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OF ARTIN L-SERIES AT s=0

DAVID BURNS, DANIEL PUIGNAU, TAKAMICHI SANO AND SOOGIL SEO

ABSTRACT. We conjecture a family of integral congruence relations between the values at
zero of different order derivatives of Artin L-series over general number fields. We show
this prediction specialises to recover the ‘refined class number formula for G,,” indepen-
dently conjectured for abelian extensions by Mazur and Rubin and by the third author,
prove it for Artin L-series of characters that factor through a natural class of Frobenius
extensions of Q and provide concrete supporting evidence in other special cases. We also
use techniques of non-commutative Iwasawa theory to prove, modulo only a standard pu-
vanishing hypothesis, the analogous family of congruence relations for p-adic Artin L-series
over arbitrary totally real number fields.

1. INTRODUCTION

1.1. The main results. In this article we formulate, and then provide supporting evidence
for, a conjectural family of integral congruence relations between the (normalised) values at
zero of differing order higher derivatives of the Artin L-series of finite dimensional complex
characters over general number fields.

We refer to our conjectural congruences as the non-commutative Class Number Formula
Conjecture for G,, (or ‘nCNF(G,,)’ for brevity in the rest of the Introduction) since, upon
specialisation to the L-series of linear characters, they recover the ‘refined class number
formula for G,,’ independently conjectured by Mazur and Rubin [26] and by the third
author [32]. In particular, via this connection, our conjecture also simultaneously extends
to the L-series of arbitrary finite dimensional complex characters a range of earlier much
studied conjectures for Dirichlet L-series that are due to Darmon, to Gross, to Rubin and
to Tate among others (see the discussion following Remark 5.4).

Prior to formulating nCNF(G,,), there are several preliminary steps that we undertake
that are perhaps of some independent interest. Firstly, in §3, we introduce a new, and very
natural, notion of ‘projective pull-back’ for lattices over p-adic group rings. Then, in §4, we
define canonical ‘Artin-Bockstein maps’ in étale cohomology that generalise to non-abelian
Galois extensions the classical reciprocity maps of local class field theory. By combining
these maps with a canonical arithmetic construction of projective pull-backs, we then obtain
a natural generalisation of the ‘regulator maps’ that are defined in [26] and [32] in terms of
local reciprocity maps.

The conjecture nCNF(G,,,) is then stated precisely as Conjecture 5.1 and uses Artin-
Bockstein regulator maps to formulate families of integral congruence relations between the
non-commutative Rubin-Stark elements (of differing ranks) defined by the first and third
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author in [7], and hence between the normalised values at zero of higher derivatives (of
differing orders) of the corresponding Artin L-series.

The use of non-commutative Rubin-Stark elements is crucial to our approach and means
that many of the constructions and results of this article involve the notions of Whitehead
order, reduced exterior power and reduced Rubin lattice that were introduced in [6]. In fact,
in order to incorporate the notion of projective pull-backs we must strengthen some technical
aspects of the theory presented in loc. cit. and, to help the reader, these developments
(including a simplified definition of the key notion of Whitehead order) are first presented,
together with a brief review of relevant results from [6], in §2.

As mentioned above, for the L-series of linear characters we can show that nCNF(G,,)
recovers the conjectures of Mazur and Rubin [26] and of the third author [32] concerning
Rubin-Stark elements (this will follow from the argument of Theorem 5.5(i)). Further,
in other interesting special cases we can show that the congruences in nCNF(G,,) have a
more explicit interpretation and are thereby able to provide supporting evidence for the
conjecture in situations that involve the L-series of non-linear characters. In this way, for
example, we can use an approach developed by Johnston and Nickel in [21] to prove the
following result (for a precise statement of which see Corollary 5.6).

Theorem A. The p-component of nCNF(G,,) is valid for the Artin L-series of characters
that factor through any finite Galois extension L of Q for which the Galois group is a
Frobenius group that has a kernel of order prime to p and a complement that is abelian.

In other directions, we show that nCNF(G,,) incorporates a natural extension to non-
abelian Galois extensions of the Rubin-Stark Conjecture formulated in [31] (see Remark
5.2(iii)) and also predicts a family of explicit integrality and congruence restrictions on the
Stickelberger elements for non-abelian Galois extensions introduced by Hayes in [18] for
which one can provide concrete unconditional supporting evidence (see §5.2.2 and §5.2.3).
In the course of proving such results, we are also led to make some new observations re-
garding the non-commutative Fitting invariants of the Selmer modules of G,, introduced
by Kurihara and the first and third authors (see §5.2.4).

We recall that the definition of non-commutative Rubin-Stark elements in [7] involves
both the Dirichlet regulator map and the values at zero of higher derivatives of Artin
L-series. In just the same way, for each prime p one can define ‘p-adic non-commutative
Rubin-Stark elements’ by using Gross’s p-adic regulator map and the values at zero of higher
derivatives of p-adic Artin L-series over totally real number fields. In this way, we are led
to formulate (in Conjecture 6.1) a precise analogue of nCNF(G,,) for p-adic Artin L-series.
By combining deep results of Ritter and Weiss [30] and Kakde [23] in non-commutative
Iwasawa theory with Galois-cohomological arguments from [7], we are then able to prove
the following result (for a precise version of which see Theorem 6.3).

Theorem B. The analogue of nCNF(G,,) for p-adic Artin L-series is valid for characters
that factor through any finite CM Galois extension of a totally real field that validates
Twasawa’s p-invariant conjecture.

This result can in turn be combined with the known validity of the Gross-Stark Con-
jecture (due to Dasgupta, Kakde and Ventullo [10]), a technical observation concerning
the validity of the Gross-Kuz’min Conjecture and a classical result of Neukirch [27] on the



embedding problem to obtain further concrete evidence for nCNF(G,,). In particular, this
approach will allow us to prove the p-component of nCNF(G,,) for the L-series of totally
odd characters that factor through a family of finite CM Galois extensions L of Q for which
each of the ramification degree of p in L, the number of p-adic places of L and the order
of the commutator subgroups of the Sylow p-subgroups of Gal(L/Q) are simultaneously
unbounded (see Corollary 6.4, Example 6.5 and Remark 6.6), thereby complementing the
result of Theorem A.

Finally, to help provide some general context for our approach, we now fix a compact p-
adic Lie extension of number fields /K of rank one. Then it can be shown that the validity
of nCNF(G,,,) for the L-series of all characters that factor through finite Galois extensions
of K in K implies the validity of the ‘Generalized Gross-Stark Conjecture’ for /K that
is formulated in [7, Conj. 9.7] as a derivative formula for the canonical non-commutative
Rubin-Stark Euler system. This link will be established elsewhere and in effect shows that
nCNF(G,,) constitutes a refinement ‘at finite level’ of the latter conjecture. In addition, it
combines with the main result (Theorem 10.15) of loc. cit. to show that nCNF(G,,) has an
important role to play in attempts to verify the equivariant Tamagawa number conjecture
for G, (or eTNC(G,,) for short in the sequel) for families of non-abelian Galois extensions.
Here it is important to note that nCNF(G,,) is much more amenable to investigation than
is €INC(G,,), as is evidenced in the present article both by the fact that it can often
be interpreted comparatively explicitly (as already noted above) and, in addition, can be
verified in cases for which eTNC(G,,) is not known to be valid (see, for example, Remarks
5.7(ii) and 6.6).

However, whilst this link may perhaps provide some additional motivation to study
nCNF(G,,), we feel that the aspects discussed in the present article show this conjecture is
also itself of some intrinsic interest.

1.2. General notation. For each ring R, we write ((R) for its centre and R°P for the
corresponding opposite ring (so that ((R) = ((R°?)). By an R-module we shall, unless
explicitly stated otherwise, mean a left R-module.

We write Z ) for the localization of Z at a prime number p and for any abelian group,
or complex of abelian groups, A we write A, for the pro-p completion of A and use similar
notation for morphisms. We also fix an algebraic closure Qj of @, and write C, for its
completion.

For a finite group I" we write Ir(I') and Ir,(I") for the sets of irreducible C-valued and
C,-valued characters of I'. We write [I', T'| for the commutator subgroup of I and T'? for the
abelianisation I'/[I", '] of I". As is usual, we shall refer to a finitely generated Z,[I']-module
that is free over Z, as a ‘Z,[I']-lattice’.

For a natural number ¢ we write [t] for the set of integers ¢ with 1 <i <t. We also write
{br,i}icpy for the standard (ordered) Z,[I']-basis of the direct sum Z,[T']* of ¢ copies of Zy[I'].
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2. WHITEHEAD ORDERS AND REDUCED RUBIN LATTICES

We present a simplified definition of the ‘Whitehead orders’ introduced in [6] and then
further develop the theory of reduced Rubin lattices from loc. cit.

2.1. Whitehead orders. Let R be a Dedekind domain with field of fractions F' of char-
acteristic zero, and A an R-order in a finite dimensional semisimple F-algebra A.

Definition 2.1. The ‘Whitehead order’ £(A) of A is the R-submodule of ((A) that is
generated by the elements Nrds(M) as M runs over all matrices in |J, ey Mn(A).

Lemma 2.2. The R-module £(A) has all of the following properties.
(i) £&(A) is an R-order in ((A).
(ii) For each p € Spec(R) one has §(A) ) = §(Agpy) and E(A)y = E(Ay)-
(iii) In ((A) one has §(A) = Myespec(r)é (Awr))-

Proof. Since £(.A) is obviously closed under multiplication and contains 1 (as the reduced
norm of the identity matrix), claim (i) is reduced to showing that £(.A) is finitely generated
and such that F - {(A) = ((A). To prove this we note ((A) decomposes as a finite product
[Lic; Fi of finite degree field extensions F; of F' and that, correspondingly, A decomposes
as a product [[,.; A;, where each A; is a central simple F;-algebra.

For each n the R-module M, (.A) is finitely generated and so, for every M € M, (A),
there exists a monic polynomial ¢ = ¢y over R with ¢(M) = 0 in M,,(A). Hence, writing
M = (M;);er for the decomposition of M in My (A) = [[;c; Mn(4;), for each i one has
c¢(M;) =0 in M, (A;). Tt follows that every eigenvalue A of the image of M; in any splitting
of My,(4;) satisfies ¢(\) = 0 and so is integral over R. In particular, since Nrd g, (M;) can
be computed as the product of such eigenvalues, each term Nrd4 (M) = (Nrda, (M;))ier is
contained in the integral closure of R in the (finite-dimensional) F-algebra ((A), and so
&(A) is finitely generated, as required.

To prove F' - £(A) = ((A), it suffices to show each component Fj of [],.; F; is contained
in F-£(A). Now, as A is an R-order in A, for any « € Fj one has r; - x € ((A) for some
r; € R\ {0} and so, for some natural number s (that depends on j but is independent of
), also 2° = r;°Nrdy, (rjz) € F'- {(A). In particular, for y € F; and a € [s], one has

S (D)o == ey - e F e,

i

Hence, since M := (ij*l)lg’jSS belongs to GLs(F') (as char(R) = 0), the element

y= G) B G)y = (i) _IZISaSS(M_l)mya

belongs to F' - £(A), as required.



