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Abstract. We introduce explicit non-commutative generalizations of several natural con-
structions in commutative algebra including the notions of determinant modules of perfect
complexes and of higher Fitting invariants of finitely generated modules.

We then use these constructions to define and study a natural notion of ‘non-abelian
zeta element’ for the multiplicative group Gm over finite Galois extensions of global fields,
thereby extending the theory for abelian extensions that we developed in earlier joint work
with Kurihara.

In particular, we formulate a precise and explicit conjectural link between these non-
abelian zeta elements and the non-commutative determinant modules of certain natural
‘Weil-étale cohomology’ complexes. We prove that this conjecture is equivalent to a special
case of the equivariant Tamagawa number conjecture, and also show that it is a conse-
quence, in the relevant cases, of either the p-adic Stark conjecture of Serre and Tate or the
p-adic Gross-Stark conjecture. We show that these connections, and our earlier work with
Kurihara, lead to unconditional proofs of our conjecture for several important classes of
number fields, including absolutely abelian fields and some classes of non-abelian Galois
extensions of degree divisible by a prime p at which the relevant p-adic L-series possess
trivial zeroes. In addition, we give an unconditional proof of the analogous statement for
global function fields and a proof, in general modulo a standard vanishing conjecture on
µ-invariants and in some interesting cases unconditionally, of a natural p-adic analogue of
our conjecture.

In another direction, we show that our central conjecture and its p-adic analogue entail
very detailed information about the arithmetic properties of generalized (non-abelian)
Stark and p-adic Stark elements. These properties include explicit families of integral
congruence relations between canonical ‘non-abelian Rubin-Stark elements’ and between
canonical ‘non-abelian p-adic Gross-Rubin-Stark elements’ that we define (which both
refine and extend recent conjectures in the abelian case of Mazur and Rubin and of the
second author) and in addition explicit formulas in terms of these elements for the non-
commutative higher Fitting invariants of the integral Selmer groups of Gm.

In this way we obtain both a clear and very general approach to, and a notable refine-
ment of, many aspects of the existing theories of refined Stark and p-adic Stark conjectures.
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1. Introduction

In this article we shall formulate and discuss strongly refined versions of Stark’s seminal
conjectures on the algebraic properties of the values at zero of Artin L-series.

The general approach that we use is a natural extension of that introduced in the context
of abelian L-series in our earlier joint work with Kurihara [11, 12].

In particular, an essential aspect of this approach is the (unconditional) definition of nat-
ural notions of ‘non-abelian zeta element’, of ‘Selmer group’ and of ‘Weil-étale cohomology
complex’ associated to the multiplicative group Gm over finite Galois extensions of global
fields.

A further key feature of the theory developed here is the introduction of explicit gener-
alizations of several classical notions of commutative algebra to a natural non-commutative
setting.

These generalizations may themselves be of some independent interest and include, per-
haps most notably, an elementary and seemingly natural theory of non-abelian determinant
modules of perfect complexes (which avoids any use of either relative algebraic K-theory, of
Deligne’s theory of virtual objects or of the theory of localized Whitehead groups of Fukaya
and Kato) and a natural theory of the higher non-commutative Fitting invariants of finitely
generated modules.

Having introduced these notions, our central conjecture is stated as Conjecture 9.2 and
simply asserts that, for any finite Galois extension L/K of global fields, the canonical
non-abelian zeta element of Gm with respect to L/K is a ‘locally-primitive basis’ of the
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non-abelian determinant module of the Weil-étale cohomology complex of Gm with respect
to L/K.

Despite the straightforward nature of this prediction we are able to show that it is equiv-
alent to the equivariant Tamagawa number conjecture for the pair (h0(Spec(L)),Z[G]), a
conjecture which we note has hitherto only ever been discussed using the rather involved
formalism of relative algebraic K-theory and virtual objects. (We also remark in passing
that the algebraic techniques introduced here can be used to give a similarly explicit rein-
terpretation of both main conjectures in non-commutative Iwasawa theory and the general
case of the equivariant Tamagawa number conjecture, and thereby to the derivation of a
wide range of explicit arithmetic results and predictions in much greater generality than is
discussed here, and that these aspects of the theory will be discussed elsewhere.)

To describe direct links between Conjecture 9.2 and previously formulated refinements
of Stark’s conjecture we find it convenient to introduce a natural notion of ‘higher non-
abelian Stark element’ which, in turn, we can show specializes to give a natural notion of
‘non-abelian Rubin-Stark element’.

In particular, by these means we can show that Conjecture 9.2 extends all of the conjec-
tures that were formulated for abelian L-series in our earlier work with Kurihara [11] and
therefore simultaneously refines, extends and provides a seemingly definitive version of, the
conjectures that are formulated by the first author in [7].

We also mention that our approach leads to concrete improvements of several earlier
results in this context. For example, it allows us to remove an important technical hypothesis
(concerning the cohomological-triviality of roots of unity) from the main result of [7] and
also to greatly simplify the proof of the latter result.

Using the connections discussed above we are able to deduce that, upon appropriate
specialization, Conjecture 9.2 incorporates natural non-abelian generalizations of, amongst
other things, the Rubin-Stark Conjecture (from [44]), the congruences for derivatives of L-
series that were formulated (independently) by Mazur and Rubin in [39] and by the second
author in [45] and the annihilation results that are proved by Rubin in [43].

We can also show that, at the same time, Conjecture 9.2 predicts explicit formulas for
the higher (non-commutative) Fitting invariants of the Selmer groups of Gm over arbitrary
finite Galois extensions L/K of global fields and incorporates strongly refined versions of
the conjectures studied both by Stark in [47, 48] and by Chinburg in [14].

Having established its equivalence to a special case of the equivariant Tamagawa number
conjecture, previous work of several authors leads directly to the verification of Conjecture
9.2 for several important classes of fields, including both all absolutely abelian fields (as
first proved in [11]) and all global fields of positive characteristic.

In addition, we are able to provide important ‘new’ evidence in support of Conjecture
9.2 by combining results of the first author in [9] with the approach developed in the joint
work with Kurihara [12] and results of Darmon, Dasgupta and Pollack [17], and of Ventullo
[51], to prove the conjecture for several classes of fields in the technically difficult case of
non-abelian CM Galois extensions of totally real fields of degree divisible by a prime p at
which the associated p-adic L-series possess trivial zeroes.

As a further application of our general approach, in the final part of the article we
restrict to the setting of finite CM Galois extensions of totally real fields and define a
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natural generalization of the ‘p-adic Gross-Rubin-Stark elements’ that were introduced (in
the setting of abelian extensions) by the first author in [9] and a natural p-adic analogue of
the notion of non-abelian zeta elements for Gm.

We use these elements to develop a natural analogue of the above theory in which the
roles of Dirichlet regulators and Artin L-series are respectively replaced by Gross’s p-adic
regulators and the Deligne-Ribet p-adic Artin L-series of totally even p-adic characters (as
discussed by Greenberg in [25]). We also prove that the central conjecture of this p-adic
theory is valid modulo Iwasawa’s conjecture on the vanishing of cyclotomic µ-invariants and
even, for some interesting families of extensions, unconditionally.

In a little more detail, the main contents of this article is as follows. In Part I (compris-
ing §2-§6) we introduce natural non-commutative generalizations of relevant constructions
in commutative algebra. This entails, amongst other things, defining canonical integral
structures on the reduced exterior powers of finitely generated modules over semisimple
algebras and introducing natural notions of ‘non-abelian Rubin lattice’, of ‘locally-free pre-
envelope’ (in the general sense of Enochs [20]), of non-commutative ‘Fitting lattices’ and
higher non-commutative Fitting invariants and a natural, and explicit, notion of non-abelian
determinant modules of perfect complexes. In Part II (comprising §7 and §8) we establish
the general arithmetic setting in which we shall apply these generalized constructions and,
in particular, define both canonical Selmer groups for Gm and the notion of higher non-
abelian Stark element and use class field theoretic techniques to prove that the unit groups
of global fields possess canonical families of locally-free pre-envelopes, to define the relevant
Weil-étale cohomology complexes and to introduce a natural notion of ‘non-abelian reci-
procity map’ (which extends the reciprocity maps that have been independently introduced
in the abelian case by Mazur and Rubin in [39] and by the second author in [45]). In Part
III (comprising §9-§13) we introduce the key notion of ‘non-abelian zeta element’, state our
central conjecture (Conjecture 9.2) regarding these elements, derive a wide range of con-
crete consequences of this conjecture, state the main supporting evidence that we can offer
in support of our central conjecture and then in the remainder of the article prove all of
these results. Finally, in Part IV (comprising §14-§16) we develop a precise p-adic analogue
of the above theory in which the roles of Artin L-series and Dirichlet regulators are played
by p-adic Artin L-series and the p-adic regulators of Gross respectively.

This article constitutes a natural continuation of earlier joint work with Masato Kurihara
and both authors are extremely grateful to him for his generous encouragement and for many
insightful discussions. It is also a great pleasure for the first author to thank Dick Gross,
John Tate and Cornelius Greither for discussions concerning this project. In addition, the
authors are grateful to Alice Livingstone Boomla and Andreas Nickel for their comments
on an earlier version of this article.

Part I: Non-commutative Algebra

2. Exterior powers

In this section we discuss the basic properties of a natural construction of non-commutative
exterior powers.
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2.1. Commutative exterior powers. In this section we quickly review the basic theory
of exterior powers over commutative rings.

Let R be a commutative ring, and M be an R-module. Then for every positive integer
r, an element f ∈ HomR(M,R) induces the homomorphism∧r

R
M →

∧r−1

R
M

which is defined by

m1 ∧ · · · ∧mr 7→
r∑
i=1

(−1)i+1f(mi)m1 ∧ · · · ∧mi−1 ∧mi+1 ∧ · · · ∧mr.

This homomorphism is also denoted by f . Using this construction, we define the following
pairing: ∧r

R
M ×

∧s

R
HomR(M,R)→

∧r−s

R
M ; (m,∧i=si=1fi) 7→ fs ◦ · · · ◦ f1(m),

where r and s are non-negative integers with r ≥ s. We then set

(∧i=si=1fi)(m) := (fs ◦ · · · ◦ f1)(m).

We shall also use the following convenient notation: for any natural numbers r and s
with s ≤ r we write

[
r
s

]
for the subset of Sr comprising permutations σ which satisfy both

σ(1) < · · · < σ(s) and σ(s+ 1) < · · · < σ(r).

We can now record two results which will play an important role in the sequel.

Lemma 2.1. For all m1, m2, · · · , mr in M and f1, f2, · · · , fs in HomR(M,R) one has

(∧i=si=1fi)(∧
j=r
j=1mj) =

∑
σ∈[rs]

sgn(σ) det(fi(mσ(j)))1≤i,j≤smσ(s+1) ∧ · · · ∧mσ(r).

In particular, if r = s, then we have

(∧i=ri=1fi)(∧
j=r
j=1mj) = det(fi(mj))1≤i,j≤r.

Proof. This is verified by means of an easy and explicit computation. �
Lemma 2.2. Let E be a field, and A be an n-dimensional E-vector space. Consider the
E-linear map

Φ : A −→ E⊕m,

where Φ =
⊕m

i=1 φi with φ1, . . . , φm ∈ HomE(A,E) (m ≤ n), then we have

im(
∧

1≤i≤m
φi :

∧n

E
A −→

∧n−m

E
A) =

{∧n−m
E ker(Φ), if Φ is surjective,

0, otherwise.

Proof. Suppose first that Φ is surjective. Then there exists a subspace B ⊂ A such that
A = kerΦ⊕B and Φ maps B isomorphically onto E⊕m. We see that

∧
1≤i≤mφi induces an

isomorphism ∧m

E
B

∼−→ E.
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Hence we have an isomorphism∧
1≤i≤m

φi :
∧n

E
A =

∧n−m

E
kerΦ⊗E

∧m

E
B

∼−→
∧n−m

E
kerΦ.

In particular, we have

im(
∧

1≤i≤m
φi :

∧n

E
A −→

∧n−m

E
A) =

∧n−m

E
kerΦ.

Next, suppose Φ is not surjective. Then φ1, . . . , φm ∈ HomE(A,E) are linearly dependent.
Hence we have

∧
1≤i≤mφi = 0. �

2.2. Morita theory. In this subsection, as a preliminary to subsequent subsections, we
review some facts from Morita theory ([16]), restricting in an important special case.

Let E be a field, and fix a d-dimensional E-vector space V . Set A := EndE(V ), then V
has a natural structure of left A-module. Define the dual of V by V ∗ := HomE(V,E), then
V ∗ has a structure of right A-module, given by

(v∗ · a)(v) := v∗(a · v),
where a ∈ A, v∗ ∈ V , and v ∈ V . We define the pairings

(·, ·)E : V ∗ × V → E,

(·, ·)A : V × V ∗ → A,

by
(v∗, v)E := v∗(v),

(v, v∗)A(v
′) := v∗(v′) · v,

where v, v′ ∈ V and v∗ ∈ V ∗. The pairing (·, ·)E (resp. (·, ·)A) induces an isomorphism of
E-vector spaces (resp. two-sided A-modules):

V ∗ ⊗A V
∼→ E

(resp. V ⊗E V ∗ ∼→ A).

The functor V ∗ ⊗A · from the category of left A-modules to that of E-vector spaces gives
an equivalence of categories. We call this “Morita functor”.

2.3. Semisimple rings. We now review some basic facts about semisimple rings. In the
sequel we write ζ(A) for the centre of a ring A.

For a ring A, a nonzero left A-module M is called simple if M has no nonzero proper
submodules. M is called semisimple if it is a direct sum of simple modules. A is called
semisimple if every nonzero left A-module is semisimple. A is called simple if it has no
nonzero proper two-sided ideals. A is artinian if the left ideals of A satisfy the descending
chain condition. It is known that every simple artinian ring is semisimple. It is also known
that every semisimple ring A is decomposed as a finite direct sum of simple artinian rings
A1, . . . , Ak:

A ≃
i=k⊕
i=1

Ai.

This decomposition is unique up to isomorphism. The converse also holds: a ring which is
isomorphic to a finite direct sum of simple artinian rings is semisimple.
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Let A be a simple artinian ring. Fix a simple left A-module M , and put D := EndA(M).
Then D is a division ring. Since every simple left A-module is isomorphic to M , D does
not depend on M up to isomorphism. We have a canonical ring isomorphism

A
∼→ EndD(M); a 7→ (m 7→ am).

(This can be proved by a more general version of Morita theory which we described in §2.2.)
Set F := ζ(D). Then F is a field, and canonically isomorphic to ζ(A). An extension field E
of F is called splitting field of A if D⊗F E is isomorphic to a matrix ring Mm(E) for some
m. If E is such a field, then we say “E splits A”. If F splits A, or equivalently, if D = F ,
then we say ‘A is split’. There always exists a splitting field E of A, and one can take the
extension E/F finite and separable. The integer m does not depend on the choice of E,
and is called Schur index of A. If E is a splitting field of A, then we have an isomorphism

A⊗F E ≃ EndD(M)⊗F E ≃ Mn(D
op)⊗F E ≃ Mn(Mm(E)) = Mnm(E),

where n is the dimension of the left D-vector spaceM . By this isomorphism, we can embed
A into Mnm(E). The reduced norm

NrdA : A→ F

is defined by NrdA(a) := det(a), where a ∈ A is regarded as an element of Mnm(E). One
checks that det(a) is in F , and does not depend on the choice of the splitting field E, so
NrdA is well-defined.

Another description of the reduced norm is as follows. Take a splitting field E of A, and
a simple left A⊗F E-module V . One sees that left multiplication gives an isomorphism

A⊗F E
∼→ EndE(V ).

Embedding A into EndE(V ) by this isomorphism, and taking determinant on EndE(V ), we
get the reduced norm, which coincides with the definition above.

We extend the reduced norm to EndA(M) for arbitrary finitely generated left A-module
M . We define

NrdEndA(M) : EndA(M)→ F

by

EndA(M)→ EndA⊗FE(M ⊗F E)
∼→ EndE(V

∗ ⊗(A⊗FE) (M ⊗F E))
det→ E,

where the second arrow is induced by the Morita functor. One checks that the image of this
map is in F . If M = A and identify Aop with EndA(A), then NrdEndA(A) coincides with the
reduced norm NrdAop(= NrdA) defined before.

Since every semisimple ring is decomposed as a finite direct sum of simple artinian rings,
the above construction of the reduced norm for simple artinian rings is extended to semisim-
ple rings.

We note that the above construction of the reduced norm for semisimple rings A induces
a reduced norm on K1(A) (which we also denote by NrdA):

NrdA : K1(A)→ F×

(cf. [16, §45A]).
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2.4. Non-commutative exterior powers: definitions. In this subsection, we construct
exterior powers over non-commutative rings.

The general idea is as follows. For a non-commutative ring A, suppose that there exists
a functor Φ from the category of A-modules to that of R-modules for some commutative
ring R, which leads the equivalence of the categories. Then, for an A-module M , define the
exterior power of M over A by

∧∗
RΦ(M).

If A is a split simple artinian ring, then the Morita functor induces an equivalence between
the categories of finitely generated left A-modules and of finite dimensional vector spaces
over ζ(A). This is the key observation of our construction of non-commutative exterior
powers.

2.4.1. We start with the basic definition in the case of simple Artinian rings.

Definition 2.3. Let A be a simple Artinian ring. Take a splitting field E of A, and a left
simple AE-module V , where AE := A⊗ζ(A) E. For a left A-module M and a non-negative
integer r, we define the r-th reduced exterior power of M over A by∧r

A
M :=

∧rd

E
(V ∗ ⊗AE ME),

where d := dimE(V ),ME :=M⊗ζ(A)E, and V ∗ := HomE(V,E). We note that this depends
on E, but is independent of V up to isomorphism.

Let A, V , M and E be as in the definition above and fix an E-basis {v1, . . . , vd} of V .
Then for any subset {mi}1≤i≤r of M we set

(1) ∧i=ri=1mi :=
∧

1≤i≤r
(
∧

1≤j≤d
v∗j ⊗mi) ∈

∧rd

E
(V ∗ ⊗AE ME) =

∧r

A
M.

Here we regard mi as an element of ME by identifying mi with mi ⊗ 1 and write v∗1, . . . , v
∗
d

for the basis of V ∗ that is dual to v1, . . . , vd.
We then define the subspace of ‘primitive elements’ (

∧r
AM)prim of

∧r
AM to be the E-

linear span of all elements of the form ∧i=ri=1mi with each mi in M .

2.4.2. To make the analogous constructions for linear duals we write Aop for the opposite
ring of A.

We note HomA(M,A) has a natural structure as left Aop-module and we can consider
the exterior power over Aop. We also note that V ∗ is a simple left Aop

E -module, and that its
dual V ∗∗ is canonically isomorphic to V . In this case, the definition above therefore gives∧r

Aop
HomA(M,A) =

∧rd

E
(V ⊗Aop

E
HomAE (ME , AE)).

For any subset {φi}1≤i≤r of HomA(M,A) we set

(2) ∧i=ri=1φi :=
∧

1≤i≤r
(
∧

1≤j≤d
vj ⊗ φi) ∈

∧r

Aop
HomA(M,A),

where each φi is regarded as an element of HomAE (ME , AE), and, just as above, we define
the primitive subspace (

∧r
Aop HomA(M,A))prim of

∧r
Aop HomA(M,A) to be the E-linear

span of all elements of the form ∧i=ri=1φi.
One has a natural isomorphism

V ⊗Aop
E

HomAE (ME , AE)
∼→ HomE(V

∗ ⊗AE ME , E); v ⊗ f 7→ (v∗ ⊗m 7→ v∗(f(m)v))
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and hence an induced identification∧r

Aop
HomA(M,A) =

∧rd

E
HomE(V

∗ ⊗AE ME , E).

Using this identification, we obtain a pairing

(3)
∧r

A
M ×

∧s

Aop
HomA(M,A)→

∧r−s

A
M

by applying the construction in §2.1 for the E-vector space V ∗ ⊗AE ME . We denote the
image of (m,φ) under this pairing by φ(m).

2.4.3. The above constructions extend to general semisimple rings in the obvious way.

Definition 2.4. Let A be a semisimple ring, with corresponding decomposition as a direct
sum of simple artinian rings

(4) A =

i=k⊕
i=1

Ai.

Then for any left A-module M and any non-negative integer r, we define∧r

A
M :=

i=k⊕
i=1

∧r

Ai
(Ai ⊗AM),

with each exterior power in the direct sum being defined with respect to a fixed choice of
splitting field E of A. We note that

∧r
AM has then a natural structure of ζ(AE)-module.

After fixing a decomposition (4) one defines componentwise the elements ∧i=ri=1mi and
∧i=ri=1φi and a corresponding duality pairing (3).

In particular, if r = s then the pairing (3) is non-degenerate and takes values in ζ(AE). In
this setting the orthogonal complement of (

∧r
Aop HomA(M,A))prim in

∧r
AM is the subspace

(
∧r

A
M)0 := {x ∈

∧r

A
M : θ(x) = 0 for all θ ∈ (

∧r

Aop
HomA(M,A))prim}.

Lemma 2.5.

(i) If A is commutative, then (
∧r
AM)0 vanishes.

(ii) If A is non-commutative and M is a free A-module of rank t, then (
∧r
AM)0 vanishes

if and only if r ≥ t.

Proof. Since the pairing (3) with s = r is non-degenerate the space (
∧r
AM)0 vanishes if and

only if the spaces
∧r
Aop HomA(M,A) and (

∧r
Aop HomA(M,A))prim coincide.

If A is commutative, then it is clear that
∧r
Aop HomA(M,A) = (

∧r
Aop HomA(M,A))prim

and so claim (i) is verified.
To prove claim (ii) we note that if M is a free A-module of rank t, then HomA(M,A)

is a free Aop-module of rank t and we fix a basis {φi}1≤i≤r of HomA(M,A). We also fix a
simple AE-module V with E-basis {vi}1≤i≤d and note that V ⊗Aop

E
HomAE (ME , AE) has as

an E-basis the set {vi ⊗ φj}1≤i≤d,1≤j≤t.
In particular, if r > t, then each space

∧rd
E (V ⊗Aop

E
HomAE (ME , AE)) vanishes and hence

also both
∧r
Aop HomA(M,A) and (

∧r
Aop HomA(M,A))prim vanish.
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If r = t, then the space
∧r
Aop HomA(M,A) is generated over ζ(AE) by the single element

∧i=ri=1φi and so
∧r
Aop HomA(M,A) = (

∧r
Aop HomA(M,A))prim.

To prove claim (ii) it thus suffices to show that if A is non-commutative and r < t, then∧r
Aop HomA(M,A) is strictly bigger than (

∧r
Aop HomA(M,A))prim.

To do this we note that for any finite set of elements {ϑi}1≤i≤r in HomA(M,A) the
element ∧1≤i≤rϑi is an E-linear combination of elements of the form ∧1≤a≤rd(xa ⊗ ya)
where each basis element vi occurs precisely r times in the set {xa}1≤a≤rd and each ya is
an element of {φi}1≤i≤t. This property is therefore also satisfied by any element that lies
in the E-linear span Λ of such elements.

The claimed result is thus true since if d > 1 (as we can always assume if A is non-
commutative) and r < t, then Λ does not contain the element

(∧1≤b≤d(xb ⊗ yb)) ∧ (∧1≤i≤d ∧1≤j≤r−1 (vi ⊗ φj))
where we set

xb :=

{
v1, if b ∈ {1, 2},
vb, if 3 ≤ b ≤ d,

and yb =

{
φr+1, if b = 1,

φr, if 2 ≤ b ≤ d.

�

2.5. Non-commutative exterior powers: basic properties. In this section we record
several basic properties of the exteriors powers constructed above that will be used in the
sequel.

Proposition 2.6. Let A be a semisimple ring and W be a left A-module. Then for all
subsets {wi}1≤i≤r of W and {φj}1≤j≤r of HomA(W,A) one has

(∧i=ri=1φi)(∧
j=r
j=1wj) = NrdMr(Aop)((φi(wj))1≤i,j≤r).

Proof. We may assume that A is simple. Note first that we have a canonical isomorphism

AE ≃ EndE(V ).

Since we fixed the E-basis of V , we identify AE with the matrix ring Md(E). By definition,
we have

(∧i=ri=1φi)(∧
j=r
j=1wj) = (

∧
1≤i≤r

(
∧

1≤j≤d
vj ⊗ φi))(

∧
1≤i≤r

(
∧

1≤j≤d
v∗j ⊗ wi)).

We see that (vi′ ⊗ φi)(v∗j′ ⊗wj) = v∗j′(φi(wj)vi′) ∈ E is the (j′, i′)-component of the matrix

φi(wj) ∈ A ⊂ Md(E). Hence, regarding (tφi(wj))1≤i,j≤r ∈ Mrd(E), where tφi(wj) is the
transpose of φi(wj) ∈ Md(E), we have

(∧i=ri=1φi)(∧
j=r
j=1wj) = det(tφi(wj))1≤i,j≤r,

and the right hand side is equal to NrdMr(Aop)((φi(wj))1≤i,j≤r) by the definition of the
reduced norm. �
Remark 2.7. Proposition 2.6 implies both that the value (∧i=ri=1φi)(∧

j=r
j=1wj) belongs to

ζ(A) and depends only on the elements w1, . . . , wr and homomorphisms φ1, . . . , φr. This
fact is important to the formulation of our conjectures since the definitions (1) and (2)
clearly depend on the choice of basis {vj}1≤j≤d.
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Corollary 2.8. Let A be a semisimple ring and W a free A-module of rank r. Then there
is a canonical isomorphism of ζ(A)-modules

ιW :
∧r

Aop
HomA(W,A) ∼= Homζ(A)(

∧r

A
W, ζ(A))

with the following property: for any A-basis {bi}1≤i≤r of W one has ιW (∧i=ri=1b
∗
i )(∧

j=r
j=1bj) = 1

where for each index i we write b∗i for the element of HomA(W,A) that is dual to bi.

Proof. In this case the pairing (3) with s = r induces a homomorphism of free rank one
ζ(A)-modules ιW :

∧r
Aop HomA(W,A) ∼= Homζ(A)(

∧r
AW, ζ(A)).

Both the bijectivity of this pairing and the equality ιW (∧i=ri=1b
∗
i )(∧

j=r
j=1bj) = 1 follow di-

rectly from Proposition 2.6. �

Corollary 2.9. Let A be a semisimple ring and W a free A-module of rank r. Fix an
A-basis {bi}1≤i≤r of W . Then for each φ in EndA(W ) one has

∧i=ri=1φ(bi) = NrdEndA(W )(φ) · (∧i=ri=1bi) ∈
∧r

A
W.

Proof. This formula follows immediately upon comparing the results of Proposition 2.6 and
Corollary 2.8. �

Finally we record a natural non-commutative generalization of Lemma 2.2.

Proposition 2.10. Let A be a semisimple ring and W a free A-module of rank r. For a
natural number s with s ≤ r and a subset {φi}1≤i≤s of HomA(W,A) we consider the map

Φ :=
i=s⊕
i=1

φi :W → A⊕s.

If Φ is surjective, then the image of the map∧r

A
W →

∧r−s

A
W ; b 7→ (

∧
1≤i≤s

φi)(b)

is
∧r−s
A ker(Φ).

If Φ is not surjective, then the image of this map vanishes.

Proof. This follows easily by combining Lemma 2.2 with our definition of reduced exterior
powers. �

2.6. Non-commutative exterior powers: descent theory. The definition of reduced
exterior powers involves the choice of splitting fields and so (to obtain a natural theory)
one must check that it behaves functorially with respect to field extensions.

To do this we fix a field K and a finite dimensional semisimple K-algebra A (that is, A
is both a finite dimensional K-algebra and a semisimple ring). We also fix an embedding
of fields K → K ′.

We show first that if ζ(A) is étale over K, then the scalar extension A′ := K ′ ⊗K A is a
semisimple K ′-algebra with a Wedderburn decomposition that is induced by that of A.
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Proposition 2.11. Let the decomposition of A by simple artinian rings be given by

A =
i=k⊕
i=1

Ai.

Assume that ζ(A) is étale over K (that is, for each index i the field Fi := ζ(Ai) is a finite
separable extension of K). Consider the (finite) set

Σ(Fi/K,K
′) := {K-embeddings Fi ↪→ K ′}/ ∼,

where the equivalence relation ∼ is defined by

σ ∼ σ′ ⇔ there exists τ ∈ AutK′(K ′) such that σ = τ ◦ σ′.
Then, for each 1 ≤ i ≤ k and σ ∈ Σ(Fi/K,K

′), Ai ⊗Fi σ(Fi)K ′ is a simple artinian ring

with center σ(Fi)K
′, where σ(Fi)K

′ is the composite field of σ(Fi) and K ′ in K ′ (this is
independent of a representative of σ), and we have a decomposition of A′:

A′ ≃
i=k⊕
i=1

⊕
σ∈Σ(Fi/K,K′)

(Ai ⊗Fi σ(Fi)K ′).

In particular, A′ is semisimple.

Proof. Since each Fi is separable over K, we have an isomorphism

Fi ⊗K K ′ ≃
⊕

σ∈Σ(Fi/K,K′)

σ(Fi)K
′.

Hence we have

Ai ⊗K K ′ ≃ Ai ⊗Fi (Fi ⊗K K ′) ≃
⊕

σ∈Σ(Fi/K,K′)

(Ai ⊗Fi σ(Fi)K ′).

Since Ai is a central simple algebra over Fi, Ai ⊗Fi σ(Fi)K ′ is also a central simple algebra
over σ(Fi)K

′. �
Example 2.12. Let G be a finite group. Then Q[G] is a finite dimensional semisimple
Q-algebra. Note that this algebra is étale over Q since Q is of characteristic 0. Let K be a

local field of characteristic 0. Let Ĝ denote the set of C-valued irreducible characters of G.
For each χ ∈ Ĝ, define the primitive central idempotent

eχ :=
χ(1)

|G|
∑
σ∈G

χ(σ−1)σ ∈ C[G].

Define the equivalence relation ∼Q (resp. ∼K) on Ĝ by

χ ∼Q (resp. ∼K) χ′ ⇔ there exists τ ∈ AutQ(C) (resp. AutK(C)) such that χ = τ ◦ χ,
where we fix an isomorphism between the completion of K and C, and hence regard K as
a subset of C. By standard representation theory, there are decompositions of Q[G] and
K[G] into simple artinian rings:

Q[G] =
⊕

[χ]∈Ĝ/∼Q

Q[G]e[χ] and K[G] =
⊕

[χ]∈Ĝ/∼K

K[G]e[χ],
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where for [χ] in Ĝ/ ∼Q, respectively in Ĝ/ ∼K), we define an element of Q[G], respectively
K[G], by setting e[χ] :=

∑
χ′∈[χ] eχ′ .

Let [χ]Q (resp. [χ]K) denote the equivalence class of χ via the relation ∼Q (resp. ∼K).
The relation ∼K defines an equivalence relation on [χ]Q. We see that the map

[χ]Q/ ∼K→ Σ(F[χ]Q/Q,K); [χ′]K 7→ (a 7→ χ′(a))

is bijective, where F[χ]Q := ζ(Q[G]e[χ]Q). Therefore, by Proposition 2.11, for every χ ∈ Ĝ
there is a natural isomorphism of algebras K[G]e[χ]K ≃ Q[G]e[χ]Q ⊗F[χ]Q

F[χ]QK.

For a left A-module M we set M ′ := K ′ ⊗K M . Then, assuming ζ(A) to be étale over
K, we now construct a natural embedding (or ‘scalar extension’)∧r

A
M ↪→

∧r

A′
M ′

as follows.
By passing to components we may assume that A is simple. We then set F := ζ(A)

and fix both an algebraic extension E of F which splits A and a simple left AE-module V .
Then, by definition, one has ∧r

A
M =

∧rd

E
(V ∗ ⊗AE ME),

where d = dimE(V ). For each σ ∈ Σ(F/K,K ′), where Σ(F/K,K ′) is as in Proposition 2.11,
fix a K-embedding σ̃ of E into K ′ which extends σ (such a σ̃ exists since E/F is algebraic).
Then σ̃(E)K ′ splits the simple ring A ⊗F σ(F )K ′. For simplicity, set Eσ := σ̃(E)K ′ and
AEσ := A⊗F Eσ. We see that Vσ := V ⊗EEσ is a simple left AEσ -module, so by Proposition
2.11 and the definition of reduced exterior powers, we have∧r

A′
M ′ =

⊕
σ∈Σ(F/K,K′)

∧rd

Eσ
(V ∗
σ ⊗AEσ MEσ),

where MEσ :=M ⊗F Eσ. For each σ ∈ Σ(F/K,K ′), there is a canonical embedding

V ∗ ⊗AE ME ↪→ V ∗
σ ⊗AEσ MEσ .

This induces an embedding

fσ :
∧rd

E
(V ∗ ⊗AE ME) ↪→

∧rd

Eσ
(V ∗
σ ⊗AEσ MEσ).

We finally define the required scalar extension∧r

A
M =

∧rd

E
(V ∗ ⊗AE ME) ↪→

⊕
σ∈Σ(F/K,K′)

∧rd

Eσ
(V ∗
σ ⊗AEσ MEσ) =

∧r

A′
M ′

to be the tuple
⊕

σ fσ.
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3. Integral structures

In this section we fix a Dedekind domain R with field of fractions F . We also fix a
finite-dimensional semisimple F -algebra A and an R-order A in A.

For any A-module M we abbreviate the A-module F ⊗RM to MF .
We shall extend an idea used (in the commutative case) by Rubin in [44] to introduce, for

each finitely generated A-module M and each non-negative integer r, a canonical integral
structure on the reduced exterior power

∧r
AMF .

3.1. The canonical central order. We first introduce a canonical R-submodule of ζ(A).

Definition 3.1. We write ξ(A) for the R-submodule of ζ(A) that is generated by the
elements NrdA(M) as M runs over all matrices in

∪
n≥0Mn(A).

The basic properties of this module are described in the following result.

Lemma 3.2.

(i) ξ(A) is an R-order in ζ(A).
(ii) If A is commutative, then ξ(A) = ζ(A) = A.
(iii) If A is maximal, then ξ(A) ⊆ ζ(A) and ξ(A)× has finite 2-power index in ζ(A)×.

Proof. Since the module ξ(A) is clearly a subring of ζ(A) it is an R-order if and only if it
is finitely generated over R. This is true since for any n > 0 and any matrix M in Mn(A)
the element NrdA(M) is integral over R. This proves claim (i).

If A is commutative, then for each matrixM in Mn(A) one has NrdA(M) = det(M) ∈ A.
In this case it is therefore clear that ξ(A) is equal to A = ζ(A). This proves claim (ii).

Claim (iii) is true because if A is maximal, then ζ(A) is equal to the maximal R-order Λ of
ζ(A) and the subgroup of Λ× that is generated by the set {NrdA(M) :M ∈ GLn(A), n ≥ 1}
has finite 2-power index (as a consequence of [16, Th. (45.7)]). �

3.2. Integral structures on non-commutative exterior powers. We now define a
canonical integral structure on the reduced exterior powers of A-modules. This structure
will play a key role in the sequel.

Definition 3.3. Let M be a finitely generated R-torsion-free left A-module. For every
non-negative integer r, we define the r-th Rubin lattice of M by setting∩r

A
M := {a ∈

∧r

A
MF : (∧i=ri=1φi)(a) ∈ ξ(A) for all φ1, . . . , φr ∈ HomA(M,A)}.

Remark 3.4. If A is equal to Z[G] for some abelian group G, then ξ(Z[G]) = Z[G] (by
Lemma 3.2(ii)) and

∩r
Z[G]M coincides with the lattice defined by Rubin in [44].

The basic properties of such lattices in the general case are recorded in the next result.

Proposition 3.5. Let M and r be as in Definition 3.3.

(i)
∩r

AM contains (
∧r
AMF )

0, is stable under multiplication by ξ(A) and spans
∧r
AMF .

(ii) The quotient
∩r

AM/(
∧r
AMF )

0 is finitely generated over R.
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(iii) If M is a free A-module of rank d with d ≥ r, then for any choice of basis b =
{b1, . . . , bd} of M there is a natural surjective homomorphism of ξ(A)-modules

θb :
∩r

A
M →

⊕
σ∈[dr]

ξ(A).

This homomorphism splits and is, in addition, bijective if either A is commutative
or r = d.

Proof. Claim (i) is clear.
To prove claim (ii) we write O for the integral closure of R in a splitting field E of A and

note that the pairing (3) identifies (
∧r
Aop HomA(MF , A))

prim with the ζ(AE)-linear dual of
the quotient

∧r
AMF /(

∧r
AMF )

0. Since ξ(A) is an R-order in ζ(A), the finite generation of
the R-module

∩r
AM/(

∧r
AMF )

0 then follows directly from the definition of
∩r

AM and the
fact that the ξ(A)-linear span of {∧i=ri=1φi : φi ∈ HomA(M,A)} generates a full O-lattice in
(
∧r
Aop HomA(MF , A))

prim.
To prove claim (iii) we define θb to be the homomorphism of ξ(A)-modules which satisfies

θb(x) = ((∧i=ri=1b
∗
σ(i))(x))σ∈[dr]

for all x in
∩r

AM .
We also write θ′b for the homomorphism of ξ(A)-modules

⊕
σ∈[dr]

ξ(A) →
∩r

AM which

satisfies
θ′b((cσ)σ) =

∑
σ∈[dr]

cσ · ∧i=ri=1bσ(i)

for all (cσ)σ in
⊕

σ∈[dr]
ξ(A).

Then Proposition 2.6 implies that (b∗σ(1) ∧ · · · ∧ b
∗
σ(r))(bτ(1) ∧ · · · ∧ bτ(r)) = δστ for all σ

and τ in
[
d
r

]
and so the composite θb ◦ θ′b is the identity on

⊕
σ∈[dr]

ξ(A). This shows that θ′b
is a section to θb, as required.

Next we note that if A is commutative, then
∩r

AM =
∧r

AM (asM is free) and ξ(A) = A
and using these equalities it is easily seen that θb is an isomorphism.

Finally we assume r = d and fix a decomposition A =
∏
i∈I Ai and splitting field E as in

Definition 2.4. Then in this case each element x of
∧d
AMF can be written uniquely as

x = (ci(x) · ∧1≤j≤d(∧1≤k≤di(vik)
∗ ⊗ eibj))i∈I =

∑
i∈I

ci(x) · ∧j=dj=1bj ,

with each element ci(x) in E ⊆ Ai,E , and so θb(x) =
∑

i∈I ci(x).
Thus, if x belongs to ker(θb), then

∑
i∈I ci(x) = 0 and hence also

x =
∑
i∈I

ci(x) · ∧j=dj=1bj = 0,

as required to complete the proof of claim (iii). �
Remark 3.6. The lattice

∩r
AM depends on the choice of E-bases (of the simple AE-

modules V ) that occur in the definition (2) of exterior powers. However, Remark 2.7 ensures
that this dependence is natural in the following sense. Let {bV }V be any other choice of
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E-bases of the modules V and write τ for the automorphism of the ζ(AE)-module
∧r
AMF

sending each element ∧j=rj=1mj to ∧̃j=rj=1mj , where each mj belongs toM and ∧̃ indicates that

the exterior power is defined with respect to the bases {bV }V . Then, writing
∩̃r

AM for the
Rubin lattice that is defined relative to exterior powers with respect to {bV }V , Remark 2.7

implies that τ(
∩r

AM) =
∩̃r

AM .

