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Abstract. We formulate a refined version of the Birch and Swinnerton-Dyer conjecture
for abelian varieties over global function fields. This refinement incorporates both new
families of algebraic relations between leading terms (at s “ 1) of Hasse-Weil-Artin L-
series and restrictions on the Galois structure of Selmer complexes, and constitutes a
natural analogue for abelian varieties over function fields of the equivariant Tamagawa
number conjecture for abelian varieties over number fields. We provide strong supporting
evidence for the conjecture including giving a full proof, modulo only the assumed finiteness
of Tate-Shafarevich groups, in an important class of examples.
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1. Introduction

1.1. Let A be an abelian variety that is defined over a function field K in one variable over
a finite field of characteristic p.

In [34] Artin and Tate formulated a precise conjectural formula for the leading term at
s “ 1 of the Hasse-Weil L-series attached to A.

This formula constituted a natural ‘geometric’ analogue of the Birch and Swinnerton-Dyer
Conjecture for abelian varieties over number fields and was subsequently verified uncondi-
tionally by Milne [27] in the case that A is constant and by Ulmer [40] in certain other
special cases. Further partial results have been obtained by many other authors and these
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efforts culminate in the main result of the seminal article of Kato and Trihan [22] which
shows that the conjecture is valid whenever there exists a prime ℓ such that the ℓ-primary
component of the Tate-Shafarevich group of A over K is finite.

In this article we now formulate, and provide strong evidence for, a refined version of this
conjecture that also incorporates new families of algebraic relations between the (suitably
normalised) leading terms at s “ 1 of the Hasse-Weil-Artin L-series that are attached to
A and to irreducible complex characters (with open kernel) of the absolute Galois group
of K. This conjecture is a natural analogue for abelian varieties over function fields of the
equivariant Tamagawa number conjecture (‘ETNC’), including the p-primary part, for the
motive h1pAqp1q of abelian varieties A over number fields.

To be a little more precise about our results we now fix a finite Galois extension L of K
with group G.

Then, as a first step, we shall prove that the leading terms of the Hasse-Weil-Artin L-
series that are attached to A and to the irreducible complex characters of G are interpolated
by a canonical element of the Whitehead group K1pRrGsq of the group ring RrGs. (This
result is, a priori, far from clear and requires one to prove, in particular, that leading terms
at irreducible symplectic characters are strictly positive.)

Our central conjecture is then a precise formula for the image of this element under the
connecting homomorphism fromK1pRrGsq to the relative algebraicK0-groupK0pZrGs,RrGsq

of the ring inclusion ZrGs Ă RrGs.
The conjectural formula involves a canonical Euler characteristic element that is con-

structed by combining a natural ‘Selmer complex’ of G-modules together with the classical
Néron-Tate height pairing of A over L. This Selmer complex is constructed from the flat
cohomology of the torsion subgroup scheme of the Néron model of A over the projective
curve X with function field K and, provided that the relevant Tate-Shafarevich groups are
finite, is both perfect over ZrGs and has cohomology groups that are closely related to the
classical Mordell-Weil and Selmer groups of At and A over L.

The formula also involves the Euler characteristic of an auxiliary perfect complex of
G-modules that is constructed directly from the Zariski cohomology of an appropriate line
bundle over X and is necessary in order to compensate for certain choices of pro-p subgroups
that are made in the definition of the Selmer complex.

If L “ K, then K0pZrGs,RrGsq identifies with the quotient of the multiplicative group
Rˆ by t˘1u and we check that in this case our conjecture recovers the classical Birch and
Swinnerton-Dyer conjecture for A over K.

In the general case, the conjecture incorporates both a family of precise algebraic relations
between the normalised leading terms of Hasse-Weil-Artin L-series attached to A and to
characters of G and also strong restrictions on the Galois structure of Selmer complexes
(for more details see the discussion in §4.2.3).

To study the conjecture, we adapt (and, in some respects, clarify) certain constructions
and arguments from [22] relating to syntomic cohomology complexes. In this way we are
able to prove that, whenever there exists a prime ℓ such that the ℓ-primary component
of the Tate-Shafarevich group of A over L is finite, then our conjecture is valid modulo a
certain finite subgroup TA,L{K of K0pZrGs,RrGsq, the nature of which depends both on the
reduction properties of A and the ramification behaviour in L{K.
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For example, if A is semistable over K and L{K is tamely ramified, then TA,L{K vanishes
and so we obtain a full verification of our conjecture in this case.

In the worst case the group TA,L{K coincides with the torsion subgroup of the subgroup
K0pZrGs,QrGsq of K0pZrGs,RrGsq and our result essentially amounts to proving a version
of the main result of [22] for the leading terms of the Hasse-Weil-Artin L-series attached to
A and to each character of G.

However, even the latter result is new and of interest since, for example, it both establishes
the ‘order of vanishing’ part of the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-
Artin L-series and, in addition, plays a key role in a forthcoming complementary article
that deals with, modulo the standard finiteness hypothesis on Tate-Shafarevich groups, the
case of abelian varieties A that are generically ordinary.

As a key step in the proof of our main result we shall combine Grothendieck’s description
of Hasse-Weil-Artin L-series in terms of the action of Frobenius on ℓ-adic cohomology (for
some prime ℓ ­“ p) together with a result of Schneider concerning the Néron-Tate height-
pairing to show that our conjectural formula naturally decomposes as a sum of ‘ℓ-primary
parts’ over all primes ℓ.

It is thus of interest to note that in some related recent work Trihan and Vauclair [37] have
adapted the approach of [22] in order to formulate and prove a natural main conjecture of
(p-adic) non-commutative Iwasawa theory for A relative to unramified p-adic Lie extensions
of K under the assumptions both that A is semistable over K and that certain Iwasawa-
theoretic µ-invariants vanish.

In addition, for each prime ℓ ‰ p, Witte [43] has used techniques of Waldhausen K-theory
to deduce an analogue of the main conjecture of non-commutative Iwasawa theory for ℓ-adic
sheaves over arbitrary p-adic Lie extensions of K from Grothendieck’s formula for the Zeta
function of such sheaves.

It seems likely that these results can be combined with the descent techniques developed
by Venjakob and the first author in [6] and the explicit interpretation of height pairings
in terms of Bockstein homomorphisms that we use below to give an alternative, although
rather less direct, proof of the ℓ-primary part of our main result for any ℓ ­“ p and of the
p-primary part of our main result in the special case that L{K is unramified and suitable
µ-invariants vanish.

However, even now, there are still no ideas as to how one could formulate a main con-
jecture of (non-commutative) Iwasawa theory for A relative to any general class of ramified
p-adic Lie extensions of K.

It is thus one of the main observations of the present article that the techniques developed
by Kato and Trihan in [22] are essentially themselves sufficient to prove refined versions of
the Birch and Swinnerton-Dyer conjecture without the need to develop an appropriate
formalism of non-commutative Iwasawa theory (and hence without the need to assume the
vanishing of relevant µ-invariants).

This general philosophy also in fact underpins the complementary work of the first two
authors regarding generically ordinary abelian varieties.

In a little more detail, the main contents of this article is as follows.
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Firstly, in §2 we use the leading terms of the Hasse-Weil-Artin L-series attached to
complex characters of G to define a canonical element of K1pRrGsq. Then, in §3, we define
a natural family of ‘Selmer complexes’ of G-modules and establish some of its key properties.

In §4 we formulate our main conjecture, describe some of its explicit consequences and
state the main supporting evidence for the conjecture that we prove in later sections.

In §5 we prove certain useful preliminary results including a purely K-theoretic obser-
vation that plays a key role in several subsequent calculations. We also show that our
conjecture is consistent in some important respects and use a result of Schneider to give a
useful reformulation of the conjecture.

In §6 and §7 we investigate the syntomic cohomology complexes introduced by Kato and
Trihan in [22], with a particular emphasis on understanding conditions under which these
complexes can be shown to be perfect.

In §8 we analyse when certain morphisms of complexes that arise naturally in the theory
are ‘semisimple’ (in the sense of Galois descent) and deduce, modulo the assumed finiteness
of Tate-Shafarevich groups, the order of vanishing part of the Birch and Swinnerton-Dyer
conjecture for Artin Hasse-Weil L-series.

Then, in §9, we combine the results established in earlier sections to prove our main
results.

There are also two appendices to this article. In the first of these, we show that coherent
cohomology over a ‘separated’ formal fs log scheme can be computed via the Čech resolution
with respect to an affine Kummer-étale covering. (This result plays an important role in
the arguments of §7 and, whilst it is surely well-known to experts, we have not been able
to find a good reference for it.)

Then, in the second appendix, we extend the notion of overconvergent Λ-F -isocrystal for
a finite extension Λ of Qp whose residue field is not necessarily contained in the field of
constants of the base curve, and also the Lefschetz trace formula for rigid cohomology with
such coefficients. (This result is needed to obtain Theorem 8.2 without further restriction,
and the proof is a mere repetition of the proof of Etesse and Le Stum in [14].)

1.2. To end the introduction we collect together certain notation and conventions that are
to be used in the sequel.

We fix a prime number p and a function field K in one variable over a finite field of
characteristic p. We write X for the proper smooth connected curve over Fp that has
function field K.

Let A be an abelian variety over K. Let U be a dense open subset of X such that A{K
has good reduction on U . We write A for the Néron model of A over X.

Let F be a finite extension of K. Let XF denote the proper smooth curve over Fp that
has function field F . We will denote the ‘base extension’ of an object ˚ over either K or X
to that over F of XF by a subscript ˚F . For example AF and UF denote AˆK F , U ˆXXF

respectively. If there is no danger of confusion we often omit the subscript F .
If M is an abelian group or complex of abelian groups, we denote its Pontryagin dual

HompM,Q{Zq by M˚. If W is a Qℓ-module or complex of Qℓ-modules for some prime ℓ, we
denote its linear dual HomQℓ

pV,Qℓq by V _ (regarding ℓ as clear from context). If either M
or V has a left action of a group, then we endow M˚ and V _ with the corresponding left
contragredient action.
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We fix an algebraic closure Qc of Q and for every prime ℓ an algebraic closure Qc
ℓ of Qℓ

and the ℓ-adic completion Cℓ of Qc
ℓ. For every prime ℓ, we also fix an embedding Qc Ñ Qc

ℓ.
For each natural number n the n-torsion subgroup of an abelian group M is denoted

by M rns. The full torsion subgroup of M is denoted by Mtor and, for each prime ℓ, the
ℓ-primary part of Mtor is denoted by Mtℓu.

For a finite group G we write IrpGq for the set of its irreducible complex valued characters
and IrspGq for the subset of IrpGq comprising characters that are symplectic. We write χ̌
for the contragredient of each χ in IrpGq and 1G for the trivial character of G.

For any commutative ring R we write RrGs for the group ring of G over R and denote
its centre by ζpRrGsq. We identify ζpCrGsq with

ś

IrpGqC in the standard way.

Acknowledgement: We are very grateful indeed to both Fabien Trihan and Takashi
Suzuki for several extremely helpful conversations, e-mail exchanges and remarks concern-
ing previous drafts of this article. We also thank the anonymous referee for the careful
reading and helpful comments. The second named author is supported by DST-SERB
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2021 [TPN - 700661], and Tata Education and Development Trust. The third named author
was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2020R1C1C1A0100945311).

2. Leading terms of Hasse-Weil-Artin L-series

We fix a finite Galois extension L{K with Galois group G, and choose U not to contain
any place that ramifies in L{K. For each χ in IrpGq we write LU pA,χ, sq for the Hasse-
Weil-Artin L-series of the pair pA,χq that is truncated by removing the Euler factors for
all places outside U .

We now show that there exists a canonical element of the Whitehead group K1pRrGsq

that naturally interpolates the leading terms L˚
U pA,χ, 1q at s “ 1 in the Taylor expansions

of the functions LU pA,χ, sq as χ ranges over IrpGq.
This ‘K-theoretical leading term’ will then play an important role in the conjecture that

we discuss in subsequent sections (but also see Remark 4.6 in this regard).
To define the element we use the fact that the algebra RrGs is semisimple and hence

that the classical reduced norm construction induces a homomorphism NrdRrGs of abelian

groups from K1pRrGsq to the subgroup ζpRrGsqˆ of
ś

IrpGqCˆ.

Theorem 2.1. There exists a unique element L˚
U pAL{K , 1q of K1pRrGsq with the property

that NrdRrGspL
˚
U pAL{K , 1qqχ “ L˚

U pA,χ, 1q for all χ in IrpGq.

Proof. Since the natural map RrGsˆ Ñ K1pRrGsq is surjective, the Hasse-Schilling-Maass
norm theorem implies both that NrdRrGs is injective and that its image is equal to the sub-

group of
ś

IrpGqCˆ comprising elements pxχqχ that satisfy both of the following conditions
#

xτ˝χ “ τpxχq, for all χ in IrpGq, and

xχ P R and xχ ą 0, for all χ in IrspGq,

where τ denotes complex conjugation. (For a proof of this result see [11, Th. (45.3)].)
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The injectivity of NrdRrGs implies that there can be at most one element of K1pRrGsq

with the stated property and to show that such an element exists it is enough to show that
the element pL˚

U pA,χ, 1qqχ of
ś

IrpGqCˆ satisfies the above displayed conditions.

This fact is established in Proposition 2.2 below. □

The following result extends an observation of Kato and Trihan from [22, Appendix].

Proposition 2.2. The following claims are valid for every χ in IrpGq.

(i) For every automorphism ω of C one has τpL˚
U pA,χ, 1qq “ L˚

U pA, τ ˝ χ, 1q. In par-
ticular, one has L˚

U pA,χ, 1q P R if χ is real valued.
(ii) Write Fq and Fq1 for the total field of constants of K and L respectively. Then if χ is

both real valued and not inflated from a non-trivial one dimensional representation
of GalpFq1{Fqq, one has L˚

U pA,χ, 1q ą 0.

Proof. At the outset we fix a prime ℓ with ℓ ­“ p and write Qc for the algebraic closure of
Q in C. We also fix an isomorphism C – Cℓ that we suppress from the notation.

In particular, for each ρ in IrpGq we fix a realisation Vρ of ρ over Qc and do not distinguish
between it and the space Qc

ℓ bQc Vρ.
Now for every ρ in IrpGq Grothendieck [17] (see also the proof of [28, Chap. VI, Th.

13.3]) has proved that there is an equality of power series

(1) LU pA, ρ, sq “
źi“2

i“0
Qρ,ipq

´sqp´1qi`1
,

where each Qρ,ipuq is a polynomial in u over Qc that can be computed as

Qρ,ipuq :“ det
`

1 ´ u ¨ φq|H
i
ét,c

`

U c, Vρ bQ VℓpAq
˘

p´1q
˘

Here U c denotes U ˆFq Fcq, the vector space VℓpAq is the Qℓ-space spanned by the ℓ-adic
Tate module of A and φq the q-th power Frobenius map. We claim that, for each i and
every automorphism ω of C, one has

(2) ωpQρ,ipuqq “ pQω˝ρ,ipuqq.

In fact, since Grothendieck’s result implies that the polynomial Qρ,ipuq has coefficients
in Qc, it is enough to consider automorphisms ω of Qc. Then, for each such ω, the natural
isomorphism of pQℓ bQ Qcq-spaces

Qc bQc,ω pVρ bQ VℓpAqq – pQc bQc,ω Vρq bQ VℓpAq – Vρω bQ VℓpAq

induces a similar isomorphism of the corresponding sheaves over U c and hence an isomor-
phism of cohomology groups

Qc bQc,ω H
i
ét,cpU

c, Vρ bQ VℓpAqq – H i
ét,cpU

c, Vρω bQ VℓpAqq

under which p1bφqq on the first space corresponds to φq on the second space. This proves
the claimed equality (2).

The equalities (2) (for each i P t0, 1, 2u) can then be combined with (1) to deduce that
the orders of vanishing at s “ 1 of the series LU pA, ρ, sq and LU pA,ω ˝ ρ, sq are equal and
moreover that

ωpL˚
U pA, ρ, 1qq “ L˚

U pA,ω ˝ ρ, 1q,
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as required. The final assertion of claim (i) then follows immediately upon applying this
equality with ω “ τ .

To prove claim (ii) we assume ρ is real-valued and hence, by (2) with ω “ τ , that each
polynomial Qρ,ipuq belongs to Rrus.

For each i we set

dρ,i :“ dimQc
ℓ
pH i

ét,cpU
c, Vρ bQ VℓpAqqp´1qq

and write the eigenvalues, counted with multiplicity, of φq on this space as tαiau1ďaďdρ,i .
Now, since the weight on U of pVρ bQ VℓpAqqp´1q is one, Deligne [13] has shown that

|αia| ď qpi`1q{2 for all values of i and a.
Further, as the space H2

ét,cpU
c, VρbQ VℓpAqqp´1q is dual to H0

étpU
c, Vρ̌bQ VℓpA

tqqp1q, and

the weight on U of the representation pVρ̌ bQ VℓpA
tqqp1q is ´3, one has |α2a| “ q

3
2 for all a.

Therefore neither of the terms Qρ,0pq´1q or Qρ,2pq´1q vanish.
In particular, if m denotes the order of vanishing of LU pA, ρ, sq at s “ 1, then one has

(3) L˚
U pA, ρ, 1q “ Qρ,0pq´1q´1Qρ,2pq´1q´1 ¨ lim

sÑ1
ps´ 1q´mQρ,1pq´sq.

To prove that this quantity is a strictly positive real number we shall split it into a
number of subproducts and show that each separate subproduct is a strictly positive real
number.

At the outset we note that if an eigenvalue αia is not real, then (since Qρ,ipuq belongs
to Rrus) there must exist an index a ­“ a1 such that αia1 “ τpαiaq and then the product
p1 ´ αiaq

´1qp1 ´ αia1q´1q is a strictly positive real number.
We need therefore only consider eigenvalues αia that are real and to do this we define for

each i P t0, 1, 2u sets of indices

J 1
i :“ ta : 1 ď a ď dρ,i with αia “ qpi`1q{2u Ă Ji :“ ta : 1 ď a ď dρ,i with αia P Ru.

Now if either i “ 0 and a P J0 or if 1 ď i ď 2 and a P JizJ
1
i , then one checks easily that

p1 ´ αiaq
´1q ą 0.

Furthermore, one has m “ |J 1
1| and

lim
sÑ1

ps´ 1q´m
ź

aPJ 1
1

p1 ´ α1aq
´sq “ plim

sÑ1
ps´ 1q´1p1 ´ q1´sqqm “ plogpqqqm ą 0

is a strictly positive real number.
To prove the quantity in (3) is strictly positive we are therefore reduced to showing that

the product

ź

aPJ 1
2

p1 ´ α2aq
´1q “

ź

aPJ 1
2

p1 ´ q1{2q

is strictly positive, or equivalently that |J 1
2| is even.
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To do this we set ∆ :“ GalpLFcq{KFcqq and recall that H2
ét,cpU

c, Vρ bQ VℓpAqq is dual to

the p1q-twist of the space

H0
étpU

c, Vρ̌ bQ VℓpA
tqq “

`

Vρ̌ bQ VℓpA
tq

˘GalpKc{KFc
qq

“
`

Vρ̌ bQ VℓpA
tqGalpKc{LFc

qq
˘∆

–
`

Vρ̌ bQ VℓpBq
˘∆

“ V ∆
ρ̌ bQ VℓpBq.

Here the first equality is obvious and the second is true because the restriction of ρ to
GalpKc{LFcqq is trivial, B is the L{Fq1 trace of At (see [25, Chap. VIII, §3, Th. 6] and note
that L{Fq1 is primary i.e. the algebraic closure of Fq1 in L is purely inseparable extension
of Fq1) and the last equality is true because B is defined over Fq1 .

In particular, if the representation ρ̌∆ vanishes, then |J 1
2| “ d2 “ 0 is even and we are

done.
We claim now that ρ̌∆ does indeed vanish unless ρ is trivial. To show this we note that

∆ identifies with a normal subgroup of G in such a way that the quotient is isomorphic to
the cyclic group H :“ GalpFq1{Fqq.

Thus, if η is any irreducible subrepresentation of resG∆pρ̌q, then Clifford’s theorem (cf.
[11, Th. 11.1(i)]) implies that resG∆pρ̌q is the direct sum of conjugates of η and hence that
resG∆pρ̌q∆ does not vanish if and only if η is trivial.

It follows that resG∆pρ̌q∆ does not vanish if and only if resG∆pρ̌q is trivial and this happens
if and only if ρ̌, and hence also ρ itself, is inflated from a representation of H.

Hence, since we have assumed that ρ is both irreducible and not inflated from a non-
trivial representation of H, the representation resG∆pρ̌q∆ does not vanish if and only if ρ is
the trivial representation of G.

We have now verified the assertion of claim (ii) for all but the trivial representation of G
and in this case the claimed result is proved by Kato and Trihan in [22, Appendix]. □

Remark 2.3. Fix a prime ℓ and an ℓ-adic representation V of GK . Then the tensor product
Qc
ℓrGs bQℓ

V is a (left) module over GˆGK via the rule pg, σqpxb vq :“ gxσ´1 b σpvq for
g P G, σ P GK , x P Qc

ℓrGs and v P V , where σ is the image of σ under the restriction map
GK Ñ G. In particular, if we fix χ in IrpGq and a realisation Vχ over Qc

ℓ, then, with respect
to this action, there is a canonical isomorphism of ℓ-adic representations of GK

Vχ bQℓ
V – HomQc

ℓrGspVχ̌,Qc
ℓrGs bQℓ

V q,

where GK acts diagonally on Vχ bQℓ
V and on the Hom-group via only Qc

ℓrGs bQℓ
V . This

isomorphism is induced by the canonical composite identification

H0pG,HomQc
ℓ
pVχ̌,Qc

ℓrGs bQℓ
V qq –H0pG,HomQc

ℓ
pVχ̌,Qc

ℓq bQc
ℓ

pQc
ℓrGs bQℓ

V qq

–H0pG,HomQc
ℓ
pVχ̌,Qc

ℓq bQc
ℓ

pQc
ℓrGs bQℓ

V q

– HomQc
ℓ
pVχ̌,Qc

ℓq bQc
ℓrGs pQc

ℓrGs bQℓ
V q

– HomQc
ℓ
pVχ̌,Qc

ℓq bQℓ
V.
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Here the second isomorphism is induced by the inverse of the canonical norm map (since
the order of G is invertible in Qc

ℓ), and all other isomorphisms are clear.

3. Arithmetic complexes

In this section we construct certain canonical complexes of Galois modules whose Eu-
ler characteristics will occur in the formulation of our refined Birch and Swinnerton-Dyer
conjecture.

In the sequel, for any noetherian ring R we shall write DperfpRq for the full triangulated
subcategory of the derived categoryDpRq of (left) R-modules comprising complexes that are
‘perfect’ (that is, isomorphic in DpRq to a bounded complex of finitely generated projective
R-modules).

3.1. Selmer groups. The Tate-Shafarevich group and, for any natural number n, the
n-torsion Selmer group of A over any finite extension F of K are respectively defined to be
the kernels

XpA{F q :“ kerpH1pF,Aq Ñ
à

v
H1pFv, Aqq

and

SelnpA{F q :“ kerpH1pF,Arnsq Ñ
à

v
H1pFv, Aqq.

Here the groups H1pF,Aq, H1pF,Arnsq and H1pFv, Aq denote flat cohomology and in both
cases v runs over all places of F and the arrow denotes the natural diagonal restriction map.

One then defines Selmer groups of A over F via the natural limits

SelQ{ZpA{F q :“ lim
ÝÑ
n

SelnpA{F q and SelẐpA{F q :“ lim
ÐÝ
n

SelnpA{F q

and, for convenience, we write XpA{F q for the Pontryagin dual of SelQ{ZpA{F q.

Remark 3.1. We make much use in the sequel of the fact that the above definitions lead
naturally to canonical exact sequences

0 Ñ ApF q bZ Ẑ Ñ SelẐpA{F q Ñ lim
ÐÝ
n

XpA{F qrns Ñ 0

and

0 Ñ pXpA{F qtorsq
_ Ñ XpA{F q Ñ HomZpApF q, Ẑq Ñ 0.

3.2. Arithmetic cohomology. For each place v of F outside UF we fix a pro-p open
subgroup Vv of ApFvq and denote the family pVvqvRUF

by VUF
, or more simply by either VF

or V when the context is clear.
We then follow Kato and Trihan [22] in defining the ‘arithmetic cohomology’ complex

RΓar,V pUF ,Atorsq to be the mapping fibre of the morphism

(4) RΓflpUF ,Atorsq ‘ p
à

vRUF
Vv bL

Z Q{Zqr´1sq
pκ1,κ2q
ÝÝÝÝÑ

à

vRUF
RΓflpFv,Atorsq.