Fix a nonzero p € Spec(R). Then, since it is clear {(A) ) € §(A(p)), the first equality in
claim (ii) is reduced to showing that {(Ag)) € &(A)py- To do this we fix M € M, (Ag,))
and r € R\ p with rM € M,,(A). Then, for each i € I, there exists s; € N such that

(1) Nrdu (M) = (NrdAi(Mi))ZE[ = (r~*Nrdg, (TMZ-))Z.GI = (r~*)ier - Nrda(rM)
in ((A). Write O; for the integral closure of R in F;. Then, since claim (i) implies {(A) )
is an Ry-order in A, we can fix n € N with p" - O; () € &(A)p for all i € I. We also fix

an element x of R congruent to the image of 7~ € Ry in R(p)/p?p) = R/p™. Then one has

(r=*ier = (@*)ier + ((r71)* = 2*)ier = Nrda(a) + ((r71)* = 2*)ier € E(A)p),
where the containment is valid as z € R C A and (r )% —a% € p™- O, () € £(A) (). Given
this, the expression (1) implies that Nrda(M) € £(A)(p), as required.

Finally, we note that the second equality of claim (ii) follows by a similar argument (see

[6, Lem. 3.2(ii)]) and that claim (iii) follows directly from the first equality in claim (ii)
and a general property of R-lattices. O

Remark 2.3. Lemma 2.2(iii) implies Definition 2.1 coincides with the original definition
of £(A) via localisations that is given in [6, Def. 3.1]. In particular, this fact implies £(.A)
is, in general, neither contained in nor contains ((A) (cf. [6, Exam. 3.4 and Exam. 3.5]).

2.2. Reduced Rubin Lattices. In this section we review, and slightly extend, the theory
developed in [6, §4] (where all background details can be found).

2.2.1. Let I be a finite group and, for each x in Ir(I'), fix a corresponding representation
px : I' = GLy1)(C). Then, for any subfield I’ of C, any non-negative integer a and any
finitely generated F[I'l-module M, the ‘a-th reduced exterior power’ /\“F[F]M of M is a

canonical finitely generated ((F[I'])-module. In addition, for each integer s with 0 < s < a,
there are natural duality pairings

/\F[F]M X /\F[F]OP HomF[F}(M¢ F[F]) - F[F]M7 (m7 SO) = So(m)
We write Aje[qm; for the reduced exterior product in AfpM of a subset {m;};c(q of M

and note that, for any subset {;};c[o of Hompr (M, F[I']), one has
(2) (Nicfai) (Njefaymy) = Nrdw, (prjer) ((9i(m5))i jefa)) € C(FT]).
2.2.2. Let now R denote Z or, for a prime p, either Z, or Z;,, and write F' for the field of
fractions of R. For a finitely generated R[[']-module M we set
M* := Hompgr(M, R[T])

and, for a non-negative integer a, define the ‘a-th reduced Rubin lattice’ of M by setting
M =1z € /\Fm (F®r M) : (Ajeaps)(@) € E(RILT), V{p;}jelq € M7}

If T is abelian, then ﬂ%mM coincides with the module A§M defined in [31]. In general,

ﬂ‘};{mM is a finitely generated £(R[I'])-module whose basic properties are described in [6,

Th. 4.19]. We recall, in particular, that an injection of R[I']-modules ¢ : M — M’ induces
an injection «f : M — MM’ of {(R[I'])-modules and that for any non-negative
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integer s with s < a, the reduced exterior product of each subset {¢;};¢[s of M* induces a
map of {(R[I'])-modules Ajefq9; : NprM — ﬂ%ﬁM

Finally, we note that the argument of [6, Lem. 4.16] implies injectivity of the canonical
‘evaluation’ map of {(R[I'])-modules

(3) eviy : maRmM — Hg(R[F])S T = ((/\jé[a]‘pj)(m))eo
hd

where in the direct product ¢ = (¢1,...,¢4) runs over all elements of (M*)*.

2.2.3. We now assume to be given an extension of finite groups of the form
(4) I AT ST 1.

We write 7, : Z[['] — Z[Y] for the (surjective) ring homomorphism induced by = and &(T", A)
for the ideal of {(Z[I']) defined by the tautological short exact sequence

(5) 0= &(T,A) S (Z[T)) =5 €(Z[Y]) — 0

in which the surjective map 7, is induced by 7, and the result of [6, Lem. 2.7(iv)].
For non-negative integers a and d, the projection maps induced by Q ®z

w : /\fQ[F]@[F]d — /\;m@[r]d and @' : Homgr(Q[T?, Q[T]) — Homgy) (Q[Y]%, Q[Y])

are such that, for all {¢;}c[q) C Homgyn (Q[I*,Q[I']) and x € /\?Q[F}Q[F]d, one has
(M@ () (@(2)) = (@ 7)((Aseia 0)(@))

Hence, as @’ (Homyr(Z[I'?, Z[I'])) = Homgxj(Z[Y]?, Z[Y]), the map @ restricts to a map

o ¢ [y 201 = [ 2001 with o3 (6(T, ) -1, ZI0)7) = 0.

Z[r]

One has Q(I)f’dA = . If 0 < a < d, then for {0;},c[q) C Homyp (Z[T)?, Z[T]), there exists a
commutative diagram of &(Z[I'])-modules

a’ Njela)9; a’'—a
Nz ZIr) — MNzir| zZ[r)
(6) Q?I,Z’l l@?l,ga’d
a’ d Nj€lal @' (05) o —a d
Nz 2] ——— Nz 2071
The following result analyses the cokernel of the maps gl‘i:dA.

Lemma 2.4. Write \jrjop (Z[T)%*) for the £(Z[T))-submodule of NZryor (Z[T)%*) generated
by {Nigja)i : i € Z[T)%*Y. Then there exists a natural exact sequence of £(Z[T])-modules

a,d

cok(ofy) < Ext{ ) (/\;[F]Op (Z[T)%*), (T, A)) A, Extg ) (/\;[F]OP(Z[F]d’*), ¢(Z[1))).



Proof. Set M = Ngjon(Z[L)), 3T = Ndppjen (Z[Y]*), A = E(ZIT)). K = £(Z[X)),A° =
¢(T,A) and o = g%’i. Write e for the idempotent [A[7* > ;.1 8 of ((Q[I']) and, for any
torsion-free A-module X, set X[e] == {z € 1® X C Q®z X : e(x) = 0}. Then, after
identifying Z[['Je with Z[Y], and hence Ae with A, in the natural way, there exists a short

exact sequence of A-modules 0 — M[e] - M M M — 0. Upon applying the functor

Homp (—, A) to this sequence, we therefore obtain an exact sequence
(7) 0 — Homp (M, A) — Homp (M, A) — Homy (M]e], A).

The last term here vanishes since it is both Z-free and spans the Q-space

Q ®z Homp (Mle], A) = Homgqqry) ((1 — €)(Q ®z M), ((Q[Y])) = (0)

(where the last equality is valid since (1 — €)¢(Q[Y]) = (0)). In addition, the second term
in (7) identifies with Homg(M, A), and hence with N$Z[Y]¢ (by [6, Rem. 4.18]) and so
the sequence identifies ﬂaZl[T]Z[T]d with Homy (M, A). Since ﬂ%[F]Z[I’]d similarly identifies
with Homy (M, A), the claimed exact sequence is thus obtained by applying the functor
Homp (M, —) to (5) (so that the map /i‘fii is induced by the inclusion A° C A). O

Remark 2.5. Lemma 2.4 has the following explicit consequences (where we continue to use
the notation of its proof). If A is Gorenstein, then Ext} (M, A) = (0) and so g is surjective
if and only if Ext} (M, A®) = (0). If M is A-projective (as is the case if A is hereditary, but
is not always true - see Example 2.7 below), then Ext} (M, A%) = (0) and so ¢ is surjective.
If p does not divide |A[, then AJ is a direct summand of A, (as a Ay-module) so that m%’fl&p

is injective and hence g, is surjective.

Remark 2.6. One can also directly show Q%’i is surjective if T (but not necessarily I") is
abelian. This is clear if a > d, since then ﬂ%mZ[T]d = (0). If a < d, it follows from the
existence of a canonical surjective map ﬂasz[F]d — A!, where t is the binomial coefficient
(d) (see [6, Th. 4.19(vi)]), the natural isomorphism ﬂ%mZ[T]d = /\aZ[T]Z[T]d =~ 7[T]t and

a

the fact that the map A — &(Z[Y]) = Z[Y] induced by 7. is surjective (by [6, Lem. 3.2(v)]).

Example 2.7. The ¢(Z[I'])-module /\%[F}Z[I‘]d need not be projective. To describe an
example, we fix an odd prime p and consider the Heisenberg group

L= (y1,72,73 | W =7 =7 = 1,372 = 727371, 7172 = Y271, 1173 = 1371)-

This is the unique non-abelian group of order p* and exponent p (cf. [20, §4.4]), its centre
is 2 := (y1) = [[,T] and the subgroup Z’ := (y1,72) = (71) X (72) is normal; it has p?
linear characters inflated from I'/Z, and p — 1 irreducible characters of degree p, each of
the form Indg, (InfE (¢)) with ¢ a non-trivial linear character of 2. Using this, an explicit
computation of reduced norms shows that, for each M = (m;;) € Mg(Q,[I']), one has

(8) NI‘de[p](M) =e- det(Ml) + (1 — e) . det(MQ) = det(Mg) + €(det(M1) — det(Mg)),
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with e:=(1/p) >_,c=z v€C(Q[I]), My the image of M in My(Q,[I'/Z]) and, for w € Qp \ {1}
with w? = 1 and 7 : Q[Z'] — Q[Z] the natural projection, one has

e (12 (S st v

where m;j; € Qp[Z'] is such that m;; = ﬁzgfl miji 7L in Q,[]. For each M it can be

checked that e(det(M;)—det(M2)) belongs to the maximal ideal of the local ring Z,[I'le and
so (8) implies that e ¢ {(Z,[I']). It follows that the (semi-perfect) ring £(Z[I']), = &(Z,[I))
has a local component A for which eA # (0) # (1 —e)A. Then, for a € [d — 1], the (Q, - A)-
component of Q,, - /\%[F]Z[F]d is not free (by [6, Lem. 4.16] and the argument of [6, Th.

4.19(vi)]) and so the £(Z[I'])-module /\%[F]Z[F]d cannot be projective.

3. PROJECTIVE PULLBACKS

As preparation for our main constructions, we fix an extension of finite groups of the
form (4) and introduce a notion of ‘projective pullbacks relative to 7’ for the category of
Zp|Y]-lattices.

For convenience, in the sequel we shall refer to a map of Z,[Y]-modules as ‘admissible’ if
it is injective and its cokernel is a lattice. We also fix a Z,[Y]-lattice M.

