ON A REFINEMENT OF THE
BIRCH AND SWINNERTON-DYER CONJECTURE
IN POSITIVE CHARACTERISTIC
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ABSTRACT. We formulate a refined version of the Birch and Swinnerton-Dyer conjecture
for abelian varieties over global function fields. This refinement incorporates both new
families of algebraic relations between leading terms (at s = 1) of Hasse-Weil-Artin L-
series and restrictions on the Galois structure of Selmer complexes, and constitutes a
natural analogue for abelian varieties over function fields of the equivariant Tamagawa
number conjecture for abelian varieties over number fields. We provide strong supporting
evidence for the conjecture including giving a full proof, modulo only the assumed finiteness
of Tate-Shafarevich groups, in an important class of examples.
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1.1. Let A be an abelian variety that is defined over a function field K in one variable over

a finite field of characteristic p.

In [34] Artin and Tate formulated a precise conjectural formula for the leading term at

s = 1 of the Hasse-Weil L-series attached to A.

This formula constituted a natural ‘geometric’ analogue of the Birch and Swinnerton-Dyer
Conjecture for abelian varieties over number fields and was subsequently verified uncondi-
tionally by Milne [27] in the case that A is constant and by Ulmer [40] in certain other
special cases. Further partial results have been obtained by many other authors and these
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efforts culminate in the main result of the seminal article of Kato and Trihan [22] which
shows that the conjecture is valid whenever there exists a prime ¢ such that the ¢-primary
component of the Tate-Shafarevich group of A over K is finite.

In this article we now formulate, and provide strong evidence for, a refined version of this
conjecture that also incorporates new families of algebraic relations between the (suitably
normalised) leading terms at s = 1 of the Hasse-Weil-Artin L-series that are attached to
A and to irreducible complex characters (with open kernel) of the absolute Galois group
of K. This conjecture is a natural analogue for abelian varieties over function fields of the
equivariant Tamagawa number conjecture (‘ETNC’), including the p-primary part, for the
motive h'(A)(1) of abelian varieties A over number fields.

To be a little more precise about our results we now fix a finite Galois extension L of K
with group G.

Then, as a first step, we shall prove that the leading terms of the Hasse-Weil-Artin L-
series that are attached to A and to the irreducible complex characters of GG are interpolated
by a canonical element of the Whitehead group K;(R[G]) of the group ring R[G]. (This
result is, a priori, far from clear and requires one to prove, in particular, that leading terms
at irreducible symplectic characters are strictly positive.)

Our central conjecture is then a precise formula for the image of this element under the
connecting homomorphism from K;(R[G]) to the relative algebraic Ko-group Ko(Z[G], R[G])
of the ring inclusion Z[G] < R[G].

The conjectural formula involves a canonical Euler characteristic element that is con-
structed by combining a natural ‘Selmer complex’ of G-modules together with the classical
Néron-Tate height pairing of A over L. This Selmer complex is constructed from the flat
cohomology of the torsion subgroup scheme of the Néron model of A over the projective
curve X with function field K and, provided that the relevant Tate-Shafarevich groups are
finite, is both perfect over Z[G] and has cohomology groups that are closely related to the
classical Mordell-Weil and Selmer groups of A’ and A over L.

The formula also involves the Euler characteristic of an auxiliary perfect complex of
G-modules that is constructed directly from the Zariski cohomology of an appropriate line
bundle over X and is necessary in order to compensate for certain choices of pro-p subgroups
that are made in the definition of the Selmer complex.

If L = K, then Ky(Z[G],R[G]) identifies with the quotient of the multiplicative group
R* by {+1} and we check that in this case our conjecture recovers the classical Birch and
Swinnerton-Dyer conjecture for A over K.

In the general case, the conjecture incorporates both a family of precise algebraic relations
between the normalised leading terms of Hasse-Weil-Artin L-series attached to A and to
characters of G and also strong restrictions on the Galois structure of Selmer complexes
(for more details see the discussion in §4.2.3).

To study the conjecture, we adapt (and, in some respects, clarify) certain constructions
and arguments from [22] relating to syntomic cohomology complexes. In this way we are
able to prove that, whenever there exists a prime ¢ such that the ¢-primary component
of the Tate-Shafarevich group of A over L is finite, then our conjecture is valid modulo a
certain finite subgroup Ty 1 i of Ko(Z[G],R[G]), the nature of which depends both on the
reduction properties of A and the ramification behaviour in L/K.



For example, if A is semistable over K and L/K is tamely ramified, then 7 /5 vanishes
and so we obtain a full verification of our conjecture in this case.

In the worst case the group T4 /i coincides with the torsion subgroup of the subgroup
Ky(Z|G],Q[G]) of Ko(Z|G],R[G]) and our result essentially amounts to proving a version
of the main result of [22] for the leading terms of the Hasse-Weil-Artin L-series attached to
A and to each character of G.

However, even the latter result is new and of interest since, for example, it both establishes
the ‘order of vanishing’ part of the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-
Artin L-series and, in addition, plays a key role in a forthcoming complementary article
that deals with, modulo the standard finiteness hypothesis on Tate-Shafarevich groups, the
case of abelian varieties A that are generically ordinary.

As a key step in the proof of our main result we shall combine Grothendieck’s description
of Hasse-Weil-Artin L-series in terms of the action of Frobenius on ¢-adic cohomology (for
some prime ¢ £ p) together with a result of Schneider concerning the Néron-Tate height-
pairing to show that our conjectural formula naturally decomposes as a sum of ‘/-primary
parts’ over all primes /.

It is thus of interest to note that in some related recent work Trihan and Vauclair [37] have
adapted the approach of [22] in order to formulate and prove a natural main conjecture of
(p-adic) non-commutative Iwasawa theory for A relative to unramified p-adic Lie extensions
of K under the assumptions both that A is semistable over K and that certain Iwasawa-
theoretic p-invariants vanish.

In addition, for each prime ¢ # p, Witte [43] has used techniques of Waldhausen K-theory
to deduce an analogue of the main conjecture of non-commutative Iwasawa theory for /-adic
sheaves over arbitrary p-adic Lie extensions of K from Grothendieck’s formula for the Zeta
function of such sheaves.

It seems likely that these results can be combined with the descent techniques developed
by Venjakob and the first author in [6] and the explicit interpretation of height pairings
in terms of Bockstein homomorphisms that we use below to give an alternative, although
rather less direct, proof of the ¢-primary part of our main result for any ¢ & p and of the
p-primary part of our main result in the special case that L/K is unramified and suitable
p-invariants vanish.

However, even now, there are still no ideas as to how one could formulate a main con-
jecture of (non-commutative) Iwasawa theory for A relative to any general class of ramified
p-adic Lie extensions of K.

It is thus one of the main observations of the present article that the techniques developed
by Kato and Trihan in [22] are essentially themselves sufficient to prove refined versions of
the Birch and Swinnerton-Dyer conjecture without the need to develop an appropriate
formalism of non-commutative Iwasawa theory (and hence without the need to assume the
vanishing of relevant u-invariants).

This general philosophy also in fact underpins the complementary work of the first two
authors regarding generically ordinary abelian varieties.

In a little more detail, the main contents of this article is as follows.
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Firstly, in §2 we use the leading terms of the Hasse-Weil-Artin L-series attached to
complex characters of G to define a canonical element of K;(R[G]). Then, in §3, we define
a natural family of ‘Selmer complexes’ of G-modules and establish some of its key properties.

In §4 we formulate our main conjecture, describe some of its explicit consequences and
state the main supporting evidence for the conjecture that we prove in later sections.

In §5 we prove certain useful preliminary results including a purely K-theoretic obser-
vation that plays a key role in several subsequent calculations. We also show that our
conjecture is consistent in some important respects and use a result of Schneider to give a
useful reformulation of the conjecture.

In §6 and §7 we investigate the syntomic cohomology complexes introduced by Kato and
Trihan in [22], with a particular emphasis on understanding conditions under which these
complexes can be shown to be perfect.

In §8 we analyse when certain morphisms of complexes that arise naturally in the theory
are ‘semisimple’ (in the sense of Galois descent) and deduce, modulo the assumed finiteness
of Tate-Shafarevich groups, the order of vanishing part of the Birch and Swinnerton-Dyer
conjecture for Artin Hasse-Weil L-series.

Then, in §9, we combine the results established in earlier sections to prove our main
results.

There are also two appendices to this article. In the first of these, we show that coherent
cohomology over a ‘separated’ formal fs log scheme can be computed via the Cech resolution
with respect to an affine Kummer-étale covering. (This result plays an important role in
the arguments of §7 and, whilst it is surely well-known to experts, we have not been able
to find a good reference for it.)

Then, in the second appendix, we extend the notion of overconvergent A-F-isocrystal for
a finite extension A of Q, whose residue field is not necessarily contained in the field of
constants of the base curve, and also the Lefschetz trace formula for rigid cohomology with
such coefficients. (This result is needed to obtain Theorem 8.2 without further restriction,
and the proof is a mere repetition of the proof of Etesse and Le Stum in [14].)

1.2. To end the introduction we collect together certain notation and conventions that are
to be used in the sequel.

We fix a prime number p and a function field K in one variable over a finite field of
characteristic p. We write X for the proper smooth connected curve over F, that has
function field K.

Let A be an abelian variety over K. Let U be a dense open subset of X such that A/K
has good reduction on U. We write A for the Néron model of A over X.

Let F' be a finite extension of K. Let X denote the proper smooth curve over [F,, that
has function field F'. We will denote the ‘base extension’ of an object * over either K or X
to that over F of X by a subscript *p. For example Ar and Ur denote A x g F, U xx Xp
respectively. If there is no danger of confusion we often omit the subscript F'.

If M is an abelian group or complex of abelian groups, we denote its Pontryagin dual
Hom(M,Q/Z) by M*. If W is a Qg-module or complex of Qp-modules for some prime ¢, we
denote its linear dual Homg, (V, Q) by V'V (regarding ¢ as clear from context). If either M
or V has a left action of a group, then we endow M™* and V'V with the corresponding left
contragredient action.



We fix an algebraic closure Q° of Q and for every prime ¢ an algebraic closure Qf of Q
and the f-adic completion C, of QF. For every prime £, we also fix an embedding Q° — Qj.

For each natural number n the n-torsion subgroup of an abelian group M is denoted
by M|[n]. The full torsion subgroup of M is denoted by M., and, for each prime ¢, the
¢-primary part of My, is denoted by M{¢}.

For a finite group G we write Ir(G) for the set of its irreducible complex valued characters
and Ir®(G) for the subset of Ir(G) comprising characters that are symplectic. We write x
for the contragredient of each y in Ir(G) and 1¢ for the trivial character of G.

For any commutative ring R we write R[G] for the group ring of G over R and denote
its centre by ((R[G]). We identify ((C[G]) with [ ]}, (C in the standard way.

Acknowledgement: We are very grateful indeed to both Fabien Trihan and Takashi
Suzuki for several extremely helpful conversations, e-mail exchanges and remarks concern-
ing previous drafts of this article. We also thank the anonymous referee for the careful
reading and helpful comments. The second named author is supported by DST-SERB
grant SB/SJF/2020-21/11, SERB SUPRA grant SPR/2019/ 000422, DST FIST program -
2021 [TPN - 700661}, and Tata Education and Development Trust. The third named author
was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2020R1C1C1A0100945311).

2. LEADING TERMS OF HASSE-WEIL-ARTIN L-SERIES

We fix a finite Galois extension L/K with Galois group G, and choose U not to contain
any place that ramifies in L/K. For each x in Ir(G) we write Li7(A4, x, s) for the Hasse-
Weil-Artin L-series of the pair (A, x) that is truncated by removing the Euler factors for
all places outside U.

We now show that there exists a canonical element of the Whitehead group K;(R[G])
that naturally interpolates the leading terms Lj;(A, x,1) at s = 1 in the Taylor expansions
of the functions Ly (A, x, s) as x ranges over Ir(G).

This ‘K-theoretical leading term’ will then play an important role in the conjecture that
we discuss in subsequent sections (but also see Remark 4.6 in this regard).

