V** is canonically isomorphic to V. In this case, the definition above therefore gives

r rd
/\Aop Homy (M, A) = /\E (V ® g0 Homyu, (Mg, Ag)).
For any subset {p;}1<i<, of Homu (M, A) we set

j— r
(2) N = N\ N ot @ 90 €\, Homa(M, A),

where each ¢; is regarded as an element of Hom 4, (Mg, Ag), and, just as above, we define
the primitive subspace (/\’jop Hom4 (M, A))P'™ of A"yo, Homa(M, A) to be the E-linear
span of all elements of the form /\ﬁjgpi.

One has a natural isomorphism

V ®po0 Homa, (Mg, Ap) S Homp(V*®a, M, E); v® fr (v*@m = v*(f(m)v))
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and hence an induced identification
/\ Homy (M, A) /\ Homp(V* ®a, Mg, E).

Using this identification, we obtain a pairing

(3) /\;M x /\Zop Hom (M, A) — /\TA*SM

by applying the construction in §2.1 for the E-vector space V* ®4, Mgr. We denote the
image of (m, ) under this pairing by ¢(m).

2.4.3. The above constructions extend to general semisimple rings in the obvious way.

Definition 2.4. Let A be a semisimple ring, with corresponding decomposition as a direct
sum of simple artinian rings
i=k
(4) A=A
i=1
Then for any left A-module M and any non—negative integer 7, we define

/\’"AM @/\ A @4 M),

with each exterior power in the direct sum being defined with respect to a fixed choice of
splitting field E of A. We note that A", M has then a natural structure of ((Ag)-module.

After fixing a decomposition (4) one defines componentwise the elements A!=jm; and
AiZT; and a corresponding duality pairing (3).

In particular, if 7 = s then the pairing (3) is non-degenerate and takes values in ((Ag). In
this setting the orthogonal complement of (A\’yo, Hom 4 (M, A))P™ in A’y M is the subspace

(/\;M)O ={x € /\;M :0(x) =0 forallfe (/\TAOp Hom (M, A))Primy,

Lemma 2.5.
(i) If A is commutative, then (\"yM)? vanishes.
(ii) If A is non-commutative and M is a free A-module of rank t, then (\"yM)° vanishes
if and only if r > t.

Proof. Since the pairing (3) with s = r is non-degenerate the space (\"y M) vanishes if and
only if the spaces \'jop Homa (M, A) and (\jop Hom4 (M, A))P'™ coincide.

If A is commutative, then it is clear that A’ Homa(M, A) = (Ao Homa (M, A))Prim
and so claim (i) is verified.

To prove claim (ii) we note that if M is a free A-module of rank ¢, then Hom (M, A)
is a free A°P-module of rank ¢ and we fix a basis {y;}1<i<, of Homy (M, A). We also fix a
simple Ag-module V' with E-basis {v;}1<i<4 and note that V' ® qor Homy (Mg, Ag) has as
an E-basis the set {v; ® ¢;}i<i<di1<j<t-

In particular, if r > ¢, then each space /\%d(V ® 400 Homy » (Mg, Ag)) vanishes and hence
also both A’jop Hom (M, A) and (A\’yop Hom (M, A))P"™ vanish.
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1f r = ¢, then the space \)jop Hom4 (M, A) is generated over ((Ag) by the single element
N1 and 50 Nyop Hom a(M, A) = (A'yop Homs (M, A))Prim.

To prove claim (ii) it thus suffices to show that if A is non-commutative and r < ¢, then
N'jor Hom 4 (M, A) is strictly bigger than (Ajep Homa (M, A))Prim,

To do this we note that for any finite set of elements {¥;}i1<i<, in Homa (M, A) the
element Aj<j<,¥; is an E-linear combination of elements of the form Aj<o<ra(q @ ya)
where each basis element v; occurs precisely r times in the set {zq}1<q<rq and each y, is
an element of {y;}1<i<;. This property is therefore also satisfied by any element that lies
in the E-linear span A of such elements.

The claimed result is thus true since if d > 1 (as we can always assume if A is non-
commutative) and r < ¢, then A does not contain the element

(AM<b<d(®p @ b)) N (M<i<d M<j<r—1 (Vi @ ©5))
where we set

vy, ifbe {1,2}, Yry1, fb=1,
Ty 1= . and y, = .
v, if3<b<d, Or, if 2<b<d.

O

2.5. Non-commutative exterior powers: basic properties. In this section we record
several basic properties of the exteriors powers constructed above that will be used in the
sequel.

Proposition 2.6. Let A be a semisimple ring and W be a left A-module. Then for all
subsets {w; }1<i<r of W and {¢;}i<j<, of Homa(W, A) one has

(NZhei) (N ZTws) = Nrdyy, (aowy (06 (w))1<ij<r)-
Proof. We may assume that A is simple. Note first that we have a canonical isomorphism
Ap ~ Endg(V).

Since we fixed the E-basis of V', we identify Ap with the matrix ring My(E). By definition,
we have

=r . ]:=7“ ) — . , * .
(T NTT00) = Ao Py @ 0D s © 0
We see that (vy ® ¢;)(v}, ® wj) = v}, (pi(wj)vy) € E is the (j',4')-component of the matrix

pi(wj) € A C My(E). Hence, regarding (*¢;(w;))1<ij<r € Mya(E), where ‘o;(w;) is the
transpose of ¢;(w;) € My(E), we have

(M=) (NjZiwy) = det(‘piw)) i< jr,

and the right hand side is equal to Nrdyg, (40p)((i(w;))1<ij<r) Dy the definition of the
reduced norm. O

Remark 2.7. Proposition 2.6 implies both that the value (/\2:1"4,01-)(/\;3"10]-) belongs to
((A) and depends only on the elements wy,...,w, and homomorphisms @1, ..., p,. This
fact is important to the formulation of our conjectures since the definitions (1) and (2)
clearly depend on the choice of basis {v;}1<j<d.
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Corollary 2.8. Let A be a semisimple ring and W a free A-module of rank r. Then there
is a canonical isomorphism of ((A)-modules

LW /\TAOp Hom 4 (W, A) = Homg a) /\ W, ¢(A

with the following property: for any A-basis {b;j}1<i<» of W one has LW(/\éz{bf)(/\gaj) =1
where for each index i we write b} for the element of Hom (W, A) that is dual to b;.

Proof. In this case the pairing (3) with s = r induces a homomorphism of free rank one
¢(A)-modules tyy = \yop Homa(W, A) = Home(a) (A W, C(A)).

Both the bijectivity of this pairing and the equality LW(/\éi’l"b;‘)(/\;:ij) = 1 follow di-
rectly from Proposition 2.6. ([l

Corollary 2.9. Let A be a semisimple ring and W a free A-module of rank r. Fix an
A-basis {bi}1<i<r of W. Then for each ¢ in Enda(W) one has

NZ5o(b;) = Nrdpna,, (wy () - (NZ10;) /\ w.

Proof. This formula follows immediately upon comparing the results of Proposition 2.6 and
Corollary 2.8. O

Finally we record a natural non-commutative generalization of Lemma 2.2.

Proposition 2.10. Let A be a semisimple ring and W a free A-module of rank r. For a
natural number s with s < r and a subset {@; }1<i<s of Homa(W, A) we consider the map

=35
) ::@cpi (W o— A®S,
i=1

If & is surjective, then the image of the map

N = NOwe b (N iaie ) ®)

is Ny “ker(®).

If ® is not surjective, then the image of this map vanishes.

Proof. This follows easily by combining Lemma 2.2 with our definition of reduced exterior
powers. ]

2.6. Non-commutative exterior powers: descent theory. The definition of reduced
exterior powers involves the choice of splitting fields and so (to obtain a natural theory)
one must check that it behaves functorially with respect to field extensions.

To do this we fix a field K and a finite dimensional semisimple K-algebra A (that is, A
is both a finite dimensional K-algebra and a semisimple ring). We also fix an embedding
of fields K — K'.

We show first that if ((A) is étale over K, then the scalar extension A’ := K' @k A is a
semisimple K’-algebra with a Wedderburn decomposition that is induced by that of A.
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Proposition 2.11. Let the decomposition of A by simple artinian rings be given by
i=k
A=A
i=1
Assume that ((A) is étale over K (that is, for each index i the field F; := ((A4;) is a finite
separable extension of K ). Consider the (finite) set
Y(F;/K,K') := {K-embeddings F; — K'}/ ~,
where the equivalence relation ~ is defined by
o ~ o' & there exists T € Autg(K') such that o = T o0,
Then, for each 1 < i <k and 0 € X(F;/K,K'), A; ®p, o(F;)K' is a simple artinian ring

with center o(F;)K', where o(F;)K' is the composite field of o(F;) and K' in K’ (this is
independent of a representative of o), and we have a decomposition of A’:

i=k
A~ P (4iegaF)K).

i=1 oex(F;/K,K')
In particular, A’ is semisimple.
Proof. Since each F; is separable over K, we have an isomorphism
FexK'~ @ oF)K.
oeX(F;/K,K")
Hence we have
Ao K'~A;op (FeogK)~ P (AieroF)K).
ceS(F; /K, K")
Since A; is a central simple algebra over F;, A; ®p, o(F;) K "is also a central simple algebra

over o(F;)K'. O

Example 2.12. Let G be a finite group. Then Q[G] is a finite dimensional semisimple
Q-algebra. Note that this algebra is étale over QQ since Q is of characteristic 0. Let K be a
local field of characteristic 0. Let G denote the set of C-valued irreducible characters of G.
For each y € GG, define the primitive central idempotent

x(1 _
ey 1= é) Z x(c Yo € C[q).
| ‘ oeG
Define the equivalence relation ~q (resp. ~g) on G by
X ~g (resp. ~k) X < there exists 7 € Autgp(C) (resp. Autg(C)) such that y = 7oy,

where we fix an isomorphism between the completion of K and C, and hence regard K as
a subset of C. By standard representation theory, there are decompositions of Q[G] and
K|[G] into simple artinian rings:

QG = & QGley and K[Gl=  K[Gley,

XI€G/~g Xe€G/~k
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where for [x] in G / ~q, respectively in G / ~K), we define an element of Q[G], respectively
K[G], by setting efy) := 37, /e[y €x'-

Let [x]o (resp. [x]x) denote the equivalence class of x via the relation ~g (resp. ~x).
The relation ~x defines an equivalence relation on [x]g. We see that the map

o/ ~k= Z(Flyo/Q K); - Xk = (@ X(a))

is bijective, where F,j, := ¢ QG ]e[X ). Therefore, by Proposition 2.11, for every X € G
there is a natural 150morphlsm of algebras K[Glep, ~ Q[Glep, ® Flyg Flyo K

For a left A-module M we set M’ := K’ @ M. Then, assuming ((A) to be étale over
K, we now construct a natural embedding (or ‘scalar extension’)

/\;M . /\TA/M’

as follows.

By passing to components we may assume that A is simple. We then set F' := ((A)
and fix both an algebraic extension E of F' which splits A and a simple left Ag-module V.
Then, by definition, one has

N M = N (V" @, M),

where d = dimpg(V). For each 0 € ¥(F/K, K'), where ¥(F/K, K') is as in Proposition 2.11,
fix a K-embedding & of E into K’ which extends o (such a & exists since E/F is algebraic).
Then o(E)K' splits the simple ring A @ o(F)K’. For simplicity, set E, := (E)K' and
Ag, = A®r E,. We see that V, := V®g E, is a simple left Ar_-module, so by Proposition
2.11 and the definition of reduced exterior powers, we have

N M= @ Ao, Me),

0€S(F/K,K")
where Mg, := M ®p E,. For each 0 € X(F/K, K'), there is a canonical embedding
v Rap Mg — VJ* RAp, Mg, .

This induces an embedding
rd " rd *
Jo: /\E (V ®Ag ME) — /\EO(VO' ®Ag, MEU)'

We finally define the required scalar extension
r - rd . * B r ,
AN M=N\, V@1, Mg) = D /\ (Vo ®ap, Me,) =\ M
oEX(F/K,K")

to be the tuple @, fo.
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3. INTEGRAL STRUCTURES

In this section we fix a Dedekind domain R with field of fractions F. We also fix a
finite-dimensional semisimple F-algebra A and an R-order A in A.

For any A-module M we abbreviate the A-module F @ M to Mp.

We shall extend an idea used (in the commutative case) by Rubin in [44] to introduce, for
each finitely generated A-module M and each non-negative integer r, a canonical integral
structure on the reduced exterior power A’y Mr.

3.1. The canonical central order. We first introduce a canonical R-submodule of ((A).

Definition 3.1. We write £(.A) for the R-submodule of ((A) that is generated by the
elements Nrda(M) as M runs over all matrices in (J,,5q Mn(A).

The basic properties of this module are described in the following result.

Lemma 3.2.

(i) £(A) is an R-order in ((A).
(i) If A is commutative, then £(A) = ((A) = A.
(iii) If A is mazimal, then {(A) C ((A) and §(A)* has finite 2-power index in ((A)*.

Proof. Since the module £(A) is clearly a subring of ((A) it is an R-order if and only if it
is finitely generated over R. This is true since for any n > 0 and any matrix M in M, (.A)
the element Nrd4 (M) is integral over R. This proves claim (i).

If A is commutative, then for each matrix M in M,,(.A) one has Nrd4 (M) = det(M) € A.
In this case it is therefore clear that £(.A) is equal to A = ((A). This proves claim (ii).

Claim (iii) is true because if A is maximal, then ((A) is equal to the maximal R-order A of
((A) and the subgroup of A* that is generated by the set {Nrds (M) : M € GL,(A),n > 1}
has finite 2-power index (as a consequence of [16, Th. (45.7)]). O

3.2. Integral structures on non-commutative exterior powers. We now define a
canonical integral structure on the reduced exterior powers of A-modules. This structure
will play a key role in the sequel.

Definition 3.3. Let M be a finitely generated R-torsion-free left A-module. For every
non-negative integer r, we define the r-th Rubin lattice of M by setting

(TAM ={a € /\;MF L (AN=Tp)(a) € E(A) for all ¢, ..., ¢, € Homu (M, A)}.

Remark 3.4. If A is equal to Z[G] for some abelian group G, then £(Z[G]) = Z|G] (by
Lemma 3.2(ii)) and ﬂg[G}M coincides with the lattice defined by Rubin in [44].

The basic properties of such lattices in the general case are recorded in the next result.

Proposition 3.5. Let M and r be as in Definition 3.3.

i) 4M contains (\N\Mp)?, is stable under multiplication by £(A) and spans Ny MFp.
A A A
(ii) The quotient (\,M/(N\Mr)° is finitely generated over R.
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(iii) If M is a free A-module of rank d with d > r, then for any choice of basis b =

{b1,...,bq} of M there is a natural surjective homomorphism of £(A)-modules
Oy : ﬂAM — E[?d]g(A).
oc|,

This homomorphism splits and is, in addition, bijective if either A is commutative
orr =d.

Proof. Claim (i) is clear.

To prove claim (ii) we write O for the integral closure of R in a splitting field F of A and
note that the pairing (3) identifies (\jop Homa(Mp, A))P"'™ with the ((Ag)-linear dual of
the quotient A"y Mp/(AyMp)°. Since £(A) is an R-order in ((A), the finite generation of
the R-module (', M/(A\"yMp)° then follows directly from the definition of (M and the
fact that the £(A)-linear span of {A=Z]¢; : ¢; € Hom 4(M, A)} generates a full O-lattice in
(Njon Homa (M, A))Prim,

To prove claim (iii) we define 6 to be the homomorphism of {(A)-modules which satisfies

Oy(x) = (NZ] o)) (2o
for all x in (), M.
We also write 6 for the homomorphism of £(A)-modules @ae[f] §(A) = Ny M which
satisfies
9;)((60)0) = Z Co - /\E’i 10)
o€
for all (¢;)s in @Uem £(A).
Then Proposition 2.6 implies that (b:';(l) ARERWN b;(r))(br(l) A Nbry) = 6gr for all o
and 7 in m and so the composite 6 o 0} is the identity on @ _ €[] £(A). This shows that 6

is a section to 6, as required.

Next we note that if A is commutative, then (\,M = A"y M (as M is free) and {(A) = A
and using these equalities it is easily seen that 6 is an isomorphism.

Finally we assume r = d and fix a decomposition A = [];.; 4; and splitting field £ as in

Definition 2.4. Then in this case each element x of /\jM r can be written uniquely as
= (ci(2) - M<jeaM<red, (0i)" @ eidy))ier = Y ci(@) - AIZb;,

i€l

with each element ¢;(x) in E C A; g, and so Oy(x) = Y, ci(x).
Thus, if = belongs to ker(6;), then ), ; ci(x) = 0 and hence also
T = ch(a;) . /\gz‘fbj =0,
iel

as required to complete the proof of claim (iii). O

Remark 3.6. The lattice ()M depends on the choice of E-bases (of the simple Ap-
modules V') that occur in the definition (2) of exterior powers. However, Remark 2.7 ensures
that this dependence is natural in the following sense. Let {by }v be any other choice of
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E-bases of the modules V' and write 7 for the automorphism of the ((Ag)-module A\ Mp
sending each element /\;:{mj to ﬂg-:gmj, where each m; belongs to M and A indicates that

the exterior power is defined with respect to the bases {by }v. Then, writing ﬁTAM for the
Rubin lattice that is defined relative to exterior powers with respect to {by }y, Remark 2.7

implies that 7(",M) = ﬁTAM

Remark 3.7. Proposition 3.5(i) combines with Lemma 2.5(ii) to imply that the {(A)-
module (', M is not always finitely generated. However, under certain natural conditions
on A and M (which are always satisfied in the relevant arithmetic settings) we shall later
define a collection of canonical finitely generated &(.A)-submodules Fo, (N, M) of N M
which each coincide, when A is commutative, with (M. For more details see §5.2 (and
in particular Proposition 5.3(i), (ii) and (vi)).

4. LOCALLY-FREE PRE-ENVELOPES

In this section we introduce the notion of a ‘strict family of locally-free pre-envelopes’.
This notion is motivated by the theory developed by Enochs in [20] and will play a key role
in the sequel. In particular, in §7 we see that such families occur naturally in arithmetic.

We continue to use the general notation of §3.

4.1. Locally-free modules. For each prime ideal p of R we write R, and R, for the
localization and completion of R at p. For any finite set of prime ideals P of R we set
Rpy := [, Ry where the intersection is over all prime ideals of R that do not belong to

For each R-module M, each prime ideal p of R and each finite set of prime ideals P of
R we set M) == R,y @gr M, My, := Ry @gr M and M(py := Rpy @g M. We regard these
modules as endowed with natural actions of the algebras A,), Ap and Ap respectively.

A finitely generated module M over an R-order A will be said to be ‘locally-free’ if M,
is a free A(;)-module, or equivalently (as an easy consequence of Maranda’s Theorem - see
[16, Th. (30.14)]) if M, is a free Ay,-module, for all prime ideals p. For any such module
M the rank of the A(,)-module M) is independent of p and will be referred to as the
‘rank’ rk4 (M) of M. A locally-free A-module of rank one will often be referred to as an
‘invertible’ A-module.

Since localization at p is an exact functor a locally-free A-module is automatically pro-
jective. We record two important examples (that will be much used in the sequel and) for
which the converse is also true.

Example 4.1.

(i) If A is a Dedekind domain, with quotient field E, then every finitely generated torsion-
free A-module M is locally-free, with rk 4 (M) equal to the dimension of the E-space spanned
by M.

(ii) If G is a finite group for which no prime divisor of |G| is invertible in R and A = R[G]
then, by a theorem of Swan (see, for example, [16, (32.1)]), a finitely generated projective
A-module is locally-free. For any such module M the product rkg(q (M) - |G| is equal to
the dimension of the F-space spanned by M.

4.2. Families of locally-free pre-envelopes. Let M be a finitely generated .A-module.
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4.2.1. By a ‘family of locally-free pre-envelopes of M’ we shall mean a collection P of
injective homomorphisms of A-modules ¢ : M — P where P is finitely generated locally-
free and the following property is satisfied: for any other homomorphism ¢/ : M — P’ in P
there exists a commutative diagram of A-modules of the form

M
P ’ P.

We shall say that such a family P is ‘strict’ if it has the following two properties:

()

(P1) for each ¢ and ¢/ in P there exists a diagram as above in which the map x,, is
bijective;

(P2) for any (and therefore every) ¢ in P the map Hom 4 (P, A) — Hom_4(M,.A) induced
by restriction through ¢ is surjective.

We write slfp 4(M) for the set of strict families of locally-free pre-envelopes for the A-
module M.

We define the ‘rank’ rk4(P) of a family P in slfp 4(M) to be equal to rk4(P) for any,
and therefore every, locally-free .A-module P that occurs in a diagram of the form (5).

By a family of ‘strict free envelopes’ we mean an object of slfp ,(M) with the property
that any (and therefore every) A-module P that occurs in a diagram of the form (5) is free.
We write sfe 4(M) for the set of families of strict free envelopes.

4.2.2. For the classes of order that will be of most interest to us in the sequel the above
notion of ‘pre-envelope’ coincides with that used by Enochs in [20].

To explain this point, and also to prepare for the construction of canonical strict families
of locally-free pre-envelopes in an arithmetic setting, we consider orders A that satisfy the
following two conditions.

(Ap) there exists an R-linear anti-involution ¢4 of A such that for every prime ideal p of
R the linear dual Hompg, (A(), R(p) is a free rank one A(,)-module when endowed
with the left action (af)(a’) := 0(14(a)ad’).

(A2) The functor M — Homy (M, A) is exact on the category of finitely generated R-
torsion-free A-modules.

There are two standard examples of such orders that we will use in subsequent sections.

Example 4.2. The conditions (A;) and (A) are satisfied in both of the following cases.

(i) A is both commutative and locally-Gorenstein relative to R and ¢4 is the identity
anti-involution.

(ii) A = R[G] for a finite group G and tgq is the R-linear anti-involution which inverts
elements of G. In this case (Asg) is satisfied because the functor M +— Homy (M, A) is
naturally equivalent to M — Hompg(M, R). When both R and G are clear from context we
often simply denote the anti-involution tg(g) by t4.

Remark 4.3. For later use we record some straightforward consequences of condition (As).
(i) Ext’y(M,.A) =0 for all integers i with i > 2.
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(ii) There is a natural identification Extl(M,.A) = Hom4(Mior, A/A) with Mo, the
R-torsion submodule of M.
(iii) The functor M — Homu (M, A/A) is exact on the category of finite .A-modules.

The following result will be useful in the sequel.

Lemma 4.4. Let A be an R-order and v : M — P an injective homomorphism of finitely
generated A-modules in which P is locally-free and cok(r) is R-torsion-free.

(i) If A satisfies (A1), then v is a locally-free pre-envelope of M in the sense of [20].
(ii) If A satisfies (Ag), then the map Homy (P, A) — Hom4(M, A) induced by restric-
tion through v is surjective.

Proof. To prove claim (i) we must show that for any injective homomorphism ¢ : M — P’
of A-modules, where P’ is finitely generated and locally-free, there exists a commutative
diagram of the form (5).

To do this we consider the following diagram of .A-modules (where each module is endowed
with the left action described in condition (.A;))

Homp(M, R)
Homp(P,R)< - - - — - o Hompg (P, R).

Here the surjectivity of Hompg(¢, R) follows from the assumption that cok(¢) is R-torsion-free
and the existence of a homomorphism of A-modules x which makes the diagram commute
then follows from the fact that (A;) implies Hompg(P’, R) is a projective A-module. By
applying the functor N — Homp(N, R) to this diagram, and using the natural identification
Homp(Homp(N, R), R) = N for each A-lattice IV, one obtains a commutative diagram of
the required form (5) in which &, is equal to Hompg(k, R).

Since A is assumed to satisfy condition (Az), claim (ii) is proved by applying the functor
M — Hom 4(M, A) to the tautological short exact sequence 0 - M — P — cok(¢) = 0. O

Example 4.5. Let G be a finite group and set A := R[G] and Tg; := > .59 € A. Then
for any A-lattice M the module M ®g A has a diagonal action of G with respect to which
it is a locally-free A-module and lies in an exact sequence of A-modules

0—-M2 MopA— Meg(A/(Tg)) =0

in which ¢); sends each m to m ®pg Tz and the module M ®p (A/(T)) is R-torsion-free.
This exact sequence combines with Lemma 4.4 to imply both that ¢p; is a locally-free pre-
envelope of M (in the sense of Enochs) and that the singleton Pjs := {tas} is a canonical
element of slfp (). This family is however different from the canonical families that we
shall construct in an arithmetic setting in §7.

4.3. Morphism bundles. In this section we fix a strict family of pre-envelopes P in
slfp 4(M) and an A-module N.
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4.3.1. We define an ‘A-module morphism’ 7 from P to NN to be a choice for each ¢ : M — P
in P of a homomorphism of A-modules 7, : P — N such that the following property is
satisfied: for all other / : M — P’ in P there exists a commutative diagram of A-modules

K
Lyt

’
LT P/

N

(6) P

in which &, - is bijective and occurs in a commutative diagram of the form (5).
We shall say that such a morphism 7 : P — N is surjective if for any (and therefore
every) ¢ in P the homomorphism m, is surjective.

4.3.2. We now assume to be given for each prime ideal p of R a family P, in slfp 4 ) (M)
that contains the localization ¢(y) := A ®.4 ¢ of every ¢ in P.

In this case we define a ‘bundle (relative to the families {P,},) of A-module morphisms’
m = {my}p from P to N to be a choice for each prime ideal p of R of an A(,-module
morphism 7y, : Py — N(p) such that the following property is satisfied: for every ¢ : M — P
and // : M — P’ in P there exists a commutative diagram of .A-modules

Pl

the p-localization of which is contained, for almost all prime ideals p of R, in the set of
diagrams (6) (with P, P’ and N replaced by P, P(’p) and N,)) which verifies that 7, is an
A(p)-module morphism.

We refer to the morphism m, as the ‘p-component’ of a bundle of morphisms 7. We shall
also then say that a bundle of morphisms is surjective if for every prime ideal p of R its
p-component is surjective.

Remark 4.6. Given P in slfp 4(M) one obtains for each prime ideal p of R a canonical
family Py) in slfp 4, (M(y)) by setting Py := {Ap) ®at:1eP}.

In particular, each .A-module morphism 7 from P to N defines a canonical bundle (relative
to {P(p) }p) of A-module morphisms gbundle . D5 N and in the sequel we do not distinguish

between 7 and sPundle,

4.4. The case of group rings. Let G be a finite group. Then, in the case A = Z[G], we
often abbreviate slfp 4(M) to slfpg(M).

Fix a normal subgroup H of G. Then for each family P in slfp (M) we write P for the
object {Homy(Z,1) : 1 € P} of slfpg (M),

For any locally-free G-module P the homomorphism Trp i : Py = PH induced by sending
each zin P to ),y h(x) is bijective. In particular, for each bundle of G-module morphisms
m: P — N we can define 7 to be the bundle of G/H-module morphisms PH _y Ny that
is represented, for any prime ideal p of R, by the composite PpH = PBynw — Ny g where
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t: M — P is representative of P, the first arrow is the bijective map induced by the inverse
of Trp i and the second arrow is induced by (the H-coinvariants of) 7 ,.

5. FITTING LATTICES AND HIGHER FITTING INVARIANTS

In this section we introduce a natural non-commutative generalization of the classical
notion of ‘higher Fitting ideal’ together with a related, and very useful, notion of ‘non-
commutative Fitting lattice’.

To do so we fix data R, F, A and A as in §3. We also assume to be given a finitely
generated A-module M, a family P in slfp 4,(M) and a bundle (relative to {P(,},) of A-
module morphisms 7 = {7}, with domain P.

We set d := rk4(P).

5.1. Module presentations. We first introduce some convenient classes of module pre-
sentation.

5.1.1. By a ‘presentation’ h of a finitely generated A-module X we shall mean an exact
sequence of A-modules of the form

(7) At Ory qrnz Ty x4

in which (without loss of generality) one has 75,1 > 72.

We say that a presentation h’ of an A-module X’ is ‘finer’ than h if both rp 1 = 74,1
and rp, o = rp, 2 and there exists an automorphism of the A-module A™2 which induces a
well-defined surjective homomorphism of A-modules X’ — X.

We say that A-module presentations h and h' are equivalent if both A is finer than A’ and
B’ is finer than h (and we note that in this case the A-modules X and X’ are isomorphic).

5.1.2. We define a ‘presentation bundle’ h of an A-module X to be a collection {hy}, over all
prime ideals p of R of presentations hy, of the A(,)-modules X,y with the following properties.
Set rp1 = Thg)1 and 75,9 = Thg),2: then for all prime ideals p one has rp, 1 = 1 and
Thy,2 = T2 and the induced homomorphism A ® Ay hy @ A"t — A™.2 coincides with hq).

We shall say that an A-module presentation bundle b’ is finer than h if for each prime
ideal p the A(,)-module presentation h; is finer than hy.

We say that A-module presentation bundles A and I’ are equivalent if both A is finer
than A’ and A/ is finer than h.

Remark 5.1. Each presentation h of an A-module X gives rise to an associated presenta-
tion bundle hP™dle of X (in which one has thundle = Ap, ®4 0, and Tpbundle = Ap @4y, for

all primes p) and we shall usually not distinguish between h and hPudle,

It is also straightforward to check that to each presentation bundle h for X one can
associate a canonical exact sequence of A-modules P’ — P — X — 0 in which P’ and P
are locally-free of ranks 7,1 and 74,2 respectively.
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5.1.3. In the sequel we refer to a presentation bundle h as ‘quadratic’ if one has rj, 1 = 73 2.

If P belongs to sfe4(M) and 7 is a morphism of A-modules with domain P, then we
say that a presentation h (of some A-module X) ‘factors through’ 7 if r; o = rk4(P) and
for any, and therefore every, representative ¢ : M — P of P there exists an isomorphism of
A-modules kp,, : A™2 — P for which im(kp, o 65) C ker(m,).

Such isomorphisms xj, , are not unique but the precise choice will not matter in the sequel.
(It is also clear that the existence of such an isomorphism implies that there is a surjective
homomorphism of A-modules from X to im(w,).)

If P belongs to sfp 4(M) and 7 is a bundle (relative to {P(}p) of A-module morphisms
with domain P, then we say that a presentation bundle h ‘factors through’ = if for every
prime ideal p of R the presentation hy, factors through 7, and hence therefore rp, o = rk4(P).

5.2. Higher Fitting lattices: definitions. In this section we define a notion of the
higher Fitting lattice of the module M relative to the given bundle of A-module morphisms

= {mp}p.