Definition 3.1. A ‘projective hull’ of M is an admissible map of Z,[Y]-lattices ¢ : M — P
in which P is projective and the following condition is satisfied: for any admissible map
/' : M — P’ in which P’ is projective, there exists an admissible map  : P — P’ for which
(! = kot. Two projective hulls ¢t : M — P and / : M — P’ are said to be ‘equivalent’ if
there exists an isomorphism of Z,[Y]-modules x : P — P’ such that ¢/ = ko ¢.

We set M* := Homg, (M, Z,), regarded as a Z[Y]-lattice via the contragredient action.

Lemma 3.2. Let v : M — P an admissible map of Zy|Y]-lattices in which P is projective.
Then v is a projective hull if and only if Homgz, (¢, Z,) is a projective cover of M*. In
particular, every Zy[Y]-lattice has a unique equivalence class of projective hulls.

Proof. Set A := Zpy[Y]. Then A is Gorenstein and has the following properties: every
A-lattice M is reflexive (that is, the natural map M — (M™*)* is bijective); a map 6 of
A-lattices is admissible if and only if its Z,-dual 0" is surjective; the Z,-dual of a finitely
generated projective A-module is finitely generated projective. These properties combine
to imply # is an admissible map from M to a finitely generated projective module if and
only if 0* is a surjective map from a finitely generated projective module to M*.

Using this equivalence, one checks easily that « : M — P is a projective hull of M if and
only if /* is a projective cover of M*. Given this correspondence, the final assertion follows
directly from the fact Z,[Y] is semi-perfect and so every finitely generated module has a
projective cover that is unique up to isomorphism (cf. [8, Prop. (6.20), Th. (6.23)]). O

We can now give the main definition of this section.

Definition 3.3. A ‘projective pullback relative to 7’ of M is a pair (tar,g, kp,Q) comprising
a projective hull tps.¢ : M — @ of M and a projective cover kp g : P — Q of ) considered as
a Zp(I'l-module via 7 (so that P is a projective Z,[I'l-module). Two such pairs (¢r1,0, kp,Q)



and (L/]\/LQ/, /i,P/’Q/) are ‘equivalent’ if there exist bijective maps p and i within a commutative
diagram of Z,[I']-modules of the form

2

LM,Q Q«—— P
i\ Q «—— P.

L
M,Q’ Ko o

Lemma 3.4. There exists a unique equivalence class (M) of projective pullbacks of M
relative to w. For (uyv,Q,kpQ) n (M), the map (kpg)a : Pa — Q is bijective.

Proof. For (tym,q, kpg) and (U or, Kpr /) in 7% (M), Lemma 3.2 implies the existence of an
isomorphism p that makes the triangle in (9) commute. Since porpg is a projective cover
of @', there is an isomorphism i making the square in (9) commute (cf. [8, Prop. (6.20)]).

Set k = kpg and write n: P — Pa for the canonical map, so that K = kaon. To prove the
bijectivity of ka, it is enough to prove its injectivity, and to do this we use the projectivity
of @ (as a Zp[Y]-module) to fix a section o of ka. Then, if kA is not injective, one has
o(Q) # Pa and so the full pre-image 77! ((Q)) of ¢(Q) under 7 is a proper submodule of
P. However, since k(7 1(c(Q))) = ka(c(Q)) = Q = k(P), this last assertion contradicts
the fact k is essential. O

The above argument can be extended to show, more conceptually, that 7* (M) is the initial
object of a category with objects (¢, k), where ¢ is an admissible map from M to a projective
Zp|Y]-lattice @, and K : P — @ a surjective map of Z,[I']-lattices, with P projective. (This
aspect will be considered more fully in the upcoming thesis of the second author). For our
immediate purposes, however, the significance of Lemma 3.4 is that the diagrams (9) imply
all constructions that we make in the sequel are independent, in a natural sense, of the
choice of representative of 7*(M). In particular, by fixing a representative of 7*(M) of the
form (tpr,p,,kp), with kp the canonical map P — Pa, we can, and will, identify 7*(M)
with the projective Zy[I'l-module P and regard M as a submodule of 7*(M)a = Pa (via
ta,py ). We shall freely use this approach in the rest of this section.

In the next definition, we fix a Z,[I']-module N and a map of Z,[Y]-modules 6: M — Na.

Definition 3.5. A ‘pullback of @ relative to 7’ is a map of Z,[[']-modules §:7*(M) — N
for which 6 is the restriction to M of the induced map a : 7*(M)a — Na (such a map
0 exists if and only if 6 factors through ¢ for any given (i, %) in 7*(M)). Two pullbacks 6
and ' of # will be identified if they are respectively defined via elements (1, %) and (¢/, &')
of m*(M) and one has O = ' o pu for an isomorphism y as in (9).

Remark 3.6. Fix (1y1.0,kpg) in 7*(M) and an isomorphism p : P ® R =2 Z,[T¢ of Z,[T]-

modules. Then M M) Q ® Ra 25 7,[Y)¢ is admissible and kpg is the restriction
through y of the ring homomorphism 7¢ : Z,[I']% — Z,[Y]? induced by m. Conversely, given
any admissible ¢ : M — Z,[Y]9, there exist direct summands P and Q of Z,[I']% and Z,[Y]?
such that «(M) C @, the map M — @ induced by ¢ is a projective hull and the restriction

of 7 to P is a projective cover of Q (as a Z,[']-module). Given such a map ¢, constructing



10 DAVID BURNS, DANIEL PUIGNAU, TAKAMICHI SANO AND SOOGIL SEO

a pullback of 6 : M — Na relative to 7 is therefore equivalent to constructing a map of
Zp[T']-modules 6 : Z,[T']¢ — N such that 6 is the restriction of §a through ¢.

The next definition concerns the reduced Rubin lattice ﬂ%p[F]N associated to a finitely

generated Z,[[']-module N and a non-negative integer a (cf. §2.2). In particular, we recall
that ﬂ%p mV is a lattice over the Whitehead order {(Zy|[I']) of Z,[I'], a simplified definition
of which is provided in §2.1.

Definition 3.7. For any non-negative integer a, the projection 7*(M) — 7*(M)a induces
amap 04y, (7™ (M) = Nz, 7 (M)a of {(Zy[I'])-modules. We define a §(Z,[Y])-

submodule of ()7 1M by setting (ﬂ%pm]\ﬂ7r = (ﬂameM) Nim(ef, ,)-

Remarks 3.8. (i) Given (ta,0, kp,g) € (M), one can compute (ﬂ%pmM)W as the set of
elements of (7 )M whose image under the (injective) map 7 )M — 7, 1)@ induced
by tar,q is contained in the image of the map (7 P — Nz, @ induced by rpgq. (This
description is easily seen to be independent of the choice of (ta1,0,xpPQ)-)

(ii) If T (but not necessarily I') is abelian, then (ﬂazpmM )" = Nz, ()M for all a and M.
This follows easily from the first observation in Remark 3.6 and the fact that, for each
d > a, the map (7, rZy e — N2z, 1) Zp [T]¢ induced by 7¢ is surjective (cf. Remark 2.6).

4. ARTIN-BOCKSTEIN MAPS

We now fix a finite Galois extension of number fields L/K of group G and a normal
subgroup H of G. We set E := L and G := G/H = Gal(E/K) and (as a particular case
of (4)) consider the group extension

(10) 1-H-G5G—1.

For a finite set S of places of K we write Sg for the set of places of E lying above S, Y g
for the free abelian group on Sg and Xg g for the submodule of Y g comprising elements
whose coefficients sum to zero. If S contains the set S7 of archimedean places, we write
Og,s for the subring of £ comprising elements integral at all places outside Sg. For a finite
set T of places of K with T NS = 0, we write UJ (E) for the (finite index) subgroup of
(927 g comprising all elements congruent to 1 modulo all places in T and ClCSF(E ) for the ray
class group of Op,s modulo [[,cp, w. We write SL(E) for the ‘(S-relative T-trivialized)
transpose Selmer group’ for G,, over E defined in [4] and recall that it lies in a canonical
short exact sequence of the form

OE,S

0— CIL(E) = SL(E) =% Xpg — 0.
We further recall from loc. cit. the existence of a complex of G-modules
Cl s == RHomz(RT..7((OL.s)w. Z), Z)[-2].

This complex is defined up to canonical isomorphism in the derived category D(Z[G]) of
G-modules, acyclic outside degrees zero and one and such that H%(CT o) = UZ(L) and

H! (Cg ¢) = SL(L) and there exists a canonical ‘projection formula’ isomorphism in D(Z[G])

(11) ZIG) @5 CLs = C 5.
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The construction of Cg’ g in [4, §2] is motivated by the theory of Weil-étale cohomology for
varieties over finite fields developed by Lichtenbaum in [25] and, if S contains all p-adic
places of K, then Z, ®z Cg g can be described in terms of the compactly-supported p-adic
cohomology of Z, on Spec(Or,s).

4.1. Artin-Bockstein maps and pullbacks. Setting I(G, H) := ker(m.), the tautological
exact sequence 0 — I(G, H) — Z[G] = Z[G] — 0 combines with the isomorphism (11) to
give a canonical exact triangle

(12) I(G, H) ®2{G} Cls—Cls—Chs—I(G H) ®2[G] CT 5[]
in D(Z[G]) and hence a canonical map of G-modules
(13) Ug(E)=H(Cgs) — H'(I(G, H) ®5 CLs)
= I(G, H) ®zq) H'(CLs) = (G, H) ®z/¢) S§ (L).
We assume |S| > 1. For v € S we fix a place w, € {v}r, write w, g for the restriction of

wy to E and G, for the decomposition subgroup of w, in G, and consider the map

oL,s

SE(L) =2 X158 — Z[G] - w, = Z[G) ®yc,) Z,
in which the second arrow is the natural projection and the isomorphism sends w, to 1® 1.

In particular, if N(G,) is the normal closure of G, in G, and we set I,(G) := I(G, N(G,)),
then this map combines with (13) for H = N(G,) to give a canonical map

(14) UT(LN(GU)) - I’U(G) ®z Z|Gy] L — I (G) ®Z[N(Gv)] 7 = Iv(G)/Iv(G)Q'

If G is abelian, then G, = N(G,), I,(G)/I,(G)? identifies with Z|G/G,] ®z G, and the
argument of [4, Lem. 5.20] shows that, if we set F' = LN() then the map (14) is induced
by the composite UE(F ) C Fgw r — Gy, where the arrow denotes the local reciprocity map.

We now fix a place v in S that splits completely in E (so that N(G,) C H and hence
I,(G) C I(G, H)) and consider the composite ‘Artin-Bockstein’ map

v : US(E) C US (LN = 1,(G)/1,(G)? = 1,(G)n,
where the first arrow is the map (14) and the second the canonical projection. In the next
result we fix a prime p and show that if S contains the set SrLa/”I‘( of places (of K) that

ramify in L, then a description of the composite map (13) on the level of complexes gives
a canonical pullback of Z, ®z ¢, relative to Z, ®z .