To define the element we use the fact that the algebra R[G] is semisimple and hence
that the classical reduced norm construction induces a homomorphism Nrdg[g] of abelian
groups from K7 (R[G]) to the subgroup ((R[G])* of [ [} C*.

Theorem 2.1. There exists a unique element Lj;(Ar/k, 1) of Ki(R[G]) with the property
that Nrdgq)(Li(Ark, 1)x = L (A, x, 1) for all x in Ir(G).

Proof. Since the natural map R[G]* — K;(R[G]) is surjective, the Hasse-Schilling-Maass
norm theorem implies both that Nrdg[g) is injective and that its image is equal to the sub-
group of le(G)CX comprising elements (), that satisfy both of the following conditions

Troy = T(Ty), for all x in Ir(G), and
zy € R and z,, >0, for all x in Ir*(G),

where 7 denotes complex conjugation. (For a proof of this result see [11, Th. (45.3)].)
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The injectivity of Nrdg(g) implies that there can be at most one element of K;(R[G])
with the stated property and to show that such an element exists it is enough to show that
the element (Lj;(A, x, 1))y of [ 1) C™ satisfies the above displayed conditions.

This fact is established in Proposition 2.2 below. O

The following result extends an observation of Kato and Trihan from [22, Appendix].

Proposition 2.2. The following claims are valid for every x in Ir(G).
(i) For every automorphism w of C one has T(L{;(A,x,1)) = L;(A, 7o x,1). In par-
ticular, one has L{;(A,x,1) € R if x is real valued.
(i) Write Fq and Fy for the total field of constants of K and L respectively. Then if x is

both real valued and not inflated from a non-trivial one dimensional representation
of Gal(Fy /F,), one has L{;(A, x,1) > 0.

Proof. At the outset we fix a prime ¢ with £ & p and write Q¢ for the algebraic closure of
Q in C. We also fix an isomorphism C =~ C,; that we suppress from the notation.

In particular, for each p in Ir(G) we fix a realisation V, of p over Q° and do not distinguish
between it and the space Qf ®gc V).

Now for every p in Ir(G) Grothendieck [17] (see also the proof of [28, Chap. VI, Th.
13.3]) has proved that there is an equality of power series

1=2 —sy(—1)i+1!
(1) LU(A7p7 3) = Hi:OQp,i(q )( b ’ )
where each @, ;(u) is a polynomial in u over Q¢ that can be computed as
Qp,i(u) := det (1 —u- o[ Hi (U, V, ®g Vi(4)) (1))

Here U denotes U xp, Fy, the vector space Vi(A) is the Qg-space spanned by the ¢-adic
Tate module of A and ¢, the g-th power Frobenius map. We claim that, for each ¢ and
every automorphism w of C, one has

(2) W(Qp,%’(“)) = (QwOp,i(u))'

In fact, since Grothendieck’s result implies that the polynomial @,;(u) has coefficients
in Q¢ it is enough to consider automorphisms w of Q€. Then, for each such w, the natural
isomorphism of (Qy ®g Q°)-spaces

Q° ®gew (V, ®g Ve(A)) = (Q° ®qgew V) ®q Vi(A) = Ve ®g Vi(A)

induces a similar isomorphism of the corresponding sheaves over U¢ and hence an isomor-
phism of cohomology groups

@C ®QCM Hét,c(Uc7 ‘/P ®Q W(A)) = Hét,(:(UCa pr ®Q W(A»

under which (1® ¢4) on the first space corresponds to ¢, on the second space. This proves
the claimed equality (2).

The equalities (2) (for each i € {0,1,2}) can then be combined with (1) to deduce that
the orders of vanishing at s = 1 of the series Ly(A, p,s) and Ly(A,w o p,s) are equal and
moreover that

w(LE(A7p7 1)) = LZ*J(A7W °p, 1))



as required. The final assertion of claim (i) then follows immediately upon applying this
equality with w = 7.

To prove claim (ii) we assume p is real-valued and hence, by (2) with w = 7, that each
polynomial @, ;(u) belongs to R[u].

For each i we set

dp,i := dimge (H, (U, V, ®qg Vi(A))(—1))

and write the eigenvalues, counted with multiplicity, of ¢, on this space as {am}lgagdm.
Now, since the weight on U of (V, ®qg Vi(A))(—1) is one, Deligne [13] has shown that
|via| < D72 for all values of ¢ and a.
Further, as the space H}, C(UC V,®q Ve(A))(—1) is dual to HY, (U®, V;®q Vi(A?))(1), and

the weight on U of the representation (V; ®g Vo(A"))(1) is —3, one has |ag,| = q2 for all a.
Therefore neither of the terms Q,0(q™!) or Q,2(¢!) vanish.
In particular, if m denotes the order of vanishing of Ly (A, p,s) at s = 1, then one has

(3) Li(A,p1) = @pola™) ' Qpala™) ™"+ (s = 1) 7" Qpua(a™).

To prove that this quantity is a strictly positive real number we shall split it into a
number of subproducts and show that each separate subproduct is a strictly positive real
number.

At the outset we note that if an eigenvalue «a;q, is not real, then (since @Q,;(u) belongs
to R[u]) there must exist an index a % a’ such that ;s = 7(@;,) and then the product
(1 — ciaq 1) (1 — ajrq™ ") is a strictly positive real number.

We need therefore only consider eigenvalues a;, that are real and to do this we define for
each i € {0, 1,2} sets of indices

Jii={a:1<a<d,; with a;q = 2 e Jgi={a:1<a< d,; with o, € R}.
Now if either ¢ = 0 and a € Jy or if 1 < i < 2 and a € J;\J/, then one checks easily that

(1 — iag™t) > 0.
Furthermore, one has m = |J{| and

hm (s—1) mH J, (1 —a1.q7°%) = (E_)m1($ — D)1 =gt = (log(g))™ >0

is a strictly positive real number.
To prove the quantity in (3) is strictly positive we are therefore reduced to showing that
the product

Hae]é(l —gaq ) = Hae%(l - q1/2)

is strictly positive, or equivalently that |.J5| is even.
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To do this we set A := Gal(LF;/KF¢) and recall that HZ

é.c(U%V, ®g Vi(A)) is dual to
the (1)-twist of the space

Gal(K°/KF¢)

HE (U, Vs ®g Vi(A")) = (V5 ®q Vi(A")

(Vs ®q Vi(Ah)GUE/LED) 2
(Vv (0 IZ(B)>
=V ®q Vi(B).

Il

Here the first equality is obvious and the second is true because the restriction of p to
Gal(K*¢/LIF¢) is trivial, B is the L/F, trace of A" (see [25, Chap. VIII, §3, Th. 6] and note
that L/Fy is primary i.e. the algebraic closure of Fy in L is purely inseparable extension
of Fy) and the last equality is true because B is defined over Fy.

In particular, if the representation p® vanishes, then |J5] = d2 = 0 is even and we are
done.

We claim now that 5® does indeed vanish unless p is trivial. To show this we note that
A identifies with a normal subgroup of G in such a way that the quotient is isomorphic to
the cyclic group H := Gal(Fy/F,).

Thus, if 7 is any irreducible subrepresentation of res§(p), then Clifford’s theorem (cf.
[11, Th. 11.1(i)]) implies that res% (p) is the direct sum of conjugates of 7 and hence that
res§ (5)2 does not vanish if and only if 7 is trivial.

It follows that res% ()2 does not vanish if and only if res§ () is trivial and this happens
if and only if p, and hence also p itself, is inflated from a representation of H.

Hence, since we have assumed that p is both irreducible and not inflated from a non-
trivial representation of H, the representation resg( 7)™ does not vanish if and only if p is
the trivial representation of G.

We have now verified the assertion of claim (ii) for all but the trivial representation of G
and in this case the claimed result is proved by Kato and Trihan in [22, Appendix]. O

Remark 2.3. Fix a prime £ and an /-adic representation V' of G. Then the tensor product
Q}[G] ®g, V is a (left) module over G x Gk via the rule (¢,0)(z ®v) := g5 ' @ o(v) for
g€ G,0eGg,z e Qj[G] and v € V, where 7 is the image of o under the restriction map
Gk — G. In particular, if we fix x in Ir(G) and a realisation V, over Qf, then, with respect
to this action, there is a canonical isomorphism of /-adic representations of G

V ®Qev Hoch ( XvQZ[ ]®Qz V)’

where G acts diagonally on V, ®g, V and on the Hom-group via only Qf[G] ®q, V. This
isomorphism is induced by the canonical composite identification

H(G, Homg (Vy, Qf[G] ®q, V) = H?(G, Homg (Vy, QF) ®q; (QF[G] ®q, V)
=~Hy(G, Hoch( X?QZ) ®@g (Q7G] ®q, V)
= Homgg (Vy, QF) ®gglar (Q7[G] ®q, V)
=~ Homgg (Vy, QF) ®q, V-



Here the second isomorphism is induced by the inverse of the canonical norm map (since
the order of G is invertible in Qf), and all other isomorphisms are clear.

3. ARITHMETIC COMPLEXES

In this section we construct certain canonical complexes of Galois modules whose Eu-
ler characteristics will occur in the formulation of our refined Birch and Swinnerton-Dyer
conjecture.

In the sequel, for any noetherian ring R we shall write DP*f(R) for the full triangulated
subcategory of the derived category D(R) of (left) R-modules comprising complexes that are
‘perfect’ (that is, isomorphic in D(R) to a bounded complex of finitely generated projective
R-modules).

3.1. Selmer groups. The Tate-Shafarevich group and, for any natural number n, the
n-torsion Selmer group of A over any finite extension F' of K are respectively defined to be
the kernels

I(A/F) := ker(H'(F, A) —» P H'(F,, A))
and
Sel, (A/F) := ker(H(F, A[n]) — EI—)UHI(FU,A)).

Here the groups H'(F, A), H*(F, A[n]) and H'(F,, A) denote flat cohomology and in both
cases v runs over all places of F' and the arrow denotes the natural diagonal restriction map.
One then defines Selmer groups of A over F' via the natural limits

Selg/z(A/F) := lim Sel,,(A/F) and Sel;(A/F) := lim Sel,(A/F)

and, for convenience, we write X (A/F) for the Pontryagin dual of Selg,z(A/F).

Remark 3.1. We make much use in the sequel of the fact that the above definitions lead
naturally to canonical exact sequences

0 — A(F) ®z Z — Sel;(A/F) — im III(A/F)[n] — 0
and
0 — (II(A/F)ors)¥ — X(A/F) — Homgz(A(F),Z) — 0.

3.2. Arithmetic cohomology. For each place v of F outside Ur we fix a pro-p open
subgroup V;, of A(F,) and denote the family (V,)v¢v, by Vs, or more simply by either Vi
or V' when the context is clear.

We then follow Kato and Trihan [22] in defining the ‘arithmetic cohomology’ complex
RT 4 v (Ur, Ators) to be the mapping fibre of the morphism

(4)  RTa(Ur, Awr) ® (@D, Vo ® Q/Z)[-1]) 2 @ RTa(Fy, Ators)-

Here k1 denotes the natural diagonal localisation morphism in flat cohomology and ko the
restriction of the morphism

(A(Fv) ®Hi Q/Z) [_1] - @véUFRFﬂ(F”’ Ators)
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that is obtained by applying — ®% Q/Z to the morphism A(F,)[—1] — RTq(Fy, lim A[n])
in D(Z[G]) induced by the fact that H)(F,, lim A[n]) vanishes whilst A(F}) is canomcally
isomorphic to a submodule of Hj(F,, lim = A[n]).

Proposition 3.2. The complex C% := RUq, v (Ur, Aiors) is acyclic outside degrees 0,1 and
2. In addition, there exists a canonical exact sequence

O_)HO(C%r) tors_’@ $U /V —>H (C ) HSGIQ/Z(A/F)—»O,
and a canonical isomorphism H?(C¥) ~ HomZ(SeIZ(At/F),Q/Z).
Proof. This is proved in [22, §2.5]. O

Since R g, v (Ur, Ators) is a complex of torsion groups it decomposes naturally as a direct
sum of /-primary component complexes R4 v (U, Ators)e-

Remark 3.3. For any prime ¢ 4 p the definition of Ry, v (Ur, Ators)e via the morphism
in (4) implies that it identifies with the compactly supported étale cohomology complex
RT¢ o(Up, A{f}) of the (étale) sheaf A{¢} on Ur comprising all /-primary torsion in A.