Remark 3.7. Proposition 3.5(i) combines with Lemma 2.5(ii) to imply that the ξ(A)-
module

∩r
AM is not always finitely generated. However, under certain natural conditions

on A and M (which are always satisfied in the relevant arithmetic settings) we shall later
define a collection of canonical finitely generated ξ(A)-submodules F0P (

∩r
AM) of

∩r
AM

which each coincide, when A is commutative, with
∩r

AM . For more details see §5.2 (and
in particular Proposition 5.3(i), (ii) and (vi)).

4. Locally-free Pre-envelopes

In this section we introduce the notion of a ‘strict family of locally-free pre-envelopes’.
This notion is motivated by the theory developed by Enochs in [20] and will play a key role
in the sequel. In particular, in §7 we see that such families occur naturally in arithmetic.

We continue to use the general notation of §3.

4.1. Locally-free modules. For each prime ideal p of R we write R(p) and Rp for the
localization and completion of R at p. For any finite set of prime ideals P of R we set
R⟨P⟩ :=

∩
pR(p) where the intersection is over all prime ideals of R that do not belong to

P.
For each R-module M , each prime ideal p of R and each finite set of prime ideals P of

R we set M(p) := R(p) ⊗RM , Mp := Rp ⊗RM and M⟨P⟩ := R⟨P⟩ ⊗RM . We regard these
modules as endowed with natural actions of the algebras A(p), Ap and A⟨P⟩ respectively.

A finitely generated module M over an R-order A will be said to be ‘locally-free’ if M(p)

is a free A(p)-module, or equivalently (as an easy consequence of Maranda’s Theorem - see
[16, Th. (30.14)]) if Mp is a free Ap-module, for all prime ideals p. For any such module
M the rank of the A(p)-module M(p) is independent of p and will be referred to as the
‘rank’ rkA(M) of M . A locally-free A-module of rank one will often be referred to as an
‘invertible’ A-module.

Since localization at p is an exact functor a locally-free A-module is automatically pro-
jective. We record two important examples (that will be much used in the sequel and) for
which the converse is also true.

Example 4.1.
(i) If A is a Dedekind domain, with quotient field E, then every finitely generated torsion-

freeA-moduleM is locally-free, with rkA(M) equal to the dimension of the E-space spanned
by M .

(ii) If G is a finite group for which no prime divisor of |G| is invertible in R and A = R[G]
then, by a theorem of Swan (see, for example, [16, (32.1)]), a finitely generated projective
A-module is locally-free. For any such module M the product rkR[G](M) · |G| is equal to
the dimension of the F -space spanned by M .

4.2. Families of locally-free pre-envelopes. Let M be a finitely generated A-module.
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4.2.1. By a ‘family of locally-free pre-envelopes of M ’ we shall mean a collection P of
injective homomorphisms of A-modules ι : M → P where P is finitely generated locally-
free and the following property is satisfied: for any other homomorphism ι′ :M → P ′ in P
there exists a commutative diagram of A-modules of the form

(5) M
ι

~~}}
}}
}}
}} ι′

!!C
CC

CC
CC

C

P
κι,ι′ // P ′.

We shall say that such a family P is ‘strict’ if it has the following two properties:

(P1) for each ι and ι′ in P there exists a diagram as above in which the map κι,ι′ is
bijective;

(P2) for any (and therefore every) ι in P the map HomA(P,A)→ HomA(M,A) induced
by restriction through ι is surjective.

We write slfpA(M) for the set of strict families of locally-free pre-envelopes for the A-
module M .

We define the ‘rank’ rkA(P) of a family P in slfpA(M) to be equal to rkA(P ) for any,
and therefore every, locally-free A-module P that occurs in a diagram of the form (5).

By a family of ‘strict free envelopes’ we mean an object of slfpA(M) with the property
that any (and therefore every) A-module P that occurs in a diagram of the form (5) is free.
We write sfeA(M) for the set of families of strict free envelopes.

4.2.2. For the classes of order that will be of most interest to us in the sequel the above
notion of ‘pre-envelope’ coincides with that used by Enochs in [20].

To explain this point, and also to prepare for the construction of canonical strict families
of locally-free pre-envelopes in an arithmetic setting, we consider orders A that satisfy the
following two conditions.

(A1) there exists an R-linear anti-involution ιA of A such that for every prime ideal p of
R the linear dual HomR(p)

(A(p), R(p)) is a free rank one A(p)-module when endowed

with the left action (aθ)(a′) := θ(ιA(a)a
′).

(A2) The functor M 7→ HomA(M,A) is exact on the category of finitely generated R-
torsion-free A-modules.

There are two standard examples of such orders that we will use in subsequent sections.

Example 4.2. The conditions (A1) and (A2) are satisfied in both of the following cases.
(i) A is both commutative and locally-Gorenstein relative to R and ιA is the identity

anti-involution.
(ii) A = R[G] for a finite group G and ιR[G] is the R-linear anti-involution which inverts

elements of G. In this case (A2) is satisfied because the functor M 7→ HomA(M,A) is
naturally equivalent to M 7→ HomR(M,R). When both R and G are clear from context we
often simply denote the anti-involution ιR[G] by ι#.

Remark 4.3. For later use we record some straightforward consequences of condition (A2).

(i) ExtiA(M,A) = 0 for all integers i with i ≥ 2.
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(ii) There is a natural identification Ext1A(M,A) ∼= HomA(Mtor, A/A) with Mtor the
R-torsion submodule of M .

(iii) The functor M 7→ HomA(M,A/A) is exact on the category of finite A-modules.

The following result will be useful in the sequel.

Lemma 4.4. Let A be an R-order and ι : M → P an injective homomorphism of finitely
generated A-modules in which P is locally-free and cok(ι) is R-torsion-free.

(i) If A satisfies (A1), then ι is a locally-free pre-envelope of M in the sense of [20].
(ii) If A satisfies (A2), then the map HomA(P,A) → HomA(M,A) induced by restric-

tion through ι is surjective.

Proof. To prove claim (i) we must show that for any injective homomorphism ι′ : M → P ′

of A-modules, where P ′ is finitely generated and locally-free, there exists a commutative
diagram of the form (5).

To do this we consider the following diagram ofA-modules (where each module is endowed
with the left action described in condition (A1))

HomR(M,R)

HomR(P,R)

HomR(ι,R)
66 66nnnnnnnnnnnn

HomR(P
′, R).

HomR(ι
′,R)

hhQQQQQQQQQQQQ

κ
oo_ _ _ _ _ _ _ _ _ _ _ _

Here the surjectivity of HomR(ι, R) follows from the assumption that cok(ι) is R-torsion-free
and the existence of a homomorphism of A-modules κ which makes the diagram commute
then follows from the fact that (A1) implies HomR(P

′, R) is a projective A-module. By
applying the functor N 7→ HomR(N,R) to this diagram, and using the natural identification
HomR(HomR(N,R), R) ∼= N for each A-lattice N , one obtains a commutative diagram of
the required form (5) in which κι,ι′ is equal to HomR(κ,R).

Since A is assumed to satisfy condition (A2), claim (ii) is proved by applying the functor
M 7→ HomA(M,A) to the tautological short exact sequence 0→M → P → cok(ι)→ 0. �

Example 4.5. Let G be a finite group and set A := R[G] and TG :=
∑

g∈G g ∈ A. Then
for any A-lattice M the module M ⊗R A has a diagonal action of G with respect to which
it is a locally-free A-module and lies in an exact sequence of A-modules

0→M
ιM−−→M ⊗R A →M ⊗R (A/(TG))→ 0

in which ιM sends each m to m ⊗R TG and the module M ⊗R (A/(TG)) is R-torsion-free.
This exact sequence combines with Lemma 4.4 to imply both that ιM is a locally-free pre-
envelope of M (in the sense of Enochs) and that the singleton PM := {ιM} is a canonical
element of slfpA(M). This family is however different from the canonical families that we
shall construct in an arithmetic setting in §7.

4.3. Morphism bundles. In this section we fix a strict family of pre-envelopes P in
slfpA(M) and an A-module N .
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4.3.1. We define an ‘A-module morphism’ π from P to N to be a choice for each ι :M → P
in P of a homomorphism of A-modules πι : P → N such that the following property is
satisfied: for all other ι′ :M → P ′ in P there exists a commutative diagram of A-modules

(6) P

πι   @
@@

@@
@@

@
κι,ι′,π // P ′

πι′~~}}
}}
}}
}}

N

in which κι,ι′,π is bijective and occurs in a commutative diagram of the form (5).
We shall say that such a morphism π : P → N is surjective if for any (and therefore

every) ι in P the homomorphism πι is surjective.

4.3.2. We now assume to be given for each prime ideal p of R a family Pp in slfpA(p)
(M(p))

that contains the localization ι(p) := A(p) ⊗A ι of every ι in P.
In this case we define a ‘bundle (relative to the families {Pp}p) of A-module morphisms’

π = {πp}p from P to N to be a choice for each prime ideal p of R of an A(p)-module
morphism πp : Pp → N(p) such that the following property is satisfied: for every ι :M → P
and ι′ :M → P ′ in P there exists a commutative diagram of A-modules

P

π̃ι   @
@@

@@
@@

@
κ̃ι,ι′ // P ′

π̃ι′~~}}
}}
}}
}}

N

the p-localization of which is contained, for almost all prime ideals p of R, in the set of
diagrams (6) (with P, P ′ and N replaced by P(p), P

′
(p) and N(p)) which verifies that πp is an

A(p)-module morphism.
We refer to the morphism πp as the ‘p-component’ of a bundle of morphisms π. We shall

also then say that a bundle of morphisms is surjective if for every prime ideal p of R its
p-component is surjective.

Remark 4.6. Given P in slfpA(M) one obtains for each prime ideal p of R a canonical
family P(p) in slfpA(p)

(M(p)) by setting P(p) := {A(p) ⊗A ι : ι ∈ P}.
In particular, eachA-module morphism π from P toN defines a canonical bundle (relative

to {P(p)}p) of A-module morphisms πbundle : P → N and in the sequel we do not distinguish

between π and πbundle.

4.4. The case of group rings. Let G be a finite group. Then, in the case A = Z[G], we
often abbreviate slfpA(M) to slfpG(M).

Fix a normal subgroup H of G. Then for each family P in slfpG(M) we write PH for the
object {HomH(Z, ι) : ι ∈ P} of slfpG/H(MH).

For any locally-freeG-module P the homomorphism TrP,H : PH ∼= PH induced by sending
each x in P to

∑
h∈H h(x) is bijective. In particular, for each bundle of G-module morphisms

π : P → N we can define πH to be the bundle of G/H-module morphisms PH → NH that
is represented, for any prime ideal p of R, by the composite PHp

∼= Pp,H → Np,H where
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ι :M → P is representative of P, the first arrow is the bijective map induced by the inverse
of TrP,H and the second arrow is induced by (the H-coinvariants of) πp,ι.

5. Fitting lattices and higher Fitting invariants

In this section we introduce a natural non-commutative generalization of the classical
notion of ‘higher Fitting ideal’ together with a related, and very useful, notion of ‘non-
commutative Fitting lattice’.

To do so we fix data R,F,A and A as in §3. We also assume to be given a finitely
generated A-module M , a family P in slfpA(M) and a bundle (relative to {P(p)}p) of A-
module morphisms π = {πp}p with domain P.

We set d := rkA(P).

5.1. Module presentations. We first introduce some convenient classes of module pre-
sentation.

5.1.1. By a ‘presentation’ h of a finitely generated A-module X we shall mean an exact
sequence of A-modules of the form

(7) Arh,1 θh−→ Arh,2 πh−→ X → 0

in which (without loss of generality) one has rh,1 ≥ rh,2.
We say that a presentation h′ of an A-module X ′ is ‘finer’ than h if both rh′,1 = rh,1

and rh′,2 = rh,2 and there exists an automorphism of the A-module Arh,2 which induces a
well-defined surjective homomorphism of A-modules X ′ → X.

We say that A-module presentations h and h′ are equivalent if both h is finer than h′ and
h′ is finer than h (and we note that in this case the A-modules X and X ′ are isomorphic).

5.1.2. We define a ‘presentation bundle’ h of an A-module X to be a collection {hp}p over all
prime ideals p ofR of presentations hp of theA(p)-modulesX(p) with the following properties.
Set rh,1 := rh(0),1 and rh,2 := rh(0),2: then for all prime ideals p one has rhp,1 = rh,1 and
rhp,2 = rh,2 and the induced homomorphism A⊗A(p)

hp : A
rh,1 → Arh,2 coincides with h(0).

We shall say that an A-module presentation bundle h′ is finer than h if for each prime
ideal p the A(p)-module presentation h′p is finer than hp.

We say that A-module presentation bundles h and h′ are equivalent if both h is finer
than h′ and h′ is finer than h.

Remark 5.1. Each presentation h of an A-module X gives rise to an associated presenta-
tion bundle hbundle of X (in which one has θhbundlep

= Ap ⊗A θh and πhbundlep
= Ap ⊗A πh for

all primes p) and we shall usually not distinguish between h and hbundle.
It is also straightforward to check that to each presentation bundle h for X one can

associate a canonical exact sequence of A-modules P ′ −→ P → X → 0 in which P ′ and P
are locally-free of ranks rh,1 and rh,2 respectively.
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5.1.3. In the sequel we refer to a presentation bundle h as ‘quadratic’ if one has rh,1 = rh,2.
If P belongs to sfeA(M) and π is a morphism of A-modules with domain P, then we

say that a presentation h (of some A-module X) ‘factors through’ π if rh,2 = rkA(P) and
for any, and therefore every, representative ι :M → P of P there exists an isomorphism of
A-modules κh,ι : Arh,2 → P for which im(κh,ι ◦ θh) ⊆ ker(πι).

Such isomorphisms κh,ι are not unique but the precise choice will not matter in the sequel.
(It is also clear that the existence of such an isomorphism implies that there is a surjective
homomorphism of A-modules from X to im(πι).)

If P belongs to sfpA(M) and π is a bundle (relative to {P(p)}p) of A-module morphisms
with domain P, then we say that a presentation bundle h ‘factors through’ π if for every
prime ideal p of R the presentation hp factors through πp, and hence therefore rh,2 = rkA(P).

5.2. Higher Fitting lattices: definitions. In this section we define a notion of the
higher Fitting lattice of the module M relative to the given bundle of A-module morphisms
π = {πp}p.

5.2.1. We first assume to be given a quadratic presentation h of an A-module X as in (7).
We set t := rh,1 = rh,2 and write b for the standard (ordered) A-basis (b1, . . . , bt) of At.

For each integer i with 1 ≤ i ≤ t we write b∗i for the dual of bi in HomA(At,A) and then
define an element θh,i of HomA(At,A) by setting θh,i := b∗i ◦ θh.

For each integer r with 1 ≤ r ≤ t this gives rise to a well-defined ‘exterior product’
homomorphism of ξ(A)-modules

∧j=tj=r+1θh,j :
∩t

A
At →

∩r

A
At.

In addition, if h factors through an A-module morphism π with domain P in sfeA(M),
then for each such integer r and any choice of homomorphism κh,ι as in §5.1.3 the map∧r
A(F ⊗R κh,ι) restricts to give a homomorphism of ξ(A)-modules

∩rAκh,ι :
∩r

A
At →

∩r

A
P.

We define the ‘r-th Fitting lattice of h relative to κh,ι’ to be the ξ(A)-module

FLrκh,ι(h) := im((∩rAκh,ι) ◦ (∧
j=t
j=r+1θh,j)) ⊆

∩r

A
P

and then set

Fπ(
∩r

A
P ) :=

∑
h

FLrκh,ι(h)

where in the sum h runs over all quadratic presentations which factor through π, and κh,ι
over all choices of isomorphisms as in §5.1.3.

Noting that ι induces an injective homomorphism of F -spaces∧r

A
(F ⊗ ι) :

∧r

A
MF →

∧r

A
PF

we then define the ‘r-th Fitting lattice of M with respect to π’ by setting

Fπ(
∩r

A
M) :=

{
x ∈

∧r

A
MF : (

∧r

A
(A⊗A ι))(x) ∈ Fπ(

∩r

A
P )
}
.
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5.2.2. If π is any bundle of A-module morphisms with domain P in slfpA(M), then we
define the ‘r-th Fitting lattice of M with respect to π’ by setting

Fπ(
∩r

A
M) :=

∩
p

Fπp(
∩r

A(p)

Mp)

where the intersection runs over all prime ideals p of R.

Remark 5.2. This definition ensures that if π is any A-module morphism with domain
P, then one has Fπ(

∩r
AM) = Fπbundle(

∩r
AM), where πbundle is the bundle of A-module

morphisms defined in Remark 4.6.

5.3. Higher Fitting lattices: basic properties. In the following result we record the
basic properties of Fitting lattices.

Before stating this result we introduce some notation. We assume to be given a surjective
homomorphism of R-orders ρ : A → B and write B for the algebra spanned by B. For any
A-module M we write ρM for the image of B ⊗A M in B ⊗A M . Since for any finitely

generated A-module N the module TorA1 (B, N) is R-torsion (as B is a projective A-module),
any embedding of A-modules ι :M → P induces an embedding of B-modules ρι : ρM → ρP .
In this way, for any element P of slfpA(M) we obtain an element ρP of slfpA(ρM) by setting

ρP := {ρι : ι ∈ P}.
We write idP and 0P for the identity and zero endomorphisms of each family P in

slfpA(M).
Finally, for any commutative ring Λ, finitely generated Λ-module M and non-negative

integer a we write FitaΛ(M) for the a-th Fitting ideal of the Λ-module M .

Proposition 5.3. Fix a family of pre-envelopes P in slfpA(M) and an A-module morphism
π with domain P.

(i) Fπ(
∩r

AM) is a finitely generated ξ(A)-submodule of
∩r

AM that is independent of
the choice of representative ι in P.

(ii) If π′ is any homomorphism of A-modules with domain P and the property that
ker(πι) ⊆ ker(π′ι) for any, and therefore every, ι in P, then Fπ(

∩r
AM) ⊆ Fπ′(

∩r
AM).

In particular, F0P (
∩r

AM) is the (unique) maximal Fitting lattice in
∩r

AM .
(iii) FidP (

∩r
AM) = 0.

(iv) Let ρ : A → B be a surjective homomorphism of R-orders and write ρπ for the
B-module morphism with domain ρP that has (ρπ)ρι = ρ(πι) for each ι in P. Then
the lattice Fρπ(

∩r
B(ρM)) is equal to the image of Fπ(

∩r
AM) under the natural map∧r

AMF → ζ(B)⊗ζ(A)
∧r
AMF

∼=
∧r
B(B ⊗AMF ).

(v) If M is a free A-module and P is represented by the identity map on M , then for
any choice of A-basis b of M one has F0P (

∩r
AM) + ker(θb) =

∩r
AM , where θb is

the homomorphism of ξ(A)-modules that occurs in Proposition 3.5. In particular, if
either A is commutative or rkA(M) = r, then F0P (

∩r
AM) =

∩r
AM .

(vi) If A is commutative and satisfies condition (A2), then F0P (
∩r

AM) =
∩r

AM .
(vii) If A is commutative, M is a locally-free A-module and P is represented by the

identity map on M , then Fπ(
∩r

AM) ⊆ FitrA(im(π)) ·
∧r

AM , with equality if for any,
and therefore every, representative ι of P the A-module ker(πι) can be generated by
d elements.
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Proof. It is clear, by its very construction, that Fπ(
∩r

AM) is a ξ(A)-module and straight-
forward to check that it is contained in

∩r
AM .

To show that it is independent of ι in P one need only note that if one takes any diagram
of the form (6), then

∧r
A(A ⊗A κι,ι′,π) restricts to give an isomorphism of ξ(A)-modules∩r

AP
∼=
∩r

AP
′ which sends the lattice FLrκh,ι(h) to FLrκι,ι′,π◦κh,ι(h).

To complete the proof of claim (i) it suffices to show that Fπ(
∩r

AM) is a finitely generated
R-module and to do this it is enough to consider the case that the ring R is local and the A-
module M is free, of rank t say. In this case if h is any quadratic presentation of A-modules
which factors through π, then for any isomorphism of A-modules κ : At →M , Proposition
3.5(iii) combines with the commutative diagram of A-modules

At θh−−−−→ At

κ

y yκ
M

κ◦θh◦κ−1

−−−−−−→ M

to imply that

(8) FLrκ(h) = ξ(A) · ∧j=tj=r+1(κ(bj)
∗ ◦ (κ ◦ θh ◦ κ−1))(∧j=tj=1κ(bj)) ⊆

∩r

A
M

where we write {bi}1≤i≤t for the standard basis of At.
Now, as h and κ vary, all of the homomorphisms κ(bj)

∗ ◦ (κ ◦ θh ◦ κ−1) belong to
HomA(M,A). The finite generation of Fπ(

∩r
AM) as an R-module is therefore a consequence

of the fact that the ξ(A)-linear span of {∧i=ti=1φi : φi ∈ HomA(M,A)} in
∧r
Aop HomA(MF , A)

is finitely generated.
The first assertion of claim (ii) is true because the stated assumptions imply that for

every prime ideal p of R any presentation hp of A(p)-modules which factors through πp also
factors through π′p. The second assertion of claim (ii) then follows immediately from the
first assertion.

Claim (iii) is true because if π is the identity endomorphism of M = P , then ker(πι)
vanishes. This combines with the injectivity of κh,ι to imply that θh, and hence also each
projection θh,j , is the zero map and hence that FLrκh,ι(h) vanishes.

To prove claim (iv) we can again assume that R is local and that M is a free A-module,
of rank t say. We note that ρ induces a surjective homomorphism of rings ξ(A)→ ξ(B) and
we write ρ̂ for the natural map

∧r
AMF → ζ(B)⊗ζ(A)

∧r
AMF

∼=
∧r
BB ⊗AMF .

By using the formula (8) one deduces that Fπ(
∩r

AM) is equal to the ξ(A)-module gen-

erated by all elements of the form ∧j=tj=r+1(c
∗
j ◦ θ)(∧

j=t
j=1cj) where {cj}1≤j≤t is any choice of

A-basis ofM and θ any homomorphism of A-modulesM →M for which im(θ) is contained
in ker(πι) for some choice of ι in P. In the same way one obtains a similar description of
Fρπ(

∩r
B(ρM)).

In particular, since for any such θ one has im(ρθ) ⊆ ker(ρπρι), the inclusion ρ̂(Fπ(
∩r

AM)) ⊆
Fρπ(

∩r
B(ρM)) follows directly from the fact that

ρ̂(∧j=tj=r+1(c
∗
j ◦ θ)(∧

j=t
j=1cj)) = ∧

j=t
j=r+1(d

∗
j ◦ ρθ)(∧

j=t
j=1dj)

where we write dj for the image of cj under the natural surjection M → ρM .
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To prove the reverse inclusion, and hence complete the proof of claim (iv), we note first
that for any homomorphism of B-modules θ′ : ρM → ρM for which im(θ′) ⊆ ker(ρπρι) there
exists a homomorphism of A-modules M →M for which both im(θ) ⊆ ker(πι) and ρθ = θ′.
It then suffices to note that, since A is semi-local, Bass’s Theorem implies that any B-basis
of ρM can be lifted to an A-basis of M .

To prove claim (v) we fix an A-basis {mi}1≤i≤t of M . Then the proof of Proposition
3.5(iii) shows claim (v) is true provided that Fπ(

∩r
AM) contains the element ∧k=rk=1mσ(i) for

each choice of σ in
[
t
r

]
. To show this we fix such a permutation σ and, writing {bi}1≤i≤t

for the standard basis of At, we define θσ to be the natural projection map from At to the
A-module direct summand that is generated by the set {bσ(i)}r<i≤t. Then the formula of

Lemma 2.1 implies (∧j=tj=r+1(b
∗
j ◦ θσ))(∧k=tk=1bk) = ± ∧k=rk=1 bσ(i).

It then suffices to note that, since π is the zero endomorphism of M , there exists a
presentation h of the form (7) with rh,2 = t and θh = θσ and which factors through π by
means of the isomorphism of A-modules At ∼=M which sends each element bi to mi.

To prove claim (vi) we assume A is commutative, fix ι : M → P in P, write 0P for the
zero endomorphism of P and use the map

∧r
A(A⊗A ι) to regard

∧r
AMF as a submodule of∧r

APF . Then, since claim (v) implies F0P (
∩r

AP ) =
∩r

AP , it suffices to show that in
∧r
APF

one has
∩r

AM = (
∧r
AMF )∩

∩r
AP . But it is clear that

∩r
AM ⊆ (

∧r
AMF )∩

∩r
AP and if one

assumes that A satisfies (A2), then the reverse inclusion is also very easy to check.
Turning to claim (vii) we continue to assume A is commutative. We first note that, in

this case, if a presentation h of an A-module X (as in (7)) is both quadratic and factors
through π, then there exists a surjective homomorphism of A-modules X → im(π) and
hence, by standard properties of higher Fitting ideals, an inclusion FitrA(X) ⊆ FitrA(im(π)).

We further note that if ker(πι) can be generated by d elements, then there is an exact

sequence of A-modules Ad → P
πι−→M → 0. By applying Roiter’s Lemma to the locally-free

module P one deduces the existence for any natural number n of a quadratic presentation
h of an A-module X ′ which factors through π and is such that X ′

(p) = M(p) for all prime

ideals that do not divide n.
Given these observations, claim (vii) will follow if we can show that for any A-module X

that has a quadratic presentation h of the form (7), there is an equality∑
h′

im(f rh′) = FitrA(X) ·
∧r

A
Arh,2

where in the sum h′ ranges over all quadratic presentations of A-modules that are finer

than h and for each such h′ we write f rh′ for the map ∧j=rh′,2j=r+1 θh′,j which occurs in §5.2.1.
To do this we set t = rh,2 and we recall Proposition 3.5(iii) implies that

∩t
AAt is equal

to
∧t

AAt and so is free of rank one with basis b1 ∧ · · · ∧ bt, where b = {b1, . . . , bt} is the
standard basis of At. By Lemma 2.1, we also know that f rh′(b1 ∧ · · · ∧ bt) is a sum of the
elements of the form

±det((θh′,j(bσ(i)))r<i,j≤t) · ∧k=rk=1bσ(k) ∈ det((θh′,j(bσ(i)))r<i,j≤t) ·
∧r

A
Ad,

where σ runs over
[
t
r

]
.
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We next make two observations which follow immediately from the definition of higher
Fitting ideal.

Firstly, since each matrix (θh′,j(bσ(i)))r<i,j≤t is a (t−r)×(t−r) minor of the matrix of θh′

with respect to the basis b, its determinant belongs to FitrA(X
′) ⊆ FitrA(X), thus proving

the inclusion of claim (vii).
Secondly, the A-module FitrA(X) ·

∧r
AAd is generated by all elements of the form

det((θh,σ(i)(bτ(j)))r<i,j≤t) · ∧k=rk=1bµ(k),

as σ, τ and µ range over
[
t
r

]
and so it suffices to show that each such element is contained

in im(f rh′) for a suitable choice of presentation h′.
Fixing a choice of σ, τ and µ we write θ′ for the unique endomorphism of the A-module

At which at each integer i with 1 ≤ i ≤ t satisfies

θ′(bi) :=

{
ισµ−1(θh(bτµ−1(i))), if i /∈ {µ(1), . . . , µ(r)},
0, if i ∈ {µ(1), . . . , µ(r)},

where ισµ−1 is the automorphism of the A-module At which satisfies ισµ−1(bµ(i)) = bσ(i)
for all i with 1 ≤ i ≤ t. Then, since im((ισµ−1)−1 ◦ θ′) ⊆ im(θh) there exists a quadratic
A-module presentation h′ that is finer than h and such that θ′ = θh′ . In addition, Lemma
2.1 implies that

f rh′(∧k=dk=1bk) =± det(((b∗µ(i) ◦ θ
′)(bµ(j)))r<i,j≤t) ∧k=rk=1 bµ(k)

=± det(((b∗µ(i) ◦ ισµ−1)(θh(bτ(j)))r<i,j≤t)) · ∧k=rk=1bµ(k)

=± det((b∗σ(i)(θh(bτ(j)))r<i,j≤t)) · ∧
k=r
k=1bµ(k)

=± det((θh,σ(i)(bτ(j)))r<i,j≤t) · ∧k=rk=1bµ(k).

This shows that det((θh,σ(i)(bτ(j)))r<i,j≤t) · ∧k=rk=1bµ(k) belongs to im(f rh′) and hence com-
pletes the proof of claim (vii). �

Remark 5.4. Fix P in slfpA(M) and a non-negative integer r. Then the proof of Propo-
sition 5.3(i) also allows us (by a slight abuse of notation) to define Fπ(

∩r
AP) to be equal

to Fπ(
∩r

AP ) for any choice of embedding ι : M → P in P and to regard
∧r
A(A ⊗A ι) as

inducing a canonical map Fπ(
∩r

AM)→ Fπ(
∩r

AP).
In a similar way, if A is commutative, then we occasionally use

∧r
AP to denote the lattice∧r

AP for any choice of P as above. We note that, in terms of this notation, Proposition
3.5(iii) implies there is a natural identification

∧r
AP =

∩r
AP.

5.4. Non-commutative higher Fitting invariants: definitions. We next introduce a
natural notion of ‘higher Fitting invariant’ in the non-commutative setting.

For any strictly positive integer n we write {bi}1≤i≤n for the standard basis of the free
A-module An.

For any non-negative integer t we write [n]t for the set of subsets of {1, 2, . . . , n} that are
of cardinality min{t, n}.
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5.4.1. We fix a presentation h of A-modules of the form (7). We write M(h) for the matrix
of θh with respect to the bases {bi}1≤i≤rh,1 and {bi}1≤i≤rh,2 .

Then for any non-negative integer t and any φ = (φi)1≤i≤t in HomA(Arh,1 ,A)t we write

Min
rh,2
φ (θh) for the set of all rh,2 × rh,2 minors of the matrices M(h, J, φ) that are obtained

from M(h) by choosing any J in [rh,2]t, with J = {i1, i2, · · · , it} and i1 < i2 < · · · < it, and
setting

(9) M(h, J, φ)ij :=

{
φa(bi), if j = ia with 1 ≤ a ≤ t
M(h)ij , otherwise.

For any non-negative integer r we define the ‘r-th (non-commutative) Fitting invariant
of the presentation h’ to be the ideal of ξ(A) obtained by setting

FIrA(h) := ξ(A) · {NrdA(N) : N ∈ Min
rh,2
φ (θh), φ ∈ HomA(Arh,1 ,A)t, t ≤ r}.

We then define the ‘total r-th (non-commutative) Fitting invariant of h’ by setting

FIr,totA (h) :=
∑
h′

FIrA(h
′)

where in the sum h′ runs over all A-module presentations that are finer than h.

5.4.2. For each A-module presentation bundle h and each non-negative integer r we define
ideals of ξ(A) by setting

FIrA(h) :=
∩
p

FIrA(p)
(hp)

and
FIr,totA (h) :=

∩
p

FIr,totA(p)
(hp),

where in both cases in the intersection p runs over all prime ideals of R.
We refer to FIrA(h) and FIr,totA (h) as the r-th, respectively the total r-th, (non-commutative)

Fitting invariant of the presentation bundle h.

5.5. Non-commutative higher Fitting invariants: basic properties. In this section
we record some basic properties of the higher Fitting invariants defined above and also
describe their connection to the Fitting lattices defined earlier.

5.5.1. Our first result shows that higher Fitting invariants of presentations share some of
the same properties as do higher Fitting ideals of modules in the commutative setting.

Proposition 5.5. Let h be a presentation bundle of a finitely generated A-module X. Then
for each non-negative integer r the following claims are valid.

(i) FIrA(h) ⊆ FIr+1
A (h) and FIr,totA (h) ⊆ FIr+1,tot

A (h)

(ii) FIrA(h) = FIr,totA (h) = ξ(A) if r ≥ rh,2.
(iii) If the A-module presentation bundle h′ is finer than h, then FIr,totA (h′) ⊆ FIr,totA (h).

In particular, if h and h′ are equivalent, then FIr,totA (h) = FIr,totA (h′).

(iv) If A is commutative, then FIrA(h) = FIr,totA (h) and this ideal coincides with the r-th
Fitting ideal FitrA(X) of X as an A-module.
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Proof. Claims (i) and (ii) follow directly from the definitions of (total) higher Fitting in-
variant.

The first assertion of claim (iii) follows directly from the fact that if h′ is finer than
h, then for each prime ideal p of R any A(p)-module presentation that is finer than h′p is

automatically finer than hp and hence FIr,totA(p)
(h′p) ⊆ FIr,totA(p)

(hp).

The second assertion of claim (iii) then follows immediately upon combining the first
assertion with the definition of equivalence of presentations.

It suffices to prove claim (v) after localizing at a prime ideal p. Then, setting Λ := A(p),
claim (iii) implies it suffices to show that FIrΛ(hp) = FitrΛ(X(p)).

Next we note that, if Λ is abelian, then FIrΛ(hp) is generated over Λ by elements of the
form det(N) where N is an rh,2×rh,2 matrix, at least rh,2−r columns of which coincide with
the columns of an rh,2 × rh,2 minor of M(hp). The Laplace expansion of det(N) therefore
shows that it is contained in the ideal of Λ that is generated by the set of (rh,2−r)×(rh,2−r)
minors of M(hp). Thus, since the latter ideal is, by definition, equal to FitrΛ(X(p)) one has
FIrΛ(hp) ⊆ FitrΛ(X(p)).

To prove the reverse inclusion it suffices to show that for each (rh,2−r)× (rh,2−r) minor
N ofM(hp) the term det(N) belongs to FIrΛ(hp). To show this we assume that N is obtained
by first deleting from M(hp) the columns corresponding to a subset J = {i1, i2, · · · , ir} of
[rh,2]r with i1 < i2 < · · · < ir, and then taking the rows corresponding to an element J1 of
[rh,1]rh,2−r. We choose an element J ′

1 of [rh,1]rh,2 which contains J1, label the elements of
J ′
1 \ J1 as k1 < k2 < · · · < kr and then define an element (φa)1≤a≤r of HomΛ(Λ

rh,1 ,Λ)r by
setting φa(bi) = δika for each i with 1 ≤ i ≤ rh,1.

Then an explicit computation shows that, with these choices, the determinant of the
matrixM(hp, J, φ) defined in (9) is equal to ±det(N) and hence implies that det(N) belongs
to FIrΛ(hp), as required. �
5.5.2. In this subsection we focus on the zero-th Fitting invariant and, in particular, relate
it to an earlier construction of Nickel in [40].

To do this we note first that for every natural number m and every matrix M in Mm(A)
there is a unique matrix M∗ in Mm(A) with MM∗ = M∗M = NrdA(M) · Im and such
that for every primitive central idempotent e of A the matrix M∗e is non-zero if and
only if NrdA(M)e is non-zero. Motivated by the result of [40, Th. 4.2], we then use this
construction to define a subset of ζ(A) by setting

A(A) := {x ∈ ζ(A) : ∀d ≥ 1, ∀M ∈ Md(A) one has xM∗ ∈ Md(A)}.
The basic properties of this set are described in the following result.

Lemma 5.6.

(i) A(A) is an ideal of ζ(A).
(ii) An element x of ζ(A) belongs to A(A) if and only if there exists a non-negative

integer mx such that for all a ≥ mx and all M ∈ Ma(A) one has xM∗ ∈ Ma(A).
(iii) A(A) · ξ(A) = A(A).

Proof. The set A(A) is clearly an additive subgroup of ζ(A) and stable under multiplication
by ζ(A). One also has A(A) ⊆ ζ(A) since if M is the 1×1 identity matrix, then x = xM =
xM∗ and so x = xM∗ ∈ M1(A) implies x ∈ A ∩ ζ(A) = ζ(A). This proves claim (i).
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To prove claim (ii) it obviously suffices to show that the stated condition is sufficient to
imply x belongs to A(A). To do this we fix a natural number d and a matrix M in Md(A)
and note that in Md+mx(A) one has

x

(
M 0
0 Imx

)∗
= x

(
M∗ 0
0 NrdA(M) · Imx

)
=

(
xM∗ 0
0 xNrdA(M) · Imx

)
.

In particular, since d + mx > mx, the stated condition on x (with a = d + mx and M

replaced by

(
M 0
0 Imx

)
) implies that xM∗ belongs to Md(A), as required.

Since 1 belongs to ξ(A), to prove claim (iii) it suffices to show that for any x in A(A),
any natural number n, and any matrix N in Mn(A), the element x′ := x ·NrdA(N) belongs
to A(A). We do this by showing that x′ satisfies the condition described in claim (ii) with
mx′ taken to be n.

We thus fix an integer d with d ≥ n and choose N ′ in Md(A) with NrdA(N
′) = NrdA(N).

Then, for any M in Md(A) one has M∗(N ′)∗ = (N ′M)∗ and hence

x′M∗ = x ·NrdA(N)M∗ = x ·NrdA(N ′)M∗ = x ·M∗((N ′)∗N ′) = (x · (N ′M)∗)N ′ ∈ Md(A)
where the containment is valid since, by assumption, the product x · (N ′M)∗ belongs to
Md(A). �

Remark 5.7. The ideal A(A) differs slightly from an ideal H(A) defined by Johnston
and Nickel in [30] (the reason being that the above definition of M∗ differs slightly from
the ‘generalized adjoint matrices’ M∗ defined in loc. cit.) Nevertheless, the extensive
computations of H(A) made in loc. cit can be used to give concrete information about the
ideal A(A).

We can now state the main result of this subsection.

Proposition 5.8. Let h be a presentation bundle of a finitely generated A-module X. Then
all of the following claims are valid.

(i) ζ(A) ·FI0A(h) = ξ(A) ·FitA(h), where FitA(h) is the noncommutative Fitting invari-
ant of h, as defined by Nickel.

(ii) A(A) · FI0A(h) ⊆ A(A) · FI0,totA (h) ⊆ AnnA(X).