5.2.1. We first assume to be given a quadratic presentation h of an A-module X as in (7).
We set ¢ :=rp, 1 = rp 2 and write b for the standard (ordered) A-basis (b1,...,b;) of A"
For each integer ¢ with 1 < i <t we write b} for the dual of b; in Hom 4(A’, A) and then
define an element 6, ; of Hom 4 (A", A) by setting 0, ; := b} o 6),.
For each integer r» with 1 < r < ¢ this gives rise to a well-defined ‘exterior product’
homomorphism of £(.A)-modules

— t T
N 1O A" = [ A"
In addition, if h factors through an A-module morphism 7 with domain P in sfe(M),

then for each such integer r and any choice of homomorphism &, as in §5.1.3 the map
N4 (F ®r kp,) restricts to give a homomorphism of £(.A)-modules

ﬂTAH}M : ﬂ;At — ﬂrAP
We define the ‘r-th Fitting lattice of h relative to kp,’ to be the £(A)-module

FLL, () i= mn((0asna) © (A0 4105)) € ()P

Fﬂ(ﬂlp) - ; FL;, (h)

where in the sum A runs over all quadratic presentations which factor through m, and xs,,
over all choices of isomorphisms as in §5.1.3.
Noting that ¢ induces an injective homomorphism of F-spaces

A;(F ®1) : /\TAMF — /\TAPF

we then define the ‘r-th Fitting lattice of M with respect to ©’ by setting

Frl(), M) = {x e N Mr = (N (A2a40)(@) € Fﬂ(ﬂ;P)} .

and then set
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5.2.2. If 7 is any bundle of .A-module morphisms with domain P in slfp 4(M), then we
define the ‘r-th Fitting lattice of M with respect to 7’ by setting

Fa((Y, M) = (s (), M)
p

where the intersection runs over all prime ideals p of R.

Remark 5.2. This definition ensures that if 7 is any .A-module morphism with domain
P, then one has Fr((\yM) = F vuae(yM), where 7°"d is the bundle of A-module
morphisms defined in Remark 4.6.

5.3. Higher Fitting lattices: basic properties. In the following result we record the
basic properties of Fitting lattices.

Before stating this result we introduce some notation. We assume to be given a surjective
homomorphism of R-orders p : A — B and write B for the algebra spanned by B. For any
A-module M we write ,M for the image of B®4 M in B ®4 M. Since for any finitely
generated A-module N the module Tory' (B, N) is R-torsion (as B is a projective A-module),
any embedding of A-modules ¢ : M — P induces an embedding of B-modules ,¢: ,M — ,P.
In this way, for any element P of slfp 4(M ) we obtain an element ,P of slfp 4, (,M ) by setting
JPi={p:1eP}

We write idp and Op for the identity and zero endomorphisms of each family P in
slfp 4 (M).

Finally, for any commutative ring A, finitely generated A-module M and non-negative
integer a we write Fit§ (M) for the a-th Fitting ideal of the A-module M.

Proposition 5.3. Fiz a family of pre-envelopes P in slfp 4(M) and an A-module morphism
w with domain P.

(i) Fx(N4M) is a finitely generated &(A)-submodule of (4, M that is independent of
the choice of representative v in P.

(ii) If ' is any homomorphism of A-modules with domain P and the property that
ker(m,) C ker(m,) for any, and therefore every, v in P, then Fr (N, M) C F (N4 M).
In particular, Fo, (N, M) is the (unique) mazimal Fitting lattice in ()4 M.

(i) Fiap (M M) = 0.

(iv) Let p : A — B be a surjective homomorphism of R-orders and write ,m for the
B-module morphism with domain ,P that has (,7), = p(m,) for each ¢ in P. Then
the lattice F -(Ng(,M)) is equal to the image of Fr((\yM) under the natural map
NaMp — ((B) ®¢(a) NaMr = Np(B ©a Mp).

(v) If M is a free A-module and P is represented by the identity map on M, then for
any choice of A-basis b of M one has Fo, ([, M) + ker(0,) = (4 M, where 6y is
the homomorphism of £(A)-modules that occurs in Proposition 3.5. In particular, if
either A is commutative or tkg(M) = r, then Fo, (N, M) = N4 M.

(vi) If A is commutative and satisfies condition (Asz), then Fo, (N yM) = N1 M.

(vil) If A is commutative, M is a locally-free A-module and P is represented by the
identity map on M, then Fr (N, M) C Fity(im(m)) - A"y M, with equality if for any,
and therefore every, representative v of P the A-module ker(m,) can be generated by
d elements.
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Proof. Tt is clear, by its very construction, that Fr (M) is a £(A)-module and straight-
forward to check that it is contained in (/4 M.

To show that it is independent of ¢ in P one need only note that if one takes any diagram
of the form (6), then A\\(A ®4 K, ) restricts to give an isomorphism of £(.A)-modules
4P = P which sends the lattice FL}, (h) to FLj (h).

Ky xORh,.

To complete the proof of claim (i) it suffices to show that Fr(();M) is a finitely generated
R-module and to do this it is enough to consider the case that the ring R is local and the A-
module M is free, of rank ¢ say. In this case if h is any quadratic presentation of A-modules
which factors through =, then for any isomorphism of A-modules « : A" — M, Proposition
3.5(iii) combines with the commutative diagram of .A-modules

At On At

to imply that
(8) FL (h) = €(A) - AL, (5(5)" 0 (k0 8 0 6™ 1) (N ZE k(b)) C ﬂ;M

J=r

where we write {b;}1<i<¢ for the standard basis of A’.

Now, as h and  vary, all of the homomorphisms x(b;)* o (k o 6 o K~1) belong to
Hom 4(M, A). The finite generation of Fr ([ M) as an R-module is therefore a consequence
of the fact that the £(.A)-linear span of {Ai=!¢p; : ¢; € Homa(M, A)} in A\yop Homa(Mp, A)
is finitely generated.

The first assertion of claim (ii) is true because the stated assumptions imply that for
every prime ideal p of R any presentation hy of A, -modules which factors through , also
factors through m,. The second assertion of claim (ii) then follows immediately from the
first assertion.

Claim (iii) is true because if 7 is the identity endomorphism of M = P, then ker(w,)
vanishes. This combines with the injectivity of x5, to imply that 6, and hence also each
projection 6y, ;, is the zero map and hence that FL;h,L(h) vanishes.

To prove claim (iv) we can again assume that R is local and that M is a free .A-module,
of rank ¢ say. We note that p induces a surjective homomorphism of rings £(A) — £(B) and
we write p for the natural map Ay Mp — ((B) ®cay AyMr = NgB ®4 Mp.

By using the formula (8) one deduces that F((1;M) is equal to the £(.A)-module gen-
erated by all elements of the form /\;jﬂ(c; o 9)(/\;:510]-) where {c;}1<j<¢ is any choice of
A-basis of M and 6 any homomorphism of .A-modules M — M for which im(#) is contained
in ker(m,) for some choice of ¢ in P. In the same way one obtains a similar description of
F, - (N, M):

In particular, since for any such 6 one has im(,6) C ker(,7,,), the inclusion p(F((,M)) C
F,=(Ng(,M)) follows directly from the fact that

PN 21 (c5 0 0) (NS 21e))) = N2 (d5 0 p8) (N 21dy)

where we write d; for the image of ¢; under the natural surjection M — ,M.
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To prove the reverse inclusion, and hence complete the proof of claim (iv), we note first
that for any homomorphism of B-modules " : ;M — ,M for which im(¢’) C ker(,m,,) there
exists a homomorphism of A-modules M — M for which both im(#) C ker(m,) and ,0 = ¢’
It then suffices to note that, since A is semi-local, Bass’s Theorem implies that any B-basis
of ,M can be lifted to an A-basis of M.

To prove claim (v) we fix an A-basis {m;}1<i<; of M. Then the proof of Proposition
3.5(iii) shows claim (v) is true provided that Fr((4M) contains the element Af=7m,, ;) for
each choice of ¢ in [ﬂ To show this we fix such a permutation o and, writing {b; }1<i<¢
for the standard basis of A, we define 6, to be the natural projection map from A? to the
A-module direct summand that is generated by the set {by(;)}r<i<t- Then the formula of

Lemma 2.1 implies (/\;j«+1(b; 0 05)) (AFZhbr) = £ AFZT bys)-
It then suffices to note that, since m is the zero endomorphism of M, there exists a

presentation h of the form (7) with r, 9 =t and 6, = 6, and which factors through 7 by

means of the isomorphism of A-modules A! = M which sends each element b; to m;.

To prove claim (vi) we assume A is commutative, fix ¢ : M — P in P, write Op for the
zero endomorphism of P and use the map A" (A ®.4¢) to regard A’y Mp as a submodule of
N4 Pr. Then, since claim (v) implies Fy, (', P) = (4 P, it suffices to show that in A\, Pr
one has N, M = (AyMr) N4 P. But it is clear that (\,M C (A;Mr) N, P and if one
assumes that A satisfies (Az), then the reverse inclusion is also very easy to check.

Turning to claim (vii) we continue to assume A is commutative. We first note that, in
this case, if a presentation h of an A-module X (as in (7)) is both quadratic and factors
through , then there exists a surjective homomorphism of A-modules X — im(7) and
hence, by standard properties of higher Fitting ideals, an inclusion Fit"y (X) C Fit"y (im(m)).

We further note that if ker(w,) can be generated by d elements, then there is an exact
sequence of A-modules A4 — P =% M — 0. By applying Roiter’s Lemma to the locally-free
module P one deduces the existence for any natural number n of a quadratic presentation
h of an A-module X’ which factors through 7 and is such that X ép) = My, for all prime
ideals that do not divide n.

Given these observations, claim (vii) will follow if we can show that for any A-module X
that has a quadratic presentation h of the form (7), there is an equality

.
: T — 4T . ’r‘h,g
> im(f) = Fit]y(X) /\AA
h/
where in the sum A’ ranges over all quadratic presentations of A-modules that are finer
J=Tn! 2

than h and for each such A’ we write f}, for the map Nj—rii 01 ; which occurs in §5.2.1.

To do this we set t = rp o and we recall Proposition 3.5(iii) implies that ﬂit.At is equal
to Ay A* and so is free of rank one with basis by A -+ A by, where b = {b1,...,b} is the
standard basis of A’. By Lemma 2.1, we also know that f}, (b1 A --+ Ab) is a sum of the
elements of the form

£ det((On (bo(i))r<ij<t) - A1 bo(r) € det((Op j(bo(i) r<ij<t) /\AAd’

where o runs over D:]
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We next make two observations which follow immediately from the definition of higher
Fitting ideal.

Firstly, since each matrix (04 (bs(i)))r<i,j<t is a (t —7) x (t—7r) minor of the matrix of 6y
with respect to the basis b, its determinant belongs to Fit"y(X’) C Fit’;(X), thus proving
the inclusion of claim (vii).

Secondly, the A-module Fit; (X) - A4 A? is generated by all elements of the form

det((0h, (1) (br(j))r<ii<t) " Ae=ibur)»

as o, 7 and u range over [fq] and so it suffices to show that each such element is contained
in im(f},) for a suitable choice of presentation h'.

Fixing a choice of o, 7 and p we write ¢ for the unique endomorphism of the A-module
A! which at each integer i with 1 < i < t satisfies

I\ . La,ufl(eh(bntfl(i)))’ if ¢ ¢ {u(l),...,,u(r)},
obi) = {o, if i € {u(1),...,pn(r)},

where 1,,,-1 is the automorphism of the A-module A* which satisfies Lop—1(bu@y) = bogi)

ou
for all ¢ with 1 <4 < t. Then, since im((¢,,-1)" 0 8") C im(6}) there exists a quadratic
A-module presentation h’ that is finer than h and such that #’ = 6),. In addition, Lemma

2.1 implies that

Fh (A= ibe) = £ det(((by(; © 0") (b)) )r<isj<t) AEZT bpu(k)
=+ det(((b,5) © top-1) (On(br () r<ij<t)) - AE=1bu(r)
= = det((b5(;) (On(br(j)))r<ij<t)) - /\ijbp(k)
= = det((Oh,0() (br(j))Ir<i<t) - N=1bur)-
This shows that det((0p, 4(i)(br(j)))r<ij<t) - /\lljjbu(k) belongs to im(f7,) and hence com-
pletes the proof of claim (vii). O

Remark 5.4. Fix P in slfp (M) and a non-negative integer . Then the proof of Propo-
sition 5.3(i) also allows us (by a slight abuse of notation) to define Fr((’;P) to be equal
to Fr (N4 P) for any choice of embedding ¢ : M — P in P and to regard \’,(A ®4 ) as
inducing a canonical map F((4M) — F(4P).

In a similar way, if A is commutative, then we occasionally use A\’4P to denote the lattice
N4 P for any choice of P as above. We note that, in terms of this notation, Proposition
3.5(iii) implies there is a natural identification A}P = N, P.

5.4. Non-commutative higher Fitting invariants: definitions. We next introduce a
natural notion of ‘higher Fitting invariant’ in the non-commutative setting.

For any strictly positive integer n we write {b;}1<i<, for the standard basis of the free
A-module A™.

For any non-negative integer ¢ we write [n]; for the set of subsets of {1,2,...,n} that are
of cardinality min{¢,n}.
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5.4.1. We fix a presentation h of A-modules of the form (7). We write M (h) for the matrix
of O, with respect to the bases {b;}1<i<r,, and {b;}1<i<r, ,-

Then for any non-negative integer ¢ and any ¢ = (p;)1<i<¢ in Hom4(A™1, A)" we write
Ming"?(6y) for the set of all rj, 5 X 7,2 minors of the matrices M (h, J, ¢) that are obtained
from M (h) by choosing any J in [rp, o]s, with J = {i1, 42, -+ ,i;} and 43 < iy < --- <y, and
setting

©a(bi if j =i, with1<a<t
©) M(h T, o) { (b)),

M(h)i;, otherwise.

For any non-negative integer r we define the ‘r-th (non-commutative) Fitting invariant
of the presentation A’ to be the ideal of {(A) obtained by setting

F17y(h) := &(A) - {Nrda(N) : N € Min,"*(6y), ¢ € Hom4(A™1, A)f, t < r}.
We then define the ‘total r-th (non-commutative) Fitting invariant of h’ by setting
FT°(h) := Y FI(h)

where in the sum A’ runs over all A-module presentations that are finer than h.

5.4.2. For each A-module presentation bundle h and each non-negative integer r we define
ideals of £(.A) by setting

FI'y( ﬂFIA()

and

r,tot T tot
FI'; ﬂ I (hy),

where in both cases in the intersection p runs over all prime ideals of R.
We refer to 17y (h) and FIrAtOt(h) as the r-th, respectively the total r-th, (non-commutative)
Fitting invariant of the presentation bundle h.

5.5. Non-commutative higher Fitting invariants: basic properties. In this section
we record some basic properties of the higher Fitting invariants defined above and also
describe their connection to the Fitting lattices defined earlier.

5.5.1. Our first result shows that higher Fitting invariants of presentations share some of
the same properties as do higher Fitting ideals of modules in the commutative setting.

Proposition 5.5. Let h be a presentation bundle of a finitely generated A-module X. Then
for each non-negative integer r the following claims are valid.

(i) FTy(h) C FT'{" (h) and FT"**(h) C FI,'"(h)
(ii) FI(h) = FI{°(h) = £(A) if r > 1.
(iii) If the A-module presentation bundle h' is finer than h, then FITAtOt(h’) - FIZtOt(h).
In particular, if h and h' are equivalent, then FI';'*(h) = FI;*"(1’).

(iv) If A is commutative, then FI'y(h) = FI;tOt(h) and this ideal coincides with the r-th
Fitting ideal Fit"y(X) of X as an A-module.
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Proof. Claims (i) and (ii) follow directly from the definitions of (total) higher Fitting in-
variant.

The first assertion of claim (iii) follows directly from the fact that if A’ is finer than
h, then for each prime ideal p of R any .A(,)-module presentation that is finer than hg is
automatically finer than h, and hence FITAt(g:(h;J) C FITAt(:)t(hp).

The second assertion of claim (iii) then follows immediately upon combining the first
assertion with the definition of equivalence of presentations.

It suffices to prove claim (v) after localizing at a prime ideal p. Then, setting A := A,),
claim (iii) implies it suffices to show that FI} (hy) = Fit} (X))

Next we note that, if A is abelian, then FI} (h,) is generated over A by elements of the
form det(IN) where N is an rp, o X 7 o matrix, at least rj, o —r columns of which coincide with
the columns of an rp o X 79 minor of M (hy). The Laplace expansion of det(/N) therefore
shows that it is contained in the ideal of A that is generated by the set of (rp o —7) x (rp2—7)
minors of M (hy). Thus, since the latter ideal is, by definition, equal to Fit} (X(;)) one has
FITA(hp) - FitrA(X(p)).

To prove the reverse inclusion it suffices to show that for each (74,2 —r) X (rp,2 — ) minor
N of M (hy) the term det(N) belongs to FI}y (hy). To show this we assume that NN is obtained
by first deleting from M (hy) the columns corresponding to a subset J = {iy, 2, -+ i} of
[Th,2)r With i1 < iy < --- < i, and then taking the rows corresponding to an element .J; of
["h,1]ry o—r- We choose an element Jj of ["h,1]ry » Which contains Ji, label the elements of
Ji\ Ji as k; < kg < --- < k, and then define an element (¢4)1<q<, of Homp (A™1, A)" by
setting ¢4 (b;) = dik, for each i with 1 <4 <7y .

Then an explicit computation shows that, with these choices, the determinant of the
matrix M (hy, J, ¢) defined in (9) is equal to +=det(N') and hence implies that det(/N) belongs
to FI} (hy), as required. O

5.5.2. In this subsection we focus on the zero-th Fitting invariant and, in particular, relate
it to an earlier construction of Nickel in [40].

To do this we note first that for every natural number m and every matrix M in M,,(.A)
there is a unique matrix M™* in M,,(A) with MM* = M*M = Nrds(M) - I,, and such
that for every primitive central idempotent e of A the matrix M*e is non-zero if and
only if Nrd4(M)e is non-zero. Motivated by the result of [40, Th. 4.2], we then use this
construction to define a subset of ((A) by setting

A(A) :={z € ((A):Vd > 1, VM € My(A) one has M* € My(A)}.
The basic properties of this set are described in the following result.

Lemma 5.6.
(i) A(A) is an ideal of ((A).
(ii) An element x of ((A) belongs to A(A) if and only if there exists a non-negative
integer my, such that for all a > m, and all M € My(A) one has xM* € M, (A).

(iii) A(A) - £(A) = A(A).
Proof. The set 2(A) is clearly an additive subgroup of ((A) and stable under multiplication
by ((A). One also has A(A) C ((A) since if M is the 1 x 1 identity matrix, then x = zM =
xM* and so x = xM* € M;(A) implies x € AN ((A) = ((A). This proves claim (i).
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To prove claim (ii) it obviously suffices to show that the stated condition is sufficient to
imply z belongs to 2(.A). To do this we fix a natural number d and a matrix M in Mg(.A)
and note that in Mg, (A) one has

M 0\ [(M* 0 ~ (zM* 0
o In,) L0 NedaM) L., ) "\ 0 aNrda(M) I, )

In particular, since d + m, > mg, the stated condition on x (with a = d + m, and M
]\04 IO )) implies that xM™* belongs to My(A), as required.
Mo

Since 1 belongs to £(.A), to prove claim (iii) it suffices to show that for any = in 2A(A),
any natural number n, and any matrix N in M,,(\A), the element 2’ := x - Nrd 4 (V) belongs
to A(A). We do this by showing that z’ satisfies the condition described in claim (ii) with
my taken to be n.

We thus fix an integer d with d > n and choose N’ in My(A) with Nrd4(N’) = Nrd4(N).
Then, for any M in My(.A) one has M*(N')* = (N'M)* and hence

2’ M* =2 Nrdsy(N)M* =z - Nrdo(N'YM* =2 - M*((N")*N') = (- (N'M)*)N" € My(A)

where the containment is valid since, by assumption, the product = - (N'M)* belongs to
My (A). O

Remark 5.7. The ideal A(A) differs slightly from an ideal #(.A) defined by Johnston
and Nickel in [30] (the reason being that the above definition of M* differs slightly from
the ‘generalized adjoint matrices’” M* defined in loc. cit.) Nevertheless, the extensive
computations of H(A) made in loc. cit can be used to give concrete information about the

ideal 2(A).

replaced by <

We can now state the main result of this subsection.

Proposition 5.8. Let h be a presentation bundle of a finitely generated A-module X. Then
all of the following claims are valid.
(i) ¢(A)-FI%(Rh) = £(A) - Fit 4(h), where Fit 4(h) is the noncommutative Fitting invari-
ant of h, as defined by Nickel.
(i) A(A) - F1%(h) C A(A) - F14(h) C Anna(X).
(iii) If h is quadratic, then FI?itOt(h) = F1%(h) = €(A) - Nrda(M(h)) and this ideal is
independent of h. In particular, in any such case we may denote both FI%Ot(h) and
F1%(h) by FI%(X).
(iv) Let 0 - X1 — X9 — X3 — 0 be a short exact sequence of A-modules. If X1 and

X3 have quadratic presentation bundles, then so does X9 and there is an equality
FI19 (Xs) = FIY (X1)FI%(X3).

Proof. After localising (which we do not explicitly indicate) we can assume that h is a
presentation of the form (7).

We write ¢'(A) for the R-order in ((A) that is generated over ((A) by the elements
Nrda (M) as M runs over matrices in | J,,~q GL,(A). Then the invariant Fit 4(h) is defined
in [30, (3.3)] to be the ¢’(A)-submodule of ¢(A) that is generated by the elements Nrd 4 (N)
as N tuns over all 75,5 X 75,5 minors of the matrix M (h). Thus, since FI%(h) is defined
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to be the ideal of {(A) that is generated by the same elements Nrd(N), the equality
C(A) - FI1Y(h) = £(A) - Fit 4(h) of claim (i) follows directly from the fact that ((A) - £(A) =
§(A) - €'(A).

The first inclusion of claim (ii) is obvious. In addition, if A’ is any presentation bundle
that is finer than A and p is a prime ideal of R, then h; is the presentation bundle of an
A(p)-module Y for which there exists a surjective homomorphism of A(,)-modules Y — X,
and hence an inclusion Anny, (Y') € Ann4(X),). This observation shows that the second
assertion of claim (ii) is reduced to proving 2A(A) - FI%(h) C Ann4(X).

To do this we fix z in A(A) and y in £(A). Then Lemma 5.6(iii) implies that the product
x’ = xy belongs to A(A). Next we let N be any 742 X rj, 9 minor of the matrix M(h).
Then the argument of [40, Th. 4.2] combines with the assumption rp o > m, to imply that
' -Nrdg(N) = z(y - Nrd4(N)) belongs to Ann4(X).

This implies the inclusion of claim (ii) since, as y varies over {(.A) and N over the 75,2 X7 2
minors of M (h), the elements y - Nrd4(/N) run over a set of generators of the R-module
FIY(h).

If h is quadratic, then it is clear that FI%(h) = ¢(A) - Nrda(M(h)) and so the first
assertion of claim (iii) is true if one can show that FI%Ot(h) = FI%(h). To show this it
is enough to show that if A’ is any A-module presentation that is finer than the quadratic
presentation h, then FI (') C FI%(h).

We set ¢ := rp, 1 = rp 2 and note that, since A’ is finer than h, one has Tl =T o =tand
there exists a matrix U in GL(A) and a matrix V in M;(A) with M(h)U = VM (h). It
follows that Nrda (M (h')) = Nrd4(U~1)Nrd4(V)Nrd 4 (M (h)) and this implies the required
inclusion since FIY(h') and FIY(h) are respectively generated over £(.A) by Nrda (M (h'))
and Nrd4(M (h)) and the product Nrd4(U~!)Nrd4 (V) belongs to £(A).

Finally we note that the second assertion of claim (iii), and the whole of claim (iv), are
proved by a simple adaptation of the proofs of Nickel [40, Th. 3.2ii)] and [40, Prop. 3.5iii)]
respectively. (I

5.5.3. We end this section by recording the connection between higher Fitting invariants
and the Fitting lattices that were defined earlier.

Lemma 5.9. Let h be a quadratic presentation of an A-module X of the form (7) and set
t:=rpa. Write P for the family in slfp 4(A") represented by the identity automorphism ¢
of At and 7 for the homomorphism of A-modules P — X induced by 7p,.

Then for each mon-negative integer r one has

(10) A @DE() A : (pihizic, € Homa (A%, A} = T (1),
=1

Proof. Note first that, with these definitions, a quadratic presentation of A-modules A’/
factors through = if and only if it is finer than h.

Further, if we fix any such presentation h’, set k := kj/, and write {b;}1<p<; for the
standard basis of A’, then Proposition 2.6 implies that for any (¢;)1<i<, in Hom4(A*, A)"
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one has
/\% (Myin) © (N2 100w ) (AMZIb)) = (\ (@i © ) (N2 100 ) (ARZT b))
i=1
= (NZ1(@i 0 Finy) A (N2t 0 3)) (A= br)
= NrdMT(Aop) (M),

with M = (M;;) the element of M;(.A) defined by

Mo e (piokp,)(bj), ifl<i<randl<j<t,
T ) O (b)), ifr+1<i<tand1<j<t.

Now, in terms of the notation (9), one has M = M(K/, J, ¢') with J ={1,2,--- ,r} € [t],
and ¢’ = (p;okn,)1<i<r € Hom4 (A", A)". The above displayed expression therefore belongs
to FI7 (). Since Ny A" = £(A) - AFZtb,; (by Proposition 3.5(iii)) this in turn shows that
the left hand side of (10) is contained in FI';"*(h).

To prove the reverse inclusion it suffices to fix a refinement h’ of h and show that for any
o= (%)19’9 in Hom 4(A?, A)" and any J in [t], there exists a refinement h” of h and an
clement ¢ = (¢})1<i<, in Hom 4(A?, A)" such that Nrdaes (M (I, J, ) = (N2} @) (x) for

a suitable element z of FL} | L(h” ).

To do this we write J = {ll,ig,--- yir} with 43 < dg < -+ < 4,. We then choose a
permutation o of {1,2,--- ,t} which satisfies o(j) = i; for each j with 1 < j <r and define
k. to be the A-module automorphism of A’ with r(b;) = by(j) for all j with 1 < j <. We
then define A" to be the unique refinement of h for which 6, = /{31 00y and wpr = TR 0Ky
and note that, with this definition, one can take kp», = Kkj, o ky. We define the element
¢’ by setting ¢! = ¢; o f@;,h for each i with 1 < i <.

The proof is then completed by noting that z = (("ykpr,) o (A i=t Onr ) (NEZEby)

j=r+1
belongs to FL, L(h”) and that
(A i) (@) = (N0 mpt N(arnr) o (N1 80,)) (AEZ5br)
i=1 i=1

= (/\ 0i) (N2 1O o) (MZTbE))

= ((NZ190i) A (N2 1O.0()) (NEZ1 )

= +Nrd gen (M (K, J, ),
where the last equality follows from Corollary 2.9 and the definition (9) of M (h/, J, ). O
Remark 5.10. If A is commutative, then Propositions 5.3(vii) and 5.5(iv) respectively
imply that the left and right hand sides of the equality (10) are equal to Fit’(X).

In general, for any family P in slfp 4(M), any homomorphism of A-modules 7 with
domain P and any integer r with 0 < r < rk4(P) the result of Lemma 5.9 leads to an
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expression for the £(.A)-ideal

{(/_\ ei)( m P)) : (pi)1<i<r € Homu(P, A)"}

in terms of the higher Fitting invariants of quadratic presentation bundles which factor
through 7. For brevity, we leave the derivation of a precise such result to the reader.

Remark 5.11. Let M be a finitely generated free A-module of rank d and fix a basis b.
Let 7 be any non-negative integer with 0 < r < d.
Then Proposition 3.5(iii) shows that there is an isomorphism of {(.A)-modules

Rp - ﬂ;M 6[9]5 EB ker 9(,)

In this context, the result of Lemma 5.9 suggests that for any quadratic A-module presen-
tation f with 3, = d the lattices ry(Fx, (4 M)) and (B¢ FI";*"(h)) @ ker(6}) should

be closely related.

6. NON-COMMUTATIVE DETERMINANT MODULES

In this section we continue to fix data R, F, A and A as in §3.

We write D(A) for the derived category of (left) A-modules. We also write C'(A) for
the category of bounded complexes of finitely generated locally-free A-modules and D'(A)
for the full triangulated subcategory of D(A) comprising complexes that are isomorphic to
a complex in Cf(A).

We write K(lJf(A) for the Grothendieck group of the category of finitely generated locally-
free A-modules. We observe that each object C' of D'(A) gives rise to a canonical ‘Euler
characteristic’ in K} (A) and we write this element as x 4(C).

We recall that the ‘reduced locally-free classgroup’ SKg(A) of A is defined to be the kernel
of the homomorphism K(I)f(A) — Z that is induced by sending each locally-free module M
to rk4(M).

We write Cf9(A) for the subcategory of C(A) comprising complexes P* for which
xA(P*) belongs to SKE(A) and D':0(A) for the full triangulated subcategory of D'(A)
comprising complexes C' for which y4(C) belongs to SKI(A). (The latter condition is
equivalent to requiring that C' be isomorphic in D(A) to an object of C:0(A)).

In this section we shall associate a canonical invertible £(.A)-module to each object of
the category D0(A). We show that such modules constitute a natural theory of ‘non-
commutative determinants’ and hence provide a more explicit alternative (in our setting)
to both the category of virtual objects constructed by Deligne in [18] and to the theory of
noncommutative determinants and ‘localized Kj-groups’ constructed by Fukaya and Kato
in [24, §1.2 and §1.3].

6.1. Definitions and basic properties. In this first section we associate a canonical
determinant module to each complex in C(A) and investigate its basic properties.
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6.1.1. At the outset we assume to be a given a locally-free .A-module P and set r := rk4(P)
and Pr .= F ®pg P.

For each prime ideal p of R we fix an A()-basis b, = {by j}1<j<, of the localization Py
and define a free rank one {(Ay))-submodule of A’y Pr by setting

r

_ AT
gy T = §0AG) - Az

We then obtain a £(A)-submodule of A’y Pr by setting

NP =NN,, P
p

where the intersection is taken over all prime ideals p of R.
The basic properties of this construction are recorded in the following result.

Lemma 6.1. For each module P as above the following claims are valid.

(i) A4P is independent of the choice of bases {b,}y-

(ii) If P is a free A-module, with basis {bj}i<j<r, then \'yP is a free rank one {(A)-
module with basis /\;z;bj.

(iii) A4P is an invertible {(A)-module, with (N4 P) ) = /\;(p)P(p) for all prime ideals
p of R.

(iv) Leto: A — B be a surjective homomorphism of R-orders. Write B for the F'-algebra
spanned by B and 91 : A — B, 02 : ((A) — ((B) and g3 : £(A) — £(B) for the sur-
jective ring homomorphisms induced by 0. Then B® 4, P is a locally-free B-module
and the natural isomorphism of ((B)-modules ((B)®¢(a),0, A4 PF = N5(B®a4,q, Pr)
restricts to give an isomorphism of invertible £(B)-modules §(B) ®¢(a),05 NgP =
Ng(B @4, P), where the exterior powers in the latter module are defined with re-
spect to the same E-bases of those simple Ag-modules which factor through B.

(v) If 0 — P, LN P KA P3 — 0 is a short exact sequence of locally-free A-modules, then
there is a natural isomorphism of §(A)-modules \'§ Py = N'{ P1 ®¢ay NP3 where
we set r; :=rka(F;) fori=1,2,3.