3.3. Pro-psubgroups. To make the complex Ry, v (Up, Ators) constructed above amenable
for our purposes we need to make an appropriate choice of the family V. We now explain
how to make such a choice following the approach of Kato and Trihan in [22, § 6].

To do this we fix a finite Galois extension L/K and set G := Gal(L/K). We let X1, be
the proper smooth curve with function field L, and let U, < X, be the preimage of U (and
we will later ‘shrink’ U so that L/K is unramified at places in U). For any place w of L we
write G, for its decomposition subgroup in G.

We write A" for the Néron model of Ay, over X, and Ax, for the pull back of A.

Lemma 3.4. There exists a G-invariant divisor £ = 3} .r; n(w)w on X, with supp(E) =
X \Ur and for each place w ¢ Ur over v ¢ U a Gy-stable pro-p open subgroup V. of
Ar(Ly) and an open Oy[Gy,|-submodule W), of Lie(Ar (L)) that satisfy all of the following
properties.
(1) For w ¢ Uk, we have A'(ma' n(w )) c V) < Ax, (m n(w)).
(2) For w ¢ Uy, we have Lie(A’)(m 2n(w)) c W) c Lle(AXL)(m?U(w)).
(3) For w ¢ Up, the canonical zsomorphz’sm
A (mp ) A (m () = Lie(A') (")) /Lie(A') (m )
sends the image of Vi) to W,,.
(4) For each place v outside U the products levV and [ [,,
the action of G and for each natural number i the associated cohomology groups
H'(G,]] ») and H'(G,[1,,,Wy,) vanish.

wlv ¥ w

., are stable under

We can furthermore require E to be the pull back of some divisor Egy of X.
In the application (cf. § 7ff) we need E to be the pull back of a divisor Ey of X.

Proof. This result is only a slight adaptation of [22, Lem. 6.4] (see Remark 3.5 below). For
this reason we only sketch the proof, following closely the argument of [22, §6].
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The key point is that it suffices to construct a divisor E and a family of subgroups {W, }.,
with the properties stated in Lemma 3.4, since the family {W} },, uniquely determines the
family {V, }, by property (3) and then the latter family can be shown to satisfy property
(4) by repeating the proof of [22, Lem. 6.2(2)].

Now, by the argument of [22, Lem. 6.2(1)], for each place w of L outside Uy, there exists
a constant ¢(w) such that for any integer n > 0 there exists a G,-stable O,-lattice W, of
Lie(Ax, )(Oy) such that both

Lie(Ax, )(m™+e")) « W! < Lie(Ax, )(m?).

and the group H*(G,,, W/,) vanishes for all i > 1.

By the argument of [22, Lem. 6.3], we may in addition assume that the subgroups W,
satisfy property (2), at least provided that n(w) is sufficiently large and divisible by the
ramification index e(w|v). (We would like n(w) to be divisible by e(w|v) in general since we
are only allowed to multiply W}, by O,-multiple; recall that W/ is only an O,-submodule,
not an Oy,-submodule.)

To ensure that the product Hw¢UL W), is stable under the action of G, we first fix a place
w over each v ¢ U and a subgroup W/, that has property (2) and is such that H*(G,,, W})
vanishes for all ¢ > 1.

For each o in G, we then set W;(w) = o(W,

w) © Lie(Ax, )(Og(y)) (which, we note, only
depends on o(w)). Then the collection of subgroups {W, },¢r, clearly has both of the
properties (2) and (4).

To ensure that E is a pull back of some divisor Ey of X, we may replace E with 7* (7 E)
and replace {W,},, by some suitable power of uniformiser of O,,. O

Remark 3.5. Lemma 3.4 only differs from [22, Lem. 6.4] in that we require each group
W/ to be an open O,[G,]-submodule of Lie(A’)(O,,) rather than an open O,,-submodule
as in loc. cit. In fact, in [22, Lem. 6.2(1)], it is claimed that W, can be chosen as an
O-sublattice of Lie(Ax, )(Oy), but the indicated proof seems only to show that it can be
chosen as a G,-stable O,-lattice.

Remark 3.6. The proof of Lemma 3.4 shows that for any place v of K that is both
unramified in L and of good reduction for A, the subgroup V., can be chosen as A(m,,).

3.4. Selmer complexes. For each place w outside Uy, we now fix a choice of subgroups
V. as in Lemma 3.4. For any subgroup J of G and for any place v outside U;s we then

define a group
J
Vorm ([, %)

and we denote the associated families of subgroups (V,)y¢r, and (VU)U¢UL , by Vi and Vi,
respectively. We may occasionally write V for Vi when J = G.

In the following result we use these subgroups to construct a canonical ‘Selmer com-
plex’ SCy, (A, L/K) that will play a key role in the formulation of our refined Birch and
Swinnerton-Dyer conjecture.

We also use the G-module X7 (A/F) that is defined as the pre-image of Homgz(A(F'),Z)
under the natural surjective homomorphism X (A/F) — Homg(A(F),Z) (see Remark 3.1).

Proposition 3.7. The following claims are valid.
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(i) RTurvy (Ur, Alors)*[~2] is an object of DP(Z[G]) that is acyclic outside degrees
0,1 and 2.

(i) If the groups I(A/L) and TI(AY/L) are both finite, then there exists a complex
SCy, := SCy, (A, L/K) in DP*Y(Z[G]) that is acyclic outside degrees 0,1 and 2,
is unique up to isomorphisms in DP*™(Z[G]) that induce the identity map in all
degrees of cohomology and also has both of the following properties:

(a) One has H°(SCy,) = AY(L), H*(SCy, ) contains Xz(A/L) as a submodule of
finite index and H?(SCy,) is finite.
(b) There exists a canonical isomorphism in DP*™(Z[G]) of the form

Z ®z SCVL = Rrar,VL (UL, Ators)* [_2]

Proof. For each subgroup J of G we set C‘a} g = Rrar,VL ,(Ups, Ators) and we abbreviate
Cy; to CFF when J is the trivial subgroup.

Then, since H Z(C"a}i}* [-2]) = H**(C{#;)* in all degrees 4, the result of Proposition 3.2
implies that each complex C{a}f:]* [—2] is acyclic in all degrees outside 0,1 and 2 and that its

cohomology is finitely generated over Z in all degrees.

By a standard criterion, it follows that Cf,*, and hence also C{;"*[—2], belongs to
DP(Z[G]), and so claim (i) is valid, if for every subgroup J of G there is an isomor-
phism in D(Z) of the form Z ®H2[J] Co™ = C’f}f:]*

In view of the natural isomorphisms Z®Hi[ 7 Cy* = RHomy;(Z, C¥)* we are therefore

~

reduced to showing the existence of isomorphisms in D(Z) of the form
(5) R HomZ[J] (Za RPar,VL (UL7 -Ators)) = RFar,VLJ (ULJ ) Ators)

and this is proved by Kato and Trihan in [22, Lem. 6.1].

Turning to claim (ii), we note that claim (i) combines with the general result of Lemma
3.8 below to imply it suffices to show that, under the stated hypotheses, the group H O(C’“}r)*
is finite, the group H%(C%)* is naturally isomorphic to 7®y AY(L) and there exists a finitely
generated G-module M that contains Xz(A/L) as a submodule of finite index and is such
that there is a canonical isomorphism Z ®y, M' =~ H'(C%)* of Z[G]-modules.

In this direction, the exact sequence in Proposition 3.2 implies directly that H°(C¥)* is
finite.

In addition, since the limit lim | I11(A?/L)[n] vanishes under the assumption III(A?/L) is
finite, the displayed isomorphism in Proposition 3.2 combines with the first exact sequence
in Remark 3.1 to give a canonical isomorphism

H*(CY)* = (Z®z A'(L))** = Z®z A'(L)

of the required form.

Next we note that, since III(A/L) is assumed to be finite, the second exact sequence in
Remark 3.1 implies Xz(A/L) is finitely generated.

Thus, if we write Y for the (finite) cokernel of the map A(L)tors — @, gr7, A(Lv)/ Ve that

occurs in Proposition 3.2, then the natural map of finite groups

Extg (Y, Xz(A/L)) = L@z Bxtg(Y*, Xz(A/L)) — Ext . (Y*, X(A/L))
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is bijective and so there exists an exact commutative diagram of G-modules

0 — Xz(A/L) —— M  ——Y* —— 0

| | |

0 —— X(A/L) —— HYCH)* —— Y* —— 0

in which the first vertical arrow is the natural inclusion, and so induces an isomorphism
Z.®yz Xz(A/L) =~ X(A/L), and the lower row is induced by the Pontryagin dual of the long
exact sequence in Proposition 3.2.

In particular, from the upper row of the above diagram we can deduce that M is finitely
generated and hence is a suitable choice for the module M that we seek. (|

In the sequel, for a ring A and integer a, we write 7=, and 7, for the truncation functors
on D(A) in degrees at least a and at most a respectively.

We also recall that a G-module is said to be ‘cohomologically-trivial’, or ‘c-t’ for short
in the sequel, if for every integer ¢ and every subgroup J of GG the Tate cohomology group
H(J, M) vanishes.

Lemma 3.8. Let C be a cohomologically-bounded complex of Z[ G]-modules and assume to
be given in each degree j a finitely genemted G-module M7 and an isomorphism of Z[ ]-
modules of the form ¢; : 7.®z Mi =~ HIi(C).

Then there exists an object C' of D(Z[G]) with all of the following properties:

(i) HI(C) = M7 for all j.
(i) There exists an isomorphism 1 : ZQ®gz C =~ C in D(Z[G]) for which in each degree j
one has HI (1) = 1.

(iii) C belongs to DP(Z[G]) if and only if C belongs to DP*™(Z[G]).
Any such complex C is unique to within an isomorphism k in D(Z[G]) for which H? (k) is
the identity automorphism of M7 in each degree j.

Proof. We prove this by induction on the number of non-zero cohomology groups of C.

If there is only one non-zero such group, in degree d say, then C is isomorphic in D(Z[G])
to (Z ®z M?*)[—d] and we write C for the complex M?[—d] in D(Z[G]).

In this case claim (i) is clear and claim (ii) is true with ¢ the morphism induced by ¢4.
Finally, since any finitely generated module over either Z[G] or Z[G] that is c-t has a finite
projective resolution, C' belongs to DP(Z[G]) if and only if M is c-t and C' belongs to
DPe(Z[G]) if and only if M? is c-t. This implies claim (iii) since a finitely generated G-
module N is c-t if and only if Z®z N is c-t as a consequence of the fact that in each degree
i and for each subgroup J of G the natural map H'(J,N) — H'(J,Z®z N) is bijective.

To deal with the general case we assume C is not acyclic and write d for the unique integer
such that H%(C) + 0 and H(C) = 0 for all i > d. We then abbreviate the complexes <4 C
and 754C to C; and Cy and recall that there is a canonical exact triangle in D(Z[G]) of
the form

- C— Gy S Al
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We note that this triangle induces an isomorphism « in D(Z[G]) between C and Cone(6)[—1],
where we write Cone(«) for the mapping cone of a morphism a.

Now, since HI(C1) = HI(C) for j < d and HI(Cy) = 0 for all j > d, the inductive
hypothesis implies the existence of Cy in D(Z[G]) and an isomorphism ¢; : Z ®z C; =~ C;
in D(Z[G]) such that in each degree j with j < d one has H7(1) = 1;.

In addition, since Cy is acyclic outside degree d, the argument given above shows the
existence of a complex Cy in D(Z[G]) and an isomorphism iy : Z ®z Co = Cy in D(Z[G])
with He(1) = 1q.