Here κ1 denotes the natural diagonal localisation morphism in flat cohomology and κ2 the
restriction of the morphism

pApFvq bL
Z Q{Zqr´1s Ñ

à

vRUF
RΓflpFv,Atorsq
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that is obtained by applying ´ bL
Z Q{Z to the morphism ApFvqr´1s Ñ RΓflpFv, limÐÝn

Arnsq

in DpZrGsq induced by the fact that H0
flpFv, limÐÝn

Arnsq vanishes whilst ApFvq is canonically

isomorphic to a submodule of H1
flpFv, limÐÝn

Arnsq.

Proposition 3.2. The complex Car
V :“ RΓar,V pUF ,Atorsq is acyclic outside degrees 0, 1 and

2. In addition, there exists a canonical exact sequence

0 Ñ H0pCar
V q Ñ ApF qtors Ñ

à

vRUF
ApFvq{Vv Ñ H1pCar

V q Ñ SelQ{ZpA{F q Ñ 0,

and a canonical isomorphism H2pCar
V q – HomZpSelẐpAt{F q,Q{Zq.

Proof. This is proved in [22, §2.5]. □

Since RΓar,V pUF ,Atorsq is a complex of torsion groups it decomposes naturally as a direct
sum of ℓ-primary component complexes RΓar,V pUF ,Atorsqℓ.

Remark 3.3. For any prime ℓ ­“ p the definition of RΓar,V pUF ,Atorsqℓ via the morphism
in (4) implies that it identifies with the compactly supported étale cohomology complex
RΓét,cpUF ,Atℓuq of the (étale) sheaf Atℓu on UF comprising all ℓ-primary torsion in A.

3.3. Pro-p subgroups. To make the complexRΓar,V pUF ,Atorsq constructed above amenable
for our purposes we need to make an appropriate choice of the family V . We now explain
how to make such a choice following the approach of Kato and Trihan in [22, § 6].

To do this we fix a finite Galois extension L{K and set G :“ GalpL{Kq. We let XL be
the proper smooth curve with function field L, and let UL Ă XL be the preimage of U (and
we will later ‘shrink’ U so that L{K is unramified at places in U). For any place w of L we
write Gw for its decomposition subgroup in G.

We write A1 for the Néron model of AL over XL, and AXL
for the pull back of A.

Lemma 3.4. There exists a G-invariant divisor E “
ř

wRUL
npwqw on XL with supppEq “

XLzUL and for each place w R UL over v R U a Gw-stable pro-p open subgroup V 1
w of

ALpLwq and an open OvrGws-submodule W 1
w of LiepALpLwqq that satisfy all of the following

properties.

(1) For w R UK , we have A1pm
2npwq
w q Ă V 1

w Ă AXL
pm

npwq
w q.

(2) For w R UL, we have LiepA1qpm
2npwq
w q Ă W 1

w Ă LiepAXL
qpm

npwq
w q.

(3) For w R UL, the canonical isomorphism

A1pmnpwq
w q{A1pm2npwq

w q – LiepA1qpmnpwq
w q{LiepA1qpm2npwq

w q

sends the image of V 1
w to W 1

w.
(4) For each place v outside U the products

ś

w|vV
1
w and

ś

w|vW
1
w are stable under

the action of G and for each natural number i the associated cohomology groups
H ipG,

ś

w|vV
1
wq and H ipG,

ś

w|vW
1
wq vanish.

We can furthermore require E to be the pull back of some divisor E0 of X.

In the application (cf. § 7ff ) we need E to be the pull back of a divisor E0 of X.

Proof. This result is only a slight adaptation of [22, Lem. 6.4] (see Remark 3.5 below). For
this reason we only sketch the proof, following closely the argument of [22, §6].
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The key point is that it suffices to construct a divisor E and a family of subgroups tW 1
wuw

with the properties stated in Lemma 3.4, since the family tW 1
wuw uniquely determines the

family tV 1
vuv by property (3) and then the latter family can be shown to satisfy property

(4) by repeating the proof of [22, Lem. 6.2(2)].
Now, by the argument of [22, Lem. 6.2(1)], for each place w of L outside UL there exists

a constant cpwq such that for any integer n ě 0 there exists a Gw-stable Ov-lattice W
1
w of

LiepAXL
qpOwq such that both

LiepAXL
qpmn`cpwq

w q Ă W 1
w Ă LiepAXL

qpmn
wq.

and the group H ipGw,W
1
wq vanishes for all i ě 1.

By the argument of [22, Lem. 6.3], we may in addition assume that the subgroups W 1
w

satisfy property (2), at least provided that npwq is sufficiently large and divisible by the
ramification index epw|vq. (We would like npwq to be divisible by epw|vq in general since we
are only allowed to multiply W 1

w by Ov-multiple; recall that W 1
w is only an Ov-submodule,

not an Ow-submodule.)
To ensure that the product

ś

wRUL
W 1
w is stable under the action of G, we first fix a place

w over each v R U and a subgroup W 1
w that has property (2) and is such that H ipGw,W

1
wq

vanishes for all i ě 1.
For each σ in G, we then set W 1

σpwq
:“ σpW 1

wq Ă LiepAXL
qpOσpwqq (which, we note, only

depends on σpwq). Then the collection of subgroups tW 1
wuwRUL

clearly has both of the
properties (2) and (4).

To ensure that E is a pull back of some divisor E0 of X, we may replace E with π˚pπ˚Eq

and replace tW 1
wuw|v by some suitable power of uniformiser of Ow. □

Remark 3.5. Lemma 3.4 only differs from [22, Lem. 6.4] in that we require each group
W 1
w to be an open OvrGws-submodule of LiepA1qpOwq rather than an open Ow-submodule

as in loc. cit. In fact, in [22, Lem. 6.2(1)], it is claimed that W 1
w can be chosen as an

Ow-sublattice of LiepAXL
qpOwq, but the indicated proof seems only to show that it can be

chosen as a Gw-stable Ov-lattice.

Remark 3.6. The proof of Lemma 3.4 shows that for any place v of K that is both
unramified in L and of good reduction for A, the subgroup V 1

w can be chosen as Apmwq.

3.4. Selmer complexes. For each place w outside UL we now fix a choice of subgroups
V 1
w as in Lemma 3.4. For any subgroup J of G and for any place v outside ULJ we then

define a group

Vv :“
`

ź

w|v
V 1
w

˘J

and we denote the associated families of subgroups pV 1
wqwRUL

and pVvqvRU
LJ

by VL and VLJ ,
respectively. We may occasionally write V for VK when J “ G.

In the following result we use these subgroups to construct a canonical ‘Selmer com-
plex’ SCVLpA,L{Kq that will play a key role in the formulation of our refined Birch and
Swinnerton-Dyer conjecture.

We also use the G-module XZpA{F q that is defined as the pre-image of HomZpApF q,Zq

under the natural surjective homomorphism XpA{F q Ñ HomZpApF q, Ẑq (see Remark 3.1).

Proposition 3.7. The following claims are valid.
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(i) RΓar,VLpUL,A1
torsq

˚r´2s is an object of DperfpẐrGsq that is acyclic outside degrees
0, 1 and 2.

(ii) If the groups XpA{Lq and XpAt{Lq are both finite, then there exists a complex
SCVL :“ SCVLpA,L{Kq in DperfpZrGsq that is acyclic outside degrees 0, 1 and 2,
is unique up to isomorphisms in DperfpZrGsq that induce the identity map in all
degrees of cohomology and also has both of the following properties:
(a) One has H0pSCVLq “ AtpLq, H1pSCVLq contains XZpA{Lq as a submodule of

finite index and H2pSCVLq is finite.

(b) There exists a canonical isomorphism in DperfpẐrGsq of the form

Ẑ bZ SCVL – RΓar,VLpUL,Atorsq
˚r´2s.

Proof. For each subgroup J of G we set Car
V,J :“ RΓar,V

LJ
pULJ ,Atorsq and we abbreviate

Car
V,J to Car

V when J is the trivial subgroup.

Then, since H ipCar,˚
V,J r´2sq “ H2´ipCar

V,Jq˚ in all degrees i, the result of Proposition 3.2

implies that each complex Car,˚
V,J r´2s is acyclic in all degrees outside 0, 1 and 2 and that its

cohomology is finitely generated over Ẑ in all degrees.
By a standard criterion, it follows that Car,˚

V , and hence also Car,˚
V r´2s, belongs to

DperfpẐrGsq, and so claim (i) is valid, if for every subgroup J of G there is an isomor-

phism in DpẐq of the form Z bL
ZrJs

Car,˚
V – Car,˚

V,J .

In view of the natural isomorphisms ZbL
ZrJs

Car,˚
V – RHomZrJspZ, Car

V q˚ we are therefore

reduced to showing the existence of isomorphisms in DpẐq of the form

(5) RHomZrJspZ, RΓar,VLpUL,Atorsqq – RΓar,V
LJ

pULJ ,Atorsq

and this is proved by Kato and Trihan in [22, Lem. 6.1].
Turning to claim (ii), we note that claim (i) combines with the general result of Lemma

3.8 below to imply it suffices to show that, under the stated hypotheses, the group H0pCar
V q˚

is finite, the group H2pCar
V q˚ is naturally isomorphic to ẐbZA

tpLq and there exists a finitely
generated G-module M1 that contains XZpA{Lq as a submodule of finite index and is such

that there is a canonical isomorphism Ẑ bZ M
1 – H1pCar

V q˚ of ẐrGs-modules.
In this direction, the exact sequence in Proposition 3.2 implies directly that H0pCar

V q˚ is
finite.

In addition, since the limit lim
ÐÝn

XpAt{Lqrns vanishes under the assumption XpAt{Lq is
finite, the displayed isomorphism in Proposition 3.2 combines with the first exact sequence
in Remark 3.1 to give a canonical isomorphism

H2pCar
V q˚ – pẐ bZ A

tpLqq˚˚ “ Ẑ bZ A
tpLq

of the required form.
Next we note that, since XpA{Lq is assumed to be finite, the second exact sequence in

Remark 3.1 implies XZpA{Lq is finitely generated.
Thus, if we write Y for the (finite) cokernel of the map ApLqtors Ñ

À

vRUL
ApLvq{Vv that

occurs in Proposition 3.2, then the natural map of finite groups

Ext1GpY ˚, XZpA{Lqq “ Ẑ bZ Ext1GpY ˚, XZpA{Lqq Ñ Ext1ẐrGs
pY ˚, XpA{Lqq
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is bijective and so there exists an exact commutative diagram of G-modules

0 ÝÝÝÝÑ XZpA{Lq ÝÝÝÝÑ M ÝÝÝÝÑ Y ˚ ÝÝÝÝÑ 0
§

§

đ

§

§

đ

›

›

›

0 ÝÝÝÝÑ XpA{Lq ÝÝÝÝÑ H1pCar
V q˚ ÝÝÝÝÑ Y ˚ ÝÝÝÝÑ 0

in which the first vertical arrow is the natural inclusion, and so induces an isomorphism
ẐbZXZpA{Lq – XpA{Lq, and the lower row is induced by the Pontryagin dual of the long
exact sequence in Proposition 3.2.

In particular, from the upper row of the above diagram we can deduce that M is finitely
generated and hence is a suitable choice for the module M1 that we seek. □

In the sequel, for a ring Λ and integer a, we write τěa and τďa for the truncation functors
on DpΛq in degrees at least a and at most a respectively.

We also recall that a G-module is said to be ‘cohomologically-trivial’, or ‘c-t’ for short
in the sequel, if for every integer i and every subgroup J of G the Tate cohomology group
Ĥ ipJ,Mq vanishes.

Lemma 3.8. Let Ĉ be a cohomologically-bounded complex of ẐrGs-modules and assume to

be given in each degree j a finitely generated G-module M j and an isomorphism of ẐrGs-

modules of the form ιj : Ẑ bZ M
j – HjpĈq.

Then there exists an object C of DpZrGsq with all of the following properties:

(i) HjpCq “ M j for all j.

(ii) There exists an isomorphism ι : Ẑ bZ C – Ĉ in DpẐrGsq for which in each degree j
one has Hjpιq “ ιj.

(iii) C belongs to DperfpZrGsq if and only if Ĉ belongs to DperfpẐrGsq.

Any such complex C is unique to within an isomorphism κ in DpZrGsq for which Hjpκq is
the identity automorphism of M j in each degree j.

Proof. We prove this by induction on the number of non-zero cohomology groups of Ĉ.
If there is only one non-zero such group, in degree d say, then Ĉ is isomorphic in DpẐrGsq

to pẐ bZ M
dqr´ds and we write C for the complex Mdr´ds in DpZrGsq.

In this case claim (i) is clear and claim (ii) is true with ι the morphism induced by ιd.

Finally, since any finitely generated module over either ZrGs or ẐrGs that is c-t has a finite

projective resolution, C belongs to DperfpZrGsq if and only if Md is c-t and Ĉ belongs to

DperfpẐrGsq if and only if M̂d is c-t. This implies claim (iii) since a finitely generated G-

module N is c-t if and only if ẐbZN is c-t as a consequence of the fact that in each degree
i and for each subgroup J of G the natural map Ĥ ipJ,Nq Ñ Ĥ ipJ, Ẑ bZ Nq is bijective.

To deal with the general case we assume Ĉ is not acyclic and write d for the unique integer
such thatHdpĈq ­“ 0 andH ipĈq “ 0 for all i ą d. We then abbreviate the complexes τďd´1Ĉ

and τědĈ to Ĉ1 and Ĉ2 and recall that there is a canonical exact triangle in DpẐrGsq of
the form

Ĉ1 Ñ Ĉ Ñ Ĉ2
θ̂
ÝÑ Ĉ1r1s.
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We note that this triangle induces an isomorphism κ inDpẐrGsq between Ĉ and Conepθ̂qr´1s,
where we write Conepαq for the mapping cone of a morphism α.

Now, since HjpĈ1q “ HjpĈq for j ă d and HjpĈ1q “ 0 for all j ě d, the inductive

hypothesis implies the existence of C1 in DpZrGsq and an isomorphism ι1 : Ẑ bZ C1 – Ĉ1

in DpẐrGsq such that in each degree j with j ă d one has Hjpιq “ ιj .

In addition, since Ĉ2 is acyclic outside degree d, the argument given above shows the
existence of a complex C2 in DpZrGsq and an isomorphism ι2 : Ẑ bZ C2 – Ĉ2 in DpẐrGsq

with Hdpιq “ ιd.

Next we recall that the group HomDpẐrGsq
pĈ2, Ĉ1r1sq is equal toH0pRHomẐrGs

pĈ2, Ĉ1r1sqq

and so can be computed by using the spectral sequence

Ep,q2 “
ź

aPZ
ExtpGpHapĈ2q, Hq`apĈ1r1sqq ñ Hp`qpRHomẐrGs

pC2, C1r1sqq

constructed by Verdier in [42, III, 4.6.10]. We also note that there is no degree in which

the complexes Ĉ2 and Ĉ1r1s have cohomology groups that are both non-zero and that any
group of the form ExtpGp´,´q vanishes for p ă 0 and is torsion for p ą 0. Given these facts,

the above spectral sequence implies that HomDpẐrGsq
pĈ2, Ĉ1r1sq is finite and hence that the

diagonal localisation map HomDpZrGsqpC2, C1r1sq Ñ HomDpẐrGsq
pĈ2, Ĉ1r1sq is bijective.

We now write θ for the pre-image of θ̂ under the latter isomorphism and claim that the
mapping fibre C :“ Conepθqr´1s has all of the required properties.

Firstly, this definition implies directly that HjpCq is equal to HjpC1q if j ă d and to
HjpC2q if j ě d, and so claim (i) follows immediately from the given properties of C1 and

C2. The definition also implies directly that Ẑ bZ C is isomorphic to Conepθ̂qr´1s and

hence that κ induces an isomorphism in DpẐrGsq between ẐbZC and Ĉ with the property
described in claim (ii).

To prove claim (iii) it suffices to check that C belongs to DperfpZrGsq if Ĉ belongs to

DperfpẐrGsq. To do this we can assume, by a standard resolution argument (as described, for
example, in [12, Rapport, Lem. 4.7]), that C is a bounded complex of finitely generated G-
modules in which all but the first (non-zero) module, M say, is free. If we then also assume

that the complex Ĉ is isomorphic in DpẐrGsq to a bounded complex of finitely generated

projective ẐrGs-modules Q, then there exists a quasi-isomorphism π : Q Ñ Ẑ bZ C of

complexes of ẐrGs-modules.

Now, since all terms of Q and Ẑ bZ C are projective ẐrGs-modules, except possibly for

Ẑ bZ M , the acyclicity of Conepπq implies that the ẐrGs-module Ẑ bZ M is c-t. This in
turn implies that M is c-t and hence has a finite projective resolution. It follows that C
belongs to DperfpZrGsq, as claimed. □

3.5. Coherent cohomology. The Selmer complex that is constructed in Proposition
3.7(ii) depends on the choice of subgroups VL. We shall therefore need to introduce an
auxiliary perfect complex that will be used to compensate for this dependence in the for-
mulation of our conjecture.

To do this for each place v outside U we choose a place w of XL above v and the OvrGws-
submodule W 1

w of LiepALpLwqq that corresponds in Lemma 3.4 to the subgroup V 1
w fixed at
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the beginning of §3.4. For any other place w1|v of XL, we choose γ P G such that w1 “ γ ¨w

and set W 1
w1 denote the image of the isomorphism LiepALpLwqq

–
ÝÑ LiepALpLw1qq induced

by γ. Note that W 1
w1 does not depend on the choice of γ as W 1

w is Gw-stable.
For any place v outside U we then set

Wv :“
`

ź

w|v
W 1
w

˘G

and we denote the associated families of subgroups pW 1
wqwRUL

and pWvqvRU by WL and WK

respectively.
We then define L to be the coherent OX -submodule of LiepAq that extends LiepA|U q and

is such that Lv “ Wv Ă LiepAqpOvq for each v R U .
We similarly define LL to be the G-equivariant coherent OX -submodule of π˚LiepAXL

q

with LL,v “
ś

w|vW
1
w for each v R U , where we write π : XL Ñ X for the natural projection.

Lemma 3.9. The complex RΓpX,LLq˚ belongs to DperfpFprGsq, and hence to DperfpZprGsq.

Proof. For each subgroup J of G the complex RΓpX, pLLqJq˚ is represented by a complex
of finite-dimensional Fp-vector spaces that is acyclic outside degrees 0 and 1.

By the same argument as used to prove Proposition 3.7(i) we are therefore reduced to
proving that for each J there is a natural isomorphism in DpFpq of the form

(6) RHomFprJspFp, RΓpX,LLqq – RΓpX, pLLqJq

and this is proved by Kato and Trihan in [22, p. 585]. □

Remark 3.10. In view of Remark 3.5, we have here defined LL to be a FprGs-equivariant
vector bundle over X rather than a vector bundle over XL, as in [22, § 6.5]. This means
that various arguments in loc. cit. that rely on the ‘geometric p-adic cohomology theory’
over XL and will be referred to in later sections must in our case be carried out over X by
using the relevant push-forward constructions. This, however, is a routine difference that
we do not dwell on.

4. Statements of the conjecture and main results

In this section we formulate our refinement of the Birch and Swinnerton-Dyer Conjecture,
establish some basic properties of the conjecture and state the main supporting evidence
for it that we will obtain in the rest of the article.

4.1. Relative K-theory. Before stating our conjecture we quickly review relevant aspects
of relative algebraic K-theory.

For a Dedekind domain R with field of fractions F , an R-order A in a finite dimensional
separable F -algebra A and a field extension E of F we set AE :“ E bF A.

4.1.1. We use the relative algebraic K0-group K0pA, AEq of the ring inclusion A Ă AE , as
described explicitly in terms of generators and relations by Swan in [33, p. 215].
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We recall that for any extension field E1 of E there exists an exact commutative diagram

(7)

K1pAq ÝÝÝÝÑ K1pAE1q
BA,E1

ÝÝÝÝÑ K0pA, AE1q
B1
A,E1

ÝÝÝÝÑ K0pAq
›

›

›

ι

İ

§

§ ι1

İ

§

§

›

›

›

K1pAq ÝÝÝÝÑ K1pAEq
BA,E

ÝÝÝÝÑ K0pA, AEq
B1
A,E

ÝÝÝÝÑ K0pAq

in which the upper and lower rows are the respective long exact sequences in relative K-
theory of the inclusions A Ă AE and A Ă AE1 and both of the vertical arrows are injective
and induced by the inclusion AE Ď AE1 . (For more details see [33, Th. 15.5].)

We further recall that the Whitehead group K1pAEq comprises (isomorphism classes of)
pairs of the form xW, θy in which θ is an automorphism of the finitely generated projective
AE-moduleW . In particular, ifW is spanned by a (finitely generated) projective A-module
P , then the connecting homomorphism BA,E in (7) sends xW, θy to the element of K0pA, AEq

that corresponds to the triple pP, θ, P q.
If R “ Z and for each prime ℓ we set Aℓ :“ Zℓ bZ A and Aℓ :“ Qℓ bQ A, then we regard

each group K0pAℓ, Aℓq as a subgroup of K0pA, Aq by means of the canonical composite
homomorphism

(8)
à

ℓ
K0pAℓ, Aℓq – K0pA, Aq Ă K0pA, ARq.

Here ℓ runs over all primes, the isomorphism is as described in the discussion following [11,
(49.12)] and the inclusion is induced by the relevant case of the map ι1 in (7).

For each element x of K0pA, Aq we write pxℓqℓ for its image in
À

ℓK0pAℓ, Aℓq under the
isomorphism in (8).

4.1.2. We shall construct elements of K0pA, AEq by using the formalism of ‘non-abelian
determinants’ described by Fukaya and Kato in [16, §1]. To recall the relevant facts we
write Σ for the category DperfpAq.

Following [16, Def. 1.3.2], one can define a localized K1-group K1pAE ,Σq. This abelian
group is generated by pairs pC, hq, where C is an object of Σ for which the Euler charac-
teristic of E bR C in K0pAEq vanishes and h is a morphism DetAE

pE bR Cq Ñ DetAE
p0q

in the category CAE
constructed in [16, §1.2.1]; the relations between these generators are

then the obvious analogues of the relations (1), (2) and (3) given as part of [16, Def. 1.3.2].
These relations in turn ensure that there exists a canonical group homomorphism

ιA,E : K1pAE ,Σq Ñ K0pA, AEq.

The approach of [16, Th. 1.3.15] proves the existence of an exact sequence relatingK1pAE ,Σq

to K1pAEq,K0pΣq “ K0pAq and K0pAEq, and by comparing this sequence to (7), one can
deduce that ιA,E is surjective (but we omit details as we make no use of this fact).

For each generator pC, hq of K1pAE ,Σq, we set

χA,EpC, hq :“ ιA,EppC, hqq P K0pA, AEq.

If E bR C is acyclic, then we further set

χA,EpC, 0q :“ χA,EpC, hcanq,

with hcan the canonical morphism DetAE
pE bR Cq Ñ DetAE

p0q in CAE
(from [16, §1.2.8]).
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Example 4.1. Fix a bounded complex C‚ of finitely generated projective A-modules, and
set Ceven :“

À

iPZC
2i and Codd :“

À

iPZC
2i`1. Then, in this case, specifying a morphism

h : DetAE
pE bR Cq Ñ DetAE

p0q in CAE
is equivalent to specifying data as follows: for

some finitely generated projective A-module P , one is given an isomorphism of AE-modules
θ : E bR pCeven ‘ P q – E bR pCodd ‘ P q that is unique up to pre-composition with an
automorphism of EbR pCeven‘P q whose image in K1pAEq is specified (and so depends only
on h). Then, in terms of the standard presentation of K0pA, AEq, the element χA,EpC‚, hq

corresponds to the triple pCeven ‘ P, θ, Codd ‘ P q, with the defining relations of K0pA, AEq

ensuring that this element is indeed independent of both P and the specific choice of θ

We next record some general properties of the elements χApC, hq that will be used fre-
quently in the sequel (often without explicit comment).

Firstly, if C1 Ñ C2 Ñ C3 Ñ C1r1s is an exact triangle in DperfpAq for which the complex
F bR C3 is acyclic, then each morphism h : DetAE

pE bR C1q Ñ DetAE
p0q in CAE

combines
with the given triangle to induce a morphism h1 : DetAE

pE bR C2q Ñ DetAE
p0q in CAE

.
The same approach as used to prove [16, Lem. 1.3.4] then shows that

χA,EpC2, h
1q “ χA,EpC1, hq ` χA,EpC3, 0q.

Secondly, if h and h1 are any two morphisms DetAE
pE bR Cq Ñ DetAE

p0q in CAE
, then

the (obvious analogue of the) defining relation (3) in [16, Def. 1.3.2] (with C 1 taken to be
0) implies that

χA,EpC, h1q “ χA,EpC, hq ` BA,Eph1 ˝ h´1q.