Proof. To prove claim (i) it suffices to fix a prime ideal p of R and to show that /\;(F)P(p)

is independent of the choice of bases b,,.
To show this we note that if {8, ;}1<;j<, is any other choice of A(,)-basis of Py, then

Corollary 2.9 implies AJZ1b, ; = Nrda(Uy) - AjZ1bp; for a matrix Uy in GL,(Ag). This
implies the required result since Nrd4(Uy) is a unit of {(Ay)).

Claim (ii) is true since the stated conditions imply that one can take by; = b; for all i
with 1 <7 <.

To prove claim (iii) it suffices to show A’4P is a full R-submodule of A\’;Pr. To show
this we note that Roiter’s Lemma implies the existence of a free rank r submodule P’ of P

and we choose an A-basis {b}}1<i<, of P'. Then for each prime ideal p of R Corollary 2.9
implies AJZ10% = Nrda(My) - AjZ by ; for a matrix My in M,.(A,)). Hence, since Nrda(My)
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belongs to {(A,)), claim (ii) implies that
/\AP’:g( CNIZ ;b;cﬂ/\ P /\ P,

This inclusion implies the required result since A’y P’ is a free {(.A)-module.

Claim (iv) is verified by a straightforward exercise that we leave to the reader.

Turning to claim (v) we fix an A-module section o to ¢. We note that ro = r1 + r3
and that for any given A-bases b; := {bj,a}lgagr]- of P;r for j = 1,3 we obtain an A-basis
big = {bif},a}lﬁaﬁm of P27F by setting b(17,3,a = bl,a if 1 <a<ryand b(17,37a = Ui(b3,a—r1) if
r1 < a < r3. We then write

A /\T2P2F—/\ P p ®ca /\ Ps

for the unique isomorphism of {(A)-modules for which
(11) A(A§27{2b‘1’,3,j) = (NgZ1'b1s) ®c(a) (Aii§3b3,t)~

By using Corollary 2.9 one shows easily that this isomorphism is independent of both the
choices of bases b; and by and the choice of section ¢ and we prove claim (iv) by showing
that A(AfP2) = N{ Py @¢a) NA Ps-

It is enough to show this after localizing at each prime ideal p of R and in this case the
equality follows from claim (i) and the fact that we can choose the elements {b s}1<s<r,
and {b3}1<t<rs to be A(y)-bases of P () and Pj () and then our choice of section o implies
the set {07 3 ;}1<j<r, defined above is an Ay)-bases of Py (p). O

Remark 6.2. Let P be a free A-module of rank one. If A is commutative, then there is
clearly a natural identification /\}4P = P. However, if A is not commutative, and P is
non-zero, then the £(.A)-modules /\}4P and P are not isomorphic.

6.1.2. In the sequel we use the following convenient notation. For any free rank one ((A)-
module W we set W' := W and W~ := Home(4)(W,((A)), regarded as a (free rank one)

((A)-module via the natural composmon action. For each basis element w of W we set

w' := w and write w™! for the (unique) basis element of W ~! which sends w to 1. For any

invertible &(A)-module £ we similarly define invertible £(.A)-modules by setting £! := £
and £~ := Homg(4) (L, £(A)).

We now assume to be given a complex P* in C"(A) of the form

(12) . pi & pitl

We set P := A®4 P* and for each integer i also r; := rk4(P").
We define a free rank one ((A)-module by setting

det4(Pp) : ® /\ PF )
1€EZ

where the tensor product is over ((A). ~We also note that, following Corollary 2.8, if i is
odd, then the ¢(A)-module (A" Pi)(=Y" can be identified with Af., Homa(Pj, A).
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Following Lemma 6.1 we then obtain an invertible £(A)-submodule of det 4 (Pp.) by setting

deta(P*) :== Q(/\ P,
€L
where the tensor product is over £(A).

6.1.3. The basic properties of this construction are recorded in the following result.

Lemma 6.3. Let P* be a complex as in (12).
(i) For each prime idealp of R and each integeri fix an Ay)-basis b, ; = {bpij}1<j<r, of

P(ip). Then ®ieZ(/\§zgibp,’i,j)(_1)i is a §(Awy))-basis of det 4(P*) ) = deta, (Pf,))-

(ii) If each A-module P is free, with basis {b; j}1<j<r;, then ®i€Z(/\;j{ibiJ)(_1)z is a
&(A)-basis of det 4(P*).

(iit) If x4(P*) belongs to SKH(A), then det4(P*) is independent of the choice of bases
of the simple Ag-modules used to define exterior products (via (1) and (2)).

(iv) Let o : A — B be a surjective homomorphism of R-orders and write o' : £(A) — &(B)
for the surjective ring homomorphism induced by ¢ and B for the F-algebra spanned
by B. Then B ®4, P* is an object of C"(B) and there is a natural isomorphism of
invertible {(B)-modules {(B) ®¢ (), det a(P*) = detg(B®4,,P*), where the exterior
powers in the latter module are defined with respect to the same E-bases of those
simple Ag-modules which factor through B.

(v) If 0 — Pp — P3 — P$ — 0 is a short exact sequence in CY(A), then there is a
natural isomorphism of §(A)-modules det 4(Py) = det o(Pf) ®¢(4) det a(P3).

(vi) If P® is acyclic, then det o(P*®) is naturally isomorphic to £(A).

(vii) The invertible £(A)-modules det 4(P*[1]) and det4(P*)~' are naturally isomorphic.

(viii) Each quasi-isomorphism X : P} — Py in CY(A) induces a canonical isomorphism
of £(A)-modules det 4(X) : det 4(P?) = det 4(Py).

Proof. Claim (i) follows easily from the fact that in each degree i the element (A2’ bp.ij)
is a basis of the {(A(p))-module (AXP})(_I)i)(p).
Claim (ii) follows directly from the definition of det 4(P*) and the result of Lemma 6.1(ii).
To prove claim (iii) we fix E-bases {v;}i1<j<q and {w;}i<j<q of a choice of simple Ap-
module V. We write M = (M) for the matrix in GL4(E) which satisfies wy = Zizf Myvy

for each integer s and note that this implies w} = i‘li Ngvf for each integer s where we
set N := (M*™)~1. Using these equalities one computes that in each even degree i there is
an equality

* ) — Ti | * ..
Algjgri(/\lgsgdws ® bPJ,J) - det(N) /\1§j§ri(/\1§s§dvs ® bp,z,g)

and in each odd degree i an equality

71 o 7’1' . 71
/\ISan(/\lgssdws © bpvivﬂ') = det(M) /\ISan(/\ISSSdUS ® bp,m’)-

Since det(M) = det(N)~! this implies that the tensor product over all integers i of these

respective terms differ by a factor of det(N )Ziez(_l)i”. This then implies the stated result
since if the image of x 4(P*®) in Ko(A) vanishes, then one has >, ,(—1)"r; = 0.

_1)i
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The isomorphism in claim (iv) is obtained by applying the result of Lemma 6.1(iv) to
each of the modules P?

Turning to claim (v) we note that the given exact sequence induces in each degree i a
short exact sequence of locally-free A-modules 0 — P{ — Pi — Pi — 0 and hence, via
Lemma 6.1(v), a canonical isomorphism of £(A)-modules

K- /\ZZPZZ = /\lell ®§(A) /\T;”P?f

where for each j = 1,2,3 we set rj; = rkA(P;). We note also that this map induces a
composite isomorphism of &£(.A)-modules

wE (NGB = (N Ploea N P72 (N PD T @en (N P

where the first map is Homg(4)(x",£(A))~! and the second is obtained by restriction of the
unique isomorphism of ¢(A)-modules

/\mp1 F Q¢(a) /\ 3ZP?) p) /\T“P1 F) ®¢(a) (/\:fip?iF)_l

which, for any (and therefore every) choice of ((A)-bases wy; and ws; of /\TA”Pf p and

Zfin’F, sends the element (w1; ®¢(4) ws;) ! to wfil ®¢(a) w?;-l.

We then define the stated isomorphism det 4(Py) = det 4(P) ®¢(4) det4(P3) to be that
which is induced by the map @),.; &; with &; = x; if i is even and &} = ] if i is odd.

To prove claim (vi) we assume P* is acyclic. This implies, by an easy downward induction
on i, firstly that each A-module im(d’) = ker(d"*!) is projective and hence that there
is an isomorphism of A-modules P* = ker(d') @ im(d’), and secondly that each module
P!/ ker(d") = im(d") is locally-free.

We now write a for the lowest degree in which the module P is non-zero, P} for the
complex P? LN im(d®) where the first term is placed in degree a, ¢ for the natural inclusion
of complexes PP — P* and we note the complex cok(:) is acyclic and belongs to Cf(A). In
particular, by applying claim (iii) to the tautological exact sequence of complexes in C'f(A)

(13) 0— P’ 5 P* — cok(t) = 0,

one can use an induction on the number of non-zero modules P* to reduce claim (iv) to the
case that P*® is concentrated in degrees a and a + 1, for some integer a.
In this case, if we choose an A-basis b = {b; }1<i<r, of Pf, then

detA(P°)F = C(A) . (/\;i?b])( 1) ®C(A) ( ada(b ))( 1)a+t

and we write A" : det4(P*)r — ((A) for the ((A)-module isomorphism which sends the
element (AJZ{“b; )< D" ®¢ay (MZ1ed (b)) D" to 1.

We clalm that A’ is independent of the choice of basis b. To show this let {b}}1<i<r,
be another A-basis of Pf and define a matrix M = (M;;) in GL,,(A) by the equalities

b, = ;j{“ M;; - bj, or equivalently d*(b}) = Z] 1% M - d*(bj), for all ¢ with 1 <4 < 7.
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By applying Corollary 2.9 in this context we can therefore deduce that
(M5 @) (A2 @) D
=(Neda(M) - A 2170;) Y @y (Neda(M) - AT (b))
=Nrd (M) TV Nrda (M) (AZ500) 5D @y (MZ7ede (b)Y
=(NZ1b) D" @cay (NZ1ed™ (b)) D",

_1)a+1

a+1

as required.

Now, since A’ is independent of the choice of b, for any given prime ideal p one can choose
b to be an A(y)-basis of P(‘;) so that

° i=7q _1)(1 i=Tq _1)at+1
deta(P*) ) = E(A) ) - (NZ105") @y (A5 d" () ™)),

In particular, with this choice it is clear that A’(det4(P*®)y)) = &§(A)) and, since this
equality is true for all prime ideals p, one thus has A’(det4(P®)) = £(A). In this case
therefore the isomorphism in claim (iv) is obtained by restricting A’ to det 4(P*).

To prove claim (vii) we write Conepe for the mapping cone of the identity endomorphism
of P* and use the composite isomorphism

ki det 4(P*®) ®g(ay det 4(P*[1]) = det 4(Coneps ) = £(A).

Here the first isomorphism results from applying claim (iii) to the natural short exact
sequence 0 — P®* — Conepe — P*[1] — 0 in C'(A) and the second is the isomorphism of
claim (iv) for the acyclic complex Conepe. One then obtains a canonical isomorphism of
invertible £(A)-modules det 4(P*[1]) — Homg(q)(deta(P*),&(A)) by sending each element
x to the map y — k(y ® x).

Finally, to prove claim (viii) we adapt an argument of Knudsen and Mumford [33, proof
of Th. 1]. To do this we denote by Z} the complex with Zi = P{ ® Pi @ P! and the
differential in degree i is represented by the matrix

d 0 -1
0 d, Xt
0 0 —dt!

where we write d; for the differential of P} in degree 7. With this notation there are
quasi-isomorphisms Aj : Pf — Z3, Ao : P§ — Z3 and X, : Z3 — P3 in CY(A) with

1 0 A
M=10], =11 and M\, = |1
0 0 0

One checks that Ay 0 A\; = A and Ay 0 Ay = idps. In addition, the complexes cok()1) and
cok(\g) are acyclic objects of C'f(A) and so there are natural composite isomorphisms

(14) det4(Ni)" : det4(P?) = det A(P;) ®¢(a) deta(cok(N;)) = deta(Z3)
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for i = 1 and i = 2, where the first map is obtained by applying claim (v) to the complex
cok(A;) and the second by applying claim (iii) to the tautological short exact sequence
0 — P* 25 73 = cok(Ay) — 0.
We then obtain an isomorphism of the required sort by setting
det 4(\) := (det4(X2)") " o det 4(A\1)’.
O

6.1.4. The result of Lemma 6.3(i) motivates us to make the following definition.

Definition 6.4. We say that a complex P* in C'(A) is ‘free’ if each A-module P’ is free.
For any such complex P* we shall say that a basis element b of the (free rank one) A-
module det 4(P*®) is ‘primitive’ if it is equal to ®iez(/\;ﬁz?b§;1)l

{bi,j}lgjgri of the modules Pi.

) for some choice of bases

The key properties of such bases that we shall use in the sequel are recorded in the next
two results.

In the sequel we write sr(.A) for the stable range of A. We recall that Bass has shown
that sr(A) = 1if R is local, and hence A is semi-local, and that sr(.4) = 2 in all other cases.
(For more details see [16, Th. (40.31)] and [16, Th. (40.41)] respectively).

Lemma 6.5. Let P* be a free complex in C''(A) of the form (12) for which there exists an
integer i with r; > sr(A).

Let b be a primitive basis of det o(P®). Then any other element b’ of det 4(P®)p is a
primitive basis of det 4(P*®) if and only if b’ = w - b with u in Nrd4(K1(A)).

Proof. Necessity of the given conditions follows from Corollary 2.9 (in just the same way as
did Lemma 6.1(1)).

To prove sufficiency we first apply [16, Th. (40.42)] to deduce the existence of a matrix
u; = (i ap) in GLy, (A) with Nrdg(u;) D" = u.

We then fix bases {bs}1<t<r, of the A-modules P* such that b = &, (A=1"bs¢) Y
and write {bg,t}lgtgrs for the basis of each module P* obtained by setting b’&t =bsif s #1
and b;t =Y 1" Ui twbiw. Then Corollary 2.9 implies that

w-b = Nrda(u) ™" @A b) T = @A, ) Y,
SEL SEZL

s

as required. O
In the next result we use the result of Lemma 6.3(viii).

Lemma 6.6. Let A : P — P; be a quasi-isomorphism in CY(A) between free complezes,
each of which has at least one term of rank at least sr(A).

Then an element b of det o(Py) F is a primitive basis of det 4(Py) if and only if the image
of b under A ® 4 det 4(\) is a primitive basis of det 4(Ps).

Proof. For j = 1 and j = 2 we choose in each degree i an A-basis {bj,ik}lgk:grji of

P;, where we set rj; = rk A(P;) and then write b; for the corresponding primitive basis

k=r; 1\ .
iz (N’ bj,ik>( D" of detA(Pj).
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Then Lemma 6.5 implies that the stated claim is true if and only if there exists an element
uw of Nrda(K71(A)) with det 4(A)(b1) = u - be. To show this we adopt the notation of the
proof of Lemma 6.3(viii).

We observe first that in each degree i the set of elements (blﬂ-al,bgvi@,bL(iH)%), with
1 <ap <ry,l <ag <rgand 1 < ag < T1(i41) constitutes an A-basis of Zﬁ and
we write by for the corresponding primitive basis of det4(Z}). In the same way the el-
ements (0, 02iay; 01,(i+1)az) a0 (b1iay, 0,01, (i41)a) give rise to primitive bases b} and by of
det4(cok(A1)) and det 4(cok(A2)) respectively.

An explicit computation shows that, for both j = 1 and j = 2, the isomorphism det(}\;)’
in (14) sends b; to 4u;(b}) " - by with 4; the isomorphism det 4(cok(};)) = £(A) induced by
applying Lemma 6.3(vi) to the acyclic complex cok(};), and hence that

det 4 (A)(b1) = (det a(Aa)) " (deta (A1) (b1)) = pra(by)pe (B)) " - bo.

Given this, the required equality follows directly from the result of Lemma 6.7 below. [
In the following result we use the result of Lemma 6.3(vi).

Lemma 6.7. Let P* be an acyclic free complex in C(A). Then the canonical isomorphism
det4(P°®) = &(A) sends each primitive basis of det 4(P*®) to an element of Nrd4(K1(A)).

Proof. Lemma 6.5 reduces us to proving that in each degree ¢ one can choose an A-
basis {b;;}1<j<r, of P' such that the isomorphism constructed in Lemma 6.3(vi) sends
®icz (A2 to 1.

To show this we adopt the notation of the proof of Lemma 6.3(vi) and so argue by
induction on the number of non-zero modules P*.

We choose A-bases {b; ;}1<j<r; of P' for each i € Z\ {a+1} and an A-basis {b’;}1<;<; of
P! /im(d®). We also choose an A-invariant splitting o of the tautological exact sequence
0 — im(d®) — P! — Pt /im(d*) — 0 and then use it to define a basis {b; j}1<j<r,., of
P+l by setting bat1,; = d*(bg ;) if 1 < j <rqand byy1j = O'(b;_Ta) if rg <j<rgsr1-

Now the isomorphism A : det 4(P*®) = det 4(P*®) ®¢(4) det 4(cok(¢)) obtained by applying
Lemma 6.3(v) to the exact sequence (13) sends the primitive basis ®i€Z(/\;-jfbi’j)(_l)Z of
det 4(P*®) to z ®y for the primitive bases x = (/\?Z“bm)(*l)a Qe (A) (/\?Z““d‘l(l)a”]-))(*l)(”rl
of det4(P}) and y = ®i2a+1(/\;:{ibi7j)(*1)i of det_4(cok(z)).

Arguing by induction, it is therefore enough to note that our definition of the isomorphism
det 4(P?) = £(.A) ensures that z is sent to 1. O

6.2. Extension to the derived category. In this section we extend relevant aspects of
the above construction of determinant modules to objects of the category D0(A).

To do this we choose for any C in D¥:9(A) a representative complex P* in C'0(A) and
then set

det4(C) := det4(P*).
6.2.1. The basic properties of this definition are recorded in the following result.

Proposition 6.8.
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(i) For any object C' of DO A) the £(A)-module det 4(C) defined above depends, up to
canomnical isomorphism, only on C.
(ii) IfCy — Co — C3 — C1[1] is any exact triangle in D'-0(A), then there is a canonical
isomorphism of {(A)-modules det 4(Ca) = det 4(C1) @g(a) det4(C3).
(i) Let o : A — B be a surjective homomorphism of R-orders and write o' : £(A) —
£(B) for the ring homomorphism induced by o. Then for any object C' of D¥0(A)
the derived tensor product B ®H21,g C belongs to DO(B) and there is a canonical

isomorphism of invertible §(B)-modules {(B) ®¢( 4y, deta(C) = det 4(B ®HA,Q C).

Proof. To prove claim (i) we note first that, by a standard argument, if P} and P are
any objects of C'(A) for which there are isomorphisms 6; : Py = C*® and 6y : Py = C*® in
DY(A), then there exists a quasi-isomorphism ) : P = Py in C(A) that is unique up to
homotopy and such that §; = 65 o X in Df(A).

Recalling the results of Lemma 6.3(iii) and (v), claim (i) will therefore follow if for any
quasi-isomorphisms P} 2 Py and P % Py in C"(A) which differ by a homotopy one has
det 4(\) = det 4(p).

To prove this we follow the proof of [33, Prop. 2]. Thus, we note that if H is any choice of
homotopy with A — pp = dy o H + H ody, where d; and dy denotes the differentials of P and
Py, then, in terms of the notation in the proof of Lemma 6.3(vi), there is an isomorphism
0 : Z3 — Z5 in CY(A) that is given by the matrix

1 0 0
01 H
0 0 1

and is such that the following diagram in C'f(A) commutes

A1 A2

23 P
w |

o M o , M .
P} ——— 7% «—— P5.

The first and second squares in this diagram can be completed to give an isomorphism
of short exact sequences in C(A) of the form

0 y P2y 78— cok(A) —— 0
| “
0 pr X Zy — cok(p;) —— 0

with ¢ = 1 and ¢ = 2 respectively, in which in each degree j, the map

/@g : PQj @ PljJrl = cok()\;)? — cok(u;)! = P2j & PljJrl

is induced by the matrix <(1) i") if i =1 and is the identity map if ¢ = 2.
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In particular, since for both ¢ = 1 and i = 2 one has Nrd A(/@g ) = 1 in each degree j, there
is a commutative diagram of isomorphisms of &(.A)-modules

detu(PF) 22, get 4 (z3) L2 get 4 (P3)
deta(Pf) U et q(z8) L2 et 4 (Py)

in which the unlabeled map is induced by the isomorphisms {6};cz. This commutative
diagram implies immediately that det4(\) = det4(i), as claimed.

Turning to claim (ii) we first choose complexes P and PJ in CY(A) for which there
exist isomorphisms «; : P — Cj in DY(A) for i = 1,3. We then choose a morphism
p: P3[—1] — Pp in CY™(A) such that a; o p = —w[—1] o ag[—1] in D(A) and write P
for the mapping cone of . Then, by the axioms of a triangulated category, there is an
isomorphism ay : Py — Cy in D(A) making the following diagram commute (in D(.A))

pe-1 % pr % pr 4 ps

T

Ci 5 Cy 5 O

where 6 and ¢ are the natural morphisms (coming from the definition of Py as the mapping
cone of 1) and the lower row is the exact triangle that is induced by shifting the given
triangle.

Given this construction, the proof of claim (i) reduces the proof of claim (ii) to showing
that for any morphism of short exact sequences in C'f(A)

01 1

s Aol ]

%o By o P 0

0 —— Py,

in which the vertical maps are quasi-isomorphisms there is a commutative diagram of iso-
morphisms of £(A)-modules

det A(Pfy) —— det4(PPy) ®¢(a) deta(Pry)
(17) detA()\Q)J/ J{detA (A1) ®£(A)detA()\3)

where the horizontal isomorphisms are obtained by applying Lemma 6.3(v) to the upper
and lower rows of (16).

To show this we use the fact that, in terms of the notation used in the proof of Lemma
6.3(vi), the diagram (16) gives rise for both ¢ = 1 and i = 2 to a commutative diagram in
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CY(A) of the form

0 0 0
0—— Py 2y py %, pr 50
)\li /\2i )\Si
(18) 0 — 2z L oz Lz 0
1 2 3

0 0 0
in which each row and column is a short exact sequence. Here 6’ and ¢’ are respectively
th ®1
induced by the matrices [ 62 | and | ¢2 |, the unlabeled vertical arrows are the tautological
th ¢1

projections and 6, and ¢} are the maps that are induced by the (obvious) commutativity of
the upper squares.
We use (18) to construct the following diagram of isomorphisms of £(.A)-modules.
° P ° .
D(P,) — D(PPy) @ D(Pf3)

id®e12 (1d®e11)®(1d®er3)

D(Pp,) ® D(cok(A12)) 22225 (D(P}y) © D(cok(M1))) @ (D(Pfy) © D(cok(Ai3)))

K12 K11®K13
D(Z3,) LN D(Z3,) ®D(Z3,)
K22 K21 ®K23

D(Pg,) @ D(cok(Az2)) 2272 (D(Pg;) ® D(cok(Xa1))) ® (D(Pgs) @ D(cok(A23)))

id®ea2 (1d®e21)®(1d®e23)

D(Fs,) — D(P3y) © D(Ps3).

In this diagram we abbreviate det 4(—) to D(—), write €;; for the isomorphism of Lemma
6.3(vi) for the acyclic complex cok(\;j), ki and p;; for the isomorphisms obtained by
applying Lemma 6.3(v) to the j-th column, resp. j-th row, of the diagram (18) and set
p2 = p12 = p22. The commutativity of the upper and lower squares is straightforward to
check and the commutativity of the two remaining squares follows readily after ensuring
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that the sections that are chosen in the construction (in the proof of Lemma 6.3(v)) of the
isomorphisms r;; and p;; are compatible in each degree with the diagram (18), as described
in Lemma 6.10 below (with A = A).

Finally, to complete the proof of claim (ii) we note that the left and right hand side com-
posite isomorphisms in the above diagram are (by definition) respectively equal to det 4(A2)
and det 4(\1) ®¢(4)det4(A3), and so the commutativity of this diagram is equivalent to that
of the required diagram (17).

Turning to claim (iii), it is first clear that B ®H2t,g C belongs to D'0(B). In addition, the
required isomorphism §(B) ®¢( 4y, det4(C) = det 4(B ®HA, o, C) is then simply obtained by
combining claim (i) with the result of Lemma 6.3(iv) (and noting that, in this case, the
choice of bases of the simple Ag-modules used to define the exterior products (1) and (2)
is irrelevant by virtue of Lemma 6.3(iii)). O

Remark 6.9. Proposition 6.8(i) implies, in particular, that for any acyclic object C' of
DY(A) there exists a canonical isomorphism of &(A)-modules dety(C) 22 £(A).

Lemma 6.10. Let A be a noetherian ring. We assume to be given a commutative diagram
of short exact sequences of finitely generated projective A-modules of the form

0 0 0
dy dy
0 M, N P 0
€1 b1 K1
dy d2
0 Moy No P 0
€2 b2 K2
d/
0 My —2 4 Ny —% ., py 0
0 0 0.

Then there exist A-equivariant sections o; : P; — N; to d; for i = 1,2 and 3 such that there
are commutative diagrams of A-modules

N1 (U—l P1 N2 <U—2 P2
(19) ¢1J/ l“l and (bQJ{ J{Iiz
Ny +— P, N3 «—— Pj.
[op) g3

Proof. First choose any A-equivariant section o to ds and write 6 for the composite homo-
morphism ¢o 000 ky : P — Njs.
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The commutativity of the given diagram implies that there exists a unique homomorphism
61 in Homy (Py, M3) such that 6 = df o 6;. Since P is a projective A-module we can then
choose a homomorphism 6y in Homy (P;, M2) with 6, = €3 o 5.

Next we note that, since P3 is a projective A-module, the group EXt/l\(Pg, M>) vanishes
and so there exists a homomorphism 63 in Homy (P, M) with 6 = 05 o k3.

We now set o9 := 0 — d}, 0 035 € Homp (P, N2). Then o9 is a section to da since dy 0 09 =
dy oo — (d2od})of3 =dyoo. In addition, for z in P; one has

pa(oa(k1(x))) = pa(o(ki(x))) — pa(dy 0 O3(r1(x)))

= 0(x) — dy(e2(05 0 k1) (2))
= 0(z) — d3((e2 0 02)(x))
= 0(z) — (d3 0 61)(x)
=0(w') —0(w') = 0.

Since P; is a projective A-module this implies there exists a unique homomorphism o7 in
Homy (P, N1) which makes the first diagram in (19) commute (with respect to our fixed
map o2) and hence that x1(dy 0 01) = (dy 0 02) 0 k1 = K1 so that o7 is a section to dj.
Finally we note that the commutativity of the first diagram in (19) implies there exists
a (unique) homomorphism o3 in Homy (P3, N3) which makes the second diagram in (19)
commute and one checks easily that this homomorphism is a section to d3, as required. [J

6.2.2. In this section we prove a consequence of Proposition 6.8(ii) in a special case that
will play an important role in the sequel.
To do so we assume to be given an exact triangle in D'f0(.4)

(20) o8 o o5 B o),

in which each cohomology group H®(C}) is finite for all a ¢ {0, 1}, an extension field E of
F which splits A and a commutative diagram of Apg-modules

HO(01)E HO(02)p
-5 —25

0 —— HO(Cl)E HO(CQ)E HO<CB)E

(21) ﬁl TQl Tgl

Lo Lo
HY(C)p 02 ey E piey), —— 0
in which the vertical maps are bijective (and the horizontal rows exact).

We write A = [];.; A; for the decomposition of A into simple components and for each
index 7 we fix a simple left A;-module V;. Then for each index j = 1,2,3 we define a
composite isomorphism of ((Ag)-modules

Yj,i)i
(22) 0, : deta(Cj)p = deta, (Cyp) = [ [ det(Homa, (Vi, C; ) 2% T] B = ¢(Ap).
i€l el
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Here each 9;; is the composite isomorphism of E-spaces

detE(HomAi(Vi, Cj,E))
~ A T 0 T, 1 ~
= /\E Homy, (Vi, H'(Cj)E) ®F HomE(/\E Homy,(Vi;, H (Cj)E),E) 2 E
with n;; = dimg Hom 4, (V;, HO(Cj)E), where the first map is the natural ‘passage to coho-
mology’ isomorphism and the second is the composite of the map that is induced by the

restriction to Homag, (Vi, H°(C})g) of the isomorphism 7; and the natural evaluation pairing
on Hom, (Vi, HY(C)) g).

Proposition 6.11. Fiz an exact triangle (20) and a commuting diagram (21). Assume
that each complex C; is isomorphic in D(A) to a complex in C(A) that is concentrated in
degrees zero and one and, in addition, that the map H°(63) has finite image.

Then there is a commutative diagram of ((Ag)-module isomorphisms

det4(Co)p —— det4(Ch)E ®¢(Ag) det4(Cs)p
(23) ”fgl lﬁn ®c(ap) U
C(Ag) C(AE) ®¢(ap) C(AR),

in which the upper horizontal map is the scalar extension of the isomorphism of £(A)-
modules obtained by applying Proposition 6.8(ii) to (20).

Proof. Just as in the proof of Proposition 6.8(ii) we can replace the exact triangle (20) by
a short exact sequence of complexes as in Lemma 6.3(v). We can also assume in this case
that the complexes P? are concentrated in degrees zero and one.

Then there are commutative diagrams of Ag-modules

Py e By Pl % HY(C)E
9(1),EJ/ J/e%,E G%El lHl(Hl)E
PYp _r By Pyp 2, HYCo)p
93,1;1 J/Q%,E eé,El lH1(92)E
Py 22 B, Py — H(Gp,

where we write d; for the differential (in degree zero) of P?, set B; := im(d;) and write m;
for the tautological surjection P} — H(P?).

Each column in these diagrams is a short exact sequence (by virtue of our assumption
that H°(63)g is the zero map) and each horizontal map is surjective and so we can apply
Lemma 6.10 (with A = Ag) to choose Ag-module sections o; to d; g and a} to m; g that
are compatible with each of these diagrams.

In this way one obtains from the exact commutative diagram (21) a commutative diagram
of Ag-modules
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69 69

PRE 1,E P207E 2,E PgE
(01,9) (02,C) (03,0)
(0} 5 HO(01) ) (63 5 HO(02) )
Bi@ HYC)p —2 " By HYCo)p —2—" By @ H(C3)p

(24) (id,71) (id,72) (id,73)

(6%,E7H1(91)E) (OéyE,Hl(QQ)E)

B3 @ HY(C3)p

B & HY(C))E By & HY(Co)p

(Co) (C03) (C03)

1 1
015 035

1 1
Pl g P g
in which every row is a short exact sequence and every vertical map is bijective. ‘
For each of j = 1,2,3 and 7 = 0,1 we set rj := rkA(PJQ) = rkA(le) and write W7 for
the free rank one ((Ag)-module rAjEP]?, - We also write \; for the isomorphism of ((Ag)-
modules VV]Q — le that is induced by the composite vertical isomorphism given by the

j-th column of (24).
Then the commutativity of (24) directly implies the commutativity of the following dia-
gram of ((Ag)-modules

1
P

l (/\1 ®id)®(}\3®id)

W9 (W)™t —— WP (WhH™) e Wde (W)™
)\2®idl
1 —1

(Wy
W3 @ (Wy) Wle(WhH™hHe W Ws)™)

| l

((Ap) —— C(Ag) ® C(Ag),
in which all tensor products are taken over ((Ag), ~ is induced by the maps ko and s}
which occur in the proof of Lemma 6.3(v) and the unlabeled left and right hand vertical
arrows are induced by the evaluation maps on Wy, and on Wi and W31, respectively.