Next we recall that the group Hom , 5 (Cy, C1[1]) is equal to HO(R Homy -, (Cy, C1[1]))
and so can be computed by using the spectral sequence

ERT =1 _ Extl,(H*(Co), H**(C1[1]) = HP*4(RHomy,(Ca, C1[1]))

constructed by Verdier in [42, III, 4.6.10]. We also note that there is no degree in which
the complexes Co and C) [1] have cohomology groups that are both non-zero and that any
group of the form Extg(—, —) vanishes for p < 0 and is torsion for p > 0. Given these facts,
the above spectral sequence implies that Homy, 5/, (Cy, C1[1]) is finite and hence that the

diagonal localisation map Hompzq)(Ca, C1[1]) — HomD(Z[G])(éz, C1[1]) is bijective.

We now write 6 for the pre-image of 6 under the latter isomorphism and claim that the
mapping fibre C' := Cone(#)[—1] has all of the required properties.

Firstly, this definition implies directly that H’(C) is equal to H7(Cy) if j < d and to
HI(Cy) if j = d, and so claim (i) follows immediately from the given properties of C; and
Cy. The definition also implies directly that Z ®z C' is isomorphic to Cone(#)[—1] and
hence that  induces an isomorphism in D(Z[G]) between Z®z C and C with the property
described in claim (ii).

To prove claim (iii) it suffices to check that C' belongs to DP*f(Z[G]) if C belongs to
DPe(Z[G]). To do this we can assume, by a standard resolution argument (as described, for
example, in [12, Rapport, Lem. 4.7]), that C' is a bounded complex of finitely generated G-
modules in which all but the first (non-zero) module, M say, is free. If we then also assume
that the complex C' is isomorphic in D(Z[G]) to a bounded complex of finitely generated
projective Z[G]—modules @, then there exists a quasi-isomorphism 7 : Q — 7 ®yz C of
complexes of Z[G]-modules.

Now, since all terms of @ and 7. @y C are projective Z[G]-modules, except possibly for
7. ®z M, the acyclicity of Cone(r) implies that the Z[G]-module Z ®z M is c-t. This in
turn implies that M is c-t and hence has a finite projective resolution. It follows that C
belongs to DP*'{(Z[G]), as claimed. O

3.5. Coherent cohomology. The Selmer complex that is constructed in Proposition
3.7(ii) depends on the choice of subgroups Vz. We shall therefore need to introduce an
auxiliary perfect complex that will be used to compensate for this dependence in the for-
mulation of our conjecture.

To do this for each place v outside U we choose a place w of X, above v and the O,[Gy,]-
submodule W/ of Lie(Ar (L)) that corresponds in Lemma 3.4 to the subgroup V,, fixed at
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the beginning of §3.4. For any other place w'|v of X, we choose v € G such that v’ = v-w
and set W, denote the image of the isomorphism Lie(Af(Ly)) =, Lie(Az(Ly)) induced
by 7. Note that W, , does not depend on the choice of v as W, is G,,-stable.

For any place v outside U we then set

W, = (lele/U)G

and we denote the associated families of subgroups (W,,)w¢r, and (Wy)wer by Wi, and Wi
respectively.

We then define £ to be the coherent Ox-submodule of Lie(A) that extends Lie(.A|y) and
is such that £, = W,  Lie(A)(O,) for each v ¢ U.

We similarly define £, to be the G-equivariant coherent O x-submodule of 7, Lie(Ax,)
with L7, = HwWWQZ for each v ¢ U, where we write m : X — X for the natural projection.

Lemma 3.9. The complex RT'(X, L1,)* belongs to DP*™(F,[G]), and hence to D**™(Z,[G]).

Proof. For each subgroup .J of G the complex RI'(X, (L£r)”)* is represented by a complex
of finite-dimensional IF,-vector spaces that is acyclic outside degrees 0 and 1.

By the same argument as used to prove Proposition 3.7(i) we are therefore reduced to
proving that for each J there is a natural isomorphism in D(IF,) of the form

(6) RHomp, ;1(Fp, RT'(X, L)) = RT(X, (L)”)
and this is proved by Kato and Trihan in [22, p. 585]. O

Remark 3.10. In view of Remark 3.5, we have here defined Ly, to be a F,[G]-equivariant
vector bundle over X rather than a vector bundle over Xz, as in [22, § 6.5]. This means
that various arguments in loc. cit. that rely on the ‘geometric p-adic cohomology theory’
over Xy, and will be referred to in later sections must in our case be carried out over X by
using the relevant push-forward constructions. This, however, is a routine difference that
we do not dwell on.

4. STATEMENTS OF THE CONJECTURE AND MAIN RESULTS

In this section we formulate our refinement of the Birch and Swinnerton-Dyer Conjecture,
establish some basic properties of the conjecture and state the main supporting evidence
for it that we will obtain in the rest of the article.

4.1. Relative K-theory. Before stating our conjecture we quickly review relevant aspects
of relative algebraic K-theory.

For a Dedekind domain R with field of fractions F, an R-order 2l in a finite dimensional
separable F-algebra A and a field extension F of F' we set Ap := E ®p A.

4.1.1. We use the relative algebraic Ky-group Ko(2, Ag) of the ring inclusion 2 ¢ A, as
described explicitly in terms of generators and relations by Swan in [33, p. 215].
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We recall that for any extension field E’ of E there exists an exact commutative diagram

7
6‘21 E’/

Ot
K () —— Ki(Ap) — Ko(A, Ap) — Ko()

™ | | ‘| |

/
U E aQ{E

K@) —— Ki(Ap) 22 Ko, Ap) —2 Ko()
in which the upper and lower rows are the respective long exact sequences in relative K-
theory of the inclusions A ¢ Ag and 2 € Ag and both of the vertical arrows are injective
and induced by the inclusion Ap € Ags. (For more details see [33, Th. 15.5].)

We further recall that the Whitehead group K;(Ag) comprises (isomorphism classes of)
pairs of the form (W, #) in which € is an automorphism of the finitely generated projective
Apg-module W. In particular, if W is spanned by a (finitely generated) projective 2(-module
P, then the connecting homomorphism dy g in (7) sends (W, ) to the element of Ko(A, Ag)
that corresponds to the triple (P, 0, P).

If R = 7Z and for each prime ¢ we set 2, := Zy ®z A and A; := Qy ®q A, then we regard
each group Ko(2ds, Ag) as a subgroup of Ky(2(, A) by means of the canonical composite
homomorphism

(8) @, Ko(e, A) = Ko(A, A) < Ko(, Ag).

Here ¢ runs over all primes, the isomorphism is as described in the discussion following [11,
(49.12)] and the inclusion is induced by the relevant case of the map ¢’ in (7).

For each element z of Ko(2A, A) we write (z¢), for its image in @ ,Ko(2y, A¢) under the
isomorphism in (8).

4.1.2. We shall construct elements of Ko(, Ag) by using the formalism of ‘non-abelian
determinants’ described by Fukaya and Kato in [16, §1]. To recall the relevant facts we
write Y for the category DPe ().

Following [16, Def. 1.3.2], one can define a localized Kj-group Ki(Ag, ). This abelian
group is generated by pairs (C, h), where C' is an object of ¥ for which the Euler charac-
teristic of £ ®pr C in Ko(Ap) vanishes and h is a morphism Det 4, (E ®r C) — Det4,(0)
in the category C4, constructed in [16, §1.2.1]; the relations between these generators are
then the obvious analogues of the relations (1), (2) and (3) given as part of [16, Def. 1.3.2].
These relations in turn ensure that there exists a canonical group homomorphism

wi e Ki(Ag,Y) — Ko, Ag).

The approach of [16, Th. 1.3.15] proves the existence of an exact sequence relating K (Ag, X)
to K1(Ag), Ko(X) = Ko() and Ko(Ag), and by comparing this sequence to (7), one can
deduce that ¢4 g is surjective (but we omit details as we make no use of this fact).

For each generator (C, h) of Ki(Ag,X), we set

XQl,E(Cv h) = LQLE((C, h)) € Ko(Q[, AE)
If E®pr C is acyclic, then we further set
XQ[,E(Ca 0) = XQ[,E(Ca hcan)a
with hcan the canonical morphism Det g, (E ®r C) — Deta,(0) in C4,, (from [16, §1.2.8]).
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Example 4.1. Fix a bounded complex C* of finitely generated projective 2-modules, and
set C®VN 1= @), ,C% and C°U := @,_,C%*L. Then, in this case, specifying a morphism
h : Deta,(E ®r C) — Deta,(0) in Ca, is equivalent to specifying data as follows: for
some finitely generated projective A-module P, one is given an isomorphism of Ag-modules
0: EQ®g(CV"®P) =~ FE®g (C°® P) that is unique up to pre-composition with an
automorphism of EQp (CV"@ P) whose image in K1 (Ag) is specified (and so depends only
on h). Then, in terms of the standard presentation of Ko(2A, Ag), the element xo z(C*,h)
corresponds to the triple (C*V** @ P, 6, C°% @ P), with the defining relations of Ko (2, Ag)
ensuring that this element is indeed independent of both P and the specific choice of 0

We next record some general properties of the elements xg(C,h) that will be used fre-
quently in the sequel (often without explicit comment).

Firstly, if C; — Cy — C5 — C1[1] is an exact triangle in Dperf(Ql) for which the complex
F ®pr Cs is acyclic, then each morphism h : Det 4, (E ®pr C1) — Det4,(0) in C4, combines
with the given triangle to induce a morphism b’ : Dety, (E ®g C2) — Deta,(0) in Ca,.
The same approach as used to prove [16, Lem. 1.3.4] then shows that

x2,2(Ca, h') = xa,6(C1, h) + xa,6(Cs,0).

Secondly, if h and b’ are any two morphisms Det 4, (E ®r C) — Deta,(0) in C4,,, then
the (obvious analogue of the) defining relation (3) in [16, Def. 1.3.2] (with C’ taken to be
0) implies that

xa,2(C, 1) = xa,5(C,h) + dn p(h' o h™).
Here the last term denotes the image under dy g of the unique element of K;(Ag) that is
determined by the morphism h’ o A= : Det 4, (0) — Deta,(0) in Ca,.

We next assume 20 = R[G] for a finite group G, and write Lﬁ[G] for the involutions on each

of the groups Ki(R[G]), K1(F[G]) and K;(R[G], F|G]) that are induced by the R-linear
anti-involution on R[G] that inverts elements of G. Then, if M is any finite R|G]-module
that is c-t, its Pontryagin dual M* (endowed with contragredient G-action) is also c-t, and

(9) Xa[6).#(c) (M*[0],0) = iy (Xre e (M0, 0)).

(By localisation, the verification of this equality reduces to the case that R is a discrete
valuation ring. In the latter case it then follows by explicit computation from the fact that
a finite c-t R[G]-module has a free resolution of length one.)

Remark 4.2. We often regard E as clear from context and so write xy(—, —) in place of
xa,e(—, —). If & = Z[G], we further abbreviate xz[q) g(—, —) to xg(—, —), and the maps
Oz1c),6(—) and (7’2[(;] 5 to dg(—) and 0;(—) (again regarding E as clear from context).

4.2. The refined Birch and Swinnerton-Dyer Conjecture.

4.2.1. In the sequel we write
WYL D A(L) x A(L) > R

for the classical Néron-Tate height-pairing for A over L.
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This pairing is non-degenerate and hence, assuming III(A/L) to be finite, combines with
the properties of the Selmer complex SCy, (A, L/K) established in Proposition 3.7(ii) to
induce a canonical isomorphism of R[G]-modules

(10) hi:%det : DetR[G] (R X7z SCVL (A, L/K)) x~ DetR[G] (0)

In particular, since SCy, (A4, L/K) belongs to DP*'{(Z[G]), we obtain an element of
Ky(Z|G],R[G]) by setting

XEPP(A, VL) = xa(SCv, (A, L/K), Iy 1°).

Next we note that, since the complex RI'(X, Ly )* considered in Lemma 3.9 belongs to
DPe(F,[G]), it defines an object of DP*™(Z[G]) for which Q®z RI'(X, L1,)* is acyclic. The

associated element

XEM(A, VL) := xa(RT(X, L1)*,0)
therefore belongs to the image of the natural homomorphism
(11) Ko(Fp[G]) — Ko(Z[G], Q[G]) = Ko(Z[G], R[G]).