Lemma 4.1. Assume that |S| > 1 and STk €5, and that p is a prime for which UL(L), is

torsion-free. Then each choice of place vy in S\ {v} specifies a pullback 7 (py)p of Zp &7 Py
relative to Z, ®z .

Proof. Set Up := UL(F), for F € {E,L}, S := SE(L),, So := S\ {vo} and write g for the
composite S — X, 5, — Y1 g, p, where the first map is o, g5, and the second the natural
projection. Set n := S| — 1, label (and thereby order) the places of Sy as {v;};c[,) and for
each 7 set w; 1= w,,.

Fix a projective cover of Z,[G]-modules w; : P — ker(p) and a Z,[G]-module P’ of
minimal rank so P @ P’ is free, of rank dy say. Fix an identification P @ P’ = Z,[G]% and
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write @y = (1, 0pr) for the induced surjection Z,[G]% — ker(p). Set d := n+dp, b; := bg,
for i € [d], b for the element of Z,[G]%* that is dual to b; and @ : Z,[G]? — S for the
map of Z,[G]-modules that sends b; to a choice of pre-image of w; under g if i € [n] and to
wa(bi—pn) if i € [d] \ [n]. Then w is surjective and one has

(15) o(w(b;)) =w;if i € [n] and p(w(b;)) =0if i€ [d]\ [n].

In addition, as Uy, is Zy-free and 523}“11( C S, the argument of [5, Prop. 3.2 shows C' = C}Q Sp

is represented by a complex Z,[G]? 2 Z,|G]¢ in such a way that w induces an isomorphism
& : cok(¢) = H'(C) = S and there is an induced identification i : Uy, = ker(¢). The exact
triangle (12) is then induced by the exact sequence of complexes (with vertical differentials)

0 — I(G,H)? — Z,[G)? 2 Z,[G) —— 0

‘| ‘| on

0 —— I(G,H)Y —— Z,[G]* 2 Z,[G]? —— 0
and so the Snake Lemma implies that the p-completion of (13) sends u € Ug to 7(¢p(c(u))).
Here ¢ and 7 are the injection U — Z,[G]? and surjection I(G, H)d — I(G,H), 7,11 S
induced by i and & and «(u)’ is any element of Z,[G]? with 7. ,(c(u)’) = t(u) in ker(¢y) C
Zp[G]. In particular, if v = v; splits completely in F, then (15) implies im(b} o ¢) C
I,(G)p € I(G, H), and so (the final assertion of Remark 3.6 and) this computation implies
bf o ¢ defines a pullback 7*(¢,), of Z, ®z ¢, relative to Z, ®z 7 (and the embedding ¢). O

Remark 4.2. The pullback 7*(¢p,), constructed above is independent of the representative

of C'since if another complex Z,[G]? 7, Z,[G]? is used, then b¥o¢’ defines the same pullback
(in the sense of Definition 3.5) as does b} o ¢. To see this, note that if i’ : Uy, = ker(¢’) and
@' : Z,[G]? — S are the maps associated to ¢/, then [5, Prop. 3.2(iv)] implies the existence
of an exact commutative diagram of Z,[G]-modules

0 U, —— Z,[G)¢ —2— 7,[G)! —=— § 0
e R
0 U, —" 7,61 Y zja) T S 0

in which " and x are bijective and the matrix of x with respect to {b;};c[q has the form

an (S

where I, is the n x n identity matrix and M, € GLg_,(Z,[G]). The commutativity of (16)
then combines with the shape of this block matrix to imply that the automorphism ', of
Z,[G)? is such that (b 0 ¢')a o K\ = (b} 0 #)a, as required.
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ram

4.2. Reduced Artin-Bockstein maps. In this section we assume |S| > 1 and Stk €S-

We fix a place vp in S and then label the places in Sp := S\ {vo} as in the proof of Lemma
4.1 (so that n = |Sp|). For F' € {E, L} we define

X(F) =Xg,(F) :={v € Sp : v splits completely in F'} and r(F):= |X(F)|.

We also assume, as we may, the labelling of Sy is such that X(F) = {v;};cjp(r) for both
F = E and F = L. For each subset ¥ of S\ S, we then define ideals of {(Z[G]) by setting

12(G) = E(ZIG)) - {(Mvest)(z) : d > |5, @ erG 4.9, € Homg(Z[G)?, 1,(G))}
Lgﬁﬁﬁ=ﬂZW%-Ksz%X@:dz!ELkaH@Eﬁ)GveHmmﬂﬂGWJMGDL

where Q|GE|I,;I is the natural map ﬂ|ZE[|G]Z[ 14— ﬂlz‘ Z[ 19 (cf. §2.2.3). The first inclusion in
the next result implies that the action of {(Z[G ]) on 1x(G) /i (G) factors through &(Z[G]).
Lemma 4.3. One has £(G, H)ux(G) C JH(G) C (G, H).

Proof. 1f one sets (I', A) = (G, H) and a = a’ = |¥| in the commutative diagram (6) (in
§2.2.3), then Q%”;a,d is the map 7, : £(Z[G]) — £(Z[G]), and so one deduces that (2 (G) C
¢(G,H). Since {(G, H) - ﬂ‘Z:HG]Z[ 14 C ker(gg,'ﬁl) one also has &(G, H)us(G) CH(G). O

Finally, for any abelian group A we consider the direct product

AlG.S.T] . H A,
r(L).

where ¢ runs over all elements of Home (U (L), Z[G]);

Lemma 4.4. Assume |S| > 1, Stk € S and UL(L), is torsion-free and write  for
Ys,(E) \ Xs,(L). Then the reduced exterior product of the maps {7*(py)p}vex induces a

well-defined homomorphism of &(Z,|G])-modules
r(E) ™ G,S.T
Reer : (7, U8 (B))" = (15(G) /i (6)), ™"

Proof. We set U := UL (L),, r := r(L), v’ := r(E) and r* := ' — r(= |S|). Using the
construction in Lemma 4.1 we fix an embedding i : U — Z,[G]?, write ¢ for the induced
map U — (Z,[G)Y)H = 7,[G]? and, for j € [r']\ [r] fix a pullback ¢; := bj 0 ¢ of Z, ®z pu;
relative to Z, ®z .

Then, as cok(i) is torsion-free, the map Homy, | (Z,|G)%, Z,[G]) — Homy, (U, Zy[G])
induced by restriction through i is surjective and so we can fix a preimage 6° under this
map of any given 6 in Homgy, (U, Z,[G]).

For = in (ﬂgp@ UE(E),)" we choose & in ﬂgp[G]Zp[G]d with ¢y (x) = QTG/?I(:?:) For each
@ = (¢1,...,%r) in Homgy (U, Zp[G])" we then define an element of {(Z,[G]) by setting

T = (NZIED (NI 18))(8)) = Nrdg, i) (= 1) - (NZ74 180 (MZ195) (@)).



14 DAVID BURNS, DANIEL PUIGNAU, TAKAMICHI SANO AND SOOGIL SEO

Since (A g ;cp;)( z) € ﬂZ ic1Zp [G]9, one has zy € tx(G)p. To obtain a map of the required
sort it is thus enough to show that the projection Recy (z) of the element (x,),, of t5 (G)[GST]
to (1x(G)/ (G )) (ST 4 independent of the choices of i, {#;};c[\[), © and {@j}je[r}-

Firstly, we let i’ : U — Z,[G]? be an alternative choice of embedding as in (16) with ol
the corresponding pullback of ¢, for j € [r'] \ [r]. Then the commutativity of the second
square in (16) combines with the shape of the matrix (17) to imply that

Gon =bod on = (jor)ob=bj00=0,
for j € [*']\ [r] C [n] and so

~

(NI (N2 85 (0 617, ) (3)) = (M2 0 K)((NZ1 (8 0 1)) (#))
(NZ5(5 0 ))((NZ4185) (@),

r’

Qp [G}”Q )(2)) = Lﬁg(x)
and that gog-/ o k' restricts through i to give ¢; for j € [r], it is thus enough to show that, if

with kg = Qp ®z, . Since the first square in (16) implies QG’H((

and ¢ are fixed, then Rec,(z) is unchanged if one makes alternative choices &’ and {cﬁ; Yiew
of & and {Lpg-}je[r]. To see this we note that (6) implies

r*,d =T N[ =r ~{ r r
061 (NZT0)(@) = (NZIEN @) = (MZHED ™) (@) = (MZHEN ™) (1e())
and that the latter difference vanishes since both individual terms depend only on x and

the maps ¢;. It therefore follows that (/\J 105)(@) — (A ; 125)(2") belongs to ker(gG ) and

so is sent by /\j=r+1¢3 to an element of .3 (G), as required. ]

Remark 4.5. For a finite group T, the projection map I(I'")/I(T")? — I(I'*P)/I(T'*P)?
bijective as both quotients identify with I'*P. In the setting of Lemma 4.4, however, the
corresponding map tx;(G) /18 (G) — 1x(G?P) /12" (G?P), with H' the image of H in G*, need
not be injective (see Remark 5.4).

Remark 4.6. If G is abelian, then t5,(G) = [[ e Io(G) and (& (G) = 1x(G)-{h—1: h € H}
(see Lemma 5.8) and so the observation made just after (14) implies Rec, recovers the
reciprocity maps that occur in the conjectures formulated in [26] and [32].

5. THE NON-COMMUTATIVE CLASS NUMBER CONJECTURE

5.1. Statement of the conjecture. In this section we assume |S| > 1 and Sik € S and

order the places of S = {v; }o<i<pn as in §4.2.

Let F denote either E or L and set I' = Gal(F/K). Then, for each non-negative in-
teger a, the ‘a-th derived Stickelberger function’ for F'/K,S and T is the ((C[I'])-valued
meromorphic function

Ok (2) = Ok 57(2) = erlr(F)(f“X(l)Ls,T(Xa z)) - ex

where Lg7(X,#2) is the S-truncated T-modified Artin L-function for the contragredient y
of x and e, the primitive central idempotent x(1)|T'|~! "D ner x(7)y~! of C[I']. (In the case
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a = 0 we usually abbreviate 6%, x(2) to 0p k() and simply refer to this function as the

‘Stickelberger function for F//K,S and T".)
Then, since all places in X(F') split completely in F', an explicit analysis of the functional

equation of Artin L-functions (as in [34, Chap. I, Prop. 3.4]) shows that HF(/Ig( ) is
r(F)

holomorphic at z = 0 and its value GF/K(O) is easily seen to belong to ((R[I]).
The ‘non-commutative Rubin-Stark element’ associated to F'/K, S, T is then defined (in

[7, Def. 6.5]) to be the unique element ¢p/x = 62/?51, of /\%% (R-UL(F)) that satisfies

(18) /\R[F] Rps)(er/x) = 91:(/13( )+ Niepr(ry (Wi, F — wo,F),

where Rp s denotes the Dirichlet regulator isomorphism R - UL (F) = R - Xpg.