(iii) If h is quadratic, then FI0,totA (h) = FI0A(h) = ξ(A) · NrdA(M(h)) and this ideal is

independent of h. In particular, in any such case we may denote both FI0,totA (h) and

FI0A(h) by FI0A(X).
(iv) Let 0 → X1 → X2 → X3 → 0 be a short exact sequence of A-modules. If X1 and

X3 have quadratic presentation bundles, then so does X2 and there is an equality
FI0A(X2) = FI0A(X1)FI

0
A(X3).

Proof. After localising (which we do not explicitly indicate) we can assume that h is a
presentation of the form (7).

We write ξ′(A) for the R-order in ζ(A) that is generated over ζ(A) by the elements
NrdA(M) as M runs over matrices in

∪
n≥1GLn(A). Then the invariant FitA(h) is defined

in [30, (3.3)] to be the ξ′(A)-submodule of ζ(A) that is generated by the elements NrdA(N)
as N runs over all rh,2 × rh,2 minors of the matrix M(h). Thus, since FI0A(h) is defined
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to be the ideal of ξ(A) that is generated by the same elements NrdA(N), the equality
ζ(A) ·FI0A(h) = ξ(A) ·FitA(h) of claim (i) follows directly from the fact that ζ(A) · ξ(A) =
ξ(A) · ξ′(A).

The first inclusion of claim (ii) is obvious. In addition, if h′ is any presentation bundle
that is finer than h and p is a prime ideal of R, then h′p is the presentation bundle of an
A(p)-module Y for which there exists a surjective homomorphism of A(p)-modules Y → X(p)

and hence an inclusion AnnA(p)
(Y ) ⊆ AnnA(X)(p). This observation shows that the second

assertion of claim (ii) is reduced to proving A(A) · FI0A(h) ⊆ AnnA(X).
To do this we fix x in A(A) and y in ξ(A). Then Lemma 5.6(iii) implies that the product

x′ := xy belongs to A(A). Next we let N be any rh,2 × rh,2 minor of the matrix M(h).
Then the argument of [40, Th. 4.2] combines with the assumption rh,2 ≥ mx′ to imply that
x′ ·NrdA(N) = x(y ·NrdA(N)) belongs to AnnA(X).

This implies the inclusion of claim (ii) since, as y varies over ξ(A) andN over the rh,2×rh,2
minors of M(h), the elements y · NrdA(N) run over a set of generators of the R-module
FI0A(h).

If h is quadratic, then it is clear that FI0A(h) = ξ(A) · NrdA(M(h)) and so the first

assertion of claim (iii) is true if one can show that FI0,totA (h) = FI0A(h). To show this it
is enough to show that if h′ is any A-module presentation that is finer than the quadratic
presentation h, then FI0A(h

′) ⊆ FI0A(h).
We set t := rh,1 = rh,2 and note that, since h′ is finer than h, one has rh′,1 = rh′,2 = t and

there exists a matrix U in GLt(A) and a matrix V in Mt(A) with M(h′)U = VM(h). It
follows that NrdA(M(h′)) = NrdA(U

−1)NrdA(V )NrdA(M(h)) and this implies the required
inclusion since FI0A(h

′) and FI0A(h) are respectively generated over ξ(A) by NrdA(M(h′))
and NrdA(M(h)) and the product NrdA(U

−1)NrdA(V ) belongs to ξ(A).
Finally we note that the second assertion of claim (iii), and the whole of claim (iv), are

proved by a simple adaptation of the proofs of Nickel [40, Th. 3.2ii)] and [40, Prop. 3.5iii)]
respectively. �

5.5.3. We end this section by recording the connection between higher Fitting invariants
and the Fitting lattices that were defined earlier.

Lemma 5.9. Let h be a quadratic presentation of an A-module X of the form (7) and set
t := rh,2. Write P for the family in slfpA(At) represented by the identity automorphism ι
of At and π for the homomorphism of A-modules P → X induced by πh.

Then for each non-negative integer r one has

(10) {(
i=r∧
i=1

φi)(Fπ(
∩r

A
At)) : (φi)1≤i≤r ∈ HomA(At,A)r} = FIr,totA (h).

Proof. Note first that, with these definitions, a quadratic presentation of A-modules h′

factors through π if and only if it is finer than h.
Further, if we fix any such presentation h′, set κ := κh′,ι and write {bk}1≤k≤t for the

standard basis of At, then Proposition 2.6 implies that for any (φi)1≤i≤r in HomA(At,A)r
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one has

(

i=r∧
i=1

φi)(((∩rAκh,ι) ◦ (∧
j=t
j=r+1θh′,j))(∧

k=t
k=1bk)) = (

i=r∧
i=1

(φi ◦ κh,ι)((∧j=tj=r+1θh′,j)(∧
k=t
k=1bk))

= (∧i=ri=1(φi ◦ κh,ι) ∧ (∧j=tj=r+1θh′,j))(∧
k=t
k=1bk)

= NrdMr(Aop)(M),

with M = (Mij) the element of Mt(A) defined by

Mij :=

{
(φi ◦ κh,ι)(bj), if 1 ≤ i ≤ r and 1 ≤ j ≤ t,
θh′,j(bj), if r + 1 ≤ i ≤ t and 1 ≤ j ≤ t.

Now, in terms of the notation (9), one has M =M(h′, J, φ′) with J = {1, 2, · · · , r} ∈ [t]r
and φ′ = (φi◦κh,ι)1≤i≤r ∈ HomA(At,A)r. The above displayed expression therefore belongs

to FIrA(h
′). Since

∩t
AAt = ξ(A) · ∧k=tk=1bi (by Proposition 3.5(iii)) this in turn shows that

the left hand side of (10) is contained in FIr,totA (h).
To prove the reverse inclusion it suffices to fix a refinement h′ of h and show that for any

φ = (φi)1≤i≤r in HomA(At,A)r and any J in [t]r there exists a refinement h′′ of h and an

element φ′ = (φ′
i)1≤i≤r in HomA(At,A)r such that NrdAop(M(h′, J, φ)) = (

∧i=r
i=1 φ

′
i)(x) for

a suitable element x of FLrκh′′,ι(h
′′).

To do this we write J = {i1, i2, · · · , ir} with i1 < i2 < · · · < ir. We then choose a
permutation σ of {1, 2, · · · , t} which satisfies σ(j) = ij for each j with 1 ≤ j ≤ r and define
κJ to be the A-module automorphism of At with κJ(bj) = bσ(j) for all j with 1 ≤ j ≤ t. We

then define h′′ to be the unique refinement of h for which θh′′ = κ−1
J ◦ θh′ and πh′′ = πh′ ◦κJ

and note that, with this definition, one can take κh′′,ι = κh′,ι ◦ κJ . We define the element

φ′ by setting φ′
i = φi ◦ κ−1

h′′,ι for each i with 1 ≤ i ≤ r.
The proof is then completed by noting that x := ((∩rAκh′′,ι) ◦ (∧

j=t
j=r+1θh′′,j))(∧k=tk=1bk)

belongs to FLrκh′′,ι(h
′′) and that

(
i=r∧
i=1

φ′
i)(x) = (

i=r∧
i=1

(φi ◦ κ−1
h′′,ι))(((∩

r
Aκh′′,ι) ◦ (∧

j=t
j=r+1θh′′,j))(∧

k=t
k=1bk))

= (

i=r∧
i=1

φi)((∧j=tj=r+1θh′,σ(j))(∧
k=t
k=1bk))

= ((∧i=ri=1φi) ∧ (∧j=tj=r+1θh′,σ(j)))(∧
k=t
k=1bk)

= ±NrdAop(M(h′, J, φ)),

where the last equality follows from Corollary 2.9 and the definition (9) of M(h′, J, φ). �

Remark 5.10. If A is commutative, then Propositions 5.3(vii) and 5.5(iv) respectively
imply that the left and right hand sides of the equality (10) are equal to FitrA(X).

In general, for any family P in slfpA(M), any homomorphism of A-modules π with
domain P and any integer r with 0 ≤ r ≤ rkA(P) the result of Lemma 5.9 leads to an
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expression for the ξ(A)-ideal

{(
i=r∧
i=1

φi)(Fπ(
∩r

A
P )) : (φi)1≤i≤r ∈ HomA(P,A)r}

in terms of the higher Fitting invariants of quadratic presentation bundles which factor
through π. For brevity, we leave the derivation of a precise such result to the reader.

Remark 5.11. Let M be a finitely generated free A-module of rank d and fix a basis b.
Let r be any non-negative integer with 0 ≤ r ≤ d.

Then Proposition 3.5(iii) shows that there is an isomorphism of ξ(A)-modules

κb :
∩r

A
M ∼= (

⊕
σ∈[dr]

ξ(A))⊕ ker(θb).

In this context, the result of Lemma 5.9 suggests that for any quadratic A-module presen-
tation h with rh,2 = d the lattices κb(Fπh(

∩r
AM)) and (

⊕
σ∈[dr]

FIr,totA (h)) ⊕ ker(θb) should

be closely related.

6. Non-commutative determinant modules

In this section we continue to fix data R,F,A and A as in §3.
We write D(A) for the derived category of (left) A-modules. We also write C lf(A) for

the category of bounded complexes of finitely generated locally-free A-modules and Dlf(A)
for the full triangulated subcategory of D(A) comprising complexes that are isomorphic to
a complex in C lf(A).

We write K lf
0 (A) for the Grothendieck group of the category of finitely generated locally-

free A-modules. We observe that each object C of Dlf(A) gives rise to a canonical ‘Euler
characteristic’ in K lf

0 (A) and we write this element as χA(C).

We recall that the ‘reduced locally-free classgroup’ SKlf
0 (A) ofA is defined to be the kernel

of the homomorphism K lf
0 (A) → Z that is induced by sending each locally-free module M

to rkA(M).
We write C lf,0(A) for the subcategory of C lf(A) comprising complexes P • for which

χA(P
•) belongs to SKlf

0 (A) and Dlf,0(A) for the full triangulated subcategory of Dlf(A)
comprising complexes C for which χA(C) belongs to SKlf

0 (A). (The latter condition is
equivalent to requiring that C be isomorphic in D(A) to an object of C lf,0(A)).

In this section we shall associate a canonical invertible ξ(A)-module to each object of
the category Dlf,0(A). We show that such modules constitute a natural theory of ‘non-
commutative determinants’ and hence provide a more explicit alternative (in our setting)
to both the category of virtual objects constructed by Deligne in [18] and to the theory of
noncommutative determinants and ‘localized K1-groups’ constructed by Fukaya and Kato
in [24, §1.2 and §1.3].

6.1. Definitions and basic properties. In this first section we associate a canonical
determinant module to each complex in C lf,0(A) and investigate its basic properties.
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6.1.1. At the outset we assume to be a given a locally-free A-module P and set r := rkA(P )
and PF := F ⊗R P .

For each prime ideal p of R we fix an A(p)-basis bp = {bp,j}1≤j≤r of the localization P(p)

and define a free rank one ξ(A(p))-submodule of
∧r
APF by setting∧r

A(p)

P(p) := ξ(A(p)) · ∧
j=r
j=1bp,j .

We then obtain a ξ(A)-submodule of
∧r
APF by setting∧r

A
P :=

∩
p

∧r

A(p)

P(p)

where the intersection is taken over all prime ideals p of R.
The basic properties of this construction are recorded in the following result.

Lemma 6.1. For each module P as above the following claims are valid.

(i)
∧r

AP is independent of the choice of bases {bp}p.
(ii) If P is a free A-module, with basis {bj}1≤j≤r, then

∧r
AP is a free rank one ξ(A)-

module with basis ∧j=rj=1bj.

(iii)
∧r

AP is an invertible ξ(A)-module, with (
∧r

AP )(p) =
∧r

A(p)
P(p) for all prime ideals

p of R.
(iv) Let ϱ : A → B be a surjective homomorphism of R-orders. Write B for the F -algebra

spanned by B and ϱ1 : A→ B, ϱ2 : ζ(A)→ ζ(B) and ϱ3 : ξ(A)→ ξ(B) for the sur-
jective ring homomorphisms induced by ϱ. Then B⊗A,ϱ P is a locally-free B-module
and the natural isomorphism of ζ(B)-modules ζ(B)⊗ζ(A),ϱ2

∧r
APF

∼=
∧r
B(B⊗A,ϱ1PF )

restricts to give an isomorphism of invertible ξ(B)-modules ξ(B) ⊗ξ(A),ϱ3

∧r
AP
∼=∧r

B(B ⊗A,ϱ P ), where the exterior powers in the latter module are defined with re-
spect to the same E-bases of those simple AE-modules which factor through B.

(v) If 0→ P1
θ−→ P2

ϕ−→ P3 → 0 is a short exact sequence of locally-free A-modules, then
there is a natural isomorphism of ξ(A)-modules

∧r2
AP2

∼=
∧r1

AP1 ⊗ξ(A)

∧r3
AP3 where

we set ri := rkA(Pi) for i = 1, 2, 3.

Proof. To prove claim (i) it suffices to fix a prime ideal p of R and to show that
∧r

A(p)
P(p)

is independent of the choice of bases bp.
To show this we note that if {b′p,j}1≤j≤r is any other choice of A(p)-basis of P(p), then

Corollary 2.9 implies ∧j=rj=1b
′
p,j = NrdA(Up) · ∧j=rj=1bp,j for a matrix Up in GLr(A(p)). This

implies the required result since NrdA(Up) is a unit of ξ(A(p)).
Claim (ii) is true since the stated conditions imply that one can take bp,i = bi for all i

with 1 ≤ i ≤ r.
To prove claim (iii) it suffices to show

∧r
AP is a full R-submodule of

∧r
APF . To show

this we note that Roiter’s Lemma implies the existence of a free rank r submodule P ′ of P
and we choose an A-basis {b′i}1≤i≤r of P ′. Then for each prime ideal p of R Corollary 2.9

implies ∧j=rj=1b
′
j = NrdA(Mp) · ∧j=rj=1bp,j for a matrix Mp in Mr(A(p)). Hence, since NrdA(Mp)
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belongs to ξ(A(p)), claim (ii) implies that∧r

A
P ′ = ξ(A) · ∧j=rj=1b

′
j ⊆

∩
p

∧r

A(p)

P(p) =
∧r

A
P.

This inclusion implies the required result since
∧r

AP
′ is a free ξ(A)-module.

Claim (iv) is verified by a straightforward exercise that we leave to the reader.
Turning to claim (v) we fix an A-module section σ to ϕ. We note that r2 = r1 + r3

and that for any given A-bases bj := {bj,a}1≤a≤rj of Pj,F for j = 1, 3 we obtain an A-basis
bσ1,3 := {bσ1,3,a}1≤a≤r2 of P2,F by setting bσ1,3,a = b1,a if 1 ≤ a ≤ r1 and bσ1,3,a = σi(b3,a−r1) if
r1 < a ≤ r3. We then write

∆ :
∧r2

A
P2,F

∼=
∧r1

A
P1,F ⊗ζ(A)

∧r3

A
P3,F

for the unique isomorphism of ζ(A)-modules for which

(11) ∆(∧j=r2j=1 b
σ
1,3,j) = (∧s=r1s=1 b1,s)⊗ζ(A) (∧

t=r3
t=1 b3,t).

By using Corollary 2.9 one shows easily that this isomorphism is independent of both the
choices of bases b1 and b3 and the choice of section σ and we prove claim (iv) by showing
that ∆(

∧r2
AP2) =

∧r1
AP1 ⊗ξ(A)

∧r3
AP3.

It is enough to show this after localizing at each prime ideal p of R and in this case the
equality follows from claim (i) and the fact that we can choose the elements {b1,s}1≤s≤r1
and {b3,t}1≤t≤r3 to be A(p)-bases of P1,(p) and P3,(p) and then our choice of section σ implies
the set {bσ1,3,j}1≤j≤r2 defined above is an A(p)-bases of P2,(p). �

Remark 6.2. Let P be a free A-module of rank one. If A is commutative, then there is
clearly a natural identification

∧1
AP
∼= P . However, if A is not commutative, and P is

non-zero, then the ξ(A)-modules
∧1

AP and P are not isomorphic.

6.1.2. In the sequel we use the following convenient notation. For any free rank one ζ(A)-
module W we set W 1 := W and W−1 := Homζ(A)(W, ζ(A)), regarded as a (free rank one)
ζ(A)-module via the natural composition action. For each basis element w of W we set
w1 := w and write w−1 for the (unique) basis element of W−1 which sends w to 1. For any
invertible ξ(A)-module L we similarly define invertible ξ(A)-modules by setting L1 := L
and L−1 := Homξ(A)(L, ξ(A)).

We now assume to be given a complex P • in C lf(A) of the form

(12) · · · → P i
di−→ P i+1 → · · ·

We set P •
F := A⊗A P

• and for each integer i also ri := rkA(P
i).

We define a free rank one ζ(A)-module by setting

detA(P
•
F ) :=

⊗
i∈Z

(
∧ri

A
P iF )

(−1)i ,

where the tensor product is over ζ(A). We also note that, following Corollary 2.8, if i is

odd, then the ζ(A)-module (
∧ri
AP

i
F )

(−1)i can be identified with
∧ri
Aop HomA(P

i
F , A).
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Following Lemma 6.1 we then obtain an invertible ξ(A)-submodule of detA(P
•
F ) by setting

detA(P
•) :=

⊗
i∈Z

(
∧ri

A
P i)(−1)i ,

where the tensor product is over ξ(A).

6.1.3. The basic properties of this construction are recorded in the following result.

Lemma 6.3. Let P • be a complex as in (12).

(i) For each prime ideal p of R and each integer i fix an A(p)-basis bp,i = {bp,i,j}1≤j≤ri of
P i(p). Then

⊗
i∈Z(∧

j=ri
j=1 bp,i,j)

(−1)i is a ξ(A(p))-basis of detA(P
•)(p) = detA(p)

(P •
(p)).

(ii) If each A-module P i is free, with basis {bi,j}1≤j≤ri, then
⊗

i∈Z(∧
j=ri
j=1 bi,j)

(−1)i is a

ξ(A)-basis of detA(P
•).

(iii) If χA(P
•) belongs to SKlf

0 (A), then detA(P
•) is independent of the choice of bases

of the simple AE-modules used to define exterior products (via (1) and (2)).
(iv) Let ϱ : A → B be a surjective homomorphism of R-orders and write ϱ′ : ξ(A)→ ξ(B)

for the surjective ring homomorphism induced by ϱ and B for the F -algebra spanned
by B. Then B ⊗A,ϱ P

• is an object of C lf(B) and there is a natural isomorphism of
invertible ξ(B)-modules ξ(B)⊗ξ(A),ϱ′detA(P

•) ∼= detB(B⊗A,ϱP
•), where the exterior

powers in the latter module are defined with respect to the same E-bases of those
simple AE-modules which factor through B.

(v) If 0 → P •
1 → P •

2 → P •
3 → 0 is a short exact sequence in C lf(A), then there is a

natural isomorphism of ξ(A)-modules detA(P
•
2 )
∼= detA(P

•
1 )⊗ξ(A) detA(P

•
3 ).

(vi) If P • is acyclic, then detA(P
•) is naturally isomorphic to ξ(A).

(vii) The invertible ξ(A)-modules detA(P
•[1]) and detA(P

•)−1 are naturally isomorphic.
(viii) Each quasi-isomorphism λ : P •

1 → P •
2 in C lf(A) induces a canonical isomorphism

of ξ(A)-modules detA(λ) : detA(P
•
1 )
∼= detA(P

•
2 ).

Proof. Claim (i) follows easily from the fact that in each degree i the element (∧j=rij=1 bp,i,j)
(−1)i

is a basis of the ξ(A(p))-module (
∧ri
AP

i
F )

(−1)i)(p).
Claim (ii) follows directly from the definition of detA(P

•) and the result of Lemma 6.1(ii).
To prove claim (iii) we fix E-bases {vj}1≤j≤d and {wj}1≤j≤d of a choice of simple AE-

module V . We write M = (Mst) for the matrix in GLd(E) which satisfies ws =
∑t=d

t=1Mstvt
for each integer s and note that this implies w∗

s =
∑t=d

t=1Nstv
∗
t for each integer s where we

set N := (M tr)−1. Using these equalities one computes that in each even degree i there is
an equality∧

1≤j≤ri
(
∧

1≤s≤d
w∗
s ⊗ bp,i,j) = det(N)ri ·

∧
1≤j≤ri

(
∧

1≤s≤d
v∗s ⊗ bp,i,j)

and in each odd degree i an equality∧
1≤j≤ri

(
∧

1≤s≤d
ws ⊗ b−1

p,i,j) = det(M)ri ·
∧

1≤j≤ri
(
∧

1≤s≤d
vs ⊗ b−1

p,i,j).

Since det(M) = det(N)−1 this implies that the tensor product over all integers i of these

respective terms differ by a factor of det(N)
∑
i∈Z(−1)iri . This then implies the stated result

since if the image of χA(P
•) in K0(A) vanishes, then one has

∑
i∈Z(−1)iri = 0.
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The isomorphism in claim (iv) is obtained by applying the result of Lemma 6.1(iv) to
each of the modules P i

Turning to claim (v) we note that the given exact sequence induces in each degree i a
short exact sequence of locally-free A-modules 0 → P i1 → P i2 → P i3 → 0 and hence, via
Lemma 6.1(v), a canonical isomorphism of ξ(A)-modules

κi :
∧r2i

A
P i2
∼=
∧r1i

A
P i1 ⊗ξ(A)

∧r3i

A
P i3

where for each j = 1, 2, 3 we set rji := rkA(P
i
j ). We note also that this map induces a

composite isomorphism of ξ(A)-modules

κ∗i : (
∧r2i

A
P i2)

−1 → (
∧r1i

A
P i1 ⊗ξ(A)

∧r3i

A
P i3)

−1 ∼= (
∧r1i

A
P i1)

−1 ⊗ξ(A) (
∧r3i

A
P i3)

−1

where the first map is Homξ(A)(κ
i, ξ(A))−1 and the second is obtained by restriction of the

unique isomorphism of ζ(A)-modules

(
∧r1i

A
P i1,F ⊗ζ(A)

∧r3i

A
P i3,F )

−1 ∼= (
∧r1i

A
P i1,F )

−1 ⊗ζ(A) (
∧r3i

A
P i3,F )

−1

which, for any (and therefore every) choice of ζ(A)-bases w1i and w3i of
∧r1i
A P i1,F and∧r3i

A P i3,F , sends the element (w1i ⊗ζ(A) w3i)
−1 to w−1

1i ⊗ζ(A) w
−1
3i .

We then define the stated isomorphism detA(P
•
2 )
∼= detA(P

•
1 )⊗ξ(A) detA(P

•
3 ) to be that

which is induced by the map
⊗

i∈Z κ
′
i with κ

′
i = κi if i is even and κ′i = κ∗i if i is odd.

To prove claim (vi) we assume P • is acyclic. This implies, by an easy downward induction
on i, firstly that each A-module im(di) = ker(di+1) is projective and hence that there
is an isomorphism of A-modules P i ∼= ker(di) ⊕ im(di), and secondly that each module
P i/ ker(di) ∼= im(di) is locally-free.

We now write a for the lowest degree in which the module P i is non-zero, P •
1 for the

complex P a
da−→ im(da) where the first term is placed in degree a, ι for the natural inclusion

of complexes P •
1 → P • and we note the complex cok(ι) is acyclic and belongs to C lf(A). In

particular, by applying claim (iii) to the tautological exact sequence of complexes in C lf(A)

(13) 0→ P •
1

ι−→ P • → cok(ι)→ 0,

one can use an induction on the number of non-zero modules P i to reduce claim (iv) to the
case that P • is concentrated in degrees a and a+ 1, for some integer a.

In this case, if we choose an A-basis b = {bi}1≤i≤ra of P aF , then

detA(P
•)F = ζ(A) · (∧j=raj=1 bj)

(−1)a ⊗ζ(A) (∧
j=ra
j=1 d

a(bj))
(−1)a+1

and we write ∆′ : detA(P
•)F → ζ(A) for the ζ(A)-module isomorphism which sends the

element (∧j=raj=1 bj)
(−1)a ⊗ζ(A) (∧

j=ra
j=1 d

a(bj))
(−1)a+1

to 1.

We claim that ∆′ is independent of the choice of basis b. To show this let {b′i}1≤i≤ra
be another A-basis of P aF and define a matrix M = (Mij) in GLra(A) by the equalities

b′i =
∑j=ra

j=1 Mij · bj , or equivalently da(b′i) =
∑j=ra

j=1 Mij · da(bj), for all i with 1 ≤ i ≤ ra.



37

By applying Corollary 2.9 in this context we can therefore deduce that

(∧j=raj=1 b
′
j)

(−1)a ⊗ζ(A) (∧
j=ra
j=1 d

a(b′j))
(−1)a+1

=(NrdA(M) · ∧j=raj=1 bj)
(−1)a ⊗ζ(A) (NrdA(M) · ∧j=raj=1 d

a(bj))
(−1)a+1

=NrdA(M)(−1)aNrdA(M)(−1)a+1 · (∧j=raj=1 bj)
(−1)a ⊗ζ(A) (∧

j=ra
j=1 d

a(bj))
(−1)a+1

=(∧j=raj=1 bj)
(−1)a ⊗ζ(A) (∧

j=ra
j=1 d

a(bj))
(−1)a+1

,

as required.
Now, since ∆′ is independent of the choice of b, for any given prime ideal p one can choose

b to be an A(p)-basis of P
a
(p) so that

detA(P
•)(p) = ξ(A)(p) · (∧

j=ra
j=1 b

(−1)a

j )⊗ζ(A) (∧
j=ra
j=1 d

a(bj)
(−1)a+1

).

In particular, with this choice it is clear that ∆′(detA(P
•)(p)) = ξ(A)(p) and, since this

equality is true for all prime ideals p, one thus has ∆′(detA(P
•)) = ξ(A). In this case

therefore the isomorphism in claim (iv) is obtained by restricting ∆′ to detA(P
•).

To prove claim (vii) we write ConeP • for the mapping cone of the identity endomorphism
of P • and use the composite isomorphism

κ : detA(P
•)⊗ξ(A) detA(P

•[1]) ∼= detA(ConeP •) ∼= ξ(A).

Here the first isomorphism results from applying claim (iii) to the natural short exact
sequence 0 → P • → ConeP • → P •[1] → 0 in C lf(A) and the second is the isomorphism of
claim (iv) for the acyclic complex ConeP • . One then obtains a canonical isomorphism of
invertible ξ(A)-modules detA(P

•[1]) → Homξ(A)(detA(P
•), ξ(A)) by sending each element

x to the map y 7→ κ(y ⊗ x).
Finally, to prove claim (viii) we adapt an argument of Knudsen and Mumford [33, proof

of Th. 1]. To do this we denote by Z•
λ the complex with Ziλ = P i1 ⊕ P i2 ⊕ P

i+1
1 and the

differential in degree i is represented by the matrixdi1 0 −1
0 di2 λi+1

0 0 −di+1
1


where we write dij for the differential of P •

j in degree i. With this notation there are

quasi-isomorphisms λ1 : P
•
1 → Z•

λ, λ2 : P
•
2 → Z•

λ and λ′2 : Z
•
λ → P •

2 in C lf(A) with

λ1 =

1
0
0

 , λ2 =

0
1
0

 and λ′2 =

λ1
0

 .

One checks that λ′2 ◦ λ1 = λ and λ′2 ◦ λ2 = idP •
2
. In addition, the complexes cok(λ1) and

cok(λ2) are acyclic objects of C lf(A) and so there are natural composite isomorphisms

(14) detA(λi)
′ : detA(P

•
i )
∼= detA(P

•
i )⊗ξ(A) detA(cok(λi)) ∼= detA(Z

•
λ)
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for i = 1 and i = 2, where the first map is obtained by applying claim (v) to the complex
cok(λi) and the second by applying claim (iii) to the tautological short exact sequence

0→ P •
i

λi−→ Z•
λ → cok(λ1)→ 0.

We then obtain an isomorphism of the required sort by setting

detA(λ) := (detA(λ2)
′)−1 ◦ detA(λ1)′.

�
6.1.4. The result of Lemma 6.3(i) motivates us to make the following definition.

Definition 6.4. We say that a complex P • in C lf(A) is ‘free’ if each A-module P i is free.
For any such complex P • we shall say that a basis element b of the (free rank one) A-

module detA(P
•) is ‘primitive’ if it is equal to

⊗
i∈Z(∧

j=ri
j=1 b

(−1)i

i,j ) for some choice of bases

{bi,j}1≤j≤ri of the modules P i.

The key properties of such bases that we shall use in the sequel are recorded in the next
two results.

In the sequel we write sr(A) for the stable range of A. We recall that Bass has shown
that sr(A) = 1 if R is local, and hence A is semi-local, and that sr(A) = 2 in all other cases.
(For more details see [16, Th. (40.31)] and [16, Th. (40.41)] respectively).

Lemma 6.5. Let P • be a free complex in C lf(A) of the form (12) for which there exists an
integer i with ri ≥ sr(A).

Let b be a primitive basis of detA(P
•). Then any other element b′ of detA(P

•)F is a
primitive basis of detA(P

•) if and only if b′ = u · b with u in NrdA(K1(A)).

Proof. Necessity of the given conditions follows from Corollary 2.9 (in just the same way as
did Lemma 6.1(i)).

To prove sufficiency we first apply [16, Th. (40.42)] to deduce the existence of a matrix

ui = (ui,ab) in GLri(A) with NrdA(ui)
(−1)i = u.

We then fix bases {bs,t}1≤t≤rs of the A-modules P s such that b =
⊗

s∈Z(∧
t=rs
t=1 bs,t)

(−1)s

and write {b′s,t}1≤t≤rs for the basis of each module P s obtained by setting b′s,t = bs,t if s ̸= i

and b′i,t =
∑w=ri

w=1 ui,twbi,w. Then Corollary 2.9 implies that

u · b = NrdA(ui)
(−1)i ·

⊗
s∈Z

(∧t=rst=1 bs,t)
(−1)s =

⊗
s∈Z

(∧t=rst=1 b
′
s,t)

(−1)s ,

as required. �
In the next result we use the result of Lemma 6.3(viii).

Lemma 6.6. Let λ : P •
1 → P •

2 be a quasi-isomorphism in C lf(A) between free complexes,
each of which has at least one term of rank at least sr(A).

Then an element b of detA(P
•
1 )F is a primitive basis of detA(P

•
1 ) if and only if the image

of b under A⊗A detA(λ) is a primitive basis of detA(P
•
2 ).

Proof. For j = 1 and j = 2 we choose in each degree i an A-basis {bj,ik}1≤k≤rji of

P ij , where we set rji := rkA(P
i
j ) and then write bj for the corresponding primitive basis⊗

i∈Z(∧
k=rji
k=1 bj,ik)

(−1)i of detA(P
•
j ).
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Then Lemma 6.5 implies that the stated claim is true if and only if there exists an element
u of NrdA(K1(A)) with detA(λ)(b1) = u · b2. To show this we adopt the notation of the
proof of Lemma 6.3(viii).

We observe first that in each degree i the set of elements (b1,ia1 , b2,ia2 , b1,(i+1)a3), with

1 ≤ a1 ≤ r1i, 1 ≤ a2 ≤ r2i and 1 ≤ a3 ≤ r1(i+1) constitutes an A-basis of Ziλ and
we write bλ for the corresponding primitive basis of detA(Z

•
λ). In the same way the el-

ements (0, b2,ia2 , b1,(i+1)a3) and (b1,ia1 , 0, b1,(i+1)a3) give rise to primitive bases b′1 and b′2 of
detA(cok(λ1)) and detA(cok(λ2)) respectively.

An explicit computation shows that, for both j = 1 and j = 2, the isomorphism det(λj)
′

in (14) sends bj to µj(b
′
j)

−1 · bλ with µj the isomorphism detA(cok(λj)) ∼= ξ(A) induced by

applying Lemma 6.3(vi) to the acyclic complex cok(λj), and hence that

detA(λ)(b1) = (detA(λ2)
′)−1(detA(λ1)

′(b1)) = µ2(b
′
2)µ1(b

′
1)

−1 · b2.

Given this, the required equality follows directly from the result of Lemma 6.7 below. �

In the following result we use the result of Lemma 6.3(vi).

Lemma 6.7. Let P • be an acyclic free complex in C lf(A). Then the canonical isomorphism
detA(P

•) ∼= ξ(A) sends each primitive basis of detA(P
•) to an element of NrdA(K1(A)).

Proof. Lemma 6.5 reduces us to proving that in each degree i one can choose an A-
basis {bi,j}1≤j≤ri of P i such that the isomorphism constructed in Lemma 6.3(vi) sends⊗

i∈Z(∧
j=ri
j=1 bi,j)

(−1)i to 1.

To show this we adopt the notation of the proof of Lemma 6.3(vi) and so argue by
induction on the number of non-zero modules P i.

We choose A-bases {bi,j}1≤j≤ri of P i for each i ∈ Z \ {a+1} and an A-basis {b′j}1≤j≤t of
P a+1/ im(da). We also choose an A-invariant splitting σ of the tautological exact sequence
0→ im(da)→ P a+1 → P a+1/ im(da)→ 0 and then use it to define a basis {bi,j}1≤j≤ra+1 of

P a+1 by setting ba+1,j = da(ba,j) if 1 ≤ j ≤ ra and ba+1,j = σ(b′j−ra) if ra < j ≤ ra+1.

Now the isomorphism ∆ : detA(P
•) ∼= detA(P

•)⊗ξ(A) detA(cok(ι)) obtained by applying

Lemma 6.3(v) to the exact sequence (13) sends the primitive basis
⊗

i∈Z(∧
j=ri
j=1 bi,j)

(−1)i of

detA(P
•) to x⊗ y for the primitive bases x = (∧j=raj=1 ba,j)

(−1)a ⊗ξ(A) (∧
j=ra+1

j=1 da(ba,j))
(−1)a+1

of detA(P
•
1 ) and y =

⊗
i≥a+1(∧

j=ri
j=1 bi,j)

(−1)i of detA(cok(ι)).
Arguing by induction, it is therefore enough to note that our definition of the isomorphism

detA(P
•
1 )
∼= ξ(A) ensures that x is sent to 1. �

6.2. Extension to the derived category. In this section we extend relevant aspects of
the above construction of determinant modules to objects of the category Dlf,0(A).

To do this we choose for any C in Dlf,0(A) a representative complex P • in C lf,0(A) and
then set

detA(C) := detA(P
•).

6.2.1. The basic properties of this definition are recorded in the following result.

Proposition 6.8.
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(i) For any object C of Dlf,0(A) the ξ(A)-module detA(C) defined above depends, up to
canonical isomorphism, only on C.

(ii) If C1 → C2 → C3 → C1[1] is any exact triangle in Dlf,0(A), then there is a canonical
isomorphism of ξ(A)-modules detA(C2) ∼= detA(C1)⊗ξ(A) detA(C3).

(iii) Let ϱ : A → B be a surjective homomorphism of R-orders and write ϱ′ : ξ(A) →
ξ(B) for the ring homomorphism induced by ϱ. Then for any object C of Dlf,0(A)
the derived tensor product B ⊗L

A,ϱ C belongs to Dlf,0(B) and there is a canonical

isomorphism of invertible ξ(B)-modules ξ(B)⊗ξ(A),ϱ′ detA(C) ∼= detA(B ⊗L
A,ϱ C).

Proof. To prove claim (i) we note first that, by a standard argument, if P •
1 and P •

2 are
any objects of C lf(A) for which there are isomorphisms θ1 : P •

1
∼= C• and θ2 : P •

2
∼= C• in

Dlf(A), then there exists a quasi-isomorphism λ : P •
1
∼= P •

2 in C lf(A) that is unique up to
homotopy and such that θ1 = θ2 ◦ λ in Dlf(A).

Recalling the results of Lemma 6.3(iii) and (v), claim (i) will therefore follow if for any

quasi-isomorphisms P •
1

λ−→ P •
2 and P •

1
µ−→ P •

2 in C lf(A) which differ by a homotopy one has
detA(λ) = detA(µ).

To prove this we follow the proof of [33, Prop. 2]. Thus, we note that if H is any choice of
homotopy with λ−µ = d2 ◦H+H ◦d1, where d1 and d2 denotes the differentials of P •

1 and
P •
2 , then, in terms of the notation in the proof of Lemma 6.3(vi), there is an isomorphism
θ : Z•

λ → Z•
µ in C lf(A) that is given by the matrix1 0 0

0 1 H
0 0 1


and is such that the following diagram in C lf(A) commutes

(15)

P •
1

λ1−−−−→ Z•
λ

λ2←−−−− P •
2∥∥∥ θ

y ∥∥∥
P •
1

µ1−−−−→ Z•
µ

µ2←−−−− P •
2 .

The first and second squares in this diagram can be completed to give an isomorphism
of short exact sequences in C lf(A) of the form

0 −−−−→ P •
i

λi−−−−→ Z•
λ −−−−→ cok(λi) −−−−→ 0∥∥∥ θ

y κi

y
0 −−−−→ P •

i
µi−−−−→ Z•

λ −−−−→ cok(µi) −−−−→ 0

with i = 1 and i = 2 respectively, in which in each degree j, the map

κji : P
j
2 ⊕ P

j+1
1 = cok(λi)

j → cok(µi)
j = P j2 ⊕ P

j+1
1

is induced by the matrix

(
1 H
0 1

)
if i = 1 and is the identity map if i = 2.
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In particular, since for both i = 1 and i = 2 one has NrdA(κ
j
i ) = 1 in each degree j, there

is a commutative diagram of isomorphisms of ξ(A)-modules

detA(P
•
1 )

det(λ1)′−−−−−→ detA(Z
•
λ)

det(λ2)′←−−−−− detA(P
•
2 )∥∥∥ y ∥∥∥

detA(P
•
1 )

det(µ1)′−−−−−→ detA(Z
•
µ)

det(µ2)′←−−−−− detA(P
•
2 )

in which the unlabeled map is induced by the isomorphisms {θi}i∈Z. This commutative
diagram implies immediately that detA(λ) = detA(µ), as claimed.

Turning to claim (ii) we first choose complexes P •
1 and P •

3 in C lf(A) for which there
exist isomorphisms αj : P •

j → Cj in Dlf(A) for i = 1, 3. We then choose a morphism

µ : P •
3 [−1] → P •

1 in C lf(A) such that α1 ◦ µ = −w[−1] ◦ α3[−1] in D(A) and write P •
2

for the mapping cone of µ. Then, by the axioms of a triangulated category, there is an
isomorphism α2 : P

•
2 → C2 in D(A) making the following diagram commute (in D(A))

P •
3 [−1]

µ→ P •
1

θ→ P •
2

ϕ→ P •
3yα3[−1]

yα1

yα2

yα3

C3[−1]
−w[−1]→ C1

u→ C2
v→ C3

where θ and ϕ are the natural morphisms (coming from the definition of P •
2 as the mapping

cone of µ) and the lower row is the exact triangle that is induced by shifting the given
triangle.