It is straightforward to check that the left and right hand vertical maps in this last
commutative diagram are respectively equal to ¥, and ¥, ®¢a,) V7. To deduce the
claimed commutativity of the diagram (23) we therefore need only note that the upper
horizontal arrow in that diagram is, by definition, equal to k. O

Remark 6.12. The assumption made in Proposition 6.11 that C} is isomorphic to a com-
plex in C(A) that is concentrated in degrees zero and one is an additional restriction (since
it implies, for example, that the module H°(C;) is R-torsion-free). Using more sophisti-
cated techniques (as in [4]) it is possible to prove more general versions of Proposition 6.11
in which, for example, both this hypothesis and the hypothesis that the image of H°(f3)
is finite is removed. However, the result of Proposition 6.11 is sufficient for our present
purposes and so, for brevity, we do not discuss such generalizations here.
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6.3. Primitive and locally-primitive bases. In this section we use the results of §6.1.4
to defines notions of ‘primitive basis’ and ‘locally-primitive basis’ in the context of the
determinant modules defined in §6.2.

6.3.1. The following definitions will play a key role in the formulation of our central arith-
metic conjecture (see Conjecture 9.2 and Proposition 9.4).

Definition 6.13. Let C be an object of D''0(A).

We say that an element b of det4(C) is a ‘primitive basis’ if C' is isomorphic in D¥(A)
to a complex P* in C'0(A) that is both free and such that in some degree i one has
rk 4(P?) > sr(A) and, with respect to the induced identification det 4(C*®) = det_4(P*), the
element b is a primitive basis of det 4(P*®).

Definition 6.14. Let C be an object of D''0(A).
Then we say that an element b of det4(C') is a ‘locally-primitive basis’ if for every prime
ideal p of R the image of b in det 4(C')(y) = deta,, (Cp)) is a primitive basis of det 4, (C(y))-

Remark 6.15. It is clear that any primitive basis of det4(C) is also a locally-primitive
basis of det4(C). In addition, Lemma 6.3(ii) implies that each locally-primitive basis of
det 4(C) is a basis of the £(A)-module det 4(C).

Finally we note that Lemma 6.6 implies the notion of primitive basis is intrinsic to C.
More precisely, it shows that if b is a primitive basis of det 4(Py) for any free complex P
in C¥(A) that is both isomorphic in D¥(A) to C' and such that in some degree i one has
tk4(P{) > sr(A), then it also corresponds to a primitive basis of det 4(Ps) for any other
such complex Py in C(A).

6.3.2. We show that, for any complex C' in D¥:%(A), both the freeness of the &(A)-module
det4(C) and the existence of a primitive basis of det 4(C) are determined by properties of
the Euler characteristic x 4(C). However, before stating the precise result, we must make
some observations concerning classgroups of orders.

We note first that the argument of [16, Rem. (49.11)(iv)] shows that SK{(A) is naturally
isomorphic to the ‘locally-free classgroup’ C1(A) of A, as defined in [16, (49.10)].

We recall CI(A) is finite, that it is equal to the set of stable isomorphism classes [I] of
invertible A-modules I and that the addition is defined by setting [I1]+[I3] := [I3] whenever
there is an isomorphism of A-modules of the form Iy & I, = A& Is.

We recall further that if A is commutative, then CI(A) is naturally isomorphic to the
multiplicative group of isomorphism classes of invertible A-submodules of A.

Lemma 6.16. The association P — /\i‘A(P)P for each locally-free A-module P induces a
well-defined homomorphism of abelian groups det’s? : SKE(A) — CI(£(A)).

Proof. This is equivalent to the following two claims: firstly, if /1 and I are any invertible A-
modules that are stably isomorphic, then the {(A)-modules /\}41 1 and /\}4.72 are isomorphic;
secondly, if Iy, Io and I3 are any invertible A-modules for which the A-modules I1 & I, =
A @ I3, then the £(A)-modules /\}412 and (/\}411) ®e(A) (/\}413) are isomorphic.

To prove the first claim we note that if Iy and I are stably-isomorphic, then there
are locally-free A-modules N1, No and N3 which lie in a short exact sequence of the form
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0— Ny = I; ® Ny = N3 — 0 for both j =1 and j = 2. Thus by applying Lemma 6.1(v)
to these sequences we obtain isomorphisms of invertible &(A)-modules
n3

1 n n 1 n
(/\Ah) ®e(A) (/\AQNQ) = (/\AlNl) ®e(A) (/\A N3) = (/\AIQ) ®e(A) (/\AzNz)a
where we set n; := rk4(XV;), and this in turn induces an isomorphism of £(A)-modules of
the required form /\,1411 = /\}41'2.
To prove the second claim we note Lemma 6.1(v) combines with the given isomorphism
L ® I, =2 A® I3 to give an isomorphism of £(.A)-modules

AL S (A 2) = (N A @ (N )

This isomorphism implies the second claim since, by Lemma 6.1(ii), the £(.A)-module /\}4./4
is free of rank one. O

We can now state the main result of this section.

Proposition 6.17. Let C be an object of DC(A) (so that x4(C) belongs to SKo(A)).
Then the following claims are valid.
(i) deta(C) has a £(A)-basis if and only if x 4(C) belongs to ker(det’s?).
(ii) det 4(C) has a primitive £(A)-basis if and only if x 4(C) vanishes.
(iii) det4(C) has a locally-primitive £(A)-basis if and only if for all finite sets of prime
ideals P of R the modules det o(C')(py have a common primitive {(A) py-basis.

Proof. We first fix P* in C'(A) that is isomorphic in D(A) to C. Then, by a standard
construction of homological algebra, there is a quasi-isomorphism of A-module complexes
of the form 0 : Q* — P*® where ® is bounded and has the property that if a is the lowest
degree of a non-zero module @7, then Q) is a finitely generated free A-module for all j > a.
We set 7; := rk4(Q°) in each degree i and note that, if necessary after replacing Q® by the

direct sum of Q* and the (acyclic) complex A d, A, where the first term is placed in degree
a, we can assume that r, > 2, and hence also that r, > sr(A).

Now the mapping cone D* of 6 is an acyclic complex for which in each degree j one has
DI = PJ @ @7+, In particular, since D7 is a locally-free A-module for all j # a — 1, the
acyclicity of D® combines with the Krull-Schmidt Theorem to imply that Q% is a locally-free
A-module, and hence that Q* belongs to C(A).

To prove claim (i) we use [16, Prop. (49.3)] to choose an isomorphism of .A-modules of
the form Q% = I & M where [ is invertible and M is free of rank r, — 1. Then, since each
of the modules Q7 for j # a is free, Lemma 6.1(ii) and (iv) combine to give an isomorphism
of £(A)-modules

det1(C) = @A @)
i€Z

1 a ra—1 _1)a % iN(— i
(/\AI)(_I) De) (/\ M) @y @ (/\AQ)( 2
iez\{a}

I
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To deduce claim (i) we need only now note that the natural isomorphism SK} (A) = C1(A)
sends

(25)  xal0) =) _(-D'Q) = ()" +(-)*Ca =D+ D (~1)'ri)(A4)

1=/ 1€Z\{a}

to (—1)® times the stable-isomorphism class of I.

Turning to claim (ii) we note det 4(C) has a primitive basis if and only if C' is isomorphic
in D(A) to a complex K* in C'0(A) that is both free and such that in some degree i
one has rk4(K%) > sr(A). In particular, if such a complex exists, then it is clear that
xA(C) = xa(K*®) vanishes.

To prove the converse, we note that if x 4(C) vanishes, then the sum (25) vanishes and
so Q* =1 & M is a stably-free A-module. Then, since rk4(Q%) > 2, the Bass Cancelation
Theorem (cf. [16, Th. (41.20)]) implies Q* is a free A-module of rank at least sr(.A) and
hence that det 4(C') has a primitive basis, as required.

The proof of claim (iii) is a straightforward exercise that we leave to the reader. O

The results of Proposition 6.17(ii) and (iii) combine to imply that, in general, the {(.A)-
module det_4(C') need not possess a primitive basis even if it is free.
However, if A is commutative, then the situation is much more straightforward.

Corollary 6.18. Let C be an object of DTO(A). If A is commutative, then an element
of detA(C)Fr is a primitive basis of det4(C) if and only if it is a basis of det 4(C) as a
&(A)-module.

Proof. Necessity of the given condition is clear (cf. Remark 6.15).

To prove sufficiency we note that if A is commutative, then £(.A) = A and the map detfjfd
identifies with the identity automorphism of C1(.A) = C1(£(A)).

In particular, if in this case the {(.A)-module det4(C) is free, then Proposition 6.17(ii)
implies x 4(C) vanishes and then Proposition 6.17(iii) implies that det 4(C) has a primitive
basis b.

Now any basis b’ of the (free rank one) £(A)-module det4(C) must differ from b by
multiplication by an element of A* = Nrds(A*) and then the argument of Lemma 6.6
implies that o’ is also a primitive basis of det4(C'). O

6.3.3. In this final section we record two further properties of primitive bases that will be
useful in the sequel.

Proposition 6.19. Let C be an object of D''0(A).

(i) If C is acyclic, then the canonical isomorphism det 4(C) = £(A) (from Remark 6.9)
sends each primitive basis of det 4(C') to an element of Nrda(K7(A)).

(ii) Let b be a primitive basis of det 4(C). Then an element b’ of det A(C)p is a primitive
basis of det 4(C) if and only if b’ = u - b with u in Nrda(K:(A)).

Proof. Claim (i) follows directly from Lemma 6.7 and claim (ii) from Lemma 6.5. O

Proposition 6.20. Let C; — Cy — C3 — C1[1] be an exact triangle in D'O(A) and write
A for the induced isomorphism of §(A)-modules det 4(Ca) = det 4(C1) ®¢(a) deta(Cs) (as
in Proposition 6.8(ii)).
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If z1 and x3 are (locally- )primitive bases of det 4(C1) and det 4(C3), then A= (x4 ®e(A)T3)
is a (locally-)primitive basis of det 4(C2).

Proof. We first choose for j = 1,3 a complex P} in C'10(A) that is isomorphic in D(A) to
Cj, has tks(Pf') > st(A) in at least one degree a and is free if z; is a primitive basis of
detA(Cj).

We then define Py to be the mapping cone of a morphism p : P§[—1] — Py in C'(A)
chosen as in the proof of Proposition 6.8(ii) and we recall that the isomorphism A is obtained
by applying in each degree i the construction of Lemma 6.1(v) to the natural short exact
sequences 0 — P} iR P} N Pi — 0.

We assume first that z1 and x3 are primitive bases of det 4(C1) and det4(C3). In this
case Remark 6.15 implies that in each degree i there exists an A-basis {b;it}1<j<r;; of P}
such that z; = ®z‘ez(/\z;jibj,i,t)(_l)i-

This implies that the element A~ (z1 ®¢(4) 23) is a primitive basis of det4(Ps) because,
after choosing an A-equivariant section o to ¢i, the set {bii:),,j}lﬁjgrgi constructed in the
proof of Lemma 6.1(v) is an A-basis of Pj.

If 1 and x3 are only locally-primitive bases of det4(C1) and det4(C3), then for every
prime ideal p of R one can use the same argument (after replacing each complex P? by

P]:(p)) to show that A~ (z1 ®g(4) 3) is a primitive basis of detA<p)(P2°7(p)) = det 4(Py3)(p)-

This implies that A™!(x1 ®¢(4) x3) is a locally-primitive bases of det 4(C2), as required. [

PART II: THE ARITHMETIC SETTING

In the sequel we fix a finite Galois extension L/K of global fields and set G := Gal(L/K).
For any finite non-empty set of places ¥ of K and any intermediate field E of L/ K we write
Y g for the set of places of E lying above those in ¥, Yg 5 for the free abelian group on the
set ¥ and Xg x for the submodule of Yz 5, comprising elements whose coefficients sum to
zero. If E//K is Galois, we often abbreviate Gal(E/K) to G-

If ¥ contains the set S of archimedean places of K (in the number field case), then we
write Op y;, for the subring of E¥ comprising elements integral at all places outside ¥ and
OE,E for the unit group of O x. (If ¥ = S7°, then we abbreviate Op 5, to Of.)

In this case, for any finite non-empty set of places T' of K which is disjoint from such a
set X, we write (’)EE,T for the (finite index) subgroup of OE,E consisting of those elements

congruent to 1 modulo all places in Tg. In addition, we write Clg(E) for the ray class group
of O 5, modulo HweTE w (that is, the quotient of the group of fractional Og-ideals whose
supports are coprime to all places in X g U T by the subgroup of principal ideals with a
generator congruent to 1 modulo all places in Tg).

We note that if £//K is Galois, then each of Y, Xp 5, Oy, Op x p and CIL(E) are
stable under the natural action of Gg/k.
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7. CANONICAL PRE-ENVELOPES AND RECIPROCITY MAPS FOR G,

For any abelian group M we set M" := Homgz(M,Q/Z). If M is a G-module, then we
endow MY with the natural contragredient action of G.

7.1. Statement of the main results. For any finite non-empty set of places ¥ of K that
contains S (in the number field case), and any finite non-empty set of places T' that is
disjoint from X, the ‘(X-relative T-trivialized) integral dual Selmer group for G, over L’ is
defined in [11] by setting

Su1(Gm/L) :=cok( [[ Z-— Homy(L},Z)),
w(;éELUTL

where L7 is the group {a € L* : ord,(a — 1) > 0 for all w € T1,} and the homomorphism
on the right hand side sends (zy)w to the map (a >~ o5, U, 0rdw(a)zw).
We recall it is also shown in loc. cit. that this module lies in a canonical exact sequence

(26) 0= CIG(L)Y = Se1(Gm/L) — Homy (O] 5 1, Z) — 0,

and has a canonical transpose SST(Gm /L), in the sense of Jannsen’s homotopy theory of
modules [29], which itself lies in a canonical exact sequence

(27) 0 — CI5(L) — S (G /L) — Xz — 0.

In the sequel we shall fix a finite non-empty set of places S of K that contains both S7°
(in the number field case) and all places which ramify in L/K, and a finite non-empty set
of places T of K that is disjoint from S and such that the group O;(Q ST 18 torsion-free.

We can now state the main results of this section.

Proposition 7.1. Fiz sets of places S and T as above.
Then there exists a canonical strict family P = Pr, st of locally-free pre-envelopes for
O g that depends only on L,S and T and for which there exists a surjective bundle of

G-module morphisms  : P — S¢1(Gm/L).

Remark 7.2. Our methods will also show that for a natural class of extensions L/K
the family Pr, g7 constructed in Proposition 7.1 should be free (in the sense described in
§4.2.1) and, in addition, that there should exist a surjective G-module morphism 7 : P —
S¢1(Gm/L) for which, in terms of the notation of Remark 4.6, one has m = gbundle - For
more details see Remark 11.5.

With S as above, we now find it convenient to set n := |S| — 1, label (and thereby order)
the elements of S as {v; : 0 < i < n} and then set Sp := S\ {vo}. (Except for one argument
that is made in §16.2 the precise choice of the place vy will not matter in the sequel.)

For any normal subgroup H of G, with E = LY, we write Vz for the subset of S
comprising places which split completely in E/K and then write

(28) 01,55 SS1(Gm/L) = X5 = Yo vp\v,

for the natural composite (surjective) homomorphism, where the first arrow is as in (27)
and the second is the natural projection. We also set rg := |Vg| and note that rgp > rp.
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Finally, with P and 7 as in Proposition 7.1, we consider the composite surjective bundle
of G-module morphisms
0
TE 7) l) Sg{ ( m/L) L—ES) YLVE\VL
(In particular, note that if rg = rp, then Vg =V, and so g is equal to 0p.)
In §7.3 we will define, in terms of the notation used in Remark 5.4, a natural £(Z[G])-
module of ‘H-coinvariants’ Fr (& P)x of the Fitting lattice Fr (& P).

Proposition 7.3. We fixr L/K,S,T,P = Prsr and m as in Proposition 7.1. We also fix
a normal subgroup H of G and set E := L and T':= G/H & GE/Kk-
(i) If rg > rr, then the group ¥ (N P)u is finite of order dividing a power of |G].
(ii) There exists a canonical ‘reciprocity’ homomorphism of £(Z[G])-modules
TE TL
Rech : Fo_y (ﬂr pHY FWE(mG Pu

that depends only on P and H.
iii) If G is abelian, then Fq EOX =NFO} and there is a natural commu-
pu\l I YE ST r YEST
tative diagram of I'-modules

(29) m;L OE ST) Q®z (JVE\VL
y/ \
ﬂ§EOE,ST /\Z[F]P ) ®Z (JVE\VL)H

Fr(Na P

Here we write Recy,\y, for the reciprocity map defined independently by Mazur
and Rubin in [39] and by the second author in [45] (see also [11, §5.3]), we regard
Fo_u (NFOgksr) as a submodule of Fo_,, (NEPH) (as per Remark 5.4), the un-
labeled arrow is induced by the natural identification ﬂ;LPH = %F}PH and the

homomorphism < is induced by the result of Proposition 5.3(vii) (as discussed in

Lemma 7.12(ii) below).

7.2. The proof of Proposition 7.1. In this section we prove Proposition 7.1. We there-
fore fix data L/K,S and T as in the statement of this result.

7.2.1. We first recall the construction of a canonical complex of G-modules. As the notation
suggests, this complex can be naturally interpreted in terms of the Weil-étale cohomology
theory that Lichtenbaum has constructed for global function fields in [35] and conjectured
to exist for number fields in [36] (see Remark 7.6 below for more details). However, other
than perhaps for motivational purposes, such interpretations of our complexes play no role
in the sequel.

Lemma 7.4. There exists a complex
Cr,s;r := RHomz(RL . 7((Or,s)w, Z), Z)[—2]
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in DYO(Z[G]) that is defined up to canonical isomorphism and has the following properties.
(i) CL,s1 is acyclic outside degrees zero and one and there are canonical identifications
H(Crsr) = Of g and H'(Cps1) = S§1(Gp/L).
(ii) For any normal subgroup H of G there is a canonical ‘projection formula’ isomor-
phism in D''O(Z[G/H]) of the form Z[G/H] ®H2[G] Crsr = Cru s

Proof. The complex Cp, g1 is constructed in [11, §2.2]. More precisely, the descriptions in
claim (i) follow directly from [11, Def. 2.6 and Rem. 2.7]. In addition, since S is assumed
to contain all places which ramify in L/K, claim (ii) follows from the argument used to
prove [11, Lem. 2.8].

Lastly we note that the isomorphism in claim (ii) follows by combining the construction
of Cr s in [11] with the canonical projection formula isomorphism in étale cohomology
Z|G/H] @36 RU((OL,5)ér, Z) = RT((Opn g)exs Z).- O

Remark 7.5. Since Cf, g7 is acyclic in all degrees greater than one (by Lemma 7.4(i)),
the isomorphism in Lemma 7.4(ii) implies that for every normal subgroup H of G the
transpose Selmer group ngr’T(Gm /L) identifies naturally with the module of H-coinvariants

of qufT(Gm/L).

Remark 7.6. Assume L is a function field. Write Cp, for the corresponding smooth projec-
tive curve, j for the open immersion Spec(Op g) — Cr, and (Of, s)we and (Cr)we; for the
Weil-étale sites on Spec(Op, s) and Cp, that are defined by Lichtenbaum in [35, §2]. Then
the complex RT'. 7((Or.s)w,Z),Z) constructed in [11] is canonically isomorphic to a natu-
ral ‘I-modification’ of the complex RT'((CL)wet, 1Z) that arises naturally in Lichtenbaum’s
theory (for more details see [11, §2.2]). In particular, in this case, the duality theorem in
Weil-étale cohomology for curves over finite fields that is proved in [35] implies that the
complex Cr, s defined above is canonically isomorphic to a natural ‘7T-modification’ of the
Weil-étale cohomology complex RI'((Op, s)wet, Gm) of Gy, over Op s.

7.2.2. We next adapt arguments that were used by Macias Castillo and the first author in
[13] when developing the theory of ‘organising matrices’.

Our first result describes a convenient resolution of the transpose Selmer group ngfT(Gm /L)
and uses the natural homomorphism

0L,S : SE{T(Gm/L) —Xrs = Yrs,-

For any subgroup H of G we set Ty := ) .y h € Z[G] and, in the sequel, we always
identify X n g with Ty(Xys) (and also Yy u g, with Ty (Y7, s,)) by means of the homo-
morphism which sends each place v’ in S;u to T (w') where w' is any choice of place of L
above v'.

In the sequel we shall also use the following convenient notation: for each natural number
e we write [e] for the set of integers i with 1 < i <e.

In particular, for each i in [n] we now fix a place w; of L above v; and for each intermediate
field E of L/K write w; g for the place of E obtained by restriction of w; (so w; 1, = w;).

Lemma 7.7. There exists a class Csp(L/K) of pairs (w,b) where w is a surjective homo-
morphism of G-modules of the form P — ngT(Gm/L), where P is free of finite rank, and
b is an ordered G-basis of P, for which all of the following properties are satisfied.
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(i) The rank d of P is independent of P and not less than n + 2.
(ii) Write b = {bi}icjq. Then the following two properties are satisfied.
(a) For each i in [n] one has or s(w(b;)) = wi L.
(b) For each i in [d] \ [n] one has or, s(w(b;)) = 0.
(iti) If (c,b) is any other pair in Csr(L/K), with P the domain of &, then there exists
a commutative diagram of G-modules

(30) p\ v /15
S§7(Gm/L)

in which ¢ is an isomorphism and there is an equality of ordered sets b = t(b).

(iv) Fiz a pair (w,b) in Csr(L/K). Then, for any normal subgroup H of G, the class
Csr (LY /K) contains the pair (w!, Ty (b)), where we set Ty (b) := {Tr(b;)}1<i<a
and write wf for the composite homomorphism

P — Py — S§1(Gm/L) i — S§(Gm/L™).

Here the first arrow sends each element Ty (b;) to the image of b; in P, the second
is wy and the third is the isomorphism described in Remark 7.5.

Proof. The construction of a class Csr(L/K) satisfying claims (i), (ii) and (iii) follows
directly from the argument used to prove [13, Lem. 3.1]. One can also, of course, make
the same construction with L/K replaced by L /K to define the class Cg (L /K) and to
prove claim (iv) one must show that this class contains the pair (!, T (D)).

We note first that Ty (b) is an ordered G/H-basis of PH since the projectivity of P
implies that P# = Ty (P). It is then enough to note that, after identifying Yim g, with
T (YL s,) in the manner described above, this basis satisfies the properties in claim (ii)
with L replaced by L. O

The key point in the proof of Proposition 7.1 is now provided by the following result.

Proposition 7.8. Set C := Cp sr. Then for each pair (w,b) in Csr(L/K) there exists a
class C%fv b)(C) of complexes P* in C'HO(Z[G]) with each of the following properties.

(i) P* has the form P° 2 P, where PY is a finitely generated locally-free G-module
placed in degree zero and P is the domain of w.
(ii) One has H(P®) = ker(¢) = Of s and H(P®) = cok(¢) = S¢1(Gm/L) where the
isomorphism is induced by w.
(iii) There exists an isomorphism ¥ : P* — C in D(Z[G]) such that for both i = 0,1 the
map H'(9) is the identity map with respect to the identification H'(P*) = H'(C)
that is induced by the descriptions in claim (ii) and in Lemma 7.4(i).
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(iv) If (c,b) is any other element of Csr(L/K), with b = {b;}1<i<q, and P* belongs to

Cg% B)(C)’ then there exists a commutative diagram of G-modules

0 — HO(P*) —- P° — 2, p HY(P*) —— 0

(31) | | [t H

0 — HO(P*) —1— PO p y HY(P*) —— 0

i which the rows are the tautological exact sequences, both /1?72 and /@}75 are bijective

¢

and H},Z(bi) = b; for each i in [n)].

(v) Fiz a complex P* as in claim (i) and for each normal subgroup H of G set P*H .=
HomZ[H}(Z,P°). Then the complex P*H is naturally isomorphic to Z ®zm) P*
and, with respect to the identification Z|G/H)| ®Hi[G] Crsr = Cpu gp in Lemma
7.4(ii), belongs to C%wa’TH(b))(CLH7S7T), where the homomorphism w! is as defined

in Lemma 7.7(v).

Proof. The existence of a class Céfmb)(C) satisfying claims (i), (ii), (iii) and (iv) is proved
by mimicking the argument used to prove [13, Prop. 3.2], with the role of the set C(H?(C))
constructed in [13, Lem. 3.1] now being played by the set Cg7(L/K) constructed in Lemma
7.7 above.

The fact that each complex P*® constructed in this way belongs to C'/9(Z[G]) follows
from the fact that every finitely generated projective G-module is locally-free (see Remark
4.1(ii)) and that O g7 belongs to D'9(Z[G]).

The same construction with C' and (@, b) replaced by Cp := Cpu g and (@, Ty (b))
defines the class C%;H,TH(b))(CH)' The (termwise) isomorphism Z&y, g P* = P*H isinduced
by applying Tp and the rest of claim (iv) is then straightforward to check. O

7.2.3. We now turn to the proof of Proposition 7.1.

Recalling the identification HY(Cp s71) = OZ,S,T from Lemma 7.4, we first define the
family P = Pr_ s to comprise all embeddings ¢ : (’)Z,S’T = H(CLgsr) = H(P*) — P°
which arise in any diagram constructed as in Proposition 7.8(iv).

Then it is clear from the latter diagram that the cokernel of each ¢ in P is torsion-free
and so Lemma 4.4(ii) (in the setting of Example 4.2(ii)) implies that ¢ satisfies the condition
(P2) in §4.2.1. Given this fact, the result of Proposition 7.8(iv) directly translates into the
statement that P is a strict family of locally-free pre-envelopes for (f)z’ ST Closer analysis
of the construction also shows that P depends only on L,S and T, as required.

To define a surjective bundle of G-module morphisms 7 : P — ngfT(Gm /L) we now
proceed as follows. We first fix an embedding ¢ as in diagram (31). Then, since P is a
locally-free G-module, Roiter’s Lemma implies the existence of a finite index G-submodule
PO of PO which is free and hence, since P* belongs to C':0(Z[G]), isomorphic to the module
P in (31). We fix such an isomorphism of G-modules j : P® — P.

In a similar way, for each prime p the Z,) [G]-modules Pg) ) and P, are isomorphic and

so we can fix an isomorphism of Z [G]-modules j, : P(?D )y Py). We may, and will,

D)
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assume that for any prime p which does not divide the index [P? : po] the isomorphism j,
is equal to the p-localization of the homomorphism P° — PY 5 P where the first arrow is
multiplication by [P? : P°] and the second is j.

For each prime p we now define a composite homomorphism of Z, [G]-modules

Tp - P(Op) — P(p) — Hl(P.)(p) = ngT(Gm/L)(p)

where the first arrow is j, and the second is the p-localization of the map that occurs in
the upper row of (31).

For any // : (’)E s = P"in P we write k., for the identity map on P’ and &, for the
bijective map ’{?,u that occurs in diagram (31) with 7 = /. For each prime p we then set
Ty p 1= T, p O (m,u)(}j- Finally, for any ¢ and /" in P we set ky o 5 i= (n;l, 0 Kyt ) (p)-
For every prime p the data {m, p, K 7 rp}ys o constitutes, as o/ and " vary over P, a
) [Gl-module morphism m, : P,y — S§7(Grn/L) p)-

It is then straightforward to check that as p varies over all primes the data {m,}, con-
stitutes a bundle (with respect to the families {P(,},) of G-module morphisms 7 : P —

ngfT(Gm/L), as per the definition given in §4.3.2.

Z

Remark 7.9. If the module P in diagram (31) is free, then in the above construction one
can take P° = P°. In this case one can then take each map m.p to be the p-localization
of the composite homomorphism #, : P — P — H'(P*) where the first arrow is the map
j and the second is as in the upper row of (31). Then, as /' and (" vary over P, the data
{#, 0K} Kk ok, m} constitutes a G-module morphism 7 : P — S¢r(Gy/L) with the

RN
property that the bundle of morphisms 7 constructed above is equal to wPundle,

7.3. Modules of coinvariants. In this section we discuss the module of ‘ H-coinvariants’
Fr (VP of Fryl (VP).

For each ¢ in [n] and we write G; for the decomposition subgroup of w; in G. We also
write I ; for the left ideal of Z[G] that is generated by the set {z — 1},¢¢, and note that
this is equal to the kernel of the surjective homomorphism of G-modules Z[G] — Y7, 1.,
which sends 1 to w;. For each normal subgroup H of G we write I for the kernel of the
natural projection map Z[G| — Z|G/H].

We also fix a representative ¢ : OIX,,S,T — PY of P as in the upper row of (31) and, in the
sequel, we always use the isomorphism j, (from §7.2.3) to identify the Z,)[G]-modules P& )
and P(p)

In this way, for example, for each normal subgroup H of G we regard Ty (b) as a
Z |G/ H]-basis of P((;’)H and we then write {7 (bi )" }icq for the corresponding dual basis

of HomZ(p> [G/H](P&)H7 Z(p) (G/H]).

7.3.1. For each prime p we write mg ) for the p-component of the bundle 7 that occurs in
Proposition 7.3.

Recalling (from §5.2.2) the definition of Fr, (7 P) via its p-localizations, we define its
module of H-coinvariants by first specifying F,rEm(ﬂ;L(p) [G]P(p)) g for every prime p.

For each intermediate field E of L/K we write Zg for the subset of [n] comprising the
rg integers i for which v; belongs to Vg (and so splits completely in E/K).
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Lemma 7.10. Fiz a prime p and a normal subgroup H of G and set F = L.

(i) A quadratic presentation h of Z,)[G]-modules factors through ng, if and only if

Th,2 = d and there exists an isomorphism of Zy|G]-modules k : Zy) [G]¢ = P
that b} ,(im(k 0 0p)) C I, for every i in Zg \ Zr.
(ii) The lattice FWEP(Q%( )[G]P(p)) is equal to the image of the map
’ p

D ﬂZ( o' @ ﬂZm{G]P@” (%)@HZ{;‘P(%)

deAg

P) such

where Ap denotes the set of homomorphisms of the form ® = /\je[d]\ZL @; with
o Homg,  61(Pp)s 1a,5), ifj € Zp\ Zy,
77 | Homg, 1¢1(Ppy Z[G)), i 5 €[]\ Zg.

Proof. Using Lemma 7.7(ii) and (iv) one shows that an element x of P, belongs to ker(7g )
if and only if one has b:-‘,p(:c) €lg; foralliin Zg\ Zp.

Given this fact, claim (i) follows directly from the definition (in §5.1.3) of what it means
for h to factor through 7g .