Finally, for each prime ¢, we shall use an explicit computation of Bockstein homomor-
phisms that arise naturally in arithmetic cohomology to define a canonical, and computable,
integer ay = aa,r¢ in {0,1}. We thereby obtain a canonical element of Ko(Z[G], Q[G]) of
order dividing two by setting

V(A == Y G6.0((@- AUD), (~1)")r,

where ¢ runs over all prime divisors of |G|. (Given the relatively minor role that this
‘sign-term’ plays in our conjecture, and the involved nature of the relevant Bockstein ho-
momorphisms, we prefer to delay giving explicit details regarding the integers a; until the
respective computations are made in Proposition 8.1(i) for £ = p and in equation (58) for

£+ p.)

4.2.2. We can now state our refined version of the Birch and Swinnerton-Dyer Conjecture
for A over L.

For each character ¢ in Ir(G), we fix an associated complex representation V;, and write
ey for the primitive idempotent ¢(1)|G|_1296G¢(g_1)g of ¢(C[G]). We then set

raig() := (1)~ - dime (e (C®z AY(L))) = dime(Homggy(Vy, C®z A'(L))),
and write

Tan(¥) := ords—1 Ly (A, 1, s)

for the order of vanishing at s = 1 of the series Ly (A, 1, s). We also use the ‘leading term’
element L{;(Ar/k, 1) of K1(R[G]) that is defined in Theorem 2.1.

Conjecture 4.3. The following claims are valid.

(i) For each character ¢ in Ir(G) one has ran(V) = rag(1).
(ii) The group W (A/L) is finite.
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(i) Let U be a dense open subset of X comprising points at which both L/K is unramified
and A/K has good reduction. Then, for every family of groups Vi, = Viy, chosen as
i §3.4, there is an equality

0a(Lir(Ari, 1)) = &P (A, VL) — x&M(A, VL) + X & (A)
in Ko(Z[G],R[G]).

Remark 4.4. If L = K, then Ky(Z[G],R[G]) identifies with the multiplicative group
R*/{£1} and in Proposition 5.2 below we shall show that this case of Conjecture 4.3 recovers
the classical Birch and Swinnerton-Dyer conjecture for A. In §5.2 we also show that the
validity of the equality in Conjecture 4.3(iii) is independent of the choices of open set U
and family of subgroups Vy.

Remark 4.5. Since C ®z A!(L) is the scalar extension of the finitely generated Q[G]-
module Q ®z A*(L) one has rae(1)) = rag(w o ) for all ¢ € Ir(G) and all automorphims
w of C. Conjecture 4.3(i) therefore implies that ran(1)) = ran(w o ¢) for all such ¢ and w.
The validity of these equalities can be derived directly from the equalities (1) and (2) that
played the key role in the proof of Proposition 2.2.

Remark 4.6. Theorem 2.1 allows us to formulate Conjecture 4.3 directly in terms of the
connecting homomorphism Jdg. However, without using Theorem 2.1, one could still formu-
late an analogue of Conjecture 4.3 in terms of the image of the element (Lf;(A, X, 1))yen (@)
of ((R[G])* under the ‘extended boundary’ homomorphism ((R[G])* — Ko(Z[G],R[G])
constructed by Flach and the first author in [4, §4.2, Lem. 9]. This observation provides the
link between the formulation of Conjecture 4.3(iii) in terms of relative algebraic K-theory
and the formalism of ‘equivariant Tamagawa number conjectures’ that is discussed in loc.
cit. and later refined by Fukaya and Kato in [16].

4.2.3. Conjecture 4.3 entails a variety of explicit consequences concerning the structure of
Selmer complexes and relations between leading terms of Hasse-Weil-Artin L-series. To help
provide context, we now state two concrete results in this direction (though, for convenience,
the proof of these results is deferred to §9.4).

We fix a prime p and assume, for simplicity, that G is of p-power order. We write M,
for the p-localisation of a (complex of) abelian groups M.

The first result concerns the Galois structure of the complex SCy, := SCy, (4, L/K).

Proposition 4.7. If G is a group of p-power order, then Conjecture 4.3 implies the following
restrictions on the complex SCy, .

(i) SCy, is isomorphic in DP*™(Z[G]) to a bounded complex of finitely generated free
G-modules.

(ii) If A(K)[p] and A*(K)[p] both vanish, then SCy, (,) is isomorphic in Dperf(Z(p) [G])
to a complex Z,)[G]' 2, Ly |G, where the first term is placed in degree one.

The second result we record describes families of algebraic relations between suitable
normalisations of the leading terms Lj;(A,,1) for varying characters .
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To state this result, we assume the hypotheses of Proposition 4.7(ii) and fix a represen-
tative of SCy, (,) of the specified form. We then consider the composite isomorphism

NT

AT R[G) = (R - ker(6) ® (R - im(6)) 22225 (R - cok(9)) @ (R - im(¢)) = R[G]"

of R[G]-modules. Here the first and third maps are induced by a choice of R[G]-equivariant
sections to the surjective maps from R[G]* to R -im(¢) and R - cok(¢) that are respectively
induced by ¢ and by the tautological projection. In addition, hﬁg , denotes the composite

R -ker(¢) = R- A*(L) ~ Homg (R-A(L),R) = R - cok(¢),

in which the second isomorophism is induced by the non-degenerate pairing hﬁa and the
first and third by Proposition 3.7(ii)(a) and the fixed identifications of ker(¢) and cok(¢)
with HO(SCVL)(p) and Hl(SCVL)(p).

We write x(L£) for the integer obtained as the Euler characteristic in Ko(F,) = Z of the
complex RI'(X, £)* of Fp-modules.

For each character ¢ in Ir(G), we then normalise the leading term of the associated
Hasse-Weil-Artin L-series by setting

pPX(L) . L (A ,1)

) LAY = T ~det(N] )

Y

where ([T , is the automorphism of Homg(¢(Vy, C[G]") induced by Lﬁg. We also write

Q(v) for the field generated over Q by the set {¢(g) : g € G}.

Proposition 4.8. Assume the hypotheses of Proposition 4.7(ii) and the validity of Congec-
ture 4.3(i) and (ii). Then the following claims are valid.

(i) For all ¢ in Ir(G) and o in Gal(Q(v)/Q) one has
ZL(A,9) e Q¢) and o(ZL(A,9)) = Z(A acy).
In the rest of the result we also assume the validity of the equality in Conjecture 4.3(iii).

(ii) For every abelian subquotient QQ = H/J of G, there is a containment

.Z(ALH, lQ) € Z(Xp)

and, for each v in Q, a congruence
Zweh(@@/}(w—lf(z‘lww) =0 (mod [Q] - Z))-

(iii) If, for each subgroup H of G, vy is an irreducible character of the abelianisation H®P
of H and my an integer such that the virtual character ZHgGmH-indg(infgab (V)
vanishes, then one has

HéGg(AL&wH)mH =1

Remark 4.9. By developing methods introduced by the second author in [20], the first two
authors give an explicit description of the Whitehead group K;(Zy[G]) in [5, Th. 2.1]. In
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the setting of Proposition 4.8, this result has the following explicit consequence. For every
cyclic subgroup C of G, the properties in Proposition 4.8(ii) combine to imply that

L(A,0) = O D ey VO Z (Apes ) - ¢

belongs to Z,) [C]* < Z,[CT* = K1(Zp[C]). Fix an embedding j : R — C,, and write j, for
the induced embedding Ko(Z[G],R[G]) — Ko(Z,|G],Cp[G]) of relative K¢-groups. Then
[5, Th. 2.1] implies that the validity of the image under j, of the equality in Conjecture
4.3(iii) is equivalent (under the hypotheses of Proposition 4.7(ii)) to the validity of the
family of equalities in Proposition 4.8(iii) together with a single explicit congruence relation

between the images of the individual elements .Z(A, C') under the respective induction maps
Ki(Zp[C)) — K1(Zp|G)).

4.3. The main results. In order to state our main result we must define the finite sub-
group T4 1/k of Ko(Z[G], R[G]) that was discussed in the introduction.

If 2 is a quotient of a subgroup A of a finite group I', then we consider the composite
homomorphism of abelian groups

£ Ko(Zp[T], Qp[T]) — Ko(Zy[A], Qp[A]) — Ko(Zp[=], Qp[=]),

where the ﬁrst map is restriction of scalars and the second is the natural coinflation homo-
morphism.

By the semistable reduction theorem, the set ¥ = ¥4 g of finite Galois extensions of
K over which A is semistable is non-empty. For each field K’ in ¥ we write L’ for the
composite of L and K’, set G’ := Gal(L'/K) and H' := Gal(L'/K"), write P’ for the normal
subgroup of H’ that is generated by the Sylow p-subgroups of the inertia groups in H' of
each place in K’ and set 7/ := ng, P We then define

(13)  Tar/k = Ko(Zp[G], Qp[G]tor N (ﬂK, ker(mgr)) N (ﬂK’eE TG (ker(ﬁK/)))

where Y1 denotes the possibly empty subset of E comprising fields K’ that are contained
in L (so that G’ = G) and X2 the possibly empty subset of X comprising fields K’ that are
not contained in L but are such that II(A/L’) is finite.

We recall that Ko(Zy[G], Qp[G])tor is finite and, in all cases, regard T4 1k as a subgroup
of Ko(Z|G],R[G]) via the natural embeddings

Ko(Zp[G, Qp[Gl)tor = Ko(Z[G], Q[G]) < Ko(Z[G], R[G]).

We can now state the main evidence that we shall offer in support of Conjecture 4.3.

Theorem 4.10. If the ¢-primary component of I(A/L) is finite for some prime £, then
the following claims are also valid.
(i) Claims (i) and (ii) of Conjecture 4.3 are valid.
(ii) The equality in Conjecture 4.3(iii) is valid modulo the finite subgroup Ty r/k of
Ko(Z[G],R[G]).

Remark 4.11. It is proved by Kato and Trihan in [22] that III(A/L) is finite if and only if
at least one of its f-primary components is finite. Thus, under the hypotheses of Theorem
4.10, we can (and do) assume, without further comment, that III(A/L) is finite (and hence
that Conjecture 4.3(ii) is valid).
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Remark 4.12. The main result that we prove here is, in principle, stronger than Theorem
4.10 but is more technical to state (for more details see Remark 9.4 below). One can also
provide further evidence in support of Conjecture 4.3 in the setting of generically ordinary
abelian varieties, and we hope to discuss this elsewhere.

Remark 4.13. Assume G is a p-group, that the groups A(K)[p] and A*(K)[p] both vanish
and that some /-primary component of III(A/L) is finite (where ¢ can be different from p).
Then Theorem 4.10 combines with Proposition 4.8 to imply the unconditional validity of
the relations in Proposition 4.8(i).

In special cases it is possible to describe T4 1 i explicitly and hence to make Theorem
4.10(ii) much more concrete.

For example, if the sets ¥ and X9 that occur in (13) are both empty, then Ta,r/k 18
equal to Ko(Zp[G],Qp[G])tor- On the other hand, if A is semistable over K and L/K is
tamely ramified, then the field K’ = K belongs to ¥ and is such that G = G’ = H' and P’
is trivial and so Ty 1,k vanishes. Hence, in the latter case, Theorem 4.10 has the following
more explicit consequence.

Corollary 4.14. Assume that A is semistable, that L/K is tamely ramified and that some
C-primary component of WI(A/L) is finite. Then Congecture 4.3 is unconditionally valid.

As far as we are aware, this result gives the first verification, modulo only the assumed
finiteness of Tate-Shafarevich groups, of a refined version of the Birch-Swinnerton-Dyer
conjecture in the context of ramified extensions.

5. PRELIMINARY RESULTS

In this section we first prove a purely algebraic result that is important for several sub-
sequent arguments.

We then verify that the statement of Conjecture 4.3 is consistent in certain key respects
(as promised in Remark 4.4).

Finally we use a result of Schneider to give a reinterpretation of the conjecture that plays
an essential role in the proof of Theorem 4.10.

5.1. A result in K-theory. The following purely algebraic observation will underpin the
proof of several subsequent results.