Given this construction, the proof of claim (i) reduces the proof of claim (ii) to showing
that for any morphism of short exact sequences in C lf(A)

(16)

0 −−−−→ P •
11

θ1−−−−→ P •
12

ϕ1−−−−→ P •
13 −−−−→ 0

λ1

y λ2

y λ3

y
0 −−−−→ P •

21
θ2−−−−→ P •

22
ϕ2−−−−→ P •

23 −−−−→ 0

in which the vertical maps are quasi-isomorphisms there is a commutative diagram of iso-
morphisms of ξ(A)-modules

(17)

detA(P
•
12) −−−−→ detA(P

•
11)⊗ξ(A) detA(P

•
13)

detA(λ2)

y ydetA(λ1)⊗ξ(A)detA(λ3)

detA(P
•
22) −−−−→ detA(P

•
21)⊗ξ(A) detA(P

•
23)

where the horizontal isomorphisms are obtained by applying Lemma 6.3(v) to the upper
and lower rows of (16).

To show this we use the fact that, in terms of the notation used in the proof of Lemma
6.3(vi), the diagram (16) gives rise for both i = 1 and i = 2 to a commutative diagram in
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C lf(A) of the form

(18)

0 0 0y y y
0 −−−−→ P •

i1
θi−−−−→ P •

i2
ϕi−−−−→ P •

i3 −−−−→ 0

λ1i

y λ2i

y λ3i

y
0 −−−−→ Z•

λ1

θ′−−−−→ Z•
λ2

ϕ′−−−−→ Z•
λ3

−−−−→ 0y y y
0 −−−−→ cok(λ1i)

θ′i−−−−→ cok(λ2i)
ϕ′i−−−−→ cok(λ3i) −−−−→ 0y y y

0 0 0

in which each row and column is a short exact sequence. Here θ′ and ϕ′ are respectively

induced by the matrices

θ1θ2
θ1

 and

ϕ1ϕ2
ϕ1

, the unlabeled vertical arrows are the tautological

projections and θ′i and ϕ
′
i are the maps that are induced by the (obvious) commutativity of

the upper squares.
We use (18) to construct the following diagram of isomorphisms of ξ(A)-modules.

D(P •
12)

ρ11−−−−→ D(P •
11)⊗D(P •

13)

id⊗ϵ12
x x(id⊗ϵ11)⊗(id⊗ϵ13)

D(P •
12)⊗D(cok(λ12))

ρ11⊗ρ13−−−−−→ (D(P •
11)⊗D(cok(λ11)))⊗ (D(P •

13)⊗D(cok(λ13)))

κ12

y yκ11⊗κ13
D(Z•

λ2
)

ρ2−−−−→ D(Z•
λ1
)⊗D(Z•

λ3
)

κ22

x xκ21⊗κ23
D(P •

22)⊗D(cok(λ22))
ρ21⊗ρ23−−−−−→ (D(P •

21)⊗D(cok(λ21)))⊗ (D(P •
23)⊗D(cok(λ23)))

id⊗ϵ22
y y(id⊗ϵ21)⊗(id⊗ϵ23)

D(P •
22)

ρ21−−−−→ D(P •
21)⊗D(P •

23).

In this diagram we abbreviate detA(−) to D(−), write ϵij for the isomorphism of Lemma
6.3(vi) for the acyclic complex cok(λij), κij and ρij for the isomorphisms obtained by
applying Lemma 6.3(v) to the j-th column, resp. j-th row, of the diagram (18) and set
ρ2 = ρ12 = ρ22. The commutativity of the upper and lower squares is straightforward to
check and the commutativity of the two remaining squares follows readily after ensuring
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that the sections that are chosen in the construction (in the proof of Lemma 6.3(v)) of the
isomorphisms κij and ρij are compatible in each degree with the diagram (18), as described
in Lemma 6.10 below (with Λ = A).

Finally, to complete the proof of claim (ii) we note that the left and right hand side com-
posite isomorphisms in the above diagram are (by definition) respectively equal to detA(λ2)
and detA(λ1)⊗ξ(A)detA(λ3), and so the commutativity of this diagram is equivalent to that
of the required diagram (17).

Turning to claim (iii), it is first clear that B ⊗L
A,ϱ C belongs to Dlf,0(B). In addition, the

required isomorphism ξ(B) ⊗ξ(A),ϱ′ detA(C) ∼= detA(B ⊗L
A,ϱ C) is then simply obtained by

combining claim (i) with the result of Lemma 6.3(iv) (and noting that, in this case, the
choice of bases of the simple AE-modules used to define the exterior products (1) and (2)
is irrelevant by virtue of Lemma 6.3(iii)). �

Remark 6.9. Proposition 6.8(i) implies, in particular, that for any acyclic object C of
Dlf(Λ) there exists a canonical isomorphism of ξ(Λ)-modules detΛ(C) ∼= ξ(Λ).

Lemma 6.10. Let Λ be a noetherian ring. We assume to be given a commutative diagram
of short exact sequences of finitely generated projective Λ-modules of the form

0 0 0y y y
0 −−−−→ M1

d′1−−−−→ N1
d1−−−−→ P1 −−−−→ 0

ϵ1

y ϕ1

y κ1

y
0 −−−−→ M2

d′2−−−−→ N2
d2−−−−→ P2 −−−−→ 0

ϵ2

y ϕ2

y κ2

y
0 −−−−→ M3

d′3−−−−→ N3
d3−−−−→ P3 −−−−→ 0y y y

0 0 0.

Then there exist Λ-equivariant sections σi : Pi → Ni to di for i = 1, 2 and 3 such that there
are commutative diagrams of Λ-modules

(19)

N1
σ1←−−−− P1

ϕ1

y yκ1
N2 ←−−−−

σ2
P2

and

N2
σ2←−−−− P2

ϕ2

y yκ2
N3 ←−−−−

σ3
P3.

Proof. First choose any Λ-equivariant section σ to d2 and write θ for the composite homo-
morphism ϕ2 ◦ σ ◦ κ1 : P1 → N3.
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The commutativity of the given diagram implies that there exists a unique homomorphism
θ1 in HomΛ(P1,M3) such that θ = d′3 ◦ θ1. Since P1 is a projective Λ-module we can then
choose a homomorphism θ2 in HomΛ(P1,M2) with θ1 = ϵ2 ◦ θ2.

Next we note that, since P3 is a projective Λ-module, the group Ext1Λ(P3,M2) vanishes
and so there exists a homomorphism θ3 in HomΛ(P2,M2) with θ2 = θ3 ◦ κ1.

We now set σ2 := σ− d′2 ◦ θ3 ∈ HomΛ(P2, N2). Then σ2 is a section to d2 since d2 ◦ σ2 =
d2 ◦ σ − (d2 ◦ d′2) ◦ θ3 = d2 ◦ σ. In addition, for x in P1 one has

ϕ2(σ2(κ1(x))) = ϕ2(σ(κ1(x)))− ϕ2(d′2 ◦ θ3(κ1(x)))
= θ(x)− d′3(ϵ2(θ3 ◦ κ1)(x))
= θ(x)− d′3((ϵ2 ◦ θ2)(x))
= θ(x)− (d′3 ◦ θ1)(x)
= θ(w′)− θ(w′) = 0.

Since P1 is a projective Λ-module this implies there exists a unique homomorphism σ1 in
HomΛ(P1, N1) which makes the first diagram in (19) commute (with respect to our fixed
map σ2) and hence that κ1(d1 ◦ σ1) = (d2 ◦ σ2) ◦ κ1 = κ1 so that σ1 is a section to d1.

Finally we note that the commutativity of the first diagram in (19) implies there exists
a (unique) homomorphism σ3 in HomΛ(P3, N3) which makes the second diagram in (19)
commute and one checks easily that this homomorphism is a section to d3, as required. �

6.2.2. In this section we prove a consequence of Proposition 6.8(ii) in a special case that
will play an important role in the sequel.

To do so we assume to be given an exact triangle in Dlf,0(A)

(20) C1
θ1−→ C2

θ2−→ C3
θ3−→ C1[1],

in which each cohomology group Ha(Cj) is finite for all a /∈ {0, 1}, an extension field E of
F which splits A and a commutative diagram of AE-modules

(21)

0 −−−−→ H0(C1)E
H0(θ1)E−−−−−→ H0(C2)E

H0(θ2)E−−−−−→ H0(C3)E

τ1

y τ2

y τ3

y
H1(C1)E

H1(θ1)E−−−−−→ H1(C2)E
H1(θ2)E−−−−−→ H1(C3)E −−−−→ 0

in which the vertical maps are bijective (and the horizontal rows exact).
We write A =

∏
i∈I Ai for the decomposition of A into simple components and for each

index i we fix a simple left Ai-module Vi. Then for each index j = 1, 2, 3 we define a
composite isomorphism of ζ(AE)-modules

(22) ϑτj : detA(Cj)E = detAE (Cj,E) =
∏
i∈I

detE(HomAi(Vi, Cj,E))
(ϑj,i)i−−−−→

∏
i∈I

E = ζ(AE).
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Here each ϑj,i is the composite isomorphism of E-spaces

detE(HomAi(Vi, Cj,E))

∼=
∧nj,i

E
HomAi(Vi,H

0(Cj)E)⊗E HomE(
∧nj,i

E
HomAi(Vi, H

1(Cj)E), E) ∼= E

with nj,i = dimE HomAi(Vi,H
0(Cj)E), where the first map is the natural ‘passage to coho-

mology’ isomorphism and the second is the composite of the map that is induced by the
restriction to HomAi(Vi, H

0(Cj)E) of the isomorphism τj and the natural evaluation pairing
on HomAi(Vi,H

1(Cj)E).

Proposition 6.11. Fix an exact triangle (20) and a commuting diagram (21). Assume
that each complex Cj is isomorphic in D(A) to a complex in C lf(A) that is concentrated in
degrees zero and one and, in addition, that the map H0(θ3) has finite image.

Then there is a commutative diagram of ζ(AE)-module isomorphisms

(23)

detA(C2)E −−−−→ detA(C1)E ⊗ζ(AE) detA(C3)E

ϑτ2

y yϑτ1⊗ζ(AE)ϑτ3

ζ(AE) ζ(AE)⊗ζ(AE) ζ(AE),

in which the upper horizontal map is the scalar extension of the isomorphism of ξ(A)-
modules obtained by applying Proposition 6.8(ii) to (20).

Proof. Just as in the proof of Proposition 6.8(ii) we can replace the exact triangle (20) by
a short exact sequence of complexes as in Lemma 6.3(v). We can also assume in this case
that the complexes P •

j are concentrated in degrees zero and one.
Then there are commutative diagrams of AE-modules

P 0
1,E

d1,E−−−−→ B1

θ01,E

y yθ11,E
P 0
2,E

d2,E−−−−→ B2

θ02,E

y yθ12,E
P 0
3,E

d3,E−−−−→ B3

P 1
1,E

π1,E−−−−→ H1(C1)E

θ11,E

y yH1(θ1)E

P 1
2,E

π2,E−−−−→ H1(C2)E

θ12,E

y yH1(θ2)E

P 1
3,E

π3,E−−−−→ H1(C3)E ,

where we write di for the differential (in degree zero) of P •
i , set Bi := im(di)E and write πi

for the tautological surjection P 1
i → H1(P •

i ).
Each column in these diagrams is a short exact sequence (by virtue of our assumption

that H0(θ3)E is the zero map) and each horizontal map is surjective and so we can apply
Lemma 6.10 (with Λ = AE) to choose AE-module sections σi to di,E and σ′j to πj,E that
are compatible with each of these diagrams.

In this way one obtains from the exact commutative diagram (21) a commutative diagram
of AE-modules
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(24)

P 0
1,E

θ01,E−−−→ P 0
2,E

θ02,E−−−→ P 0
3,E

(σ1,⊆)

x (σ2,⊆)

x (σ3,⊆)

x
B1 ⊕H0(C1)E

(θ11,E ,H
0(θ1)E)

−−−−−−−−−→ B2 ⊕H0(C2)E
(θ12,E ,H

0(θ2)E)
−−−−−−−−−→ B3 ⊕H0(C3)E

(id,τ1)

y (id,τ2)

y (id,τ3)

y
B1 ⊕H1(C1)E

(θ11,E ,H
1(θ1)E)

−−−−−−−−−→ B2 ⊕H1(C2)E
(θ12,E ,H

1(θ2)E)
−−−−−−−−−→ B3 ⊕H1(C3)E

(⊆,σ′
1)

y (⊆,σ′
2)

y (⊆,σ′3)
y

P 1
1,E

θ11,E−−−→ P 1
2,E

θ12,E−−−→ P 1
3,E

in which every row is a short exact sequence and every vertical map is bijective.
For each of j = 1, 2, 3 and i = 0, 1 we set rj := rkA(P

0
j ) = rkA(P

1
j ) and write W i

j for

the free rank one ζ(AE)-module
∧rj
AE
P ij,E . We also write λi for the isomorphism of ζ(AE)-

modules W 0
j → W 1

j that is induced by the composite vertical isomorphism given by the

j-th column of (24).
Then the commutativity of (24) directly implies the commutativity of the following dia-

gram of ζ(AE)-modules

W 0
2 ⊗ (W 1

2 )
−1 κ−−−−→ (W 0

1 ⊗ (W 1
1 )

−1)⊗ (W 0
3 ⊗ (W 1

3 )
−1)

λ2⊗id

y y(λ1⊗id)⊗(λ3⊗id)

W 1
2 ⊗ (W 1

2 )
−1 (W 1

1 ⊗ (W 1
1 )

−1)⊗ (W 1
3 ⊗ (W 1

3 )
−1)y y

ζ(AE) ζ(AE)⊗ ζ(AE),
in which all tensor products are taken over ζ(AE), κ is induced by the maps κ0 and κ∗1
which occur in the proof of Lemma 6.3(v) and the unlabeled left and right hand vertical
arrows are induced by the evaluation maps on W 1

2 , and on W 1
1 and W 1

3 , respectively.
It is straightforward to check that the left and right hand vertical maps in this last

commutative diagram are respectively equal to ϑτ2 and ϑτ1 ⊗ζ(AE) ϑτ3 . To deduce the
claimed commutativity of the diagram (23) we therefore need only note that the upper
horizontal arrow in that diagram is, by definition, equal to κ. �
Remark 6.12. The assumption made in Proposition 6.11 that Cj is isomorphic to a com-

plex in C lf(A) that is concentrated in degrees zero and one is an additional restriction (since
it implies, for example, that the module H0(Cj) is R-torsion-free). Using more sophisti-
cated techniques (as in [4]) it is possible to prove more general versions of Proposition 6.11
in which, for example, both this hypothesis and the hypothesis that the image of H0(θ3)
is finite is removed. However, the result of Proposition 6.11 is sufficient for our present
purposes and so, for brevity, we do not discuss such generalizations here.
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6.3. Primitive and locally-primitive bases. In this section we use the results of §6.1.4
to defines notions of ‘primitive basis’ and ‘locally-primitive basis’ in the context of the
determinant modules defined in §6.2.

6.3.1. The following definitions will play a key role in the formulation of our central arith-
metic conjecture (see Conjecture 9.2 and Proposition 9.4).

Definition 6.13. Let C be an object of Dlf,0(A).
We say that an element b of detA(C) is a ‘primitive basis’ if C is isomorphic in Dlf(A)

to a complex P • in C lf,0(A) that is both free and such that in some degree i one has
rkA(P

i) ≥ sr(A) and, with respect to the induced identification detA(C
•) = detA(P

•), the
element b is a primitive basis of detA(P

•).

Definition 6.14. Let C be an object of Dlf,0(A).
Then we say that an element b of detA(C) is a ‘locally-primitive basis’ if for every prime

ideal p of R the image of b in detA(C)(p) = detA(p)
(C(p)) is a primitive basis of detA(p)

(C(p)).

Remark 6.15. It is clear that any primitive basis of detA(C) is also a locally-primitive
basis of detA(C). In addition, Lemma 6.3(ii) implies that each locally-primitive basis of
detA(C) is a basis of the ξ(A)-module detA(C).

Finally we note that Lemma 6.6 implies the notion of primitive basis is intrinsic to C.
More precisely, it shows that if b is a primitive basis of detA(P

•
1 ) for any free complex P •

1

in C lf(A) that is both isomorphic in Dlf(A) to C and such that in some degree i one has
rkA(P

i
1) ≥ sr(A), then it also corresponds to a primitive basis of detA(P

•
2 ) for any other

such complex P •
2 in C lf(A).

6.3.2. We show that, for any complex C in Dlf,0(A), both the freeness of the ξ(A)-module
detA(C) and the existence of a primitive basis of detA(C) are determined by properties of
the Euler characteristic χA(C). However, before stating the precise result, we must make
some observations concerning classgroups of orders.

We note first that the argument of [16, Rem. (49.11)(iv)] shows that SKlf
0 (A) is naturally

isomorphic to the ‘locally-free classgroup’ Cl(A) of A, as defined in [16, (49.10)].
We recall Cl(A) is finite, that it is equal to the set of stable isomorphism classes [I] of

invertible A-modules I and that the addition is defined by setting [I1]+[I2] := [I3] whenever
there is an isomorphism of A-modules of the form I1 ⊕ I2 ∼= A⊕ I3.

We recall further that if A is commutative, then Cl(A) is naturally isomorphic to the
multiplicative group of isomorphism classes of invertible A-submodules of A.

Lemma 6.16. The association P 7→
∧rkA(P )

A P for each locally-free A-module P induces a

well-defined homomorphism of abelian groups detredA : SKlf
0 (A)→ Cl(ξ(A)).

Proof. This is equivalent to the following two claims: firstly, if I1 and I2 are any invertibleA-
modules that are stably isomorphic, then the ξ(A)-modules

∧1
AI1 and

∧1
AI2 are isomorphic;

secondly, if I1, I2 and I3 are any invertible A-modules for which the A-modules I1 ⊕ I2 ∼=
A⊕ I3, then the ξ(A)-modules

∧1
AI2 and (

∧1
AI1)⊗ξ(A) (

∧1
AI3) are isomorphic.

To prove the first claim we note that if I1 and I2 are stably-isomorphic, then there
are locally-free A-modules N1, N2 and N3 which lie in a short exact sequence of the form
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0 → N1 → Ij ⊕N2 → N3 → 0 for both j = 1 and j = 2. Thus by applying Lemma 6.1(v)
to these sequences we obtain isomorphisms of invertible ξ(A)-modules

(
∧1

A
I1)⊗ξ(A) (

∧n2

A
N2) ∼= (

∧n1

A
N1)⊗ξ(A) (

∧n3

A
N3) ∼= (

∧1

A
I2)⊗ξ(A) (

∧n2

A
N2),

where we set nj := rkA(Nj), and this in turn induces an isomorphism of ξ(A)-modules of

the required form
∧1

AI1
∼=
∧1

AI2.
To prove the second claim we note Lemma 6.1(v) combines with the given isomorphism

I1 ⊕ I2 ∼= A⊕ I3 to give an isomorphism of ξ(A)-modules

(
∧1

A
I1)⊗ξ(A) (

∧1

A
I2) ∼= (

∧1

A
A)⊗ξ(A) (

∧1

A
I3).

This isomorphism implies the second claim since, by Lemma 6.1(ii), the ξ(A)-module
∧1

AA
is free of rank one. �

We can now state the main result of this section.

Proposition 6.17. Let C be an object of Dlf,0(A) (so that χA(C) belongs to SK0(A)).
Then the following claims are valid.

(i) detA(C) has a ξ(A)-basis if and only if χA(C) belongs to ker(detredA ).
(ii) detA(C) has a primitive ξ(A)-basis if and only if χA(C) vanishes.
(iii) detA(C) has a locally-primitive ξ(A)-basis if and only if for all finite sets of prime

ideals P of R the modules detA(C)⟨P⟩ have a common primitive ξ(A)⟨P⟩-basis.

Proof. We first fix P • in C lf(A) that is isomorphic in D(A) to C. Then, by a standard
construction of homological algebra, there is a quasi-isomorphism of A-module complexes
of the form θ : Q• → P • where Q• is bounded and has the property that if a is the lowest
degree of a non-zero module Qj , then Qj is a finitely generated free A-module for all j > a.
We set ri := rkA(Q

i) in each degree i and note that, if necessary after replacing Q• by the

direct sum of Q• and the (acyclic) complex A id−→ A, where the first term is placed in degree
a, we can assume that ra ≥ 2, and hence also that ra ≥ sr(A).

Now the mapping cone D• of θ is an acyclic complex for which in each degree j one has
Dj = P j ⊕ Qj+1. In particular, since Dj is a locally-free A-module for all j ̸= a − 1, the
acyclicity of D• combines with the Krull-Schmidt Theorem to imply that Qa is a locally-free
A-module, and hence that Q• belongs to C lf(A).

To prove claim (i) we use [16, Prop. (49.3)] to choose an isomorphism of A-modules of
the form Qa ∼= I ⊕M where I is invertible and M is free of rank ra − 1. Then, since each
of the modules Qj for j ̸= a is free, Lemma 6.1(ii) and (iv) combine to give an isomorphism
of ξ(A)-modules

detA(C) =
⊗
i∈Z

(
∧i

A
Qi)(−1)i

∼=(
∧1

A
I)(−1)a ⊗ξ(A) ((

∧ra−1

A
M)(−1)a ⊗ξ(A)

⊗
i∈Z\{a}

(
∧i

A
Qi)(−1)i)

∼=(
∧1

A
I)(−1)a .
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To deduce claim (i) we need only now note that the natural isomorphism SKlf
0 (A) ∼= Cl(A)

sends

(25) χA(C) =
∑
i∈Z

(−1)i(Qi) = (−1)a(I) + ((−1)a(ra − 1) +
∑

i∈Z\{a}

(−1)iri)(A)

to (−1)a times the stable-isomorphism class of I.
Turning to claim (ii) we note detA(C) has a primitive basis if and only if C is isomorphic

in D(A) to a complex K• in C lf,0(A) that is both free and such that in some degree i
one has rkA(K

i) ≥ sr(A). In particular, if such a complex exists, then it is clear that
χA(C) = χA(K

•) vanishes.
To prove the converse, we note that if χA(C) vanishes, then the sum (25) vanishes and

so Qa ∼= I ⊕M is a stably-free A-module. Then, since rkA(Q
a) ≥ 2, the Bass Cancelation

Theorem (cf. [16, Th. (41.20)]) implies Qa is a free A-module of rank at least sr(A) and
hence that detA(C) has a primitive basis, as required.

The proof of claim (iii) is a straightforward exercise that we leave to the reader. �
The results of Proposition 6.17(ii) and (iii) combine to imply that, in general, the ξ(A)-

module detA(C) need not possess a primitive basis even if it is free.
However, if A is commutative, then the situation is much more straightforward.

Corollary 6.18. Let C be an object of Dlf,0(A). If A is commutative, then an element
of detA(C)F is a primitive basis of detA(C) if and only if it is a basis of detA(C) as a
ξ(A)-module.

Proof. Necessity of the given condition is clear (cf. Remark 6.15).

To prove sufficiency we note that if A is commutative, then ξ(A) = A and the map detredA
identifies with the identity automorphism of Cl(A) = Cl(ξ(A)).

In particular, if in this case the ξ(A)-module detA(C) is free, then Proposition 6.17(ii)
implies χA(C) vanishes and then Proposition 6.17(iii) implies that detA(C) has a primitive
basis b.

Now any basis b′ of the (free rank one) ξ(A)-module detA(C) must differ from b by
multiplication by an element of A× = NrdA(A×) and then the argument of Lemma 6.6
implies that b′ is also a primitive basis of detA(C). �

6.3.3. In this final section we record two further properties of primitive bases that will be
useful in the sequel.

Proposition 6.19. Let C be an object of Dlf,0(A).
(i) If C is acyclic, then the canonical isomorphism detA(C) ∼= ξ(A) (from Remark 6.9)

sends each primitive basis of detA(C) to an element of NrdA(K1(A)).
(ii) Let b be a primitive basis of detA(C). Then an element b′ of detA(C)F is a primitive

basis of detA(C) if and only if b′ = u · b with u in NrdA(K1(A)).

Proof. Claim (i) follows directly from Lemma 6.7 and claim (ii) from Lemma 6.5. �
Proposition 6.20. Let C1 → C2 → C3 → C1[1] be an exact triangle in Dlf,0(A) and write
∆ for the induced isomorphism of ξ(A)-modules detA(C2) ∼= detA(C1) ⊗ξ(A) detA(C3) (as
in Proposition 6.8(ii)).
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If x1 and x3 are (locally-)primitive bases of detA(C1) and detA(C3), then ∆−1(x1⊗ξ(A)x3)
is a (locally-)primitive basis of detA(C2).

Proof. We first choose for j = 1, 3 a complex P •
j in C lf,0(A) that is isomorphic in D(A) to

Cj , has rkA(P
a
j ) ≥ sr(A) in at least one degree a and is free if xi is a primitive basis of

detA(Cj).

We then define P •
2 to be the mapping cone of a morphism µ : P •

3 [−1] → P •
1 in C lf(A)

chosen as in the proof of Proposition 6.8(ii) and we recall that the isomorphism ∆ is obtained
by applying in each degree i the construction of Lemma 6.1(v) to the natural short exact

sequences 0→ P i1
θ−→ P i2

ϕi−→ P i3 → 0.
We assume first that x1 and x3 are primitive bases of detA(C1) and detA(C3). In this

case Remark 6.15 implies that in each degree i there exists an A-basis {bj,i,t}1≤j≤rji of P ij
such that xj =

⊗
i∈Z(∧

t=rji
t=1 bj,i,t)

(−1)i .

This implies that the element ∆−1(x1⊗ξ(A) x3) is a primitive basis of detA(P
•
2 ) because,

after choosing an A-equivariant section σi to ϕi, the set {bσi1,3,j}1≤j≤r2i constructed in the

proof of Lemma 6.1(v) is an A-basis of P i2.
If x1 and x3 are only locally-primitive bases of detA(C1) and detA(C3), then for every

prime ideal p of R one can use the same argument (after replacing each complex P •
j by

P •
j,(p)) to show that ∆−1(x1 ⊗ξ(A) x3) is a primitive basis of detA(p)

(P •
2,(p)) = detA(P

•
2 )(p).

This implies that ∆−1(x1⊗ξ(A) x3) is a locally-primitive bases of detA(C2), as required. �

Part II: The Arithmetic Setting

In the sequel we fix a finite Galois extension L/K of global fields and set G := Gal(L/K).
For any finite non-empty set of places Σ of K and any intermediate field E of L/K we write
ΣE for the set of places of E lying above those in Σ, YE,Σ for the free abelian group on the
set ΣE and XE,Σ for the submodule of YE,Σ comprising elements whose coefficients sum to
zero. If E/K is Galois, we often abbreviate Gal(E/K) to GE/K .

If Σ contains the set S∞
K of archimedean places of K (in the number field case), then we

write OE,Σ for the subring of E comprising elements integral at all places outside ΣE and

O×
E,Σ for the unit group of OE,Σ. (If Σ = S∞

K , then we abbreviate OE,Σ to OE .)
In this case, for any finite non-empty set of places T of K which is disjoint from such a

set Σ, we write O×
E,Σ,T for the (finite index) subgroup of O×

E,Σ consisting of those elements

congruent to 1 modulo all places in TE . In addition, we write ClTΣ(E) for the ray class group
of OE,Σ modulo

∏
w∈TE w (that is, the quotient of the group of fractional OE-ideals whose

supports are coprime to all places in ΣE ∪ TE by the subgroup of principal ideals with a
generator congruent to 1 modulo all places in TE).

We note that if E/K is Galois, then each of YE,Σ, XE,Σ,O×
E,Σ, O

×
E,Σ,T and ClTΣ(E) are

stable under the natural action of GE/K .
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7. Canonical pre-envelopes and reciprocity maps for Gm

For any abelian group M we set M∨ := HomZ(M,Q/Z). If M is a G-module, then we
endow M∨ with the natural contragredient action of G.

7.1. Statement of the main results. For any finite non-empty set of places Σ of K that
contains S∞

K (in the number field case), and any finite non-empty set of places T that is
disjoint from Σ, the ‘(Σ-relative T -trivialized) integral dual Selmer group for Gm over L’ is
defined in [11] by setting

SΣ,T (Gm/L) := cok(
∏

w/∈ΣL∪TL

Z −→ HomZ(L
×
T ,Z)),

where L×
T is the group {a ∈ L× : ordw(a − 1) > 0 for all w ∈ TL} and the homomorphism

on the right hand side sends (xw)w to the map (a 7→
∑

w/∈ΣL∪TL ordw(a)xw).
We recall it is also shown in loc. cit. that this module lies in a canonical exact sequence

(26) 0→ ClTΣ(L)
∨ → SΣ,T (Gm/L)→ HomZ(O×

L,Σ,T ,Z)→ 0,

and has a canonical transpose StrΣ,T (Gm/L), in the sense of Jannsen’s homotopy theory of

modules [29], which itself lies in a canonical exact sequence

(27) 0 −→ ClTΣ(L) −→ StrΣ,T (Gm/L) −→ XL,Σ −→ 0.

In the sequel we shall fix a finite non-empty set of places S of K that contains both S∞
K

(in the number field case) and all places which ramify in L/K, and a finite non-empty set
of places T of K that is disjoint from S and such that the group O×

K,S,T is torsion-free.
We can now state the main results of this section.

Proposition 7.1. Fix sets of places S and T as above.
Then there exists a canonical strict family P = PL,S,T of locally-free pre-envelopes for

O×
L,S,T that depends only on L, S and T and for which there exists a surjective bundle of

G-module morphisms π : P → StrS,T (Gm/L).

Remark 7.2. Our methods will also show that for a natural class of extensions L/K
the family PL,S,T constructed in Proposition 7.1 should be free (in the sense described in
§4.2.1) and, in addition, that there should exist a surjective G-module morphism π̃ : P →
StrS,T (Gm/L) for which, in terms of the notation of Remark 4.6, one has π = π̃bundle. For
more details see Remark 11.5.

With S as above, we now find it convenient to set n := |S| − 1, label (and thereby order)
the elements of S as {vi : 0 ≤ i ≤ n} and then set S0 := S \{v0}. (Except for one argument
that is made in §16.2 the precise choice of the place v0 will not matter in the sequel.)

For any normal subgroup H of G, with E = LH , we write VE for the subset of S0
comprising places which split completely in E/K and then write

(28) ϱL,E,S : StrS,T (Gm/L)→ XL,S → YL,VE\VL

for the natural composite (surjective) homomorphism, where the first arrow is as in (27)
and the second is the natural projection. We also set rE := |VE | and note that rE ≥ rL.
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Finally, with P and π as in Proposition 7.1, we consider the composite surjective bundle
of G-module morphisms

πE : P π−→ StrS,T (Gm/L)
ϱL,E,S−−−−→ YL,VE\VL .

(In particular, note that if rE = rL, then VE = VL and so πE is equal to 0P .)
In §7.3 we will define, in terms of the notation used in Remark 5.4, a natural ξ(Z[G])-

module of ‘H-coinvariants’ FπE(
∩rL
G P)H of the Fitting lattice FπE(

∩rL
G P).

Proposition 7.3. We fix L/K, S, T,P = PL,S,T and π as in Proposition 7.1. We also fix

a normal subgroup H of G and set E := LH and Γ := G/H ∼= GE/K .

(i) If rE > rL, then the group FπE(
∩rL
G P)H is finite of order dividing a power of |G|.

(ii) There exists a canonical ‘reciprocity’ homomorphism of ξ(Z[G])-modules

RecPH : F0PH
(
∩rE

Γ
PH)→ FπE(

∩rL

G
P)H

that depends only on P and H.
(iii) If G is abelian, then F0PH

(
∩rE

Γ O
×
E,S,T ) =

∩rE
Γ O

×
E,S,T and there is a natural commu-

tative diagram of Γ-modules

(29) (
∩rL

Γ O
×
E,S,T )⊗Z (JVE\VL)H

**VVV
VVVV

VVVV
VVVV

VVV

∩rE
Γ O

×
E,S,T

RecVE\VL
55kkkkkkkkkkkkkk

RecPH ))SSS
SSSS

SSSS
SSSS

(
∧rL

Z[Γ]P
H)⊗Z (JVE\VL)H

FπE(
∩rL
G P)H .

ς

44hhhhhhhhhhhhhhhhh

Here we write RecVE\VL for the reciprocity map defined independently by Mazur
and Rubin in [39] and by the second author in [45] (see also [11, §5.3]), we regard
F0PH

(
∩rE

Γ O
×
E,S,T ) as a submodule of F0PH

(
∩rE

Γ PH) (as per Remark 5.4), the un-

labeled arrow is induced by the natural identification
∩rL

Γ PH =
∧rL

Z[Γ]P
H and the

homomorphism ς is induced by the result of Proposition 5.3(vii) (as discussed in
Lemma 7.12(ii) below).

7.2. The proof of Proposition 7.1. In this section we prove Proposition 7.1. We there-
fore fix data L/K, S and T as in the statement of this result.

7.2.1. We first recall the construction of a canonical complex of G-modules. As the notation
suggests, this complex can be naturally interpreted in terms of the Weil-étale cohomology
theory that Lichtenbaum has constructed for global function fields in [35] and conjectured
to exist for number fields in [36] (see Remark 7.6 below for more details). However, other
than perhaps for motivational purposes, such interpretations of our complexes play no role
in the sequel.

Lemma 7.4. There exists a complex

CL,S,T := RHomZ(RΓc,T ((OL,S)W ,Z),Z)[−2]
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in Dlf,0(Z[G]) that is defined up to canonical isomorphism and has the following properties.

(i) CL,S,T is acyclic outside degrees zero and one and there are canonical identifications

H0(CL,S,T ) = O×
L,S,T and H1(CL,S,T ) = StrS,T (Gm/L).

(ii) For any normal subgroup H of G there is a canonical ‘projection formula’ isomor-
phism in Dlf,0(Z[G/H]) of the form Z[G/H]⊗L

Z[G] CL,S,T
∼= CLH ,S,T .

Proof. The complex CL,S,T is constructed in [11, §2.2]. More precisely, the descriptions in
claim (i) follow directly from [11, Def. 2.6 and Rem. 2.7]. In addition, since S is assumed
to contain all places which ramify in L/K, claim (ii) follows from the argument used to
prove [11, Lem. 2.8].

Lastly we note that the isomorphism in claim (ii) follows by combining the construction
of CL,S,T in [11] with the canonical projection formula isomorphism in étale cohomology

Zp[G/H]⊗L
Z[G] RΓc((OL,S)ét,Z) ∼= RΓc((OLH ,S)ét,Z). �

Remark 7.5. Since CL,S,T is acyclic in all degrees greater than one (by Lemma 7.4(i)),
the isomorphism in Lemma 7.4(ii) implies that for every normal subgroup H of G the
transpose Selmer group StrS,T (Gm/L

H) identifies naturally with the module ofH-coinvariants

of StrS,T (Gm/L).

Remark 7.6. Assume L is a function field. Write CL for the corresponding smooth projec-
tive curve, j for the open immersion Spec(OL,S) −→ CL and (OL,S)W ét and (CL)W ét for the
Weil-étale sites on Spec(OL,S) and CL that are defined by Lichtenbaum in [35, §2]. Then
the complex RΓc,T ((OL,S)W ,Z),Z) constructed in [11] is canonically isomorphic to a natu-
ral ‘T -modification’ of the complex RΓ((CL)W ét, j!Z) that arises naturally in Lichtenbaum’s
theory (for more details see [11, §2.2]). In particular, in this case, the duality theorem in
Weil-étale cohomology for curves over finite fields that is proved in [35] implies that the
complex CL,S,T defined above is canonically isomorphic to a natural ‘T -modification’ of the
Weil-étale cohomology complex RΓ((OL,S)W ét,Gm) of Gm over OL,S .
7.2.2. We next adapt arguments that were used by Macias Castillo and the first author in
[13] when developing the theory of ‘organising matrices’.

Our first result describes a convenient resolution of the transpose Selmer group StrS,T (Gm/L)
and uses the natural homomorphism

ϱL,S : StrS,T (Gm/L)→ XL,S → YL,S0 .

For any subgroup H of G we set TH :=
∑

h∈H h ∈ Z[G] and, in the sequel, we always
identify XLH ,S with TH(XL,S) (and also YLH ,S0

with TH(YL,S0)) by means of the homo-
morphism which sends each place v′ in SLH to TH(w

′) where w′ is any choice of place of L
above v′.

In the sequel we shall also use the following convenient notation: for each natural number
e we write [e] for the set of integers i with 1 ≤ i ≤ e.

In particular, for each i in [n] we now fix a place wi of L above vi and for each intermediate
field E of L/K write wi,E for the place of E obtained by restriction of wi (so wi,L = wi).

Lemma 7.7. There exists a class CS,T (L/K) of pairs (ϖ, b) where ϖ is a surjective homo-
morphism of G-modules of the form P → StrS,T (Gm/L), where P is free of finite rank, and
b is an ordered G-basis of P , for which all of the following properties are satisfied.
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(i) The rank d of P is independent of P and not less than n+ 2.
(ii) Write b = {bi}i∈[d]. Then the following two properties are satisfied.

(a) For each i in [n] one has ϱL,S(ϖ(bi)) = wi,L.
(b) For each i in [d] \ [n] one has ϱL,S(ϖ(bi)) = 0.

(iii) If (ϖ̃, b̃) is any other pair in CS,T (L/K), with P̃ the domain of ϖ̃, then there exists
a commutative diagram of G-modules

(30) P

ϖ $$JJ
JJJ

JJJ
JJJ

ι // P̃

ϖ̃zzttt
ttt

ttt
tt

StrS,T (Gm/L)

in which ι is an isomorphism and there is an equality of ordered sets b̃ = ι(b).
(iv) Fix a pair (ϖ, b) in CS,T (L/K). Then, for any normal subgroup H of G, the class

CS,T (LH/K) contains the pair (ϖH , TH(b)), where we set TH(b) := {TH(bi)}1≤i≤d
and write ϖH for the composite homomorphism

PH → PH → StrS,T (Gm/L)H → StrS,T (Gm/L
H).

Here the first arrow sends each element TH(bi) to the image of bi in PH , the second
is ϖH and the third is the isomorphism described in Remark 7.5.

Proof. The construction of a class CS,T (L/K) satisfying claims (i), (ii) and (iii) follows
directly from the argument used to prove [13, Lem. 3.1]. One can also, of course, make
the same construction with L/K replaced by LH/K to define the class CS,T (LH/K) and to

prove claim (iv) one must show that this class contains the pair (ϖH , TH(b)).
We note first that TH(b) is an ordered G/H-basis of PH since the projectivity of P

implies that PH = TH(P ). It is then enough to note that, after identifying YLH ,S0
with

TH(YL,S0) in the manner described above, this basis satisfies the properties in claim (ii)

with L replaced by LH . �

The key point in the proof of Proposition 7.1 is now provided by the following result.