In the sequel we fix a prime p and an isomorphism of fields j : C = C, and identify ep/ g
with its image under the induced embedding /\%([I;}) (R-UI(F)) = /\TCSBZ] (C,-UL(F),). We
also set X7, g := X(E) \ (L) and use the composite homomorphism

r(L) G,ST
eve : [, UE Ly = EZICN T = (6(Z,[0N /i, ,(@),) "
in which the first map is ev}"\gL) with M = Ug(L)p and the second is the natural projection.
We can now state the central conjecture of this article.

Conjecture 5.1. Assume |S| > 1, S¥™% C S and UL (L), is torsion-free. Then one has

L/K
T(E) T T
(19) €p/K € (ﬂzp@Us (E)p)
and
(20) evr(er k) = Nrdgyg) (—1)"HED) . Ree, (e ).

Remarks 5.2. (i) The containment (19) implies €5/ belongs to the domain of Rec, and
hence that the right hand side of the equality (20) is well-defined.

(ii) If G is abelian, then Remark 3.8 implies that (19) recovers the p-primary part of the
‘Rubin-Stark Conjecture’ [31, Conj. B’], whilst (20) coincides with the ‘refined class number
formula for G,,’ that is conjectured (for abelian extensions) by Mazur and Rubin and by
the third author (for details see Theorem 5.5 below). For this reason we refer to Conjecture
5.1 as the ‘non-commutative class number formula conjecture for G,,’.

(iii) Assume UZ(L) is torsion-free. Then (19) (with £ = L and for all p) combines with the
general result of [6, Th. 4.19(iii)] to predict e,k belongs to ﬂ;([é)] UZ(L). This prediction
extends the Rubin-Stark Conjecture to general Galois extensions and will be referred to as
the ‘non-commutative Rubin-Stark Conjecture’.

(iv) If Tate’s formulation [34, Chap. I, Conj. 5.1] of Stark’s Conjecture is valid for L/K,
then the validity of Conjecture 5.1 is independent of the choice of isomorphism j : C = C,.
We therefore do not explicitly indicate the choice of j either in the statement of Conjecture
5.1 or in the arguments that follow.

(v) The elements ep/k, and thus also evy(er,/k), are independent of the choice of place
vop € S\ X(F) and this is also true for the map Rec, (and hence for the validity of (20)).
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Indeed, whilst the computation of Rec, given in the proof of Lemma 4.4 chooses a map
w as in (16) and hence a priori relies on the choice of vy, if @’ is constructed just as @
but with respect to a different choice of vy in S\ X(E), then one has @w = k o @’ for an
automorphism x of Zp[G}d that is represented with respect to the standard basis by a block

. I : .
matrix of the form (%‘%) . This fact in turn allows one to construct an analogue of
d—n

diagram (16) that combines with the argument of Lemma 4.4 to show Rec, is unchanged if
one replaces @ by @', as required.

(vi) If 7(L) = 0, then the equality (18) with F' = L implies that e is equal to 6, (0)
and so coincides with the Stickelberger element for L/K that is introduced by Hayes in [18].

5.2. Special cases. We now provide evidence in support of special cases of Conjecture 5.1.

5.2.1. Abelian and Frobenius extensions.

If G has an abelian Sylow p-subgroup and a normal p-complement, then the algebra
Zp|G] is a direct product of matrix rings over commutative local Z,-algebras (this is proved
by Demeyer and Janusz in [12, p. 390, Cor.]). In this section we fix such a group G and a
corresponding direct product decomposition

(21) Zp[G] = HMm (R;)
i€l
where the index set [ is finite and each R; is a commutative local Z,-algebra.
Lemma 5.3. For each exact sequence of groups of the form (10) the following claims are
valid for every non-negative integer a and natural number d.
(i) The map nglH is surjective.
(ii) For each i € I, there exists an ideal J; = J;(H) of R; that is independent of a and

d and such that
ker( QGH =J- ﬂ € Zp|G]°,

where J = J(H) denotes the ideal @, ; J; of &( p[ D.
(iii) If the order of H is a power of p, then J is contained in Jac(§(Zy[G])).
(iv) If, for some i € I, the ring R; is a Dedekind domain, then J; is 0 or R;.

Proof. The decomposition (21) implies, via a standard Morita equivalence argument, that
g(Zp[G}) - Hie[ RZ and a.lSO

(22) M, o2lE =D, N\, B

(cf. [6, Th. 4.19(vii)]). In particular, there exists an ideal J; = J;(H) of R; for each i € I
such that ker(m,) = [[;c; My, (J;) and hence

(23) ﬂ;p[ Zp[é]d _ @EI/\ar_Li(Ri/Ji)dni and ker QGH =J- ﬂ 2,(G] p )

with J := EBZe ;1 Ji- Given this description, claims (i) and (ii) are both clear.

Claim (iii) is true since if the order of H is a power of p, then ker(r,) C Jac(Z,[G]) and
so J; C Jac(R;) for all i € I.

Claim (iv) is true since the first equality in (23) implies that each ring R;/J; is Z,-free. O
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Remark 5.4. In the setting of Lemma 4.4, Lemma 5.3(ii) implies that
(24) (G = T - 15(O)y.

Hence, if the order of H is a power of p, then for each ¢ € I Lemma 5.3(iii) combines with
Nakayama’s Lemma to imply that the i-component of (vx(G)/H (G))p vanishes if and only
if the i-component of tx(G), vanishes (in particular, if n; > 1 in the decomposition (21),
then this observation justifies Remark 4.5). For a concrete example of this, one need only
fix a prime £ = 1 (modp?) and take G to be a semidirect product Z/¢ x Z/p3, where the
image of Z/p® in Aut(Z/¢) has order p?, with H the central subgroup of G of order p.

Before stating the main result of this section, we recall that the conjecture formulated
(for abelian extensions) by Kurihara and the first and third of us in [4, Conj. 5.4] is a
strengthening of the conjecture formulated, independently, by Mazur and Rubin in [26,
Conj. 5.2] and by the third of us in [32, Conj. 3], and hence refines earlier conjectures that
are due to Darmon, to Gross, to Rubin and to Tate among others (for more details see [4,
Rem. 5.6, Rem. 5.7 and Th. 5.10]).

We further recall that G is said to be a ‘Frobenius group’ if it has a proper non-trivial
‘Frobenius complement’ subgroup A such that AN gAg—! = {1} for all g € G\ 4, in which
case (G contains a unique normal subgroup N, known as the ‘Frobenius kernel’, such that
G is a semidirect product N x A.

Theorem 5.5. Fiz data p, L/K, G and H as above and assume either
(i) G is abelian, or
(ii) G is a Frobenius group with a kernel N and complement A, such that N is a subgroup
of H of order prime to p and A is abelian.

Then the validity of Conjecture 5.1 is implied by the p-component of [4, Conj. 5.4] for the
data L/K and H in case (i), and for the data L' /K and H', where L' is the mazimal abelian
extension of K in L and H' the image of H in Gal(L'/K), in case (ii).

From [4, Cor. 1.2] we therefore directly obtain the following evidence for Conjecture 5.1.

Corollary 5.6. Conjecture 5.1 is valid if K = Q and either G is abelian, or G and H
satisfy the hypotheses of Theorem 5.5(ii).

Remark 5.7. Assume G satisfies the hypotheses of Theorem 5.5(ii). Then it can be shown
that A is cyclic and |N| = 1 (mod |A|). In addition, if N is solvable, then G is solvable and
so Safarevi¢’s Theorem implies the existence of infinitely many Galois extensions L/Q with
Gal(L/Q) isomorphic to G (cf. [28, Chap. IX, §5]). For illustrative purposes, we record two
families of such groups G that have been studied by Johnston and Nickel (and for details
of other interesting families, see [21, §2.3] and [22, §2.2]).

(i) ([21, Exam. 2.16]) Let ¢ be a prime power and F, the finite field with ¢ elements. The
group G := Aff(q) of affine transformations on F, is the group of transformations of the
form x — ax + b with @ and b in F,. Then G is a Frobenius group with kernel the subgroup
of transformations x — x + b for b € F,. In addition, in this case, every character in Ir(G)
is either linear or rational-valued and, if L/Q is Galois of group G, then the p-component
of eINC(G,,) for L/Q is verified in [21, Th. 4.6].
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(ii) ([22, Exam. 2.11]) Let p and ¢ be primes, f and n natural numbers such that ¢ > n > 1
and p divides ¢/ — 1. Then there exists a Frobenius group G that satisfies the hypotheses of
Theorem 5.5(ii) and is such that |G| = pg/™»=1/2_ N is nilpotent of class n — 1 and there
are characters in Ir(G) that are neither linear nor rational-valued. In particular, Stark’s
Conjecture (and hence also eITNC(G,,)) is not known to be valid for any Galois extension

L/Q of group G.

The proof of Theorem 5.5 will occupy the rest of this section. We will assume the
hypotheses of case (ii) since the argument in this case also incorporates a proof of the result
under the conditions of case (i). At the outset we also note that, in case (ii), G has an abelian
Sylow p-subgroup and a normal p-complement N and, as proved by Johnston and Nickel in
[21, Prop. 2.13], for every index i € I for which one has n; > 1 in the decomposition (21)
the ring R; is a Dedekind domain. The subgroup H is normal in G (since N C H and G/N
is abelian) and we write G for the (abelian) quotient group G/H.

In this case, Lemma 5.3(i) (or, as G is abelian, Remark 3.8) combines with the observation
in Remark 5.2(ii) to imply that (19) is equivalent to the validity of the p-component of the
Rubin-Stark Conjecture for the abelian extension E/K.

Further, the fact G is abelian also combines with Lemma 5.3(iv) to imply that, if n; > 1,
then J; = R; and so the equality (24) implies that the i-component of the quotient module
(t2(G) /8 (@)), vanishes. To verify the equality (20) it is therefore enough to restrict to
components of (tx(G)/tH(G)), that correspond to indices i for which n; = 1.

We note next that N is equal to the commutator subgroup [G,G] and has order prime
to p. It follows that the idempotent ey := |N\_1Zg€Ng belongs to ((Zy[G]) and that
the product of the algebras R; over all indices ¢ (in (21)) for which n; = 1 identifies with
Zy|Glen, and hence with Z,[G/N] = Z,[G®]. With respect to these identifications the
direct sum ey (12(G) /5 (G)), of the corresponding components of (15:(G) /it (G)), identifies
with (1x(G??) /2" (G?P)),, with H' the image of H in G2P.

We set L' := LY. Then X(L) C X(L') and, if there exists a place v in B(L') \ (L)
the element ey(er,x) vanishes and, in addition, the image of I,(G) in Z,|G?P] is zero
and so the module ey (tx(G)/tH(G)), vanishes. In this case, therefore, the validity of the
en-component of (20) is clear.