Here the last term denotes the image under BA,E of the unique element of K1pAEq that is
determined by the morphism h1 ˝ h´1 : DetAE

p0q Ñ DetAE
p0q in CAE

.

We next assume A “ RrGs for a finite group G, and write ι#RrGs
for the involutions on each

of the groups K1pRrGsq,K1pF rGsq and K1pRrGs, F rGsq that are induced by the R-linear
anti-involution on RrGs that inverts elements of G. Then, if M is any finite RrGs-module
that is c-t, its Pontryagin dual M˚ (endowed with contragredient G-action) is also c-t, and

(9) χRrGs,F rGspM
˚r0s, 0q “ ι#RrGs

`

χRrGs,F rGspM r0s, 0q
˘

.

(By localisation, the verification of this equality reduces to the case that R is a discrete
valuation ring. In the latter case it then follows by explicit computation from the fact that
a finite c-t RrGs-module has a free resolution of length one.)

Remark 4.2. We often regard E as clear from context and so write χAp´,´q in place of
χA,Ep´,´q. If A “ ZrGs, we further abbreviate χZrGs,Ep´,´q to χGp´,´q, and the maps

BZrGs,Ep´q and B1
ZrGs,E to BGp´q and B1

Gp´q (again regarding E as clear from context).

4.2. The refined Birch and Swinnerton-Dyer Conjecture.

4.2.1. In the sequel we write

hNT
A,L : ApLq ˆAtpLq Ñ R

for the classical Néron-Tate height-pairing for A over L.
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This pairing is non-degenerate and hence, assuming XpA{Lq to be finite, combines with
the properties of the Selmer complex SCVLpA,L{Kq established in Proposition 3.7(ii) to
induce a canonical isomorphism of RrGs-modules

(10) hNT,det
A,L : DetRrGspR bZ SCVLpA,L{Kqq – DetRrGsp0q.

In particular, since SCVLpA,L{Kq belongs to DperfpZrGsq, we obtain an element of
K0pZrGs,RrGsq by setting

χBSD
G pA, VLq :“ χGpSCVLpA,L{Kq, hNT,det

A,L q.

Next we note that, since the complex RΓpX,LLq˚ considered in Lemma 3.9 belongs to
DperfpFprGsq, it defines an object of DperfpZrGsq for which QbZRΓpX,LLq˚ is acyclic. The
associated element

χcoh
G pA, VLq :“ χGpRΓpX,LLq˚, 0q

therefore belongs to the image of the natural homomorphism

(11) K0pFprGsq Ñ K0pZrGs,QrGsq Ă K0pZrGs,RrGsq.

Finally, for each prime ℓ, we shall use an explicit computation of Bockstein homomor-
phisms that arise naturally in arithmetic cohomology to define a canonical, and computable,
integer aℓ “ aA,L,ℓ in t0, 1u. We thereby obtain a canonical element of K0pZrGs,QrGsq of
order dividing two by setting

χsgn
G pAq :“

ÿ

ℓ
BG,QpxQ ¨AtpLq, p´1qaℓyqℓ,

where ℓ runs over all prime divisors of |G|. (Given the relatively minor role that this
‘sign-term’ plays in our conjecture, and the involved nature of the relevant Bockstein ho-
momorphisms, we prefer to delay giving explicit details regarding the integers aℓ until the
respective computations are made in Proposition 8.1(i) for ℓ “ p and in equation (58) for
ℓ ­“ p.)

4.2.2. We can now state our refined version of the Birch and Swinnerton-Dyer Conjecture
for A over L.

For each character ψ in IrpGq, we fix an associated complex representation Vψ and write
eψ for the primitive idempotent ψp1q|G|´1

ř

gPGψpg´1qg of ζpCrGsq. We then set

ralgpψq :“ ψp1q´1 ¨ dimCpeψpC bZ A
tpLqqq “ dimCpHomCrGspVψ,C bZ A

tpLqqq,

and write

ranpψq :“ ords“1LU pA,ψ, sq

for the order of vanishing at s “ 1 of the series LU pA,ψ, sq. We also use the ‘leading term’
element L˚

U pAL{K , 1q of K1pRrGsq that is defined in Theorem 2.1.

Conjecture 4.3. The following claims are valid.

(i) For each character ψ in IrpGq one has ranpψq “ ralgpψq.
(ii) The group XpA{Lq is finite.
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(iii) Let U be a dense open subset of X comprising points at which both L{K is unramified
and A{K has good reduction. Then, for every family of groups VL “ VUL

chosen as
in §3.4, there is an equality

BGpL˚
U pAL{K , 1qq “ χBSD

G pA, VLq ´ χcoh
G pA, VLq ` χsgn

G pAq

in K0pZrGs,RrGsq.

Remark 4.4. If L “ K, then K0pZrGs,RrGsq identifies with the multiplicative group
Rˆ{t˘1u and in Proposition 5.2 below we shall show that this case of Conjecture 4.3 recovers
the classical Birch and Swinnerton-Dyer conjecture for A. In §5.2 we also show that the
validity of the equality in Conjecture 4.3(iii) is independent of the choices of open set U
and family of subgroups VL.

Remark 4.5. Since C bZ A
tpLq is the scalar extension of the finitely generated QrGs-

module Q bZ A
tpLq one has ralgpψq “ ralgpω ˝ ψq for all ψ P IrpGq and all automorphims

ω of C. Conjecture 4.3(i) therefore implies that ranpψq “ ranpω ˝ ψq for all such ψ and ω.
The validity of these equalities can be derived directly from the equalities (1) and (2) that
played the key role in the proof of Proposition 2.2.

Remark 4.6. Theorem 2.1 allows us to formulate Conjecture 4.3 directly in terms of the
connecting homomorphism BG. However, without using Theorem 2.1, one could still formu-
late an analogue of Conjecture 4.3 in terms of the image of the element pL˚

U pA,χ, 1qqχPIrpGq

of ζpRrGsqˆ under the ‘extended boundary’ homomorphism ζpRrGsqˆ Ñ K0pZrGs,RrGsq

constructed by Flach and the first author in [4, §4.2, Lem. 9]. This observation provides the
link between the formulation of Conjecture 4.3(iii) in terms of relative algebraic K-theory
and the formalism of ‘equivariant Tamagawa number conjectures’ that is discussed in loc.
cit. and later refined by Fukaya and Kato in [16].

4.2.3. Conjecture 4.3 entails a variety of explicit consequences concerning the structure of
Selmer complexes and relations between leading terms of Hasse-Weil-Artin L-series. To help
provide context, we now state two concrete results in this direction (though, for convenience,
the proof of these results is deferred to §9.4).

We fix a prime p and assume, for simplicity, that G is of p-power order. We write Mppq

for the p-localisation of a (complex of) abelian groups M .
The first result concerns the Galois structure of the complex SCVL :“ SCVLpA,L{Kq.

Proposition 4.7. If G is a group of p-power order, then Conjecture 4.3 implies the following
restrictions on the complex SCVL.

(i) SCVL is isomorphic in DperfpZrGsq to a bounded complex of finitely generated free
G-modules.

(ii) If ApKqrps and AtpKqrps both vanish, then SCVL,ppq is isomorphic in DperfpZppqrGsq

to a complex ZppqrGst
ϕ
ÝÑ ZppqrGst, where the first term is placed in degree one.

The second result we record describes families of algebraic relations between suitable
normalisations of the leading terms L˚

U pA,ψ, 1q for varying characters ψ.
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To state this result, we assume the hypotheses of Proposition 4.7(ii) and fix a represen-
tative of SCVL,ppq of the specified form. We then consider the composite isomorphism

ιNT
A,L : RrGst – pR ¨ kerpϕqq ‘ pR ¨ impϕqq

hNT
A,L,˚‘id

ÝÝÝÝÝÝÑ pR ¨ cokpϕqq ‘ pR ¨ impϕqq – RrGst

of RrGs-modules. Here the first and third maps are induced by a choice of RrGs-equivariant
sections to the surjective maps from RrGst to R ¨ impϕq and R ¨ cokpϕq that are respectively
induced by ϕ and by the tautological projection. In addition, hNT

A,L,˚ denotes the composite

R ¨ kerpϕq – R ¨AtpLq – HomR
`

R ¨ApLq,R
˘

– R ¨ cokpϕq,

in which the second isomorophism is induced by the non-degenerate pairing hNT
A,L and the

first and third by Proposition 3.7(ii)(a) and the fixed identifications of kerpϕq and cokpϕq

with H0pSCVLqppq and H1pSCVLqppq.
We write χpLq for the integer obtained as the Euler characteristic in K0pFpq – Z of the

complex RΓpX,Lq˚ of Fp-modules.
For each character ψ in IrpGq, we then normalise the leading term of the associated

Hasse-Weil-Artin L-series by setting

(12) L pA,ψq :“
pψp1qχpLq ¨ L˚

U pA,ψ, 1q

p´1qralgpψqap ¨ detpιNT
A,L,ψq

,

where ιNT
A,L,ψ is the automorphism of HomCrGspVψ,CrGstq induced by ιNT

A,L. We also write

Qpψq for the field generated over Q by the set tψpgq : g P Gu.

Proposition 4.8. Assume the hypotheses of Proposition 4.7(ii) and the validity of Conjec-
ture 4.3(i) and (ii). Then the following claims are valid.

(i) For all ψ in IrpGq and α in GalpQpψq{Qq one has

L pA,ψq P Qpψq and αpL pA,ψqq “ L pA,α ˝ ψq.

In the rest of the result we also assume the validity of the equality in Conjecture 4.3(iii).

(ii) For every abelian subquotient Q “ H{J of G, there is a containment

L pALH ,1Qq P Zˆ

ppq

and, for each γ in Q, a congruence
ÿ

ψPIrpQq
ψpγq´1L pALH , ψq ” 0 pmod |Q| ¨ Zppqq.

(iii) If, for each subgroup H of G, ψH is an irreducible character of the abelianisation Hab

of H and mH an integer such that the virtual character
ř

HďGmH ¨indGHpinfHHabpψHqq

vanishes, then one has
ź

HďG
L pALH , ψHqmH “ 1.

Remark 4.9. By developing methods introduced by the second author in [20], the first two
authors give an explicit description of the Whitehead group K1pZprGsq in [5, Th. 2.1]. In
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the setting of Proposition 4.8, this result has the following explicit consequence. For every
cyclic subgroup C of G, the properties in Proposition 4.8(ii) combine to imply that

L pA,Cq :“ |C|´1
ÿ

cPC

ÿ

ψPIrpCq
ψpcq´1L pALC , ψq ¨ c

belongs to ZppqrCsˆ Ă ZprCsˆ – K1pZprCsq. Fix an embedding j : R Ñ Cp and write j˚ for
the induced embedding K0pZrGs,RrGsq Ñ K0pZprGs,CprGsq of relative K0-groups. Then
[5, Th. 2.1] implies that the validity of the image under j˚ of the equality in Conjecture
4.3(iii) is equivalent (under the hypotheses of Proposition 4.7(ii)) to the validity of the
family of equalities in Proposition 4.8(iii) together with a single explicit congruence relation
between the images of the individual elements L pA,Cq under the respective induction maps
K1pZprCsq Ñ K1pZprGsq.

4.3. The main results. In order to state our main result we must define the finite sub-
group TA,L{K of K0pZrGs,RrGsq that was discussed in the introduction.

If Ξ is a quotient of a subgroup ∆ of a finite group Γ, then we consider the composite
homomorphism of abelian groups

πΓΞ : K0pZprΓs,QprΓsq Ñ K0pZpr∆s,Qpr∆sq Ñ K0pZprΞs,QprΞsq,

where the first map is restriction of scalars and the second is the natural coinflation homo-
morphism.

By the semistable reduction theorem, the set Σ “ ΣA,K of finite Galois extensions of
K over which A is semistable is non-empty. For each field K 1 in Σ we write L1 for the
composite of L and K 1, set G1 :“ GalpL1{Kq and H 1 :“ GalpL1{K 1q, write P 1 for the normal
subgroup of H 1 that is generated by the Sylow p-subgroups of the inertia groups in H 1 of
each place in K 1 and set πK1 :“ πG

1

H 1{P 1 . We then define

(13) TA,L{K :“ K0pZprGs,QprGsqtor X
`

č

K1PΣ1
kerpπK1q

˘

X
`

č

K1PΣ2
πG

1

G pkerpπK1qq
˘

,

where Σ1 denotes the possibly empty subset of Σ comprising fields K 1 that are contained
in L (so that G1 “ G) and Σ2 the possibly empty subset of Σ comprising fields K 1 that are
not contained in L but are such that XpA{L1q is finite.

We recall that K0pZprGs,QprGsqtor is finite and, in all cases, regard TA,L{K as a subgroup
of K0pZrGs,RrGsq via the natural embeddings

K0pZprGs,QprGsqtor Ă K0pZrGs,QrGsq Ă K0pZrGs,RrGsq.

We can now state the main evidence that we shall offer in support of Conjecture 4.3.

Theorem 4.10. If the ℓ-primary component of XpA{Lq is finite for some prime ℓ, then
the following claims are also valid.

(i) Claims (i) and (ii) of Conjecture 4.3 are valid.
(ii) The equality in Conjecture 4.3(iii) is valid modulo the finite subgroup TA,L{K of

K0pZrGs,RrGsq.

Remark 4.11. It is proved by Kato and Trihan in [22] that XpA{Lq is finite if and only if
at least one of its ℓ-primary components is finite. Thus, under the hypotheses of Theorem
4.10, we can (and do) assume, without further comment, that XpA{Lq is finite (and hence
that Conjecture 4.3(ii) is valid).
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Remark 4.12. The main result that we prove here is, in principle, stronger than Theorem
4.10 but is more technical to state (for more details see Remark 9.4 below). One can also
provide further evidence in support of Conjecture 4.3 in the setting of generically ordinary
abelian varieties, and we hope to discuss this elsewhere.

Remark 4.13. Assume G is a p-group, that the groups ApKqrps and AtpKqrps both vanish
and that some ℓ-primary component of XpA{Lq is finite (where ℓ can be different from p).
Then Theorem 4.10 combines with Proposition 4.8 to imply the unconditional validity of
the relations in Proposition 4.8(i).

In special cases it is possible to describe TA,L{K explicitly and hence to make Theorem
4.10(ii) much more concrete.

For example, if the sets Σ1 and Σ2 that occur in (13) are both empty, then TA,L{K is
equal to K0pZprGs,QprGsqtor. On the other hand, if A is semistable over K and L{K is
tamely ramified, then the field K 1 “ K belongs to Σ1 and is such that G “ G1 “ H 1 and P 1

is trivial and so TA,L{K vanishes. Hence, in the latter case, Theorem 4.10 has the following
more explicit consequence.

Corollary 4.14. Assume that A is semistable, that L{K is tamely ramified and that some
ℓ-primary component of XpA{Lq is finite. Then Conjecture 4.3 is unconditionally valid.

As far as we are aware, this result gives the first verification, modulo only the assumed
finiteness of Tate-Shafarevich groups, of a refined version of the Birch-Swinnerton-Dyer
conjecture in the context of ramified extensions.

5. Preliminary results

In this section we first prove a purely algebraic result that is important for several sub-
sequent arguments.

We then verify that the statement of Conjecture 4.3 is consistent in certain key respects
(as promised in Remark 4.4).

Finally we use a result of Schneider to give a reinterpretation of the conjecture that plays
an essential role in the proof of Theorem 4.10.

5.1. A result in K-theory. The following purely algebraic observation will underpin the
proof of several subsequent results.

Proposition 5.1. Let R be a Dedekind domain with field of fractions F and A an R-order
in a finite dimensional semisimple F -algebra A.

We suppose to be given exact triangles in DperfpAq of the form

(14) Cθ Ñ C1
θ
ÝÑ C2 Ñ Cθr1s and Cϕ Ñ C1

ϕ
ÝÑ C2 Ñ Cϕr1s

that satisfy all of the following conditions.

(a) In each degree i there are natural identifications F bRH
ipC1q “ F bRH

ipC2q, with
respect to which one has

(b) the composite tautological homomorphism of A-modules

F bR kerpH ipθqq Ď F bR H
ipC1q “ F bR H

ipC2q Ñ F bR cokpH ipθqq

is bijective, and
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(c) the map H ipϕq induces the identity homomorphism on FbRH
ipC1q “ FbRH

ipC2q.

Then the following claims are valid.

(i) The bijectivity of the maps in (b) combines with the first triangle in (14) to induce a
canonical morphism τθ : DetApF bR Cθq – DetAp0q of (non-abelian) determinants.

(ii) In each degree i the homomorphism H ipθq induces an automorphism H ipθq˛ of any
A-equivariant complement to F bR kerpH ipθqq in F bR H

ipC1q in such a way that
NrdApH ipθq˛q is independent of the choice of complement.

(iii) The complex F bR Cϕ is acyclic.
(iv) In K0pA, Aq one has

χApCθ, τθq ´ χApCϕ, 0q “ BA,F p
ź

iPZ
pH ipθq˛

F qp´1qiq,

where we identify each automorphism H ipθq˛
F with the associated element of K1pAq.

Proof. If M denotes either an R-module or a complex of R-modules, then we abbreviate
F bRM to MF .

To construct a morphism τθ as in claim (i) we note first that the long exact cohomology
sequence of the left hand exact triangle in (14) gives in each degree i a short exact sequence
of A-modules

0 Ñ cokpH i´1pθqq Ñ H ipCθq Ñ kerpH ipθqq Ñ 0.

Then, upon tensoring these exact sequences with F (over R), applying the determinant
functor DetA and then taking account of the isomorphisms given in (b) one obtains isomor-
phisms of (non-abelian) determinants

DetApH ipCθqF q – DetApcokpH i´1pθqqF q ¨ DetApkerpH ipθqqF q(15)

– DetApcokpH i´1pθqqF q ¨ DetApcokpH ipθqqF q.

We then define the morphism τθ in claim (i) to be the composite

DetAppCθqF q –
ź

iPZ
DetApH ipCθqF qp´1qi

–
ź

iPZ
rDetApcokpH i´1pθqqF q ¨ DetApcokpH ipθqqF qsp´1qi

–
ź

iPZ
rDetApcokpH ipθqqF q´1 ¨ DetApcokpH ipθqqF qsp´1qi

–
ź

iPZ
DetAp0qp´1qi

“ DetAp0q.

Here the first map is the canonical ‘passage to cohomology’ map, the second is induced by
the maps (15) in each degree i, the third by the obvious rearrangement of terms and the
fourth from the canonical morphisms

DetApcokpH ipθqqF q´1 ¨ DetApcokpH ipθqqF q – DetAp0q.

Claim (ii) is a straightforward consequence of the condition (b) and claim (iii) follows
directly upon combining the long exact cohomology sequence of the second triangle in (14)
with the condition (c).

Finally, to prove claim (iv) we fix bounded complexes of finitely generated projective
A-modules P1 and P2 that are respectively isomorphic in DpAq to C1 and C2. Then the
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morphisms θ and ϕ are represented by morphisms of complexes of A-modules of the form
θ1 : P1 Ñ P2 and ϕ1 : P1 Ñ P2.

The key to our argument is then to consider the exact triangle

(16) Cθ ‘ Conepϕ1q
pκ,idq
ÝÝÝÑ P1 ‘ Conepϕ1q

pκ1,0q
ÝÝÝÑ Cylpθ1q Ñ pCθ ‘ Conepϕ1qqr1s

in DpAq where κ is the morphism Cθ Ñ P1 induced by the first triangle in (14) and κ1 the
morphism P1 Ñ Cylpθ1q induced by θ1 and the natural quasi-isomorphism Cylpθ1q – P2.

We note first that this triangle satisfies the analogues of conditions (a) and (b) (with
C1, C2 and θ replaced by P1 ‘ Conepϕ1q, Cylpθ1q and pκ1, 0q) and, in addition, that in each
degree i one has pP1 ‘ Conepϕ1qqi “ Cylpθ1qi.

Further, the acyclicity of F bR Cϕ implies that

χApCθ ‘ Conepϕ1q, τθq “ χApCθ, τθq ` χApCϕr1s, 0q “ χApCθ, τθq ´ χApCϕ, 0q,

where the first equality is true because Conepϕ1q is isomorphic to Cϕr1s.
In particular, after replacing the first triangle in (14) by (16), we are reduced to proving

that if C1 and C2 are represented by bounded complexes of finitely generated projective
A-modules P1 and P2 with P i1 “ P i2 in each degree i, then the conditions (a), (b) and (c)
combine to imply an equality

(17) χApCθ, τθq “ δAp
ź

iPZ
NrdApH ipθq˛

F qp´1qiq,

where δA denotes the composite BA,F ˝ pNrdAq´1 : impNrdAq Ñ K0pA, Aq.
To do this we note first that, under these conditions, an easy downward induction on i

(using hypothesis (c)) implies that in each degree i the F -spaces spanned by the groups of
boundaries BipP1q and BipP2q have the same dimension.

If necessary, we can then also change θ by a homotopy (without changing conditions (b))
in order to ensure that, in each degree i, the restriction of θi`1 is injective on BipP1q and
hence induces an isomorphism F bRB

ipP1q – F bRB
ipP2q (for details of such an argument

see, for example, the proof of [8, Lem. 7.10]).
Having made these constructions, one can then simply mimic the argument of [3, Prop.

3.1] in order to prove the required equality (17) by using induction on the number of non-zero
terms in P1. □

5.2. Consistency checks.

Proposition 5.2. If L “ K, then Conjecture 4.3 recovers the classical Birch and Swinnerton-
Dyer conjecture for A.

Proof. We assume XpA{Kq is finite and abbreviate SCVK pA,K{Kq to SCVK .
Now, if L “ K, then G is the trivial group id and K0pZrGs,RrGsq identifies with the

multiplicative group Rˆ{t˘1u. In addition, upon unwinding the definition of Euler charac-
teristic one finds that, with respect to the latter identification, there is an equality

(18) χBSD
id pA, VKq ” discphNT

A,Kq ¨
ź

iPZ
#pH ipSCVK qtorq

p´1qi`1
(mod ˘ 1q

where discphNT
A,Kq denotes the discriminant of the pairing hNT

A,K .
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To compute the above product we write θ for the natural mapApKqtor Ñ
À

vRUApKvq{Vv.

Then, from Propositions 3.2 and 3.7, one finds that there are equalities H0pSCVK q “ AtpKq

and H2pSCVK q “ kerpθq˚ and a short exact sequence of the form

0 Ñ XZpA{Kq Ñ H1pSCVK q Ñ cokpθq˚ Ñ 0.

Upon combining these observations with the natural exact sequences

0 Ñ kerpθq Ñ ApKqtor Ñ
à

vRU
ApKvq{Vv Ñ cokpθq Ñ 0

and
0 Ñ XpA{Kq˚ Ñ XZpA{Kq Ñ HomZpApKq,Zq Ñ 0

one computes that

(19) discphNT
A,Kq ¨

ź

iPZ
#pH ipSCVK qtorq

p´1qi`1
“

#XpA{KqdiscphNT
A,Kq

#ApKqtor#AtpKqtor

ź

vRU
rApKvq : Vvs.

On the other hand, from [22, 3.7.3], one finds that

(20) χcoh
id pVK ,K{Kq ”

#H1pX,Lq

#H0pX,Lq
”

ś

vRU rApKvq : Vvs

volp
ś

vRUApKvqq
(mod ˘ 1q,

where the ‘volume term’ here is as defined in [22, §1.7].
Thus, since χsgn

id pAq is clearly trivial, the expressions (18), (19) and (20) combine to show
the equality in Conjecture 4.3(iii) is equivalent to an equality

L˚
U pA, 1q ” ˘

#XpA{KqdiscphNT
A,Kq

#ApKqtor#AtpKqtor
volp

ź

vRU
ApKvqq.

Since L˚
U pA, 1q is known to be a strictly positive real number (by Proposition 2.2(ii)), this

equality is precisely the form of the Birch and Swinnerton-Dyer Conjecture that is discussed
in [22, §1.8]. □

Proposition 5.3. The validity of Conjecture 4.3(iii) is independent of the choice of the
family of subgroups VL.

Proof. It is clearly enough to show that the difference χBSD
G pA, VLq ´ χcoh

G pA, VLq is inde-
pendent of the choice of VL.

In addition, it suffices to consider replacing VL by a family of subgroups V 1
L “ pV 1

wqwRUL

that satisfies V 1
w Ď Vw for all w R UL.