Proposition 7.8. Set C := CL,S,T . Then for each pair (ϖ, b) in CS,T (L/K) there exists a

class Clf(ϖ,b)(C) of complexes P • in C lf,0(Z[G]) with each of the following properties.

(i) P • has the form P 0 ϕ−→ P , where P 0 is a finitely generated locally-free G-module
placed in degree zero and P is the domain of ϖ.

(ii) One has H0(P •) = ker(ϕ) = O×
L,S,T and H1(P •) = cok(ϕ) ∼= StrS,T (Gm/L) where the

isomorphism is induced by ϖ.
(iii) There exists an isomorphism ϑ : P • → C in D(Z[G]) such that for both i = 0, 1 the

map H i(ϑ) is the identity map with respect to the identification H i(P •) = H i(C)
that is induced by the descriptions in claim (ii) and in Lemma 7.4(i).
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(iv) If (ϖ̃, b̃) is any other element of CS,T (L/K), with b̃ = {b̃i}1≤i≤d, and P̃ • belongs to

Clf
(ϖ̃,b̃)

(C), then there exists a commutative diagram of G-modules

(31)

0 −−−−→ H0(P •)
ι−−−−→ P 0 ϕ−−−−→ P −−−−→ H1(P •) −−−−→ 0∥∥∥ κ0ι,ι̃

y yκ1ι,ι̃ ∥∥∥
0 −−−−→ H0(P̃ •)

ι̃−−−−→ P̃ 0 ϕ̃−−−−→ P̃ −−−−→ H1(P̃ •) −−−−→ 0

in which the rows are the tautological exact sequences, both κ0ι,ι̃ and κ
1
ι,ι̃ are bijective

and κ1ι,ι̃(bi) = b̃i for each i in [n].

(v) Fix a complex P • as in claim (i) and for each normal subgroup H of G set P •,H :=
HomZ[H](Z, P •). Then the complex P •,H is naturally isomorphic to Z ⊗Z[H] P

•

and, with respect to the identification Z[G/H] ⊗L
Z[G] CL,S,T

∼= CLH ,S,T in Lemma

7.4(ii), belongs to Clf
(ϖH ,TH(b))

(CLH ,S,T ), where the homomorphism ϖH is as defined

in Lemma 7.7(v).

Proof. The existence of a class Clf(ϖ,b)(C) satisfying claims (i), (ii), (iii) and (iv) is proved

by mimicking the argument used to prove [13, Prop. 3.2], with the role of the set C(H2(C))
constructed in [13, Lem. 3.1] now being played by the set CS,T (L/K) constructed in Lemma
7.7 above.

The fact that each complex P • constructed in this way belongs to C lf,0(Z[G]) follows
from the fact that every finitely generated projective G-module is locally-free (see Remark
4.1(ii)) and that CL,S,T belongs to Dlf,0(Z[G]).

The same construction with C and (ϖ, b) replaced by CH := CLH ,S,T and (ϖH , TH(b))

defines the class Clf
(ϖH ,TH(b))

(CH). The (termwise) isomorphism Z⊗Z[H]P
• ∼= P •,H is induced

by applying TH and the rest of claim (iv) is then straightforward to check. �
7.2.3. We now turn to the proof of Proposition 7.1.

Recalling the identification H0(CL,S,T ) = O×
L,S,T from Lemma 7.4, we first define the

family P = PL,S,T to comprise all embeddings ι : O×
L,S,T = H0(CL,S,T ) = H0(P •) → P 0

which arise in any diagram constructed as in Proposition 7.8(iv).
Then it is clear from the latter diagram that the cokernel of each ι in P is torsion-free

and so Lemma 4.4(ii) (in the setting of Example 4.2(ii)) implies that ι satisfies the condition
(P2) in §4.2.1. Given this fact, the result of Proposition 7.8(iv) directly translates into the
statement that P is a strict family of locally-free pre-envelopes for O×

L,S,T . Closer analysis
of the construction also shows that P depends only on L, S and T , as required.

To define a surjective bundle of G-module morphisms π : P → StrS,T (Gm/L) we now

proceed as follows. We first fix an embedding ι as in diagram (31). Then, since P 0 is a
locally-free G-module, Roiter’s Lemma implies the existence of a finite index G-submodule
P̂ 0 of P 0 which is free and hence, since P • belongs to C lf,0(Z[G]), isomorphic to the module

P in (31). We fix such an isomorphism of G-modules j : P̂ 0 → P .
In a similar way, for each prime p the Z(p)[G]-modules P 0

(p) and P(p) are isomorphic and

so we can fix an isomorphism of Z(p)[G]-modules jp : P 0
(p) → P(p). We may, and will,
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assume that for any prime p which does not divide the index [P 0 : P̂ 0] the isomorphism jp
is equal to the p-localization of the homomorphism P 0 → P̂ 0 → P where the first arrow is
multiplication by [P 0 : P̂ 0] and the second is j.

For each prime p we now define a composite homomorphism of Z(p)[G]-modules

πι,p : P
0
(p) → P(p) → H1(P •)(p) = StrS,T (Gm/L)(p)

where the first arrow is jp and the second is the p-localization of the map that occurs in
the upper row of (31).

For any ι′ : O×
L,S,T → P ′ in P we write κι′,ι′ for the identity map on P ′ and κι,ι′ for the

bijective map κ0ι,ι′ that occurs in diagram (31) with ι̃ = ι′. For each prime p we then set

πι′,p := πι,p ◦ (κι,ι′)−1
(p). Finally, for any ι

′ and ι′′ in P we set κι′,ι′′,π,p := (κ−1
ι,ι′ ◦ κι,ι′′)(p).

For every prime p the data {πι′,p, κι′,ι′′,π,p}ι′,ι′′ constitutes, as ι′ and ι′′ vary over P, a
Z(p)[G]-module morphism πp : P(p) → StrS,T (Gm/L)(p).

It is then straightforward to check that as p varies over all primes the data {πp}p con-
stitutes a bundle (with respect to the families {P(p)}p) of G-module morphisms π : P →
StrS,T (Gm/L), as per the definition given in §4.3.2.

Remark 7.9. If the module P 0 in diagram (31) is free, then in the above construction one

can take P̂ 0 = P 0. In this case one can then take each map πι,p to be the p-localization
of the composite homomorphism π̂ι : P

0 → P → H1(P •) where the first arrow is the map
j and the second is as in the upper row of (31). Then, as ι′ and ι′′ vary over P, the data
{π̂ι ◦ κ−1

ι,ι′ , κ
−1
ι,ι′ ◦ κι,ι′′} constitutes a G-module morphism π̂ : P → StrS,T (Gm/L) with the

property that the bundle of morphisms π constructed above is equal to π̂bundle.

7.3. Modules of coinvariants. In this section we discuss the module of ‘H-coinvariants’
FπE (

∩rL
G P)H of FπE(

∩rL
G P).

For each i in [n] and we write Gi for the decomposition subgroup of wi in G. We also
write IG,i for the left ideal of Z[G] that is generated by the set {x − 1}x∈Gi and note that
this is equal to the kernel of the surjective homomorphism of G-modules Z[G] → YL,{vi}
which sends 1 to wi. For each normal subgroup H of G we write IH for the kernel of the
natural projection map Z[G]→ Z[G/H].

We also fix a representative ι : O×
L,S,T → P 0 of P as in the upper row of (31) and, in the

sequel, we always use the isomorphism jp (from §7.2.3) to identify the Z(p)[G]-modules P 0
(p)

and P(p).
In this way, for example, for each normal subgroup H of G we regard TH(b) as a

Z(p)[G/H]-basis of P 0,H
(p) and we then write {TH(bi,p)∗}i∈[d] for the corresponding dual basis

of HomZ(p)[G/H](P
0,H
(p) ,Z(p)[G/H]).

7.3.1. For each prime p we write πE,p for the p-component of the bundle πE that occurs in
Proposition 7.3.

Recalling (from §5.2.2) the definition of FπE (
∩rL
G P) via its p-localizations, we define its

module of H-coinvariants by first specifying FπE,p(
∩rL

Z(p)[G]P(p))H for every prime p.

For each intermediate field E of L/K we write ZE for the subset of [n] comprising the
rE integers i for which vi belongs to VE (and so splits completely in E/K).
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Lemma 7.10. Fix a prime p and a normal subgroup H of G and set E := LH .

(i) A quadratic presentation h of Z(p)[G]-modules factors through πE,p if and only if

rh,2 = d and there exists an isomorphism of Zp[G]-modules κ : Z(p)[G]
d ∼= P(p) such

that b∗i,p(im(κ ◦ θh)) ⊆ IG,i for every i in ZE \ ZL.
(ii) The lattice FπE,p(

∩rL
Z(p)[G]P(p)) is equal to the image of the map

⊕
Φ∈∆E

∩d

Z(p)[G]
P(p) →

∩rL

Z(p)[G]
P(p); (aΦ)Φ 7→

∑
Φ

Φ(aΦ)

where ∆E denotes the set of homomorphisms of the form Φ =
∧
j∈[d]\ZL φj with

φj ∈

{
HomZ(p)[G](P(p), IG,j), if j ∈ ZE \ ZL,
HomZ(p)[G](P(p),Z(p)[G]), if j ∈ [d] \ ZE.

Proof. Using Lemma 7.7(ii) and (iv) one shows that an element x of P(p) belongs to ker(πE,p)
if and only if one has b∗i,p(x) ∈ IG,i for all i in ZE \ ZL.

Given this fact, claim (i) follows directly from the definition (in §5.1.3) of what it means
for h to factor through πE,p.

We note next that for any quadratic h which factors through πE,p (as in claim (i)) the
argument used in the proof of Proposition 5.3(i) implies that the lattice FLrLκ (h) is equal
to the image of the homomorphism

∧j∈[d]\ZL(b
∗
j,p ◦ κ ◦ θh ◦ κ−1) :

∩d

Zp[G]
P(p) →

∩rL

Z(p)[G]
P(p).

Claim (i) now implies claim (ii), with each φj equal to b
∗
j,p ◦ κ ◦ θh ◦ κ−1. �

For each i in ZE \ ZL we write G∗
i for the normal closure of Gi in G (so G∗

i ⊆ H) and
define a two-sided ideal of Z[G] by setting I∗G,i := IG∗

i
.

Then, following the description of FπE,p(
∩rL

Z(p)[G]P(p)) that is given in Lemma 7.10(ii),

we define FHπE,p(
∩rL

Z(p)[G]P(p)) to be the ξ(Z(p)[G])-submodule of FπE,p(
∩rL

Z(p)[G]P(p)) that is

generated by all finite sums of the form
∑

j∈J Φj(aΦj ) with each Φj =
∧
a∈[d]\ZL φj,a in ∆E ,

each aΦj in
∩d

Z(p)[G]P(p) and both of the following relations satisfied:

(R1) for each j in J and each i in ZE\ZL the homomorphisms φj,i have the same image un-
der the natural homomorphism HomZ(p)[G](P(p), IG,i)→ HomZ(p)[G](P(p), I

∗
G,i/IHI

∗
G,i);

(R2) the image of
∑

j∈J
∧
a∈[d]\ZE φj,a(aΦj ) in

∩rE
Z(p)[G/H]PH,(p) vanishes.

We then define the ξ(Z(p)[G])-module of H-coinvariants of FπE,p(
∩rL

Z(p)[G]P(p)) by setting

FπE,p(
∩rL

Z(p)[G]
P(p))H := FπE,p(

∩rL

Z(p)[G]
P(p))/F

H
πL,p

(
∩rL

Z(p)[G]
P(p)).

7.3.2. The basic properties of the above definition are recorded in the following result.

Lemma 7.11.
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(i) If rE = rL, then FπE,p(
∩rL

Z(p)[G]P(p))H identifies with the image of the composite

homomorphism

FπE,p(
∩rL

Z(p)[G]
P(p))→

∩rL

Z(p)[G]
P(p) →

∩rE

Z(p)[G/H]
PH,(p),

where the first arrow in the natural inclusion and the second the natural projection.
(ii) If rE > rL, then FπE,p(

∩rL
G P(p))H is finite and vanishes if p is coprime to |G|.

Proof. If rE = rL, then ZE = ZL and so the relation (R1) is satisfied vacuously. In addition,
in this case (R2) asserts only that

∑
j∈J Φj(aΦj ) belongs to the kernel of the projection map∩rL

Z(p)[G]P(p) →
∩rE

Z(p)[G/H]PH,(p) and so claim (i) is clear.

To prove claim (ii) we note each Z(p)-module FπE,p(
∩rL

Z(p)[G]P(p))H is finitely generated

(as a consequence of Proposition 5.3(i)) and hence that the group FπE (
∩rL
G P)H is finite

provided that FπE,p(
∩rL

Z(p)[G]P(p))H is a torsion group that vanishes for almost all p.

To prove this we note first that FHπE,p(
∩rL

Z(p)[G]P(p)) contains the Z(p)-module generated

by elements Φ(aΦ) with aΦ in
∩d

Z(p)[G]P(p) and Φ = ∧a∈[d]\ZLφa with

φa ∈

{
HomZ(p)[G](P(p), IHI

∗
G,a), if a ∈ ZE \ ZL,

HomZ(p)[G](P(p),Z(p)[G]), otherwise.

(To show that such an element Φ(aΦ) satisfies the relations (R1) and (R2) one need only
note that it is equal to

∑
j∈J Φj(aΦj ) with J = {1, 2} aΦ1 = −aΦ2 = aΦ, Φ1 = Φ and

Φ2 = ∧a∈[d]\ZLφ
′
2,a with φ′

2,a = φa for a ∈ [d] \ ZE and φ′
2,a = 0 for a ∈ ZE \ ZL.)

Next we recall that for each a in ZE \ ZL one has Ga ⊆ H and hence I∗G,a ⊆ IH . This

implies that I∗G,a/IHI
∗
G,a is a quotient of I∗G,a/(I

∗
G,a)

2 which is itself easily shown to be a

group of order |(G∗
a)

ab|[G:G∗
a].

Taken together these facts imply that FπE,p(
∩rL

Z(p)[G]P(p))H is a torsion group which van-

ishes whenever p is coprime to the order of G. This proves claim (ii). �
Motivated by the results of Lemma 7.11 we define the ξ(Z[G])-module of H-coinvariants

FπE(
∩rL
G P)H of FπE(

∩rL
G P) to be the image of the natural composite homomorphism

F0P (
∩rL

G
P )→

∩rL

G
P →

∩rE

G/H
PH

if rE = rL and to be the module⊕
p

FπE,p(
∩rL

Z(p)[G]
P(p))H

if rE > rL, where in the direct sum p runs over all primes.

Lemma 7.12. Assume that rE > rL.

(i) Then the module FπE(
∩rL
G P)H is finite of order dividing a power of |G|.

(ii) If G is abelian, then there is a natural injective homomorphism

ς : FπE (
∩rL

G
P)H → (

∧rL

G
P)⊗Z (

∏
a∈ZE\ZL

IG,a)H .
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Proof. Claim (i) is an immediate consequence of Lemma 7.11(ii).
The injective homomorphism in claim (ii) is obtained by combining the argument proving

Proposition 5.3(vii) together with the fact that if G is abelian then
∏
a∈ZE\ZL IG,a is equal

to FitZ[G](YL,VE\VL). �

7.4. The proof of Proposition 7.3. In this section we prove Proposition 7.3.
At the outset we note Proposition 7.3(i) coincides with the statement of Lemma 7.12(i).

7.4.1. To prove Proposition 7.3(ii) we explicitly construct a canonical ‘reciprocity’ map
RecPH : F0PH

(
∩rE

Γ PH)→ FπE(
∩rL
G P)H .

If firstly rE = rL, then the relevant case of Proposition 5.3(iv) induces an identification
of F0P(

∩rL
G P)H with F0PH

(
∩rE

Γ PH) and we define RecPH to be the identity map.
To deal with the case rE > rL we use the following result.

Proposition 7.13. For each integer a in [n] there exists a canonical G-module morphism
RecPa : P → IG,a with the following property. For any ι : O×

L,S,T → P 0 in P and any normal
subgroup H of G which contains Ga there exists a commutative diagram of G-modules

(P 0)H P 0
(RecPa )ι //THoooo IG,a

ϱ

��
O×
E,S,T

ιH

OO

Reca // IG,a/IHIG,a

Here ϱ is the natural projection map, we set E := LH and we write Reca for the (well-
defined) homomorphism of G-modules with

Reca(u) =
∑

τ∈G/H

ϱ(τ̂−1(reca(τ̂(u))− 1))

for each u in O×
E,S,T , where reca is the reciprocity map E×

wa,E
→ Ga and τ̂ is any choice of

lift of τ to G.

Proof. For each ι in P we choose a complex P • in Clf(ϖ,b)(C) as in the upper row of dia-

gram (31). We then set (RecPa )ι := b∗a ◦ ϕ and note that this homomorphism belongs to
HomG(P

0, IG,a) as a consequence of Lemma 7.10.

The commutativity of diagram (31) then implies both that {(RecPa )ι}ι∈P constitutes a
G-module morphism P → IG,a and that it depends only upon P and the integer a.

To prove the commutativity of the given diagram one can then mimic the argument of
[5, §10]. (More precisely, in terms of the notation used in loc. cit., one need only replace
ϕ, Ij and Gj by ϕ, IG,a and G∗

a respectively.) �

Since we are assuming that rE > rL the group FπE (
∩rL
G P)H is finite (by Lemma 7.12(i))

and so it suffices to describe RecPH after localization at each prime p. (This step can actually
be avoided if the pre-envelope P is free.)

To do this we fix ι : O×
L,S,T → P 0 in P as in the upper row of (31) and we note

Proposition 3.5(iii) implies that every element of F0PH
(
∩rE

Z(p)[G/H]O
×
E,S,T ) is the Zp-linear
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span of elements of the form

ξ := NrdQ[G/H](U) · (∧a∈[d]\ZETH(ba,p)
∗ ◦ φ)(∧i∈[d]TH(bi,p))

with U in Ms(Z(p)[G/H]) for some s and φ in HomZ(p)[G/H](P
0,H
(p) , P

0,H
(p) ).

We choose a lift U ′ of U to Ms(Z(p)[G]) and a lift φ′ to HomZ(p)[G](P
0
(p), P

0
(p)) of the

composite homomorphism φ◦TH : P 0
(p) → P 0,H

(p) through the surjection P 0
(p) → P 0,H

(p) induced

by TH . Then Lemma 7.10(ii) implies the element

NrdQ[G](U
′) · ((∧a∈ZE\ZL(Rec

P
a )ι) ∧ (∧a∈[d]\ZEb

∗
a,p ◦ φ′))(∧i∈[d]bi,p)

belongs to FπE,p(
∩rL

Z(p)[G]P
0
(p)) and we define RecPH(ξ) to be equal to the image of this element

in FπE,p(
∩rL

Z(p)[G]P
0
(p))H .

Lemma 7.14. The association ξ 7→ RecPH(ξ) is a well-defined homomorphism of ξ(Z(p)[G])-
modules that depends only on the pair (P, H).

Proof. To show that the map is a well-defined homomorphism of ξ(Z(p)[G])-modules we

consider any relation in F0PH
(
∩rE

Γ O
×
E,S,T ) of the form∑

j∈J
cjNrdQ[G/H](Uj) · (∧a∈[d]\ZETH(ba,p)

∗ ◦ φj)(∧i∈[d]TH(bi,p)) = 0

with each cj in Zp, Uj in Msj (Z(p)[G/H]) and each φj in HomZ(p)[G/H](P
0,H
(p) , P

0,H
(p) ). It

then suffices to note that for any lift U ′
j of Uj to Msj (Zp[G]) and any lift φ′

j of φj ◦ TH to

HomZ(p)[G](P
0
(p), P

0
(p)) the element∑

j∈J
cjNrdQ[G](U

′
j) · ((∧a∈ZE\ZL(Rec

P
a )ι) ∧ (∧a∈[d]\ZEb

∗
a,p ◦ φ′

j))(∧i∈[d]bi,p)

satisfies both of the relations (R1) and (R2).
It is also clear from the construction that this map depends only on the pair (P,H). �

7.4.2. We now consider Proposition 7.3(iii).
The first assertion of claim (iii) is proved in Proposition 5.3(vi) and so we need only prove

commutativity of the diagram (29) with the homomorphisms RecPH and ς as constructed in
§7.4.1 and described in Proposition 7.12(ii) respectively. Moreover, this commutativity is in

turn only a restatement of the result of [11, Lem. 5.20] in which the map R̃ecW corresponds
to the restriction of the composite ς ◦ RecPH to the subgroup

∩rE
Γ O

×
E,S,T of

∧rE
Z[Γ] P

H .

This completes the proof of Proposition 7.3.

7.5. Non-abelian reciprocity maps and determinant modules. In this section we
record an alternative description of the reciprocity maps RecPH which will be useful in the
sequel.

To do this we assume that rE > rL, we fix an embedding ι : O×
L,S,T → P 0 in PL,S,T and

a complex P • in Clf(ϖ,b)(C) as in the upper row of diagram (31) and, just as in §7.3, for each
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prime p we use the isomorphism jp (from §7.2.3) to identify the Z(p)[G]-modules P 0
(p) and

P(p).

For each normal subgroup H of G, with E := LH , we define ∆H,p
L,S,T to be the unique

homomorphism of ξ(Z(p)[G])-modules

detZ[G](CL,S,T )(p) → F0PH
(
∩rE

Z(p)[G/H]
PH(p))

which satisfies

∆H,p
L,S,T ((∧i∈[d]bi)⊗ (∧i∈[d]b∗i )) = (∧a∈[d]\ZETH(ba)

∗ ◦ ϕH)(∧i∈[d]TH(bi))

where ϕH denotes the restriction of ϕ to PH(p). In the case that H is the trivial subgroup of

G we abbreviate ∆H,p
L,S,T to ∆p

L,S,T .

Proposition 7.15. Fix a normal subgroup H of G for which the field E = LH is such that
rE > rL. Then for each prime p there is an inclusion im(∆p

L,S,T ) ⊆ FπE (
∩rL
G O

×
L,S,T )(p) and

a commutative diagram of homomorphisms of ξ(Z(p)[G])-modules

FπE (
∩rL
G O

×
L,S,T )(p)

))SSS
SSSS

SSSS
SSS

detZ[G](CL,S,T )(p)

∆pL,S,T
55kkkkkkkkkkkkkkk

∆H,pL,S,T ))SSS
SSSS

SSSS
SSSS

FπE (
∩rL
G P)H,(p)

F0PH
(
∩rE

Γ O
×
E,S,T )(p).

(RecP,H)p

55kkkkkkkkkkkkkk

Here the unlabeled arrow denotes the composite

FπE (
∩rL

G
O×
L,S,T )(p) → FπE (

∩rL

G
P)(p) → FπL(

∩r

G
P)H,(p)

of the natural inclusion and projection maps.

Proof. The inclusion im(∆p
L,S,T ) ⊆ FπE (

∩rL
G O

×
L,S,T )p is an easy consequence of Lemma 7.10.

Given the description of RecPH in §7.4.1, the commutativity of the diagram is then verified
by means of an explicit, and straightforward, diagram chase. �

8. Higher non-abelian Stark elements

In this section we fix data L/K,G, S and T as in §7.

8.1. The general set-up. To describe the general set-up we fix a subring Λ of Q and a
Λ-order A in a semisimple Q-algebra A. We assume that A satisfies the conditions (A1)
and (A2) discussed in §4.2.2 (with R replaced by Λ)

In the sequel we also assume to be given a finitely generated (A,Z[G])-bimodule Π which
satisfies all of the following conditions.

(Π1) Π is a locally-free A-module.
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(Π2) The association W 7→ W ⊗A Π induces an injection from the set of isomorphism
classes of simple right AC-modules to the set of isomorphism classes of simple right
C[G]-modules.

(Π3) Condition (Π2) is true with Π replaced by the dual lattice Π̌ := HomA(Π,A),
regarded as a (A,Z[G])-bimodule by means of the anti-involutions ιA and ι#.

Remark 8.1. Under condition (Π2) one obtains a bijection Π∗ from the set of Wedderburn

components WedA of AC to a subset ΥΠ of Ĝ and hence a commutative diagram of abelian
groups

(32)

K1(Q[G])
NrdQ[G]−−−−−→ ζ(Q[G])×

⊂−−−−→ ζ(C[G])× =
∏
Ĝ
C×

µ1Π

y yιΠ
K1(A)

NrdA−−−−→ ζ(A)×
⊂−−−−→ ζ(AC)

× =
∏

WedA
C×.

Here µ1Π sends the class of an automorphism α of a finitely generated left Q[G]-module V to
the class of the induced automorphism idΠ ⊗Z[G] α of Π⊗Z[G] V and ιΠ sends each element
(zχ)χ∈Ĝ to (zΠ∗(C))C∈WedA .

We particularly have in mind the following two sorts of examples of this sort of data.

Example 8.2. If the algebra A is a direct factor of Q[G] then for any homomorphism of
rings κ : Z[G] → A one can set Aκ := A and Πκ := A. In all cases the lattice Πκ satisfies

the conditions (Π1), (Π2) and (Π3) and ΥΠκ is the subset of Ĝ comprising characters which
occur in AC. The order A satisfies both conditions (A1) and (A2) in the context of Example
4.2(i) and also if A is a regular Λ-algebra of dimension one.

Example 8.3. Let ρ be a representation of the form G→ GLρ(1)(Oρ) for a finite extension

Oρ of Λ. Set Aρ := Oρ and Πρ := Oρ(1)ρ , regarded as an (Oρ,Z[G])-bimodule via ρ. Then
this data satisfies the conditions (A1), (A2), (Π1), (Π2) and (Π3) and one has ΥΠρ = {ρ}.

8.2. The associated functors. The bimodule Π fixed above gives rise to functors M 7→
ΠM and M 7→ ΠM from the category of left G-modules to the category of left A-modules
by setting

ΠM := H0(G,Π⊗Z M) and ΠM := H0(G,Π⊗Z M) = Π⊗Z[G] M,

where the left action of G on the tensor product is via g(π ⊗m) = (π)g−1 ⊗ g(m). These
functors are respectively left and right exact.

If N is any G-module for which Π⊗Z N is a cohomologically-trivial G-module, then the
map

TrΠ,N : H0(G,Π⊗Z N)→ H0(G,Π⊗Z N)

induced by sending each element π ⊗ n of Π⊗Z N to
∑

g∈G g(π ⊗ n) is an isomorphism of
A-modules.
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In particular, if ι : M → P belongs to a strict family P of locally-free pre-envelopes of
M , then the upper left hand arrow in the commutative diagram

ΠP
TrΠ,P←−−−− ΠP

⊂−−−−→ Q · ΠP

Πι

x xΠι

xQ·Πι

ΠM ←−−−−
TrΠ,M

ΠM −−−−→ Q · ΠM

is bijective, where we abbreviate the tensor product ‘Q⊗Z’ to ‘Q·’. In addition, the
commutativity of this diagram combines with the bijectivity of TrΠ,Q·M to imply that

im((TrΠ,P )
−1 ◦ Πι) is contained in the image of the injective map Q · Πι and so for any

A-submodule N of M we may define an A-submodule of Q · ΠM by setting

(33) Π
PN := ((Q · Πι)−1 ◦ (TrΠ,P )−1 ◦ Πι)(N).

This construction induces a faithful exact covariant functor from the category of A-
submodules of M to the category of A-submodules of Q · ΠM . It is straightforward to see
that this functor is independent of the choice of representative ι of the strict family P and
hence, as the notation suggests, depends only on Π and P.

8.3. Higher derivatives of equivariant L-series. For any set of data L, S,Π as above
we write ∆Π

L,S,T for the set of surjective homomorphisms of A-modules

π : ΠStrS,T (Gm/L)→ Yπ

in which Yπ is locally-free and then set

rΠL,S := max{rkA(Yπ)}π∈∆Π
L,S,T

.

In the sequel we shall write Mtf for the quotient of an A-module M by its R-torsion
submodule Mtor.

Remark 8.4. If ΠXL,S = (ΠStrS,T (Gm/L))tf is a locally-free A-module, as is automatically

the case if A is a Dedekind domain, then it is clear that rΠL,S = rkA(ΠXL,S). In general, if
one fixes any place v in S, then ΠYL,S\{v} is a quotient of ΠXL,S and so the exact sequence

(27) implies that rΠL,S ≥ |SΠ
v | with

SΠ
v := {v′ ∈ S \ {v} : the A-module H0(Gv′ ,Π)tf is both non-zero and locally-free}

where Gv′ denotes the decomposition subgroup in G of some choice of place of L above v′.
Note also that, in the setting of Example 8.2, the Aκ-module H0(Gv′ ,Πκ)tf is non-zero and
locally-free if κ sends each element of Gv′ to the identity of A.

For an irreducible character χ of G, we denote by LS,T (χ, z) the S-truncated T -modified
Artin L-function for χ. For a non-negative integer r with r ≤ ords=0LS,T (χ, z), we set

LrS,T (χ, 0) := lim
z→0

z−rLS,T (χ, z).

For each π in ∆Π
L,S,T we then define an element of ζ(C[G]) by setting

θπS,T (0) :=
∑
χ∈ΥΠ

eχL
rπ(χ)
S,T (χ, 0).
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Here, as before, eχ denotes the primitive central idempotent χ(1)
|G|
∑

σ∈G χ(σ)σ
−1, and we

have also set
rπ(χ) := dimC(Wχ ⊗AC (C·Yπ))

where for each χ in ΥΠ we choose a simple right AC-module Wχ for which the associated
C[G]-module Wχ ⊗AC (C ·Π) has character χ.

We also define a central idempotent of A by setting

eπ :=
∑

e

where the sum runs over all primitive central idempotents e of A for which e(Q · ker(π))
vanishes.

Lemma 8.5. Fix π in ∆Π
L,S,T . Then one has θπS,T (0) = eπθ

π
S,T (0) and, in addition, θπS,T (0) =

0 unless rkA(Yπ) = rΠL,S.

Proof. For each χ in Ĝ set Vχ :=Wχ⊗AC (C ·Π). Then, since this module has character χ,
an analysis of the functional equation of Artin L-series shows that the order of vanishing
at z = 0 of the meromorphic function LS,T (χ, z) is equal to

(34) ordz=0LS,T (χ, z) = dimC(H
0(G,HomC(Vχ̌,C·XL,S)))

(for details see, for example, [49, Chap. I, Prop. 3.4]). Taken together with the natural
isomorphisms of vector spaces

H0(G,HomC(Vχ̌,C ·XL,S)) ∼= H0(G,HomC(Vχ̌,C·XL,S)) ∼= H0(G,Vχ ⊗C C·XL,S)

∼= Vχ ⊗C[G] (C·XL,S) ∼=Wχ ⊗AC (C · ΠXL,S)

(where the last isomorphism follows from the definition of ΠXL,S) this shows that

ordz=0LS,T (χ, z) = dimC(Wχ ⊗AC (C · ΠXL,S)) = rπ(χ) + dimC(Wχ ⊗AC ker(π)).

This formula implies, in particular, that if the space Wχ⊗AC ker(π) does not vanish, then

L
rπ(χ)
S,T (χ, 0) = 0. This in turn implies the claimed equality θπS,T (0) = eπθ

π
S,T (0) since each

character χ in ΥΠ for which Wχ ⊗AC ker(π) vanishes corresponds (via the projection ιΠ in
(32)) to a unique primitive central idempotent e of A for which e(Q · ker(π)) vanishes.

The second claim of the lemma also follows from the same argument. This is because if
rkA(Yπ) ̸= rΠL,S , then rkA(Yπ) < rΠL,S so that Q · ker(π) contains a submodule isomorphic to

A and hence Wχ ⊗AC ker(π) does not vanish for any χ in ΥΠ. �
The following examples show that in several cases the elements θπS,T (0) recover elements

that occur in the theory of refined Stark conjectures.

Example 8.6. Fix a normal subgroup H of G and write κ = κH for the natural projection
map Z[G] → Z[G/H]. Then, in the notation of Example 8.2, one has Aκ = Z[G/H] and

ΥQ[G/H] = Ĝ/H ⊆ Ĝ, whilst Remark 8.4 implies that, for any fixed place v0 of S, one has

rΠκL,S ≥ |ΣHv0 | with ΣHv0 the set of places in S \ {v0} which split completely in LH/K. In this
setting we write

π
G/H,v0
L/K,S,T : ΠκStrS,T (Gm/L) ∼= StrS,T (Gm/L

H)→ XLH ,S → YLH ,ΣHv0
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for the composite surjection of G/H-modules, where the first arrow is as in (27) and the

second is the natural projection. Then, after abbreviating π
G/H,v0
L/K,S,T to π, one finds that

θπS,T (0) coincides with the ‘higher-order Stickelberger element’ θ
(r′)
LH/K,S,T

(0) defined by the

first author in [7] with r′ := |ΣHv0 |.

Example 8.7. In the setting of Example 8.3 there is a natural composite surjection of
Oρ-modules

πρL/K,S,T : ΠρStrS,T (Gm/L)→ (ΠρStrS,T (Gm/L))tf ∼= (ΠρXL,S)tf ,

where the isomorphism is induced by applying the (right exact) functor M 7→ ΠρM to the
exact sequence (27). Then, abbreviating πρL/K,S,T to π, one finds that θπS,T (0) = eρL

∗
S,T (ρ, 0),

where we write L∗
S,T (ρ, 0) for the leading term of LS,T (ρ, z) at z = 0.

8.4. The definition of higher non-abelian Stark elements. In the sequel we write

(35) RL,S : R · O×
L,S → R ·XL,S

for the isomorphism of R[G]-modules which at each u ∈ O×
L,S satisfies

RL,S(u) = −
∑
w∈SL

log|u|w · w,

where | · |w denotes the normalised absolute value at w.
We fix π in ∆Π

L,S,T and, following Lemma 8.5, assume the locally-free A-module Yπ has

rank r := rΠL,S . We then choose a subset b = {bi}1≤i≤r of Yπ which spans a full free
A-submodule.

The definition of the idempotent eπ implies that RL,S induces an isomorphism of ζ(eπAC)-
modules

λπL,S : eπ(
∧r

AC
C · ΠO×

L,S)
∼→ eπ(

∧r

AC
C · Yπ)

and, since θπS,T (0) = eπθ
π
S,T (0) (by Lemma 8.5), one has θπS,T (0) · ∧i=ri=1bi ∈ im(λπL,S). We

may therefore make the following definition.

Definition 8.8. For any subset b as above the ‘higher non-abelian Stark element (relative
to b)’ in eπ(

∧r
AC

C · ΠO×
L,S) is obtained by setting

ϵπb := (λπL,S)
−1(θπS,T (0) · ∧i=ri=1bi).

The following examples show that this definition provides a common generalization of
constructions that have been made in the literature.

Example 8.9. Assume S contains all places which ramify in L/K. Fix v0 in S and

abbreviate the homomorphism πG,v0L/K,S,T defined in Example 8.6 to π. For each v in Σ
{id}
v0

fix a place wv of L above v and set b := {wv : v ∈ Σ
{id}
v0 }. Then the data (b, π) is suitable

to be used in Definition 8.8 and so we may set

ϵv0L/K,S,T := ϵπb .
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We refer to this element as the ‘non-abelian Rubin-Stark element’ with respect to the data

L/K, S, T and v0. If v0 does not split completely in L/K, then Σ
{id}
v0 and hence also ϵv0L/K,S,T

is independent of v0. In addition, if we set r := |Σ{id}
v0 |, assume G is abelian and for each

ψ ∈ Ĝ take the elements vψ,j that are used in the definition (1) of exterior powers to be eψ,
then the discussion of Example 8.6 implies that ϵv0L/K,S,T coincides with the element ϵS,T of

R · ∧rZ[G]O
×
L,S that occurs in the statement of the Rubin-Stark Conjecture [44, Conj. B′].

Example 8.10. As a generalization of Example 8.9 one can assume S contains all places
which ramify in L/K and, in addition, that for some fixed place v0 in S there exists a

non-negative integer r such that if for every character χ in Ĝ we set Lχ := Lker(χ), then
the set Σχv0 of places in S \ {v0} which split completely in Lχ/K has cardinality at least r.
The elements ϵv0Lχ/K,S,T are then defined as in Example 8.9 and can be combined to give an

element

ϵv0,∗L/K,S,T :=
∑
χ∈Ĝ

1

| ker(χ)|rχ(1)
eχ(ϵ

v0
Lχ/K,S,T

)

of ∧rR[G]R · O
×
L,S . If G is abelian and we choose vψ,j = eψ for each index j (as in Example

8.9), then [19, Prop. 4.7] implies that this element coincides with the element εL/K,S,T,r that
occurs in the ‘generalized Rubin-Stark Conjecture’ formulated by Emmons and Popescu in
[19, Conj. 3.8].

Example 8.11. Assume the notation and hypotheses of Examples 8.3 and 8.7. Abbreviate
the homomorphism πρL/K,S,T to π, set O := Oρ and write E for the quotient field of O
and r for the rank of the (locally-free) O-module (ΠρXL,S)tf . Let b = {bi}1≤i≤r be any
subset of (ΠρXL,S)tf that is linearly independent over O. Then the data (b, π) can be used
in Definition 8.8 and, in this case, the elements ϵπb are related to those that occur in the

refined Stark conjecture of [7, Conj. 2.6.1]. In particular, if r = 1 and ρ is non-trivial, then
there is a unique place v in S for which H0(G,Πρ) is infinite for any choice of place w of L
above v and, for suitable primitive idempotents fρ of E[G], the elements ϵπ{|G|·fρ(w)} recover

the elements that are studied in Stark’s original articles [47, 48] and the subsequent article
of Chinburg [14]. For details of these connections see the discussion of §13.2.

Part III: Conjectures and Results

9. Statement of the conjectures

We continue to fix data L/K,G, S and T as in §7 and §8.

9.1. Non-abelian zeta elements and the central conjecture. In this first section
we define the key notion of ‘non-abelian zeta element’, formulate our central conjecture
concerning these elements and describe some basic properties of this conjecture.
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9.1.1. The equivariant L-function associated to the data L/K, S and T is defined by setting

θL/K,S,T (z) :=
∑
χ∈Ĝ

LS,T (χ̌, z)eχ,

where χ̌ is the contragredient of χ.
The leading term of θL/K,S,T (z) at z = 0 is then defined by setting

θ∗L/K,S,T (0) :=
∑
χ∈Ĝ

L∗
S,T (χ̌, 0)eχ

and is easily shown to belong to ζ(R[G])×.
The Dirichlet regulator isomorphism (35) combines with the general construction (22) to

give a canonical isomorphism of ζ(C[G])-modules

ϑC⊗RRL,S : detC[G](C · CL,S,T )→ ζ(C[G]).
In the sequel we denote this isomorphism by λL,S .

It can be shown that the full pre-image under λL,S of the subspace ζ(R[G]) of ζ(C[G])
is equal to detR[G](R · CL,S,T ) = R · detZ[G](CL,S,T ) and this fact allows us to make the
following definition.