In the sequel we can thus assume that (L) = 3(L'), and hence that ¥ := X(F)\ X(L) is
equal to X' := X(E) \ X(L'). In this case one has ey (cr/x) = €//k and there is a natural
identification ey (1x(G)/H(G)), = (1/(G*) /i (G?P)),. In addition, by using the descent
isomorphism (11) (for G — G?), it can be checked that the composite homomorphism

(M o UE(E)) 255 (15(G)/ (G5 225 1 (G) el (G 95T
coincides with Rec,/, with 7/ the natural map G® — G® /H' = G. In this case, therefore,
the e -component of the equality (20) is equivalent to the corresponding equality with L/K
and H replaced by L'/K and H'.

Via the above observations, the proof of Theorem 5.5 is reduced to verifying (19) and
(20) in the case that G is abelian. In the remainder of the argument, we will therefore
assume that G is abelian and also set W := X(E) \ X(L). For each v in W we write w, g
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for the restriction of w, to E and set Jw := [[ e [o(G) and Jw = [[,cpy Lw, x(H). We
also write I(H) for the augmentation ideal of Z[H].

Lemma 5.8. If G is abelian, then the following claims are valid.
(i) €(ZIG)) = ZIG), €(Z[C)) = Z[C) and £(G, H) = I(G, H).
(ii) For each natural number d and non-negative integer a with a < d the homomorphism
Qg’:jH is surjective and has kernel I(H)‘/\%p[G]Zp[G]d.
(iif) w(G) = Jw and JL(G) = I(H) - Tw.
(iv) There is a natural identification vy (G) /i (G) = Z[G] @z Jw /(I(H)- Jw).

Proof. Claim (i) follows directly from [6, Lem. 3.2(iii)].

To prove claim (ii) we write [¢] for the set of permutations 7 of [d] with 7(1) < ... < 7(a)
and 7(a + 1) < ... < 7(d). Then the Z,[Y]-module ﬂaZP[T]Zp[T]d = /\aZp[T]Zp[T]d is free
with basis {Ajcfabrr): 7 € [¢]} (cf. the argument of [6, Th. 4.19(vi)]). Claim (ii) now
follows easily upon comparing this explicit description with T = G and ¥ = G and noting
I(G,H) =Z|G) - I(H).

Turning to claim (iii), we set a := |W| and fix an integer d with d > a. Then the above
explicit descriptions imply 7 (G) is generated as a G-module by the elements

(Avew ) (Ajefabe,r(y) = det((0u(b.r(7) vewjeia)

as 0, ranges over Homg(Z[G]?, I,(G)) and 7 over [¢]. Now, since each term 6, (bg ()
belongs to I,(G), it is clear that each such determinant belongs to Jy. Conversely, if we
use the given ordering of Sy to relabel the places in W as {vi}ie[a}, then for any product
z = [];e[q @i of elements z; of I, (G) one has z = (Nieja)P2.i) (Njela)bGm(j)) » where we set
0ri = x;°b, , € Homg(Z[G)4, I,,(G)) and write 7 for the identity permutation in [2]. These
observations combine to imply the first equality in claim (iii) and, given this, the second
equality in claim (iii) then follows directly from the equality ker(gg’fiH) =I(H)- /\%p ] Z,|G)¢
proved in claim (ii).

Before proving claim (iv) we note that, for each v € W, there is a natural isomorphism

Z|G)®z 1y, (H) ~ Z|G]1Ly, ,(H) = I,(G). These isomorphisms combine to give a canonical

isomorphism Z[G] ®z Jw ~ Z|G]Jw = Jw and hence also an identification

Jw/(I(H)-Jw) = Z|G] @z Jw /(I(H)-Jw)
(cf. [4, Prop. 4.9]). Given this identification, claim (iv) follows directly from claim (iii). O

We now set 7 := r(L), v’ := r(E), U := UL(L), and Ug := UL(E),. We also fix an
embedding i : Uy, — Z,[G]? of Z,[G]-modules (which, for simplicity, we henceforth suppress
from notation) and an endomorphism ¢ of the Z,[G]-module Z,[G]¢, as are used in the
explicit description of the map Rec, given in the proof of Lemma 4.4.

As we observed earlier, in this case the predicted containment (19) coincides with the p-
component of the Rubin-Stark Conjecture. In addition, if for each element ¢ = (¢1,...,¢r)
of Homg, (UL, Zp[G])" we set ® := A;c|,i, then claims (iii) and (iv) of Lemma 5.8 show
that the equality (20) implies ® (e, ) belongs to Jw,, and further that (20) itself is valid
if and only if for every such element ® one has
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B(er/x) = (—1)"7-@((ANZ 4 00)(Ep)) modulo I(H)-Tiwp,
where ég is any choice of element of ﬂgp[G} Z,|Gl¢ = /\ZP[G] Z,|G]¢ with the property that

QTGI’?{(EAE) = ep/K- After taking account of [4, Th. 5.10], these observations imply that this
special case of (20) is equivalent to the p-component of [4, Conj. 5.4] provided that for all
elements ® as above one has

(25) ((AE716)(ER) = @7 (Reew (k)
€ Zy|G) @z, (Jw /(I(H) - Jw)), = Twp/I(H) - Tw )p-

Here ®# is the element of /\gp ) Homy, e (Ug, Zy|G)) that is obtained from ® via the recipe
of [4, Def. 4.10] and we also use the canonical reciprocity homomorphism
Recyy ﬂZP@UE — (ﬂZP@UE) @z, (Jw/(I(H) - Jw)),,

defined in [4, (23)]. It is therefore enough to note that the required equality (25) follows
directly from the argument of [4, Lem. 5.20] (in which the endomorphism v corresponds
to our fixed map ¢) and the general result of [4, Prop. 4.11] (which describes the explicit
relation between the maps ® and ®). This completes the proof of Theorem 5.5.

5.2.2. The case E = K.

If F = K, then Conjecture 5.1 has an explicit interpretation (even if G is non-abelian).
To show this we recall that n denotes |S| — 1 and we assume UL (L), is torsion-free. Then,
in this case, the analytic class number formula implies that, for each Z,-basis {u4}aepn) of

U := UL (K),, there exists an element yu of Zy such that

p- |CIE(K)] - (C) ®r /\RRK,S)(Aae[n]Ua) =0k /k,57(0) - Nagfn)(Va — v0).

This implies e/ is equal to - |C1§(K)| - A%Zfu, and so belongs to Az, U =z, U. Since
the general result of [6, Th. 4.19(vi)] implies that gg’dg is surjective for every d, one also
has (ﬂ%pU)7r = ﬂ%pU and so the containment (19) is valid if £ = K.

To make (20) more explicit in this case we use the approach of Lemma 4.1 to fix an
embedding of Z,-modules ¢ : U — Zg and, for each j € [n], an associated pullback ¢; =
7 (,) of py; with respect to the homomorphism 7 from G to the trivial group. Writing
{bi}ic[q) for the canonical basis of Zg, one thus has 14 (Age[n)ta) = de[d]co * Nigln)bo iy for
unique elements ¢, of Z,. The argument in Lemma 4.4 then shows that each individual
summand in the expression

Regr/k = Regp /i 57 = de[g]ﬂ “Co - Nrdg, g ((¢j(bG7U(i)))i,je[n})

belongs to ts,(G)p and is independent of the choice of basis {4 }qejn) and that the image
of Regy in (1so(G)/ LgO(G))p is independent of the choices of embedding ¢ and pullbacks

{®i}iem-



21

If r(L) > 0, then Regy, i = 0 (as each matrix (gﬁj(bgﬁ(i)))ue[n] has a column of zeroes).
However, if (L) =0, so €1,/ = 0,/ (0), then (20) with E' = K predicts

01/ (0) = |CIE(K)| - Regy/x modulo Lgo(G)m

and hence also that 0, /x(0) € t5,(G)p.
If G is cyclic, then the argument of Lemma 5.8 shows that these predictions recover the
conjecture formulated (for such extensions) by Tate in [35].

5.2.3. The cases ©(L) = X(E) and (L) = (.
If ¥(L) = ¥(E), or equivalently r(E) = r(L), then ¥y g = 0 so 15, ,(G) = {(Zy[G]) and
LgL ,(G) =¢&(G, H)p. Thus, in this case, the validity of (20) follows directly from (6) with

a' = a =r(E) and the fact that the projection map R ®z 7, : R[G] — R[G] sends o~ )(O)

L/K
(L) r(E)
to 05/ (0) = GE/K( )-

r(L)

If (L) = 0, then epc = 07,5(0) and r(L) = 0 so (V4 UL (L), = E(Z,[G)) (by [6, Th.
4.19(i)]). In this case, therefore, the containment (19) with E = L predicts that 67 (0)
belongs to £(Z,[G]). If true, this containment combines with the results of [6, Lem. 3.5(i),
(iv)] to imply that, for any element z of ((Q,[G]) one has

T € §(Zp[G]) = 01,k (0) - x € Zp[G],

where §(Zy[G]) is the ‘ideal of denominators’ of {(Z,[G]) defined in loc. cit. Evidence in
support of the latter implication is provided by recent results of Ellerbrock and Nickel [13,
Th. 1, Th. 2] which combine to imply that for any integer ¢ one has

phe 6(Zp|G]) = 9L/K(O) phe Zp|G].

5.2.4. The link to refined Rubin-Stark Conjectures. In this section we assume that Stark’s

Conjecture (cf. Remark 5.2(iv)) is valid for L/K. We also assume S €S and U T(E),

is torsion-free and fix an exact sequence h = hg g1 of Z, [@]—modules of the form

(G % 2,[C1" — S{(B), = 0
specified in (16) (with L replaced by E). We further set r := r(F) and recall that the r-th
Fitting invariant Fit, o G}(h) of h is an ideal of £(Z,[G]) defined in [6, Def. 3.14]. As a first

step, we formulate a conJectural description of this ideal.

Conjecture 5.9. If S5 € S and UL (E), is torsion-free, then one has
Fit; &) = {(/\ ¢i)(emx) : (1,7 or) € Homg(Us (E), Z[G])}-

If G is abelian, then this conjecture was first formulated in [4, Conj. 7.3]. In the general
case it is motivated by the observations made in [6, §8.3], and refines the non-commutative
Rubin-Stark Conjecture from Remark 5.2(iii). Its connection to (the containment (19) in)
Conjecture 5.1 is explained by the next result. In this result we use the idempotent of

¢(Q[G]) obtained by setting
€ =€EgRST ‘= erx»
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where in the sum x runs over all characters in Ir(G) for which e, (eg /k) does not vanish.

Lemma 5.10. If £(Z,[G))e is a principal ideal ring, then Conjecture 5.9 implies (19).