We note next that for any quadratic h which factors through 7g, (as in claim (i)) the
argument used in the proof of Proposition 5.3(i) implies that the lattice FL]*(h) is equal
to the image of the homomorphism

—1y . d TL
JE[d]\ZL (b OKO 9h oK ) : ﬂZp[G} P(P) . ﬂZ@) [G] P(p)
Claim (i) now implies claim (ii), with each ¢; equal to b}, o ko8 0 kL O

For each ¢ in Zg \ Z;, we write G for the normal closure of G; in G (so Gf C H) and
define a two-sided ideal of Z[G] by setting I¢; ; := Igs.
Then, following the description of Frp (ﬂ% )[G]P(P)) that is given in Lemma 7.10(ii),
! P

we define Fpr(ﬂZ( >G]P(p ) to be the {(Z,) [G])-submodule of Fr, ( %L(p) [G]P(p)) that is
generated by all finite sums of the form deJ jlas,) with each ®; = A 14z, ¥ja In Ap,
each ag, in ﬂz(p)[G} Py and both of the following relations satisfied:

(Ry) foreach jin J and each i in Zg\ Z, the homomorphisms ¢; ; have the same image un-
der the natural homomorphism Homy, 161(Fp), I,i) = Homgz, 6)(Py), 16/ TG ;);

(R2) the image of }_.c; Asepap 2, ¥ialas;) in ﬂZ@)[G/H]PH,( ) vanishes.
We then define the £(Z,)[G])-module of H-coinvariants of F,TE’p(ﬂ%(m €] P(y)) by setting

L . rr H T
FWE’p(ﬂZm [G]P(p))H o F“E’P(mzm [G}P(p ) F””’(m%) [G}P(p )

7.3.2. The basic properties of the above definition are recorded in the following result.

Lemma 7.11.
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i) If rg = rg, then F; g identifies with the image of the composite
E,p Z( )[G] ( )

homomorphism

L L rE
FwE,p(ﬂZ( @ Py)) = ﬂz(p)[ o) = ﬂz(p)[G/H]PH,(p),

where the first arrow in the natural inclusion and the second the natural projection.
(ii) If rg > rr, then Frp (Nt Py 1 is finite and vanishes if p is coprime to |G|.

Proof. If rp = rp, then Zg = Z, and so the relation (R7) is satisfied vacuously. In addition,
in this case (Rp) asserts only that ;. ; ®;(ae,) belongs to the kernel of the projection map
ﬂZ(p) 1P — ﬂZ(p) c/m P p) and so claim (i) is clear.

To prove claim (ii) we note each Z,)-module FﬁE,p(ﬂ%L(p) [G]P(p)) g is finitely generated

(as a consequence of Proposition 5.3(i)) and hence that the group Fr (& P)m is finite
provided that FwEﬁp(ﬂ%@) ] Ppy)H is a torsion group that vanishes for almost all p.

To prove this we note first that FZ (ﬂZ< )[G (p)) contains the Z,)-module generated
P P
by elements ®(ag) with ag in ﬂCZl(p)[G}P(p) and ® = Aqe(g)\z, Pa With

0y € HomZ(p)[G] (P(p), IHIZ;@)? iface ZE \ ZL,
Homzw [G] (P(p) N Z(p) [G]), otherwise.
(To show that such an element ®(ag) satisfies the relations (R;) and (Rg) one need only
note that it is equal to > .. ; ®;(ae,) with J = {1,2} ae, = —as, = ag, &1 = © and
P2 = Nacla)\z, Pa.0 With ¢, = g for a € [d]\ Zg and ¢, , =0 for a € Zp\ Z1.)

Next we recall that for each a in Zg \ Z, one has G, € H and hence I, , C Iy. This
implies that It, ,/In 1, is a quotient of 17 a/(Iaa)2 which is itself easily shown to be a
group of order |(G%)2P|l¢:Gal,

Taken together these facts imply that F WE,p(ﬂ;L(p) ] Py))n is a torsion group which van-
ishes whenever p is coprime to the order of G. This proves claim (ii). Il

Motivated by the results of Lemma 7.11 we define the £(Z[G])-module of H-coinvariants
FrolNEP)r of Fry(NFP) to be the image of the natural composite homomorphism

Fopﬂ P) —>ﬂ P—>ﬂG/H

if rg = r;, and to be the module
TL
@F”EP ﬂz( N(e ]P(P))H

if rg > 7, where in the direct sum p runs over all primes.

Lemma 7.12. Assume that rg > 7.

(i) Then the module Fr (N P)u is finite of order dividing a power of |G|.
(ii) If G is abelian, then there is a natural injective homomorphism

¢ PP > (NP 2z ([ Iaau

aEZE\ZL
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Proof. Claim (i) is an immediate consequence of Lemma 7.11(ii).
The injective homomorphism in claim (ii) is obtained by combining the argument proving
Proposition 5.3(vii) together with the fact that if G is abelian then [[,c 7.\ 7, G.q is equal

to Fltz[G] (YL,VE\VL)' O

7.4. The proof of Proposition 7.3. In this section we prove Proposition 7.3.
At the outset we note Proposition 7.3(i) coincides with the statement of Lemma 7.12(i).

7.4.1. To prove Proposition 7.3(ii) we explicitly construct a canonical ‘reciprocity’ map
Rech : Fo_ (NEPH) = Fa(NEP) &

If firstly g = 77, then the relevant case of Proposition 5.3(iv) induces an identification
of Fop(Ner P)u with Fo_,( #PH) and we define Rec}; to be the identity map.

To deal with the case rg > r; we use the following result.

Proposition 7.13. For each integer a in [n| there exists a canonical G-module morphism
Rec? : P — I,q with the following property. For any v : Of g1 — PY in P and any normal
subgroup H of G which contains G, there exists a commutative diagram of G-modules

(poyr L po By
Op st Hece Iga/Inlc.
Here o is the natural projection map, we set E := LT and we write Rec, for the (well-

defined) homomorphism of G-modules with

Recgy(u) = Z Q(%_l(reca(%(u)) —1))

TeG/H

for each w in OF ¢, where recq is the reciprocity map Ey. . — Ga and 7 is any choice of
lift of T to G.

Proof. For each ¢+ in P we choose a complex P*® in ng,g)(c) as in the upper row of dia-

gram (31). We then set (Rec?), := b* o ¢ and note that this homomorphism belongs to
Homg (PP, Ic,.) as a consequence of Lemma 7.10.

The commutativity of diagram (31) then implies both that {(Rec?) },cp constitutes a
G-module morphism P — I, and that it depends only upon P and the integer a.

To prove the commutativity of the given diagram one can then mimic the argument of
[5, §10]. (More precisely, in terms of the notation used in loc. cit., one need only replace
¢,1; and G; by ¢, 1g . and G}, respectively.) O

Since we are assuming that rg > r, the group Fr, (ZP)g is finite (by Lemma 7.12(i))
and so it suffices to describe Recz after localization at each prime p. (This step can actually
be avoided if the pre-envelope P is free.)

To do this we fix ¢ : Of g7 — PY in P as in the upper row of (31) and we note

Proposition 3.5(iii) implies that every element of Fo_, (ﬂ% G/ H](’)E g ) is the Z,-linear
P k) k)
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span of elements of the form

¢ = Nrdgie/m1(U) - (Aaepap 2 TH(bap)™ © ©)(NiciaTr (biyp))

with U in M(Zy,)[G/H]) for some s and ¢ in HomZ<p)[G/H](P8;)H, P&’) )
We choose a lift U’ of U to M(Z[G]) and a lift ¢ to HomZ(m[G](P&),P&)) of the

composite homomorphism poTy; : P& ) = P&)H through the surjection P& )~ P((;’)H induced

by Tpg. Then Lemma 7.10(ii) implies the element

Nrdoe)(U”) - (Aaezp\ 25, (Rech).) A (Aaeiap zubip © €)) (Nieabisp)
belongs to Frp, | (ﬂ% NE P& )) and we define Recly(€) to be equal to the image of this element
; L 0
in FWE’p(ﬂZ(p) [G]P(p))H'

Lemma 7.14. The association & — Reck (€) is a well-defined homomorphism of §(Z ) [G])-
modules that depends only on the pair (P, H).

Proof. To show that the map is a well-defined homomorphism of §(Z,)[G])-modules we
consider any relation in Fo_,, (N"Of g) of the form

> eiNrdgiaya)(Us) - (Naciapnzs T (bap)* © 9) (Nieja Tr (bip)) = 0

jed
with each ¢; in Z,, Uj in My, (Z,)[G/H]) and each ¢; in Homg, io/m(Ply", Ply'). Tt
then suffices to note that for any lift U} of U; to My, (Z,[G]) and any lift ¢ of ;0 Ty to

Homy, 1a1 (P&), P&)) the element

> eiNrdgie(U) - ((Maezp\z, (Rech)) A (Magap 205 p © €5)) (Niera bip)
JjeJ
satisfies both of the relations (R;) and (Ra).
It is also clear from the construction that this map depends only on the pair (P, H). O

7.4.2. We now consider Proposition 7.3(iii).

The first assertion of claim (iii) is proved in Proposition 5.3(vi) and so we need only prove
commutativity of the diagram (29) with the homomorphisms Rec}y and ¢ as constructed in
§7.4.1 and described in Proposition 7.12(ii) respectively. Moreover, this commutativity is in
turn only a restatement of the result of [11, Lem. 5.20] in which the map f{:a/cw corresponds
to the restriction of the composite ¢ o Recjy to the subgroup F O g of Aoy PH.

This completes the proof of Proposition 7.3.

7.5. Non-abelian reciprocity maps and determinant modules. In this section we
record an alternative description of the reciprocity maps Recfl which will be useful in the
sequel.

To do this we assume that rg > rr, we fix an embedding ¢ : Of sT — PYin Pr,sr and

a complex P*® in C%; b)(C’) as in the upper row of diagram (31) and, just as in §7.3, for each
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prime p we use the isomorphism j, (from §7.2.3) to identify the Z,|G]-modules P((;) ) and

Py

For each normal subgroup H of G, with F := LY, we define Af’gT to be the unique
homomorphism of §(Z,)[G])-modules

TE H
detzic(CL,s,m)(p) = Fou (mz<p) G/ Pip)

which satisfies
ATL L (Nieiabi) @ (Nigiah)) = (Maeap 25T (ba)* © 6™) (NieiaTr (b))
where ¢ denotes the restriction of ¢ to P(I;). In the case that H is the trivial subgroup of
G we abbreviate ALST to ALST
Proposition 7.15. Fiz a normal subgroup H of G for which the field E = L is such that

rg > rr. Then for each prime p there is an inclusion im(AY s1) € Fap (NG OF s.1) ) and
a commutative diagram of homomorphisms of §(Z ) [G])-modules

WE(mg’LOZ ST (p

detzq)(CL,s.1) Frp(NEP)m,

\ %7
ﬂ;EOESTx

Here the unlabeled arrow denotes the composite

TL TL r
Fro() Ofs)w) = Fro(), P = Fro (), P)aio
of the natural inclusion and projection maps.

Proof. The inclusion im(Af] ¢ 1) C Fr, (N OF g 7)p s an easy consequence of Lemma 7.10.

Given the description of Recz in §7.4.1, the commutativity of the diagram is then verified
by means of an explicit, and straightforward, diagram chase. O

8. HIGHER NON-ABELIAN STARK ELEMENTS

In this section we fix data L/K,G,S and T as in §7.

8.1. The general set-up. To describe the general set-up we fix a subring A of Q and a
A-order A in a semisimple Q-algebra A. We assume that A satisfies the conditions (A;)
and (Asg) discussed in §4.2.2 (with R replaced by A)

In the sequel we also assume to be given a finitely generated (A, Z[G])-bimodule II which
satisfies all of the following conditions.

(IT;) IT is a locally-free A-module.
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(IIy) The association W +— W ® 4 II induces an injection from the set of isomorphism
classes of simple right Ac-modules to the set of isomorphism classes of simple right
C[G]-modules.

(IT3) Condition (ITy) is true with II replaced by the dual lattice II := Hom4(II, A),
regarded as a (A, Z[G])-bimodule by means of the anti-involutions ¢4 and ¢4.

Remark 8.1. Under condition (II3) one obtains a bijection II, from the set of Wedderburn
components Wed 4 of Ac to a subset T of G and hence a commutative diagram of abelian
groups

K(QI6]) —2, ¢(@lG)* —S ¢(CG]* =[5 C*

(32) h | [om
Ki(4) 2 e =S ((Ae)* = [Tyea, €

Here ,uh sends the class of an automorphism « of a finitely generated left Q[G]-module V' to
the class of the induced automorphism idy ®zq o of Il ®z(g) V and u sends each element

(2x) e to (211, (0)) CeWeds -
We particularly have in mind the following two sorts of examples of this sort of data.

Example 8.2. If the algebra A is a direct factor of Q[G] then for any homomorphism of
rings k : Z[G] — A one can set A, := A and I, := A. In all cases the lattice II, satisfies
the conditions (ITy), (IT3) and (II5) and Yy1_ is the subset of G comprising characters which
occur in Ac. The order A satisfies both conditions (A;) and (As2) in the context of Example
4.2(i) and also if A is a regular A-algebra of dimension one.

Example 8.3. Let p be a representation of the form G — GL1)(O)) for a finite extension

O, of A. Set A, := O, and 11, := (’)Z(l), regarded as an (O,, Z[G])-bimodule via p. Then
this data satisfies the conditions (A1), (Az2), (II1), (IT2) and (II3) and one has T, = {p}.

8.2. The associated functors. The bimodule II fixed above gives rise to functors M
UAL and M +— M from the category of left G-modules to the category of left A-modules
by setting

UM = HY(G,Tl®z M) and yM = Hy(G, 1@z M) =l &z M,

where the left action of G' on the tensor product is via g(m ® m) = (7)g~! ® g(m). These
functors are respectively left and right exact.

If N is any G-module for which Il ®7 N is a cohomologically-trivial G-module, then the
map

Trpn : Ho(G, I ®z N) — HY(G, Tl @z N)

induced by sending each element m @ n of II @z N to 3 . g(m ®n) is an isomorphism of
A-modules.
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In particular, if ¢ : M — P belongs to a strict family P of locally-free pre-envelopes of
M, then the upper left hand arrow in the commutative diagram

Tro,p

np /2 p — S5 Q-pP

e e

Hﬂf — Hﬂf e (D HAJ
Tro,amr

is bijective, where we abbreviate the tensor product ‘Q®7z’ to ‘Q-. In addition, the
commutativity of this diagram combines with the bijectivity of Trig.as to imply that
im((Tr,p) ! o M) is contained in the image of the injective map Q - ;¢ and so for any
A-submodule N of M we may define an A-submodule of Q - 1M by setting

(33) BN = (Q-n0) " o (Trmp) ™" o M)(NV).
This construction induces a faithful exact covariant functor from the category of A-
submodules of M to the category of A-submodules of Q - g M. It is straightforward to see

that this functor is independent of the choice of representative ¢ of the strict family P and
hence, as the notation suggests, depends only on II and P.

8.3. Higher derivatives of equivariant L-series. For any set of data L,S,II as above
we write Ag s for the set of surjective homomorphisms of .A-modules

7 : 18§71 (Gm/L) = Yr
in which Y} is locally-free and then set
T‘E,S = max{rkA(Yﬂ)}ﬂeAgS,T.

In the sequel we shall write M;; for the quotient of an A-module M by its R-torsion
submodule M.

Remark 8.4. If n X, g = (HngT(Gm /L))t is a locally-free A-module, as is automatically
the case if A is a Dedekind domain, then it is clear that ril g =1ka(nXr,s). In general, if
one fixes any place vin S, then 1Yz, g\, is a quotient of 1 X ¢ and so the exact sequence
(27) implies that TL ¢ > |SH| with

S.— {v/ € §\ {v} : the A-module Hy(G, )i is both non-zero and locally-free}

where G, denotes the decomposition subgroup in G of some choice of place of L above v’.
Note also that, in the setting of Example 8.2, the A.-module Hy(G,, Il )¢ is non-zero and
locally-free if x sends each element of G,/ to the identity of A.

For an irreducible character x of G, we denote by Lgr(x,2) the S-truncated T-modified
Artin L-function for x. For a non-negative integer r with » < ords—oLs1(X, 2), we set

L&T(X,O) = lim 27 "Lg (X, 2).
z—0

For each 7 in AE’ s Wwe then define an element of C (C[G]) by setting

057(0) = > ex LTy (x,0).

X€Tn
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Here, as before, e, denotes the primitive central idempotent % > pea X(o)o™t, and we
have also set
rr(x) = dimc(Wy ®4a. (C-Yr))
where for each x in T we choose a simple right Ac-module W, for which the associated
C[G]-module W, ® 4. (C-1II) has character x.
We also define a central idempotent of A by setting

ewzzg e

where the sum runs over all primitive central idempotents e of A for which e(Q - ker(m))
vanishes.

Lemma 8.5. Fiz in Al ¢ .. Then one has 05 7(0) = ex05 1(0) and, in addition, 0 (0) =
0 unless tk4(Yz) = TE,S'

Proof. For each x in G set V,, = W, ®4. (C-1I). Then, since this module has character x,
an analysis of the functional equation of Artin L-series shows that the order of vanishing
at z = 0 of the meromorphic function Lgr(x, 2) is equal to

(34) ord,—oLgr(x, z) = dimc(H"(G, Home (Vy, C-X1.5)))

(for details see, for example, [49, Chap. I, Prop. 3.4]). Taken together with the natural
isomorphisms of vector spaces

H°(G,Home(Vy, C- X1 5)) = Ho(G,Home(Vy, C- X1 5)) = Ho(G,Vy ®c C- X1 5)
= Vy ®cg) (C-Xp,5) = Wy ®a. (C-1XLs)
(where the last isomorphism follows from the definition of 11X}, ) this shows that
ord,—oLsr(x, 2) = dimc(Wy @4, (C-1nXr.s5)) = r7(x) + dimc (W, ® 4, ker(7)).

This formula implies, in particular, that if the space W, ® 4. ker(m) does not vanish, then
Lg”}X)(X,O) = 0. This in turn implies the claimed equality 0F (0) = ex0g (0) since each
character x in Yy for which W, ® 4. ker(7) vanishes corresponds (via the projection ¢y in
(32)) to a unique primitive central idempotent e of A for which e(Q - ker(7)) vanishes.

The second claim of the lemma also follows from the same argument. This is because if
rka(Yr) # TE’ g, then tk 4(Y7) < T‘E g so that Q- ker(w) contains a submodule isomorphic to
A and hence W, ® 4. ker(7) does not vanish for any y in Tp. O

The following examples show that in several cases the elements 5 1-(0) recover elements
that occur in the theory of refined Stark conjectures.

Example 8.6. Fix a normal subgroup H of G and write x = sy for the natural projection
map Z[G] — Z|G/H]. Then, in the notation of Example 8.2, one has A, = Z[G/H| and

—

Yoig/m =G JH C CA}, whilst Remark 8.4 implies that, for any fixed place vy of S, one has
rg’jg > S| with S the set of places in S\ {vg} which split completely in L# /K. In this
setting we write

Ty 1.8 (G /L) = 8§ (G /L) = Xpn s = Yyn sy
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for the composite surjection of G/H-modules, where the first arrow is as in (27) and the
G/H,vo
L/K,S,T

0% 1(0) coincides with the ‘higher-order Stickelberger element’ G(LT;I) K ¢7(0) defined by the
first author in [7] with ' := S|,

second is the natural projection. Then, after abbreviating = to m, one finds that

Example 8.7. In the setting of Example 8.3 there is a natural composite surjection of
O,-modules

0 ksr S8 (Gm/L) = (1,857 (Gm/L))u = (11,XL,8)st,

where the isomorphism is induced by applying the (right exact) functor M + 11, M to the
exact sequence (27). Then, abbreviating WZ/K g tom, one finds that Hg’T(O) = ep L 1(p, 0),
where we write Lg (p,0) for the leading term of Lgr(p,2) at z = 0.

8.4. The definition of higher non-abelian Stark elements. In the sequel we write
(35) RLysiR-OzS—)R-XL,S

for the isomorphism of R[G]|-modules which at each u € OF ¢ satisfies

Rps(u)=— 3 logluly - w,

weS,

where | - |,, denotes the normalised absolute value at w.

We fix 7 in Ag s and, following Lemma 8.5, assume the locally-free A-module Y, has
rank r = T’E’S. We then choose a subset b = {b;}1<i<, of Y which spans a full free
A-submodule.

The definition of the idempotent e, implies that Ry, g induces an isomorphism of {(e,Ac)-
modules

Mgt eﬂ(/\ACc 05 g) = e,r(/\ACC Yr)

and, since g (0) = ex05 (0) (by Lemma 8.5), one has 63 (0) - NZTh; € im(A7 ¢). We
may therefore make the following definition.

Definition 8.8. For any subset b as above the ‘higher non-abelian Stark element (relative
to b)” in ex(A\4.C - nOj g) is obtained by setting
e = (AL,s) " (05,7(0) - NiZ1bs).-
The following examples show that this definition provides a common generalization of
constructions that have been made in the literature.

Example 8.9. Assume S contains all places which ramify in L/K. Fix vy in S and
{id}
U

0

abbreviate the homomorphism 7'(‘5/1;2 g defined in Example 8.6 to 7. For each v in ¥

fix a place w, of L above v and set b := {w, : v € Ef,;d}}. Then the data (b, ) is suitable
to be used in Definition 8.8 and so we may set

Vo .__ T
€L/K,sT "= b-
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We refer to this element as the ‘non-abelian Rubin-Stark element’ with respect to the data
L/K,S,T and vy. If vy does not split completely in L/K, then Z;rb:)d} and hence also 6720/ KST

is independent of vg. In addition, if we set r := ]Zl{,;d}], assume G is abelian and for each
1 € G take the elements vy, ; that are used in the definition (1) of exterior powers to be ey,
then the discussion of Example 8.6 implies that ezo/ i g coincides with the element eg 1 of

R Az O] ¢ that occurs in the statement of the Rubin-Stark Conjecture [44, Conj. B'].
Example 8.10. As a generalization of Example 8.9 one can assume S contains all places
which ramify in L/K and, in addition, that for some fixed place vy in S there exists a
non-negative integer r such that if for every character x in G we set L, := Lker() | then
the set X3, of places in S\ {v} which split completely in L, /K has cardinality at least r.
The elements ezox JK,8,T Are then defined as in Example 8.9 and can be combined to give an
element
1
Vo, * — Vo
€L/K,. ST = Z | ker(x )| ex(€r, ksr)
xEG

of A%[G]R - Of 5. If G is abelian and we choose vy, j = €y for each index j (as in Example

8.9), then [19, Prop. 4.7] implies that this element coincides with the element e,/ g 7, that
occurs in the ‘generalized Rubin-Stark Conjecture’ formulated by Emmons and Popescu in
[19, Conj. 3.8].

Example 8.11. Assume the notation and hypotheses of Examples 8.3 and 8.7. Abbreviate
the homomorphism WZ IK.ST to m, set O := O, and write E for the quotient field of O
and r for the rank of the (locally-free) O-module (11, X7 5)ir. Let b = {b;}1<i<, be any
subset of (11, X7, s)tf that is linearly independent over O. Then the data (b, 7) can be used
in Definition 8.8 and, in this case, the elements ¢; are related to those that occur in the
refined Stark conjecture of [7, Conj. 2.6.1]. In particular, if » = 1 and p is non-trivial, then
there is a unique place v in S for which H°(G,I1,) is infinite for any choice of place w of L
above v and, for suitable primitive idempotents f, of E[G], the elements ea Gl-f,(w)} Tecover
the elements that are studied in Stark’s original articles [47, 48] and the subsequent article
of Chinburg [14]. For details of these connections see the discussion of §13.2.

PARrT III: CONJECTURES AND RESULTS
9. STATEMENT OF THE CONJECTURES
We continue to fix data L/K,G, S and T as in §7 and §8.

9.1. Non-abelian zeta elements and the central conjecture. In this first section
we define the key notion of ‘non-abelian zeta element’, formulate our central conjecture
concerning these elements and describe some basic properties of this conjecture.



67

9.1.1. The equivariant L-function associated to the data L/K,S and T is defined by setting

Ork,s57(2) =Y Lor(X, 2)ex,
x€G
where Y is the contragredient of .
The leading term of 67,k g7(2) at 2 = 0 is then defined by setting

1k.sr(0) = Z L (X, 0)ex
xeG
and is easily shown to belong to ((R[G])*.
The Dirichlet regulator isomorphism (35) combines with the general construction (22) to
give a canonical isomorphism of ((C[G])-modules

Ucerry, s  deteie(C - Crsr) = C(CG]).
In the sequel we denote this isomorphism by Az, g.

It can be shown that the full pre-image under Az g of the subspace ((R[G]) of ((C[G])
is equal to detgig(R - Crs7) = R - detyq(CL,sr) and this fact allows us to make the
following definition.

Definition 9.1. The ‘zeta element of G, relative to L /K, S and T" is the pre-image 27, /i 5.7
in R - detzq(CL,s1) of HZ/K’S’T(O) under the isomorphism Ay, g.

This notion is a natural extension of that introduced (in the setting of abelian extensions
L/K) in [11].

The central conjecture that we make concerning these non-abelian zeta elements is the
following.

Conjecture 9.2. 2y kg7 is a locally-primitive basis of detz;q)(Cr sT)-

Remark 9.3. If G is abelian, then £(Z[G]) = Z[G] (see Lemma 3.2) and Corollary 6.18
implies that every basis of the Z[G]-module detzg(CL s7) is automatically a primitive
basis. Conjecture 9.2 is thus equivalent in this case to asserting that 27k g1 is a basis of
the Z[G]-module detz5)(CL,s,r) and so recovers the central conjecture of [11].

9.1.2. In this section we record several properties of Conjecture 9.2 that will be useful in

the sequel.
To state our first result we fix a bimodule II as in §8.1 and write zg/ k. for the image

of 21 /K s under the projection map

(36) R- detZ[G}(CL,S,T) C H detC(HomC[G](VX, C- CL,S’,T))
xe@
— H detC(Homc[G](VX, C-CrLsr)) =C-detg(I1 ®Hi[G] Crst)
XE€Tn
where the isomorphism is induced by the bijection II, : Wedy — Y11 described in Remark
8.1. We also write TJ{™ for the subset of Y1 comprising (irreducible) characters x for

which the complex algebra (II,)~(x) is induced from a Wedderburn component of Ag that
is a matrix ring over the division ring of real quaternions.
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Proposition 9.4. Assume Conjecture 9.2 is valid.
(i) Then zg/K’&T is a locally-primitive basis of det 4(II ®H2[G] CrLsr).
(ii) If L*(x,0) is positive for all characters x in Ti"", then zE/KST is a primitive
basis of det 4 (11 ®Hi[G] Crst).

Proof. We choose a representative P — F' of the complex C g1 as in Proposition 7.8
and note that II ®HZJ[G] Cr.sr is then represented by the induced complex of A-modules
11 ®Z[G] P —1I ®Z[G] F.

For each prime p the Zy[G]-modules P, and F), are free of the same rank, e say, and so
we may fix bases {bo,;}1<i<e and {b1;}1<i<e. For each p we can also fix a basis {7;}1<j<s
of the free A)-module II,,.

Then the sets {7 ®q,[q] bai}1<j<k1<i<e are Ap-bases of (Il ®z(q P), (for a = 0) and
(I @z F)p (for a = 1) and, writing 71 for the projection map (36) one has

i—e i=ep* i=e =k i=e =k *
ma((ANiZiboi) ® (NZ1b14)) = (/\z‘:l(/\;:ﬂj ®boi)) ® (/\1:1(/\;:1(773‘ ® b1,i)"))

where the exterior powers and tensor products on the left hand side are taken over Q,[G]
and on the right hand side over A,,.

The assertion of claim (i) now follows because 74 (21, x,5,1) = 2 IK.ST

Claim (ii) is proved in §11.3. O

Remark 9.5. Conjecture 9.2 implies that for all primes p the zeta element zp,/x g7 is a
primitive £(Z,)[G])-basis of detzq(CL.s,1) ) = detz, ) (Zpy®7Cr,s)- In the sequel we
shall refer to this assertion for any fixed prime p as the ‘p-component of Conjecture 9.2’.
We will also refer to the explicit predictions in Proposition 9.4 concerning zg/ KT 38 the
‘II-component of Conjecture 9.2’.

We next record a dual version of Conjecture 9.2 that will be useful in the sequel. To do
this we set

CZ,S,T := RHomy(Cp s1,Z)[—1],

endowed with the natural contragredient action of G. Then C} g1 belongs to DHO(7Z[G)),
is acyclic outside degrees zero and one and there is an identification

C-H*(C} g7) = Home(H'"*(Crs57),C)
for a = 0 and a = 1. One can therefore define an isomorphism of ((C[G])-modules
ALs ¢ deteiq (C- Cp s7) = ((C[G])
just as for A\r g except that the role of Ry, g is now played by its linear dual Homg (Rz, g, R).

Definition 9.6. The ‘dual zeta element of G, relative to L/K,S and 7" is the pre-image
21 ks MR- detzg)(C] 57) of L#(H}:/KST(O)) under the isomorphism A7 g.

Lemma 9.7. Conjecture 9.2 is valid if and only if ZZ/KST is a locally-primitive £(Z|G))-
basis of detyq (C’iS’T) .
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Proof. This is a straightforward consequence of a following (easy) fact concerning linear
duals.

Let A : V. — W be an isomorphism of free rank one ((C[G])-modules. Fix basis el-
ements v and w of V and W and write v* and w* for the corresponding dual bases of
Homg i) (V, ¢(C[G])) and Home gy (W, ((C[G])). Then if z is the element of ((C[G])*
defined by the equality A(v) = z - w in W one has

Home cjay) (A C(C[G])) (w™) = 14 (x) - v*
in HomC((C[G})(W’ C(C[G])) O

9.1.3. To end this section we record a simple functorial property of zeta elements which is
unconditionally true and will be used in the sequel.

Lemma 9.8. Fix a normal subgroup H of G and identify Xy u g with a submodule of X1, s
in the manner described at the beginning of §7.2.2. Then the zeta element ZpH ks, 1S equal
to the image of zr Kk s under the homomorphism

R - detzie)(Cr,s,7) = R - C(Z[G/H]) ®¢ziay) detziq)(Cr,s.r) = R - detyiq/m(Crr sr)
induced by applying Proposition 6.8(1ii) to the canonical isomorphism Z|G/H| ®HZA[G] Crsr =
Cpru g7 described in Lemma 7.4(ii).

Proof. This is verified by a concrete computation that uses the following two facts. The
image of GE/KST(O) under the natural projection map ((R[G]) — ((R[G/H]) is equal to

O7n 5.0 (0)
X1,s, the argument of Tate in [49, Chap. I, §6.5] shows that there is a commutative diagram
of G-modules

and, with respect to the stated identification of X u ¢ with a submodule of

Ry s
X s
OL,S,T — R-Xps

I |

x RLH,S
OLH,S7T IR“X*LH,Sa

in which the left hand vertical arrow is the natural inclusion. O

9.2. Statement of explicit consequences. In this section we describe several concrete
consequences of Conjecture 9.2.

To do this we shall use the hypotheses and notation of §8. In particular we fix a surjective
homomorphism of A-modules

T HSET(Gm/L) — Yz

in Ag g7 and assume (as we may, following Lemma 8.5) that rk4(Yr) = r?y -
In addition, we write xq for the A-valued character of (the free A-module) Q-II and set

pri = »_ xu(g) ® g~ € A[G].
geG

For any additive homomorphism ¢ : A — Q we also write ¢g for the homomorphism
A[G] — QI[G] sending each element }_ ag9 to 3 €(ag)g.
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Theorem 9.9. Fiz 7 in AES’T as above, set r := TE,S and fix a set b = {b;}1<i<, which
spans a full free A-submodule Yy, of Yr.
Then if the I1-component of Conjecture 9.2 is valid so are all of the following claims.