In this case, the definition of the complexes SCV 1
L

pA,L{Kq and SCVLpA,L{Kq via the

(dual of the) mapping fibre of the respective morphisms (4) leads naturally to an exact
triangle in DperfpZrGsq of the form

SCVLpA,L{Kq Ñ SCV 1
L

pA,L{Kq Ñ Q˚
1r´1s Ñ

with Q1 :“
À

wRUL
pVw{V 1

wq, and hence to an equality in K0pZrGs,RrGsq

(21) χBSD
G pA, VLq ´ χBSD

G pA, V 1
Lq “ χGpQ˚

1r0s, 0q.

On the other hand, if L1
L and LL are the coherent sheaves that correspond (as in §3.5)

to the collections V 1
L and VL respectively, then there is a natural short exact sequence

0 Ñ L1 Ñ L Ñ Q2 Ñ 0
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with Q2 :“
À

wRUL
Ww{W 1

w. This sequence gives rise to an exact triangle in DperfpFprGsq

of the form
RΓpX,LLq˚ Ñ RΓpX,L1

Lq˚ Ñ Q˚
2r1s Ñ

and hence to an equality

(22) χcoh
G pA, VLq ´ χcoh

G pA, V 1
Lq “ χZprGspQ

˚
2r0s, 0q.

Now, given the explicit construction of the groups Vw and V 1
w from Ww and W 1

w, it
is straightforward to show that, for both i “ 1 and i “ 2 there exists a (finite length)
decreasing filtration pQi,jqjě0 of the finite ZprGs-module Qi such that each module Qi,j
is c-t for G and the graded modules grpQiq :“

À

jě0pQi,j{Qi,j`1q are both c-t for G and
mutually isomorphic. This fact in turn implies that

χZprGspQ
˚
1r0s, 0q “ ι#ZprGs

`

χZprGspQ1r0s, 0q
˘

“ ι#ZprGs

`

χZprGspgrpQ1qr0s, 0q
˘

“ ι#ZprGs

`

χZprGspgrpQ2qr0s, 0q
˘

“ ι#ZprGs

`

χZprGspQ2r0s, 0q
˘

“ χZprGspQ
˚
2r0s, 0q

where the first and last equalities follow from the general result (9) and the second and
fourth from a standard dévissage argument. These equalities then combine with (21) and
(22) to imply the required result. □

Proposition 5.4. The validity of Conjecture 4.3(iii) is independent of the choice of U .

Proof. It suffices to fix v0 in U and consider the effect of replacing U by the set U 1 :“ Uztv0u.
We fix a family VL “ pV 1

wqwRU 1
L
of subgroups as in Lemma 3.4 and assume, following

Remark 3.6, that for each place w above v0 one has V 1
w “ Apmwq. We also write V :

L for the
associated family pV 1

wqwRUL
.

Then, setting Ev0 :“ L˚
U pAL{K , 1q ¨ L˚

U 1pAL{K , 1q´1, it is enough for us to prove that

(23) BG,RpEv0q “ pχBSD
G pA, V :

Lq ´ χBSD
G pA, VLqq ´ pχcoh

G pA, V :

Lq ´ χcoh
G pA, VLqq

in K0pZrGs,RrGsq. In addition, Ev0 belongs to the subgroup K1pQrGsq of K1pRrGsq and
we claim that NrdQrGspEv0q is equal to the evaluation at u “ 1 of the expression

NrdQℓrGs

`

1 ´ udegpv0qφdegpv0q
p :

`

QℓrGs bZℓ
TℓpAq

˘_˘

“ NrdQprGs

`

1 ´ udegpv0qφdegpv0q :
`

QprGs bQp H
0
cryspkpv0q{Zp, Dv0q

˘_˘

.

Here ℓ is any choice of prime different from p and φp is the geometric p-th power Frobenius
map on TℓpAq, the endomorphism φ is such that pφ is induced by the crystalline Frobenius
on the fibre Dv0 at v0 of the covariant Dieudonné crystal D and the above displayed equa-
tion follows from the result [24, Th. 1] of Katz and Messing. To verify this claim about
NrdQrGspEv0q it is enough to fix an arbitrary χ P IrpGq, with a corresponding realisation Vχ
over Qc

ℓ with ℓ ‰ p, and then note that

eχ
`

NrdQrGspEv0q
˘

“ det
`

1 ´ φdegpv0q
p : Vχ bZℓ

TℓpAq
˘

“ det
`

1 ´ φdegpv0q
p : HomQc

ℓrGspVχ̌,Qc
ℓrGs bZℓ

TℓpAqq
˘

“ eχ̌
`

NrdQℓrGs

`

1 ´ φdegpv0q
p : QℓrGs bZℓ

TℓpAq
˘

“ eχ
`

NrdQℓrGs

`

1 ´ φdegpv0q
p : pQℓrGs bZℓ

TℓpAqq_
˘

.
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Here the second equality follows from Remark 2.3 and all others are clear.
In addition, our assumption that V 1

w “ Apmwq for places w above v0 implies there are
exact triangles in DperfpZrGsq of the form

#

SC
V :

L
pA,L{Kq Ñ SCVLpA,L{Kq Ñ

À

w|v0
Apkpwqq˚r´1s Ñ

RΓpX,L:

Lq˚ Ñ RΓpX,LLq˚ Ñ
À

w|v0
LiepAqpkpwqq˚r´1s Ñ .

These triangles in turn imply that there are equalities in K0pZrGs,QrGsq
#

χBSD
G pA, V :

Lq ´ χBSD
G pA, VLq “ ´χGp

À

w|v0
Apkpwqq˚r´1s, 0q

χcoh
G pA, V :

Lq ´ χcoh
G pA, VLq “ ´χZprGsp

À

w|v0
LiepAqpkpwqq˚r´1s, 0q.

To prove the required equality (23) it is thus enough to show

(24) δG,ℓpNrdQℓrGsp1´φdegpv0q
p :

`

QℓrGs bZℓ
TℓpAq

˘_
qq“χZℓrGsp

à

w|v0
Apkpwqqtℓu˚r´1s, 0q

for every prime ℓ ­“ p, and also that

(25) δG,ppNrdQprGsp1 ´ pp´1φqdegpv0q :
`

QprGs bQp H
0
cryspkpv0q, Dq

˘_
qq

“ χZprGsp
à

w|v0
Apkpwqqtpu˚r´1s, 0q ´ χZprGsp

à

w|v0
LiepAqpkpwqq˚r´1s, 0q.

Here, for each prime q, we write δG,q for the composite homomorphism

BZqrGs,Qq
˝ pNrdQqrGsq

´1 : ζpQqrGsqˆ Ñ K0pZqrGs,QqrGsq.

Now, if ℓ ‰ p, then the complex RΓpkpv0q, TℓpAq b ZrGsq –
À

w|v0
RΓpkpwq, TℓpAqq is

acyclic outside degree one and has cohomology
À

w|v0
Apkpwqqtℓu in that degree. This gives

rise to a short exact sequence of ZℓrGs-modules

0 Ñ HomZℓ
pTℓpAq,ZℓrGsq

1´φ
degpv0q
p

ÝÝÝÝÝÝÝÑ HomZℓ
pTℓpAq,ZℓrGsq Ñ

à

w|v0
Apkpwqq˚tℓu Ñ 0,

which leads directly to the equality (24).
We next note that, by Kato-Trihan [22, 5.14.6], for each w dividing v0 the complex

Apkpwqqtpur´1s identifies with RΓpkpwq,SDwq, where SDw is the syntomic complex over
kpwq (obtained as a fiber of the syntomic complex over U), and hence that there is an exact
triangle in DperfpZprGsq of the form

à

w|v0
Apkpwqqtpur´1s Ñ ZprGs bZp RΓcryspkpv0q{Zp, D0

v0q

1´φdegpv0q

ÝÝÝÝÝÝÝÑ ZprGs bZp RΓcryspkpv0q{Zp, Dv0q Ñ .

There is also a natural exact triangle in DperfpZprGsq

à

w|v0
LiepAqpkpwqqr´1s Ñ ZprGs bZp RΓcryspkpv0q{Zp, D0

v0q

1
ÝÑ ZprGs bZp RΓcryspkpv0q{Zp, Dv0q Ñ .

The required equality (25) now follows directly upon applying Proposition 5.1 with R “

ZprGs and the triangles in (14) taken to be the images of the above two triangles under

the exact linear duality functor RHomZpp´,Zpq on DperfpZprGsq. (These triangles are
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easily seen to satisfy the hypotheses of Proposition 5.1 since the modules Apkpwqqtpu and
LiepAqpkpwqq are both finite.) □

Remark 5.5. The results of Propositions 5.3 and 5.4 will play a key role in later arguments.
In Proposition 9.2 below we will also establish a further consistency property of Conjecture
4.3 with respect to changes of field extension L{K.

5.3. A reformulation. In this section we establish a useful reformulation of the equality
in Conjecture 4.3(iii).

In [31, p. 509] Schneider shows that the pairing hNT
A,L can be factored in the form

(26) hNT
A,L “ logppq ¨ hA,L

for a certain non-degenerate skew-symmetric bilinear form hA,L : ApLq ˆAtpLq Ñ Q.
We write

hdetA,L : DetQrGspQ bZ SCVLpA,L{Kqq – DetQrGsp0q.

for the isomorphism induced by hA.L and then define an element of K0pZrGs,QrGsq by
setting

χBSD
G,Q pA, VLq :“ χGpSCVLpA,L{Kq, hdetA,Lq.

For each χ in IrpGq we define a function of the t :“ p´s by setting

ZU pA,χ, tq :“ LU pA,χ, sq

and normalise its leading term at t “ p´1 as follows

(27) Z˚
U pA,χ, p´1q :“ lim

tÑp´1
p1 ´ ptq´ranpχq ¨ ZU pA,χ, tq.

Proposition 5.6. The following claims are valid.

(i) There exists a unique element Z˚
U pAL{K , p

´1q of K1pQrGsq with the property that

NrdQrGspZ
˚
U pAL{K , p

´1qqχ “ Z˚
U pA,χ, p´1q for all χ in IrpGq.

(ii) If claims (i) and (ii) of Conjecture 4.3 are valid, then the equality in claim (iii) of
Conjecture 4.3 is valid if and only if in K0pZrGs,QrGsq one has

BGpZ˚
U pAL{K , p

´1qq “ χBSD
G,Q pA, VLq ´ χcoh

G pA, VLq ` χsgn
G pAq.

Proof. The argument of Proposition 2.2 implies, via the equalities (1) and (2), that one
has ωpZ˚

U pA,χ, q´1qq “ Z˚
U pA,ω ˝ χ, q´1q for all χ in IrpGq and all automorphisms ω of

C, and hence that the element pZ˚
U pA,χ, p´1qqχ of ζpCrGsqˆ “

ś

χPIrpGqCˆ belongs to the

subgroup ζpQrGsqˆ.
Given this, claim (i) follows from the Hasse-Schilling-Maass Norm Theorem and the fact

the same proof also shows Z˚
U pA,χ, p´1q is a strictly positive real number for χ in IrspGq.

To prove claim (ii) we set rχ :“ ranpχq and r1
χ :“ ralgpχq. Then the order of vanishing of

ZU pA,χ, tq at t “ p´1 is equal to rχ and hence, since the leading term of p1 ´ p1´sqrχ at
s “ 1 is equal to plogppqqrχ , it follows that

Z˚
U pA,χ, p´1q “ plogppqq´rχ ¨ L˚

U pA,χ, 1q.

Thus, writing εL{K for the unique element of K1pRrGsq with

NrdRrGspεL{Kqχ “ plogppqq´rχ
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for all χ in IrpGq, one has

Z˚
U pAL{K , p

´1q “ εL{K ¨ L˚
U pAL{K , 1q.

On the other hand, the equality (26) implies that

χBSD
G,Q pA, VLq “ χBSD

G pA, VLq ` BGpε1
L{Kq

where ε1
L{K is the element of K1pRrGsq that is represented by the automorphism of the

RrGs-module R bZ H
0pSCVLpA,L{Kqq “ R bZ A

tpLq given by multiplication by logppq´1.
Given the last two displayed formulas, the claimed equivalence will follow if one can show

that the assumed validity of Conjecture 4.3(i) implies ε1
L{K “ εL{K . But this is true since,

for every χ in IrpGq, one has

NrdRrGspε
1
L{Kqχ “detC

`

logppq´1 | HomCrGspVχ,C bZ A
tpLqq

˘

“ plogppqq´r1
χ

“ plogppqq´rχ

“NrdRrGspεL{Kqχ.

Here the first equality follows directly from an explicit computation of reduced norm, the
second from the fact r1

χ is (by its definition) equal to dimC
`

HomCrGspVχ,C bZ A
tpLqq

˘

, the

third from the assumption that Conjecture 4.3(i) is valid (and hence r1
χ “ rχ) and the last

directly from the explicit definition of εL{K given above. □

6. Syntomic cohomology

In this section we recall relevant facts concerning the complexes of syntomic cohomology
with compact supports that are constructed by Kato and Trihan in [22].

At the outset we fix a finite Galois extension K 1 of K over which AbK K 1 is semistable
at all places, write L1 for the compositum of L and K 1 and set G1 :“ GalpL1{Kq. Taking
advantage of Proposition 5.4 we shrink U (if necessary) in order to assume that no point
on U ramifies in L1{K.

We also fix a Galois extension of fields F 1{F with

K 1 Ď F Ď F 1 Ď L1

and set Q :“ GalpF 1{F q. (Whilst the use of this auxiliary extension F 1{F adds a degree
of notational complexity to the results in this section, it provides results that we can then
directly apply in the proof of Theorem 4.10 given in §9.)

Then, with N denoting either F 1 or F we set AN :“ AbK N and write XN and UN for
the integral closures of X and U in N and AN{XN for the Néron model of AN over N .

Let πN : XN Ñ X denote the natural map. Let X7

F 1 be the log scheme with underlying
scheme XF 1 equipped with the log structure associated to the divisor XF 1 ´ UF 1 , and we
abbreviate to OxNy the structure sheaf OpXN q7{Zp

for the small étale log crystalline topos

ppXN q7{Zpqcrys.
Since A is semistable over N , the construction in [22, §4.8] gives a Dieudonné crystal

(28) DN :“ DlogpAN q
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on ppXN q7{Zpqcrys. We then write D0
N for the kernel of the surjective morphism of sheaves

DN Ñ ipXN q7{Zp,˚pLiepDN qq in ppXN q7{Zpqcrys described at the beginning of [22, §5.5].
We fix a GalpL1{Kq-equivariant OX -submodule LL1 of πL1,˚LiepDL1q that is associated

to pW 1
wqwRUL1 following §3.5, and set LF 1 :“ pLL1qGalpL1{F 1q, which is a Q-equivariant OX -

submodule of πF 1,˚LiepDF 1q. For simplicity, we write

(29) L1 :“ LF 1 .

(In the intended setting, we will assume that LL1 , and hence L1, satisfies the conclusion
of Lemma 3.9. As noted in Remark 3.5, it may not be possible to arrange L1 to be the
pushforward of a vector bundle on XF 1 or XF .)

We furthermore assume that for some positive integers npwq for each place w of XF 1 not
in UF 1 , we have

LiepDF 1qpm2npwq
w q Ă W 1

w Ă LiepDF 1qpmnpwqq.

(This can be arranged by shrinking W 1
w if necessary.) We set

E :“
ÿ

wRUF 1
npwqw,

which turns out to be a Q-stable divisor of XF 1 since npwq “ npw1q if w and w1 are above
the same place in XF by construction. Then by the condition on pW 1

wqw we have

πF 1,˚LiepDF 1qqp´2Eq Ă L1 Ă πF 1,˚LiepDF 1qqp´Eq.

Let us write OxF 1yp´Eq for the crystal on ppXF 1q7{Zpqcrys that is obtained as the twist of
OxF 1y by ´E and then set Dp´EqF 1 :“ DF 1 bOxF 1y

OxF 1yp´Eq.

By [22, 5.5.2], we have a distinguished triangle of Q-equivariant (small) étale sheaves on
XF 1 :

Ru1
˚Dp´Eq

p0q

F 1 Ñ Ru1
˚Dp´EqF 1 Ñ LiepDF 1qp´Eq Ñ,

where u1 : ppXF 1q7{Zpqcrys Ñ XF 1,ét is the natural morphism of topoi.
Now, we would like to modify Ru1

˚Dp´EqF 1 using the Q-equivariant OX -submodule L1

of πF 1,˚LiepDF 1qp´Eq, and for this to make sense we need to apply the pushforward πF 1,˚

to the above distinguished triangle. To alleviate the notation, let us write

RuF 1{K :“ πF 1,˚Ru
1
˚

sending a crystalline sheaf of OxF 1y-modules to a complex of étale sheaves on X (viewed in
a suitable derived category).

We can now define a complex RuF 1{KDp´Eq
pL1q

F 1 viewed in the derived category of Q-
equivariant étale sheaves on X so that it fits in the following distinguished triangle

RuF 1{KDp´Eq
pL1q

F 1 Ñ RuF 1{KDp´EqF 1 Ñ πF 1,˚LiepDF 1qp´Eq{L1 Ñ .

(For technical reasons, we directly define RuF 1{KDp´Eq
pL1q

F 1 via the distinguished trian-

gle above without defining the crystalline subsheaf Dp´Eq
pL1q

F 1 of Dp´EqF . Note that

Dp´Eq
pL1q

F 1 can be defined if L1 is the pushforward of a vector bundle on XF 1 , in which

case the above construction recovers RuF 1{KpDp´Eq
pL1q

F 1 q; cf. [22, §5.12].)
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Following [22, §5.12] there are canonical morphisms of complexes of étale sheaves on X

RuF 1{KDp´Eq
p0q

F 1

1
ÝÑ RuF 1{KDp´Eq

pL1q

F 1 and RuF 1{KDp´Eq
p0q

F 1

φ
ÝÑ RuF 1{KDp´Eq

pL1q

F 1 ,

(In fact, since all the above objects can be explicitly represented by choosing good embeddings
locally, the argument in [22, §5.12] can be directly applied to these complexes of étale sheaves
instead of crystalline sheaves on ppXF 1q7{Zpqcrys.

They then define the syntomic complex with compact supports S
D

pE,L1q

F 1

to be the mapping

fibre of the morphism

(30) RuF 1{KDp´Eq
p0q

F 1

1´φ
ÝÝÝÑ RuF 1{KDp´Eq

pL1q

F 1 ,

which is an object in the derived category of Q-equivariant étale Zp-sheaves on X.
If furthermore F 1{M is Galois for some intermediate fieldM of F {K, then by choosing E

to be GalpF 1{Mq-stable we may give a natural GalpF 1{Mq-action on RuF 1{KDp´Eq
p0q

F 1 ,

RuF 1{KDp´Eq
pL1q

F 1 , and S
D

pE,L1q

F 1

. Recall that L1 “ pLL1qGalpL1{F 1q for some GalpL1{Kq-

equivariant O-submodule of πL1,˚LiepDL1q, so the Q-action on L1 naturally extends to the
action of GalpF 1{Mq.

If we have L1 “ πF 1,˚
rL1 for some Q-equivariant OXF 1 -submodule rL1 of LiepAF 1q, then the

above constructions can be carried out over X 1 as in [22, §5.12]. To explain, we can define

an OxF 1y-submodule Dp´Eq
p rL1q

F 1 of Dp´EqF 1 , and define rS
D

pE, rL1q

F 1

to be the mapping fibre of

(31) Ru1
˚Dp´Eq

p0q

F 1

1´φ
ÝÝÝÑ Ru1

˚Dp´Eq
p rL1q

F 1 .

(See loc. cit. for details.) Furthermore, we have aQ-equivariant quasi-isomorphism S
D

pE,L1q

F 1

“

πF 1,˚
rS
D

pE, rL1q

F 1

. On the other hand, in the presence of wild ramification it seems difficult to find

L1 coming from a Q-equivariant OXF 1 -submodule that satisfies the conclusion of Lemma 3.9.

Lemma 6.1. Let E, L1 and pW 1
wqwRUF 1 be as above, and write E “

ř

wRUF 1
npwqw. For each

w R UF 1 write V 1
w for the unique subgroup of AF 1pOwq with AF 1pm

2npwq
w q Ă V 1

w Ă AF 1pm
npwq
w q

and whose image in AF 1pm
npwq
w q{AF 1pm

2npwq
w q – LiepAF 1qpm

npwq
w q{LiepAF 1pm

2npwq
w qq coin-

cides with the image of W 1
w. Write V 1

F 1 for the family pV 1
wqw.

Then there are natural isomorphisms in DpZprQsq of the form

(32) RΓpX,S
D

pE,L1q

F 1

bL Qp{Zpq – RΓar,V 1
F 1

pUF 1 ,Atorqp.

In addition, ifM is any intermediate field of F {K over which F 1 is Galois and E is chosen to
be GalpF 1{Mq-equivariant, then the above isomorphism is well-defined in DpZprGalpF 1{Mqsq.

This lemma is a generalisation of [22, Prop. 5.13] in that the isomorphism (32) is proven
to be Galois equivariant and L1 is not required to come from a vector bundle over XF 1 .

Proof. Using the definition of RΓar,VF 1 pUF 1 ,Atorqp (4) and [36, Th. 1.1], one can reduce the
isomorphism (32) to the following local statement: For any v P XzU , we have a natural
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isomorphism

(33) RΓpSpecOv,SDpE,L1q

F 1

q –
ź

w|v
V 1
wr´1s

equivariant for the Q-action (respectively, for the GalpF 1{Mq-action if F 1{M is Galois for
some intermediate extension M of F {K).

Note that this local claim is a slight generalisation of [22, Lem. 5.14] in that the isomor-
phism (33) is required to be Galois equivariant andW 1

w is not required to be an Ow-module.
It remains to verify the local claim. Observe that for fixed D the restriction of S

D
pE,L1q

F 1

to SpecOv only depends on npwq and W 1
w for w|v, and npwq is independent of w|v. So let

us write

Sn,pW
1
wq

D,v :“ S
D

pE,L1q

F 1

ˇ

ˇ

ˇ

ˇ

SpecOv

where n “ npwq for any w|v. To simplify the notation, for any positive integer n we write

W pnq1
w :“ LiepAF 1qpmn

wq.

Note that the choice pW
pnpwqq1
w qwRUF 1 corresponds to πF 1,˚LiepAF 1qp´Eq, which contains L1.

Let us first show that the local claim (33) is implied by the special case for W 1
w “ W

pnq1
w .

For this, we construct a distinguished triangle in the suitable derived category of equivariant
étale Zp-sheaves on SpecOv

(34) Sn,pW
1
wq

D,v
//Sn,pW

pnq1
v q

D,v
//
ś

w|vpW
pnq1
w {W 1

wqr´1s // .

Indeed, this can be obtained from the following commutative diagram where each row is a
distinguished triangle

Sn,pW
1
wq

D,v
//

��

RuF 1{KDp´Eqp0q|Ov

1´φ
//

“

��

RuF 1{KDp´EqpL1q|Ov

��

//

Sn,pW
pnq1
w q

D,v
// RuF 1{KDp´Eqp0q|Ov

1´φ
// RuF 1{KDp´Eq|Ov

// ,

together with the fact that the mapping cone of the rightmost vertical arrow is isomorphic

to W
pnq1
w {W 1

w.

Let pAF 1pmn
v q Ă AF 1pOwq denote the kernel of reduction modulo mn

w. Then by (34) and
the natural isomorphism

(35) W pnq1
w {W pn`1q1

w – pAF 1pmn
v q{ pAF 1pmn`1

v q,

the general case of the local claim is reduced to obtaining the Galois equivariant isomorphism

(33) when W 1
w “ W

pnpwqq1
w and V 1

w “ pAF 1pm
npwq
v q.

We have thus reduced the proof of the lemma to the case when L1 “ πF 1,˚LiepAF 1qp´Eq.
We will proceed by induction, for which it is convenient to allow L1 “ πF 1,˚LiepAF 1qp´E1q

where E1 is aQ-equivariant divisor such that E1´E and 2E´E1 are either effective or trivial.

Since L1 is the the pushforward of a Q-equivariant OXF 1 -module rL1 :“ LiepAF 1qp´E1q, we
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also have a ‘syntomic complex’ rS
D

pE, rL1

F 1 q
over XF 1 , constructed as the mapping fibre of the

map (31). For any w P XF 1zUF 1 , let us write

rSn,W
pmq1

D,w :“ rS
D

pE, rL1q

F 1

ˇ

ˇ

ˇ

ˇ

SpecOw

,

where n “ npwq and m are the coefficients of w in E and E1, respectively. As we have

S
D

pE,L1q

F 1

“ πF 1,˚
rS
D

pE, rL1q

F 1

the left hand side of (33) also decomposes in terms of rSn,W
pmq1

D,w .