Proof. We first recall from [7, Prop. 6.16(ii) and Rem. 6.17] that there exists a unit c of
¢(Qp[G])e such that

(26) ep/x = ¢ (Nigan (05, © 8) (Njeaba ;)
For all elements ¢ := (cpl, <+ o) of Homa(US (E), Z|G]);, one therefore has
(Niemei) (p/x) = ¢ (Nieei) (Nieanm (05, © ) (Njeiaba ;)

=c-Nrdg (= 1) r@=n)y. ((Az‘em%) A (Nielap ) (0 ; © 9))) (Njelaba ;)
=c-Nrdg [G](( 1)@=y Nrde@](M(E))»

with M (p) the matrix in Mg 4(Zp[G]) specified by

¢i(bg ;) if ¢ € [r]

(b, 0 9)bg,). i ld)\ I

These matrices M () are the only matrices that can have non-zero reduced norm amongst

M(p)ij {

all that can be obtained from the matrix of ¢ with respect to the basis {bg ;}{_; by replacing

all entries in any set of r columns by arbitrary elements of Z,[G]. Hence, by the general
result of [6, Prop. 4.21(ii)], one has

Fit) o (h) = §(Zp[G))e - {Nrdg, (M(9)) : ¢ € Homg (U3 (E), Z[G]);} C £(Z,[G)).

Thus, since Nrde@((—l)r(d”)) € £(Zy[G])*, the above expression for (Asep%i)(ep/K)
combines with Conjecture 5.9 to imply that c- Fit;, o G](h) Fit,, o G](h) In addition, since
&(Zy[G))e is assumed to be a principal ideal ring, the £(Z,[G])e-module Fit7, [G}(h) is free

of rank one and so this equality implies that ¢ belongs to £(Z,[G])e.
We now fix an element ¢ of £(Z,[G]) with ¢-e = ¢ and, for each index i € [r], a pre-image

b; of b , 0 ¢ under the natural surjective map Endgz, g (Zp[G)Y) — Endy 7 (Zp[G]%). Then
the equahty (26) implies that the element

ep/k = ¢ (Nielap i (b, © 0) (Njeraba,;) = 067 (- (Mietapndi) (Njeabe.))

belongs to nglH (ﬂ%p[G]Zp[G]d), as required to verify (19). O

6. NON-COMMUTATIVE p-ADIC CLASS NUMBER FORMULAS

In this section we fix an odd prime p and formulate a precise analogue of Conjecture 5.1
that concerns the values at zero of derivatives of p-adic Artin L-series. We then prove this
conjecture modulo Iwasawa’s p-invariant conjecture and use this result to obtain further
evidence for Conjecture 5.1 in the setting of Galois extensions L/K in which L is a CM
field and K is totally real.
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6.1. Statement of the conjecture and main result. We assume K is totally real and
L is CM and set G := Gal(L/K). We write L™ for the maximal totally real subfield of
L, 7 for the unique non-trivial element of Gal(L/L™) and Ir}:,t(G) for the subsets of Ir,(G)
comprising characters y for which one has x(7) = £x(1). For a Z,[G]-module M and an
element m of M, we set M+ := (14 7)(M) and m™* := ((1+7)/2)(m) € M*.

We also fix a finite set .S of places of K" that contains both 573 (and hence S7°) and the
set ST of p-adic places, and an auxiliary finite set T of places of K that is disjoint from S.

For 1) in Ir; (G) we write L, s 7(1, s) for the S-truncated T-modified p-adic Artin L-series
of 1, as constructed by Greenberg in [16]. For a non-negative integer a we then define the
‘a-th derived non-abelian p-adic Stickelberger series’ for L/K, S and T by setting

9127}((2) = QILL/QKS,T(Z) = Zpelr‘(G)eP : Zﬁp(l)aLp,S,T(ﬁ TWK 2);
p

where wy is the p-adic Teichmiiller character of K.
We recall (from [3, Th. 3.1]) that for every character p in Ir, (G), one has

ord.—oLy,s7(p wk,z) > dimg,(Home,()(V;,Cp - Y7 g ),
where V; is a C,[G]-module of character p. In particular, if we write ¥(L) for the subset

of S comprising places that split completely in L/K, and set r(L) := |3(L)|, then this

inequality implies that GIL”;I((L )
(L)

its value 912’/1{ (0) at z = 0 belongs to ((Q,[G]).
We next recall that in [17, §1] Gross defines for each place w of L a local p-adic absolute
value by means of the composite

(z) is p-adic holomorphic at z = 0 and it is easily checked that

r XL !
I Nw,p = Loy _w>GLgub/Lw = Z; == Z;,

where qub is the maximal abelian extension of L,, in L, r, the local reciprocity map and
XL, the cyclotomic character. We write

(27) RESS @ ®2, Us(L), = @@z, Vg,

for the map of Qp[G]-modules that sends each u in Us(L)™ to >, g, 10g,|[ullw,p - w.
We can now state an analogue of Conjecture 5.1 for p-adic Artin L-series.

Conjecture 6.1. Let p be an odd prime for which Ug(L)p is torsion-free. Fiz o CM Galois
extension E of K in L and set H := Gal(L/E) and G := Gal(E/K). Then there exist
elements

r(L) T — r(E) T T
€1/ € mZP[G]US (L), and e € (mzp[é}US (E),)

that satisfy

r(F) Gross 7w (F) -
(28) (/\Qp[Gm(F/K)]RF’S’P)(SZ/K) =0y (0) - Noes(ry, s
for both F =L and FF = E and also

eVﬂ(€ﬁ/K) = NrdQ[G](_1)T(L)(T(E)_T(L)) . Recﬂ—(ﬁ%/K),
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Remark 6.2. The equality (28) is the precise analogue of the (minus part of the) equality
(18) that defines the non-commutative Rubin-Stark element ¢ /K » and so Conjecture 6.1 can
be interpreted as a ‘non-commutative p-adic Class Number Conjecture for G,,’ (for L/K).
In general, however, if the map Rgfg;f fails to be bijective, then (28) does not uniquely

determine 51} K Nevertheless, if the Gross-Kuz’min Conjecture is valid for every character

in Ir, (Gal(F/K)), then Rg’rg’f is bijective and so the known validity of the Gross-Stark
Conjecture (as established by Dasgupta, Kakde and Ventullo in [10]) combines with (28)
and the argument of [3, Cor. 3.8] to imply that EI}/K =Ep/K

To state our main result concerning Conjecture 6.1, we write p,(L) for the Iwasawa
p-invariant of the cyclotomic Z,-extension of L. We further recall that Iwasawa [19] has
conjectured p,(L) = 0.

Theorem 6.3. If 1,(L) = 0, then Conjecture 6.1 is valid.

This result will be proved in §6.2 and combines with Remark 6.2 to give unconditional
evidence in support of Conjecture 5.1 that goes beyond the result of Theorem 5.5. Such
results include the following (which will be proved in §6.3) in which, in contrast to Theorem
5.5, the order of the commutator subgroup [G,G] can be divisible by an arbitrarily large
power of p.

Corollary 6.4. Conjecture 5.1 is valid if K = Q, the fields E and L are CM and |G, G] is
a p-subgroup of the decomposition group in G of any, and hence every, p-adic place of L.

Example 6.5. Corollary 6.4 applies in cases for which the order of [G, G], the index [G : G))]
and the ramification degree of p in L can each be arbitrarily large. To give an example, fix
powers m and n of distinct odd primes p and ¢ for which the subgroup of (Z/n)* generated
by p does not contain —1 (mod n) and set E := Q(e?™/™"). Then, for each p-adic place v
of E, one has E, = (E™), and the field F, := E,( x/p) is a Galois extension of Q, for which
the commutator subgroup of Gal(F,/Q)) is equal to Gal(F,/E,) (since p ¢ (E;)P) and so
has order m. Then, as m is odd, a result of Neukirch [27, §3, Cor. 3] implies the existence of
a cyclic (totally real) extension LT of E™T of degree m that is Galois over Q and such that F,
is equal to the completion of L" at a p-adic place of L™. Further, setting I' := Gal(L*/Q),
the group [[,T] is equal to Gal(L*/E™) and is contained in the decomposition subgroup
in T of every p-adic place of LT. Now set L := ELT and G := Gal(L/Q). Then L is a
CM field, the order of [G, G| is equal to m and, for any p-adic place w of L, the absolute
ramification degree of w is divisible by [Q(e2™/™) : Q] and the index of G, in G is equal to
the number of p-adic places of Q(e27/™).

Remark 6.6. Fix an odd prime p and a finite CM Galois extension L of a totally real field
K of group G. Then, if G is abelian, the ‘minus part’ eTNC(L/K), of the p-component
of eTNC(G,,) for L/K has been shown by Bullach, Daoud and the first and fourth authors
[2, Th. B(a)] to follow from the seminal work of Dasgupta and Kakde [9] on the Brumer-
Stark Conjecture (and see also the related work of Atsuta and Kataoka [1] and Dasgupta,
Kakde and Silliman [11]). However, if G is not abelian, then the strongest result concerning
eTNC(L/K), is due to Nickel [29, Th. 2] and assumes, amongst other things, that the Sylow
p-subgroups of Gal(L/K) are abelian. Now, if one takes L as constructed in Example 6.5
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and K = Q, then G has a unique Sylow p-subgroup P and the fixed field of P in L contains
2™/ hut not e2wi/P’, By using this fact, one can check that the commutator subgroup
[P, P] has order m/p and hence that P is not abelian for m > p.

6.2. The proof of Theorem 6.3. We fix notation E, H and G as in Theorem 6.3 and set
r:=r(L) and 1 :=r(E).

We also assume, as we may, that S is labelled so vg is archimedean, ¥(L) = {v;};c[,) and
Y(E) = {vi}icp)- In particular, we note that, since vg does not split completely in E, the
sets X(F) and X (L) coincide with the sets that are denoted by the same notation in §4.2.
We next write Ko for the cyclotomic Z,-extension of L, set G := Gal(Kso/K) and write
Q(Ks) for the set of finite Galois extensions of K in K. For each F' in Q(Ks) we set

Up:=U§(F),, Sp:=8§F), and Gp:=Gal(F/K).
We also write A(Go) for the Iwasawa algebra Wi . Zp [Gr|, where F' runs over Q(Ko) and
the transition morphisms are the natural projections Z,[Gp/| — Z,[Gr| for FF C F'. We
recall that the total quotient ring Q(G) of A(Gwo) is semisimple and we write Nrdgg..)

for its reduced norm.
We finally set
Ok = (HE/K,S(O))F € lim ¢(QlGr)),
FeQ(Koo)

where the transition morphisms are the natural projections ((Q,[Gr']) — ((Qp[Gr]) for
F C F’, and define an object of D(A(G)) by setting

- : T
C’Coo T gﬂ CF,S,p’
FeQ(Koo)

where the transition morphisms for F' C F” are induced by the corresponding cases of (11).

6.2.1. The following argument reinterprets in the special case of CM extensions of totally
real fields various general constructions and results of [7]. In particular, it relies crucially
on an interpretation of the main conjecture of non-commutative Iwasawa theory for totally
real fields that is established in loc. cit. It then also involves a close analysis (in the setting
of CM fields) of various technical results from loc. cit. in order to provide a link to the
Artin-Bockstein maps that underlie the definition of the map Rec, in Theorem 6.3.