Proposition 5.1. Let R be a Dedekind domain with field of fractions F' and 2 an R-order
in a finite dimensional semisimple F'-algebra A.
We suppose to be given exact triangles in DP* () of the form

(14) Cop—C1 50y - Cyl1] and Cy— C1 5 Cy — Cy[1]
that satisfy all of the following conditions.

(a) In each degree i there are natural identifications F @p H'(C1) = F ®@p H'(Cs), with
respect to which one has
(b) the composite tautological homomorphism of A-modules

F®rker(H'(0)) € F®gr H'(C1) = F ®p H' (Cy) — F ®g cok(H'(0))

is bijective, and
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(c) the map H'(¢) induces the identity homomorphism on FQr H (Cy) = FQrH(Cs).
Then the following claims are valid.
(i) The bijectivity of the maps in (b) combines with the first triangle in (14) to induce a
canonical morphism 7y : Det4(F ®gr Cy) = Det 4(0) of (non-abelian) determinants.
(ii) In each degree i the homomorphism H*(6) induces an automorphism H*(0)° of any
A-equivariant complement to F Qg ker(H(0)) in F @z H'(C1) in such a way that
Nrd 4 (H(0)°) is independent of the choice of complement.
(ili) The complex F ®p Cy is acyclic.
(iv) In Ko(2, A) one has

xa(Co.79) = xa(C,0) = du.r (] [, (H'O)1) V"),
where we identify each automorphism HZ(G)}>J with the associated element of Ki(A).

Proof. If M denotes either an R-module or a complex of R-modules, then we abbreviate
F®r M to Mp.

To construct a morphism 7y as in claim (i) we note first that the long exact cohomology
sequence of the left hand exact triangle in (14) gives in each degree ¢ a short exact sequence
of A-modules

0 — cok(H'"1(6)) — H'(Cy) — ker(H'(6)) — 0.

Then, upon tensoring these exact sequences with F' (over R), applying the determinant
functor Det4 and then taking account of the isomorphisms given in (b) one obtains isomor-
phisms of (non-abelian) determinants

(15) Det 4(H'(Cy)r) = Deta(cok(H ™1 (0))r) - Det a(ker(H (0))r)
=~ Det 4 (cok(H " 1(0))F) - Det s(cok(H(0))F).
We then define the morphism Tp in claim (i) to be the composite
Deta((Co)r) = | |, Deta(H (Co)p) ™V
~ [ ._,[Deta(cok(H(6))r) - Deta(cok(H'(0)) )]
~ [ ],_,[Deta(cok(H' (6)) )" - Deta(cok(H(60))r)] "

~ 1)
>~ Hz‘eZDetA

= Det 4(0).

Here the first map is the canonical ‘passage to cohomology’ map, the second is induced by
the maps (15) in each degree i, the third by the obvious rearrangement of terms and the
fourth from the canonical morphisms

Det 4 (cok(H*(0))r) ! - Det o (cok(H*(0))r) = Det4(0).

Claim (ii) is a straightforward consequence of the condition (b) and claim (iii) follows
directly upon combining the long exact cohomology sequence of the second triangle in (14)
with the condition (c).

Finally, to prove claim (iv) we fix bounded complexes of finitely generated projective
2A-modules P; and P, that are respectively isomorphic in D(2() to C; and C3. Then the
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morphisms 6 and ¢ are represented by morphisms of complexes of 2-modules of the form
9,:P1—>P2 andqﬁ’:P1—>P2.
The key to our argument is then to consider the exact triangle

(16)  Cy@ Cone(¢') " P @ Cone() L% Cyl(0') — (Cp @ Cone(@))[1]
in D(2) where « is the morphism Cyp — P; induced by the first triangle in (14) and &’ the
morphism P; — Cyl(#’) induced by 6’ and the natural quasi-isomorphism Cyl(#) =~ P,.
We note first that this triangle satisfies the analogues of conditions (a) and (b) (with
C1, Cy and 0 replaced by P; @ Cone(¢'), Cyl(#') and (+’,0)) and, in addition, that in each
degree i one has (P; @ Cone(¢'))? = Cyl(¢')".
Further, the acyclicity of F'®pr Cy implies that

x21(Co ® Cone(¢'), 19) = x2(Co, 19) + x2(Cy[1],0) = xa1(Co,70) — x(Cy, 0),

where the first equality is true because Cone(¢’) is isomorphic to Cy[1].

In particular, after replacing the first triangle in (14) by (16), we are reduced to proving
that if C1 and Cy are represented by bounded complexes of finitely generated projective
2l-modules P; and P, with P{ = P4 in each degree i, then the conditions (a), (b) and (c)
combine to imply an equality

(17) xa(Co, ) = da([ [, Neda(H'(0)7) "),

where dy denotes the composite dy o (Nrd4) ™t : im(Nrda) — Ko(2, A).

To do this we note first that, under these conditions, an easy downward induction on %
(using hypothesis (c)) implies that in each degree i the F-spaces spanned by the groups of
boundaries B(P;) and B*(P,) have the same dimension.

If necessary, we can then also change 6 by a homotopy (without changing conditions (b))
in order to ensure that, in each degree i, the restriction of ™! is injective on B*(P;) and
hence induces an isomorphism F®p BY(P)) =~ F®g B*(P,) (for details of such an argument
see, for example, the proof of [8, Lem. 7.10]).

Having made these constructions, one can then simply mimic the argument of [3, Prop.
3.1] in order to prove the required equality (17) by using induction on the number of non-zero
terms in Pj. O

5.2. Consistency checks.

Proposition 5.2. If L = K, then Conjecture 4.3 recovers the classical Birch and Swinnerton-
Dyer conjecture for A.

Proof. We assume II1(A/K) is finite and abbreviate SCy, (A4, K/K) to SCy,.

Now, if L = K, then G is the trivial group id and Ky(Z|G],R[G]) identifies with the
multiplicative group R* /{£1}. In addition, upon unwinding the definition of Euler charac-
teristic one finds that, with respect to the latter identification, there is an equality

(18) Xid (A, Vie) = dise(hY i) - | [, #(H (SCvy Jror) D™ (mod +1)

where dlsc(h ) denotes the discriminant of the pairing h
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To compute the above product we write ¢ for the natural map A(K )tor = @0 A(Ky)/ Ve
Then, from Propositions 3.2 and 3.7, one finds that there are equalities H°(SCy,.) = AY(K)
and H%(SCy,) = ker(0)* and a short exact sequence of the form

0 — Xz(A/K) — H'(SCy,.) — cok(6)* — 0.

Upon combining these observations with the natural exact sequences

0 — ker(0) — A(K)tor — @U¢UA(KU)/% — cok(f) — 0
and
0— II(A/K)* > Xz(A/K) — Homz(A(K),Z) — 0
one computes that

, i1 A/K)disc(hN,
(19) disc(h) k) - [ [, #H (SCri o)V = ilil(( K;tor)# AtEKA)i) [1,.145) : Vil

On the other hand, from [22, 3.7.3], one finds that
— #Hl(Xv ﬁ) _ Hv%U[A(KU) : V;)]
A

(20) Xid Vi, K /) = #HHO(X, L)~ vol([[,ep A(KL))

where the ‘volume term’ here is as defined in [22, §1.7].
Thus, since x}5" (A) is clearly trivial, the expressions (18), (19) and (20) combine to show
the equality in Conjecture 4.3(iii) is equivalent to an equality
. B #H_I(A/K)disc(hl;{?}()
Lo = R o A (B )por " L AU
Since Lj;(A, 1) is known to be a strictly positive real number (by Proposition 2.2(ii)), this
equality is precisely the form of the Birch and Swinnerton-Dyer Conjecture that is discussed

in [22, §1.8]. O
Proposition 5.3. The validity of Conjecture 4.3(iii) is independent of the choice of the
family of subgroups V7.

Proof. 1t is clearly enough to show that the difference x25P (A, V) — x&1(A, V) is inde-
pendent of the choice of V7.

In addition, it suffices to consider replacing Vz, by a family of subgroups V] = (Vi )wev,,
that satisfies V), € V,, for all w ¢ Uy,

In this case, the definition of the complexes SCy; (A, L/K) and SCy, (A, L/K) via the

(dual of the) mapping fibre of the respective morphisms (4) leads naturally to an exact
triangle in DP*™(Z[G]) of the form

SCv, (A, L/K) — SCyy (A, L/K) — Qf[-1] —
with Q1 := @w¢UL (Viw/V,), and hence to an equality in Ko(Z[G], R[G])
(21> X%SD (A7 VL) - XCBJSD (A7 V[//) = XG(Q?KL< [0]7 0)

On the other hand, if £} and L, are the coherent sheaves that correspond (as in §3.5)
to the collections V] and V7, respectively, then there is a natural short exact sequence

0L —L—Qy—0

(mod +1),
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with Q2 1= @, ¢r;, Wuw/W,,- This sequence gives rise to an exact triangle in DPe(F,[G])
of the form

RT(X,Lp)" — RD(X,L7)" — Q3[1] —
and hence to an equality

(22) XEM (A VL) = xE(A, VL) = xz,[6) (@30, 0).

Now, given the explicit construction of the groups Vi, and V. from W,, and W}, it
is straightforward to show that, for both ¢ = 1 and ¢ = 2 there exists a (finite length)
decreasing filtration (Q; ;);j=0 of the finite Z)[G]-module @; such that each module Q; ;
is c-t for G and the graded modules gr(Q;) = @;5,(Qi,;/Qi,j+1) are both c-t for G and

mutually isomorphic. This fact in turn implies that
X2,[6)(QF10],0) = i | (xz, 161 (@1[0],0)) = i 1y (xz, [y (8x(Q1)[0], 0))
— o (@ (@01, 0)) = £y (211 Q2001 0)) = Xz, (61 (@3[0].0)

where the first and last equalities follow from the general result (9) and the second and
fourth from a standard dévissage argument. These equalities then combine with (21) and
(22) to imply the required result. O
Proposition 5.4. The validity of Conjecture 4.3(iii) is independent of the choice of U.

Proof. Tt suffices to fix vg in U and consider the effect of replacing U by the set U’ := U\{vp}.
We fix a family Vi = (Vé)wer’L of subgroups as in Lemma 3.4 and assume, following

Remark 3.6, that for each place w above vy one has V) = A(m,,). We also write VLT for the
associated family (V,,)w¢v, -

Then, setting &, := L{;(Ar/k, 1) - L (Arjics 1)~1, it is enough for us to prove that
(23)  Par(Ew) = (EP(A, V) = X8 (A, V1)) = (K" (A, V]) = XE"(4, V1))
in Ko(Z|G],R[G]). In addition, &,, belongs to the subgroup K;(Q[G]) of K1(R[G]) and
we claim that Nrdgjq)(€y,) is equal to the evaluation at u = 1 of the expression

Nrdg, ) (1 — =) pgeet) + (Q[G] @z, Tr(4))”)

= Nrdg, e (1 — udes0)dee(0) . (Q,[G] ®q, Hys(k(v0)/Zp, Diy))" ).
Here / is any choice of prime different from p and ¢, is the geometric p-th power Frobenius
map on Ty(A), the endomorphism ¢ is such that py is induced by the crystalline Frobenius
on the fibre D,, at vg of the covariant Dieudonné crystal D and the above displayed equa-
tion follows from the result [24, Th. 1] of Katz and Messing. To verify this claim about
Nrdggi(€y,) it is enough to fix an arbitrary x € Ir(G), with a corresponding realisation Vy
over Qf with £ # p, and then note that

ey (NrdQ[G] (5v0)) = det( gpgeg(”(’ Vi ®z, TK(A))
= det (1 — g8 - Homgere (Vy, Q[G] @z, Tu(A)))
= ex (Nrdg, ) (1 - ¢ : Qu[G] ®z, To(A))
= ey (Nrdg,[g (1 — deg ) (Qi[G) ®z, Tu(A))).
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Here the second equality follows from Remark 2.3 and all others are clear.
In addition, our assumption that V| = A(m,,) for places w above vy implies there are
exact triangles in DP®{(Z[G]) of the form

SCyi (4, L/K) — SCv, (4, L/K) = Dy, Alk(w))*[~1] —
RI(X, £5)* — RT(X, £1)* — @)y, Lie(A)((w))*[1]
These triangles in turn imply that there are equalities in Ko(Z[G], Q[G]
XESD(A, V) = XBSP(A, VL) = —xa (D A(k(w))*[~1],0)
XE(A, V) = X&M(A, VL) = =Xz, 161 (B, Lie(A) (k(w))*[1],0).
To prove the required equality (23) it is thus enough to show
(24) dc,e(Nrdg,[c)(1— 93" : (Q[G] @z, To(A4)) ")) = Xz (D,y),,, Ak (w){€}*[-1],0)
for every prime £ % p, and also that

(25) dap(Nrdg, e (1 - (pflso)deg )2 (Q[G] ®q, Hoys(k(v0), D))"))
= X2,[61(D,,, Ak (W) {p}* [-11, 0) = xz,[61(D,, ,, Lie(A) (k(w))*[~1],0).
Here, for each prime ¢, we write dg 4 for the composite homomorphism
02,1610, © (Nrdg, () ™"+ C(Q[G])* — Ko(Z[G], Qq[G]).
Now, if £ # p, then the complex RI'(k(vo),T¢(A) ® Z[G]) = @, R (k(w), Ty (A)) is

acyclic outside degree one and has cohomology @, A(k(w)){¢} in that degree. This gives
rise to a short exact sequence of Zy[G]-modules

w)

)
)

4

wlvg

~—

wlvg

1— Lpdeg(’uo)
0— HOIIIZZ (TE(A), Zg[G])

HOII]ZZ (Tg(A @thOA {6} - 0

which leads directly to the equality (24).