Therefore, to complete the proof, it suffices to show that for any positive integer n and
w P XF 1zUF 1 we have a natural isomorphism

(36) RΓpSpecOw, rSn,W
pnq1

D,w q – pApmn
wq

equivariant for the Qw-action (respectively, for the GalpF 1
w{Mvq-action where v is the place

under w if F 1{M is Galois for some intermediate extension M of F {K).
Let us prove (36) by induction on n. If n “ 1 then the isomorphism (36) can be deduced

by inspecting the distinguished triangle (4) using Theorems 1.1 and 1.2 in [36], where the
Galois equivariance follows since the comparison maps in loc. cit. are constructed naturally.
Although the results were obtained only for p ą 2 in loc. cit., there is an alternative proof
that works for any p via the prismatic Dieudonné theory [1]. To give further details, [36,
Th. 1.2] holds for p “ 2 if [36, Th. 1.1] does, and (the projective limit of) [36, Th. 1.1]
can be deduced from [1, Prop. 4.83 and Rem. 4.85] if we show that the prismatic and
crystalline constructions of the syntomic complex in [1] and [36] coincide. For this we may
(and do) pass to some complete intersection semiperfect ring by p-power root extraction
to represent the two syntomic complexes by explicit two-term complexes of modules, and
the desired isomorphism follows from the comparison between crystalline and prismatic
Dieudonné theory over quasisyntomic bases in characteristic p [1, Th. 4.44] as well as the
comparison of the Hodge and Nygaard filtrations. (The Nygaard filtration for prismatic
Dieudonné crystals is defined at the beginning of [1, §4.8], and the claimed compatibility
with filtrations can be read off from the proof of [1, Th. 4.44] using [1, Lem. 4.40 and

Lem. 4.43]. Note also that in [1, Rem. 4.85] we have ξ̃ “ p for characteristic p base rings,
so the comparison in [1, Th. 4.44] is compatible with the divided Frobenius maps.)

Assume that we have a natural isomorphism (36) for n, and we shall deduce (36) for

n` 1. By (34) applied to W 1
w “ W

pn`1q1
w , we get

(37) rSn,W
pn`1q1

D,w
// rSn,W

pnq1

D,w
//LiepAF 1q b pmn

w{mn`1
w qr´1s // .

We now claim that the map

(38) rSn`1,W
pn`1q1
w

D,w
„
ÝÑ rSn,W

pn`1q1
w

D,w ,

induced by the natural map Dp´pn ` 1qwq Ñ Dp´nwq, is an isomorphism. To verify
this assertion we may ignore the Galois action, which enables us to represent the syntomic
complexes explicitly following [22, 5.14.1].

Let S7 be SpecOw equipped with the divisorial log structure for the closed point. Choose
an isomorphism Ow – kwrrT ss, and write P 7 to be SpecW pkwqrrT ss equipped with the
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divisorial log structure given by the ideal pT q. Then the natural closed immersion S7 ãÑ P 7

is a good embedding in the sense of [22, § 5.6]. Let σ be the lift of Frobenius on O
pP

“

W pkwqrrT ss given by σpT q :“ T p.

For any integers n,m with 0 ă n ď m ă 2n, we can represent rSn,W
pmq1
w

D,w as the total
complex of the following double complex

TnD
p0q

pS7,P 7q

1´p´1 Fr1
//

��

TmDpS7,P 7q ` TnD
p0q

pS7,P 7q

��

O
pP
dt
t b TnDpS7,P 7q

1´p´1σbFr1
// O

pP
dt
t b TnDpS7,P 7q

.

This shows that the mapping cone of (38) is quasi-isomorphic to the the total complex of
the following double complex

TnD
p0q

pS7,P 7q

Tn`1D
p0q

pS7,P 7q

1´p´1 Fr1
//

��

Tn`1D
pS7,P 7q

`TnD
p0q

pS7,P 7q

Tn`1D
pS7,P 7q

��

O
pP
dt
t b

TnD
pS7,P 7q

Tn`1D
pS7,P 7q

1´p´1σbFr1
// O

pP
dt
t b

TnD
pS7,P 7q

Tn`1D
pS7,P 7q

.

It suffices to show that both horizontal maps are isomorphisms. Indeed, since p´1 Fr1

takes TnD
p0q

pS7,P 7q
into TnpDpS7,P 7q, the top horizontal map coincides with the map induced

by the natural inclusion 1, which is an isomorphism since Tn`1D
p0q

pS7,P 7q
“ Tn`1DpS7,P 7q X

TnD
p0q

pS7,P 7q
. Similarly, the bottom horizontal map coincides with the identity map.

Now combining (35), (37) and (38), we verify the desired equivariant isomorphism (36),
which the lemma was reduced to. □

Recalling that Q “ GalpF 1{F q, we now define objects in DpZprQsq, respectively in
DpZprGalpF 1{Kqsq if F 1{K is Galois, by setting

IF 1 :“ RΓpX,RuF 1{KDp´Eq
p0q

F 1 bL Qp{Zpq˚r´2s

and
PF 1 :“ RΓpX,RuF 1{KDp´Eq

pL1q

F 1 bL Qp{Zpq˚r´2s,

where L1 is as defined in (29). The following result describes the connection between these
objects and the constructions made in earlier sections.

Lemma 6.2. Let E, VF 1 and M be as in Lemma 6.1. Then there are canonical exact
triangles in D´pZprGalpF 1{Mqsq of the form

(39) PF 1
1´φ
ÝÝÝÑ IF 1

θ
ÝÑ RΓar,VF 1 pUF 1 ,Atorq

˚
pr´2s

θ1

ÝÑ PF 1r1s

and

(40) PF 1
1
ÝÑ IF 1 Ñ RΓpX,L1q˚r´2s Ñ PF 1r1s.
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Proof. By the result of Lemma 6.1, the triangle (39) is obtained by applying the exact
composite functor RΓpX,´ bL Qp{Zpq to the exact triangle (of complexes of sheaves) that
results from the definition of S

D
pE,Lq

F 1

as the mapping fibre of (30).

The exact triangle (40) results in a similar way by using the canonical exact triangle

L1 //RuF 1{KDp´Eq
p0q

F 1 bL Qp{Zp
1 //RuF 1{KDp´Eq

pL1q

F 1 bL Qp{Zp //

described by Kato and Trihan in [22, §6.7]. □

The complexes IF 1 and PF 1 are not known, in general, to belong to DperfpZprGalpF 1{F qsq

and hence, for our purposes, we must adapt the triangles (39) and (40), as per the following
result.

Proposition 6.3. Let M be any extension of K over which F 1 is Galois. Set J :“
GalpF 1{Mq, and let N be an order in QprJs that contains ZprJs and is such that the complex
τě´1pN bL

ZprJs
IF 1q can be represented by a bounded complex of projective N-modules.

Then the triangles (39) and (40) induce exact triangles in DperfpNq of the form

τě´1pN bL
ZprJs PF 1q

1´φ
ÝÝÝÑ τě´1pN bL

ZprJs IF 1q Ñ N bL
ZprJs RΓar,VF 1 pUF 1 ,Atorq

˚
pr´2s Ñ

and

τě´1pN bL
ZprJs PF 1q

1
ÝÑ τě´1pN bL

ZprJs IF 1q Ñ N bL
ZprJs RΓpX,L1q˚r´2s Ñ .

Proof. The results of Proposition 3.7(i) and Lemma 3.9 imply that both of the complexes
C1 :“ RΓar,VF 1 pUF 1 ,Atorq

˚
pr´2s and C2 :“ RΓpX,L1q˚r´2s belong to DperfpZprJsq and are

acyclic outside degrees 0 and 1 and 2.
In addition, a finitely generated, torsion-free, ZprJs-module of finite projective dimension

is itself projective (by [2, Th. 8]). By a standard resolution argument (as in the proof of
Lemma 3.8(iii)), it therefore follows that the complexes C1 and C2 are both represented
by complexes of finitely generated projective ZprJs-modules, all terms of which are zero in
every degree less than ´1 and every degree greater than 2.

This in turn implies that N bL
ZprJs

C1 and N bL
ZprJs

C2 belong to DperfpNq and are both

acyclic in all degrees less than ´1.
Given this last fact, one obtains exact triangles in D´pNq of the stated form by simply

applying the exact functor N bL
ZprJs

´ to the triangles (39) and (40).

To prove that these respective triangles belong to DperfpNq (rather than just D´pNq) it
is then enough, since N bL

ZprJs
C1 and N bL

ZprJs
C2 both belong to DperfpNq, to prove that

the complex C :“ τě´1pN bL
ZprJs

IF 1q also belongs to DperfpNq.

To do this we note that, by assumption, C is represented by a bounded complex of
projective N-modules and, by [22, Prop. 5.15(i)], all cohomology groups of C are finitely
generated over N. Taken together, these facts combine with a standard construction of
resolutions to imply C belongs to DperfpNq, as required. □

Since τě´1pN bL
ZprJs

IF 1q is acyclic outside finitely many degrees the stated condition in

Proposition 6.3 is automatically satisfied if the order N is hereditary (and hence, by [11,
Th. (26.12)], if it is a maximal order).
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With Theorem 4.10 in mind, in the next section we will show that, under suitable con-
ditions on AM and F 1{M the condition in Proposition 6.3 can also be satisfied by orders
that are not maximal.

Then, in §8, we shall study in greater detail the long exact cohomology sequences of the
exact triangles in Proposition 6.3.

7. Crystalline cohomology and tame ramification

We continue to use the general notation of §6. We also assume that the extension F 1{F is
tamely ramified and write π : XF 1 Ñ XF for the corresponding cover of smooth projective

curves. We fix a log structure on XF 1 associated to the divisor XF 1 ´ UF 1 , write X7

F 1 for

the associated log scheme and note that the natural map π7 : X7

F 1 Ñ X7

F is Kummer-étale
(in the sense of [29, Def. 2.13]).

We write u : pX7

F {Zpqcrys Ñ XF,ét and u1 : pX7

F 1{Zpqcrys Ñ pXF 1qét for the natural
morphism of topoi.

In this section we shall construct certain complexes of Q-equivariant étale Zp-modules

that represent Ru˚Dp´EF qp0q and Ru1
˚Dp´Eq

p0q

F 1 , where E is the pull back of a suitable
divisor EF of XF supported exactly at XF zUF . This construction will play an important
role in the proof of Theorem 4.10.

7.1. Digression on log de Rham complexes. The main result of this section is the
following general observation concerning crystalline sheaves.

Proposition 7.1. Let E be a locally free crystal of OxF y-modules (with OxF y :“ O
X7

F {Zp
).

(i) There exists a bounded below complex Cpπ7,˚Eq of torsion free ZprQs-modules that
has both of the following properties.
(a) Each term of Cpπ7,˚Eq is an induced ZprQs-modules; in other words, in each

degree i there is an isomorphism ZprQs-modules

Cipπ7,˚Eq – IndQ
teu

pCipπ7,˚EqQq,

where e denotes the identity element of Q.
(b) For each normal subgroup J of Q there is an isomorphism in DpZprQ{Jsq

HomZprJspZp, Cpπ7,˚Eqq – RΓcryspX
7

F 1J {Zp, π7,˚
J Eq,

where π7

J : X7

F 1J Ñ X7

F is the natural projection.
(ii) If there is a short exact sequence of sheaves

0 Ñ E0 Ñ E Ñ i
X7

F {Zp,˚
F Ñ 0

for a vector bundle F on XF , then claim (i) is also true with E replaced by E0.

7.1.1. As preparation for the proof of this result we start with the following technical result.

Lemma 7.2. There exists a formal scheme X7

F over Zp that is a smooth lift of X7

F . Further-

more, for any finite Kummer-étale covering X7

F 1 Ñ X7

F , there exists a finite Kummer-étale

covering π̃7 : X7

F 1 Ñ X7

F that lifts π7 : X7

F 1 Ñ X7

F .
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Proof. This lemma is obtained from the infinitesimal deformation theory for smooth log

schemes (cf. [21, Prop. 3.14]). More precisely, if X7

F,n is a (flat) lift of XF over Zp{pn, then
it is easy to see that X7

F,n is log smooth over Zp{pn (where Zp{pn is given the trivial log

structure). To see this, one applies Kato’s criterion [21, Th. 3.5]. By [21, Prop. 3.14(4)],

the obstruction class for lifting X7

F,n over Zp{pn`1 lies in H2pXF , ω
_

X7

F

q “ 0, where ω
X7

F
is

the sheaf of differentials with log poles at XF ´ UF . We write X7

F for the natural inverse

limit lim
ÐÝn

X7

F,n.
Since the sheaf of relative log differentials ω

X7

F 1 {X7 is trivial, it follows that the finite

Kummer-étale covering π7 : X7

F 1 Ñ X7

F canonically lifts to π̃7 : X7

F 1,n Ñ X7

F,n (cf. [21,

Prop. 3.14]). This produces the desired finite Kummer-étale covering π̃7 : X7

F 1 Ñ X7

F . □

We use this lemma to obtain some complexes representing Ru˚E and Ru1
˚pπ7,˚Eq for a

locally free crystal E of OxF y-modules. Given such E , we obtain a vector bundle E
X7

F
that

is equipped with an integrable connection with log poles ∇ : E
X7

F
Ñ E

X7

F

pbOXF
pω
X7

F
.

Furthermore, since X7

F ãÑ X7

F is a good embedding in the sense of [22, § 5.6], it follows
that E is functorially determined by pE

X7

F
,∇q by [21, Th. 6.2]. The same holds for any

locally free crystal E 1 of OxF 1y-modules, and the associated vector bundle with integrable

connection with log poles pE 1

X7

F 1

,∇q.

Recall that the map π̃ : XF 1 Ñ XF is flat1 and we have π̃˚ω
X7

F

„
ÝÑ ω

X7

F 1
by [21, Prop. 3.12],

so we can define pull back and push forward by π̃ for vector bundles with connection with
log poles (just as the unramified case).

Furthermore, by unwinding the proof of [21, Th. 6.2], one can see that the construction
E ù pE

X7

F
,∇q (and the same construction for E 1) respects the pull back and push forward

by π7 so that one has both ppπ7,˚Eq
X7

F 1
,∇q “ π̃˚pE

X7

F
,∇q and ppπ7

˚E 1q
X7

F
,∇q “ π̃˚pE 1

X7

F 1

,∇q.

In particular, both pπ7,˚Eq
X7

F 1
and pπ7

˚E 1q
X7

F
have natural horizontal actions of Q.

Let XF,n denote the closed subscheme of XF cut out by the ideal generated by pn. Then
a coherent OXF,n

-modules Fn can be seen as a torsion étale sheaf on XF , where for any
étale morphism f : Y Ñ XF,n we have FnpY q :“ ΓpY, f˚Fnq. Similarly, any coherent OXF

-
module F can be viewed as a Zp-étale sheaf on XF ; namely, the inverse system of torsion
étale sheaves tF |Xnu.

Now, for any locally free crystal E of OxF y-module, the complex Ru˚E can be computed

via the complex of Zp-étale sheaves on XF given by E
X7

F

∇
ÝÑ E

X7

F

pbOXF
pω
X7

F
, where the first

term is placed in degree zero (cf. [22, § 5.6]). One also obtains a similar expression for
Ru1

˚pπ7,˚Eq as a complex of ‘ZprQs-étale sheaves’ on XF 1 .

1It suffices to verify the flatness at the formal neighbourhood of any closed point. And by Abhyankar’s
lemma (cf. [15, A.11]), the map of completed local rings induced by π̃ is of the form W pFqqrrtss Ñ

W pFq1 rrt1{e
ssq for some e not divisible by p.
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Given a short exact sequence

0 Ñ E0 Ñ E Ñ F Ñ 0,

where F is a vector bundle on XF viewed as a log crystalline sheaf, we have a short exact
sequence 0 Ñ Ru˚E0 Ñ Ru˚E Ñ F Ñ 0, where F is viewed as a torsion étale sheaf on XF .
Therefore, we may express

(41) Ru˚E0 “ rE0
X7

F

∇
ÝÑ E

X7

F

pbOXF
pω
X7

F
s,

where E0
X7

F

denotes the kernel of E
X7

F
↠ i

X7

F {Zp,˚
F .

Remark 7.3. Note that X7

F can be obtained as a p-adic completion of a proper smooth

log scheme rX7

F over Zp, where the underlying scheme rXF is a smooth lift of XF and the

log structure is given by relative divisor rZ Ă rXF smoothly lifting Z :“ |XF ´ UF |.
Let us now give some examples of Ru˚E for some E . When E “ OxF y then Ru˚OxF y is

the log de Rham complex of X7

F ; that is, the p-adic completion of the de Rham complex of
rXF with log poles along rZ.
Given any divisor EF of XF supported in Z, one obtains a rank one locally free crystal

of OxF y-modules E :“ OxF ypEF q.

Let us now describe Ru˚OxF ypEF q. Viewing X7

F as the p-adic completion of the log

scheme rX7

F with divisorial log structure associated to rZ, we can find a relative divisor rEF
of rXF that lifts EF and is supported in rZ. Then from the definition of OxF ypEF q (cf. [22,
§ 5.12]), one can check that

Ru˚OxF ypEF q “ rO
rXF

p rEF q
∇
ÝÑ O

rXF
p rEF q b ω

rX7

F
s bO

ĂXF
OXF

,

where ∇ is induced by the universal derivation d : O
rXF

Ñ ω
rX7

F
“ Ω

rXF
plog rZq. (Here, ∇ is

well defined since rEF is supported in rZ, where ω
rX7

F
is allowed to have log poles.)

7.1.2. We are now ready to prove Proposition 7.1.
We shall, for brevity, only prove claim (ii) since this is directly relevant to the proof of

Theorem 4.10 and claim (i) can be proved by exactly the same argument.
Our strategy is to use Proposition A.7 to construct a complex Cpπ7,˚E0q of induced ZprQs-

modules that represents RΓcryspX
7

F 1{Zp, π7,˚E0q in such a way that CpE0q :“ Cpπ7,˚E0qQ is

naturally isomorphic in DpZpq to RΓcryspX
7

F {Zp, E0q. (Since each term of Cpπ7,˚E0q is an

induced ZprQs-module, the complex CpE0q of term-wise Q-invariants of Cpπ7,˚E0q represents
RHomZprQspZp, Cpπ7,˚E0qq.)

We recall that RΓcryspX
7

F {Zp, E0q identifies with RΓétpXF , Ru˚E0q and that Ru˚E0 is

equal to the complex E0
X7

F

∇
ÝÑ E

X7

F
bOXF

pω
X7

F
. In particular, since all the terms of Ru˚E0

are ‘coherent OXF
-modules’, we can compute RΓétpXF , Ru˚E0q via Zariski topology on XF

(viewing Ru˚E0 as a complex of coherent OXF
-modules with additive differential). Note

that the same properties hold for Ru1
˚pπ7,˚E0q as well.
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We now choose the disjoint union of some Q-stable finite affine open covering U7

F of X7

F 1

and regard it as a Kummer-étale covering of X7

F . We then let CpE0q denote the total complex

associated to the Čech resolution of Ru˚E0 with respect to U7

F . Similarly, we let Cpπ7,˚E0q

denote the total complex associated to the Čech resolution of Ru1
˚pπ7,˚E0q with respect to

the Kummer-étale covering U7

F ˆ
X7

F
X7

F 1 of X
7

F 1 , which is a complex of ZprQs-modules where

the Q-action is induced from the Q-action on XF 1 . Then, by Proposition A.7, we know

that CpE0q is isomorphic in DpZpq to RΓcryspX
7

F {Zp, E0q and that Cpπ7,˚E0q is isomorphic

in DpZprQsq to RΓcryspX
7

F 1{Zp, π7,˚E0q.

In addition, one has U7

F ˆ
X7

F
X7

F 1 – U7

F ˆQ and so in each degree i there is an isomorphism

of ZprQs-modules

Cipπ7,˚E0q – HomZppZprQs, CipE0qq “ IndQ
teu
CipE0q,

where Cipπ7,˚E0q and CipE0q denote the i-th term of Cpπ7,˚E0q and CpE0q, respectively.
(Indeed, we have that each term of Ru1

˚pπ7,˚E0q is obtained by the pull back of the terms

of Ru˚E0 as coherent sheaves, using the isomorphism π̃˚
pω
X7

F

„
ÝÑ pω1

X7

F 1

obtained in [21,

Prop. 3.12].) Therefore, we have CpE0q “ Cpπ7,˚E0qQ. (To see that the Čech differentials
on both sides match, we note that the Čech resolution Cpπ7,˚E0q is constructed with respect

to the pull back U7

F ˆXF
XF 1 of the Kummer-étale covering U7

F of XF , which was used for

constructing the Čech resolution CpE0q.)
It remains to show that for any subgroup J of Q the complex Cpπ7,˚E0qJ represents

RΓcryspX
7

F 1J {Zp, π7,˚
J E0q. Note that we have

U7

F ˆ
X7

F
X7

F 1J “ U7

F ˆ
X7

F
pX7

F 1{Jq – U7

F ˆ pQ{Jq,

So it follows that Cpπ7,˚E0qJ is the total complex of the Čech resolution of RuF 1J ,˚pπ7,˚
J E0q

with respect to the Kummer-étale covering U7

F ˆ
X7

F
X7

F 1J of X7

F 1J , and so Cpπ7,˚E0qJ repre-

sents RΓcryspX
7

F 1J {Zp, π7,˚
J E0q by Proposition A.7.

This completes the proof of Proposition 7.1.

7.2. The complex IF 1. The following consequence of Proposition 7.1 regarding the com-
plex IF 1 constructed in §6 will play an important role in the proof of Theorem 4.10.

Proposition 7.4. If the extension F 1{F is tamely ramified, then IF 1 lies in DperfpZprQsq

and is acyclic in all degrees outside 0, 1 and 2.

Proof. Throughout this proof we use the notation introduced at the beginning of §6 with

K 1 “ F . By applying Proposition 7.1 to E0 “ Dp´EF qp0q (so we have π7,˚E0 “ Dp´Eq
p0q

F as
E “ π˚EF ), we obtain a complex of torsion-free induced ZprQs-modules CF 1 representing

RΓcryspX
7

F 1{Zp, Dp´Eq
p0q

F 1 q – RΓétpXF 1 , Ru1
˚pDp´Eq

p0q

F 1 qq

such that for any subgroup J of Q the complex CJF 1 represents RΓcryspX
7

F {Zp, Dp´EF 1J q
p0q

F 1J q

where EF 1J is the pull back of EF to XF 1J . In particular, in each degree i there is an
isomorphism of ZprQs-modules CiF 1 – HomZppZprQs, pCiF 1q

Qq.
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Since pCiF 1q
J is Zp-flat in all degrees i, for any normal subgroup J of Q there is an

isomorphism in DpZprQ{Jsq

IF 1J – pCJF 1 bZp Qp{Zpq˚

where the complexes on the right hand side are defined by the term-wise operations.
If we set IiF 1 :“ pCiF 1 bZp Qp{Zpq˚ and IiF :“ ppCiF 1q

QbZp Qp{Zpq˚ for any i, then we have

IiF 1 – ZprQs bZp I
i
F ,

which is a flat ZprQs-module. Therefore for any subgroup J of Q the derived coinvariants
Zp bL

ZprJs
IF 1 can be represented by the following complex defined by term-wise operations:

Zp bZprJs pCF 1 bZp Qp{Zpq˚ – ppCF 1qJ bZp Qp{Zpq˚.

This implies, in particular, that Zp bL
ZprJs

IF 1 is isomorphic in DpZprQ{Jsq to IF 1J .

Thus, since each complex IF 1J is acyclic outside degrees 0, 1 and 2 and each cohomology
group of IF 1 is finitely generated over Zp, a standard argument (as already used at the

beginning of the proof of Proposition 3.7) implies that IF 1 belongs to DperfpZprQsq, as
claimed. □

8. Crystalline cohomology, semisimplicity and vanishing orders

As further preparation for the proof of Theorem 4.10, in this section we establish a link
between the long exact cohomology sequences of the exact triangles constructed in Lemma
6.2 and the rational height pairing of Schneider and then use it to study the orders of
vanishing of Hasse-Weil-Artin L-series.

Throughout we use the notation of Lemma 6.2. For convenienc, we also set

QM :“ GalpF 1{Mq

and YQp :“ Qp bZp Y for each Zp-module Y .

8.1. Height pairings and semisimplicity. At the outset we recall that, by the general
discussion given at the beginning of [22, §4.3], for each intermediate field M of L1{K the
Dieudonné isocrystal DpAM |UM

q b Qp on pUM{Zp
qcrys comes from an overconvergent F -

isocrystal on UM that we shall denote by

D:

M “ D:pAM q.