Definition 9.1. The ‘zeta element ofGm relative to L/K, S and T ’ is the pre-image zL/K,S,T
in R · detZ[G](CL,S,T ) of θ

∗
L/K,S,T (0) under the isomorphism λL,S .

This notion is a natural extension of that introduced (in the setting of abelian extensions
L/K) in [11].

The central conjecture that we make concerning these non-abelian zeta elements is the
following.

Conjecture 9.2. zL/K,S,T is a locally-primitive basis of detZ[G](CL,S,T ).

Remark 9.3. If G is abelian, then ξ(Z[G]) = Z[G] (see Lemma 3.2) and Corollary 6.18
implies that every basis of the Z[G]-module detZ[G](CL,S,T ) is automatically a primitive
basis. Conjecture 9.2 is thus equivalent in this case to asserting that zL/K,S,T is a basis of
the Z[G]-module detZ[G](CL,S,T ) and so recovers the central conjecture of [11].

9.1.2. In this section we record several properties of Conjecture 9.2 that will be useful in
the sequel.

To state our first result we fix a bimodule Π as in §8.1 and write zΠL/K,S,T for the image

of zL/K,S,T under the projection map

(36) R · detZ[G](CL,S,T ) ⊂
∏
χ∈Ĝ

detC(HomC[G](Vχ,C · CL,S,T ))

−→
∏
χ∈ΥΠ

detC(HomC[G](Vχ,C · CL,S,T )) ∼= C · detA(Π⊗L
Z[G] CL,S,T )

where the isomorphism is induced by the bijection Π∗ : WedA → ΥΠ described in Remark
8.1. We also write Υsymp

Π for the subset of ΥΠ comprising (irreducible) characters χ for
which the complex algebra (Π∗)

−1(χ) is induced from a Wedderburn component of AR that
is a matrix ring over the division ring of real quaternions.
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Proposition 9.4. Assume Conjecture 9.2 is valid.

(i) Then zΠL/K,S,T is a locally-primitive basis of detA(Π⊗L
Z[G] CL,S,T ).

(ii) If L∗(χ, 0) is positive for all characters χ in Υsymp
Π , then zΠL/K,S,T is a primitive

basis of detA(Π⊗L
Z[G] CL,S,T ).

Proof. We choose a representative P → F of the complex CL,S,T as in Proposition 7.8

and note that Π ⊗L
Z[G] CL,S,T is then represented by the induced complex of A-modules

Π⊗Z[G] P → Π⊗Z[G] F .
For each prime p the Zp[G]-modules Pp and Fp are free of the same rank, e say, and so

we may fix bases {b0,i}1≤i≤e and {b1,i}1≤i≤e. For each p we can also fix a basis {πj}1≤j≤k
of the free Ap-module Πp.

Then the sets {πj ⊗Qp[G] ba,i}1≤j≤k,1≤i≤e are Ap-bases of (Π ⊗Z[G] P )p (for a = 0) and
(Π⊗Z[G] F )p (for a = 1) and, writing πΠ for the projection map (36) one has

πA((∧i=ei=1b0,i)⊗ (∧i=ei=1b
∗
1,i)) = (∧i=ei=1(∧

j=k
j=1πj ⊗ b0,i))⊗ (∧i=ei=1(∧

j=k
j=1(πj ⊗ b1,i)

∗))

where the exterior powers and tensor products on the left hand side are taken over Qp[G]
and on the right hand side over Ap.

The assertion of claim (i) now follows because πA(zL/K,S,T ) = zΠL/K,S,T .

Claim (ii) is proved in §11.3. �

Remark 9.5. Conjecture 9.2 implies that for all primes p the zeta element zL/K,S,T is a
primitive ξ(Z(p)[G])-basis of detZ[G](CL,S,T )(p) = detZ(p)[G](Z(p)⊗ZCL,S,T ). In the sequel we

shall refer to this assertion for any fixed prime p as the ‘p-component of Conjecture 9.2’.
We will also refer to the explicit predictions in Proposition 9.4 concerning zΠL/K,S,T as the

‘Π-component of Conjecture 9.2’.

We next record a dual version of Conjecture 9.2 that will be useful in the sequel. To do
this we set

C∗
L,S,T := RHomZ(CL,S,T ,Z)[−1],

endowed with the natural contragredient action of G. Then C∗
L,S,T belongs to Dlf,0(Z[G]),

is acyclic outside degrees zero and one and there is an identification

C ·Ha(C∗
L,S,T ) = HomC(H

1−a(CL,S,T ),C)

for a = 0 and a = 1. One can therefore define an isomorphism of ζ(C[G])-modules

λ∗L,S : detC[G](C · C∗
L,S,T )→ ζ(C[G])

just as for λL,S except that the role of RL,S is now played by its linear dual HomR(RL,S ,R).

Definition 9.6. The ‘dual zeta element of Gm relative to L/K,S and T ’ is the pre-image
z∗L/K,S,T in R · detZ[G](C

∗
L,S,T ) of ι#(θ

∗
L/K,S,T (0)) under the isomorphism λ∗L,S .

Lemma 9.7. Conjecture 9.2 is valid if and only if z∗L/K,S,T is a locally-primitive ξ(Z[G])-
basis of detZ[G](C

∗
L,S,T ).
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Proof. This is a straightforward consequence of a following (easy) fact concerning linear
duals.

Let λ : V → W be an isomorphism of free rank one ζ(C[G])-modules. Fix basis el-
ements v and w of V and W and write v∗ and w∗ for the corresponding dual bases of
Homζ(C[G])(V, ζ(C[G])) and Homζ(C[G])(W, ζ(C[G])). Then if x is the element of ζ(C[G])×
defined by the equality λ(v) = x · w in W one has

Homζ(C[G])(λ, ζ(C[G]))(w∗) = ι#(x) · v∗

in Homζ(C[G])(W, ζ(C[G])). �

9.1.3. To end this section we record a simple functorial property of zeta elements which is
unconditionally true and will be used in the sequel.

Lemma 9.8. Fix a normal subgroup H of G and identify XLH ,S with a submodule of XL,S

in the manner described at the beginning of §7.2.2. Then the zeta element zLH/K,S,T is equal
to the image of zL/K,S,T under the homomorphism

R · detZ[G](CL,S,T )→ R · ζ(Z[G/H])⊗ζ(Z[G]) detZ[G](CL,S,T ) ∼= R · detZ[G/H](CLH ,S,T )

induced by applying Proposition 6.8(iii) to the canonical isomorphism Z[G/H]⊗L
Z[G]CL,S,T

∼=
CLH ,S,T described in Lemma 7.4(ii).

Proof. This is verified by a concrete computation that uses the following two facts. The
image of θ∗L/K,S,T (0) under the natural projection map ζ(R[G]) → ζ(R[G/H]) is equal to

θ∗
LH/K,S,T

(0) and, with respect to the stated identification of XLH ,S with a submodule of

XL,S , the argument of Tate in [49, Chap. I, §6.5] shows that there is a commutative diagram
of G-modules

O×
L,S,T

RL,S−−−−→ R ·XL,Sx ⊆
x

O×
LH ,S,T

R
LH,S−−−−→ R ·XLH ,S ,

in which the left hand vertical arrow is the natural inclusion. �

9.2. Statement of explicit consequences. In this section we describe several concrete
consequences of Conjecture 9.2.

To do this we shall use the hypotheses and notation of §8. In particular we fix a surjective
homomorphism of A-modules

π : ΠStrS,T (Gm/L)→ Yπ

in ∆Π
L,S,T and assume (as we may, following Lemma 8.5) that rkA(Yπ) = rΠL,S .

In addition, we write χΠ for the A-valued character of (the free A-module) Q ·Π and set

prΠ :=
∑
g∈G

χΠ(g)⊗ g−1 ∈ A[G].

For any additive homomorphism ϵ : A → Q we also write ϵG for the homomorphism
A[G]→ Q[G] sending each element

∑
g∈G agg to

∑
g∈G ϵ(ag)g.
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Theorem 9.9. Fix π in ∆Π
L,S,T as above, set r := rΠL,S and fix a set b = {bi}1≤i≤r which

spans a full free A-submodule Yb of Yπ.
Then if the Π-component of Conjecture 9.2 is valid so are all of the following claims.

(i) The transpose Selmer group ΠStrS,T (Gm/L) has a quadratic A-module presentation

bundle hΠL/K,S,T for which

FI0A(Yπ/Yb)
−1{(∧i=ri=1φi)(ϵ

π
b ) :φi ∈ HomA(

Π
PO×

L,S,T ,A)} = FIrA(h
Π
L/K,S,T ).

(ii) If L∗(χ, 0) is positive for every χ in Υsymp
Π , then ΠStrS,T (Gm/L) has a quadratic

A-module presentation hΠ,globalL/K,S,T for which

FI0A(Yπ/Yb)
−1{(∧i=ri=1φi)(ϵ

π
b ) :φi ∈ HomA(

Π
PO×

L,S,T ,A)} = FIrA(h
Π,global
L/K,S,T ).

(iii) Let S′ be any subset of S with S∞
K ⊆ S′ and such that the composite homomorphism

(ΠXL,S′)tf → (ΠXL,S)tf ∼= ΠStrS,T (Gm/L)tf −→ Yπ

has finite cokernel, where the first arrow is induced by the inclusion XL,S′ ⊆ XL,S

and the last arrow by π.
Then for any elements a of A(A) · AnnA(TorG1 (Π,O×

L,S′,T )) and (φi)1≤i≤r of

HomA(
Π
PO

×
L,S,T ,A)r and any additive homomorphism ϵ : A → Z one has

ϵG(a(∧i=ri=1φi)(ϵ
π
b ) · prΠ) ∈ AnnZ[G](Cl

T
S′(L)).

To state the first corollary of this result we specialize to the setting of Example 8.9. We
recall, in particular, that in this context VL denotes the subset of S \{v0} comprising places
which split completely in L/K.

Corollary 9.10. Let the place v0 be chosen as in Example 8.9 and set V := VL and r := |V |.
Then if Conjecture 9.2 is valid for L/K so are all of the following claims.

(i) The transpose Selmer group StrS,T (Gm/L) has a quadratic G-module presentation
bundle hL/K,S,T for which

ξ(Z[G]){(∧i=ri=1φi)(ϵ
v0
L/K,S,T ) :φi ∈ HomG(O×

L,S,T ,Z[G])} = FIrZ[G](hL/K,S,T ).

(ii) If L∗(χ, 0) is positive for every irreducible symplectic character χ of G, then StrS,T (Gm/L)

has a G-module presentation hglobalL/K,S,T for which

ξ(Z[G]){(∧i=ri=1φi)(ϵ
v0
L/K,S,T ) :φi ∈ HomG(O×

L,S,T ,Z[G])} = FIrZ[G](h
global
L/K,S,T ).

(iii) For any a in A(G) and (φi)1≤i≤r in HomG(O×
L,S,T ,Z[G])

r one has

a · (∧i=ri=1φi)(ϵ
v0
L/K,S,T ) ∈ AnnZ[G](Cl

T
S′(L))

with S′ := S∞
K ∪ VL ∪ {v0}.

(iv) (a) For every prime p there exists an element ζ of detZ[G](CL,S,T )(p) with the fol-

lowing property: for every normal subgroup H of G, with E := LH , one has

∆H,p
L,S,T (ζ) = ϵv0E/K,S,T with ∆H,p

L,S,T the homomorphism defined in §7.5.



71

(b) For all normal subgroups H of G, with E = LH , one has

ρπ,H(ϵ
v0
L/K,S,T ) = RecPH(ϵ

v0
E/K,S,T )

with ρπ,H the natural projection FπE (
∩r
GO

×
L,S,T )→ FπE (

∩r
GPL,S,T )H .

Remark 9.11. The predictions in Corollary 9.10 incorporate simultaneous refinements and
generalizations of several well-known conjectures. For example, claim (i) implies ϵv0L/K,S,T
belongs to

∩r
GO

×
L,S,T and Remark 3.4 implies this containment is a natural generaliza-

tion (to non-abelian extensions) of the Rubin-Stark Conjecture for L/K. Taken together,
claims (i), (ii) and (iii) constitute a strong refinement of the central conjecture (Conjecture
2.4.1) formulated by the first author in [7] (and hence also, by specializing to the case that
r = 0, of the ‘non-abelian Brumer Conjecture’ formulated by Nickel in [41]). Proposition
7.3(iii) implies that claim (iv) provides a natural generalization to non-abelian extensions
of the congruence relations between derivatives of Dirichlet L-series that were formulated
independently by the second author [45] and by Mazur and Rubin [39].

By specializing Theorem 9.9 to the setting of Example 8.11 one obtains a refinement of
the general refined Stark conjecture of [7, Conj. 2.6.1] (and hence of the earlier conjecture
formulated by the first author in [6]). For more details see Remark 13.2.

In the next result we make this refinement explicit in the context of the algebraic units
that were first discussed by Stark [48] and later conjectured to exist by Chinburg in [14,
Conj. 1].

In this regard we recall from Example 8.11 that if ψ is non-trivial and such that LS,T (ψ, z)
vanishes to order one at z = 0, then there is a unique place v1 in S for which the module
H0(Gw1 ,Πψ) is infinite, where Gw1 is the decomposition subgroup in G of any fixed place
w1 of K above v1.

Corollary 9.12. Assume K is a number field, ψ has degree two, LS,T (ψ, z) vanishes to
order one at z = 0, |S| > 1 and the unique place v1 in S for which H0(Gw1 ,Πψ) is not
finite is archimedean. Fix an embedding of L in C corresponding to w1 and use this to
regard L as a subfield of C.

If the Πψ-component of Corollary 9.2 is valid, then the element

ϵS,T,ψ := exp(−
∑

γ∈GEψ/Q

L′
S,T (ψ

γ , 0))

is a real unit in L which has all of the following properties:-

(i) either ϵS,T,ψ or −ϵS,T,ψ is congruent to 1 modulo all of the places in TL;
(ii) |ϵS,T,ψ|w = 1 if w is any place of L that does not lie above v1;
(iii) for g ∈ G one has − log |g−1(ϵS,T,ψ)|w1 =

∑
γ∈GEψ/Q

(ψγ(g) + ψγ(gτ))L′
S,T (ψ

γ , 0)

with τ the (unique) non-trivial element of Gw1;
(iv) for ϕ in HomG(O×

L ,Z[G]) one has 2−2|G|3ϕ(ϵS,T,ψ) ∈ AnnZ[G](Cl
T (L)).

Remark 9.13. The discussion following [6, Prop. 3.3] shows that properties (i), (ii) and
(iii) in Corollary 9.12 imply ϵS,T,ψ is an algebraic unit of the sort first discussed by Stark
[48] and later conjectured to exist by Chinburg in [14, Conj. 1]. A containment of the
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form stated in Corollary 9.12(iv) was first predicted in [7, Prop. 12.2.1], but this earlier
conjecture is weaker than claim (iv) in that it uses the factor |G|4 in place of |G|3 and Cl(L)
in place of the larger group ClT (L). In particular, by showing that the result of [7, Prop.
12.2.1] is not best possible, Corollary 9.12 now answers the question raised explicitly in [7,
Rem. 12.2.2].

10. Statement of the main evidence

In this section we state the main evidence that we have in support of Conjecture 9.2 and
the consequences of it that are described in §9.2.

To do this we refer to the ‘leading term conjecture’ formulated by the first author in [7,
§6.1, Conj. LTC(L/K)]. This conjecture is an equality in the relative algebraic K-group
K0(Z[G],R[G]).

For any bimodule Π as in §8.1 we use the homomorphism

(37) µrelΠ : K0(Z[G],R[G])→ K0(A, AC)

that is induced by the functor Π⊗Z[G] −.
Theorem 10.1. Let Π be a bimodule as in §8.1. Then the Π-component of Conjecture 9.2
is valid if and only if the equality of LTC(L/K) is valid modulo ker(µΠ).

By specializing this result to the setting of Example 8.9 one obtains the following im-
mediate consequence. We note that, in view of Remark 9.11 and the fact that we now
make no assumptions on the torsion subgroup of O×

K , this consequence constitutes a strong
refinement of the main result (Theorem 4.1.1) of [7].

Corollary 10.2. If LTC(L/K) is valid, then Conjecture 9.2, and hence also claims (i),
(ii), (iii) and (iv) of Corollary 9.10, are valid.

Remark 10.3. In the context of Example 8.10 the methods used below will also allow one
to prove a generalization of Corollary 10.2 that refines the conjectures that are formulated
by Erickson and Stark [21, Conj. 4.1], by Emmons and Popescu [19, Conj. 3.8] and by
Vallieres [50, Conj. 4.16]. For details see the forthcoming work of Livingstone-Boomla.

If L is abelian over Q, then for any subfield K the validity of LTC(L/K) has been proved
by Greither and the first author [10] and by Flach [23]. If L has positive characteristic, then
the validity of LTC(L/K) was also recently proved in [8, Cor. 1.3]. Corollary 10.2 therefore
leads directly to the following result.

Corollary 10.4. Conjecture 9.2, and hence also claims (i), (ii), (iii) and (iv) of Corollary
9.10, are valid if L is either an abelian extension of Q or has positive characteristic.

Aside from the cases considered in Corollary 10.4 there are also special classes of non-
abelian Galois extensions of number fields for which LTC(L/K) has been verified and so
Corollary 10.2 implies the validity of Conjecture 9.10. For details of these cases (that are
due to several different authors) we refer the reader to the comprehensive survey given by
Johnston and Nickel in [31, §4.3] and to their results in [31, §4.6].

Corollary 10.2 can also be combined with previous work of the first author to relate
Conjecture 9.2 to earlier conjectures of Gross and of Serre and Tate and hence obtain the
following supporting evidence.
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In the sequel we write Ecyc for the cyclotomic Zp-extension of a number field E and µp(E)
for the p-adic µ-invariant of the extension Ecyc/E. We recall that Iwasawa has conjectured
in [28] that µp(E) should always vanish.

Corollary 10.5. Let L be a CM Galois extension of a totally real field K with group G.
Let p be an odd prime which either does not divide |G| or is such that µp(L) vanishes.

(i) If p is tamely ramified in L/K and the p-adic Stark Conjecture at s = 1 of Serre
and Tate is valid for all totally even characters of G, then the p-part of Conjecture
9.2 is valid after taking plus parts.

(ii) If the p-adic Gross-Stark Conjecture is valid for all totally odd characters of G, then
the p-part of Conjecture 9.2 is valid after taking minus parts.

The proof of Corollary 10.5(i) shows that the condition that p is tamely ramified can
actually be replaced by the more general hypothesis that the ‘local epsilon constant conjec-
ture’ of Breuning [3] is valid for all extensions that are obtained by p-adically completing
L/K. For more details see §13.3 (and, in particular, Remark 13.4).

Corollary 10.5(ii) combines with the results of Ventullo [51] to obtain unconditional ver-
ifications of the p-part of Conjecture 9.2 in the technically most difficult case that L/K
is a non-abelian extension of number fields, p divides |G| and the relevant p-adic L-series
possess trivial zeroes. For example, in §13.4 we will use this approach to prove the following
result.

Corollary 10.6. Let L/K be a finite CM Galois extension for which G is the semi-direct
product of an abelian group A by a supersolvable group. Assume that the field FA is totally
real and has at most one p-adic place which splits completely in F/F+ and that µp(F

P )
vanishes where P is any given subgroup of G of p-power order. Then the p-component of
Conjecture 9.2 is valid after taking minus parts.

Example 10.7. If, in the notation of Corollary 10.6, the field FP is abelian over Q, then
µp(F

P ) vanishes by Ferrero-Washington [22]. In particular, if in any such case the field
FA has only one p-adic place, then Corollary 10.6 implies the unconditional validity of
Conjecture 9.2 after p-localization and taking minus parts. It is straightforward to describe
families of non-abelian extensions which satisfy these hypotheses.
(i) Let F be a real quadratic field in which p does not split and assume that L is a CM
abelian extension of F of exponent 2pn for some natural number n. One can then set K = Q
and A = GL/F and assume that L/K is Galois with (generalised) dihedral Galois group.

Then LA = F , P is normal in G and the quotient group G/P is abelian, as required.
(ii) Let E be a totally real A4 extension of Q with the property that 3 does not split in its
unique cubic subfield. Then for any imaginary quadratic field F the field L := EF is a CM
Galois extension of Q and GL/Q is of the form AoZ/3 with A := Z/2×Z/2×Z/2 (where
Z/3 acts trivially on one copy of Z/2 and cyclically permutes the non-trivial elements in
the remaining factor Z/2×Z/2) and so is abelian-by-cyclic. The field LA is then the unique
cubic subfield of L and so is totally real with only one 3-adic place and the field E1 := LAF
is abelian over Q so µ3(E1) vanishes. One can also show that if µ3(E2) vanishes for any
given quadratic extension E2 of E1 in L, then µ3(L) also vanishes and so Corollary 10.6
applies to the extension L/Q.
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Remark 10.8. A similar approach to that used above also allows one to construct many
concrete examples in which all of the hypotheses of [9, Cor. 3.3] are satisfied by characters
that are both faithful and of arbitrarily large degree. For all such examples one therefore
obtains a p-adic analytic construction of p-units that both generate non-abelian Galois
extensions of totally real fields and also encode explicit structural information about ideal
class groups, thereby extending and refining the p-adic analytic approach to Hilbert’s twelfth
problem this is described for linear p-adic characters by Gross in [27, Prop. 3.14]. In the
same way one deduces that these examples verify a natural p-adic analogue of a question of
Stark in [48] and a conjecture of Chinburg in [14] which were both formulated in the setting
of characters of degree two. For more details see Remark 13.5.

Finally we note that Theorem 10.1 combines with the argument of [7, §12.1] to obtain
the following more concrete result.

Corollary 10.9. A character ψ in Ĝ validates the Strong-Stark Conjecture if and only if
the Tψ-component of Conjecture 9.2 is valid. In particular, for any such character the result
of Corollary 9.12 is valid unconditionally.

In the context of this result recall that Tate has proved that any rational valued character
validates the Strong-Stark Conjecture [49, Ch. II, Th. 6.8]. Note also that all characters of
G are rational valued if G is a symmetric group of any degree or a group of exponent two
or the quaternion group of order 8.

This shows, in particular, that Corollary 10.9 has the following unconditional conse-
quence.

Corollary 10.10. Assume K is a number field, ψ is rational valued and of degree two,

rS(ψ) = 1, |S| > 1 and the unique place v1 in S for which V
Gw1
ψ does not vanish is

archimedean. Write τ for the non-trivial element of Gw1 and fix an embedding of L in C
corresponding to w1 which is used to regard L as a subfield of C.

Then ϵS,T,ψ := exp(−L′
S,T (ψ, 0)) is a real unit in L with the following properties.

(i) Either ϵS,T,ψ or −ϵS,T,ψ is congruent to 1 modulo all of the places in TL.
(ii) |ϵS,T,ψ|w = 1 if w is any place of K that does not lie above v1.
(iii) For g ∈ G one has − log |g−1(ϵS,T,ψ)|w1 = (ψ(g) + ψ(gτ))L′

S,T (ψ, 0).

(iv) For ϕ ∈ HomG(O×
L ,Z[G]) one has 2−2|G|3ϕ(ϵS,T,ψ) ∈ AnnZ[G](Cl

T (L)).

11. Zeta elements and the leading term conjecture

In this section we explicitly compute the zeta element zL/K,S,T and then use this descrip-
tion to prove Theorem 10.1. We also complete the proof of Proposition 9.4.

11.1. Explicit computation of the zeta element. We fix a representative of CL,S,T of
the form P 0 → P as in Proposition 7.8 so that there is a tautological exact sequence

(38) 0→ O×
L,S,T

ι−→ P 0 ϕ−→ P
ϖ−→ StrS,T (Gm/L)→ 0.

Since CL,S,T belongs to Dlf,0(Z[G]) we may also, and will, assume that Q · P 0 = Q · P .
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Since the algebra Q[G] is semisimple there exist Q[G]-equivariant sections ι1 and ι2 to
the surjections Q · P = Q · P 0 → Q · im(ϕ) and Q · P → Q · StrS,T (Gm/L) that are induced

by ϕ and ϖ respectively. We thereby obtain a direct sum decomposition of R[G]-modules

R · P = (R · O×
L,S,T )⊕ (R⊗Q ι1)(R · im(ϕ))

and we use this to define ⟨ϕ, ι1, ι2⟩ to be the unique automorphism of the (free) R[G]-module
R · P that is equal to (R⊗Q ι2) ◦RL,S on R · O×

L,S,T and to R⊗Z ϕ on (R⊗Q ι1)(R · im(ϕ)).

Lemma 11.1. For any choice of Q[G]-basis {bi}1≤i≤e of Q · P 0 = Q · P one has

zL/K,S,T = θ∗L/K,S,T (0)NrdR[G](⟨ϕ, ι1, ι2⟩)−1 · (∧i=ei=1bi)⊗ (∧i=ei=1b
∗
i ).

Proof. An explicit computation shows the isomorphism λL,S defined at the beginning of
§9.1 sends the element (∧i=ei=1bi) ⊗ (∧i=ei=1b

∗
i ) of R · detZ[G](CL,S,T ) to NrdR[G](⟨ϕ, ι1, ι2⟩) in

ζ(R[G]).
Given this, the stated equality is an immediate consequence of the definition of zL/K,S,T .

�
This computation leads to the following reinterpretation of Conjecture 9.2.

Proposition 11.2. Conjecture 9.2 is valid if and only if for every prime p there exists a
unit up of Zp[G] with θ∗L/K,S,T (0) = NrdQp[G](up)NrdR[G](⟨ϕ, ι1, ι2⟩).

If the G-module P in (38) is free, then this condition is satisfied if and only if there is
an element u of K1(Z[G]) with θ∗L/K,S,T (0) = NrdQ[G](u)NrdR[G](⟨ϕ, ι1, ι2⟩).

Proof. Fix a prime p. Then the Z(p)[G]-module P 0
(p) is free of the same rank as P(p) and

so, after making an appropriate adjustment to the map in (38) one can assume both that
P 0
(p) = P(p) and that the elements {bi}1≤i≤e chosen in Lemma 11.1 give a Z(p)[G]-basis of

this module.
In addition, if {b′i}1≤i≤e and {b′′i }1≤i≤e are any other Z(p)[G]-bases of P(p), then Corollary

2.9 implies there exists an invertible matrix Up over Z(p)[G] with

(∧i=ei=1b
′
i)⊗ (∧i=ei=1(b

′′
i )

∗) = NrdQ[G](Up) · (∧i=ei=1bi)⊗ (∧i=ei=1b
∗
i ).

Given this, the formula of Lemma 11.1 shows that zL/K,S,T is a primitive Z(p)[G]-basis of

detZ[G](CL,S,T )(p) if and only if θ∗L/K,S,T (0)NrdR[G](⟨ϕ, ι1, ι2⟩)−1 is equal to NrdQ[G](Up) for

an invertible matrix Up over Z(p)[G].
This implies the first claim because, as Z(p)[G] is semi-local, any such element NrdQ[G](Up)

is equal to NrdQ[G](up) for some unit up of Z(p)[G].

If P 0 is free, then it is isomorphic to P and so, after adjusting the map d in (38), we can
assume that P 0 = P and that the elements {bi}1≤i≤e in Lemma 11.1 constitute a Z[G]-basis
of this module. The rest of the argument now proceeds as above. �
11.2. The proof of Theorem 10.1. Before proving Theorem 10.1 we quickly recall the
statement of LTC(L/K).

Let R be an integral domain of characteristic zero with field of fractions F and A an
R-order in a finite dimensional semisimple F -algebra A. For any extension field E of F we
write AE for the (semisimple) E-algebra E ⊗F A and K0(A, AE) for the relative algebraic
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K-group of the inclusion A ⊂ AE . This group is functorial in the pair (A, AE) and also sits
in a long exact sequence of relative K-theory

(39) K1(A)
∂2A,AE−−−−→ K1(AE)

∂1A,AE−−−−→ K0(A, AE)
∂0A,AE−−−−→ K0(A).

We recall that to each pair (C, t) comprising an object C of Dlf,0(A) for which E ⊗R C is
acyclic outside degrees a and a+ 1 for some integer a and an isomorphism of AE-modules
t : E ⊗R Ha(C) ∼= E ⊗R Ha+1(C) one can define a canonical ‘refined Euler characteristic’
χA(C, t) in K0(A, AE).

In the case R ⊂ Q and E ⊆ R we write

δA,AE : ζ(AE)
× → K0(A, AE)

for the natural ‘extended boundary homomorphism’ and recall that in this case the con-
necting homomorphism ∂1A,AE in (39) factors as

(40) ∂1A,AE = δA,AE ◦NrdAE
where NrdAE denotes the homomorphism K1(AE) → ζ(AE)

× induced by taking reduced
norms. If A = Z[G] and AE = R[G], then we often abbreviate ∂iA,AE and δA,AE to ∂iG and
δG respectively.

In the following result we use, for any bimodule Π as in §8.1, the projection maps µrelΠ
from (37) and ιΠ from (32).

Proposition 11.3. Let Π be a bimodule as in §8.1. Then the equality of LTC(L/K) is
valid modulo ker(µrelΠ ) if and only if one has

δA,AR(ιΠ(θ
∗
L/K,S,T (0))) = χA(Π⊗L

Z[G] CL,S,T , R
Π
L,S)

in K0(A, AR), where R
Π
L,S denotes the restriction of RL,S to R · ΠO×

L,S,T .

Proof. Set C := CL,S,T . If one takes Π to be Z[G], regarded as a (Z[G],Z[G])-bimodule

in the obvious way, then µrelΠ and ιΠ are bijective and so we are required to prove that
LTC(L/K) is valid if and only if δG(θ

∗
L/K,S,T (0))) = χZ[G](C,RL,S). This equivalence is

proved by a natural (non-abelian) extension of the argument used to prove [11, Prop. 3.4].
To deduce the general case from this one need only use the commutative diagram

ζ(R[G])× δG−−−−→ K0(Z[G],R[G])

µΠ

y yιrelΠ

ζ(AR)
× δA,AR−−−−→ K0(A, AR)

(which follows from the commutativity of (32) and the naturality of connecting homo-
morphisms in relative K-theory) and the fact that the map µrelΠ sends χZ[G](C,RL,S) to

χA(Π⊗L
Z[G] C,R

Π
L,S). �

We now prove Theorem 10.1 by comparing the equality in Proposition 11.3 to the con-
ditions in Proposition 11.2.
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To do this we recall that any isomorphism of fields j : C ∼= Cp induces a homomorphism
of abelian groups j0,∗ : K0(Z[G],R[G]) → K0(Zp[G],Cp[G]) and that, as p and j vary, the
diagonal homomorphism

K0(Z[G],R[G])
(j0,∗)p,j−−−−−→

∏
p,j

K0(Zp[G],Cp[G])

is injective (cf. [7, §9.1]). We further recall that for each prime p and isomorphism j there
is a commutative diagram

ζ(R[G])× δG−−−−→ K0(Z[G],R[G])

j∗

y yj0,∗
ζ(Cp[G])×

∆G,p−−−−→ K0(Zp[G],Cp[G])
where j∗ is the natural inclusion induced by j and ∆G,p the composite of the inverse of the
(bijective) reduced norm map K1(Cp[G])→ ζ(Cp[G])× and the connecting homomorphism
K1(Cp[G])→ K0(Zp[G],Cp[G]) in (39) (see, for example, [7, (28)]).

This shows that the equality in Proposition 11.3 is valid if and only if for all primes p
and all isomorphisms j one has an equality

∆G,p(j∗(θ
∗
L/K,S,T (0))) = χZp[G](CL,S,T,p,Cp ⊗R,j RL,S).

In addition, since CL,S,T,p is represented by the p-completion of P 0 ϕ−→ P and the Zp[G]-
modules P 0

p and Pp are isomorphic, the result of [7, Lem. A.1] implies that

χZp[G](CL,S,T,p,Cp ⊗j,R RL,S) = ∆G,p(NrdQ[G](⟨ϕ, ι1, ι2⟩)).
By comparing the last two equalities one finds that the equality of Proposition 11.3 is

valid if and only if for all primes p and isomorphisms j one has

j∗(θ
∗
L/K,S,T (0)) ·NrdQ[G](⟨ϕ, ι1, ι2⟩)−1 ∈ ker(∆G,p) = NrdQ[G](Z(p)[G]

×)

(where the equality follows from the exactness of (39)).
The result of Theorem 10.1 now follows by comparing this reinterpretation of LTC(L/K)

with the result of Proposition 11.2.

11.3. The proof of Proposition 9.4. In this section we complete the proof of Proposition
9.4 by proving claim (ii). To do this we set ΠC := Π⊗L

Z[G] CL,S,T .

We first note that Proposition 9.4(i) combines with the argument given in the previous
section to imply that the validity of Conjecture 9.2 implies that in K0(A, AR) one has

δA,AR(ιΠ(θ
∗
L/K,S,T (0))) = χA(ΠC,R

Π
L,S).

Next we note that the hypothesis on leading terms made in claim (ii) implies L∗
S,T (ψ, 0)

is positive for every χ in ΥΠ and hence, by the Hasse-Schilling Maass Norm Theorem, that
ιΠ(θ

∗
L/K,S,T (0)) belongs to im(NrdAR).

From the equality (40) and the exactness of (39), it thus follows that δAR(ιΠ(θ
∗
L/K,S,T (0)))

belongs to ker(∂0A,R), or equivalently that ∂0A,AR
(χA(ΠC,R

Π
L,S)) vanishes. Since ΠC belongs
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to Dlf,0(A) this last fact combines with Proposition 6.17(iii) to imply that the ξ(A)-lattice
detA(ΠC) has a primitive basis, z′ say.

Combining now the results of Propositions 9.4(i) and 6.19(ii) we deduce that Conjec-
ture 9.2 implies zΠL/K,S,T = λ · z′ with λ an element of NrdA(K1(A)) that belongs to

NrdAp(K1(Ap)) for every prime p. From Lemma 11.4 below it follows that λ belongs

to NrdA(K1(A)) and hence, by Proposition 6.19(i), that zΠL/K,S,T is a primitive basis of

detA(ΠC), as claimed.
This completes the proof of Proposition 9.4.

Lemma 11.4. An element of NrdA(K1(A)) belongs to NrdA(K1(A(p))) for every prime p
if and only if it belongs to NrdA(K1(A)).

The same assertion is also true with each group NrdA(K1(A(p))) replaced by NrdAp(K1(Ap)).

Proof. The relevant cases of the exact sequence (39) give rise to an exact commutative
diagram of abelian groups

K1(A)
ιA−−−−→ K1(A) −−−−→ K0(A, A)y y yι∏

pK1(A(p))
(ιA(p)

)p
−−−−−→

∏′
pK1(A) −−−−→

⊕
pK0(A(p), A) −−−−→ 0

in which the vertical arrows are the natural diagonal maps and
∏′
p denotes the restricted

direct product (over p) of the groups K1(A) with respect to the subgroups im(ιA(p)
).

Since the map ι is injective (see the discussion following [16, (49.12)]) this diagram implies
that an element of K1(A) belongs to im(ιA(p)

) for every prime p if and only if it belongs to

im(ιA).
This fact implies the claimed equality since NrdA is injective (cf. [16, §45A]) and, by

definition, one has NrdA(K1(A)) = NrdA(im(ιA)) and NrdA(K1(A(p))) = NrdA(im(ιA(p)
)).

To prove the same result with each group NrdA(K1(A(p))) replaced by NrdAp(K1(Ap))
one argues in just the same way after replacing the lower row of the diagram by the corre-
sponding exact sequence∏

p
K1(Ap)

(ιAp )p−−−−→
∏′

p
K1(Ap)→

⊕
p

K0(Ap, Ap)→ 0

and noting that NrdAp is injective and the natural mapK0(A(p), A)→ K0(Ap, Ap) bijective.
�

Remark 11.5. Fix a representative of CL,S,T of the form P 0 → P as in Proposition 7.8.
Then ∂0G(χZ[G](CL,S,T , RL,S)) is equal to [P 0] − [P ]. Thus, if Conjecture 9.2 is valid, then
the argument used above to prove Proposition 9.4(ii) implies that if L∗(χ, 0) is positive
for every irreducible symplectic character χ of G, then [P 0] = [P ] in K0(Z[G]). Since
(by assumption) the free G-module P has rank at least two, this equality combines with
the Bass Cancellation Theorem to imply P 0 is isomorphic to P . This shows that in such
cases the family of pre-envelopes PL,S,T should be free. In particular, in any such case one
can take all of the surjective homomorphisms πL,S,T,p that occur in Proposition 7.1 to be
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induced by a single surjective homomorphism of G-modules P → StrS,T (Gm/L) constructed
as in Lemma 7.7.

Remark 11.6. The (conjectural) equality

∂0G(χZ[G](CL,S,T , RL,S)) = ∂0G(δG(θ
∗
L/K,S,T (0)))

discussed in Remark 11.5 has been shown (by Flach and the first author) to be equivalent
to the central conjecture formulated by Chinburg in [15].

12. The proof of Theorem 9.9

12.1. An explicit formula for higher non-abelian Stark elements. As a first step we
show Conjecture 9.2 implies an explicit formula for the element ϵπb that occurs in Theorem
9.9.

To do this we fix a prime p and assume, just as in the proof of Proposition 11.2, that the
module P 0 in (38) is such that P 0

(p) = P(p).

Lemma 12.1. There exists an exact sequence of A(p)-modules

0→ (ΠPO×
L,S,T )(p)

jΠ,p−−→ (ΠP )(p)
(Πϕ)(p)−−−−→ (ΠP )(p)

(Πϖ)(p)−−−−−→ (ΠStrS,T (Gm/L))(p) → 0

in which one has Q · jΠ,p = Q · (Πι)(p).

Proof. Since the functors M → ΠM and M → ΠM are respectively left and right exact, the
exact sequence (38) gives rise to an exact commutative diagram of Ap-modules

0 −→ (ΠO×
L,S,T )(p)

(Πι)(p)−−−−→ (ΠP )(p)
(Πϕ)(p)−−−−→ (ΠP )(p)

(TrΠ,P )(p)

x x(TrΠ,P )(p)

(ΠP )(p)
(Πϕ)(p)−−−−→ (ΠP )(p)

(Πϖ)(p)−−−−−→ (ΠStrS,T (Gm/L))(p) −→ 0

in which the vertical maps are bijective since P is a free G-module.
Next we note that the injection ι in (38) belongs to the family of pre-envelopes P = PL,S,T

that is constructed in Proposition 7.1. The claimed exact sequence is therefore obtained by
combining the above diagram with the fact that the definition (33) of Π

PO
×
L,S,T implies the

existence of a commutative diagram of A(p)-modules

(41)

(ΠO×
L,S,T )(p)

(Πι)(p)−−−−→ (ΠP )(p)x x(TrΠ,P )(p)

(ΠPO
×
L,S,T )(p)

jΠ,p−−−−→ (ΠP )(p)

in which one has Q · jΠ,p = Q · (Πι)(p) and the left hand vertical arrow is bijective. �
To proceed we now fix a basis bp = {bp,i}1≤i≤r of the free A(p)-module Yπ,(p). Then, since

the composite homomorphism of A(p)-modules

Πϖ
′ : (ΠP )(p)

(Πϖ)(p)−−−−−→ (ΠStrS,T (Gm/L))(p)
π(p)−−→ Yπ,(p)
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is surjective, we can choose an A(p)-basis b̂p = {b̂i,p}1≤i≤d of (ΠP )(p) with

(42) Πϖ
′(b̂i,p) =

{
bi, if 1 ≤ i ≤ r
0, if r < i ≤ d.