We next note that, by Kato-Trihan [22, 5.14.6], for each w dividing vy the complex
A(k(w)){p}[—1] identifies with RI'(k(w),Sp, ), where Sp, is the syntomic complex over
k(w) (obtained as a fiber of the syntomic complex over U), and hence that there is an exact
triangle in DP*"(Z,[G]) of the form

D oy Ak(W)) P} 1] = Zp[G] ®2, Rl exys (k(v0)/Zp, Dyy)

1— deg(vq)
i e Zp|G] ®z, RT erys (K (v0)/Zp, Dyy) —

There is also a natural exact triangle in DP*(Z,[G])
Do Lie(A) (k(w))[-1] = Zp[G] ®2, Rl exys (k(v0)/Zp, Dy,

5 Z,[G] @z, RUcrys(k(v0)/Zp, Duy) — -

The required equality (25) now follows directly upon applying Proposition 5.1 with R =
Zp|G] and the triangles in (14) taken to be the images of the above two triangles under
the exact linear duality functor RHomy, (—,Z,) on DPf(Z,[G]). (These triangles are
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easily seen to satisfy the hypotheses of Proposition 5.1 since the modules A(k(w)){p} and
Lie(A)(k(w)) are both finite.) O

Remark 5.5. The results of Propositions 5.3 and 5.4 will play a key role in later arguments.
In Proposition 9.2 below we will also establish a further consistency property of Conjecture
4.3 with respect to changes of field extension L/K.

5.3. A reformulation. In this section we establish a useful reformulation of the equality
in Conjecture 4.3(iii).
In [31, p. 509] Schneider shows that the pairing hﬁa can be factored in the form

(26) W =log(p) - ha,L
for a certain non-degenerate skew-symmetric bilinear form hy4 1, : A(L) x A*(L) — Q.

We write

hdAe:tL : DetQ[G](Q X7z SCVL (A, L/K)) x>~ DetQ[G] (0)
for the isomorphism induced by ha and then define an element of Ky(Z[G],Q[G]) by
setting
X%,S(]Q? (Av VL) = XG(SCVL (Av L/K)v h%itL)
For each x in Ir(G) we define a function of the ¢ := p~* by setting

ZU(A, X5 t) = LU(A, X S)
and normalise its leading term at ¢t = p~! as follows

(27) Zi(Ax.p") = fim (1= pt) 0 Zy (4,01,

Proposition 5.6. The following claims are valid.
(i) There exists a unique element Zj;(Apk,p") of K1(Q[G]) with the property that
Nrdgje (28 (Ark, 0™ ") = Z5(A, x,p7 1) for all x in Ir(G).
(ii) If claims (i) and (ii) of Conjecture 4.3 are valid, then the equality in claim (iii) of
Conjecture 4.3 is valid if and only if in Ko(Z|G],Q[G]) one has

06 (25 (A p™ ) = XEg (A, Vi) — xEM(A VL) + xE"(A).

Proof. The argument of Proposition 2.2 implies, via the equalities (1) and (2), that one
has w(Z5 (A, x, ¢ 1)) = Z5(A,wo x,q¢ 1) for all x in Ir(G) and all automorphisms w of
C, and hence that the element (Z75(A4, x,p~ 1))y of ((C[G])* =T] ¢)C™ belongs to the
subgroup ¢(Q[G])*.

Given this, claim (i) follows from the Hasse-Schilling-Maass Norm Theorem and the fact
the same proof also shows Z75(A, x,p~ ') is a strictly positive real number for y in It*(G).

To prove claim (ii) we set ry := ran(x) and 7} := rag(x). Then the order of vanishing of
Zu(A, x,t) at t = p~! is equal to r, and hence, since the leading term of (1 — p'=%)"x at
s =1 is equal to (log(p))™x, it follows that

Zi5 (A, x ™) = (log(p) ™™ - Lij (A, x, 1)
Thus, writing e7,/x for the unique element of K;(R[G]) with

X€Ir(

Nrdg(g)(er/x)x = (log(p)) ™™



29

for all x in Ir(G), one has

Zi (A, p™") = eryie - L (Apyic, 1).
On the other hand, the equality (26) implies that
XCBT',S(S(Aa VL) = XgSD(Aa VL) + aG(&JL/K)
where €7 /i 18 the element of K (R[G]) that is represented by the automorphism of the
R[G]-module R ®z H°(SCy, (4, L/K)) = R®y A*(L) given by multiplication by log(p)~*.

Given the last two displayed formulas, the claimed equivalence will follow if one can show
that the assumed validity of Conjecture 4.3(i) implies &, /K = EL/K- But this is true since,

for every x in Ir(G), one has
Nrdg(q (E/L/K)X =detc (log(p)*1 | Homg(q(Vy, C®xz At(L)))
= (log(p)) "
= (log(p)) ™™
= NrdR[G] (5L/K)x-
Here the first equality follows directly from an explicit computation of reduced norm, the
second from the fact ) is (by its definition) equal to dimc (HomC[G](VX, C®z A'(L))), the
third from the assumption that Conjecture 4.3(i) is valid (and hence 7, = r,) and the last

X
directly from the explicit definition of £,k given above. g

6. SYNTOMIC COHOMOLOGY

In this section we recall relevant facts concerning the complexes of syntomic cohomology
with compact supports that are constructed by Kato and Trihan in [22].

At the outset we fix a finite Galois extension K’ of K over which A ®x K’ is semistable
at all places, write L’ for the compositum of L and K’ and set G’ := Gal(L'/K). Taking
advantage of Proposition 5.4 we shrink U (if necessary) in order to assume that no point
on U ramifies in L'/K.

We also fix a Galois extension of fields F’/F with

K cFcFcIL’

and set @ := Gal(F'/F). (Whilst the use of this auxiliary extension F’/F adds a degree
of notational complexity to the results in this section, it provides results that we can then
directly apply in the proof of Theorem 4.10 given in §9.)

Then, with N denoting either F’ or F we set Ay := A®x N and write Xy and Uy for
the integral closures of X and U in N and Apy/Xpy for the Néron model of Ay over N.
Let my : Xy — X denote the natural map. Let Xlﬁr, be the log scheme with underlying
scheme Xpr equipped with the log structure associated to the divisor Xpr — Upr, and we
abbreviate to Oy the structure sheaf Ox /Z, for the small étale log crystalline topos
((XN>ﬂ/Zp)cryS'

Since A is semistable over N, the construction in [22, §4.8] gives a Dieudonné crystal

(28) Dy := Diog(An)
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on ((XN)*/Zp)erys- We then write DY; for the kernel of the surjective morphism of sheaves
Dy = igxyyiz,,«(Lie(Dn)) in ((XN)#/Zp)cxys described at the beginning of [22, §5.5].

We fix a Gal(L'/K)-equivariant Ox-submodule L, of 7/ Lie(Dy/) that is associated
to (W, )wgr,, following §3.5, and set Lp/ := (EL/)G"‘I(L//F'), which is a Q-equivariant Ox-
submodule of 7w ,Lie(Dpv). For simplicity, we write

(29) L= Lp.

(In the intended setting, we will assume that L7, and hence £, satisfies the conclusion
of Lemma 3.9. As noted in Remark 3.5, it may not be possible to arrange £’ to be the
pushforward of a vector bundle on Xp or Xp.)

We furthermore assume that for some positive integers n(w) for each place w of Xy not
in Ups, we have

Lie(Dp/)(m?®)) « W < Lie(Dp)(m™).

w

(This can be arranged by shrinking W/ if necessary.) We set

E = Zw¢UF/n(w)w,

which turns out to be a @Q-stable divisor of Xz since n(w) = n(w') if w and w’ are above
the same place in Xp by construction. Then by the condition on (W},),, we have

7TF/7*Lie(DF/))(—2E) C ,C/ C WFIV*Lie(DF/))(—E).

Let us write Oy (—E) for the crystal on ((X 7)%/Zp)erys that is obtained as the twist of

O<F/> by —F and then set D(—FE)ps := Dp» ®(9<F,> O<F1>(—E).
By [22, 5.5.2], we have a distinguished triangle of Q-equivariant (small) étale sheaves on
XF/:
Ru,D(~E)) — Ru,D(~E)p — Lie(Dp:)(—E) —,

where v/ : ((XF/)ﬁ/Zp)CIyS — X ¢ is the natural morphism of topoi.

Now, we would like to modify Rul,D(—F)g using the Q-equivariant Ox-submodule £’
of mps Lie(Dp/)(—FE), and for this to make sense we need to apply the pushforward mp ,
to the above distinguished triangle. To alleviate the notation, let us write

/
RUF’/K = WF/,*RU*

sending a crystalline sheaf of O pry-modules to a complex of étale sheaves on X (viewed in
a suitable derived category).

We can now define a complex Rupg» /KD(—E)%E,/) viewed in the derived category of Q-
equivariant étale sheaves on X so that it fits in the following distinguished triangle

Rup i D(—E)\S) — Rup i D(—=E) g — mpr (Lie(Dp) (= E) /L — .
(For technical reasons, we directly define Rup /KD(—E)%E,/)
gle above without defining the crystalline subsheaf D(—E)Ef,/) of D(—FE)p. Note that
D(—E)%E,/) can be defined if £’ is the pushforward of a vector bundle on X, in which

case the above construction recovers RuF//K(D(—E)%}/)); cf. [22, §5.12].)

via the distinguished trian-
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Following [22, §5.12] there are canonical morphisms of complexes of étale sheaves on X

1 L L'

RUF//KD(—E)(FE],) - R’LLF//KD(—E)%/ ) and RUF//KD(—E);Q,) i’ RUF//KD(—E)%, ),

(In fact, since all the above objects can be explicitly represented by choosing good embeddings

locally, the argument in [22, §5.12] can be directly applied to these complexes of étale sheaves
instead of crystalline sheaves on ((Xp)*/Zp)crys-

They then define the syntomic complex with compact supports SD< 5,2y to be the mapping
F/
fibre of the morphism

1- c
(30) Rup i D(—E)\Y) 2% Rup i D(—E)\%,

which is an object in the derived category of ()-equivariant étale Z,-sheaves on X.

If furthermore F’/M is Galois for some intermediate field M of F'/K, then by choosing F
to be Gal(F’/M)-stable we may give a natural Gal(F’/M)-action on RuF//KD(—E)ES,),
RuF//KD(—E);SI), and S o). Recall that L= (L)L) for some Gal(L'/K)-

F/
equivariant O-submodule of 77/ ,Lie(Dy/), so the Q-action on £’ naturally extends to the
action of Gal(F'/M).