We further recall that, by [22, §4.9 and Prop. 5.15], there are natural identifications

(42) Qp bZp IF 1 “ Qp bZp PF 1 “ RHomQp

`

RΓrig,cpUF 1 , D:

F 1q,Qp

˘

r´2s

with respect to which the morphism 1 in the exact triangle (40) corresponds to the identity

endomorphism on RΓrig,cpUF 1 , D:

F 1q.
Upon combining these identifications with the long exact cohomology sequence of the

exact triangle (39) we obtain a composite homomorphism

(43) βA,F 1,p : Qp bZ A
tpF 1q

H0pθ1q
ÝÝÝÝÑ H1pPF 1qQp “ H1pIF 1qQp

H1pθq
ÝÝÝÑ Qp bZ HomZpApF 1q,Zq.

We also write

hA,F 1,p,˚ : Qp bZ A
tpF 1q Ñ Qp bZ HomZpApF 1q,Zq
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for the isomorphism of QprQM s-modules that is induced by the algebraic height pairing
hA,F 1 that occurs in §5.3.

Proposition 8.1. If XpA{F 1q is finite, then the following claims are valid.

(i) One has βA,F 1,p “ p˘1q
aA,F 1,p ˆ hA,F 1,p,˚ for a computable integer aA,F 1,p in t0, 1u.

(ii) The homomorphisms H ipφ̂qQp are bijective for all i ­“ 1, where φ̂ :“ 1 ´ φ.

(iii) The QprQM s-module kerpH1pφ̂qqQp is naturally isomorphic to Qp bAtpF 1q.

(iv) The composite map kerpH1pφ̂qqQp Ď H1pPF 1qQp “ H1pIF 1qQp Ñ cokpH1pφ̂qqQp is
bijective.

Proof. Write C for the quotient of the category of ZprQM s-modules by the category of finite
ZprQM s-modules.

Then, since XpA{F 1q is assumed to be finite, the (non-degenerate) pairing hA,F 1 induces
an isomorphism in C of the form

(44) ApF 1q bZ Qp{Zp Ñ HomZpAtpF 1q,Qp{Zpq.

Next we set C 1 :“ RΓar,VF 1 pUF 1 ,Atorq. Then, since the kernel of the homomorphism

H1pC 1q Ñ SelQ{ZpAF 1q in Proposition 3.2 is finite the natural map ApF 1q bZ Q{Z Ñ

SelQ{ZpAF 1q factors through a map ApF 1q bZ Q{Z Ñ H1pC 1q in C. This homomorphism
then gives rise to a composite homomorphism in C of the form

(45) ApF 1q bZ Q{Z Ñ H1pC 1qp Ñ H1pI˚
F 1q

1
ÝÑ H1pP ˚

F 1q

Ñ H2pC 1qp Ñ HomZpSelẐpAtq,Qp{Zpq Ñ HomZpAtpF 1q,Qp{Zpq,

where the second and fourth maps are induced by the exact triangle (39) and the fifth by
Proposition 3.2.

To prove claim (i) it is sufficient, after taking Pontryagin duals, to show that the mor-
phisms (44) and (45) in C coincide up to a computable sign and this is precisely what is
established by the argument of Kato and Trihan in [22, 3.3.6.2].

To prove the other claims we note that the long exact cohomology sequence of the exact
triangle (39) combines with the descriptions in Proposition 3.7(ii) to imply that H ipφ̂qQp is

bijective for all i R t0, 1u, that kerpH0pφ̂qqQp and cokpH2pφ̂qqQp vanish and that there are
exact sequences of QprQM s-modules

(46)

$

&

%

0 Ñ cokpH0pφ̂qqQp

H0pθq
ÝÝÝÑ Qp bAtpF 1q

H0pθ1q
ÝÝÝÝÑ kerpH1pφ̂qqQp Ñ 0,

0 Ñ cokpH1pφ̂qqQp

H1pθq
ÝÝÝÑ Qp bZ HomZpAtpF 1q,Zq

H1pθ1q
ÝÝÝÝÑ kerpH2pφ̂qqQp Ñ 0.

Now, since h˚
A,F 1 is bijective, claim (i) implies the same is true of the map βA,F and this

fact combines with the above exact sequences to imply that the spaces cokpH0pφ̂qqQp and

kerpH2pφ̂qqQp vanish, as required to complete the proof of claim (ii), and hence that the
upper sequence in (46) gives an isomorphism of the sort required by claim (iii).

Finally, claim (iv) is true because the bijectivity of βA,F 1 combines with the upper se-
quence in (46) to imply kerpH1pφ̂qqQp is disjoint from kerpH1pθqqQp whilst the lower sequence

in (46) implies that kerpH1pθqqQp is equal to impH1pφ̂qqQp . □
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8.2. Orders of vanishing and leading terms. We now derive from Proposition 8.1
the following result about the order of vanishing rA,M pχq at t “ p´1 of the functions
ZUM

pAM , χ, tq that are defined in §5.3 for each character χ in IrpQM q.
We fix (and do not in the sequel explicitly indicate) an isomorphism of fields C – Cp and

hence do not distinguish between IrpQM q and the set of irreducible Cp-valued characters of
QM .

In particular, for χ in IrpQM q we may then fix a representation QM Ñ AutCppVχq (that
we also denote by χ) of character χ, where Vχ is a finite dimensional vector space over Cp.

If R denotes either ZprQM s or QprQM s, then for each finitely generated R-module W
and each χ in IrpQM q we define a Cp-vector space by setting

Wχ :“ HomCprQM spVχ,CprQM s bRW q.

Theorem 8.2. For each χ in IrpQM q the following claims are valid.

(i) rA,M pχq “ dimCppC bZ A
tpF 1qqχq “ χp1q´1 ¨ dimCpeχpC bZ A

tpF 1qqq.
(ii) In each degree i the homomorphism H ip1´φq induces an automorphism H ip1´φq˛

χ

of any fixed complement to kerpH ip1 ´ φqqχ in H1pPF 1qχ.

(iii) Z˚
UM

pAM , χ, p
´1q “

śi“2
i“0 detpH

ip1 ´ φq˛
χqp´1qi`1

, where the leading term is nor-

malised as in (27).

Proof. We fix a finite Galois extension Λ of Qp such that for any χ in IrpQM q the CprQM s-
module Vχ descends to a ΛrQM s-module Vχ,Λ. We write kΛ for the residue field of Λ and
set q :“ #pkΛq. Then, for each χ in IrpQM q, we fix a ΛrQM s-module Vχ,Λ such that
Cp bΛ Vχ,Λ – Vχ and, for any QprQM s-module W , we set

Wχ
Λ :“ HomΛrQM spVχ,Λ,Λ bQp W q.

We now give an alternative description of H i
rig,cpUF 1 , D:

F 1q
χ
Λ and H ip1´φq˛

χ,Λ in terms of

the rigid cohomology of overconvergent Λ-F -isocrystal ; cf. [39, (7.1)]. (In fact, we will work
with overconvergent Λ0-F -isocrystal for some suitable subfield Λ0 of Λ.) We recall that an
Λ-F -isocrystal is, roughly speaking, an isocrystal with scalars in Λ (instead of Qp) equipped

with Λ-linear q-Frobenius operator (denoted by φpΛq). In particular, given an overconvergent
F -isocrystal pE , φq over UF 1 , one can ‘extend scalars’ to obtain an overconvergent Λ-F -
isocrystal EΛ in the following way: if F 1 contains kΛ and we set r :“ rkΛ : Fps, then

pE , φrq is an overconvergent Qq-F -isocrystal and so one can set pEΛ, φpΛqq :“ pE bQq Λ, φ
r b

Λq. In addition, there is the following base change result (cf. [7, Th. 11.8.1]): for any
overconvergent isocrystal E over UF 1 , there is in each degree i a natural isomorphism

H i
rig,cpUF 1 , Eq bQq Λ – H i

rig,cpUF 1 , EΛq

(and similarly for the rigid cohomology without support condition).
Now, following the above discussion, if we are to construct overconvergent Λ-F -isocrystals,

we should assume that the base field contains kΛ. To do this, we shall, if necessary, replace
F 1 by F 2 :“ F 1 ¨ Fpr . Then F 2{M is a Galois extension and, setting Q2

M :“ GalpF 2{Mq,
we regard IrpQM q as a subset of IrpQ2

M q in the natural way. Now, if W 2 is a finitely gener-

ated module over either ZprQ2
M s or QprQ

2
M s then pW 2qχ “ Wχ with W :“ pW 2qGalpF 2{F 1q.

Hence, to prove the claimed result, we can assume without loss of generality that kΛ Ă F 1.
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In this case, H i
rig,cpUF 1 , D:

F 1q is a Λ0-vector space and there is a natural isomorphism

H i
rig,cpUF 1 , D:

F 1q bQp Qq –
ź

GalpQq{Qpq
H i

rig,cpUF 1 , D:

F 1q,

with respect to which the endomorphism φ b φ of the left hand side corresponds to the
following block matrix on the right hand side

¨

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0
0 0 1 ¨ ¨ ¨ 0
...

...
. . .

. . .
...

0 0 ¨ ¨ ¨ 0 1
φr 0 ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‹

‹

‚

.

One therefore obtains QM -equivariant isomorphisms
ź

λ1r“λr
H i

rig,cpUF 1 , D:

F 1q
pλ1q bQp Qq – H i

rig,cpUF 1 , D:

F 1,Qq
qpλrq,

where the left hand side is the product of generalised λ1-eigenspace for φ and the right hand
side is the generalised λr-eigenspace for φpQqq :“ φr. (Note that the underlying isocrystal

for D:

F 1,Qq
is D:

F 1 , equipped with the Qq-linear q-Frobenius φ
r.)

Extending scalars from Qq to Λ, we now obtain an isomorphism
ź

λ1r“λr
H i

rig,cpUF 1 , D:

F 1q
pλ1q bQp Λ – H i

rig,cpUF 1 , pD:

F 1qΛqpλrq,

where the right hand side is the generalised λr-eigenspace for φpΛq :“ φr b Λ, and so

detQppH ip1 ´ t ¨ φqq “ detΛpH ip1 ´ trkΛ:Fps ¨ φpΛqqq.

Now, by the main theorem of Tsuzuki [39, Th. 7.2.3], there exists an overconvergent
unit-root F -isocrystal O:pχq over UM with monodromy given by Vχ,Λ, viewed as a QprQM s-

module. Furthermore, O:pχq has a natural action of Λ commuting with the p-Frobenius
operator φ and the connection; that is, O:pχq is a Qp-F -isocrystal with Λ-action in the
sense of Definition B.3 for Λ0 “ Qp. (Indeed, the Λ-action on the level of convergent
Λ0-F -isocrystal is clear by construction since the Λ-action on Vχ,Λ commutes with the
QprQM s-action, and the Λ-action extends by the full faithfulness result [38, 5.1.1].)

We then obtain another Qp-F -isocrystal D
:

M pχq :“ O:pχq bQp D
:

M with Λ-action and, in
each degree i, we regard

H i
M pχq :“ H i

rig,cpUM , D
:

M pχqq,

as a Λ-vector space equipped with Λ-linear p-Frobenius operator φ. We then claim that
there is an identity of functions

(47) ZUM
pAM , χ, ptq “

źi“2

i“0
detΛp1 ´ pt ¨ φ | H i

M pχqqp´1qi`1
.

Indeed, this identity is a standard consequence of Lefschetz trace formula for rigid coho-
mology of Qp-F -isocrystals with Λ-action; cf. Theorem B.9. (Its proof is a straightforward
adaptation of the Lefschetz trace formula for Λ-F -isocrystals in [14, Th. 6.3]. In fact, in the
special case that M contains kΛ, one can directly construct a Λ-F -isocrystal on UM that
computes ZUM

pAM , χ, ptq via the more classical Lefschetz trace formula in loc. cit.)
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Now, from Proposition 8.1(ii) we know that, for both i “ 0 and i “ 2, the endomorphism
H ip1 ´ φq is invertible on the Qp-linear dual H i

M pχq_ of H i
M pχq. From the identity (47),

we can therefore deduce that

rA,M pχq “dimΛ

`

kerp1 ´ φ | H1
M pχqq

˘

(48)

“dimΛ

`

kerp1 ´ φ | H1
M pχq_q

˘

“dimΛ

`

kerp1 ´ φ | pH1
rig,cpUF 1 , pD:

F 1qΛq_qχ
˘

“dimΛ

`

kerp1 ´ φ | H1pΛ bZp PF 1qχ
˘

“dimCpAtpF 1qχq.

Here the second equality is clear, the third follows from the isomorphism in Lemma 8.3
below, the fourth from (42) and the first and fifth from Proposition 8.1(iii) and (iv). This
proves claim (i).

Claim (ii) follows directly from Proposition 8.1(iv) and the fact (already noted above)
that H ip1 ´ φq is invertible on H i

M pχq_ for i “ 0 and i “ 2.
Next we note the equality (48) implies that

det
`

1 ´ pt ¨ φ | kerp1 ´ φ | H1pPF 1qχq
˘

“ p1 ´ ptqrA,M pχq.

Given this equality, and our chosen normalisation of leading terms, the formula in claim
(iii) follows directly upon combining claim (ii) with the identity (47). □

Lemma 8.3. For every absolutely irreducible representation χ : QM Ñ AutΛpVχ,Λq as
above, and every degree i, there is a natural Λ-linear, Frobenius equivariant isomorphism

H i
rig,cpUM , D

:

M pχqq_ – pH i
rig,cpUF 1 , pD:

F 1qΛq_qχ.

Proof. All isomorphisms in the proof below can be checked to be Frobenius equivariant.

Poincaré duality identifies the Λ-modules H i
rig,cpUM , D

:

M pχqq_ and H i
rig,cpUF 1 , pD:

F 1qΛq_

with H2´i
rig pUM , D

:

M pχq_q and H2´i
rig pUF 1 , pD:,_

F 1 qΛq respectively, where D:

M pχq_ and pD:,_
F 1 qΛ

denote the dual as an overconvergent F -isocrystal and an overconvergent Λ-F -isocrystal re-
spectively. It therefore suffices to prove there exists a natural isomorphism

(49) H i
rigpUF 1 , pD:,_

F 1 qΛqχ – H i
rigpUM , D

:

M pχq_q.

To show this we use the canonical isomorphism π˚
F 1{M pD:

M q – D:

F 1 , where πF 1{M denotes

the natural morphism XF 1 Ñ XM . We also note that the proof of [10, Prop. 1.3] implies

the overconvergent vector bundle D:

F 1 has a natural QM -action that commutes with its nat-
ural Frobenius operator. (To see this, note that the natural QM -action and the Frobenius

commute on the log Dieudonné crystal Dlog
F 1 , and so the same must be true on the associated

convergent isocrystal. Then one need only note that, by [38, 5.1.1], the category of over-
convergent F -isocrystals on UF 1 is naturally a full subcategory of the category of convergent
F -isocrystals on UF 1 .)

Now, by construction of D:

M pχq, there is a natural isomorphism of QM -equivariant over-

convergent F -isocrystals π˚
F 1{M pD:

M pχq_q – Vχ̌,Λ bQp D
:,_
F 1 , where Vχ̌,Λ is viewed as a

QprQM s-module and QM acts diagonally on the tensor product. This isomorphism also
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respects the natural QM - and p-Frobenius equivariant Λ-actions on both sides. Hence,

since the underlying overconvergent isocrystal for Vχ̌,Λ bQp D
:,_
F 1 coincides with that of

Vχ̌,Λ bΛ pD:,_
F 1 qΛ, one obtains the required isomorphism (49) via the induced composite

isomorphisms

H i
rigpUM , D

:

M pχq_q
„
ÝÑH i

rigpUF 1 , π˚
F 1{M pD:

M pχq_qqQM

„
ÝÑH i

rigpUF 1 , Vχ̌,Λ bΛ pD:,_
F 1 qΛqQM

„
ÝÑH i

rigpUF 1 , pD:,_
F 1 qΛqχ.

Here the first map is induced by Shapiro’s Lemma and its bijectivity is proved in [35,
Prop. 4.6] and the change from χ̌ to χ that occurs in the third isomorphism is for the
reason outlined in Remark 2.3. □

9. Proof of the main result

In this section we use results from earlier sections to obtain a proof of Theorem 4.10. At
the outset we note that Theorem 4.10(i) is proved by Theorem 8.2(i) and that Remark 4.11
allows us to assume that XpA{Lq is finite. We therefore focus on establishing the validity
of the equality in Conjecture 4.3(iii).

For convenience, for each Galois extension F 1{M (as in Proposition 6.3) we define an
element of K0pZrQM s,QrQM sq by setting

χpA,F 1{Mq :“ BQM
pZ˚

UM
ppAM qF 1{M , p

´1qq ´ χBSD
QM ,QpAM , VF 1q

` χcoh
QM

pAM , VF 1q ´ χsgn
QM

pAM q,

where, we recall, the leading term element is normalised via (27).

9.1. A first reduction step. For a finite group Γ, a prime number ℓ and an element x
of K0pZrΓs,QrΓsq we write xℓ for the image of x in K0pZℓrΓs,QℓrΓsq under the canonical
decomposition (8).

Proposition 9.1. Assume XpA{Lq is finite. Then the statement of Theorem 4.10 is valid
if and only if the following conditions are satisfied.

(i) If Mp is any given maximal Zp-order in QprGs that contains ZprGs, then χpA,L{Kqp
belongs to the kernel of the homomorphism K0pZprGs,QprGsq Ñ K0pMp,QprGsq.

(ii) Assume that the set Σ1 Y Σ2 in (13) is non-empty. Fix a field K 1 P Σ1 Y Σ2,
set L1 “ LK 1 and write P 1 for the normal subgroup of H 1 :“ GalpL1{K 1q that is
generated by the Sylow p-subgroups of the inertia groups of all places that ramify in
L1{K 1. Then χpA, pL1qP

1

{K 1qp vanishes.
(iii) For each prime ℓ ­“ p one has

BG,QpZ˚
U pAL{K , p

´1qqℓ “ χBSD
G,Q pA, VLqℓ ´ χsgn

G pAqℓ.

Proof. It suffices to check that the stated conditions are equivalent to the validity of the
equality in Conjecture 4.3(iii).

Thus, after taking account of Proposition 5.6, the decomposition (8) combines with the
explicit definition of the subgroup TA,L{K to reduce us to showing that the stated conditions
imply the validity of each of the following assertions:
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(C1) χpA,L{Kqp has finite order;
(C2) for every field K 1 that belongs to either Σ1 or Σ2, χpA,L{Kqp is the image under

πG
1

G of an element of K0pZprG1s,QprG
1sq that belongs to kerpπG

1

H 1{P 1q;

(C3) χpA,L{Kqℓ vanishes if ℓ ­“ p.

To check this, we first recall (from [4, §4.5, Lem. 11(d)]) thatK0pZprGs,QprGsqtor is equal
to the kernel of the scalar extension homomorphism K0pZprGs,QprGsq Ñ K0pMp,QprGsq.
Given this fact, condition (i) directly implies that χpA,L{Kqp has finite order, and hence
verifies (C1).

Next, we note that, for any K 1 P Σ1 Y Σ2, the result of Proposition 9.2 below implies (in

terms of the notation of condition (ii)) that one has both χpA,L{Kqp “ πG
1

G pχpA,L1{Kqpq

and πG
1

H 1{P 1pχpA,L1{Kqpq “ χpA, pL1qP
1

{K 1qp. In particular, in this case, condition (ii)

implies χpA,L1{Kqp belongs to kerpπG
1

H 1{P 1q, as required to verify (C2).

Finally, to verify (C3) we note that if ℓ ­“ p, then χcoh
G pA, VLqℓ vanishes. Thus, in this

case, the vanishing of the image in K0pZℓrGs,QℓrGsq of the equality in Conjecture 4.3(iii)
is clearly equivalent to the equality stated in condition (iii). □

Before stating the next result we note that if J is a normal subgroup of a subgroup H of
G, and we set Q :“ H{J , then there is a natural commutative diagram

(50) K1pQrGsq
θ1G,H

//

BG,Q
��

K1pQrHsq
θ1H,Q

//

BH,Q
��

K1pQrQsq

BQ,Q
��

K0pZrGs,QrGsq
θ0G,H

// K0pZrHs,QrHsq
θ0H,Q

// K0pZrQs,QrQsq

where θiG,H and θiH,Q are the natural restriction and coinflation homomorphisms.

Proposition 9.2. If J is a normal subgroup of a subgroup H of G, with Q “ H{J , then
the composite homomorphism θ0H,Q ˝ θ0G,H sends χpA,L{Kqp to χpALH , LJ{LHqp.

Proof. We set θiG,Q :“ θiH,Q ˝ θiG,H , E :“ LH and F :“ LJ .
At the outset we note that, by a standard argument using the Artin formalism of L-

functions, one finds that θ1G,QpZ˚
U pAL{K , p

´1qq “ Z˚
UE

ppAEqF {E , p
´1q and so the commuta-

tive diagram (50) implies

(51) θ0G,QpBG,QpZ˚
U pAL{K , p

´1qqq “ BQ,QpZ˚
UE

ppAEqF {E , p
´1qq.

It is also clear that θ1G,QpxQ ¨ AtpLq,´1yq “ xQ ¨ AtpF q,´1y and, given this, an explicit

comparison of the equalities in Proposition 8.1(i) with F 1 equal to L and F implies

(52) θ0G,Qpχsgn
G pAqpq “ χsgn

Q pAEqp.

To proceed we write π, π1 and π2 for the natural morphisms XL Ñ X, XL Ñ XE and
XE Ñ X. We fix families of subgroups VL and WL for the extension L{K as in §3.4 (the
choice of which is, following Proposition 5.3, unimportant) and write LL for the associated
coherent OXrGs-submodule of π˚LiepAXL

q. In the same way we fix families of subgroups V 1
L

andW 1
L for the extension L{E and write L1

L for the associated coherent OXE
rHs-submodule

of π1
˚LiepAXL

q.
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We assume, as we may, that VL Ď V 1
L, and hence also WL Ď W 1

L. This implies that there

are exact triangles in DperfpZrHsq of the form

SCV 1
L

pA,L{Eq Ñ SCVLpAE , L{Kq Ñ pV 1
L{VLq˚r´1s Ñ

and
RΓpXE ,L1

Lq˚ Ñ RΓpX,LLq˚ Ñ pW 1
L{WLq˚r1s Ñ,

where, in the latter case, we have used the fact that the complexes RΓpX,π2
˚L1

Lq and
RΓpXE ,L1

Lq are canonically isomorphic since π2
˚ is exact. These triangles in turn give rise

to equalities in K0pZrHs,QrHsq

θ0G,HpχBSD
G,Q pA, VLq ´ χcoh

G pA, VLqq “ χBSD
H,Q pA, V 1

Lq ` χZprHsppV 1
L{VLq˚r´1s, 0q(53)

´ pχcoh
H pA, V 1

Lq ` χZprHsppW 1
L{WLq˚r´1s, 0qq

“ χBSD
H,Q pA, V 1

Lqq ´ χcoh
H pA, V 1

Lq,

where the last equality is valid since χZprHsppV 1
L{VLq˚r´1s, 0q “ χZprHsppW 1

L{WLq˚r´1s, 0q

(by the same argument as used in the proof of Proposition 5.3).
Upon combining the equalities (51), (52) and (53) one finds that the proof is reduced to

showing that there are equalities
#

θ0H,QpχBSD
H,Q pAE , V

1
Lqq “ χBSD

Q,Q pAE , pV
1
LqJq,

θ0H,Qpχcoh
H pAE , V

1
Lqq “ χcoh

Q pAE , pV
1
LqJq.

These equalities follow directly from the isomorphisms in DperfpZrQsq

(54)

#

ZrQs bL
ZrHs

SCV 1
L

pAE , L{Eq – SCpV 1
LqJ pAE , F {Eq,

ZrQs bL
ZrHs

RΓpXE ,L1
Lq˚ – RΓpXE , pL1

LqJq˚,

that are respectively used in the proofs of Proposition 3.7 and Lemma 3.9. □

9.2. The case ℓ “ p. In this section we verify that the conditions (i) and (ii) in Proposition
9.1 are satisfied.

The key observation we shall use in this regard is provided by the following result. In
this result we use the notation and hypotheses of Proposition 9.1(ii).

Lemma 9.3. Fix a field K 1 in Σ1 Y Σ2 (so that, by assumption, XpA{L1q is finite) and a
Galois extension of fields M2{M1 with K Ď M1 Ď M2 Ď L1. Set J :“ GalpM2K

1{M1q and
Q :“ GalpM2{M1q. Also fix a Zp-order N in QprJs as in Proposition 6.3 with F 1 “ M2K

1

and M “ M1, and write N for the image of N in QprQs.
Then χpA,M2{M1qp belongs to the kernel of the natural scalar extension homomorphism

K0pZprQs,QprQsq Ñ K0pN,QprQsq.