We write b̂
∗
= {b̂∗i }1≤i≤d for the corresponding dual basis of HomA(Q · ΠP,A). For each

index i we then also set (Πϕ)i := b̂∗i ◦ (Πϕ) ∈ HomA(Q · ΠP,A).
We can now state the main result of this section. In this result we use the map jΠ,p in

Lemma 12.1 to regard
∧r
A(Q ·ΠP O

×
L,S,T ) as a subspace of

∧r
A(Q ·Π P ).

Theorem 12.2. If the p-component of Conjecture 9.2 is valid, then for any A(p)-basis b̂p
of (ΠP )(p) which satisfies (42) there exists a unit up of Z(p)[G] with

ϵπb := NrdQ[G](up) · (
a=d∧
a=r+1

(Πϕ)a)(

c=d∧
c=1

b̂c,p) ∈
∧r

A
(Q ·Π P ).

Proof. We claim first that the element

ϵ′b := (
a=d∧
a=r+1

(Πϕ)a)(
c=d∧
c=1

b̂c,p)

is stable under multiplication by the idempotent eπ. To show this it is enough to show that
e′(ϵ′b) = 0 for every primitive idempotent e′ of AC that is orthogonal to eπ. But for any such

e′ the surjective map e′(C · ΠXL,S)→ e′(C · Yπ) is not bijective, and so the exact sequence
in Lemma 12.1 implies

dimC(e
′(C · im(Πϕ))) = dimC(e

′(C · ΠP ))− dimC(e
′(C · ΠXL,S))

< dimC(e
′(C · ΠP ))− dimC(e

′(C · Yπ))

= dimC(e
′(AC)

d)− dimC(e
′(AC)

r)

= (d− r)dimC(e
′AC),

and hence that the space e′(im(
∧a=d
a=r+1(Πϕ)a)) vanishes.

We note next that, since the map eπ(Q · ΠStrS,T (Gm/L)) → eπ(Q · Yb) induced by π is

bijective, our choice of basis b̂ satisfying (42) implies both that {eπ(b̂i,p)}r<i≤d is a basis of
the eπA-module eπ(Q · im(Πd)) and that eπ(Q · ΠO×

L,S,T ) is the kernel of the map

eπ(Q · ΠP )
(Πϕ)c−−−→

∏
r<c≤d

Q ·A.

Applying Proposition 2.10 in this context we may therefore deduce that there is a con-
tainment

(43) ϵ′b = eπ(ϵ
′
b) ∈ eπ

r∧
A

(Q · ΠO×
L,S,T ).



81

We next consider the composite homomorphism of R[G]-modules

R̃πL,S : R ·Π P → R ·Π O×
L,S,T → R ·Π XL,S → R · Yπ = R · Yb,

where the first arrow is induced by the section ι1 chosen just after (38), the second is
(R ·Π)⊗R[G] RL,S and the third is induced by π. For each integer i with 1 ≤ i ≤ r we also

write R̃π,iL,S : R ·Π F → R ·A for the composite b∗i ◦ R̃πL,S .
Then the inclusion (43) implies that in AR one has

λπL,S(ϵ
′
b) = eπ(λ

π
L,S(ϵ

′
b))(44)

= eπ((
∧r

AR
RπL,S)(ϵ

′
b))

= eπ((
i=r∧
i=1

Rπ,iL,S)(ϵ
′
b) ·

i=r∧
i=1

bi)

= eπ(((

r∧
ACp

Rπ,iL,S) ∧ACp (

a=d∧
a=r+1

(Πϕ)a))(

c=d∧
c=1

b̂c,p) · (
i=r∧
i=1

bi))

= eπNrdAR(M(ϕ, ι1, b̂)) · (
i=r∧
i=1

bi).

Here the second equality follows from the definition of λπL,S , the third and fourth are clear

and the last follows from Proposition 2.6 with M(ϕ, ι1, b̂) the matrix in Md(AR) defined by
setting

M(ϕ, ι1, b̂)ij =

{
Rπ,jL,S(b̂i), if 1 ≤ i ≤ d, 1 ≤ j ≤ r
(Πϕ)j(b̂i), if 1 ≤ i ≤ d, r < j ≤ d.

Now if we assume, as we may, that the section ι2 chosen just after (38) sends bi to b̂i
for each i with 1 ≤ i ≤ r, then eπM(ϕ, ι1, b̂) is the matrix of eπ(ΠR ⊗R[G] ⟨ϕ, ι1, ι2⟩) with

respect to the basis eπ b̂ of eπ(ΠF )R over eπAR.
Proposition 11.2 therefore shows that the p-component of Conjecture 9.2 implies the

existence of a unit up of Z(p)[G] with

eπNrdAR(M(ϕ, ι1, b̂)) = eπNrdAR(⟨ϕ, ι1, ι2⟩)
= NrdQ[G](up)

−1 · eπθ∗L/K,S,T (0)

= NrdQ[G](up)
−1 · θπS,T (0).

Multiplying (44) by NrdQ[G](up) therefore gives an equality

λπL,S(NrdQ[G](up)ϵ
′
b) = θπS,T (0) ·

i=r∧
i=1

bi.

The claimed formula for ϵπb now follows directly by comparing this equality to Definition

8.8 and noting that the map λπL,S is injective. �
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12.2. The proof of Theorem 9.9(i). We now deduce Theorem 9.9(i) from the formula
in Theorem 12.2.

We start with a useful observation.

Lemma 12.3. The validity of claims (i) and (ii) of Theorem 9.9 is independent of the
choice of elements b.

Proof. Let b′ = {b′i}1≤i≤r be any other set of elements that spans a full free A-submodule
Yb′ of Yπ of rank r.

Then, after replacing each element b′i by N · b′i for any large enough integer N , we may
assume Yb′ ⊆ Yb.

In this case each module in the short exact sequence of A-modules

0→ Yb/Yb′ → Yπ/Yb′ → Yπ/Yb → 0

has a quadratic G-module presentation bundle and so the results of Proposition 5.8(iii) and
(iv) together imply an equality of invertible ξ(A)-modules

FI0A(Yπ/Yb′)
−1=(FI0A(Yb/Yb′) · FI0A(Yπ/Yb′))−1=NrdA(Mb′,b)

−1FI0A(Yπ/Yb′)
−1

withMb′,b the matrix, with respect to the basis b, of the endomorphism φ of Yb which sends
each element bi to b

′
i.

In addition, in terms of this notation, Corollary 2.9 implies that

i=r∧
i=1

b′i =

i=r∧
i=1

φ(bi) = NrdA(Mb′,b) ·
i=r∧
i=1

bi

and hence also that ϵb′ = NrdA(Mb′,b) · ϵb.
The claimed independence is now clear. �

To prove Theorem 9.9(i) it therefore suffices to show that for each prime p the A(p)-

module ΠStrS,T (Gm/L)(p) has a presentation hΠ,pL/K,S,T for which, for a suitable set b as in

Theorem 9.9, one has

(45) FI0A(Yπ/Yb)
−1
(p){(

a=r∧
a=1

φa)(ϵb) :φi ∈ HomA(p)
((ΠPO×

L,S,T )(p),A(p))} = FIrA(p)
(hΠ,pL/K,S,T ).

To show this we take the presentation hΠ,pL/K,S,T to be defined by the exact sequence in

Lemma 12.1. Since the cokernel of the map jΠ,p in the latter sequence is Z(p)-torsion-free
our assumption (A2) on the order A combines with Lemma 4.4(ii) to imply that we may
choose a lift φ̂i of each φi in HomA(p)

((ΠPO
×
L,S,T )(p),A(p)) through the map

HomA(p)
((ΠP )(p),A(p))→ HomA(p)

((ΠPO×
L,S,T )(p),A(p))

that is induced by restriction through jΠ,p.
Next we use Roiter’s Lemma to choose a set b as in Theorem 9.9 for which Yb,(p) = Yπ,(p).

This implies that

(46) FI0A(Yπ/Yb)
−1
(p) = ξ(A)(p)
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and also that Theorem 12.2 can be applied in this setting. In particular, assuming the
validity of the p-component of Conjecture 9.2, the latter result combines with Corollary 2.9
to imply that

(

a=r∧
a=1

φa)(ϵb) = NrdQ[G](up) · (
a=r∧
a=1

φ̂a)((

a=d∧
a=r+1

(Πϕ)i)(

c=d∧
c=1

b̂c,p))(47)

= NrdQ[G](up) · ((
a=r∧
a=1

φ̂a) ∧ (

a=d∧
a=r+1

(Πϕ)i))(

c=d∧
c=1

b̂c,p)

= NrdQ[G](up) ·NrdA(N(ϕ, {φ̂i}, b̂))

where N(ϕ, {φ̂i}, b̂) is the matrix in Md(A) defined by setting

N(ψ, {φ̂i}, b̂)ij =

{
φ̂j(b̂i), if 1 ≤ i ≤ d, 1 ≤ j ≤ r
(Πϕ)j(b̂i), if 1 ≤ i ≤ d, r < j ≤ d.

Now the condition (42) implies that the first r columns of the matrix of the endomorphism

Πϕ with respect to the basis b̂p are equal to 0. This implies that, as the maps φi vary over

HomA(p)
((ΠPO

×
L,S,T )(p),A(p)), the matrices N(ϕ, {φ̂i}, b̂) account for all of the matrices which

both occur in the definition of FIrA(p)
(hΠ,pL/K,S,T ) and have non-zero reduced norm.

The formula (47) therefore implies that

ξ(A)(p) · {(
a=r∧
a=1

φa)(ϵb) :φi ∈ HomA(p)
((ΠPO×

L,S,T )(p),A(p))} = FIrA(p)
(hΠ,pL/K,S,T )

and this then combines with (46) to give the required equality.
This proves Theorem 9.9(i).

12.3. The proof of Theorem 9.9(ii). In this section we prove Theorem 9.9(ii).
Under the hypotheses of this claim the argument of §11.3 implies that the complex

Π⊗L
Z[G] CL,S,T is isomorphic to a complex of finitely generated free A-modules of the form

P ′ ϕ′−→ P ′ where the first module occurs in degree zero.
The same argument as in Lemma 12.1 then gives an exact sequence of A-modules of the

form

0→ Π
PO×

L,S,T → P ′ ϕ′−→ P ′ → ΠStrS,T (Gm/L)→ 0.

This sequence constitutes a presentation hΠ,globalL/K,S,T of the A-module ΠStrS,T (Gm/L).

With this choice of presentation, the result of Theorem 9.9(ii) can be proved by the same
argument as in §12.2 but with the role of the exact sequence in Lemma 12.1 now being
played by the p-localization of the exact sequence above.

12.4. The proof of Theorem 9.9(iii). In this section we prove Theorem 9.9(iii), the
notation and hypotheses of which we assume.

For any left A-module M we also write M∗ for the linear dual HomA(M,A), regarded
as a left A-module via the action (aθ)(m) := θ(m)ιA(a).
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12.4.1. We start by making two useful reductions.
We write ρS,S′ for the natural restriction map (ΠPO

×
L,S,T )

∗ → (ΠPO
×
L,S′,T )

∗.

Proposition 12.4. It suffices to prove Theorem 9.9(iii) for elements Φ =
∧

1≤i≤rφi where

the set {ρS,S′(φi)}1≤i≤r spans a free A-module of rank r.

Proof. Fix any subset {φi}1≤i≤r of (ΠPO
×
L,S,T )

∗. Choose a natural number m that is suffi-

ciently large to ensure m · A(A) ⊆ |ClTS′(L)| · A and then apply Lemma 12.5 below to the
integer m. This gives an integer nm which one can substitute into the result of Lemma 12.6
below to obtain a subset {φ′

i}1≤i≤r of (ΠPO
×
L,S,T )

∗ for which one has

(∧1≤i≤rφi)(ϵb) ≡ (∧1≤i≤rφ′
i)(ϵb) modulo m · A.

This congruence implies that for any element a of A(A) and any additive homomorphism
ϵ : A → Z one has

ϵG(a · (∧i=ri=1φi)(ϵb) · prΠ) ≡ ϵG(a · (∧i=ri=1φi)(ϵb) · prΠ) modulo ϵ(m · A(A)) · Z[G].

Since our choice of m implies ϵ(m · A(A)) ⊆ ϵ(|ClTS′(L)| · A) ⊆ |ClTS′(L)| · Z[G], this
congruence shows that Theorem 9.9(iii) is true for the exterior power ∧1≤i≤rφi if and only
if it is true for the exterior power ∧1≤i≤rφ′

i.
This proves the claimed result since the set {ρS,S′(φ′

i)}1≤i≤r spans a free A-module of
rank r as a consequence of Lemma 12.6(ii). �
Lemma 12.5. For any integer m there exists an integer nm with the following property. If
{φi}1≤i≤r and {φ′

i}1≤i≤r are subsets of (ΠPO
×
L,S,T )

∗ with φi ≡ φ′
i modulo nm· (ΠPO

×
L,S,T )

∗ for

all integers i, then (∧1≤i≤rφi)(ϵb) ≡ (∧1≤i≤rφ′
i)(ϵb) modulo m · A.

Proof. In this argument we fix a product decomposition A =
∏
i∈I Ai and associated data

ei, E,A
′
i, Vi, di,O, Ti and vj as in the proof of Proposition 3.5(iii).

With respect to these choices each element ∧1≤a≤rφa belongs to the submodule

Λ :=
⊕
i∈I

rdi∧
O
(Ti ⊗(A′

i)
op HomA′

i
(ei(O · (ΠPO×

L,S,T )),A
′
i))

of E ·
∧r
Aop HomA(Q ·ΠPO

×
L,S,T , A). In addition, since Λ is a finitely generated O-module and

the index of O ·A in
∏
i∈I A′

i is finite there exists an integer nm with the property that for
every λ in nm · Λ one has λ(ϵb) ∈ m(O · A).

Now, by the stated assumptions, there is a congruence in Λ of the form

∧1≤i≤rφi ≡ ∧1≤i≤rφ′
i (modnm · Λ)

and hence (by the above argument) a congruence in E ·A of the form

(∧1≤i≤rφi)(ϵb) ≡ (∧1≤i≤rφ′
i)(ϵb) modulo m(O · A).

This then implies the claimed congruence since each element ∧1≤i≤rφi and ∧1≤i≤rφ′
i belongs

to A and one has A ∩m(O · A) = m · A. �
Lemma 12.6. For each integer i with 1 ≤ i ≤ r let φi be an element of (ΠPO

×
L,S,T )

∗. Then

for any given integer n there is a subset {φ′
i : 1 ≤ i ≤ r} of (ΠPO

×
L,S,T )

∗ which satisfies the
following properties.
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(i) For each i one has φ′
i ≡ φi modulo n · (ΠPO

×
L,S,T )

∗.

(ii) The A-submodule of (ΠPO
×
L,S′,T )

∗ generated by {ρS,S′(φ′
i)}1≤i≤r is free of rank r.

Proof. The explicit choice of S′ in Theorem 9.9(iii) implies that we may choose a free A-
submodule F of (ΠPO

×
K,S′,T )

∗ of rank r. We then choose a subset {fi}1≤i≤r of (ΠPO
×
L,S,T )

∗ for

which {ρS,S′(fi)}1≤i≤r is an A-basis of Q·F . For any integerm we set φi,m := φi+mnfi and
note it suffices to show that for any sufficiently largem the elements {ρS,S′(φi,m) : 1 ≤ i ≤ r}
are linearly independent over A.

Consider the composite homomorphism of A-modules F → Q(ΠPO
×
L,S′,T )

∗ → QF where

the first arrow sends each ρS,S′(fi) to ρS,S′(φi,m) and the second is induced by a choice

of A-equivariant section to the projection Q(ΠPO
×
L,S′,T )

∗ → Q((ΠPO
×
L,S′,T )

∗/F). Then, with

respect to the basis {ρS,S′(fi) : 1 ≤ i ≤ r}, this linear map is represented by a matrix of
the form M +mnIr for a matrix M in Mr(A) that is independent of m. In particular, if m
is large enough to ensure that −mn is not an eigenvalue of the image of M in any of the
simple algebra components of Mr(AC), then the composite homomorphism is injective and
so the elements {ρS,S′(φi,m) : 1 ≤ i ≤ r} are linearly independent over A, as required. �

Next we note that it suffices to prove the displayed containment in Theorem 9.9(iii) after
localization at each prime p. At each prime p one can then make the following reduction.

Proposition 12.7. It suffices to prove the p-localization of Theorem 9.9(iii) for sets b such
that Yb,(p) = Yπ,(p).

Proof. Note first that a set b satisfying the given conditions exists by virtue of Roiter’s
Lemma (just as in the proof of Theorem 9.9(i) given above).

Let b′ = {b′i}1≤i≤r be any other set chosen as in Theorem 9.9 . Since Yb′,(p) ⊆ Yπ,(p) =

Yb,(p) there exists a matrix M in Mr(A(p)) with b
′
i =

∑j=r
j=1Mijbj for all i and j.

Corollary 2.9 then implies that ∧i=ri=1b
′
i = NrdA(M) · ∧j=rj=1bi and hence also Φ(ϵb′) =

NrdA(M) · Φ(ϵb). For any a in A(A) one therefore has

a · ϵG(Φ(ϵb′) · prΠ) = a′ · ϵG(Φ(ϵb) · prΠ).

with a′ := NrdA(M)a.
To prove the claimed result it is thus enough to note the argument of Lemma 5.6(iii)

shows that a′ belongs to A(A)(p). �
We end this section by establishing some basic properties of the complex C∗

L,S,T that
occurs in Definition 9.6.

Lemma 12.8. The complex ΠC
∗
L,S,T := Π ⊗L

Z[G] C
∗
L,S,T belongs to Dp(A) and is acyclic

outside degrees zero and one. There are natural identifications H0(ΠC
∗
L,S,T ) = (Π̌XL,S)

∗

and H1(ΠC
∗
L,S,T ) = ΠSS,T (Gm/L) and a natural surjection ΠSS,T (Gm/L)→ (Π̌PO

×
L,S,T )

∗.

Proof. Set C := CL,S,T and C∗ := RHomZ(C,Z)[−2].
Then Proposition 7.8 implies C is represented by a complex C• of finitely generated

projective G-modules P 0 ϕ−→ P , where the first module is placed in degree one, and hence
that ΠC

∗ is represented by the complex ΠHomZ(C
•,Z)[−2]. This shows, in particular,
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that ΠC
∗ belongs to Dp(A) and is acyclic outside degrees zero and one and that H1(ΠC

∗)
identifies with ΠH

1(C∗). The claimed identification H1(ΠC
∗) = ΠSS,T (Gm/L) is thus

induced from the identification H1(C∗) = SS,T (Gm/L) described in [11, Prop. 2.4(iii)].
To prove the remaining claims we use the fact that ΠC

∗ is naturally isomorphic to the
complex RHomA(Π̌C,A)[−2] ∼= HomA(Π̌ ⊗Z[G] C

•,A)[−2]. This is true because for any
finitely generated projective G-module Q there are natural isomorphisms

HomA(Π̌Q,A) = HomA(H0(G, Π̌⊗Z Q),A) ∼= H0(G,HomA(Π̌⊗Z Q,A))
∼= H0(G,HomA(Π̌⊗Z Q,A)) ∼= H0(G,Π⊗Z HomZ(Q,Z)) ∼= Π(HomZ(Q,Z)),

where the second isomorphism is induced by the action of TG (and the fact that the G-
module HomA(Π̌⊗Z Q,A) ∼= Π⊗Z HomZ(Q,Z) is cohomologically-trivial).

This description of ΠC
∗ leads to a spectral sequence

ExtaA(H
b(Π̌C),A)⇒ Ha−b(ΠC

∗)

which combines with the properties of A described in Remark 4.3(i) and (ii) to imply that
in each degree i there is a natural exact sequence

0→ HomA(H
−i+1(Π̌C), A/A)→ H i(ΠC

∗)→ H−i(Π̌C)
∗ → 0

This sequence combines with the description of the groups H i(Π̌C) given by the ex-

act sequence in Lemma 12.1 (with Π replaced by Π̌) to give the claimed identification

H0(ΠC
∗) = (Π̌XL,S)

∗ and surjection ΠSS,T (Gm/L) = H1(ΠC
∗) → (Π̌PO

×
L,S,T )

∗. �

12.4.2. We now turn to the proof of Theorem 9.9(iii).
To do this we fix an exterior product of homomorphisms Φ as in Proposition 12.4. We

then choose a lift φ̃i of each homomorphism φi through the surjective map ΠSS,T (Gm/L)→
(ΠPO

×
L,S,T )

∗ in Lemma 12.8 and write EΦ for the A-module generated by {φ̃i}1≤i≤r.

Proposition 12.9. Fix an exterior product Φ as in (12.4). Assume the set b in Theorem
9.9 is such that Yb,(p) = Yπ,(p).

Then the A(p)-module (ΠSS,T (Gm/L)/EΦ)(p) has a quadratic presentation and, if Conjec-

ture 9.2 is valid, then the element Φ(ϵb)
# belongs to FI0A(ΠSS,T (Gm/L)/EΦ)(p).

Proof. We use the existence of an exact triangle in Dp(A(p)) of the form

(48) A⊕r,•
(p)

θ−→ Π(p) ⊗L
Z[G] C

∗
L,S,T

θ′−→ C•
(p) → A

⊕r,•
(p) [1].

Here A⊕r,•
(p) denotes the complex A⊕r

(p)[0]⊕A
⊕r
(p)[−1] and, writing {ci}1≤i≤r for the canonical

basis of A⊕r
(p), the morphism θ is uniquely specified by the condition that for each i one has

H i(θ)(ci) =

{
b∗i ∈ Y ∗

b,(p) = Y ∗
π,(p) ⊂ (ΠXL,S)

∗
(p) = H0(Π(p) ⊗L

Z[G] C
∗
L,S,T ), if i = 0

φ̃i ∈ ΠSS,T (Gm/L)(p) = H1(Π(p) ⊗L
Z[G] C

∗
L,S,T ), if i = 1.



87

With this definition the long exact cohomology sequence of the triangle (48) implies C•
(p)

is acyclic outside degrees zero and one and induces identifications

H i(C•
(p)) =

{
ker(ϵΠ,L,S,p)

∗, if i = 0

(ΠSS,T (Gm/L)/EΦ)(p), if i = 1,

where ϵΠ,L,S,p denotes the (split) surjection of A(p)-modules (ΠXL,S)(p) → Yπ,(p). Thus,

since H0(C•
(p)) is Z(p)-torsion-free, the same reasoning as used in the proof of Proposition

7.8 shows that the complex C•
(p) is represented by a complex

(49) P
δ−→ P

where P is a finitely generated free A(p)-module and the first term is placed in degree
zero. This shows, in particular, that the A(p)-module (ΠSS,T (Gm/L)/EΦ)(p) has a quadratic
presentation, as claimed.

We now write e for the idempotent eπ of ζ(A) that is defined just prior to Lemma 8.5.
Then the definition of e combines with the above descriptions to imply that the spaces
e(Q ·H0(C•

(p))) and e(Q ·H
1(C•

(p))) vanish and so we may choose a commutative diagram

of AC-modules

(50)

0 −−−−→ (AC)
⊕r H0(θ)−−−−→ C ·H0(Π(p) ⊗L

Z[G] C
∗
L,S,T )

H0(θ′)−−−−→ C ·H0(C•
(p)) −−−−→ 0

λ1

y λ2

y λ3

y
0 −−−−→ (AC)

⊕r H1(θ)−−−−→ C ·H1(Π(p) ⊗L
Z[G] C

∗
L,S,T )

H1(θ′)−−−−→ C ·H1(C•
(p)) −−−−→ 0

in which the vertical maps are bijective and such that eλ2 = e((C ·Π)⊗R[G] R
∗
L,S).

The commutativity of the left hand square in (50) implies that

e · ∧1≤i≤rRΠ,∗
L,S(b

∗
i ) = NrdeAC(eλ1) · Φ

with RΠ,∗
L,S := (C ·Π)⊗R R

∗
L,S . Thus, if Conjecture 9.2 is valid, then one has

Φ(ϵb) = NrdeAC(eλ1)
−1 · (∧1≤i≤rRΠ,∗

L,S(b
∗
i ))(ϵb)

= NrdeAC(eλ1)
−1 · (∧1≤i≤rRΠ,∗

L,S(b
∗
i ))(θ

π
S,T (0) · ∧1≤i≤r(RΠ

L,S)
−1(bi))

= NrdeAC(eλ1)
−1 · θπS,T (0)

= NrdA(u)NrdA(δ)

∈ FI0A(p)
((ΠSS,T (Gm/L)/EΦ)(p)) = FI0A(ΠSS,T (Gm/L)/EΦ)(p)

where u belongs to A×
(p), δ is the morphism that occurs in the complex (49), the second

equality follows directly from the definition of ϵb, the fourth directly from the result of
Lemma 12.10 below and the containment from the definition of the zero-th noncommutative
Fitting invariant of the A(p)-module cok(δ) = H1(C•

(p)) = (ΠSS,T (Gm/L)/EΦ)(p). �

Proposition 12.9 combines with Proposition 5.8 to imply that for any a′ of A(A) one has

(51) a′ · Φ(ϵb) ∈ AnnA(p)
((ΠSS,T (Gm/L)/EΦ)(p))
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and we shall now show that Theorem 9.9(iii) is a consequence of this containment.
To do this we recall that there exists a natural surjective homomorphism of G-modules

f : SS,T (Gm/L) → SS′,T (Gm/L) (see [11, Prop. 2.4(ii)]). Since, by our choice of Φ,
the lattice (EΦ)(p) is disjoint from the kernel of the induced surjection of A(p)-modules
fΠ,p : ΠSS,T (Gm/L)(p) → ΠSS′,T (Gm/L)(p) one obtains a surjection of A(p)-modules

(52) (ΠSS,T (Gm/L)/EΦ)(p) � ΠSS′,T (Gm/L)p/fΠ,p((EΦ)(p)).
In addition, the exact sequence of G-modules (26) induces an exact sequence of A(p)-

modules

TorG1 (Π,O×
L,S′,T )(p) −→ Π(Cl

T
S′(L)∨)(p) → ΠSS′,T (Gm/L)(p)/fΠ,p((EΦ)(p)).

and this sequence combines with the surjection (52) and containment (51) to imply that

(53) a · Φ(ϵb) ∈ AnnAp(Π(Cl
T
S′(L)∨)(p))

for all a in A(A) ·AnnA(TorG1 (Π,O×
L,S′,T )).

Applying Lemma 12.11(ii) below in this case we then deduce ϵG(ιA(aΦ(ϵb)) · prΠ∗)#

belongs to AnnZ[G](Cl
T
S′(L)∨)(p), and hence that

ϵG(ιA(aΦ(ϵb)) · prΠ∗) ∈ AnnZ[G](Cl
T
S′(L))(p),

as required to complete the proof of Theorem 9.9(iii).

12.4.3. In this section we prove two results that were used in §12.4.2.

Lemma 12.10. If conjecture 9.2 is valid, then there exists a unit u of A(p) such that

NrdeAC(eλ1)
−1 · θπS,T (0) = NrdA(u)NrdA(δ)

where δ is the morphism that occurs in the representative (49) of C•
(p).

Proof. Write η for the image of ι#(θ
∗
L/K,S,T (0)) under the map ιΠ : ζ(C[G])× → ζ(AC)

×

defined in §8.1. Then the diagram (50) combines with Proposition 6.11 to imply that for

any given primitive ξ(A)(p)-bases x1 of detA(p)
(A⊕r,•

(p) ) and x3 of detA(p)
(C•

(p)) there exists

a primitive A(p)-basis x2 of detA(p)
(Π(p) ⊗L

Z[G] C
∗
L,S,T ) such that if one defines elements cη,1

and cη,2 of ζ(AC)
× by the equalities ϑ−1

λj
(η) = cη,j · xj for j = 1, 2, then one has

ϑ−1
λ3

(1A) = cη,2c
−1
η,1 · x3

with 1A denoting the identity element of A.

The explicit structure of A⊕r,•
(p) implies ϑ−1

λ1
(η) = η ·NrdAC(λ1)

−1 · (∧i=ri=1ci ⊗ ∧
j=r
j=1c

∗
j ) and

hence (by Corollary 2.9) that cη,1 is equal to η · NrdAC(λ1)
−1NrdA(u1) for some unit u1 of

A(p).
In addition, if we assume the validity of Conjecture 9.2, then Lemma 9.7 implies that

NrdAC((Π ⊗C[G] RL,S) ◦ λ−1
2 ) · ϑ−1

λ2
(η) is a primitive basis of detA(p)

(Πp ⊗L
Z[G] C

∗
L,S,T ) and

hence that cη,2 = NrdAC((Π⊗C[G] RL,S) ◦ λ−1
2 ) ·NrdA(u2) for some unit u2 of A(p).

The above displayed equality therefore implies that

ϑ−1
λ3

(1A) = η−1NrdA(u)NrdAC(λ1)NrdAC((Π⊗C[G] RL,S) ◦ λ−1
2 ) · x3
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with u := u2u
−1
1 ∈ A

×
(p).

We now multiply this equality by the idempotent e := eπ. Noting that eη = θπS,T (0)
#

and NrdAC((Π⊗C[G] RL,S) ◦ λ−1
2 )) = e we thereby obtain equalities

ϑ−1
eλ3

(e) = e(ϑ−1
λ3

(1A)) = θπS,T (0)
−1NrdA(u)NrdAC(λ1) · e(x3).

Next we note that the complex e(Q · C•
(p)) is acyclic and hence that one can choose the

primitive basis x3 of detA(p)
(C•

(p)) such that ϑ−1
eλ3

(e) = NrdC·Ae(Ae ⊗A δ)−1 · e(x3). Given

this, the last displayed equality implies the claimed formula except for the fact that the
term NrdA(δ) is replaced by NrdC·Ae(Ae⊗A δ).

It thus suffices to note that NrdA(δ) is equal to NrdC·Ae(Ae⊗Aδ) since if e
′ is any primitive

idempotent of ζ(A) that is orthogonal to e, then the definition of e implies that the space
e′(Q ·H0(C•

(p))) = e′(Q · ker(δ)) does not vanish and hence that e′ ·NrdA(δ) = 0. �

In the next result we use the involutions ιA on A and ι# on Z[G] to endow the linear dual
Π∗ := HomZ(Π,Z) with the structure of an (A,Z[G])-bimodule that is locally-free over A.
Lemma 12.11. Let M be a finite G-module and ϵ : A → Z an additive homomorphism.

(i) For any a in AnnA(
ΠM) one has ϵG(a · prΠ) ∈ AnnZ[G](M).

(ii) For any a in AnnA(ΠM) one has ϵG(ιA(a) · prΠ∗)# ∈ AnnZ[G](M).

Proof. We write n for the rank of the free A-module Q ·Π. After localizing at a prime p we
fix a basis {πi : i ∈ [n]} of the free A(p)-module Π(p) and write ρΠ,p : G → GLn(A) for the
corresponding representation that arises from the action of G on A.

For each m in M and each index i the element Ti(m) :=
∑

g∈G g(πi⊗m) belongs to ΠM

and so one has a(Ti(m)) = 0. In Π(p) ⊗Z M one therefore has

0 = a(Ti(m)) =
∑
g∈G

aπig
−1 ⊗ g(m) =

∑
g∈G

j=n∑
j=1

aρΠ,p(g
−1)ijπj ⊗ g(m)

=

j=n∑
j=1

a(∑
g∈G

ρΠ,p(g
−1)ij)πj ⊗ g(m)


and hence also, since {πi : i ∈ [n]} is an A(p)-basis of Π(p), equalities in A⊗Z M

a ·
∑
g∈G

ρΠ,p(g
−1)ij ⊗Z g(m) = 0.

By applying the homomorphism ϵ⊗ id : A(p) ⊗M →M(p) this implies

ϵ(a ·
∑
g∈G

ρΠ,p(g
−1)ij)g(m) = 0,

or equivalently that each element cp(a)ij := ϵ(a·
∑

g∈G ρΠ,p(g
−1)ij)g belongs to AnnZ[G](M)(p).

In particular, the element

i=n∑
i=1

cp(a)ii = ϵ(a ·
∑
g∈G

(
i=n∑
i=1

ρΠ,p(g
−1)ii

)
)g = ϵ(a ·

∑
g∈G

χΠ(g
−1))g = ϵG(a · prΠ)
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belongs to AnnZ[G](M)(p). Since this is true for all primes p it follows that ϵG(a · prΠ)
belongs to AnnZ[G](M), as required to prove claim (i).

We now derive claim (ii) as a consequence of claim (i). To do this we note that there
is a natural isomorphism of A-modules H0(G,Π ⊗Z M)∨ ∼= H0(G,Π

∗ ⊗Z M
∨), and hence

an equality AnnA(ΠM) = ιA(AnnA(
Π∗

(M∨))). Applying claim (i) in this context therefore
implies that ϵG(ιA(a) · prΠ∗) belongs to AnnZ[G](M

∨) for every a in AnnA(ΠM).
This in turn implies claim (ii) because for any finite G-module N one has AnnZ[G](M

∨) =
ι#(AnnZ[G](M)). �

13. The proofs of Corollaries 9.10, 9.12, 10.5 and 10.6

13.1. The proof of Corollary 9.10. In this section we derive Corollary 9.10 as a conse-
quence of Theorems 9.9 and 12.2.

13.1.1. To prove claims (i), (ii) and (iii) of Corollary 9.10 we simply apply Theorem 9.9 in
the setting of Example 8.9.

To be more precise, we take π to be the homomorphism πG,v0L/K,S,T , S
′ to be S∞

K ∪VL∪{v0},
b to be the (ordered) set of places of L specified in Example 8.9, Π to be Z[G], endowed
with its natural structure as (Z[G],Z[G])-bimodule and the order A to be Z[G].

In this case the functor N 7→ Π
PN described in §8.2 is canonically isomorphic to the iden-

tity functor and the module Π(YL,Σ)/Πb in Theorem 9.9 vanishes so that FI0A(Π(YL,Σ)/Πb)
−1

is equal to ξ(Z[G]).
Given these observations, claims (i) and (ii) of Corollary 9.10 follow directly from the

statement of Theorem 9.9(i) and (ii) in this case.
In addition, in this case one has χΠ(g) = g for all g ∈ G and so, taking ϵ : Z[G] → Z to

be projection onto the coefficient of the identity element of G then for x in Q[G] one has

ϵG(x · prΠ) = ϵG(
∑
g∈G

xg−1 ⊗ g) =
∑
g∈G

ϵ(xg−1)g = x.

Hence, since TorG1 (Π,O×
L,S′,T ) vanishes in this case, the statement of Theorem 9.9(iii) for

this choice of ϵ directly implies the claim of Corollary 9.10(iii).

13.1.2. We now prove Corollary 9.10(iv).
If rE = r, then we need only prove the assertion of Corollary 9.10(iv)(b) and the explicit

definition of RecPH in this case (given at the beginning of §7.4.1) means that this statement
is a direct consequence of Lemma 9.8.

We therefore assume in the sequel that rE > r. In this case the group FπE (
∩r
GPL,S,T )H

is finite (by Proposition 7.3(i)) and hence the assertion of Corollary 9.10(iv)(b) is true if it
is true after p-localization at each prime p. The commutative diagram in Proposition 7.15
therefore implies that it suffices to prove the first assertion of Corollary 9.10(iv) for every
prime p and to do this we use the explicit formula of Theorem 12.2.

We note that for each normal subgroup H of G the identification of XLH ,S with TH(XL,S)
that is described in §7.2.2 has two important consequences. Firstly, it implies that the
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b = {bi}1≤i≤d of the free G-module P fixed in Lemma 7.7 is such that

(54) ϱE(ϖ
H(TH(bi))) =

{
wi,E , if 1 ≤ i ≤ n,
0, if n < i ≤ d.

Secondly, it implies that the section ι2 chosen just after (38) is such that for every integer
i that belongs to ZE (so vi splits in E/K) one has

(55) σ2(wi,E) = σ2(TH(wi,L)) = TH(σ2(wi,L)) = TH(bi).

Having noted these facts, we now apply the formula of Theorem 12.2 with Π taken to be
Z[G/H], regarded as a (Z[G/H],Z[G])-bimodule in the natural way.

In this case the functorM 7→ ΠM identifies with the fixed-point functorM 7→ H0(H,M).

In particular, the property (54) implies that we can take the basis b̂(p) of (ΠP )(p) that is

used in Theorem 12.2 to be {TH(b)}1≤i≤d and the property (55) implies that the section σ2
used in the proof of Theorem 12.2 can be chosen to be the restriction of a fixed section as
chosen just after (38).

After recalling the definition of ϵv0E/K,S,T that is given in Example 8.9, this case of the

formula of Theorem 12.2 therefore implies that for each normal subgroup H of G one has

ϵv0E/K,S,T := NrdQ[G](up) · (
a=d∧

a=rE+1

ϕHa )(

c=d∧
c=1

TH(bc)) ∈
∧rE

Q[G/H]
(Q · PH)

where up is a unit of Z(p)[G] that is independent of H.
This equality is in turn clearly equivalent to an equality

∆H,p
L,S,T (ζ) = ϵv0E/K,S,T

where the map ∆H,p
L,S,T is as defined in §7.5 and we have set

ζ := NrdQ[G](up) · ∧c=dc=1bc ⊗ ∧c=dc=1b
∗
c ∈ detZ(p)[G](CL,S,T,(p)) = detZ[G](CL,S,T )(p).

This fact completes the proof of Corollary 9.10.

13.2. Higher Chinburg-Stark elements and the proof of Corollary 9.12. In this
section we discuss Theorem 9.9 in the setting of Example 8.11 and then prove Corollary
9.12.

We use the notation of Example 8.11. In addition, we identify each character ψ in

Ĝ with a corresponding representation G → GLψ(1)(Oψ) and abbreviate the associated

functors M 7→ ΠψM and M → ΠψM to M →Mψ and M →Mψ respectively.