At the outset we use [7, Prop. 8.2] (and, in particular, claim (iii) of the latter result) to
fix a representative

A(Goe) ™™ 5 A(Goc)
of Ci_ with the following property: for each CM field F' in Q(Kw) the exact sequence of
Zp|Gr]-modules

(29) 0—Up Zi) Zp[gp]d’f ¢—F> Zp[gp]d’f —-Sp—0

that is induced by natural isomorphism Z,[Gr] ®|]\(goo) Cr. = C’;’g’p in D(Z,|GF]) is of the
form specified in the proof of Lemma 4.1.
We write {b; };e[q) for the standard basis of A(Goo)?, {br,i}ie[q for its image in Z[Gp]* and

zp for the element Aje(gbg ; of m%p[gF]Zp [Gr]?. Then, via [7, Cor. 7.9] and the argument of
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[7, Prop. 7.8], the known validity, modulo the vanishing of j,(L), of the main conjecture of
non-commutative Iwasawa theory (due, independently, to Ritter and Weiss [30] and Kakde
[23]), implies the existence of an element u of Kj(A(Gw)) such that

(30) Ok.. = Nrdg(g..)(u) - (MNZ10R:)(2F)) peqgen)-

With F' denoting either L or E we use iz, to identify Up with a submodule of Z,[Gr]%~
and define an element of ﬂ;(jg)F] Zp|Gr)*~ by setting

(31) EZ;; = 81;:/1( = NI‘de[gF](—1)T(F)(d7T(F))NI‘de[gF}(UF) . (/\sz(F)+1¢F7a)(xp),

where up denotes the image of u in K1(Zy[Gr)).
Then, with this definition of 4., the result of [7, Prop. 6.16(i)] combines with the
exactness of (29) to imply a containment

r(F)
32 d Ur.
(32) €p € ﬂzp[gF] F

In particular, if ' = F, then the equality

(33) &b = 06 (Nrdgy, (e (=17 @ )Nrdg 1 (ur) - (A= 1610) (7))
implies that

T(E) r(E) ™
(34) el € im( )N ﬂZ @ ﬂzp@ Ug)".

It follows that €%, belongs to the domain of Rec, and we next claim that

(35) evr(eh) = Nrdg, g (—1)"" ") - Recq(ehy).

To verify this it is enough to prove that for every v = (¢1,...,¢r) in Homg, (UL, Zy|G]),
the projection of NrdQP[G](—l)T(’"/_T) (Njep i) (er) to (1, p (G)//,gL,E (G))p is equal to the
¢-component of Recr(eh;). This is true since the equality (33) combines with the explicit
description of Rec, that is given in Lemma 4.4 to imply that the p-component of Rec(¢%))
is equal to the projection to (tg, (G)/LgLyE (G))p of the element

) (A r+1¢L]) Nrdg, 6y (—1)" @ Nrdg, () (ur) - (A= 61.a) (1))
—Nrd@ 1(— 1) AN g, (g (u) - (Aiigwj)((A§§f+1¢L,a))(xL))
(=17 - (A1) (Nrdg, oy (1) Nedg, g (ur) - (MG 61.0) (7))
(=17 (N2 (e,
where the second equality follows from the fact that

' d—7")Y+ (" —r)d—7)=r(r"—r)+r(d—7r) modulo 2
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6.2.2. Given the containments (32), (34) and equality (35), the proof of Theorem 6.3 is
reduced to showing that the element &f, = &%, K defined in (31) validates the equality (28).
To do this we set G := G and 7" := r(F). We also set A} g 1= /\gp[g] (Qp ®z, Rg’?’f)
and use the natural projection map o : Y}; sp Yr. S(F)p°
We note that the exactness of (29) combines with [7, Prop. 6.16(ii)] to imply that if x is

any character in Ir, (G) for which e, (el,) is non-zero, then the map e, (Qf - o) is bijective.

This implies, in particular, that the element A F S(e '») belongs to the image of the inclusion

Qp - ﬂz,,[g] S(F)p Qp - ﬂz Yisp:
We write {( ) }iepr+ for the Z p[G]~-basis of Homy g( Yes(rm)p Lo [G]7) that is dual to

the basis {w; }1E[T « of YF
&(Z,[G])-modules
ik r* _ 0
/\iE[T*](wi )" ﬂZP[Q}YRZ(F)vP — mzp[g]YFz = &(Zy[G])~

that sends Ajef+jw; to the identity element (1 — 7)/2 of the ring §(Z,[g]) .
Given these observations, the required equality (28) will follow if the composite map

(36) (@ Nicpry @)Y 0 (N (@ 2) o N (@ M)

(0). To verify this we use the following technical result.

S(F)p and note that this basis gives rise to an isomorphism of

sends el to 011??7/1(

Lemma 6.7. Write K. for the cyclotomic Zy-extension of F, set G\ := Gal(K./K) and
fix a topological generator v of Gal(KL /F).
(i) For each j € [r*], there exists a (unique) homomorphism

0j = ()i € limp, o, Homg, g, 1(Z,[Gr)", Zy[Gr]) = Homp gy, (A(Gh)*, A(GL)

with b 0 ¢ = (v — 1)(;).
(ii) The composite map (36) is equal to Nrdg,g] (log, (kx (V)" ) - Njepr+ 95,

Proof. If a map <Zj with the property stated in claim (i) exists, then it is clearly unique.
On the other hand, for each j in [r*], our ordering of S guarantees that the map by, ;© oF

vanishes and this directly implies the existence of $j.
Turning to claim (ii) we note that [7, (9.3.4)] implies the composite map (36) can be
computed as the normalised reduced exterior product

Nrdg, () (log,(kx (7)) - Ajefp)(w; © B)-
Here [ is the connecting homomorphism H O(CF 5p) = ker(¢r) — cok(¢') that is associated
to the short exact sequence of complexes (with vertical differentials)

A(GL ) <O A (gt 7, [G)

! b

AGL ) O (gl )t ez, [G)
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in which the endomorphism ¢’ is induced by ng In addition, w; is the composite homomor-
phism cok(¢') — cok(dp) = RLEN Yis, 2, Yesip Zp|G]~ in which the first arrow
is the natural projection map and the last sends each element to its coefficient at w; .

To deduce the result of claim (ii) from this description of (36) it is thus enough to
note that an explicit computation of the connecting homomorphism in the above diagram
combines with the defining equality ¢; = (y — )((;3]) of qﬁ] to show that w; o 8 = qﬁ], O

Via the above result, the verification that b, validates (28) is reduced to showing that

(Ajefr]@5,F) (€5) = Nrdgy,ig) (log, (ke (7)) ™) - 077 (0).
To do this, we use the fact that

(B7) (Njepr= (0 j00F)) pr = (Ajeir(v—=1)(@1.7)) = Nrdgg) (v—=1)""+ (Ajepr1 8. ) o
where in each case F’ runs over Q(K. ). Here the first equality follows directly from the
definition of @ and the second is justified by the argument of [7, (9.1.2)].

Writing 7 for the natural projection map @F’EQ(K{,O) C(Qp[Gr]) — C(Qp[G]), we now
obtain the required equality via the computation

(Njetr195.7) () = (Aerr1b1.0) (Nrdg, ) (=) @Nrdg, gy (up) - (M= 16p4) (2F))
=Nrdg, g (ur) (Ajepr8,0) A (NZh167:)) ()
=mp(Nrdggy (v — 1) Oy,
=Nrdg,g)(log, (kk (7)) - 9%}((0)

Here the first equality follows from the explicit definition (31) of €%, the third from (30)
and the relations (37), and the fourth directly from the equality of [7, (9.3.3)].
This completes the proof of Theorem 6.3.

6.3. The proof of Corollary 6.4. Let F' denote either L or E. Then, since the archimedean

place of Q splits in F'*, the element 5};;( is trivial and so one has

er/k = (1/2)(L=7) + (A =7))(er/x) = (1/2)(1 = 7)(ep/k) = €5/x

in /\R Gal(F/K))] (R-UE(F)). 1t is therefore enough to prove Conjecture 5.1 after replacing
er/k and eg g by EZ/K and 5E/K respectively.

In addition, by the discussion just before the statement of Corollary 6.4, if the Gross-
Kuz'min Conjecture is valid for the pair (L, p), and hence also for (E, p), then . K= 5’; K

and so, assuming p,(L) = 0, the validity of Conjecture 5.1 in this case follows directly from
the claims made in Theorem 6.3. To complete the proof it is therefore enough to show that
the stated hypotheses on L imply both that p,(L) = 0 (so that the result of Theorem 6.3
is unconditional) and that the Gross-Kuz’'min Conjecture is valid for (L, p).

Now, since the fixed field L' of [G, G| in L is an abelian extension of Q one has i, (L") =0
(by [14]) and the Gross-Kuz'min Conjecture for (L', p) is valid (by [15]). Then, as the
degree |[G,G]| of L/L" is (by assumption) a power of p, the vanishing of y,(L") combines
with Nakayama’s Lemma to imply p,(L) = 0. In addition, since (by assumption) each
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p-adic place of L' has full decomposition subgroup in Gal(L/L’), the following observation
(which originates in the unpublished preprint [33] of one of us) implies the validity of the
Gross-Kuz'min Conjecture for (L,p). This completes the proof of Corollary 6.4.

Lemma 6.8. Let L/F be a finite extension of number fields such that |S7| = |S%|. Then
the validity of the Gross-Kuz'min Congjecture for (F,p) implies its validity for (L,p).

Proof. We write ko, for the cyclotomic Zy-extension of a number field k. Then the Gross-
Kuz'min Conjecture for (F,p) asserts that the maximal pro-p abelian extension F(p) of F
that is unramified outside S%. and such all p-adic places of F, are totally split in F(p) is a
finite extension of F,. To study these extensions we use the exact commutative diagram

(OFs,)p —2 Dyesp Dol(L) —— Cal(L(p)/Los) —— COLz, ),

J .| .|
(OFs,)p — Dyesy Do(F) —— Gal(F(p)/Fx).

Here, for E € {L, F}, we write ¥ for S U Sh, D,(E) for the decomposition subgroup of
each v in S% in Gal(E(p)/E) (so that D,(E) = Z,), 0 for the map induced by the local

reciprocity maps Ey — Gal(Eoo,v/Ey) = Dy(E) for all v € Sh, @UeS%DU(E) for the set
of (gv)y In @uesg D,(FE) with [], g» € Gal(E(p)/Ex) and all unlabelled arrows are the

obvious maps. In particular, the exactness of each row follows from class field theory (see,
for example, the proof of [24, Prop. 7.5]). In addition, 6; is the natural norm map and 6o
and 63 the natural restrictions maps.

Now cok(#;) and C1(Op 5, ), are finite and, since |ST | = |S%], 6 is injective and cok(62)
is finite. Hence, if Gal(F(p)/F~) is finite, then an application of the Five Lemma implies
that Gal(L(p)/L) is also finite, as required. O
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