Proof. Under the present hypotheses, the exact triangles in Proposition 6.3 lie in DperfpNq.
Hence, after taking account of the relevant cases of the isomorphisms (54), the exact functor
∆p´q :“ N bL

N ´ takes these triangles to exact triangles in DperfpNq of the form

∆
`

τě´1pNbL
ZprJsPF 1q

˘ 1´φ
ÝÝÝÑ ∆

`

τě´1pNbL
ZprJsIF 1q

˘

Ñ NbL
ZprQsRΓar,VM2

pUM2 ,Atorq
˚
pr´2s Ñ

∆
`

τě´1pN bL
ZprJs PF 1q

˘ 1
ÝÑ ∆

`

τě´1pN bL
ZprJs IF 1q

˘

Ñ N bL
ZprQs RΓpXM1 , pL1qHq˚r´2s Ñ,
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with H :“ GalpM2K
1{M2q. These triangles satisfy all of the conditions (a), (b) and (c) of

Proposition 5.1: in fact, the only condition that is not straightforward to check in this case
is (b) and this follows from the results of Proposition 8.1(ii) and (iv).

In particular, by applying Proposition 5.1 in this context, and taking account of the equal-
ity in Proposition 8.1(i), one finds that the image of χpA,M2{M1qp in K0pN,QprQsq is equal

to the image under the natural connecting homomorphism K1pQprQsq Ñ K0pN,QprQsq of
the product element

(55) Z˚
UM1

ppAM1qM2{M1
, p´1q ¨

źi“2

i“0
pH ip1 ´ φM2{M1

q˛
Qp

qp´1qi P K1pQprQsq.

Here we write 1 ´ φM2{M1
for the morphism denoted by 1 ´ φ in the first of the exact

triangles displayed above, and identify each automorphism H ip1 ´ φM2{M1
q˛
Qp

with the

induced element of K1pQprQsq.
It is thus enough to prove that the element (55) vanishes, or equivalently, that its image

under the (injective) map NrdQprQs : K1pQprQsq Ñ ζpQprQsqˆ is trivial. In addition, given

the characterisation of Z˚
UM1

ppAM1qM2{M1
, p´1q in Proposition 5.6(i), the required triviality

is deduced directly from the formula of Theorem 8.2(iii) (with F 1{M replaced by M2{M1)
for every χ P IrpQq and the fact that, in terms of the notation of the corresponding case of
Theorem 8.2(ii), for every i P t0, 1, 2u and χ P IrpQq one has

NrdQprQspH
ip1 ´ φM2{M1

q˛
Qp

qχ “ detpH ip1 ´ φM2{M1
q˛
χq.

□

Turning now to consider the conditions in Proposition 9.1, we first fix a maximal Zp-
order N in QprG

1s that contains ZprG1s. Then N is regular and so satisfies the conditions
of Proposition 6.3 with F 1 “ L1 and M “ K (so J “ G1). From Lemma 9.3 (with M2 “ L
and M1 “ K, so Q “ G), it therefore follows that χpA,L{Kqp belongs to the kernel of the
scalar extension K0pZprGs,QprGsq Ñ K0pM,QprGsq, where M denotes the image of N in
QprGs. In particular, since M is a maximal Zp-order in QprGs that contains ZprGs, this
shows that the condition of Proposition 9.1(i) is satisfied.

Next we consider condition (ii) of Proposition 9.1. To do this we note that, by our

assumption on K 1, the group XpA{L1q is finite. In addition, the field F 1 :“ pL1qP
1

is a
tamely ramified Galois extension of K 1 and so Proposition 7.4 implies that the conditions
of Proposition 6.3 are satisfied by the data J “ GalpF 1{K 1q and N “ ZprJs. In this case,

therefore, Lemma 9.3 implies that χpA, pF 1qP
1

{K 1qp vanishes, and hence that condition (ii)
of Proposition 9.1 is satisfied.

Remark 9.4. A close reading of the above argument shows that we actually prove a
(possibly) finer version of Theorem 4.10(ii). Specifically, the validity of the equality in
Conjecture 4.3(iii) is proved modulo the subgroup of TA,L{K that is obtained by replacing
the group K0pZprGs,QprGsqtor in the intersection (13) by its subgroup

ker
`

K0pZprGs,QprGsqtor
pλNqN
ÝÝÝÝÑ

à

N
K0pN,QprGsq

˘

.

Here in the intersection N runs over all Zp-orders of QprG
1s that contain ZprG1s and satisfy

the hypotheses of Proposition 6.3 (with F 1 “ L1 and M “ K), N is the image of N in
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QprGs and each λN is the scalar extension map that arises from the inclusion ZprGs Ď N.
We recall that the hypotheses of Proposition 6.3 are automatically satisfied if the order N
is hereditary but that, aside from this, finding other interesting, and explicit, examples of
such orders (beyond those that are used in the above argument) seems difficult.

9.3. The case ℓ ‰ p. In this section we verify that condition (iii) in Proposition 9.1 is
satisfied, and thereby complete the proof of Theorem 4.10.

To do this we fix a prime ℓ ­“ p, write TℓpAq for the ℓ-adic Tate module of A and set
VℓpAq “ Qℓ bZℓ

TℓpAq. We also write Fcp for its algebraic closure of Fp and φp for the
Frobenius automorphism at p and set U cL :“ UL ˆFp Fcp.

For each χ P IrpGq we fix an associated representation space Vχ over Cℓ. For each finitely
generated QℓrGs-module W , we set

Wχ :“ HomQℓrGspVχ,CℓrGs bQℓrGs W q.

Then by repeating the proof of Lemma 8.3 for ℓ-adic cohomology in place of rigid cohomol-
ogy, we obtain isomorphisms

H i
ét,cpU

c, Vχ bQℓ
VℓpAqq_ –

`

H i
ét,cpU

c
L, VℓpAqq_

˘χ
– H i

étpU
c
L, VℓpAtqqχ,

where the second isomorphism is induced by the Poincaré duality theorem (as stated, for
example, in [28, Chap. VI, Cor. 11.2]). Therefore the identity (1) implies that

ZU pA,χ, p´1tq “
ź

iPZ
det

`

1 ´ φp ¨ t : H i
ét,cpU

c, Vχ bQℓ
VℓpAqq

˘p´1qi`1

(56)

“
ź

iPZ
det

`

1 ´ φp ¨ t : H i
ét,cpU

c, Vχ bQℓ
VℓpAqq_

˘p´1qi`1

“
ź

iPZ
det

`

1 ´ φp ¨ t : H i
étpU

c
L, VℓpAtqqχ

˘p´1qi`1

.

We now set SCℓ :“ Zℓ bZ SCVLpA,L{Kq. Then the result of Proposition 3.7(ii)(b)
combines with Remark 3.3 and the Artin-Verdier duality theorem to imply there are natural
isomorphisms

SCℓ – Zℓ bZ RΓar,VLpUL,Atℓuq˚r2s – RΓét,cpUL,Atℓuq˚r2s – RΓétpUL, TℓpAtqq

and hence also a natural exact triangle in DperfpZℓrGsq of the form

(57) SCℓ Ñ RΓétpU
c
L, TℓpAtqq

1´φp
ÝÝÝÑ RΓétpU

c
L, TℓpAtqq Ñ SCℓr1s.

We consider the composite homomorphism

βA,L,ℓ : QℓbZA
tpLq – H0pSCℓqQℓ

Ñ H0
étpU

c
L, VℓpAtqq Ñ H1pSCℓqQℓ

– QℓbZHomZpApLq,Zq,

where the isomorphisms are from Proposition 3.7(ii)(a) and the other maps are induced by
the long exact cohomology sequence of (57).

Then it is shown by Schneider in [31] (and also noted at the beginning of [22, §6.8]) that
there exists a computable integer aA,L,ℓ P t0, 1u such that

(58) βA,L,ℓ “ p´1qaA,L,ℓ ¨ hA,L,ℓ,˚

where hA,L,ℓ,˚ is the isomorphism Qℓ bZ A
tpLq – Qℓ bZ HomZpApLq,Zq induced by the

height pairing hA,L.
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Taken in conjunction with the same argument used in Proposition 8.1 this observation
implies firstly that the endomorphism H ip1´φpqQℓ

is bijective for i ­“ 1, secondly that (57)
satisfies all of the hypotheses of Proposition 5.1 (with A “ ZℓrGsq regarding the left hand
triangle in (14), and thirdly (in view of (56)) that

ordt“p´1

`

ZU pA,χ, tq
˘

“ dimCℓ

`

ker
`

H1p1 ´ φpq | HomCℓrGspVχ,Cℓ bQℓ
H i

étpU
c
L, VℓpAtqq

˘˘

.

By applying Proposition 5.1 with the left and right hand triangles in (14) taken to be
(57) and the zero triangle respectively we can therefore deduce that

ιG,ℓpχ
BSD
G,Q pA, VLq ` χsgn

G pAqq “ χZℓrGspSCℓ, h
det
A,L,ℓ,˚q ` BZℓrGs,Qℓ

pβA,L,ℓ ˝ h´1
A,L,ℓ,˚q

“ χZℓrGspSCℓ, τ1´φpq

“ BZℓrGs,Qℓ
pH1p1 ´ φpq

˛
Qℓ

q

“ BZℓrGs,Qℓ
ppNrdQℓrGsq

´1ppZ˚
U pA,χ, p´1qqχPIrpGqqq

“ BZℓrGs,Qℓ
pZ˚

U pAL{K , p
´1qq

“ ιG,ℓpBG,QpZ˚
U pAL{K , p

´1qqq.

Here the first equality follows directly from the definition of χsgnpA,L{Kqℓ in terms of the
integer aA,L,ℓ, the equality (58) and the result of Lemma 9.5. In addition, the fourth equality
follows from (56), the fifth directly from the definition of the term Z˚

U pAL{K , p
´1q and all

remaining equalities are clear.
This argument completes the proof that condition (iii) in Proposition 9.1 is satisfied

and hence also, when combined with the observations made in §9.2, completes the proof of
Theorem 4.10.

9.4. The proof of Propositions 4.7 and 4.8. Throughout this section, we shall use the
notation of §4.2.3.

9.4.1. The proof of Proposition 4.7. As a first step, we recall that Proposition 3.7(i) implies
SCVL belongs toDperfpZrGsq and is acyclic outside degrees 0, 1 and 2. In this case, therefore,
the construction of resolutions used in the proofs of Lemma 3.8(iii) and Proposition 6.3
implies SCVL is isomorphic in DpZrGsq to a complex

(59) P´1
d´1

ÝÝÑ P0
d0
ÝÑ P1

d1
ÝÑ P2

in which P´1 is a finitely generated projective ZrGs-module that is placed in degree ´1
and all other modules Pi are finitely generated and free. By taking the direct sum with

complexes of the form ZrGs
1
ÝÑ ZrGs, with the first term placed in appropriate degrees, one

can also assume that the G-rank rkGpPiq of Pi is greater than 1 for every i.
To prove claim (i) it is therefore enough to show that the G-module P´1 is free, or

equivalently (by the Bass Cancellation Theorem [11, Th. (41.20)], since rkGpP´1q ą 1) that
the Euler characteristic χGpSCVLq of SCVL in K0pZrGsq vanishes. In addition, writing B1

G
for the connecting homomorphism K0pZrGs,RrGsq Ñ K0pZrGsq, the (assumed) equality in
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Conjecture 4.3(iii) implies that

χGpSCVLq “ B1
G

`

χBSD
G pA, VLqq

“ B1
G

`

BGpL˚
U pAL{K , 1qq

˘

` B1
G

`

χcoh
G pA, VLq

˘

´ B1
G

`

χsgn
G pAq

˘

“ B1
G

`

χcoh
G pA, VLq

˘

´ B1
G

`

χsgn
G pAq

˘

,

where the final equality follows directly from the fact that B1
G ˝ BG is the zero map.

To prove claim (i), we are therefore reduced to showing that if G has p-power order,
then the last two terms in the above expression vanish. However, in this case, every finite
projective FprGs-module is free so that the image of the homomorphism (11) belongs to

the kernel of B1
G and hence B1

G

`

χcoh
G pA, VLq

˘

automatically vanishes. In addition, the term

B1
G

`

χsgn
G pAq

˘

vanishes since Lemma 9.5 below implies that χsgn
G pAq is equal to

(60) BG,QpxQ ¨AtpLq, p´1qapyqp “ BG,QpxQ ¨AtpLq, p´1qapyq “ BGpxR ¨AtpLq, p´1qapyq.

This proves claim (i).
To prove claim (ii) we note that ApKqrps “ ApLqrpsG and AtpKqrps “ AtpLqrpsG. Hence,

if ApKqrps and AtpKqrps vanish, then ApLqrps and AtpLqrps also vanish since G is a p-
group. In this case, therefore, Proposition 3.7(i) implies SCVL,ppq is acyclic outside degrees

0 and 1 and H0pSCVL,ppqq is torsion-free. This in turn implies that SCVL,ppq is isomorphic
in DpZppqrGsq to a complex of projective ZppqrGs-modules of the form (59) in which P2

vanishes and so there are exact sequences of ZppqrGs-modules

0 Ñ P´1 Ñ P0 Ñ cokpd´1qppq Ñ 0

and

0 Ñ H0pSCVL,ppqq Ñ cokpd´1qppq
d0
ÝÑ P1 Ñ H1pSCVL,ppqq Ñ 0.

The first of these sequences implies cokpd´1qppq is a c-t G-module and the second implies it

is torsion-free. These two properties combine to imply cokpd´1qppq is a projective ZppqrGs-
module (by [2, Th. 8]).

At this stage we therefore know that SCVL,ppq is isomorphic in DpZppqrGsq to a complex

of ZppqrGs-modules cokpd´1qppq Ñ P1 in which the first term is projective and the second is
free (and of rank greater than 1). To see that this is a complex of the required form it is
then enough to note that, since the Euler characteristic of SCVL,ppq in K0pZppqrGsq vanishes,

the Bass Cancellation Theorem implies that the module cokpd´1qppq is isomorphic to P1.
This completes the proof of Proposition 4.7.

Lemma 9.5. If ℓ is any prime that does not divide #G, then BG,QpxQ¨AtpLq,´1yqℓ vanishes.

Proof. If ℓ does not divide #G, then the Zℓ-order ZℓrGs is maximal and so QℓbZA
tpLq has

a full sublattice that is a projective ZℓrGs-module. This implies xQℓ bZ A
tpLq,´1y belongs

to the image of the natural map K1pZℓrGsq Ñ K1pQℓrGsq and hence that the element
BG,QpxQ ¨AtpLq,´1yqℓ “ BZℓrGs,Qℓ

pxQℓ bZA
tpLq,´1yq vanishes as a consequence of the long

exact sequence of relative K-theory (see (7)). □
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9.4.2. The proof of Proposition 4.8. We abbreviate the connecting homomorphism BZppqrGs,R
to Bp and use the natural scalar extension map

ιp “ ιG,p : K0pZrGs,RrGsq Ñ K0pZppqrGs,RrGsq.

Then, as a first step, we note that there are equalities

(61) ιp
`

χsgn
G pAq

˘

“ Bp
`

xR ¨AtpLq, p´1qapy
˘

and ιp
`

χBSD
G pA, VLqq “ Bp

`

xRrGst, ιNT
A,Ly

˘

.

The first of these follows directly from (60) and the second from a routine comparison of
the definition of the automorphism ιNT

A,L with the explicit computation of χBSD
G pA, VLq in

terms of the non-abelian determinant of the representative of SCVL,ppq fixed in Proposition
4.7(ii).

We next claim that

(62) ιp
`

χcoh
G pA, VLq

˘

“ Bp
`

xRrGs, pχpLqy
˘

.

To show this we recall from (the proof of) Lemma 3.9 that the complex C :“ RΓpX,LLq˚

belongs to DperfpFprGsq and is acyclic outside degrees 0 and 1. Since G is a p-group, C is
therefore isomorphic in DpFprGsq to a complex of the form FprGsn0 Ñ FprGsn1 , where the
first term is placed in degree 0 and n0 and n1 are suitable natural numbers. By using this
representative, one computes that

χcoh
G pA, VLq :“ χGpRΓpX,LLq˚, 0q “ Bp

`

xRrGs, pn0´n1y
˘

.

To deduce (62) it is now enough to note that a computation of Euler characteristics in
K0pFpq – Z implies that

χpLq :“ χFppRΓpX,Lq˚q “ χFp

`

RHomFprGspFp, RΓpX,LLq˚q
˘

“ χFp

`

RHomFprGspFp,FprGsn0 Ñ FprGsn1q
˘

“ χFp

`

Fn0
p Ñ Fn1

p

˘

“ n0 ´ n1,

where the first aligned equality follows from the isomorphism (6).
Thus, if one defines an element of K1pRrGsq by setting

L :“ L˚
U pAL{K , 1q ˆ xRrGst, ιNT

A,Ly´1 ˆ xRrGs, pχpLqy ˆ xR ¨AtpLq, p´1qapy´1

then the equalities (61) and (62) imply that

BppL q “ ιp
`

BGpL˚
U pAL{K , 1qq ´ χBSD

G pA, VLq ` χcoh
G pA, VLq ´ χsgn

G pAq
˘

.

In addition, an explicit computation of reduced norm combines with the definition (12) of
each term L pA,ψq to imply that

NrdRrGspL q “
ÿ

ψPIrpGq
L pA,ψqeψ P ζpCrGsqˆ.

This equality implies the conditions stated in Proposition 4.8(i) are equivalent to asserting
NrdRrGspL q belongs to ζpQrGsqˆ. Hence, since K1pQrGsq is the full pre-image under Bp

of the subgroup K0pZppqrGs,QrGsq of K0pZppqrGs,RrGsq, these conditions are true if the
equality in Conjecture 4.3(iii) is valid modulo K0pZrGs,QrGsq. Their validity thus follows
directly from the assumed validity of Conjecture 4.3(i) and (ii) and the argument of §5.3.
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In a similar way, if G is abelian, then the above computation shows that Conjecture
4.3(iii) implies NrdRrGspL q belongs to ZppqrGsˆ. In addition, since ZppqrGs is a local ring
(as G is a p-group), the latter containment is valid if and only if NrdRrGspL q belongs to

ZppqrGs and its image under the projection ZppqrGs Ñ Zppq belongs to Zˆ

ppq
. These conditions

are in turn equivalent to requiring L pA,1Gq belongs to Zˆ

ppq
and, also, for all g P G one has

ÿ

ψPIrpGq
ψpg´1qL pA,ψq P |G| ¨ Zppq.

To deduce the result of Proposition 4.8(ii) it is thus enough to note that, for each abelian
subquotient Q “ H{J of G, the arguments of Propositions 5.6 and 9.2 combine to imply
that the validity of Conjecture 4.3(iii) for the data pA,L{Kq implies the validity modulo
kerpιQ,pq of the equality in Conjecture 4.3(iii) for the data pALH , LJ{LHq.

Finally, to prove Proposition 4.8(iii) we assume the validity of Conjecture 4.3 and hence
that the element L belongs to the image of K1pZppqrGsq in K1pRrGsq. Thus, if we fix an
embedding of fields j : R Ñ Cp, then the image of L under the induced map K1pRrGsq Ñ

K1pCprGsq belongs to the image of the natural map K1pZprGsq Ñ K1pCprGsq.
Given this containment, the equalities in claim (iii) follow from the general result of [5,

Th. 2.1] (with Λ “ Zp) and the fact that, for each subgroup H of G, the argument of
Proposition 9.2 implies

ř

ψPIrpHabqL pALH , ψqeψ is equal to the image of NrdRrGspL q under

the upper composite map in the diagram

ζpRrGsqˆ Ă
ÝÝÝÝÑ ζpCrGsqˆ ϱH

ÝÝÝÝÑ ζpCrHsqˆ
ϱ1
H

ÝÝÝÝÑ ζpCrHabsqˆ “ CrHabsˆ

NrdCrGs

İ

§

§

– –

İ

§

§

NrdCrHs

K1pCrGsq
θ1G,H

ÝÝÝÝÑ K1pCrHsq

Here θ1G,H is the natural restriction of scalars map, ϱH is defined by the requirement that

the square commutes and ϱ1
H is the natural projection map.

This completes the proof of Proposition 4.8.

Appendix A. Kummer-étale descent for coherent cohomology

In this first appendix, we show that the coherent cohomology over a ‘separated’ formal fs
log scheme can be computed via the Čech resolution with respect to an affine Kummer-étale
covering (not necessarily a Zariski open covering). Whilst this result seems to be well known
to experts, we have not been able to locate a good reference for it in the literature.

A.1. Fs log schemes and their fibre products. The main purpose of this section is
to review the construction of fibre products for fs log schemes, which we need for the sheaf
theory on Kummer-étale sites and the construction of Čech complexes. We will briefly recall
some definitions of monoids and log schemes needed for the construction of fibre products.
We do not give a complete review of basic definitions on monoids and log geometry but
rather refer readers to [21] and [29] for basic definitions in log geometry and to [30] for a
more comprehensive reference.

Recall that a (always commutative) monoid P is said to be fine if it is finitely generated
and the natural map P Ñ P gp is injective (where P gp is the commutative group obtained
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by adjoining the inverse of each element of P ). A fine monoid P is said to be saturated if
for any α P P gp, we have αn P P for some n ą 0 if and only if α P P . By a fs monoid, we
mean a fine and saturated monoid.

For each monoid P we define a saturation P sat :“ tα P P gp; αn P P for some n ą 0u.

Lemma A.1. If P is finitely generated, then the monoid P sat is fs.

Proof. It suffices to show that P sat is finitely generated, which is a direct consequence of
Gordon’s Lemma (cf. [30, Ch. I, Th. 2.3.19]). □

A log scheme X7 is called fs (i.e., fine and saturated) if étale locally on the underlying
scheme X, the log structure is generated by a map of monoids P Ñ OX where P is a
fs monoid. Our log schemes and formal schemes are always assumed to be fs (i.e., fine
saturated).

Let X7 and Y 7 be fs log schemes over S7 (with underlying schemes denoted as X, Y , and
S). We want to construct a fs log scheme X7 ˆS7 Y 7 satisfying the universal property of
fibre product (cf. [30, Ch. III, Cor. 2.1.6]).

By replacing the formal log schemes with suitable étale coverings, we choose charts P Ñ

OX , Q Ñ OY and M Ñ OS defining the log structures (where P , Q and M are fs monoids,
viewed as constant sheaves), such that there exist maps M Ñ P,Q giving rise to the
structure morphism X7, Y 7 Ñ S7. (The existence of such local charts follows from [21,
Lem. 2.10].)

The most natural candidate is to endow X ˆS Y with the log structure associated to the
chart P ‘M Q Ñ OX bOS

OY , where P ‘M Q is the amalgamated sum of monoids. But
this may not always work as P ‘M Q may not be fine nor saturated.

Writing P ‘sat
M Q for the saturation of P ‘M Q we can define the following fs log scheme

X7 ˆS7 Y 7 :“ pX ˆS Y q ˆSpecZrP‘MQs SpecZrP ‘sat
M Qs

with the log structure given by the chart P ‘sat
M Q Ñ OX7ˆ

S7Y 7 naturally extending P ‘M

Q Ñ OXˆSY . By glueing this étale-local construction, we obtain the fibre products for
any fs log schemes. We repeat this construction to obtain fibre products of formal fs log
schemes.

Note that this notion of fibre product may not be compatible with fibre products of (for-
mal) schemes without log structure, as we can see from the explicit étale-local construction.
Instead, we have the following lemma, which is a consequence of Lemma A.1. (See [30,
Ch. III, Cor. 2.1.6] for the proof.)

Lemma A.2. The underlying scheme for X7 ˆS7 Y 7 is finite over XˆS Y . The same holds
for formal fs log schemes.

Remark A.3. To give a concrete example in which the underlying scheme for X7 ˆS7 Y 7

differs from X ˆS Y we fix a finite Galois Kummer-étale cover π : X7

L
π7

ÝÑ X7 of group G.

In this case one has X7

L ˆX7 X
7

L – G ˆ X7

L whereas XL ˆX XL – G ˆ XL only if π is
unramified.

The following corollary of lemma A.2 will be used later.
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Corollary A.4. Let X7 be a fs log scheme, such that the underlying scheme is separated.
Let U 7 and U 17 be fs log schemes over X7, such that the underlying schemes U and U 1 are
affine. Then U 7 ˆX7 U 17 is also affine. The same holds for formal fs log schemes.

Proof. Under the hypotheses, the scheme UˆXU
1 is affine, which follows from the cartesian

diagram below:

U ˆX U 1 �
�

//

��

U ˆ U 1

��

X �
� ∆X // X ˆX,

Now by lemma A.2, the underlying scheme of U 7 ˆX7 U 17 is finite over an affine scheme
U ˆX U 1. This proves the corollary. □

A.2. Čech-to-derived functor spectral sequence for Kummer-étale cohomology.

For a log formal scheme X, we write X7

két for the associated Kummer-étale site (as per [29,
Def. 2.13]).