(i) The transpose Selmer group nS%, (G /L) has a quadratic A-module presentation
bundle hlg/K,S,T for which

FI9 (Y /Yy) H{(AZT i) (6]) :pi € Hom (RO g 70 AV} = FI (MY e 5.1
(it) If L*(x,0) is positive for every x in T, then nS§r(Gm/L) has a quadratic

A-module presentation hlg}gll(o gailr for which

- i=r T r ,global
FI&(Yw/YQ) 1{(/\i:180i)(€g)1% € HomA(g(’)ES’T,A)} = FIA(hE/%S?T).

(iii) Let S" be any subset of S with S C S" and such that the composite homomorphism
(X154 = (nXL,5)er = 18§ 7(Gm /L)y — Yar

has finite cokernel, where the first arrow is induced by the inclusion X o C X g
and the last arrow by m.
Then for any elements a of A(A) - Anna(Tor? (IL OF ¢ 1)) and (¢;)1<i<r of

HomA(gOZ,SvT, A)" and any additive homomorphism € : A — Z one has

ec(a(AZipi)(ep) - prir) € Anngig)(ClG/(L)).

To state the first corollary of this result we specialize to the setting of Example 8.9. We
recall, in particular, that in this context V7, denotes the subset of S\ {vg} comprising places
which split completely in L/K.

Corollary 9.10. Let the place vy be chosen as in Example 8.9 and set V .=V, and r := |V|.
Then if Congecture 9.2 is valid for L/K so are all of the following claims.

(i) The transpose Selmer group S§1(Gy/L) has a quadratic G-module presentation
bundle hy ks for which

EEZICDANTI (€ 57) 01 € Homa (O} 7 ZIG)} = Flyey (i yrc.57).
(ii) If L*(x,0) is positive for every irreducible symplectic character x of G, then ngT(Gm/L)

has a G-module presentation h%}j}o{agT for which

EZICDANZT9(€)) c 5.7) i € Homg (OF 41, Z[G])} = FTyy (W87 ).
(iii) For any a in A(G) and (pi)i<i<r in Homg(O}j’S’T, Z|G])" one has

a- (NZiei) (€] i o) € Annge) (CLG (L))

with S == SP UV U {vo}.
(iv) (a) For every prime p there exists an element ¢ of detziq)(CL,s1)(p) with the fol-
lowing property: for every normal subgroup H of G, with E := L, one has

Af”g’T(C) = 6?/K,5,T with AZ’QT the homomorphism defined in §7.5.
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(b) For all normal subgroups H of G, with E = L* | one has
pﬂ:H(ezO/K,S,T) = ReCZ(GUEO/K,S,T)
with px i the natural projection ¥r,(NGOf s7) = Frp(NGPr,s1)H-

Remark 9.11. The predictions in Corollary 9.10 incorporate simultaneous refinements and

. ) C e e
generalizations of several well-known conjectures. For example, claim (i) implies €' K.S,T

belongs to (YGOES,T and Remark 3.4 implies this containment is a natural generaliza-
tion (to non-abelian extensions) of the Rubin-Stark Conjecture for L/K. Taken together,
claims (i), (ii) and (iii) constitute a strong refinement of the central conjecture (Conjecture
2.4.1) formulated by the first author in [7] (and hence also, by specializing to the case that
r = 0, of the ‘non-abelian Brumer Conjecture’ formulated by Nickel in [41]). Proposition
7.3(iii) implies that claim (iv) provides a natural generalization to non-abelian extensions
of the congruence relations between derivatives of Dirichlet L-series that were formulated
independently by the second author [45] and by Mazur and Rubin [39)].

By specializing Theorem 9.9 to the setting of Example 8.11 one obtains a refinement of
the general refined Stark conjecture of [7, Conj. 2.6.1] (and hence of the earlier conjecture
formulated by the first author in [6]). For more details see Remark 13.2.

In the next result we make this refinement explicit in the context of the algebraic units
that were first discussed by Stark [48] and later conjectured to exist by Chinburg in [14,
Conj. 1].

In this regard we recall from Example 8.11 that if ¢ is non-trivial and such that Lg 7 (), 2)
vanishes to order one at z = 0, then there is a unique place v1 in S for which the module
H O(Gwl,Hw) is infinite, where G, is the decomposition subgroup in G of any fixed place
wy of K above vy.

Corollary 9.12. Assume K is a number field, 1 has degree two, Lsr(1,z) vanishes to
order one at z = 0, |S| > 1 and the unique place vy in S for which H(Gyy,,Ily) is not
finite is archimedean. Fiz an embedding of L in C corresponding to wy and use this to

regard L as a subfield of C.
If the IL,-component of Corollary 9.2 is valid, then the element

€81,y 1= exp(— Z L p(¥7,0))
7€GE¢/Q
is a real unit in L which has all of the following properties:-

(i) either egry or —eg Ty is congruent to 1 modulo all of the places in Tp;
(ii) |esTwlw =1 if w is any place of L that does not lie above v1;

(iii) for g € G one has —log|g " (es1.)|un = YoeGn, o (¥7(9) + ¥7(97)) Ls 1 (47, 0)
with T the (unique) non-trivial element of Gy, ;
(iv) for ¢ in Homg (O}, Z[G]) one has 272G ¢(es 1) € AnnZ[G}(ClT(L)).

Remark 9.13. The discussion following [6, Prop. 3.3] shows that properties (i), (ii) and
(iii) in Corollary 9.12 imply eg 1, is an algebraic unit of the sort first discussed by Stark
[48] and later conjectured to exist by Chinburg in [14, Conj. 1]. A containment of the
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form stated in Corollary 9.12(iv) was first predicted in [7, Prop. 12.2.1], but this earlier
conjecture is weaker than claim (iv) in that it uses the factor |G|* in place of |G|? and C1(L)
in place of the larger group C1Z(L). In particular, by showing that the result of [7, Prop.
12.2.1] is not best possible, Corollary 9.12 now answers the question raised explicitly in [7,
Rem. 12.2.2].

10. STATEMENT OF THE MAIN EVIDENCE

In this section we state the main evidence that we have in support of Conjecture 9.2 and
the consequences of it that are described in §9.2.

To do this we refer to the ‘leading term conjecture’ formulated by the first author in |7,
§6.1, Conj. LTC(L/K)]. This conjecture is an equality in the relative algebraic K-group

Ko(Z|G], R[G]).
For any bimodule II as in §8.1 we use the homomorphism
(37) pif' = Ko(ZIG), R[G)) — Ko(A, Ac)

that is induced by the functor II ®zjg) —.

Theorem 10.1. Let II be a bimodule as in §8.1. Then the Il-component of Conjecture 9.2
is valid if and only if the equality of LTC(L/K ) is valid modulo ker(uy).

By specializing this result to the setting of Example 8.9 one obtains the following im-
mediate consequence. We note that, in view of Remark 9.11 and the fact that we now
make no assumptions on the torsion subgroup of (’)IX(, this consequence constitutes a strong
refinement of the main result (Theorem 4.1.1) of [7].

Corollary 10.2. If LTC(L/K) is valid, then Conjecture 9.2, and hence also claims (i),
(ii), (i1i) and (iv) of Corollary 9.10, are valid.

Remark 10.3. In the context of Example 8.10 the methods used below will also allow one
to prove a generalization of Corollary 10.2 that refines the conjectures that are formulated
by Erickson and Stark [21, Conj. 4.1], by Emmons and Popescu [19, Conj. 3.8] and by
Vallieres [50, Conj. 4.16]. For details see the forthcoming work of Livingstone-Boomla.

If L is abelian over Q, then for any subfield K the validity of LTC(L/K) has been proved
by Greither and the first author [10] and by Flach [23]. If L has positive characteristic, then
the validity of LTC(L/K) was also recently proved in [8, Cor. 1.3]. Corollary 10.2 therefore
leads directly to the following result.

Corollary 10.4. Conjecture 9.2, and hence also claims (i), (ii), (iii) and (iv) of Corollary
9.10, are valid if L is either an abelian extension of Q or has positive characteristic.

Aside from the cases considered in Corollary 10.4 there are also special classes of non-
abelian Galois extensions of number fields for which LTC(L/K) has been verified and so
Corollary 10.2 implies the validity of Conjecture 9.10. For details of these cases (that are
due to several different authors) we refer the reader to the comprehensive survey given by
Johnston and Nickel in [31, §4.3] and to their results in [31, §4.6].

Corollary 10.2 can also be combined with previous work of the first author to relate
Conjecture 9.2 to earlier conjectures of Gross and of Serre and Tate and hence obtain the
following supporting evidence.
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In the sequel we write E<¢ for the cyclotomic Z,-extension of a number field E and p,(E)
for the p-adic p-invariant of the extension E%°/E. We recall that Iwasawa has conjectured
in [28] that p,(E) should always vanish.

Corollary 10.5. Let L be a CM Galois extension of a totally real field K with group G.
Let p be an odd prime which either does not divide |G| or is such that p,(L) vanishes.

(i) If p is tamely ramified in L/K and the p-adic Stark Conjecture at s = 1 of Serre
and Tate is valid for all totally even characters of G, then the p-part of Conjecture
9.2 is valid after taking plus parts.

(ii) If the p-adic Gross-Stark Conjecture is valid for all totally odd characters of G, then
the p-part of Congecture 9.2 is valid after taking minus parts.

The proof of Corollary 10.5(i) shows that the condition that p is tamely ramified can
actually be replaced by the more general hypothesis that the ‘local epsilon constant conjec-
ture’ of Breuning [3] is valid for all extensions that are obtained by p-adically completing
L/K. For more details see §13.3 (and, in particular, Remark 13.4).

Corollary 10.5(ii) combines with the results of Ventullo [51] to obtain unconditional ver-
ifications of the p-part of Conjecture 9.2 in the technically most difficult case that L/K
is a non-abelian extension of number fields, p divides |G| and the relevant p-adic L-series
possess trivial zeroes. For example, in §13.4 we will use this approach to prove the following
result.

Corollary 10.6. Let L/K be a finite CM Galois extension for which G is the semi-direct
product of an abelian group A by a supersolvable group. Assume that the field FA is totally
real and has at most one p-adic place which splits completely in F/F* and that ,up(FP)
vanishes where P is any given subgroup of G of p-power order. Then the p-component of
Conjecture 9.2 is valid after taking minus parts.

Example 10.7. If, in the notation of Corollary 10.6, the field F¥ is abelian over Q, then
p(FF) vanishes by Ferrero-Washington [22]. In particular, if in any such case the field
FA has only one p-adic place, then Corollary 10.6 implies the unconditional validity of
Conjecture 9.2 after p-localization and taking minus parts. It is straightforward to describe
families of non-abelian extensions which satisfy these hypotheses.

(i) Let F be a real quadratic field in which p does not split and assume that L is a CM
abelian extension of F' of exponent 2p™ for some natural number n. One can then set K = Q
and A = G p and assume that L/K is Galois with (generalised) dihedral Galois group.
Then LA = F, P is normal in G and the quotient group G /P is abelian, as required.

(ii) Let E be a totally real A4 extension of Q with the property that 3 does not split in its
unique cubic subfield. Then for any imaginary quadratic field F the field L := E'F is a CM
Galois extension of Q and G g is of the form A x Z/3 with A :=7Z/2 x Z/2 x /2 (where
Z/3 acts trivially on one copy of Z/2 and cyclically permutes the non-trivial elements in
the remaining factor Z/2 x Z/2) and so is abelian-by-cyclic. The field L is then the unique
cubic subfield of L and so is totally real with only one 3-adic place and the field E; := LAF
is abelian over Q so pz(Ep) vanishes. One can also show that if p3(E2) vanishes for any
given quadratic extension Fy of Fj in L, then ps(L) also vanishes and so Corollary 10.6
applies to the extension L/Q.
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Remark 10.8. A similar approach to that used above also allows one to construct many
concrete examples in which all of the hypotheses of [9, Cor. 3.3] are satisfied by characters
that are both faithful and of arbitrarily large degree. For all such examples one therefore
obtains a p-adic analytic construction of p-units that both generate non-abelian Galois
extensions of totally real fields and also encode explicit structural information about ideal
class groups, thereby extending and refining the p-adic analytic approach to Hilbert’s twelfth
problem this is described for linear p-adic characters by Gross in [27, Prop. 3.14]. In the
same way one deduces that these examples verify a natural p-adic analogue of a question of
Stark in [48] and a conjecture of Chinburg in [14] which were both formulated in the setting
of characters of degree two. For more details see Remark 13.5.

Finally we note that Theorem 10.1 combines with the argument of [7, §12.1] to obtain
the following more concrete result.

Corollary 10.9. A character ¢ in G wvalidates the Strong-Stark Conjecture if and only if
the T,-component of Conjecture 9.2 is valid. In particular, for any such character the result
of Corollary 9.12 is valid unconditionally.

In the context of this result recall that Tate has proved that any rational valued character
validates the Strong-Stark Conjecture [49, Ch. II, Th. 6.8]. Note also that all characters of
G are rational valued if G is a symmetric group of any degree or a group of exponent two
or the quaternion group of order 8.

This shows, in particular, that Corollary 10.9 has the following unconditional conse-
quence.

Corollary 10.10. Assume K is a number field, 1 is rational valued and of degree two,
rs(y) = 1, |S| > 1 and the unique place vy in S for which VwGw1 does mot vanish is
archimedean. Write T for the non-trivial element of G, and fix an embedding of L in C
corresponding to wy which is used to regard L as a subfield of C.

Then €T,y = eXp(—L%’T(@Z), 0)) is a real unit in L with the following properties.

(i) Either ey or —eg Ty ts congruent to 1 modulo all of the places in TT,.
(ii) |estwlw =1 if w is any place of K that does not lie above v;.

)
(iii) For g € G one has —log g~ (es1.)lwy = (¥(9) + ¥ (g7)) L (4, 0).
(iv) For ¢ € Homg (O, Z[G]) one has 272G [>p(es 1) € AnnZ[G](ClT(L)).

11. ZETA ELEMENTS AND THE LEADING TERM CONJECTURE

In this section we explicitly compute the zeta element 27,k 57 and then use this descrip-
tion to prove Theorem 10.1. We also complete the proof of Proposition 9.4.

11.1. Explicit computation of the zeta element. We fix a representative of Cr, 51 of
the form P° — P as in Proposition 7.8 so that there is a tautological exact sequence

(38) 0= 0 gp 4 P' % P SE(G/L) — 0.

Since Cp, 51 belongs to D(Z[G]) we may also, and will, assume that Q - P* = Q - P.
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Since the algebra Q[G] is semisimple there exist Q[G]-equivariant sections ¢; and t2 to
the surjections Q- P = Q- P’ — Q-im(¢) and Q- P — Q- qufT(Gm/L) that are induced
by ¢ and w respectively. We thereby obtain a direct sum decomposition of R[G]-modules

R-P=(R-Ofgr) & (R&gu)(R-im(¢))

and we use this to define (¢, t1, t2) to be the unique automorphism of the (free) R[G]-module
R - P that is equal to (R ®gq t2) o Rr,s on R- OF ¢ and to R®z ¢ on (R ®q ¢1)(R -im(e)).

Lemma 11.1. For any choice of Q[G]-basis {b;}1<i<e of Q- P* = Q- P one has
zni,51 = 07 5 5 (O)Nrdricy (0, 01, 02)) ™1 - (AFZ50i) ® (ATZ5D)).

Proof. An explicit computation shows the isomorphism A; g defined at the beginning of

§9.1 sends the element (A!Z$h;) ® (AZShY) of R - detzq)(CL,s1) to Nrdgg ({6, t1,t2)) in
C(R[G]).

Given this, the stated equality is an immediate consequence of the definition of zy /i 7.

O

This computation leads to the following reinterpretation of Conjecture 9.2.

Proposition 11.2. Conjecture 9.2 is valid if and only if for every prime p there exists a
unit u, of Z,|G) with HE/KS’T(O) = Nrdg, () (up)Nrdgq ({9, t1, 2))-

If the G-module P in (38) is free, then this condition is satisfied if and only if there is
an element u of K1(Z|G]) with GE/K’S’T(O) = Nrdgjg (u)Nrdgrg ((¢; 11, L2))-

Proof. Fix a prime p. Then the Z,[G]-module P& ) is free of the same rank as P, and

p

so, after making an appropriate adjustment to the map in (38) one can assume both that
P&) = P, and that the elements {b;}1<i<. chosen in Lemma 11.1 give a Z,)[G]-basis of
this module.

In addition, if {b; }1<i<e and {b] }1<i<e are any other Z,)[G]-bases of P, then Corollary

2.9 implies there exists an invertible matrix U, over Z,)[G] with
(AIZ505) ® (AZT (b)) = Nrdgjay (Up) - (AZ5b:) ® (ALZ507).

Given this, the formula of Lemma 11.1 shows that 27 ,x g is a primitive Z,)[G]-basis of
detzq(CL,s,7)(p) if and only if 92/K757T(0)Nde[G](<¢; t1,19)) 1 is equal to Nrdgq(Uy) for
an invertible matrix U, over Z, [G].

This implies the first claim because, as Z;)[G] is semi-local, any such element Nrdg¢(Up)
is equal to Nrdgjg)(up) for some unit u;, of Z,)[G].

If PO is free, then it is isomorphic to P and so, after adjusting the map d in (38), we can

assume that P? = P and that the elements {b; }1<;<. in Lemma 11.1 constitute a Z[G]-basis
of this module. The rest of the argument now proceeds as above. O

11.2. The proof of Theorem 10.1. Before proving Theorem 10.1 we quickly recall the
statement of LTC(L/K).

Let R be an integral domain of characteristic zero with field of fractions F' and %I an
R-order in a finite dimensional semisimple F-algebra A. For any extension field E of F' we
write Ag for the (semisimple) E-algebra E @p A and Ky(2(, Ag) for the relative algebraic
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K-group of the inclusion 2 C Ag. This group is functorial in the pair (2, Ag) and also sits
in a long exact sequence of relative K-theory
agl,AE B%K,AE 881,AE

(39) Kl(Q[) —)Kl(AE) —)KQ(Q[,AE) —>K0(Ql)
We recall that to each pair (C,t) comprising an object C' of D':0(2A) for which F @ C is
acyclic outside degrees a and a + 1 for some integer a and an isomorphism of Ag-modules
t: E®p HY(C) 2 E®p H*(C) one can define a canonical ‘refined Euler characteristic’
XQ[(C, t) in K()(Ql, AE)

In the case R C Q and F C R we write

(5Q[7AE : C(AE)X — K()(Q[, AE)

for the natural ‘extended boundary homomorphism’ and recall that in this case the con-
necting homomorphism 8%[7 A, i (39) factors as

(40) a;l, Ap = 6,4, 0 Nrda,

where Nrdy, denotes the homomorphism K;(Ag) — ((Ag)* induced by taking reduced
norms. If A = Z[G] and Ag = R[G], then we often abbreviate 8&7AE and dy 4, to 0% and
d¢ respectively.

In the following result we use, for any bimodule II as in §8.1, the projection maps urr‘fl
from (37) and (11 from (32).

Proposition 11.3. Let Il be a bimodule as in §8.1. Then the equality of LTC(L/K ) is

rel

valid modulo ker(pi5") if and only if one has
04,45 (t11(07, /¢ 5.7(0))) = xa(Tl @516 Cr s, RE. 5)
in Ko(A, Ar), where RES denotes the restriction of Ry, g to R - HOZ,S,T‘

Proof. Set C := Cp, g7. If one takes I to be Z[G], regarded as a (Z[G], Z[G])-bimodule

in the obvious way, then uﬂel and (7 are bijective and so we are required to prove that

LTC(L/K) is valid if and only if 6g(0}:/KST(O))) = xzjq)(C, Rr,s). This equivalence is
proved by a natural (non-abelian) extension of the argument used to prove [11, Prop. 3.4].
To deduce the general case from this one need only use the commutative diagram

CRIG))* —2 Ko(ZIG), R[G))

Hnl lL{]el
04,4
C(Ap)* ——  Ko(A, Ag)

(which follows from the commutativity of (32) and the naturality of connecting homo-
rel

morphisms in relative K-theory) and the fact that the map ufy’ sends xz(q(C, RL.s) to
XAl @56 C, R 5). 0

We now prove Theorem 10.1 by comparing the equality in Proposition 11.3 to the con-
ditions in Proposition 11.2.



7

To do this we recall that any isomorphism of fields j : C = C, induces a homomorphism
of abelian groups jo . : Ko(Z[G],R[G]) = Ko(Zy|G],C,[G]) and that, as p and j vary, the
diagonal homomorphism

Ko(ZIG), RIG) 2222 T] Ko(Z,[6), C,[G))

is injective (cf. [7, §9.1]). We further recall that for each prime p and isomorphism j there
is a commutative diagram

CRIG)* —2  Ko(Z[G),R[G))

Jx ljo,*
(GG =52 Ko(Z,[G],C,[G))
where j, is the natural inclusion induced by j and Ag ), the composite of the inverse of the
(bijective) reduced norm map K;(C,[G]) = ((Cp[G])* and the connecting homomorphism
K1 (Cy|G]) — Ko(Zy|G],Cy[G]) in (39) (see, for example, [7, (28)]).
This shows that the equality in Proposition 11.3 is valid if and only if for all primes p
and all isomorphisms j one has an equality

AGp (07, 1,57(0)) = Xz,(6) (CL,8,1p, Cp @R ,j RL,5).

In addition, since Cf, g1, is represented by the p-completion of P° 2, P and the Zp| G-
modules P} and P, are isomorphic, the result of [7, Lem. A.1] implies that

Xz,1¢)(CL,5.1,p,Cp ®jr RL,5) = Agp(Nrdgie ((¢; 01, t2)))-

By comparing the last two equalities one finds that the equality of Proposition 11.3 is
valid if and only if for all primes p and isomorphisms j one has

5(0% /5 5.7(0)) - Nrdgiey ({8, 01, 02)) ™! € ker(Ag p) = Nrdge)(Z,) [G])

(where the equality follows from the exactness of (39)).
The result of Theorem 10.1 now follows by comparing this reinterpretation of LTC(L/K)
with the result of Proposition 11.2.

11.3. The proof of Proposition 9.4. In this section we complete the proof of Proposition
9.4 by proving claim (ii). To do this we set ;C := 11 ®H2[G] CrsrT.

We first note that Proposition 9.4(i) combines with the argument given in the previous
section to imply that the validity of Conjecture 9.2 implies that in Ky(.A, Ar) one has

04,45 (t11(07 /i 57(0))) = xa(1C, R s).

Next we note that the hypothesis on leading terms made in claim (ii) implies L 1(¢,0)
is positive for every x in Y11 and hence, by the Hasse-Schilling Maass Norm Theorem, that
Ln(ez/K,S,T(O)) belongs to im(Nrd 4, ).

From the equality (40) and the exactness of (39), it thus follows that ¢, (¢11(0] /K, s7(0)))
belongs to ker(ﬁ&’R), or equivalently that (92‘7 Az (xa(nC, Rg g)) vanishes. Since C belongs
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to D'-0(A) this last fact combines with Proposition 6.17(iii) to imply that the £(A)-lattice
det 4(11C) has a primitive basis, 2’ say.

Combining now the results of Propositions 9.4(i) and 6.19(ii) we deduce that Conjec-
ture 9.2 implies ZE/K,S,T = A2 with A an element of Nrd4(K;(A)) that belongs to
Nrdy, (K1(Ap)) for every prime p. From Lemma 11.4 below it follows that A belongs
to Nrda(K1(A)) and hence, by Proposition 6.19(i), that ZE/K,&T is a primitive basis of
det 4(1C), as claimed.

This completes the proof of Proposition 9.4.

Lemma 11.4. An element of Nrda(K1(A)) belongs to Nrd4(K1(Ay)) for every prime p
if and only if it belongs to Nrds(K1(A)).
The same assertion is also true with each group Nrd 4(K1(Ay)) replaced by Nrda, (K1(Ap)).

Proof. The relevant cases of the exact sequence (39) give rise to an exact commutative
diagram of abelian groups

Ki(A) —2=  Ki(4) ——  Ko(44)

| | |

LA
[T, K1(Ag) L, [T, K1(4) —— @, Ko(Apy, A) — 0

in which the vertical arrows are the natural diagonal maps and H; denotes the restricted
direct product (over p) of the groups Ki(A) with respect to the subgroups im(ca,, ).

Since the map ¢ is injective (see the discussion following [16, (49.12)]) this diagram implies
that an element of K;(A) belongs to im(¢ A(p)) for every prime p if and only if it belongs to
im(ca).

This fact implies the claimed equality since Nrdy4 is injective (cf. [16, §45A]) and, by
definition, one has Nrd4(K1(A)) = Nrda(im(c4)) and Nrda(K1(Ag))) = Nrda(im(ea, ))-

To prove the same result with each group Nrd4(K1(A(,))) replaced by Nrda,(K1(Ap))
one argues in just the same way after replacing the lower row of the diagram by the corre-
sponding exact sequence

(L p)P
[T #:(4,) RN H;Kl(Ap) — @B Ko(Ap, 4y) = 0
p

and noting that Nrd 4, is injective and the natural map Ko(A), A) — Ko(Ap, Ap) bijective.
U

Remark 11.5. Fix a representative of C, g1 of the form PY% — P as in Proposition 7.8.
Then 0g(xzic)(CL,s,7, RL,s)) is equal to [P°] — [P]. Thus, if Conjecture 9.2 is valid, then
the argument used above to prove Proposition 9.4(ii) implies that if L*(x,0) is positive
for every irreducible symplectic character y of G, then [P°] = [P] in Ky(Z[G]). Since
(by assumption) the free G-module P has rank at least two, this equality combines with
the Bass Cancellation Theorem to imply PP is isomorphic to P. This shows that in such
cases the family of pre-envelopes Pr, g1 should be free. In particular, in any such case one
can take all of the surjective homomorphisms 7y, g1, that occur in Proposition 7.1 to be
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induced by a single surjective homomorphism of G-modules P — Sgr’T(Gm /L) constructed
as in Lemma 7.7.

Remark 11.6. The (conjectural) equality

3¢ (xzic)(CL,sms Re.s)) = 0¢:(66(07 /. 5.7(0)))

discussed in Remark 11.5 has been shown (by Flach and the first author) to be equivalent
to the central conjecture formulated by Chinburg in [15].

12. THE PROOF OF THEOREM 9.9

12.1. An explicit formula for higher non-abelian Stark elements. As a first step we
show Conjecture 9.2 implies an explicit formula for the element € that occurs in Theorem
9.9. -

To do this we fix a prime p and assume, just as in the proof of Proposition 11.2, that the

module P in (38) is such that P&) = P
Lemma 12.1. There exists an ezact sequence of Ay, -modules

Ju, (n¢) (1) (p) r
0— (%Oisj)(p) 28, (11P)p) 2, (1P) ) — (mS§7(Gm/L)) ) — 0

in which one has Q - jip = Q- (11t) p)-

Proof. Since the functors M — "M and M — M are respectively left and right exact, the
exact sequence (38) gives rise to an exact commutative diagram of A,-modules

(") ()
& (HP )(p) s (HP )(p)

(TFH,P)@)T T(TrH,P)(p)

w
1P)oy 2% Py T2 (1SE G/ L)y — 0
in which the vertical maps are bijective since P is a free G-module.

Next we note that the injection ¢ in (38) belongs to the family of pre-envelopes P = Pr, g1
that is constructed in Proposition 7.1. The claimed exact sequence is therefore obtained by
combining the above diagram with the fact that the definition (33) of g(’)z g implies the
existence of a commutative diagram of A(,)-modules o

(") ()
(HOE,S,T)(p) — (HP)(p)

(41) | e

0 — (HOE,S,T)(P)

Ji

FOLsr)w —— @P)y)
in which one has Q - ji1, = Q- (11t) () and the left hand vertical arrow is bijective. O

To proceed we now fix a basis b, = {b,:}1<i<, of the free A(,-module Y, (). Then, since
the composite homomorphism of .A(,)-modules

() )
1@’ (1P) () ——2 (1SEr(Gm/L)) )

T(p)
> Yo ()
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is surjective, we can choose an A(y)-basis ﬁp = {IA)Lp}lgiSd of (11P)(p) with

bi, 1f1§z§r
0, ifr<i<d.

(42) nw (bip) = {

We write b = {B;‘k}lgigd for the corresponding dual basis of Hom4(Q - 1P, A). For each
index i we then also set (11¢); := bf o (11¢) € Hom4(Q - 1P, A).

We can now state the main result of this section. In this result we use the map jim, ), in
Lemma 12.1 to regard A’ (Q -2 Oy sr) as a subspace of \'(Q -1 P).

Theorem 12.2. If the p-component of Conjecture 9.2 is valid, then for any A,)-basis ﬁp
of (nP) ) which satisfies (42) there exists a unit uy of Z,)[G] with

a=d c=d

= Nedgiey(up) - ( A\ (10)a)( N\ be) € (@11 P).
a=r+1 c=1
Proof. We claim first that the element
a=d c=d .
= /\ (@)a)(/\ beyp)
a=r+1 c=1

is stable under multiplication by the idempotent e;. To show this it is enough to show that
e'(e,) = 0 for every primitive idempotent e’ of Ac that is orthogonal to e;. But for any such
e’ the surjective map €/'(C - X g) — € (C-Yy) is not bijective, and so the exact sequence
in Lemma 12.1 implies
dime(€/(C - im(1¢))) = dime(e'(C - nP)) — dime(e'(C - nX1,s))

< dimc(e’(C . HP)) — dim@(e’((C . Yﬂ))

= dime(¢'(Ac)?) — dime(e'(Ac)")

= (d - ’f’)dim(c(elA(c),

and hence that the space €' (im( /\Zif +1(11¢)a)) vanishes.