Proposition 13.1. Fix θ in C ·HomG(O×
L,S,T , XL,S). Then, for each non-trivial character

ψ in Ĝ the containment of Theorem 9.9(iii) for the homomorphism πψL/K,S,T implies that

|G| · trEψ/Q(L
∗
S,T (ψ̌, 0)detC(|G|m · (R−1

L,S ◦ θ)
ψ) · prψ) ∈ AnnZ[G](Cl

T
S′(L)),

where m is any element of Oψ for which m · θ(O×,ψ
L,S,T ) ⊆ (XL,S,ψ)tf and S

′ any subset of S

as described in Theorem 9.9(iii).



92 DAVID BURNS AND TAKAMICHI SANO

Proof. We set U := O×
L,S,T , X := XL,S and O := Oψ and write E for the field of fractions

of O.
It suffices to prove the displayed containment after p-localization. To do this we fix a

prime p and a subset b = {bi}1≤i≤r of (Xψ)tf which gives an O(p)-basis of (Xψ)tf,(p). For
each integer i in [r] we set θbi := b∗i ◦ θ. Then for any element n of O one has

(56) L∗
S,T (ψ̌, 0) · detC(n · (R−1

L,S ◦ θ)
ψ) = (∧i=ri=1(n · θbi))(ϵb).

We next give an explicit interpretation of the diagram (41). To do this we write eG for
the trivial idempotent of G and note that for any G-module N the decomposition

E · (Πψ ⊗Z N) = eG(E · (Πψ ⊗Z N))⊕ (1− eG)(E · (Πψ ⊗Z N))

induces an identification of

E · (ΠψN) := H0(G,E · (Πψ ⊗Z N)) = H0(G,E · (Πψ ⊗Z N)) =: E · (ΠψN).

With respect to this identification the diagram (41) implies that

HomO(
Πψ
P U,O) = |G| ·HomO(U

ψ,O) ⊂ HomE(E · Uψ, E).

In particular, for any integerm withm·θ(Uψ) ⊆ Xψ,tf one has |G|m·ρbi ∈ HomO(
Πψ
P U,O)(p)

for each index i. In this case one also has A(O) = O and so can take a = |G| in the statement
of Theorem 9.9(iii).

The claimed result now follows directly by combining (56) with n = |G|m together with

the result of Theorem 9.9(iii) for the data π = πψL/K,S,T , A = O,Π = Πψ, φi = |G|m · ρbi
and with ϵ taken to be the trace map trE/Q. �

Remark 13.2. The containment in Proposition 13.1 is finer than the prediction made in
[7, Conj. 2.6.1] in that the term ψ(1)−1|G|3+reψ = |G|2+rprψ that occurs in the latter

conjecture is here replaced by |G|1+rprψ and the group ClS′(L) that occurs in loc. cit. is

here replaced by ClTS′(L).

Turning now to the proof of Corollary 9.12, claims (i), (ii) and (iii) follow directly by
comparing the first assertion of Corollary 10.9 with the results of [7, Th. 4.3.1(ii) and Prop.
12.2.1].

The annihilation statement of Corollary 9.12(iv) is however finer than that of [7, Prop.
12.2.1]. The key point in its proof is that the hypotheses on ψ and S that are made in
Corollary 9.12 imply dimEψ(Eψ · XL,S∞

K ,ψ) = 1 and hence that the set S′ = S∞
K satisfies

the hypothesis of Theorem 9.9(iii) (and therefore also Proposition 13.1) with respect to the

homomorphism π = πψL/K,S,T .

More precisely, to prove Corollary 9.12(iv) one need only make the following two changes
to the proof of [7, Prop. 12.2.1(iv)]: the use of the containment [7, (44)] is replaced by the
stronger containment discussed in Remark 13.3 below (with r = 1 and S′ = S∞

K ) and the
use of [7, Lem. 11.1.2(i)] is replaced by an application of Lemma 12.11(ii) with Π = Πψ.

Remark 13.3. In terms of the notation used in the proof of Proposition 13.1, the O(p)-

modules Uψ(p) and (Xψ)tf,(p) are both free of rank r and so one can choose the homomorphism
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θ such that θ(Uψ(p)) = (Xψ)tf,(p). For such a θ the equality (56) with n = 1 combines with

the containment (53) to imply that

|G|1+r(∧i=ri=1θbi)(ϵb) = |G|L
∗
S,T (ψ̌, 0) · detC(|G| · (R−1

L,S ◦ θ)
ψ) ∈ AnnO(Cl

T
S′(L)ψ)(p).

This implies, by choice of θ, that |G|1+rϵb belongs to AnnO(Cl
T
S′(L)ψ) ·(∧rOUψ)(p) and hence

also that

|G|1+rL∗
S,T (ψ̌, 0) · (∧rOXψ,tf)(p) = O(p) · |G|1+rL∗

S,T (ψ̌, 0) ∧i=ri=1 bi = O(p) · (∧rCRL,S)(|G|1+rϵb)

⊆ AnnO(Cl
T
S′(L)ψ) · (∧rCRL,S)(∧rOUψ)(p).

Since this is true for all primes p it is a refinement of the containment [7, (44)] (in which
ClS′(L)ψ rather than ClTS′(L)ψ occurs).

This proof is also much simpler than that in loc. cit. since, amongst other things, it
avoids any use of the constructions of Ritter and Weiss in [42].

13.3. The proof of Corollary 10.5. The proof of Theorem 10.1 shows that the claims
of Corollary 10.5 will follow if we can show the stated hypotheses imply the validity of the
p-component of LTC(L/K) after taking plus and minus parts respectively.

It is shown in [7, §9.1] that the p-component of LTC(L/K) is valid after taking plus parts
provided that all of the following conditions are satisfied: the p-adic Stark Conjecture at
s = 1 of Serre and Tate is valid for all p-adic characters of G; if p divides |G|, then the
µ-invariant of Lcyc/L vanishes; the p-component of a certain element TΩloc(Q(0)L,Z[G]) of
K0(Z[G],R[G]) vanishes.

Claim (i) therefore follows from the fact that the p-component of TΩloc(Q(0)L,Z[G])
vanishes if the ‘local epsilon constant conjecture’ of Breuning [3] is valid for all extensions
obtained by p-adically completing L/K (this follows from [3, Th. 4.1]) and that [3, Th. 3.6]
shows the latter condition to be satisfied if p is tamely ramified in L/K.

It now only remains to note that [9, Cor. 3.8] shows that the hypothesis of Corollary
10.5(ii) combines with the observation made in Remark 15.5 below to imply the validity of
the p-component of LTC(L/K) after taking minus parts.

Remark 13.4. Breuning’s local epsilon constant conjecture has also been verified for certain
classes of wildly ramified extensions of local fields (see, for example, Breuning [2] and Bley
and Cobbe [1]). All such results can be combined with the above argument to derive
corresponding generalizations of Corollary 10.5(i).

13.4. The proof of Corollary 10.6. We finally prove Corollary 10.6. To do this it suf-
fices to show that the given hypotheses imply that the hypotheses of Corollary 10.5(ii) are
satisfied.

The stated hypotheses imply the vanishing of µp(F ) because (as is well-known) if µp(E)
vanishes for some number field E, then Nakayama’s Lemma implies that µp(E

′) vanishes
for any p-power degree Galois extension E′ of E.

The key point regarding the p-adic Gross-Stark Conjecture (for more details of which see
Remark 15.5 below) is that if G is a finite group of the form AoQ with A abelian and Q
supersolvable, then for any irreducible Qc

p-valued character ρ of G there exists a subgroup
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Aρ of G which contains A and a linear Qc
p-valued character ρ′ of Aρ such that ρ = IndGAρ(ρ

′)

(for a proof of this fact see [46, II-22, Exercice] and the argument of [46, II-18]).
In particular, since the inductivity properties of p-adic Artin L-series implies that the

Gross-Stark Conjecture is true for ρ is and only if it is true for ρ′ we can assume (after
replacing L/K by L/LAρ and ρ by ρ′) that ρ is linear.

In addition, one knows, by assumption, that the field LAρ has at most one p-adic place
which splits completely in L/L+ and, under this hypothesis, the validity of the Gross-Stark
Conjecture is known by results of Gross [27, Prop. 2.13], of Darmon, Dasgupta and Pollack
[17] and of Ventullo [51].

Remark 13.5. We can now also give more details of the sort of examples discussed in
Remark 10.8.

To do this we fix a totally real field E and a cyclic CM extension E′ of E in which
precisely one p-adic place v of E splits completely and no other place of E that ramifies
in E/Q splits completely. We let k be any subfield of E for which the restriction of v has
absolute degree one and write F for the Galois closure of E′ over k. Then F is a CM field

and for any faithful linear character ψ′ of GE′/E the character ψ := Ind
GF/k
GF/E

(Inf
GF/E
GE′/E

(ψ′))

of GF/k is irreducible, totally odd, faithful and of degree [E : k]. Further, the functoriality
of p-adic L-functions under induction and inflation combines with the result of [27, Prop.
2.13] and [51, Th. 1] to imply that ψ validates all of the hypotheses of [9, Cor. 3.3] with
S taken to be the union of all places of k that are either archimedean, p-adic or ramify in
E/k and v1 the place of k below v.

Part IV: The p-adic theory

In the remainder of the article we fix an odd prime p and a finite CM Galois extension
L of a totally real number field K with group G.

In this context we shall introduce a natural generalization of the ‘p-adic Gross-Rubin-
Stark elements’ that are defined (in the setting of abelian extensions L/K) by the first
author in [9] and a natural p-adic analogue of the zeta element of Gm relative to L/K from
Definition 9.1.

Using these elements we then explain how the approach of [9] leads to a natural ana-
logue for L/K of the theory we discussed in earlier sections in which the roles of Dirichlet
regulators and Artin L-series are respectively replaced by Gross’s p-adic regulators and the
Deligne-Ribet p-adic Artin L-series of the totally even p-adic characters of G (as discussed
by Greenberg in [25]).

We also prove that the central conjecture of this p-adic theory is valid modulo Iwasawa’s
conjecture on the vanishing of cyclotomic µ-invariants, and even in some interesting cases
unconditionally (see Remark 16.3), and derive several explicit consequences of this result.

14. Higher non-abelian p-adic Stark elements

We write Irp(G) for the set of irreducible Cp-valued characters of G. Then, with τ
denoting the (unique) non-trivial element of GL/L+ we write e− for the central idempotent
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(1 − τ)/2 of Q[G] and let Ir±p (G) denote the subsets of Irp(G) comprising characters for

which one has χ(τ) = ±χ(1). For any G-module M we also write M± for the G-submodule
{m ∈M : τ(m) = ±m}.

14.1. Equivariant p-adic regulator maps and L-series.

14.1.1. For each place w of L Gross defines in [26, §1] a local p-adic absolute value || · ||w,p
on L×

w by means of the commutative diagram

(57) L×
w

||·||w,p //

rw ## ##G
GG

GG
GG

GG
G Z×

p

GLab
w /Lw

χ−1
w

;;wwwwwwwwww

where Lab
w denotes the maximal abelian extension of Lw in Lcw, rw the reciprocity map of

local class field theory and χw the p-adic cyclotomic character.
For any finite set of places Σ of K that contains both S∞

K and the set SpK of all p-adic
places of K, we write

RpL,Σ : O×,−
L,Σ,p → Y −

L,Σ,p

for the homomorphism of Zp[G]-modules that sends each u in O×,−
L,Σ to

∑
π∈ΣL logp||u||π,p ·π.

We write Irssp (G) for the subset of Ir−p (G) comprising those characters ρ for which the

induced homomorphism Rp,ρL,S := HomCp[G](Vρ̌,Cp ·R
p
L,S) is injective and we then obtain an

idempotent of ζ(Qp[G]) by setting

ess :=
∑

ρ∈Irssp (G)

eρ.

Remark 14.1.
(i) In [27, Conj. 1.15] Gross conjectures each homomorphism Rp,ρL,Σ to be injective. If valid,

this conjecture would imply Irssp (G) = Ir−p (G) and hence that ess = e−.

(ii) Set Σ0 := S∞
K ∪S

p
K and for each ρ in Ir−p (G) also rΣ0,ρ := dimCp(HomCp[G](Vρ̌,Cp ·YL,S).

If rΣ0,ρ = 0, then the injectivity of Rp,ρL,S is obvious. Excluding this case, however, the

injectivity of Rp,ρL,S has so far only been verified in the case that rΣ0,ρ = 1 in which case

Gross has shown (in [27, Prop. 2.13]) that it follows from Brumer’s p-adic version of Baker’s
theorem. In general, one knows (from [9, Th. 4.2]) that this injectivity is equivalent to the
semisimplicity of a natural Iwasawa module.

14.1.2. We now fix a Zp-orderAp in a semisimpleQp-algebra Ap and assume thatAp satisfies
the conditions (A1) and (A2) discussed in §4.2.2 (with R replaced by Zp).

We also assume to be given a finitely generated (Ap,Zp[G])-bimodule Πp which is free
over Ap and satisfies the obvious (p-adic) analogues of the conditions (Π2) and (Π3) in
§8.1. We write ΥΠp for the associated subset of Irp(G) (obtained by the same method as
in Remark 8.1) and for each character ρ in ΥΠp we write Wρ for the corresponding simple
right ACp-module.
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We fix a surjective homomorphism of Ap-modules

πp : Πp ⊗Zp[G] StrS,T (Gm/L)p → Yπp

in which Yπp is free. For each character ρ in ΥΠp we set rπp(ρ) := dimCp(Wρ ⊗Ap Yπp).
For any such homomorphism πp we then define a ζ(Cp[G])-valued meromorphic function

of a p-adic variable z by setting

θ
πp
L/K,S,T (z) :=

∑
ρ

eρ · z−rπp (ρ)Lp,S,T (ρ̌ · ωK , z),

where ρ runs over Ir−p (G) ∩ ΥΠp . Here ωK denotes the Teichmüller character GK → Z×
p

and for any finite set of places Σ of K containing S∞
K ∪ S

p
K and any representation ρ of

Ir+p (G) we write Lp,Σ(ρ, s) for the Σ-truncated Deligne-Ribet p-adic Artin L-series of ρ, as
discussed by Greenberg in [25].

We write eπp for the idempotent of ζ(Qp[G]) obtained by summing eρ over all the subset

Υπp of Ir
−
p (G) comprising characters ρ for which the space HomCp[G](Vρ̌,Cp·ker(πp)) vanishes

and we then obtain a further idempotent of ζ(Qp[G]) by setting

essπp := ess · eπp .

Lemma 14.2. For each homomorphism πp as above the following claims are valid.

(i) θ
πp
L/K,S,T (z) is p-adic holomorphic at z = 0.

(ii) θ
πp
L/K,S,T (0) belongs to essπp · ζ(Qp[G])

×.

Proof. Claim (i) is equivalent to asserting that for each ρ in Ir+p (G) the order of vanishing
at z = 0 of Lp,S,T (ρ̌ · ωK , z) is at least rπ(ρ). The key point in proving this is that [9,
Th. 3.1(i)] shows this order of vanishing to be at least dimCp(HomCp[G](Vρ̌,Cp ·XL,S)) and,
given this fact, the required inequality is proved by the same argument as in Lemma 8.5.

Next we note it is clear θ
πp
L/K,S,T (0) belongs to ζ(Qp[G]). In addition, one has essπp =

∑
ρ eρ

where ρ runs over Irssp (G)∩Υπp and the argument of claim (i) implies eρθ
πp
L/K,S,T (0) vanishes

unless ρ belongs to Υπp .
To prove claim (ii) it is therefore enough to show that for each ρ in Υπp the element

eρθ
πp
L/K,S,T (0) is non-zero precisely when ρ belongs to Irssp (G). This is in turn equivalent to

proving that for each ρ in Υπp the order of vanishing of Lp,S,T (ρ̌ · ωK , z) at z = 0 is equal
to rπ(ρ) precisely when ρ belongs to Irssp (G). This is true because for each ρ in Υπp one
has rπ(ρ) = dimCp(HomCp[G](Vρ̌,Cp · XL,S)) and, by [9, Th. 3.1(ii)], one knows that the
order of vanishing of Lp,S,T (ρ̌ · ωK , z) at z = 0 is equal to dimCp(HomCp[G](Vρ̌,Cp ·XL,S))
precisely when ρ belongs to Irssp (G). �

14.2. The definition of higher non-abelian p-adic Stark elements. For each homo-
morphism of Ap-modules πp as above we write rπp for the Ap-rank of Yπp and then choose
an ordered Ap-basis b = {bi}1≤i≤rπp of Yπp .

For any such basis Lemma 14.2(ii) implies that the element θ
πp
L/K,S,T (0) · ∧

i=rπp
i=1 bi belongs

to essπp(
∧rπp
Ap

(Qp ·Πp ⊗Ap Yπp) and so enables us to make the following definition.



97

Definition 14.3. For any basis b as above the ‘higher non-abelian p-adic Stark element
(relative to b)’ is the unique element ϵ

πp
b of essπp(

∧rπp
Ap

(Qp ·Πp ⊗Zp[G] O
×,−
L,S,p)) which satisfies

λ
πp
L,S(ϵ

p,π
b ) = θ

πp
L/K,S,T (0) · ∧

i=r
i=1bi,

where λ
πp
L,S denotes the isomorphism essπp(Qp ·Πp ⊗Qp[G] λ

p
L,S).

Example 14.4. For each place v in S we fix a place wv of L above v and write wv for
its complex conjugate. We also write VL for the subset of S comprising places which split
completely in L/K, set rL := |VL| and note that, as L is a CM extension of K, the Zp[G]−-
module (YL,VL,p)

− is free of rank rL with basis b := {wv−wv : v ∈ VL}. Finally we write πp
for the natural surjective homomorphism of Zp[G]−-modules StrS,T (Gm/L)

−
p → (YL,VL,p)

−.

Then the data (b, πp) is suitable to be used in Definition 14.3 (with Ap = Πp = Zp[G]−)
and so we may set

ϵpL/K,S,T := ϵ
πp
b .

We refer to this element as the ‘non-abelian (p-adic) Gross-Rubin-Stark element’ with re-
spect to the data L/K,S, T and note that it constitutes a natural generalization of the
Gross-Rubin-Stark elements that are defined (in the setting of abelian extensions) by the
first author in [9, §3.5]. The conjectural link between these elements and the non-abelian
Rubin-Stark elements defined in Example 8.9 is described in Proposition 15.6(i) below.

In this context we also define a ‘rL-th order non-abelian p-adic Stickelberger series’ by
setting

θ
p,(rL)
L/K,S,T (z) := θ

πp
L/K,S,T (z) =

∑
ρ∈Ir−p (G)

eρ · z−ρ(1)rLLp,S,T (ρ̌ · ωK , z).

15. Statement of the conjectures

15.1. Non-abelian p-adic zeta elements and determinant modules. In the sequel
we set Zp[G]ss := Zp[G]ess.

For any object C of Dlf,0(Zp[G]) we write Css for the associated object Zp[G]ss ⊗L
Zp[G] C

of Dlf,0(Zp[G]ss) and we note that in each degree i there is a canonical identification of
Qp-spaces Qp ·H i(Css) = ess(Qp ·H i(C)).

15.1.1. We write κw for the residue field of each place w in TL. Then for each such place
w the complex RΓét(κw,Zp(1)) is acyclic outside degree one and there exists a natural

morphism in Dlf,0(Zp[G])

(58) RΓét(OL,S ,Zp(1))
θL,T−−−→

⊕
w∈TL

RΓét(κw,Zp(1))

for which H1(θL,T ) is induced by the natural projection maps O×
L,S → κ×w (for more details

see [9, Lem. 4.3]).
We write RΓT (OL,S ,Zp(1)) for the mapping fibre of θL,T and H i

T (OL,S ,Zp(1)) for the
cohomology of this complex in degree i and we note that the long exact cohomology sequence
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associated to the definition of mapping fibre induces canonical identifications

(59) H i
T (OL,S ,Zp(1))− ∼=


O×,−
L,S,T,p, if i = 1

StrS,T (Gm/L)
−
p , if i = 2

0, otherwise.

In view of this description, the definition of the idempotent ess implies that the homo-
morphism RpL,S restricts to give an isomorphism of Qp[G]

ss-modules

Rp,ssL,S : Qp ·H1(RΓT (OL,S ,Zp(1))ss) ∼= Qp ·H2(RΓT (OL,S ,Zp(1))ss).

This isomorphism then combines with the general construction (22) to give a canonical
isomorphism of ζ(Qp[G])

ss-modules

ϑQp⊗ZpR
p,ss
L,S

: detQp[G]ss(Qp ·RΓT (OL,S ,Zp(1))ss)→ ζ(Qp[G]
ss)

and in the sequel we denote this isomorphism by λpL,S .

Finally we note that the leading term θp,∗L/K,S,T (0) at z = 0 of the function

θpL/K,S,T (z) :=
∑

ρ∈Ir−p (G)

eρ · Lp,S,T (ρ̌ · ωK , z)

belongs to ζ(Qp[G]
−)× and hence that θp,∗L/K,S,T (0)ess belongs to ζ(Qp[G]

ss)×.

Definition 15.1. The ‘p-adic zeta element of Gm relative to L/K,S and T ’ is the pre-
image zpL/K,S,T in Qp · detZ(p)[G]ss(RΓT (OL,S ,Zp(1))ss) of the element θp,∗L/K,S,T (0)ess under

the isomorphism λpL,S .

These elements constitute a natural p-adic analogue of the zeta elements from Definition
9.1 and the central conjecture that we make concerning them is the following analogue of
Conjecture 9.2.

Conjecture 15.2. ξ(Zp[G]ss) · zpL/K,S,T = detZp[G]ss(RΓT (OL,S ,Zp(1))ss).

Remark 15.3.
(i) Conjecture 15.2 constitutes a natural generalization of a conjecture formulated for abelian
extensions L/K by the first author in [9, Conj. 3.6].
(ii) For any normal subgroupH of G for which the corresponding intermediate field F := LH

is CM, there is a natural descent isomorphism in Dlf,0(Zp[G/H]ss) of the form

Zp[G/H]ss ⊗L
Zp[G]ss RΓT (OL,S ,Zp(1))

ss ∼= RΓT (OF,S ,Zp(1))ss.

It is straightforward to show that the p-adic zeta elements zpL/K,S,T and zpF/K,S,T satisfy the

same functoriality property with respect to this isomorphism as was observed for the cor-
responding zeta elements in Lemma 9.8. The validity of Conjecture 15.2 for L/K therefore
implies its validity for F/K.



99

15.1.2. In this section we explain the precise connections between Conjectures 9.2 and 15.2
and between the Gross-Rubin-Stark and Rubin-Stark elements that are respectively defined
in Examples 14.4 and 8.9.

Before stating these results we give a precise statement of the weak p-adic Gross-Stark
Conjecture.

To do this we fix an injective homomorphism of G-modules ϕ : O×
F,S → XF,S . Noting

that the scalar extension Cp⊗ϕ is bijective, for each ρ in Ir−p (G) we then define a Cp-valued
L -invariant by setting

LS(ϕ, ρ) := detCp((Cp ⊗Z ϕ)
−1 ◦ (Cp ⊗Zp R

p
L,S) | HomCp[G](Vρ̌,Cp · O×

L,S)).

In a similar way, for each field isomorphism j : C ∼= Cp and each ρ in Ir−p (G) we define a
C-valued regulator by setting

RS(ϕ, ρ
j−1

) := j−1(detCp((Cp ⊗Z ϕ)
−1 ◦ (Cp ⊗R,j RL,S) | HomCp[G](Vρ̌,Cp · O×

L,S))).

The following conjecture is formulated by Gross in [27, Conj. 2.12] and is commonly
referred to as the ‘weak p-adic Gross-Stark Conjecture’.

Conjecture 15.4. Fix a character ρ in Ir−p (G), an isomorphism of fields j : C ∼= Cp and
an injective homomorphism of G-modules ϕ : OF,S → XF,S. Then one has

L
rS,ρ
p,S,T (ρ̌ · ωK , 0)LS(ϕ, ρ) = j(L

rS,ρ
S,T (ρ̌

j−1
, 0)RΣ(ϕ, ρ

j−1
)),

with rS,ρ := dimCp(HomCp[G](Vρ̌,Cp · O×
L,S)).

Remark 15.5. The equality of Conjecture 15.4 and the prediction that ess = e− (as recalled
in Remark 14.1(i)) together constitute the ‘p-adic Gross-Stark Conjecture’ that occurs in
the statement of Corollary 10.5(ii).

We can now state the main result of this section.

Proposition 15.6. If Conjecture 15.4 is valid for L/K, then so are the following claims.

(i) ϵpL/K,S,T = ess(ϵ
VL
L/K,S,T ) with VL the set of places splitting completely in L/K.

(ii) If Conjecture 15.2 is also valid for L/K, then ess · zL/K,S,T is a primitive basis of

detZp[G](Zp[G]ss ⊗L
Z[G] CL,S,T ).

Proof. We set r = rL, write Ir
−,r(G) for the subset of Ir−(G) comprising characters for which

LS,T (ψ̌, z) vanishes to order r · ψ(1) at z = 0 and write er for the associated idempotent∑
ψ∈Ir−,r(G) eψ of ζ(Q[G]).

Then the explicit definitions of ϵpL/K,S,T and ϵVLL/K,S,T combine with the arguments of

Lemma 8.5 and 14.2(ii) to imply ϵVLL/K,S,T = er(ϵ
VL
L/K,S,T ) and ϵpL/K,S,T = esser(ϵ

p
L/K,S,T ),

whilst a direct comparison of these definitions shows that for any fixed isomorphism of
fields j : C ∼= Cp one has

(60) ϵpL/K,S,T = v · eress(ϵVLL/K,S,T )

with v the element

(θ
p,(r)
L/K,S,T (0)ess)j∗(θ

(r)
L/K,S,T (0)eress)

−1 ·NrdCp[G]ss((Cp ⊗Qp λ
p
L,S) ◦ ess(Cp ⊗R,j λL,S)

−1)
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of ζ(erCp[G]ss)×, where j∗ denotes the ring isomorphism C[G] ∼= Cp[G] induced by j.

Set Ir−,rp (G) := {ψj−1
: ψ ∈ Ir−,r(G)}. Then for each ρ in Irssp (G)∩ Ir−,rp (G) one has both

eρ(θ
p,(r)
L/K,S,T (0)ess)j∗(θ

(r)
L/K,S,T (0)eress)

−1 = (L
rS,ρ
p,S,T (ρ̌ωK , 0) · j(L

rS,ρ
S,T (ρ̌

j−1
, 0))−1)eρ

and

eρ(NrdCp[G]ss((Cp ⊗Qp λ
p
L,S) ◦ ess(Cp ⊗R,j λL,S)

−1))

=detCp((Cp ⊗R,j RL,S)
−1 ◦ (Cp ⊗Zp R

p
L,S) | HomCp[G](Vρ̌,Cp · O×

L,S))eρ

=detCp((Cp ⊗R,j RL,S)
−1 ◦ (Cp ⊗Z ϕ) | HomCp[G](Vρ̌,Cp · O×

L,S))

× detCp((Cp ⊗Z ϕ)
−1 ◦ (Cp ⊗Zp R

p
L,S) | HomCp[G](Vρ̌,Cp · O×

L,S))

= j(RS(ϕ, ρ
j−1

))−1LS(ϕ, ρ)eρ.

Taken together with the last two displayed formulas the validity of Conjecture 15.4 for
L/K implies that

v =
∑

ρ∈Irssp (G)∩Ir−,rp (G)

eρ(v) =
∑

ρ∈Irssp (G)∩Ir−,rp (G)

eρ = eress

and so claim (i) follows directly from the equality (60).
To prove claim (ii) we recall (from [9]) that the Artin-Verdier Duality Theorem gives a

canonical isomorphism in Dlf,0(Zp[G]) of the form

(61) RΓT (OF,S ,Zp(1))− ∼= (Zp ⊗Z CL,S,T )
−

which in turn induces an identification of ξ(Z(p)[G]
ss)-lattices

(62) detZ(p)[G]ss(RΓT (OL,S ,Zp(1))ss) = detZp[G]ss(Zp[G]ss ⊗L
Z[G] CL,S,T ).

Taking account of this identification, Proposition 6.19(ii) implies the claimed result will
follow if we can show Conjecture 15.4 implies that zpL/K,S,T and ess · zL/K,S,T differ by

multiplication by an element of NrdQp[G]ss(K1(Zp[G]ss)).
Now an explicit comparison of the definitions of zpL/K,S,T and ess · zL/K,S,T shows that

zpL/K,S,T = v′ · (1⊗R,j (ess · zL/K,S,T ))

with v′ the element

(θp,∗L/K,S,T (0)ess)j∗(θ
∗
L/K,S,T (0)ess)

−1 ·NrdCp[G]ss((Cp ⊗Qp λ
p
L,S) ◦ ess(Cp ⊗R,j λL,S)

−1)

of ζ(Cp[G]ss)×.
In addition, the same computation as above shows that Conjecture 15.4 implies v′ = ess

and this element clearly belongs to NrdQp[G]ss(K1(Zp[G]ss)), as required. �
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15.2. p-adic Stark elements, Fitting invariants and reciprocity maps. The same
sort of arguments that are used to derive explicit consequences of Conjecture 9.2 in §9.2 can
be used to show that Conjecture 15.2 implies a range of explicit consequences concerning the
elements ϵ

πp
b from Definition 14.3. For brevity, however, we only consider these consequences

in the setting of Example 14.4.
In claim (iii) of the next result we use the strict family of pre-envelopes P = PL,S,T and

surjective bundle of G-module morphisms π : P → StrS,T (Gm/L) that are constructed in
Proposition 7.1. We also recall that in the setting of Example 14.4 VF is equal to the set of
places in S which split completely in F/K.

Conjecture 15.7. For each Galois CM extension F of K in L set rF := |VF |.
(i) The transpose Selmer group StrS,T (Gm/L)

−
p has a quadratic Zp[G]-module presenta-

tion hp,−L/K,S,T for which

ξ(Zp[G]){(∧i=ri=1φi)(ϵ
p
L/K,S,T ) :φi ∈ HomZp[G](O

×,−
L,S,T,p,Zp[G])} = FIrLZp[G](h

p,−
L/K,S,T ).

(ii) For any a in A(G) and (φi)1≤i≤rL in HomG(O×
L,S,T ,Z[G])

rL one has

a · (∧i=rLi=1 φi)(ϵ
p
L/K,S,T ) ∈ AnnZ[G](Cl

T
S∞
K ∪VL(L))p.

(iii) For all normal subgroups H of G, with E = LH , one has

ρπ,H(ϵ
p
L/K,S,T ) = RecPH(ϵ

p
E/K,S,T )

with P = PL,S,T and ρπ,H the natural projection FπE (
∩r
GO

×
L,S,T )→ FπE (

∩r
GP)H .

Remark 15.8. If L/K validates the p-adic Gross-Stark conjecture (as recalled in Remark

15.5), then Proposition 15.6(i) implies ϵpL/K,S,T = e−(ϵ
VL
L/K,S,T ) and hence that Conjecture

15.7 recovers the ‘minus components’ of the p-parts of the properties of Rubin-Stark ele-
ments that are derived from Conjecture 9.2 in Corollary 9.10.

16. The main result

16.1. Statement of the main result. In the next result we state the main evidence that
we can currently offer in support of Conjectures 15.2 and 15.7.

This result relies on an explicit cohomological construction of approximations to the
Gross-Rubin-Stark elements defined above and shows, in particular, that if the p-adic µ-
invariant µp(L) of Lcyc/L vanishes (as is conjectured to be the case by Iwasawa), then
Conjecture 15.2 is valid and Conjecture 15.7 is valid provided that ess = e− (as is conjectured
by Gross).

In claim (ii) of this result we use the notation of Example 14.4.

Theorem 16.1. If p is such that µp(L) vanishes, then the following claims are valid.

(i) Conjecture 15.2 is valid.
(ii) For each Galois CM extension E of K in L, with H := GL/E, there exists an element

ϵp,cohE/K,S,T of
∧rF

Qp[G/H](Qp · O×
E,S)

− which has all of the following properties.



102 DAVID BURNS AND TAKAMICHI SANO

(a) One has

(
∧rE

Qp[G/H]
(Qp ·RpE,S))(ϵ

p,coh
E/K,S,T ) = θ

p,(rE)
E/K,S,T (0) · ∧v∈VE (wv,E − wv,E)

and hence ϵpE/K,S,T = ess · ϵp,cohE/K,S,T .

(b) ϵp,cohE/K,S,T belongs to FπE,p(
∩rE

Zp[G/H]O
×,−
E,S,T,p).

(c) The transpose Selmer group StrS,T (Gm/E)−p has a quadratic Zp[G/H]-module

presentation hp,−E/K,S,T for which

ξ(Zp[G/H]){(∧i=rEi=1 φi)(ϵ
p,coh
E/K,S,T ) :φi ∈ HomZp[G/H](O

×,−
E,S,T,p,Zp[G/H])} = FIrEZp[G/H](h

p,−
E/K,S,T ).

(d) For any a in A(G/H)p and (φi)1≤i≤rE in HomZp[G/H](O
×,−
E,S,T,p,Zp[G/H])rE

one has

a · (∧i=rEi=1 φi)(ϵ
p,coh
E/K,S,T ) ∈ AnnZp[G/H](Cl

T
S∞
K ∪VE (E)).

(e) There exists an element ζcohp of detZp[G](RΓT (OL,S ,Zp(1))−) with the property
that for every E and H as above one has

∆H,p,−
L,S,T (ζ

coh
p ) = ϵp,cohE/K,S,T

where we write ∆H,p,−
L,S,T for the composite of the identification (62) and the ho-

momorphism (∆H,p
L,S,T )

− defined in §7.5.
(f) For every F and H as above one has

ρπ,H(ϵ
p,coh
L/K,S,T ) = RecPH(ϵ

p,coh
E/K,S,T )

with ρπ,H the natural projection FπE (
∩rL
G O

×
L,S,T )→ FπE (

∩rL
G PL,S,T )H .

Remark 16.2.
(i) As a refinement of Theorem 16.1(ii)(a) our methods will show that, given the family

PL,S,T,p, the elements ϵp,cohE/K,S,T can be collectively specified uniquely up to scalar multipli-

cation by a single element in the kernel of the natural projection K1(Zp[G])→ K1(Zp[G]ss).
(ii) The argument of Proposition 7.3(iii) implies Theorem 16.1(ii)(e) constitutes a natural
generalization of a result proved (for abelian extensions) in [9, Cor. 3.12].

Remark 16.3. In [32] Johnston and Nickel identify families of extensions L/K for which one
can prove the main conjecture of non-commutative p-adic Iwasawa theory for the extension
Lcyc/K without assuming that µp(L) vanishes (or that p does not divide [L : K]). In all such
cases our method shows that the assertions of Theorem 16.1, and in particular therefore
Conjecture 15.2, are valid unconditionally.

16.2. The proof of Theorem 16.1. To prove claim (i) we note that the same argument
as used to prove Theorem 10.1 shows that Conjecture 15.2 is equivalent to an equality in
K0(Zp[G]ss,Qp[G]

ss) of the form

δZp[G]ss(θ
p,∗
L/K,S,T (0)ess) = χZp[G]ss(RΓét,T (OF,S ,Zp(1))ss, Rp,ssL/K)
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where δZp[G]ss denotes the composite homomorphism

ζ(Qp[G]
ss)× → K1(Qp[G]

ss)→ K0(Zp[G]ss,Qp[G]
ss)

where the first arrow is the inverse of the (bijective) reduced norm map and the second is the
canonical connecting homomorphism of relative K-theory and χZp[G]ss(−,−) is the refined
Euler characteristic discussed in §11.2. Given this equivalence, claim (i) is an immediate
consequence of [9, Th. 3.6].

To prove claim (ii) we assume (as we may) that the ordering of S made in §7.1 is such
that v0 is archimedean. In particular, with this choice v0 doesn’t split completely in any
CM extension E of K and so the subset VE of S defined in Example 14.4 coincides with
the set defined (using the same notation) in §7.1.

We then fix a pair (ϖ, b) belonging to the class CS,T (L/K) that is defined in Lemma 7.7
and used in §7.2.3 to construct the family PL,S,T .

We recall that ϖ is a surjective homomorphism of G-modules ϖ : P → StrS,T (Gm/L),

where P is free of rank d, and b = {bi}1≤i≤d is an ordered G-basis of P . We set ϖ−
p :=

(Zp ⊗Z ϖ)− and for each index i also b−i := (1− τ)bi.
Just as in §12.1 we then fix an exact sequence of Zp[G]−-modules

0→ O×,−
L,S,T,p → P−

p

ϕ−p−−→ P−
p

ϖ−
p−−→ StrS,T (Gm/L)

−
p → 0

which, in view of the isomorphism (61), induces an identification betweenRΓT (OL,S ,Zp(1))−

and the complex P−
p

ϕ−p−−→ P−
p , where the first module is placed in degree one.

Now claim (i) combines with the argument of Proposition 11.2(ii) to imply the existence
of an element u′p of K1(Zp[G]ss) which satisfies

(63) θp,∗L/K,S,T (0)ess = NrdQp[G]ss(u
′
p)NrdQp[G](⟨ϕ−p , ι1, ι2⟩)

for any choice of Qp[G]-sections ι1 and ι2 to ϕ−p and ϖ−
p . By Bass’s Theorem (cf. [34,

Chap. 7, (20.9)]) we can then fix a pre-image up of u′p under the natural projection map
K1(Zp[G])→ K1(Zp[G]ss).

As in §7.3.1, we write ZE for the subset of [n] comprising the rE integers i for which vi
belongs to VE (and so splits completely in E/K). We then set

ϵp,cohE/K,S,T := NrdQp[G](up) · (
∧

a∈[d]\ZE

(ϕ−p )a)(
∧
c∈[d]

TH(b
−
c )) ∈

∧rE

Qp[G/H]
(Qp · PH,−p ).

Noting that (1− ess)(
∧rE

Qp[G/H](Qp ·RpE,S)) is the zero map one has

(
∧rE

Qp[G/H]
(Qp ·RpE,S))(ϵ

p,coh
L/K,S,T ) = (

∧rE

Qp[G/H]
(Qp ·RpE,S))(ess · ϵ

p,coh
L/K,S,T )

and, given this fact, the equality (63) combines with the argument used in the proof of
Theorem 12.2 to imply the displayed equality in claim (ii)(a).

The final assertion of claim (ii)(a) then follows directly from the fact that the definition
of ess implies that the map λpE,S = ess(

∧rE
Qp[G/H](Qp ·RpE,S)) is injective.

Given the above explicit definition of the elements ϵp,cohE/K,S,T the remaining assertions of

claim (ii) can be proved by mimicking the arguments used in §12 and §13.1 to deduce
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Corollary 9.10 from the explicit formula for the Rubin-Stark elements ϵv0E/K,S,T that is given

by Theorem 12.2. However, since this process is routine, we shall for brevity leave the
detailed derivation to an interested reader.
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