We quickly recall the definition of Čech complex and Čech-to-derived functor spectral
sequences in this setting.

Definition A.5. Let U7 be an Kummer-étale covering of X7 (i.e., the structure morphism
U7 Ñ X7 is Kummer-étale and surjective), and let F be a sheaf of abelian groups on the

Kummer-étale site X7

két. Then we can form a Čech complex

C‚pU7,Fq :“ rΓpU7,Fq Ñ ΓpU7 ˆX7 U7,Fq Ñ ΓpU7 ˆX7 U7 ˆX7 U7,Fq Ñ ¨ ¨ ¨ s,

with differentials defined in a standard way.
(The usual definition of Cech complexes for the case without log structure, cf. [28,

Ch. III, §2], formally goes through.) For any bounded-below complexes F‚, we define the
Čech complex C‚pU7,F‚q as the total complex of the double complex obtained from Čech
complex of each term of F‚.

Whilst the Čech complex C‚pU7,Fq does not necessarily represent RΓpX7

két,Fq, there

exists a natural ‘Čech-to-derived functor spectral sequence’

(63) Ei,j1 : HjpU7

i,két,Fq ñ H i`jpX7

két,Fq,

where U7

i is the pi`1q-fold self fibre product of U7 over X7. One way to read off this spectral
sequence from the literature is via the technique of cohomological descent for (simplicial)

topoi associated to the Kummer-étale sites U7

két and X7

két (cf. SGA 4II, Exp. Vbis. [18]).

Indeed, since it admits a local section, U7 Ñ X7 is a ‘morphism of universal cohomological
descent’ by [loc. cit., Prop. (3.3.1)] and so the above spectral sequence is just a special case
of the descent spectral sequence from [loc. cit., Prop. (2.5.5)]).

Remark A.6. The complex pEi,01 , di,0q coincides with C‚pU7,Fq and so the above spectral

sequence implies C‚pU7,Fq “ RΓpX7

két,Fq if Ei,j1 vanishes for all j ą 0 and i ě 0.
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A.3. Coherent cohomology. We first recall Kummer-étale descent theory for coherent
sheaves on schemes and formal schemes.

Let X7 be a log scheme over Z{pn for some n and F a quasi-coherent OX-module. Then,

by Kato’s unpublished result (cf. [29, Prop. 2.19]) the presheaf U7 P X7

két ù ΓpU,FUq is

a sheaf on X7

két, where FU denotes the pull back of F via the structure morphism U Ñ X
of the underlying schemes. We use the same notation F to denote the Kummer-étale sheaf
associated to a quasi-coherent sheaf F .

Now, if X7 be a locally noetherian formal fs log scheme over Spf Zp, we can associate,
to a coherent OX-module F , a Kummer-étale Zp-sheaf F by extending the construction for
coherent sheaves on schemes via projective limit. (We restrict to coherent sheaves to avoid
technicalities regarding completion.)

Now, we are interested in C‚pU7,Fq when F is a vector bundle on X (viewed as a Kummer-
étale sheaf), while U7 remains a Kummer-étale covering of X7.

Proposition A.7. Let X7 be a noetherian formal fs log scheme over Spf R (for some noe-
therian adic ring R, with trivial log structure), and assume that X is separated. Then for

any coherent OX-module F there is a natural isomorphism RΓpX7

két,Fq
„
ÝÑ RΓpX,Fq.

Furthermore, for any Kummer-étale covering U7 Ñ X7 where U is affine, the Čech complex
C‚pU7,Fq represents RΓpX,Fq.

The same holds if we replace F with a bounded-below complex F‚ of coherent sheaves
of OX-modules, such that the differential maps di : F i Ñ F i`1 are additive morphisms of
Kummer-étale sheaves.

Proof. By standard argument with hypercohomology spectral sequences, the claim for F‚

can be reduced to F .
Let us first assume that X is affine. Then by [29, Prop. 3.27] (and the theorem on formal

functions), we have RΓpX7

két,OXq “ ΓpX,OXq. Now, by resolving F with free OX-modules,

we obtain RΓpX7

két,Fq “ ΓpX,Fq.

Choose a Kummer-étale covering U7 Ñ X7 with U affine. Then Corollary A.4 implies

U7

i :“ U7 ˆX7 ¨ ¨ ¨ ˆX7 U7
looooooooomooooooooon

i`1 times

has an affine underlying formal scheme. Therefore, by the Čech-to-derived spectral sequence

argument it follows that C‚pU7,Fq represents RΓpX7

két,Fq (cf. Remark A.6). Now if we

choose U7 to be the disjoint union of finite affine open covering of X (with the natural log
structure induced from X7), then C‚pU7,Fq represents RΓpX,Fq, as claimed. □

Remark A.8. We apply Proposition A.7 to the log de-Rham complex F‚, where the maps
di : F i Ñ F i`1 are not OX-linear but are additive morphisms of Kummer-étale sheaves.

Appendix B. Lefschetz trace formula for rigid cohomology

In this second appendix, our aim is to establish a slight extension of the Lefschetz trace
formula for rigid cohomology that is proved in [14, Th. 6.3].
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As before, we let U be a smooth affine curve over a finite field of characteristic p ą 0.
Let Λ0 be a finite extension of Qp, and assume that OU contains the residue field k0 of Λ0.
Set q0 “ pr0 :“ #pk0q

Let O:

U{Λ0
denote the global section of the overconvergent structure with coefficients Λ0.

To explain, let X be a smooth compactification of U , and let XOΛ0
be a formal lift of X

over the valuation ring OΛ0 of Λ0. Let XΛ0 denote its rigid generic fibre, which contains the

tube sU rΛ0 of U as an open subspace. Then O:

U{Λ0
is the ring of rigid analytic functions

defined on some ‘strict neighbourhood’ of sU rΛ0 . (We often call such rigid analytic functions
overconvergent along XzU .) Note that if Λ1

0 is a finite extension of Λ0 whose residue field

is contained in OU , then we have O:

U{Λ1
0

– O:

U{Λ0
bΛ0 Λ

1
0.

Since OU contains the residue field k0 of Λ0, one can define an overconvergent Λ0-F -
isocrystal E over U ; see §B.2. (See also [39, §7] for the definition and the natural context
where overconvergent Λ0-F -isocrystals appear. In loc. cit. it is called an overconvergent
Λ0-F

r0-isocrystal where r0 :“ rk0 : Fps, but let us suppress r0 from the notation.) In our
intended application however, we would naturally like to remove the assumption that the
residue field of the coefficient field Λ0 is not contained inOU . (Cf. the proof of Theorem 8.2.)

Let Λ be finite extension of Qp. Unless the residue field of Λ is contained in OU , the
usual definition of ‘overconvergent Λ-F -isocrystals’ over U does not apply. Instead, let us
consider a subextension Λ0 Ă Λ whose residue field k0 is contained in OU . (For example,
we may choose k0 to be the maximal subfield of the residue field kΛ of Λ that can be
embedded in OU .) Instead of defining ‘overconvergent Λ-F -isocrystals’ over U , we will
work with overconvergent Λ0-F -isocrystals ‘equipped with Λ-action’; cf. §B.2. The aim of
this appendix is to extend the Lefschetz trace formula [14, 6.3] for the rigid cohomology
with coefficients in such overconvergent Λ0-F -isocrystals with Λ-action when OU does not
contain the residue field of Λ.

B.1. Overconvergent modules and duality. Let U and Λ0 be as before and let Λ be
a finite extension of Λ0. We set U 1 :“ U ˆSpec k0 Spec kΛ where kΛ is the residue field of Λ.

Set X 1 :“ XˆSpec k0 Spec kΛ, which is a smooth compactification of U 1. We also choose a
formal OΛ-lift X

1
Λ of X 1, and we subsequently obtain its rigid generic fibre X 1

Λ and the tube

sU 1rΛĂ X 1
Λ. With this setting, we define O:

U 1{Λ to be the ring of rigid analytic functions

defined on some strict neighbourhood of sU 1rΛ. Then we have an isomorphism of Λ-algebras

(64) O:

U 1{Λ – O:

U{Λ0
bΛ0 Λ.

By the very construction, O:

U{Λ0
and O:

U 1{Λ are Fréchet algebras over Λ0 and Λ, respectively,

so any finite locally free modules over them are p-adic Fréchet spaces.

Let Ω:

U{Λ0
and Ω:

U 1{Λ denote the modules of overconvergent Kähler differentials. Then

we also have

(65) Ω:

U 1{Λ :“ Ω:

U{Λ0
bΛ0 Λ.
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Let sU 1rΛĂ V 1 Ă X 1
Λ be a strict neighbourhood, and let EV 1 be a vector bundle defined

over V 1. We set

(66) E :“ lim
ÝÑ
W 1

ΓpW 1, EV 1q,

where the direct limit is taken over all strict neighbourhoods W 1 contained in V 1. Then E
turns out to be a locally free O:

U 1{Λ-module; hence, a Fréchet Λ-space. (The local freeness

claim can easily reduced to the case when U is an open subscheme of P1, which is standard;

cf. [19, §V, Théorème 1].) Note that Ω:

U 1{Λ can also be obtained from the line bundle

EV 1 “ ΩX 1
Λ
of Kähler differentials over V 1 “ X 1

Λ.

To the ‘overconvergent vector bundle’ EV 1 , we define another O:

U 1{Λ-module as follows:

Definition B.1. For a sufficiently small strict neighbourhood V 1 of sU 1rΛ, we define

Ec :“ H1
sU 1rΛ

pV 1, EV 1q,

where H1
sU 1rΛ

pV 1, EV 1q is the first cohomology of the mapping fibre of

RΓpV 1, EV 1q Ñ RΓpV 1XsX 1zU 1rΛ, EV 1q.

Note that Ec does not depend on the choice of V 1; cf. [14, §3.2].
If we set EV 1 :“ OV 1 (respectively, EV 1 :“ ΩV 1), then the corresponding Ec is denoted as

pO:

U 1{Λqc (respectively, pΩ:

U 1{Λqc).

By shrinking V 1 if necessary, we may assume that V 1 is affinoid. In that case V 1XsX 1zU 1rΛ
is quasi-Stein, so we can deduce the following

‚ Ec is a Fréchet Λ-space.
‚ From the same argument as in [14, §3.2] we can deduce that

(67) Ec – E bO:

U 1{Λ

pO:

U 1{Λqc.

In particular, Ec depends only on E , not on the choice of strict neighbourhood V 1.

Lemma B.2.

(i) There is a canonical trace map

tr : pΩ:

U 1{Λqc Ñ Λ,

which factors through an isomorphism H2
rig,cpU

1{Λq
„
ÝÑ Λ.

(ii) Let EV 1 be a vector bundle on some strict neighbourhood V 1 of sU 1rΛ, and consider
E as above. Then we have the following natural Λ-bilinear perfect pairing

x´,´y0 :E_ ˆ pE bO:

U 1{Λ

pΩ:

U 1{Λqcq ÝÑ Λ xu,mb ωcy
0 :“ trpupmq ¨ ωcq;

x´,´y1 :pE_ bO:

U 1{Λ

Ω:

U 1{Λq ˆ Ec ÝÑ Λ xub ω,mb fcy
1 :“ trpupmq ¨ pω b fcqq

where u P E_, m P E, fc P pO:

U 1{Λqc, ωc P pΩ:

U 1{Λqc and ω P Ω:

U 1{Λ.
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Proof. The first assertion is standard (cf. the proof of [14, Lem. 3.4(i)]). If X 1 – P1 and
U 1 – A1, then the second and third assertions are proved in [14, §3.3]. In general, one can
find a finite covering f : X 1 Ñ P1

kΛ
so that the preimage of A1

kΛ
is U 1. Then although f may

not admit a formal lift, one can find a strict neighbourhoodW 1 of sU 1rΛ contained in V 1, such
that its image in P1

Λ is a strict neighbourhood of sA1rΛ; cf. the proof of Proposition 5.2.21
in [26, p. 151]. Since the claim can be checked after push-forward by finite covering, the
claim is reduced to the case when U 1 “ A1, which is already handled. □

B.2. Overconvergent F -isocrystals. Let us choose a Λ0-linear q0-Frobenius operator

(68) φΛ0 : O:

U{Λ0
Ñ O:

U{Λ0
,

which is possible by the approximation theorem; cf. [41, Th. 2.4.4].
Let us recall the following standard definition.

Definition B.3. An overconvergent Λ0-F -isocrystal over U is a tuple pE , φE ,∇Eq, where

‚ E is a finite locally free O:

U{Λ0
-module. Note that such E necessarily comes from a

vector bundle on some strict neighbourhood V0 of sU rΛ0 via (66).

‚ ∇E : E Ñ E b Ω:

U{Λ0
is a continuous integrable connection on E.

‚ φE : E Ñ E is a φΛ0-semilinear horizontal endomorphism of E.
If ∇E and φE are understood, then we simply use E to denote an overconvergent Λ0-F -
isocrystal.

For a finite extension Λ of Λ0, we define a Λ-action on overconvergent Λ0-F -isocrystal
E to be a Λ-action on the underlying module E that is compatible with the Λ0-action and
commutes with ∇E and φE . To be more explicit, an overconvergent Λ0-F -isocrystal over U
with Λ-action consists of the following data:

‚ E is a finite locally free module over O:

U{Λ0
bΛ0 Λ.

‚ ∇E : E Ñ E b Ω:

U{Λ0
is a Λ-linear continuous integrable connection on E .

‚ φE : E Ñ E is a Λ-linear φΛ0-semilinear horizontal endomorphism of E .
Since we have O:

U{Λ0
bΛ0 Λ – O:

U 1{Λ (64), we may view E as coming from a vector bundle

on some strict neighbourhood V 1 of sU 1rΛ. Also from (65), the connection ∇E is defined
over some strict neighbourhood. On the other hand, φE can be described more naturally if

we view E as a module over O:

U{Λ0
bΛ0 Λ (instead of O:

U 1{Λ). Indeed, φE is semilinear over

φΛ0 b Λ : O:

U{Λ0
bΛ0 Λ Ñ O:

U{Λ0
bΛ0 Λ,

the Λ-linear extension of φΛ0 , which cannot be naturally defined for O:

U 1{Λ without going

through the isomorphism (64).

Lemma B.4.

(i) Let φΛ0 also denote the endomorphism on Ω:

U{Λ0
induced by φΛ0. Then we have

trpφΛ0pωqq “ q0 ¨ trpωq @ω P Ω:

U{Λ0
,

where q0 “ #pk0q and tr is defined in Lemma B.2.
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(ii) Let E be an overconvergent Λ0-F -isocrystal over U with Λ-action, and let x´,´y0

denote the duality pairing in Lemma B.2(ii). Then for any u P E_, m P E and

ωc P pΩ:

U{Λ0
qc, we have

xφ_
E puq, φEpmq b φΛ0pωcqy0 “ q0 ¨ xu,mb ωcy

0.

Proof. As in the proof of Lemma B.2, one can reduce the proof of this lemma to the case
when U – A1. In that case, the first claim is proved in [14, Prop. 4.2], and the second claim
is proved in [14, §4.3]. □

Definition B.5. Let E be an overconvergent Λ0-F -isocrystal over U with Λ-action. Then
we define the Dwork operators ψiE_ for i “ 0, 1 to be Λ-linear endomorphisms

ψ0
E_ : E_ Ñ E_

ψ1
E_ : E_ bO:

U 1{Λ

Ω:

U 1{Λ Ñ E_ bO:

U 1{Λ

Ω:

U 1{Λ,

which are respectively the adjoints of φE b φΛ0 and φEc with respect to the duality pairings
x´,´yi for i “ 0, 1; cf. Lemma B.4(ii).

Clearly, the Dwork operators ψiE_ are φΛ0-antilinear; i.e., for any f P O:

U{Λ0
and u P E_,

we have ψ0
E_pφΛ0pfq ¨ uq “ f ¨ψ0

E_puq, and similarly for ψ1
E . Furthermore, by Lemma B.4 it

follows that

(69) ψ0
E_ “ q0 ¨ φ_

E .

To make ψ1
E_ more explicit, let us consider the case when E “ O:

U{Λ0
(with Λ “ Λ0),

equipped with the Frobenius operator φΛ0 and the usual connection. Then the duality
pairing x´,´y1 in Lemma B.2(ii) takes the following form

Ω:

U{Λ0
ˆ pO:

U{Λ0
qc Ñ Λ0.

Let

(70) ψΛ0 : Ω:

U{Λ0
Ñ Ω:

U{Λ0

denote the adjoint of φΛ0 : pO:

U{Λ0
qc Ñ pO:

U{Λ0
qc. Identifying Ω:

U{Λ0
with Λ0-linear dual of

pO:

U{Λ0
qc, it follows that ψΛ0 “ q0 ¨ φ_

Λ0
. We then have

ψ1
E_ “ ψ0

E_ b ψΛ0 .

B.3. Rigid cohomology with coefficients. Let us recall the definition of rigid cohomol-
ogy with and without compact support with coefficients in Λ0-F -isocrystals with Λ-actions.

Definition B.6. Let E be an overconvergent Λ0-F -isocrystal over U with Λ-action. Suppose
that U is affine. Then we set

RΓrigpU{Λ0, E_q :“

„

E_ ∇E_

ÝÝÝÑ E_ bO:

U{Λ0

Ω:

U{Λ0

ȷ

,

which is a complex of Fréchet Λ-spaces concentrated in degrees r0, 1s.
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Note that this complex represents the rigid cohomology with coefficients in E viewed as
an overconvergent Λ0-F -crystal. Furthermore, the Dwork operator ψ‚

E_ as in Definition B.5
acts on the complex RΓrigpU{Λ0, E_q as a nuclear operator on each term; cf. [14, Lem. 5.2].

To define the compactly supported variant, let us recall that we have a derivation

d : pO:

U{Λ0
qc “ H1

sUrΛ0
pXΛ0 ,OXΛ0

q //H1
sUrΛ0

pXΛ0 ,ΩXΛ0
q “ pΩ:

U{Λ0
qc

induced by the universal derivation d : OXΛ0
Ñ ΩXΛ0

.

Definition B.7. For E as before, we set

RΓrig,cpU{Λ0, Eq :“

„

0 Ñ E bO:

U{Λ0

pO:

U{Λ0
qc

∇Ebd
ÝÝÝÝÑ E bO:

U{Λ0

pΩ:

U{Λ0
qc

ȷ

,

which is a complex of Fréchet Λ-spaces concentrated in degrees r1, 2s.

Note that this complex represents the compactly supported rigid cohomology with coef-
ficients in E viewed as an overconvergent Λ0-F -crystal. Furthermore, φE induces a natural
pφΛ0 b Λq-semilinear operator φ‚

Ec on the complex RΓrig,cpU{Λ0, Eq, which is a nuclear op-
erator on each term; cf. [14, Lem. 5.2].

Proposition B.8. The duality pairing x´,´y‚ defined in Lemma B.2(ii) induces a natural
Λ-linear isomorphism

RΓrigpU{Λ0, E_q – RHomΛpRΓrig,cpU{Λ0, Eq,Λr2sq.

Furthermore, the Dwork operator ψ‚
E_ corresponds to the Λ-linear dual of φ‚

Ec via this iso-
morphism.

Proof. By repeating the proof of Lemma B.2(ii), the first claim can be reduced to the case
when U “ A1 and X “ P1, which is proved in [14, §3.3]. The second claim directly follows
from Lemma B.4. □

B.4. L-functions and Lefschetz trace formula. Let E be an overconvergent Λ0-F -
isocrystal over U with Λ-action as before. Then given any closed point x of U with residue
field kpxq, we obtain the fibre Ex at x, which is a finite-rank W pkpxqq bW pk0q Λ-module
equipped with a Λ-linear q0-Frobenius operator φE,x.

To such E we associate the L-functions as follows:

(71) ZU pE , tq :“
ź

xP|U |
detΛp1 ´ pt ¨ φE,xqrkpxq:k0s| Exq´1.

For any positive integer r, let k
prq

0 be a degree-r extension of k0 and set

(72) SrpU, Eq :“
ÿ

xPUpk
prq

0 q
trΛpφrE,x| Exq,

which is zero when k is not contained in k
prq

0 .
One can check that

(73) ZU pE , tq “ exp
´

ÿ8

r“1
SrpU, Eq ¨ tr{r

¯

;

cf. [14, 2.3].
The main goal of the appendix is to prove the following slight generalisation of the

Lefschetz trace formula [14, Th. 6.3].
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Theorem B.9. Let E be an overconvergent Λ0-F -isocrystal over U with Λ-action. Then
we have

ZU pE , tq “
`

detΛp1 ´ t ¨ φ‚
Ec | RΓrig,cpU, Eq

˘´1

“ pdetΛp1 ´ t ¨ ψ‚
E_ | RΓrigpU, E_qq

´1 ,

where for θ‚ “ φ‚
Ec or ψ

‚
E_ we let detΛp1´tθ‚q : “

ś

idetΛp1´tθiqp´1qi denote the alternating
product Fredholm determinants of Λ-linear nuclear operators on each term.

Note that the Lefschetz trace formula proved in [14, Th. 6.3] applies only to overcon-
vergent Λ-F -isocrystals. In particular, it does not apply directly to our setting unless OU

contains the residue field kΛ of Λ.

Proof. By the Poincaré duality it suffices to show the first equality (i.e., the equality via
the compactly supported rigid cohomology). By (73) it suffices to show

(74) SrpU, Eq “ trΛppφ‚
Ecqr| RΓrig,cpU, Eqq

for any r. And to verify (74) it suffices to show that

(75) trΛpφ‚
Ec | RΓrig,cpU, Eqq “ 0 if Upk

prq

0 q “ H;

i.e., the generalisation of [14, Lem. 5.3]. Indeed, if k is not contained in k
prq

0 then SrpU, Eq “

0. If k is contained in k
prq

0 , then we may apply the excision sequence for the compactly
supported rigid cohomology to the following setting

Upk
prq

0 qGalpk
prq

0 {kq ãÑ U Ðâ UzUpk
prq

0 qGalpk
prq

0 {kq

and conclude that (75) implies (74).
To verify (75) we use the following lemma.

Lemma B.10. Let R be a Fréchet Λ-algebra equipped with a Λ-linear lift of qr0-Frobenius
morphism φ : R Ñ R. Let M be a Fréchet R-module equipped with a nuclear φ-semilinear
endomorphism φM :M Ñ M . Then for any f P R we have

trΛ ppf ´ φpfqq ¨ φM q “ 0

Proof. (Compare with the proof of Lemma 5.3 in [14].) Let us consider the following
morphism of exact sequences:

0 // kerpfq //

0
��

M
f
//

φpfq¨φM

��

M //

f ¨φM

��

M{fM //

0
��

0

0 // kerpfq // M
f
// M // M{fM // 0

.

Therefore it follows that trΛpφpfq ¨ φM q “ trΛpf ¨ φM q, hence the lemma. □

We will apply the above lemma to R “ O:

U{Λ0
bΛ0Λ and rth iterated Frobenius operators.

Since Upk
prq

0 q “ H, the graph of the qr0-Frobenius and the diagonal do not intersect in UˆU .
Therefore, there exists fj , gj P R such that

ÿ

j
fjgj “ 1 and

ÿ

j
φrpfjqgj “ 0,
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so we have 1 “
ř

jpfj ´ φrpfjqq ¨ gj .

Apply the above lemma when M is one of the terms in RΓrig,cpU{Λ0, Eq and φM “

gjpφ
‚
Ecqr for each j, we obtain

trΛ
`

φEcq “ trΛp
ÿ

j
pfj ´ φrpfjqqgjpφ

‚
Ecqr

˘

“
ÿ

j
trΛ

`

pfj ´ φrpfjqqgjpφ
‚
Ecqr

˘

“ 0,

which proves (75), hence the theorem. □
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à réduction semi-stable, J. Math. Sci. Univ. Tokyo 9 (2002), 279–301.
[36] F. Trihan, D. Vauclair, A comparison theorem for semi-abelian schemes over a smooth curve,

Preprint, arXiv:math/1505.02942, 204 pages.
[37] F. Trihan, D. Vauclair, On the non commutative Iwasawa Main Conjecture for abelian varieties

over function fields, Doc. Math. 24 (2019) 473–522.
[38] N. Tsuzuki, The overconvergence of morphisms of étale φ-∇-spaces on a local field, Compos.

Math. 103 (1996), 227–239.
[39] N. Tsuzuki, Finite local monodromy of overconvergent unit-root F -isocrystals on a curve, Amer.

J. Math. 120 (1998), 1165–1190.
[40] D. Ulmer, Elliptic curves with large rank over function fields, Ann. of Math. (2) 155, 295–315

(2002).
[41] M. van der Put, The cohomology of Monsky and Washnitzer, Mém. Soc. Math. France 2e série
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