We note next that, since the map e(Q - 1S8%;(G,,/L)) — ex(Q - Y},) induced by = is
bijective, our choice of basis b satisfying (42) implies both that {e, (IA)iyp)}KiSd is a basis of
the er A-module e,(Q - im(11d)) and that e-(Q - "Of ¢ ;) is the kernel of the map

(119)e
ex(Q-"P) == [] @A
r<c<d
Applying Proposition 2.10 in this context we may therefore deduce that there is a con-

tainment

r

(43) ey = en(ep) € e \(Q-"OF 7).
A
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We next consider the composite homomorphism of R[G]-modules
Rig:RuP—oRuOfgr > RuXps >R Y =R-Y),

where the first arrow is induced by the section ¢ chosen just after (38), the second is
(R-II) ®g(g) Rr,s and the third is induced by 7. For each integer ¢ with 1 <i < r we also
write Rzls :R g F'— R- A for the composite b} o RES

Then the inclusion (43) implies that in Ag one has

(44) Ls(eh) = ex(AT s(e))

= ex((/\, RT.9)()

(N EFSED) - Ab)
i=1 i=1
T ) a=d c=d ) i=r
= ex((( )\ RL) Aac, C \ (@®)a)(\ bep) - (N 3)
ACP a=r+1 c=1 i=1
= e, Nrdy, (M(¢, 11,b /\ bi)

Here the second equality follows from the definltlon of \] g+ the third and fourth are clear

and the last follows from Proposition 2.6 with M (¢, ¢1,b) the matrix in My(Ag) defined by
setting

(6r00.) RyL(b), if1<i<d 1<j<r
, U1, ij — ; 7 . . .
' (g);(bi), f1<i<d r<j<d
Now if we assume, as we may, that the section 15 chosen just after (38) sends b; to bi
for each i with 1 <i < r, then ez M(¢,11,b) is the matrix of e (Ilr ®grq) (¢, t1,12)) with

respect to the basis enb of ex(nF)r over ez Ag.
Proposition 11.2 therefore shows that the p-component of Conjecture 9.2 implies the
existence of a unit uy, of Z,)[G] with

exNrda, (M($,11,0)) = exNrda, (¢, 11, 12))
= Nrdgjq (“p)_l ’ eﬂez/K,S,T(O)
= Nrdgg)(up) " - 0% 7(0).
Multiplying (44) by Nrdgg(up) therefore gives an equality

1=

ALs(Nrdgig)(up)ey) = 0570 - /\ bi-
i=1
The claimed formula for €, Now follows directly by comparing this equality to Definition
8.8 and noting that the map AT 1. is injective. O
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12.2. The proof of Theorem 9.9(i). We now deduce Theorem 9.9(i) from the formula
in Theorem 12.2.
We start with a useful observation.

Lemma 12.3. The validity of claims (i) and (ii) of Theorem 9.9 is independent of the
choice of elements b.

Proof. Let Y = {b.}1<i<, be any other set of elements that spans a full free A-submodule
Yy of Y of rank r.

Then, after replacing each element b, by N - b, for any large enough integer N, we may
assume Yy C Y.

In this case each module in the short exact sequence of A-modules

0—=Y/Yy = Y/Yy =Y, /Y, =0

has a quadratic G-module presentation bundle and so the results of Proposition 5.8(iii) and
(iv) together imply an equality of invertible £(.4)-modules

FIY (Y /Yy) ™ = (FI(Yy/ Yy) - FIG (Y /Yy )"t =Nrda(My p) " FIG(Yr/Yy) ™

with My, the matrix, with respect to the basis b, of the endomorphism ¢ of ¥} which sends
each element b; to b].
In addition, in terms of this notation, Corollary 2.9 implies that

i=r 1=
/\b’ N\ o(bi) = Neda(Myy) - /\ b
i=1 i=1
and hence also that ey = Nrda(My ) - €
The claimed independence is now clear. ]

To prove Theorem 9.9(i) it therefore suffices to show that for each prime p the A,-

module HngT(Gm /L)(p) has a presentation piL 1 / K.S.T for which, for a suitable set b as in
Theorem 9.9, one has

(15) PV /) MO wa)(e): s € Homag, (BOF s ) Agy)} = FIy (W12 ¢ )
a=1

To show this we take the presentation piL to be defined by the exact sequence in

L /K S,T
Lemma 12.1. Since the cokernel of the map ji, in the latter sequence is Z,)-torsion-free
our assumption (Ag) on the order A combines with Lemma 4.4(ii) to imply that we may

choose a lift ; of each ¢; in Hom4 ((BOF L.57) () Ap)) through the map

Hom 4, ((11P) p); Agp)) = Homoa, (O] 1) (p)s Awp))

that is induced by restriction through jr .
Next we use Roiter’s Lemma to choose a set b as in Theorem 9.9 for which Y} (,) = Y7 ().
This implies that

(46) FIL(Yr/Ys) ) = E(A) )
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and also that Theorem 12.2 can be applied in this setting. In particular, assuming the
validity of the p-component of Conjecture 9.2, the latter result combines with Corollary 2.9
to imply that

a=r a=r a=d c=d
(47) (\ ¢a)(en) = Nrdge(up) - (N @) N\ @8)) () bep))
a=1 a=1 a=r+1 c=1
J;—d c=d A
= NI‘dQ[G Up /\ Qpa /\ qu)l))(/\ bgp)
a=r+1 c=1

= Nrdgjg(up) - Nrda(N (¢, {¢:},D))
where N (¢, {¢;},b) is the matrix in My(A) defined by setting

A ¢ib), ifl1<i<d 1<j<r
N a4, 0)ii = N
WAt {(ncb)j(bi), if1<i<d r<j<d.

Now the condition (42) implies that the first r columns of the matrix of the endomorphism
¢ with respect to the basis b, are equal to 0. This implies that, as the maps ; vary over
Homy, (Bof L.5.7) (1) Ap)), the matrices N (¢, {¢:}, b) account for all of the matrices which

both occur in the deﬁnltlon of F If“(p) (hg/’}( S’T) and have non-zero reduced norm.

The formula (47) therefore implies that

§(A) ) - /\ Pa)(€n) i € Homy,, )((%OE,S,T)( )} FIA( )(hL/KST)
a=1
and this then combines with (46) to give the required equality.
This proves Theorem 9.9(i).

12.3. The proof of Theorem 9.9(ii). In this section we prove Theorem 9.9(ii).
Under the hypotheses of this claim the argument of §11.3 implies that the complex
II ®HZ”[ e Cr,s,r is isomorphic to a complex of finitely generated free A-modules of the form

P’ P’ where the first module occurs in degree zero.
The same argument as in Lemma 12.1 then gives an exact sequence of A-modules of the
form

0— pOf ST—>P’—>P/—>HS 7(Gm/L) = 0.

This sequence constitutes a presentation hlLI /gfl: galT of the A-module HSE{T(Gm /L).

With this choice of presentation, the result of Theorem 9.9(ii) can be proved by the same
argument as in §12.2 but with the role of the exact sequence in Lemma 12.1 now being
played by the p-localization of the exact sequence above.

12.4. The proof of Theorem 9.9(iii). In this section we prove Theorem 9.9(iii), the
notation and hypotheses of which we assume.

For any left A-module M we also write M* for the linear dual Hom 4 (M, A), regarded
as a left A-module via the action (af)(m) := 0(m)i4(a).
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12.4.1. We start by making two useful reductions.
We write pg g for the natural restriction map (BO; ¢ 7)* = (RO ¢ 1)*.

Proposition 12.4. It suffices to prove Theorem 9.9(iii) for elements ® = N\, i where
the set {ps s/ (i) hi<i<r spans a free A-module of rank r.

Proof. Fix any subset {¢;}1<i<, of (O] ¢ 7)*. Choose a natural number m that is suffi-

ciently large to ensure m - A(A) C |C1%,(L)| - A and then apply Lemma 12.5 below to the
integer m. This gives an integer n,, which one can substitute into the result of Lemma 12.6
below to obtain a subset {¢}}1<i<, of (BOJ ¢ 7)* for which one has

(M<i<roi)(e) = (M<i<ry;) () modulo m - A.

This congruence implies that for any element a of 2(.A) and any additive homomorphism
€: A — 7Z one has

ec(a- (NZiei)(e) - prin) = eala- (AZfwi)(e) - pri) modulo e(m - A(A)) - Z[G].

Since our choice of m implies e(m - A(A)) C e(|CI1L(L)| - A) C |CIL(L)| - Z|G], this
congruence shows that Theorem 9.9(iii) is true for the exterior power Aj<;<,¢; if and only
if it is true for the exterior power Aj<j<,¢}.

This proves the claimed result since the set {pg s/(¢})}i<i<r spans a free A-module of
rank 7 as a consequence of Lemma 12.6(ii). O

Lemma 12.5. For any integer m there exists an integer n,, with the following property. If
{piti<i<r and {@}}1<i<, are subsets of (ROF ¢ )* with ¢; = ¢} modulo 1y, (ROF ¢ 17)* for
all integers i, then (A1<i<rpi)(e) = (A1<i<r¥})(€) modulo m - A.
Proof. In this argument we fix a product decomposition A = [[,.; A; and associated data
ei, B, A}, V;,d;, O, T; and v; as in the proof of Proposition 3.5(iii).
With respect to these choices each element A1<q,<,¢, belongs to the submodule
rd;
1
A =P A\ (T @y Hom g (e:(0 - (507 7)), A)
iel O
of E- \jop Homy (Q 7“; z ST A). In addition, since A is a finitely generated O-module and
the index of O - A in [],.; Aj is finite there exists an integer n,, with the property that for
every A in n, - A one has A(ey) € m(O - A).
Now, by the stated assumptions, there is a congruence in A of the form
N<i<rpi = M<i<rp; (modny, - A)
and hence (by the above argument) a congruence in F - A of the form
(M<icrei)(ep) = (M<icr@y) (ep) modulo m(O - A).
This then implies the claimed congruence since each element Aj<;<,¢; and Aj<i<,¢; belongs
to A and one has ANm(O-A) =m- A. O
Lemma 12.6. For each integer i with 1 <1i < r let p; be an element of @OZ,S,T)*' Then
for any given integer n there is a subset {¢; : 1 <i <r} of (BOF g 1)* which satisfies the
following properties.
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*

(i) For each i one has ¢} = ¢; modulo n - (3 Lsr)
(ii) The A-submodule of (RO} & 1)* generated by {ps s (})h1<i<r is free of rank r.

Proof. The explicit choice of S” in Theorem 9.9(iii) implies that we may choose a free A-
submodule F of (gO;CS,’T)* of rank r. We then choose a subset { f;}1<i<, of (gOZ’S7T)* for
which {pg s/ (fi) }1<i<r is an A-basis of Q- F. For any integer m we set @; p, := p;+mnf; and
note it suffices to show that for any sufficiently large m the elements {pg s/ (@im) : 1 <@ < r}
are linearly independent over A.

Consider the composite homomorphism of A-modules F — Q(g(’)i S’,T)* — QF where
the first arrow sends each pg s/ (fi) to ps.s/(pim) and the second is induced by a choice
of A-equivariant section to the projection Q(pO} ¢ 1)* = QO] g 1)*/F). Then, with
respect to the basis {pgs/(fi) : 1 < i < r}, this linear map is represented by a matrix of
the form M + mnl, for a matrix M in M, (A) that is independent of m. In particular, if m
is large enough to ensure that —mmn is not an eigenvalue of the image of M in any of the
simple algebra components of M, (Ac), then the composite homomorphism is injective and
so the elements {pg 5/ (@im) : 1 <4 < r} are linearly independent over A, as required. [

Next we note that it suffices to prove the displayed containment in Theorem 9.9(iii) after
localization at each prime p. At each prime p one can then make the following reduction.

Proposition 12.7. It suffices to prove the p-localization of Theorem 9.9(iii) for sets b such
that Yy (p) = Y (p)-

Proof. Note first that a set b satisfying the given conditions exists by virtue of Roiter’s
Lemma (just as in the proof of Theorem 9.9(i) given above).
Let b' = {bj}1<i<r be any other set chosen as in Theorem 9.9 . Since Yy ) € Yz () =

Yy, (p) there exists a matrix M in M, (A,)) with b; = jj M;;b; for all i and j.

Corollary 2.9 then implies that A!Z7b; = Nrdy(M) - /\gjbl and hence also ®(¢y) =
Nrd4 (M) - ®(ep). For any a in 2A(A) one therefore has

a-eq(Q(ey) - pry) = a’ - ea(P(e) - pry)-

with @’ := Nrd s (M)a.

To prove the claimed result it is thus enough to note the argument of Lemma 5.6(iii)
shows that a’ belongs to 2(A) ). O

We end this section by establishing some basic properties of the complex C7 ¢ that
occurs in Definition 9.6.
Lemma 12.8. The complex 1C} g = 11 ®H7Z[G] Cl g1 belongs to DP(A) and is acyclic
outside degrees zero and one. There are natural identifications HO(HCZ,S,T) = (3X1.9)"
and Hl(HCES’T) = 18s7(Gn/L) and a natural surjection nSs,r(Gm/L) — (BOF ¢ 7)*.
Proof. Set C := Cp, s and C* := RHomy(C,Z)[-2].

Then Proposition 7.8 implies C' is represented by a complex C® of finitely generated

projective G-modules P° kN P, where the first module is placed in degree one, and hence
that 7C* is represented by the complex 1 Homy(C*®,Z)[—2]. This shows, in particular,
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that pC* belongs to DP(A) and is acyclic outside degrees zero and one and that H!(;;C*)
identifies with H'(C*). The claimed identification H!(nC*) = nSsr(Gy,/L) is thus
induced from the identification H'(C*) = Sg1(Gy,/L) described in [11, Prop. 2.4(iii)].

To prove the remaining claims we use the fact that 7C* is naturally isomorphic to the
complex RHom 4(;C, A)[—2] = Hom4(II @z C*, A)[—2]. This is true because for any
finitely generated projective G-module ) there are natural isomorphisms

Hom 4(5Q, A) = Hom4(Ho(G, 11 ®z Q), A) = H°(G,Hom4 (1l ®7 Q, A))
= HO(G7 HomA(ﬁ Xz Qv A)) = HO(G7 II 7z HOmZ<Q, Z)) = H(HOHIZ(Q, Z)>7

where the second isomorphism is induced by the action of T (and the fact that the G-
module Hom 4(II ®z @, .A) = II ®z Homz(Q,Z) is cohomologically-trivial).
This description of C* leads to a spectral sequence

Ext%y(H’(50), A) = H**(1;C*)

which combines with the properties of A described in Remark 4.3(i) and (ii) to imply that
in each degree ¢ there is a natural exact sequence

0 — Hom4(H "(5C), AJA) — H' (1C*) — H " (5C)* — 0

This sequence combines with the description of the groups H Z(HC’) given by the ex-
act sequence in Lemma 12.1 (with II replaced by II) to give the claimed identification
HO(nC*) = (7 XL,5)* and surjection nSs1(Gn/L) = H (uC*) — (O} g1)*. O

12.4.2. We now turn to the proof of Theorem 9.9(iii).

To do this we fix an exterior product of homomorphisms @ as in Proposition 12.4. We
then choose a lift ¢; of each homomorphism ¢; through the surjective map 1Sg7(Gp,/L) —
(gOE,S,T)* in Lemma 12.8 and write £ for the A-module generated by {@;}1<i<,.

Proposition 12.9. Fiz an exterior product ® as in (12.4). Assume the set b in Theorem
9.9 is such that Yy () = Yz (-

Then the A(,y-module (1Ss,7(Gm/L)/Es)(p) has a quadratic presentation and, if Conjec-
ture 9.2 is valid, then the element ®(e,)* belongs to FI&(HSS,T(Gm/L)/SqQ(p).

Proof. We use the existence of an exact triangle in DP(A(y)) of the form

@re 0 L * o' . Gr,e
(48) Ap” = o) @716 CLsr = ) = Ay "1

Here AE%" denotes the complex A?% 0] & .A?%[—l] and, writing {¢; }1<i<, for the canonical
basis of AE‘%, the morphism 6 is uniquely specified by the condition that for each ¢ one has

b €Yy =Y C (nXrs)f, = HO(Iy) @ Cf sr), ifi=0

H'(0)(ci) = < . o
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With this definition the long exact cohomology sequence of the triangle (48) implies C(’p)
is acyclic outside degrees zero and one and induces identifications

(1Ss,7( m/L)/8¢)(p), ifi1=1,

where er1,, 5, denotes the (split) surjection of Agy-modules (n1X1 s)p) — Yr ). Thus,
since H O(C’( )) is Zp)-torsion-free, the same reasoning as used in the proof of Proposition

(C( )) {ker(en L S,p) , ifi=0
p

7.8 shows that the complex C('p) is represented by a complex

(49) pip

where P is a finitely generated free A(,-module and the first term is placed in degree
zero. This shows, in particular, that the A(,-module (1Ss,7(Gm/L)/Es)(p) has a quadratic
presentation, as claimed.

We now write e for the idempotent e, of ((A) that is defined just prior to Lemma 8.5.
Then the definition of e combines with the above descriptions to imply that the spaces
e(Q- H° (C’{p))) and e(Q - H 1(C’(‘p))) vanish and so we may choose a commutative diagram
of Ac-modules

0 — (Ag)® C- H(Iy) @3¢ CLsr) — (v

(50) >\1l Agl >\3l

O . H(0) .
0 —— (Ag)® C- H'(Iy) @ Crgr) — C-HY(C)) —— 0

) —— 0

in which the vertical maps are bijective and such that eAy = e((C - II) ®gg) R} g)-
The commutativity of the left hand square in (50) implies that

e M<icr R '§(b7) = Nrdeag(edr) - @
with RE; = (C-1I) ®r R} g- Thus, if Conjecture 9.2 is valid, then one has

®(ey) = Nrdeac(eh)™ - (M<icr R 5(6]))(eb)
= Nrdeac(eA) ™ - (Mizise Ry 5(0)) (05,0(0) - Arsisr (RE 5) 7 (B3))
= Nrdea.(eM) ™" - 05,7(0)
= Nrdg(u)Nrd4(0)
FIO,, (1Ss7(Gm/L)/€0) ) = FIU (1S5, (Gim/L)/Ea) )
where u belongs to A(Xp X d is the morphism that occurs in the complex (49), the second
equality follows directly from the definition of ¢,, the fourth directly from the result of

Lemma 12.10 below and the containment from the definition of the zero-th noncommutative
Fitting invariant of the A(,)-module cok(d) = HI(C’(‘p)) = (nSs,7(Gm/L)/Es)(p)- O

m

Proposition 12.9 combines with Proposition 5.8 to imply that for any a’ of 2((A) one has
(51) a' - ®(ep) € Anng, (1Ss,7(Gm/L)/Es)(p))
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and we shall now show that Theorem 9.9(iii) is a consequence of this containment.

To do this we recall that there exists a natural surjective homomorphism of G-modules
[ Ss7(Gm/L) = Sg1(Gn/L) (see [11, Prop. 2.4(ii)]). Since, by our choice of @,
the lattice (£¢)(y) is disjoint from the kernel of the induced surjection of .A,y-modules
Jip 1 1Ss1(Gm/L) )y — 1Ss' 7(Gm/L)(p) one obtains a surjection of A,)-modules
(52) (1857(Gm/L)/€s) ) = 1Ss/,0(Gm/L)p/ frip((€s) p))-

In addition, the exact sequence of G-modules (26) induces an exact sequence of A(-
modules

Tor{ (I, OF ¢/ 1)) = 1(CI& (L)) ) = 1S5 7(Crm/ L) )/ frip((Ew) )
and this sequence combines with the surjection (52) and containment (51) to imply that
(53) a- ®(e) € Anng, ((C15 (L)) ()

for all a in A(A) - Ann 4 (Tor{ (I, OF & 1))
Applying Lemma 12.11(ii) below in this case we then deduce eg(ta(a®(e)) - pryp«)?
belongs to AnnZ[G}(Clg,(L)v)(p), and hence that

ec(ta(a®(ep)) - pryp-) € Anngg(CLE (L)) ),

as required to complete the proof of Theorem 9.9(iii).

12.4.3. In this section we prove two results that were used in §12.4.2.

Lemma 12.10. If conjecture 9.2 is valid, then there exists a unit u of A, such that
Nrdeac(eAr) ™" - 65.7(0) = Nrda(u)Nrd4(6)

where § is the morphism that occurs in the representative (49) of C(’p).

Proof. Write 7 for the image of 14(07 /- 5 7(0)) under the map vy : ((C[G])* — ((Ac)”
defined in §8.1. Then the diagram (50) combines with Proposition 6.11 to imply that for
any given primitive {(A),)-bases z; of deta, (A?%") and z3 of dety, (C7,) there exists
a primitive A,)-basis z, of det (I ®Hi[G] C} s7) such that if one defines elements ¢,
and ¢, 2 of ((Ac)™ by the equalities ﬁ;jl (n) = ¢yj - x; for j = 1,2, then one has

19;31(1A) = Cnﬁ%ﬁ L3
with 14 denoting the identity element of A. '

The explicit structure of AE%" implies 29;11 (n) =n-Nrda. (M) (AT ® NjZic;) and
hence (by Corollary 2.9) that ¢, is equal to n - Nrda. (A1) "'Nrd4(uy) for some unit uy of
Ap)-

In addition, if we assume the validity of Conjecture 9.2, then Lemma 9.7 implies that
Nrda, ((IT ®cjq) RiL,s) © PR 19;21 () is a primitive basis of deta, (1L, ®H2[G] Ci s7) and
hence that ¢, 2 = Nrda. ((II ®clq] Rrs)o )\2_1) - Nrd 4 (usg) for some unit ug of Ap)-

The above displayed equality therefore implies that

79;31(1,4) = n_lNrdA(u)NrdAc (Al)NrdAc((H ®(C[G] RL,S) o )\2_1) - I3
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with u = ugul_l € A(Xp)
We now multiply this equality by the idempotent e := e,. Noting that en = 0§7T(0)#
and Nrda. (Il ®¢q RiL,s) © A5 1)) = e we thereby obtain equalities

Uon,(€) = e(93) (14)) = 052(0) " Nrda(u)Nrdac (M) - e(w3).

Next we note that the complex e(Q - C{p)) is acyclic and hence that one can choose the
primitive basis x3 of detA(p)(C’('p)) such that 19;\13(6) = Nrdc.se(Ae ®4 )7 ! - e(x3). Given
this, the last displayed equality implies the claimed formula except for the fact that the
term Nrd4(d) is replaced by Nrdg.4.(Ae ® 4 0).

It thus suffices to note that Nrd 4(9) is equal to Nrdc. 4¢(Ae® 40) since if €’ is any primitive

idempotent of ((A) that is orthogonal to e, then the definition of e implies that the space
Q- HO(C('p))) = €/(Q - ker(d)) does not vanish and hence that ¢’ - Nrd4(d) = 0. O

In the next result we use the involutions ¢4 on A and ¢4 on Z[G] to endow the linear dual
= Homy(II, Z) with the structure of an (A, Z[G])-bimodule that is locally-free over A.

Lemma 12.11. Let M be a finite G-module and € : A — Z an additive homomorphism.

(i) For any a in Anny(*'M) one has eg(a - pry) € Anngg (M).

(ii) For any a in Anny (M) one has eg(14(a) - pry )™ € Anng ) (M).
Proof. We write n for the rank of the free A-module Q-II. After localizing at a prime p we
fix a basis {m; : i € [n]} of the free A(,y-module Il(,) and write pr;, : G — GLy(A) for the
corresponding representation that arises from the action of G on A.

For each m in M and each index ¢ the element T;(m) := 3 o g(m; ® m) belongs to Tar

and so one has a(7;(m)) = 0. In I,y ®z M one therefore has

0= = amg ' @g(m ZZGPH,p iy ® g(m)

geG geG j=1

j=n
:Z anp i) ® g(m)
j=1

geG
and hence also, since {7; : i € [n]} is an A(y)-basis of I, equalities in A ®@z M
a- jg:/HLp a w @ng( ) 0.
geG
By applying the homomorphism € ® id : A(,) @ M — M, this implies
Z prip(g™)ij)g(m) =0,
geG

or equivalently that each element cp(a)ij := €(a-)_ e prip (971)i)g belongs to Annggy (M) ).
In particular, the element

.icp(a)u‘ —e(a-y (i Pn,p(g‘l)u) )g =e(a-Y xulg™))g = eala-pry)

geG geG
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belongs to Anngjg)(M)q,y. Since this is true for all primes p it follows that eg(a - pry)
belongs to Anng (M), as required to prove claim (i).

We now derive claim (ii) as a consequence of claim (i). To do this we note that there
is a natural isomorphism of A-modules H(G, Il ®7z M)V = Hy(G,II* ®z M"), and hence
an equality Anng(1M) = t4(Annyg (" (MY))). Applying claim (i) in this context therefore
implies that eg(c4(a) - pryp+) belongs to Anngg (MY) for every a in Anny(M).

This in turn implies claim (ii) because for any finite G-module N one has Annyg (M) =
L (AnnZ[G] (M)) (I

13. THE PROOFS OF COROLLARIES 9.10, 9.12, 10.5 AND 10.6

13.1. The proof of Corollary 9.10. In this section we derive Corollary 9.10 as a conse-
quence of Theorems 9.9 and 12.2.

13.1.1. To prove claims (i), (ii) and (iii) of Corollary 9.10 we simply apply Theorem 9.9 in
the setting of Example 8.9.

To be more precise, we take 7 to be the homomorphism Wf/}??S’T, S’ to be SEUVLU{vo},
b to be the (ordered) set of places of L specified in Example 8.9, II to be Z[G|, endowed
with its natural structure as (Z[G], Z[G])-bimodule and the order A to be Z[G].

In this case the functor N +— gN described in §8.2 is canonically isomorphic to the iden-
tity functor and the module 11(Y75;) /11, in Theorem 9.9 vanishes so that FI% (1(Y7, x)/11,) ~*
is equal to £(Z[G)).

Given these observations, claims (i) and (ii) of Corollary 9.10 follow directly from the
statement of Theorem 9.9(i) and (ii) in this case.

In addition, in this case one has x1(g) = g for all g € G and so, taking € : Z[G] — Z to
be projection onto the coefficient of the identity element of G then for z in Q[G] one has

gz -prn) =ea(D>_xg ' ®@g)=> elxg g =1z

geG geG

Hence, since Tor{(II, OF g 1) vanishes in this case, the statement of Theorem 9.9(iii) for
this choice of € directly implies the claim of Corollary 9.10(iii).

13.1.2. We now prove Corollary 9.10(iv).

If rg = r, then we need only prove the assertion of Corollary 9.10(iv)(b) and the explicit
definition of Recly in this case (given at the beginning of §7.4.1) means that this statement
is a direct consequence of Lemma 9.8.

We therefore assume in the sequel that rp > r. In this case the group FWE(HTG’;PL@T) o
is finite (by Proposition 7.3(i)) and hence the assertion of Corollary 9.10(iv)(b) is true if it
is true after p-localization at each prime p. The commutative diagram in Proposition 7.15
therefore implies that it suffices to prove the first assertion of Corollary 9.10(iv) for every
prime p and to do this we use the explicit formula of Theorem 12.2.

We note that for each normal subgroup H of G the identification of X n ¢ with Ty (X1 s)
that is described in §7.2.2 has two important consequences. Firstly, it implies that the
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b= {bi}1<i<q of the free G-module P fixed in Lemma 7.7 is such that

54 Ty (b)) =4 ’
(54) op(@” (Tr (b)) {0’ itn<i<d

Secondly, it implies that the section o chosen just after (38) is such that for every integer
i that belongs to Zg (so v; splits in E/K) one has

(55) oa(wi,p) = o2(Th(wir)) = Ta(o2(wi L)) = Th(b:).

Having noted these facts, we now apply the formula of Theorem 12.2 with II taken to be
Z|G/H], regarded as a (Z|G/H],Z|G])-bimodule in the natural way.

In this case the functor M + M identifies with the fixed-point functor M ~ H°(H, M).

In particular, the property (54) implies that we can take the basis ﬁ(p) of (1P)(p) that is
used in Theorem 12.2 to be {Tx(b)}1<i<q and the property (55) implies that the section oy
used in the proof of Theorem 12.2 can be chosen to be the restriction of a fixed section as
chosen just after (38).

After recalling the definition of 61];9/ K.ST that is given in Example 8.9, this case of the

formula of Theorem 12.2 therefore implies that for each normal subgroup H of G one has

a=d c=d
Wresr = Nidga(w) - N\ N Tub) e AT (@ PP
a=rg+1 c=1

where uy, is a unit of Z,)[G] that is independent of H.
This equality is in turn clearly equivalent to an equality

Hp —
AL,S,T(O = 611}30/f<,S,T
where the map AIL{’gT is as defined in §7.5 and we have set

C = NrdQ[G] (Up) . /\gicllbc ® /\gi(ljb: S detz(p> [G](CL,S,T,(p)) = detz[G} (CL,S,T)(p)-

This fact completes the proof of Corollary 9.10.

13.2. Higher Chinburg-Stark elements and the proof of Corollary 9.12. In this
section we discuss Theorem 9.9 in the setting of Example 8.11 and then prove Corollary
9.12.

We use the notation of Example 8.11. In addition, we identify each character ) in
G with a corresponding representation G — GLy1)(Oy) and abbreviate the associated

functors M — MM and M — n, M to M — MY and M — My, respectively.

Proposition 13.1. Fiz 6 in C-Homg(Of g1, X1,5). Then, for each non-trivial character

Y in G the containment of Theorem 9.9(iii) for the homomorphism F%/Kys,T implies that
|G| ‘trEw/@(LgT(zL,O)det(c(|G]m . (Rzls 0 0)¥)- pry) € AnnZ[G](Clg,(L)),

where m is any element of Oy, for which m - 9((’)2’;%) C (Xr,s0)tf and S’ any subset of S
as described in Theorem 9.9(iii).
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Proof. We set U := ZST, X := Xr,5 and O := Oy and write E for the field of fractions
of O.

It suffices to prove the displayed containment after p-localization. To do this we fix a
prime p and a subset b = {b;}1<i<r of (Xy )it which gives an O(y,)-basis of (Xy )¢ (). For
each integer ¢ in [r] we set 0y, := b} 0 0. Then for any element n of O one has

(56) Lsr(1,0) - dete(n - (Rp g0 0)") = (NZi(n - 0,)) (en).

We next give an explicit interpretation of the diagram (41). To do this we write e for
the trivial idempotent of G and note that for any G-module N the decomposition

E-(Ily @z N) =eg(E- (Ily @z N)) & (1 — eg)(E - (I @z N))
induces an identification of
E-("N):=HG,E-(IIy ®z N)) = Hy(G, E - (Ily ®z N)) = E - (11, N).
With respect to this identification the diagram (41) implies that
Homo (" U, 0) = |G| - Homp(U¥, 0) € Homp(E - UY, E).

In particular, for any integer m with m-0(U%) C X, 4 one has |G|m-p,, € Homo(gw U,0)
for each index 4. In this case one also has 20(OQ) = O and so can take a = |G| in the statement
of Theorem 9.9(iii).

The claimed result now follows directly by combining (56) with n = |G|m together with
the result of Theorem 9.9(iii) for the data m = W%/K,S,T’ A= O,11 =1Ly, ¢; = |G|m - py,
and with e taken to be the trace map trg/q. ]

Remark 13.2. The containment in Proposition 13.1 is finer than the prediction made in
[7, Conj. 2.6.1] in that the term (1) G|**"e; = |G|*""pr, that occurs in the latter
conjecture is here replaced by |G|1+T’pr¢ and the group Clg/(L) that occurs in loc. cit. is
here replaced by CI%, (L).

Turning now to the proof of Corollary 9.12, claims (i), (ii) and (iii) follow directly by
comparing the first assertion of Corollary 10.9 with the results of [7, Th. 4.3.1(ii) and Prop.
12.2.1].

The annihilation statement of Corollary 9.12(iv) is however finer than that of [7, Prop.
12.2.1]. The key point in its proof is that the hypotheses on ¢ and S that are made in
Corollary 9.12 imply dimp, (Ey - X152 ) = 1 and hence that the set S = S satisfies
the hypothesis of Theorem 9.9(iii) (and therefore also Proposition 13.1) with respect to the
homomorphism m = ﬂf JK.S.T"

More precisely, to prove Corollary 9.12(iv) one need only make the following two changes
to the proof of [7, Prop. 12.2.1(iv)]: the use of the containment [7, (44)] is replaced by the
stronger containment discussed in Remark 13.3 below (with » = 1 and S’ = S%?) and the
use of [7, Lem. 11.1.2(i)] is replaced by an application of Lemma 12.11(ii) with II = II,.

Remark 13.3. In terms of the notation used in the proof of Proposition 13.1, the O -

modules U, (ﬁ ) and (Xy )if,(p) are both free of rank r and so one can choose the homomorphism
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6 such that O(U&)) = (Xy)t,(p)- For such a 6 the equality (56) with n = 1 combines with

the containment (53) to imply that
G (AZ106) () = |GILE 0 (4,0) - detc(|G| - (R g ©6)*) € Anno(CLi/(L)y) ).

This implies, by choice of 6, that |G|'*"¢;, belongs to Anne(C1L, (L)) - ( oU?)(p and hence
also that

G L (1, 0) - (Mo Xpt) ) = Op) - |G L (1, 0) NZT bi = O - (ARL,s) (|G )
C Ao (C15 (L)) - (NRLs) (ABUY) ).

Since this is true for all primes p it is a refinement of the containment [7, (44)] (in which
Clg/(L), rather than CI%, (L), occurs).

This proof is also much simpler than that in loc. cit. since, amongst other things, it
avoids any use of the constructions of Ritter and Weiss in [42].

13.3. The proof of Corollary 10.5. The proof of Theorem 10.1 shows that the claims
of Corollary 10.5 will follow if we can show the stated hypotheses imply the validity of the
p-component of LTC(L/K) after taking plus and minus parts respectively.

It is shown in [7, §9.1] that the p-component of LTC(L/K) is valid after taking plus parts
provided that all of the following conditions are satisfied: the p-adic Stark Conjecture at
s = 1 of Serre and Tate is valid for all p-adic characters of G; if p divides |G|, then the
p-invariant of LY/ vanishes; the p-component of a certain element TQ°°(Q(0)z, Z[G]) of
Ko(Z[G],R[G]) vanishes.

Claim (i) therefore follows from the fact that the p-component of TQ°¢(Q(0)r,Z[G])
vanishes if the ‘local epsilon constant conjecture’ of Breuning [3] is valid for all extensions
obtained by p-adically completing L/K (this follows from [3, Th. 4.1]) and that [3, Th. 3.6]
shows the latter condition to be satisfied if p is tamely ramified in L/K.

It now only remains to note that [9, Cor. 3.8] shows that the hypothesis of Corollary
10.5(ii) combines with the observation made in Remark 15.5 below to imply the validity of
the p-component of LTC(L/K) after taking minus parts.

Remark 13.4. Breuning’s local epsilon constant conjecture has also been verified for certain
classes of wildly ramified extensions of local fields (see, for example, Breuning [2] and Bley
and Cobbe [1]). All such results can be combined with the above argument to derive
corresponding generalizations of Corollary 10.5(i).

13.4. The proof of Corollary 10.6. We finally prove Corollary 10.6. To do this it suf-
fices to show that the given hypotheses imply that the hypotheses of Corollary 10.5(ii) are
satisfied.

The stated hypotheses imply the vanishing of i, (F) because (as is well-known) if p,(E)
vanishes for some number field E, then Nakayama’s Lemma implies that p,(E’) vanishes
for any p-power degree Galois extension E’ of E.

The key point regarding the p-adic Gross-Stark Conjecture (for more details of which see
Remark 15.5 below) is that if G is a finite group of the form A x @ with A abelian and @
supersolvable, then for any irreducible Q-valued character p of G there exists a subgroup
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A, of G which contains A and a linear Qg-valued character p’ of A, such that p = Indgp(p/ )
(for a proof of this fact see [46, II-22, Exercice] and the argument of [46, II-18]).

In particular, since the inductivity properties of p-adic Artin L-series implies that the
Gross-Stark Conjecture is true for p is and only if it is true for p’ we can assume (after
replacing L/K by L/LA and p by p') that p is linear.

In addition, one knows, by assumption, that the field L4 has at most one p-adic place
which splits completely in L/L* and, under this hypothesis, the validity of the Gross-Stark
Conjecture is known by results of Gross [27, Prop. 2.13], of Darmon, Dasgupta and Pollack
[17] and of Ventullo [51].

Remark 13.5. We can now also give more details of the sort of examples discussed in
Remark 10.8.

To do this we fix a totally real field ¥ and a cyclic CM extension E’ of E in which
precisely one p-adic place v of E splits completely and no other place of E that ramifies
in F/Q splits completely. We let k& be any subfield of E for which the restriction of v has
absolute degree one and write F' for the Galois closure of E’ over k. Then F is a CM field

and for any faithful linear character ¢’ of G/ /g the character ¢ := Indgii ’; (Infgg fE (")

of Gy, is irreducible, totally odd, faithful and of degree [E : k]. Further, the functoriality
of p-adic L-functions under induction and inflation combines with the result of [27, Prop.
2.13] and [51, Th. 1] to imply that v validates all of the hypotheses of [9, Cor. 3.3] with
S taken to be the union of all places of k that are either archimedean, p-adic or ramify in
E/k and v, the place of k below v.

PArT IV: THE p-ADIC THEORY

In the remainder of the article we fix an odd prime p and a finite CM Galois extension
L of a totally real number field K with group G.

In this context we shall introduce a natural generalization of the ‘p-adic Gross-Rubin-
Stark elements’ that are defined (in the setting of abelian extensions L/K) by the first
author in [9] and a natural p-adic analogue of the zeta element of G, relative to L/K from
Definition 9.1.

Using these elements we then explain how the approach of [9] leads to a natural ana-
logue for L/K of the theory we discussed in earlier sections in which the roles of Dirichlet
regulators and Artin L-series are respectively replaced by Gross’s p-adic regulators and the
Deligne-Ribet p-adic Artin L-series of the totally even p-adic characters of G (as discussed
by Greenberg in [25]).

We also prove that the central conjecture of this p-adic theory is valid modulo Iwasawa’s
conjecture on the vanishing of cyclotomic p-invariants, and even in some interesting cases
unconditionally (see Remark 16.3), and derive several explicit consequences of this result.

14. HIGHER NON-ABELIAN p-ADIC STARK ELEMENTS

We write Ir,(G) for the set of irreducible Cp-valued characters of G. Then, with 7
denoting the (unique) non-trivial element of G, s+ we write e_ for the central idempotent
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(1 —7)/2 of Q[G] and let Ir;[(G) denote the subsets of Ir,(G) comprising characters for
which one has x(7) = +x(1). For any G-module M we also write M* for the G-submodule
{m e M :7(m)=+m}.

14.1. Equivariant p-adic regulator maps and L-series.

14.1.1. For each place w of L Gross defines in [26, §1] a local p-adic absolute value || - ||p
on L;5 by means of the commutative diagram

[l w,p
(57) L Zx
GL%}b/Lw

where L2 denotes the maximal abelian extension of L,, in L¢ ., ry the reciprocity map of
local class field theory and x,, the p-adic cyclotomic character.

For any finite set of places ¥ of K that contains both S% and the set S%. of all p-adic
places of K, we write

D . X,—= —
Ris:O0s, = Yisy

for the homomorphism of Z,[G]-modules that sends each u in O} to > e, logpllul|p .
We write Ir}’(G) for the subset of Ir, (G) comprising those characters p for which the
induced homomorphism R}’ := Homg, ¢)(Vj, C, - R ¢) is injective and we then obtain an
idempotent of ((Q,[G]) by setting
€ss 1= Z €p.

pElrss (@)

Remark 14.1.

(i) In [27, Conj. 1.15] Gross conjectures each homomorphism R}, to be injective. If valid,
this conjecture would imply Ir;’(G) = Ir, (G) and hence that ess = e_.

(ii) Set ¥ := S USY and for each p in Ir (G) also s, , := dimc, (Homg,(¢)(V;,Cp - Y15).
If rs,, = 0, then the injectivity of R%fg is obvious. Excluding this case, however, the
injectivity of RD has so far only been verified in the case that ry,, = 1 in which case
Gross has shown 7(in [27, Prop. 2.13]) that it follows from Brumer’s p-adic version of Baker’s
theorem. In general, one knows (from [9, Th. 4.2]) that this injectivity is equivalent to the
semisimplicity of a natural Iwasawa module.

14.1.2. We now fix a Zy-order A, in a semisimple Q,-algebra A, and assume that A, satisfies
the conditions (A1) and (Az) discussed in §4.2.2 (with R replaced by Z,).

We also assume to be given a finitely generated (A, Z,[G])-bimodule 1I,, which is free
over A, and satisfies the obvious (p-adic) analogues of the conditions (Il3) and (II3) in
§8.1. We write Yy, for the associated subset of Ir,(G) (obtained by the same method as
in Remark 8.1) and for each character p in Y11, we write W, for the corresponding simple
right Ac,-module.
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We fix a surjective homomorphism of 4,-modules
mp 1 ®z,(q] ngfT(Gm/L)p — Yr,

in which Y7 is free. For each character p in Y11, we set rr,(p) := dimc, (W, ®a4, Yx,).
For any such homomorphism 7, we then define a {(C,[G])-valued meromorphic function
of a p-adic variable z by setting

921}1(757,11(2) = Zep . Z_TWp(p)Lp,S,T(ﬁ . UJK, 2)7
p

where p runs over Ir, (G) N YTn,. Here wi denotes the Teichmiiller character G — Zj
and for any finite set of places ¥ of K containing S U S%. and any representation p of
It} (G) we write L, x(p,s) for the X-truncated Deligne-Ribet p-adic Artin L-series of p, as
discussed by Greenberg in [25].

We write e, for the idempotent of ((Q,[G]) obtained by summing e, over all the subset
Tr, of Ir, (G) comprising characters p for which the space Home g (Vj, Cp-ker(p)) vanishes
and we then obtain a further idempotent of ((Q,[G]) by setting

ss .
€, 1= €ss " Cre

Lemma 14.2. For each homomorphism m, as above the following claims are valid.
(i) ‘927K,S,T(Z) is p-adic holomorphic at z = 0.
(i) 927K,5,T(0) belongs to e - C(Qp[G])*.

Proof. Claim (i) is equivalent to asserting that for each p in Ir; (G) the order of vanishing
at z = 0 of L, s7(p - wk,2) is at least 7.(p). The key point in proving this is that [9,
Th. 3.1(i)] shows this order of vanishing to be at least dimc, (Homc,()(Vj, Cp - X1,5)) and,
given this fact, the required inequality is proved by the same argument as in Lemma 8.5.

Next we note it is clear 02’;K737T(0) belongs to ((Qp[G]). In addition, one has e’ =3~ e,

where p runs over Irj}(G)NYr, and the argument of claim (i) implies e,ﬁ?} x.5,7(0) vanishes
unless p belongs to T, .

To prove claim (ii) it is therefore enough to show that for each p in T, the element
epeg; K, S7T(O) is non-zero precisely when p belongs to Ir}’(G). This is in turn equivalent to
proving that for each p in T, the order of vanishing of L, s7(p - wk, z) at z = 0 is equal
to rx(p) precisely when p belongs to Ir’(G). This is true because for each p in T, one
has 7-(p) = dimc, (Homc,(q(V;, Cp - X1 5)) and, by [9, Th. 3.1(ii)], one knows that the
order of vanishing of L, s7(f - wk, z) at 2 = 0 is equal to dimc,(Homc,(q(V5,Cp - X1,5))
precisely when p belongs to Ir}’(G). O

14.2. The definition of higher non-abelian p-adic Stark elements. For each homo-
morphism of Ap-modules 7, as above we write r., for the Ap-rank of Yz, and then choose
an ordered Ap-basis b = {b;}1<i<,, of Y, .

Tp

For any such basis Lemma 14.2(ii) implies that the element 6 K s7(0)- /\ZT” b; belongs

to e ( ZT: (Qp 11, ®4, Yr,) and so enables us to make the following definition.
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Definition 14.3. For any basis b as above the ‘higher non-abelian p-adic Stark element
(relative to b)’ is the unique element ez” of 5 ( Z:(Qp 1 ®z,(q] (9;”57))) which satisfies

)‘szs(ezm) = 927K,S,T(O) : /\;i; i

Uy . .
where \;"g denotes the isomorphism €5 (Qp - 1T, ®q, (6] A7 g)-

Example 14.4. For each place v in S we fix a place w, of L above v and write w, for
its complex conjugate. We also write V7, for the subset of S comprising places which split
completely in L/K, set rr, := |V1| and note that, as L is a CM extension of K, the Z,[G] -
module (Y7, v, )~ is free of rank r7, with basis b := {w, — W, : v € V1. }. Finally we write m,
for the natural surjective homomorphism of Z,[G]~-modules ngT(Gm /L)y — (YLv,p)~

Then the data (b, 7,) is suitable to be used in Definition 14.3 (with A, = II, = Z,[G] ™)
and so we may set

p . T
€L/K,ST = € -

We refer to this element as the ‘non-abelian (p-adic) Gross-Rubin-Stark element’ with re-
spect to the data L/K,S,T and note that it constitutes a natural generalization of the
Gross-Rubin-Stark elements that are defined (in the setting of abelian extensions) by the
first author in [9, §3.5]. The conjectural link between these elements and the non-abelian
Rubin-Stark elements defined in Example 8.9 is described in Proposition 15.6(i) below.

In this context we also define a ‘rp-th order non-abelian p-adic Stickelberger series’ by
setting

HifggT(z) = 92’;K757T(z) = Z ep- z_p(l)rLvag’T(pv CWEK, Z).
pElr, (G)

15. STATEMENT OF THE CONJECTURES

15.1. Non-abelian p-adic zeta elements and determinant modules. In the sequel
we set Z,|G]® := Z,|Gless.
For any object C' of D'(Z,[G]) we write C* for the associated object Z,[G]* ®Hip[G] C

of D'9(Z,[G]*) and we note that in each degree i there is a canonical identification of

Qp-spaces Q) - H(C) = ess(Qp - H(C)).

15.1.1. We write &, for the residue field of each place w in T7,. Then for each such place
w the complex RT¢(kw,Zy(1)) is acyclic outside degree one and there exists a natural
morphism in D'0(Z,[G])

0
(58) RT&(OL5,Zp(1)) == @D RTé(kiw, Zy(1))
weTr,

for which H*(f, 1) is induced by the natural projection maps O ¢ — £ (for more details

see [9, Lem. 4.3]). '
We write RI'r(Op,s,Zy(1)) for the mapping fibre of 6,7 and H}.(Opr s, Zy(1)) for the
cohomology of this complex in degree ¢ and we note that the long exact cohomology sequence
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associated to the definition of mapping fibre induces canonical identifications

. OZ”;T7P7 if /l: = 1
(59) Hip (01,5, Zy(1)” = { ST(Cpu /L)y, ifi =2
0, otherwise.

In view of this description, the definition of the idempotent e implies that the homo-
morphism R ¢ restricts to give an isomorphism of Q,[G]*®-modules

Ry Qp- H'(RUp(OL 5, Zp(1))®) = Qp - H*(RT'1(OL s, Zp(1))™).

This isomorphism then combines with the general construction (22) to give a canonical
isomorphism of {(Q,[G])*-modules

Vg0, ro7 © detq,(a=(Qp - RUT(OL,s, Zy(1))%) = ((Qp[GT7)

. . . . p
and in the sequel we denote this isomorphism by X} .

Finally we note that the leading term 0%71(’ S,T(O) at z = 0 of the function

eg/K,S,T(Z) = Z ep Lpst(p-wk,2)
pElr, (G)

belongs to ((Q,[G]~)* and hence that 92’;K757T(0)ess belongs to ¢(Q,[G]**)*.

Definition 15.1. The ‘p-adic zeta element of G, relative to L/K,S and T” is the pre-
image zi/K’S’T in Qp - detz, (g (RU1(OL,s, Zp(1))*) of the element ezl)/’;K,S,T((])eSS under

. . p
the isomorphism A LS

These elements constitute a natural p-adic analogue of the zeta elements from Definition
9.1 and the central conjecture that we make concerning them is the following analogue of
Conjecture 9.2.

Conjecture 15.2. £(Z,[G]*®) - ZIL)/K,S,T = dety, (g (RT'T(OL,5, Zy(1))®).

Remark 15.3.

(i) Conjecture 15.2 constitutes a natural generalization of a conjecture formulated for abelian
extensions L/K by the first author in [9, Conj. 3.6].

(i) For any normal subgroup H of G for which the corresponding intermediate field F' := L
is CM, there is a natural descent isomorphism in D':9(Z,[G/H]**) of the form

Zp|G/HT® @7 gy BUT(OL5,Zp(1)) = RU7(OFs, Zp(1))™.

It is straightforward to show that the p-adic zeta elements z’i JK.S.T and zg JK.S,T satisfy the
same functoriality property with respect to this isomorphism as was observed for the cor-
responding zeta elements in Lemma 9.8. The validity of Conjecture 15.2 for L/ K therefore
implies its validity for F'/K.
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15.1.2. In this section we explain the precise connections between Conjectures 9.2 and 15.2
and between the Gross-Rubin-Stark and Rubin-Stark elements that are respectively defined
in Examples 14.4 and 8.9.

Before stating these results we give a precise statement of the weak p-adic Gross-Stark
Conjecture.

To do this we fix an injective homomorphism of G-modules ¢ : (’);’S — Xrg. Noting

that the scalar extension C, ® ¢ is bijective, for each p in Ir, (G) we then define a Cp-valued
Z-invariant by setting

Zs(,p) = dete, ((Cp ©z ¢) " o (Cp @z, R g) | Homg,(6)(V5, Cp - OF g))-

In a similar way, for each field isomorphism j : C = C,, and each p in Ir, (G) we define a
C-valued regulator by setting

Rs(¢,p7 ) = j~ (detc, ((Cp ®z 6) ™' 0 (Cp @z Ris) | Home,g1(Vs, Cp - OF ).

The following conjecture is formulated by Gross in [27, Conj. 2.12] and is commonly
referred to as the ‘weak p-adic Gross-Stark Conjecture’.

Conjecture 15.4. Fiz a character p in Ir, (G), an isomorphism of fields j : C = C;, and
an injective homomorphism of G-modules ¢ : Ops — Xpg. Then one has

LT3  wic, 0 Zs(6,p) = JLEE G, 0 Rs(6, 7 ),
with rg,, = dimc, (Home, g (Vj, Cp - Of,s))-

Remark 15.5. The equality of Conjecture 15.4 and the prediction that ess = e_ (as recalled
in Remark 14.1(i)) together constitute the ‘p-adic Gross-Stark Conjecture’ that occurs in
the statement of Corollary 10.5(ii).

We can now state the main result of this section.

Proposition 15.6. If Conjecture 15.4 is valid for L/ K, then so are the following claims.
(i) €€/K,S,T = eSS(EZ?K,S,T) with Vi, the set of places splitting completely in L/K.
(ii) If Conjecture 15.2 is also valid for L/K, then ess - 21k s 15 a primitive basis of
dety, (c)(Zp|G]™ ®H2[G} CLsT)-

Proof. We set r = rp,, write Ir—"(G) for the subset of Ir ™ (G) comprising characters for which
Ls7(1, z) vanishes to order r - ¢(1) at z = 0 and write e, for the associated idempotent

Zwelr*ﬂ'(c) ey of ((Q[G]).

Then the explicit definitions of e’i IK.ST and 6‘27 K.S.T combine with the arguments of
. . V V
Lemma 8.5 and 14.2(ii) to imply €riKST = e,«(eL?Kvs’T) and ei/K@T = esser(ei/KS’T),
whilst a direct comparison of these definitions shows that for any fixed isomorphism of
fields j : C = C,, one has
Vi
(60) EZ/K,S,T =v- e’f‘ess(eL?K’S/I')

with v the element

(0717 5 7(0)ess) i (0 ) 57(0)eress) ™+ Nrde s (C) @, N g) © ess(Cp @ Ars) ™)
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of (e;Cp[G]**)*, where j, denotes the ring isomorphism C[G] = C,[G] induced by j.
1

Set Ir,"(G) := {¢! " : ¢ € I™"(G)}. Then for each p in Ir$*(G) N1Ir, " (G) one has both

ep(O 1) 5 (0)es)in(0 ) 5 p(0)eress) ™ = (L% (pwc, 0) - G(LGH (7

and

ep(Nrde, (a1 ((Cp ®q, N} 5) 0 ess(Cp @R 5 ALs) )
=detc, ((Cp ®rj Rrs) " 0 (Cp @z, R} ) | Home,jc)(V5, Cp - OF g))ep
=detc, ((C, @r,j Rrs)™ ' o (Cp &z ¢) | Homg,(¢)(V;, Cp - OF )
x detc, ((Cp ®z ¢) ™" o (Cp @z, R} §) | Homg,(¢)(V;,Cp - OF )
=j(Rs(¢,0" )™ Zs(d, p)ep.

Taken together with the last two displayed formulas the validity of Conjecture 15.4 for
L/K implies that

v= Z ep(v) = Z €p = €ress
pelry (G)NIr, " (G) pEIry (G)NIr, " (G)

and so claim (i) follows directly from the equality (60).
To prove claim (ii) we recall (from [9]) that the Artin-Verdier Duality Theorem gives a
canonical isomorphism in D'9(Z,[G]) of the form

(61) RU7(Ors, Zy(1))” = (Zp @z CLsr)”
which in turn induces an identification of {(Z ) [G]*)-lattices
(62) detz(p) [G]ss (RFT(OL,S, Zp(l))ss) = deth[G]ss (Zp [G]SS ®H2[G] CL,S,T)-

Taking account of this identification, Proposition 6.19(ii) implies the claimed result will
follow if we can show Conjecture 15.4 implies that zz K.ST and ess - zp /x5 differ by

multiplication by an element of Nrdg, (g (K1(Zp[G]*)).
Now an explicit comparison of the definitions of z‘TL’ JK.ST and ess - 21 /k,5,7 shows that
ZIL)/K,S,T = (1 ®R,j (€ss - ZL/K,S,T))
with v/ the element

Og%;K,S,T(O)ess)j*(HE/K,S,T(O)eSS)_l -Nrde, (g ((Cp ®q, N7 5) © €ss(Cp O, As)™h

of C(Cp[G]) .
In addition, the same computation as above shows that Conjecture 15.4 implies v' = eg
and this element clearly belongs to Nrdg, gss (K1(Zp[G]*)), as required. O
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15.2. p-adic Stark elements, Fitting invariants and reciprocity maps. The same
sort of arguments that are used to derive explicit consequences of Conjecture 9.2 in §9.2 can
be used to show that Conjecture 15.2 implies a range of explicit consequences concerning the
elements egp from Definition 14.3. For brevity, however, we only consider these consequences
in the setting of Example 14.4.

In claim (iii) of the next result we use the strict family of pre-envelopes P = Pr, s and
surjective bundle of G-module morphisms © : P — S,.(G,,/L) that are constructed in
Proposition 7.1. We also recall that in the setting of Exaimple 14.4 Vg is equal to the set of
places in S which split completely in F//K.

Conjecture 15.7. For each Galois CM extension F' of K in L set rp :=|Vp|.

(i) The transpose Selmer group ngT(Gm/L)Ij has a quadratic Zy|G]-module presenta-

tion hIL”/_KST for which

ST LN o) (€ e 5.0) 0 € Homi )05 ZolGI)} = FIE (R0 o ).

(ii) For any a in A(G) and (pi)i1<i<r, in Hom(;((’)ES,T, Z|G])"t one has

a- (/\i?%)(fﬁ/;{@ﬁ € AnnZ[G](CIE?UVL(L))p'
(iii) For all normal subgroups H of G, with E = L, one has
p“:H(ei/K,S,T) = RGCZ(E%/K,S,T)
with P = Pr,sr and pr p the natural projection Fr, (NaOf 1) = Frp(NGP)H-

Remark 15.8. If L/K validates the p-adic Gross-Stark conjecture (as recalled in Remark
15.5), then Proposition 15.6(i) implies ei/K@T = e_(eEK’S,T) and hence that Conjecture
15.7 recovers the ‘minus components’ of the p-parts of the properties of Rubin-Stark ele-
ments that are derived from Conjecture 9.2 in Corollary 9.10.

16. THE MAIN RESULT

16.1. Statement of the main result. In the next result we state the main evidence that
we can currently offer in support of Conjectures 15.2 and 15.7.

This result relies on an explicit cohomological construction of approximations to the
Gross-Rubin-Stark elements defined above and shows, in particular, that if the p-adic p-
invariant p,(L) of L%°/L vanishes (as is conjectured to be the case by Iwasawa), then
Conjecture 15.2 is valid and Conjecture 15.7 is valid provided that egs = e_ (as is conjectured
by Gross).

In claim (ii) of this result we use the notation of Example 14.4.

Theorem 16.1. If p is such that p,(L) vanishes, then the following claims are valid.

(i) Conjecture 15.2 is valid.
(ii) For each Galois CM extension E of K in L, with H := G /g, there exists an element

p,coh

TR . X _ . . .
€B/KS.T of /\QP[G/H] (Qp 0E7S) which has all of the following properties.
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(a) One has
Ngyioym @ Re sV i) = 05150 (0) - Noeve (wop = T0E)

p _ . _p,coh
and hence R KT = €8 CB/K.ST

) h T
(b) 6%7;(75771 belongs to Frp, (HZ[G/H]OE,S,T,;))'
(c) The transpose Selmer group S§,(Gp/E), has a quadratic Zy[G/H]-module
presentation h%’/_K g7 for which

S(ZP[G/H]){(/\EiZE Soi)(e%(/x;?,sj) HOTRS HomZp[G/H] (OE:;T,pv Ly [G/H])} = FI%i[G/H] <h%/_K,S,T

(d) For any a in A(G/H), and (p;)i<i<ry in HomZp[G/H](OE:;TWZp[G/H])TE
one has
i=r ,coh
0+ (AT s ) € Anng, )m(Clheyy, (E)).
(e) There exists an element {;Oh of detyz, () (RI'r(OL,s,Zy(1)) ™) with the property
that for every E and H as above one has

H7p77 COh _ p’COh
AL,S,T(CP ) = €E/K.S,T

where we write Afg’; for the composite of the identification (62) and the ho-

momorphism (Af’gT)* defined in §7.5.
(f) For every F and H as above one has

,coh P (_p,coh
P (€ k. 5.0) = Rech €k s.7)

with pr g the natural projection Fr, (NFOF 1) = Frw (N Pr,s,r)H-

Remark 16.2.
(i) As a refinement of Theorem 16.1(ii)(a) our methods will show that, given the family

PrL.s.Tp, the elements 6%7])? ¢ can be collectively specified uniquely up to scalar multipli-

cation by a single element in the kernel of the natural projection K (Zy[G]) — Ki(Zy|G]*).
(ii) The argument of Proposition 7.3(iii) implies Theorem 16.1(ii)(e) constitutes a natural
generalization of a result proved (for abelian extensions) in [9, Cor. 3.12].

Remark 16.3. In [32] Johnston and Nickel identify families of extensions L/K for which one
can prove the main conjecture of non-commutative p-adic Iwasawa theory for the extension
L¢/K without assuming that j1,,(L) vanishes (or that p does not divide [L : K]). In all such
cases our method shows that the assertions of Theorem 16.1, and in particular therefore
Conjecture 15.2, are valid unconditionally.

16.2. The proof of Theorem 16.1. To prove claim (i) we note that the same argument
as used to prove Theorem 10.1 shows that Conjecture 15.2 is equivalent to an equality in
Ko(Z,|G)*, Qp[G]*®) of the form

5Zp[G]ss (912/7}(757,11(0)655) = XZP[G]SS (RFémT(OF“S', Zp(].))ss, R%ji{)

).
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where 0z ()= denotes the composite homomorphism

C(Qp[GT)* = Ki(QplGI™) = Ko(Zy[GT, Qp[GT™)

where the first arrow is the inverse of the (bijective) reduced norm map and the second is the
canonical connecting homomorphism of relative K-theory and xz, (g (—, —) is the refined
Euler characteristic discussed in §11.2. Given this equivalence, claim (i) is an immediate
consequence of [9, Th. 3.6].

To prove claim (ii) we assume (as we may) that the ordering of S made in §7.1 is such
that vg is archimedean. In particular, with this choice vg doesn’t split completely in any
CM extension E of K and so the subset Vg of S defined in Example 14.4 coincides with
the set defined (using the same notation) in §7.1.

We then fix a pair (w, b) belonging to the class Csr(L/K) that is defined in Lemma 7.7
and used in §7.2.3 to construct the family Pr, g 7.

We recall that @ is a surjective homomorphism of G-modules @ : P — S¢7(Gy/L),
where P is free of rank d, and b = {b;}1<;<a is an ordered G-basis of P. We set @, :=
(Zy ®z @)~ and for each index i also b; := (1 —7)b;.

Just as in §12.1 we then fix an exact sequence of Z,[G]™-modules

0= Of5p, = Py 25 Py 25 ST (G /L), — 0
which, in view of the isomorphism (61), induces an 1dentiﬁcation between RI'r(Op, 5, Zy(1))~

and the complex P, ¢—p> P,, where the first module is placed in degree one.
Now claim (i ) combmes Wlth the argument of Proposition 11.2(ii) to imply the existence
of an element uj, of K1(Zp[G]*) which satisfies

(63) HZL)/*K s.7(0)ess = Nrdg, (s (u)Nrdg, (a1 ({6, , 1, ¢2))

for any choice of Q[G]-sections ¢1 and 2 to ¢, and w,. By Bass’s Theorem (cf. [34,
Chap. 7, (20.9)]) we can then fix a pre-image u;, of u;, under the natural projection map
K1(Zy[G]) = K1(Zy[G]®).

As in §7.3.1, we write Zg for the subset of [n] comprising the rg integers ¢ for which v;
belongs to Vg (and so splits completely in F / K). We then set

epicsr = Nedgyey(p) - /\ (67)a)(\ (b /\@ cym (@ - PyT).
ae[d}\ZE celd)

Noting that (1 — ess)(/\TQ’i[G/H] (Qp - ES)) is the zero map one has

re ,coh TE ,coh
(/\QP[G/H] (@ B ) eyrcsr) = (/\@p [G/H] (Qp- R s))(ess - Lyicsr)

and, given this fact, the equality (63) combines with the argument used in the proof of
Theorem 12.2 to imply the displayed equality in claim (ii)(a).

The final assertion of claim (ii)(a) then follows directly from the fact that the definition
of egs implies that the map /\%75 = ess(A&i[G/H] (Qp - R%,S)) is injective.

Given the above explicit definition of the elements e%;([)?’ ST the remaining assertions of

claim (ii) can be proved by mimicking the arguments used in §12 and §13.1 to deduce
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Corollary 9.10 from the explicit formula for the Rubin-Stark elements €}? IK.ST that is given

by Theorem 12.2. However, since this process is routine, we shall for brevity leave the
detailed derivation to an interested reader.

1]
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