If we have L' = mp L for some Q-equivariant Ox,,-submodule £ of Lie(Ag), then the
above constructions can be carried out over X’ as in [22, §5.12]. To explain, we can define

an O¢pry-submodule D(—E)gf,’) of D(—FE)p, and define §D<E‘5/) to be the mapping fibre of
yal

(31) Ru,D(—E)\Y) =% Ru.D(-E){%).
(See loc. cit. for details.) Furthermore, we have a Q-equivariant quasi-isomorphism SD( By =
ol
Tr «S (g zry- Onthe other hand, in the presence of wild ramification it seems difficult to find
b D y

F/
L' coming from a Q-equivariant O x»-submodule that satisfies the conclusion of Lemma 3.9.

Lemma 6.1. Let E, L and (W,,)weu,, be as above, and write E = Ywgu,, M(w)w. For each
w ¢ Upr write V), for the unique subgroup of Ap(Oy) with AF/(m%Un(w)) cV)c AF/(mZ(w))
and whose image in Aps (mg(w))/AF/ (mz}n(w)) = Lie(AF/)(mZ(w))/Lie(AF/ (mz;n(w))) coin-
cides with the image of W,,. Write Vi, for the family (V,),)w.
Then there are natural isomorphisms in D(Z,[Q]) of the form
(32) RI(X, S e Q" Qp/Zp) = BTy v, (Upr, Ator)p-
F/

In addition, if M is any intermediate field of F'/K over which F' is Galois and E is chosen to
be Gal(F’/M)-equivariant, then the above isomorphism is well-defined in D(Z,[Gal(F'/M)]).

This lemma is a generalisation of [22, Prop. 5.13] in that the isomorphism (32) is proven
to be Galois equivariant and £’ is not required to come from a vector bundle over X .

Proof. Using the definition of R4 v,, (Urr, Ator)p (4) and [36, Th. 1.1], one can reduce the
isomorphism (32) to the following local statement: For any v € X\U, we have a natural
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isomorphism

(33) RT(Spec O,, ng,L,)) ~ ]‘[wwvug[_u
equivariant for the Q-action (respectively, for the Gal(F'/M)-action if F'/M is Galois for
some intermediate extension M of F/K ).
Note that this local claim is a slight generalisation of [22, Lem. 5.14] in that the isomor-
phism (33) is required to be Galois equivariant and W}, is not required to be an O,,-module.
It remains to verify the local claim. Observe that for fixed D the restriction of S (B

to Spec O, only depends on n(w) and W}, for wjv, and n(w) is independent of wlv. So let
us write

n,(Wy,)
SD,v = SD(E,L')
F’ Spec Oy

where n = n(w) for any w|v. To simplify the notation, for any positive integer n we write
W' = Lie(Ap/)(m?).

Note that the choice (W&”(w))’)wa, corresponds to g . Lie(Ap/)(—F), which contains £'.

Let us first show that the local claim (33) is implied by the special case for W, = &n),.

For this, we construct a distinguished triangle in the suitable derived category of equivariant
étale Zy-sheaves on Spec O,

/ (n)r
(34) S s T (WY W) 1]

w\v(
Indeed, this can be obtained from the following commutative diagram where each row is a
distinguished triangle

S%wm —— Rupi g D(—E) 0o, 27 Rup 1k D(—E)E |0, ——

l | J

n (n)/ 1—
SEWe ) s Rupre D(—E) 9o, — Rupr /i D(~E)|o, ——

together with the fact that the mapping cone of the rightmost vertical arrow is isomorphic
to WM /W

Let Ap(m™) < Ap(O,) denote the kernel of reduction modulo m”. Then by (34) and
the natural isomorphism

(35) W WD = Ap(m?) [ Ap (mi*),

the general case of the local claim is reduced to obtaining the Galois equivariant isomorphism
(33) when W/, = ) and V! = Ap (mﬁ(w)).

We have thus reduced the proof of the lemma to the case when £ = 7pr (Lie(Ap)(—E).
We will proceed by induction, for which it is convenient to allow £’ = mp Lie(Ap/)(—E')
where E’ is a Q-equivariant divisor such that E'—E and 2E— E’ are either effective or trivial.
Since L' is the the pushforward of a Q-equivariant Ox ,-module L := Lie(Ap)(—E'), we
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also have a ‘syntomic complex’ §D< 5.2/, over X, constructed as the mapping fibre of the
F/

map (31). For any w € Xp/\Upr, let us write

~n’W(m)/ 3
SD,U) = SD(E’E/> P
F’! Spec Oy
where n = n(w) and m are the coefficients of w in E and E’, respectively. As we have
3 . ) S ()7
SD;?U) = WF/,*SD(,%E,) the left hand side of (33) also decomposes in terms of Sg"g .
Therefore, to complete the proof, it suffices to show that for any positive integer n and

w € Xp/\Up» we have a natural isomorphism
~, (n)r ~
(36) RT(Spec Oy, S ) = A(m?2)

equivariant for the Q,-action (respectively, for the Gal(F}, /M, )-action where v is the place
under w if F'/M is Galois for some intermediate extension M of F/K).

Let us prove (36) by induction on n. If n = 1 then the isomorphism (36) can be deduced
by inspecting the distinguished triangle (4) using Theorems 1.1 and 1.2 in [36], where the
Galois equivariance follows since the comparison maps in loc. cit. are constructed naturally.
Although the results were obtained only for p > 2 in loc. cit., there is an alternative proof
that works for any p via the prismatic Dieudonné theory [1]. To give further details, [36,
Th. 1.2] holds for p = 2 if [36, Th. 1.1] does, and (the projective limit of) [36, Th. 1.1]
can be deduced from [1, Prop. 4.83 and Rem. 4.85] if we show that the prismatic and
crystalline constructions of the syntomic complex in [1] and [36] coincide. For this we may
(and do) pass to some complete intersection semiperfect ring by p-power root extraction
to represent the two syntomic complexes by explicit two-term complexes of modules, and
the desired isomorphism follows from the comparison between crystalline and prismatic
Dieudonné theory over quasisyntomic bases in characteristic p [1, Th. 4.44] as well as the
comparison of the Hodge and Nygaard filtrations. (The Nygaard filtration for prismatic
Dieudonné crystals is defined at the beginning of [1, §4.8], and the claimed compatibility
with filtrations can be read off from the proof of [1, Th. 4.44] using [1, Lem. 4.40 and
Lem. 4.43]. Note also that in [1, Rem. 4.85] we have ¢ = p for characteristic p base rings,
so the comparison in [1, Th. 4.44] is compatible with the divided Frobenius maps.)

Assume that we have a natural isomorphism (36) for n, and we shall deduce (36) for

n + 1. By (34) applied to W}, = 15,”+1)/, we get

(37) S S Lie(Ap) @ (/[ 1]
We now claim that the map
~, (n+1)r _  ~ (n+1)r
(38) Sp " S Sp

induced by the natural map D(—(n + 1)w) — D(—nw), is an isomorphism. To verify
this assertion we may ignore the Galois action, which enables us to represent the syntomic
complexes explicitly following [22, 5.14.1].

Let S* be Spec Oy, equipped with the divisorial log structure for the closed point. Choose
an isomorphism O, = k,[[T]], and write P* to be Spec W (ky)[[T]] equipped with the
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divisorial log structure given by the ideal (T'). Then the natural closed immersion St s pt
is a good embedding in the sense of [22, § 5.6]. Let o be the lift of Frobenius on Op =
W (kw)[[T]] given by o(T) := TP.

~, (m)
For any integers n,m with 0 < n < m < 2n, we can represent Sg’z/w as the total
complex of the following double complex

(0) l—pf1 Fr1 (0)
TnD(Sﬁ,Pti) T™ D (gt pry + TnD(smPn) .

| |

1-p~lo®Fr1
Op% @ T"Dygz pry ——— Op%F @T™ Dt pr)

This shows that the mapping cone of (38) is quasi-isomorphic to the the total complex of
the following double complex

(0) _ +1 (0)
"D g8 pty 1-p~1Fr1 T D st piy T D gy piy
TnHDgg)u oty TnHD(sﬁ,Pﬁ) .
O-dt o I Pist.r) 1-p~'o@Fr1 Odt o L Pstpt)

Pt ¥ TFID oy Pt ¥ TnFID

) (s, Pt

It suffices to show that both horizontal maps are isomorphisms. Indeed, since p~!Fr1l

n (0
takes T Dgs)ﬁ,Pﬁ)

by the natural inclusion 1, which is an isomorphism since T n+1DEg*)ﬁ, piy = T"“D( st.pty O

T ”DE(;)jj Py Similarly, the bottom horizontal map coincides with the identity map.
Now combining (35), (37) and (38), we verify the desired equivariant isomorphism (36),
which the lemma was reduced to. U

Recalling that Q@ = Gal(F'/F), we now define objects in D(Z,[Q]), respectively in
D(Z,y|Gal(F'/K)]) if F'/K is Galois, by setting

IF/ = RF(X, RUF//KD(—E);?/) ®]L Qp/Zp)*[_Q]

into TP D g¢ pty, the top horizontal map coincides with the map induced

and
ﬁ/
Ppr := RU(X, Rup i D(—E)S) @ Q,/Z,)*[-2],
where £ is as defined in (29). The following result describes the connection between these
objects and the constructions made in earlier sections.

Lemma 6.2. Let E, Vi and M be as in Lemma 6.1. Then there are canonical exact
triangles in D™ (Z,[Gal(F'/M)]) of the form
1- 6 o'
(39) Ppr =5 I = Rl v, (Upr, Ator)5[—2] — Ppi[1]
and
(40) Pp 5 Iy — RU(X, £)*[-2] — Pp[1].
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Proof. By the result of Lemma 6.1, the triangle (39) is obtained by applying the exact
composite functor RT'(X, — ®" Q,/Z,) to the exact triangle (of complexes of sheaves) that
results from the definition of S .y as the mapping fibre of (30).

The exact triangle (40) results in a similar way by using the canonical exact triangle
Ll
Elg)RUF//KD(—E)%Q/) ®]L QP/ZP*IXRUF//KD(—E);—V ) ®]L QP/ZP*)
described by Kato and Trihan in [22, §6.7]. O

The complexes I and P are not known, in general, to belong to DP®(Z,,[Gal(F'/F)])
and hence, for our purposes, we must adapt the triangles (39) and (40), as per the following
result.

Proposition 6.3. Let M be any extension of K over which F' is Galois. Set J :=
Gal(F'/M), and let N be an order in Qp[J] that contains Z,[J| and is such that the complex
T>—1(M ®Hip[J] Ipr) can be represented by a bounded complex of projective M-modules.

Then the triangles (39) and (40) induce exact triangles in DP* (N) of the form
1—
Tz—l(m @%p[ﬂ PF’) —Lp’ T>—1<m ®%p[]] IF’) - m@%p[ﬂ RPar,VF,(UF’a Ator); [—2] -

and

7—2—1<m®%p[ﬂ PF’) l’ T>_1(’ﬁ @%p[ﬂ IF’) - ‘ﬁ@%p[ﬂ RF(X:EI)*[_2] -

Proof. The results of Proposition 3.7(i) and Lemma 3.9 imply that both of the complexes
C1 = Rlarv,, (Upr, Ator) [ 2] and Cy := RI'(X, L')*[—2] belong to Drerf(7,,[J]) and are
acyclic outside degrees 0 and 1 and 2.

In addition, a finitely generated, torsion-free, Z,[.J]-module of finite projective dimension
is itself projective (by [2, Th. 8]). By a standard resolution argument (as in the proof of
Lemma 3.8(iii)), it therefore follows that the complexes C1 and C5 are both represented
by complexes of finitely generated projective Zy[.JJ]-modules, all terms of which are zero in
every degree less than —1 and every degree greater than 2.

This in turn implies that ‘ﬂ@%p /] Cq and m®ﬂip[ J] C5 belong to Dperf(‘ﬁ) and are both
acyclic in all degrees less than —1.

Given this last fact, one obtains exact triangles in D~ () of the stated form by simply
applying the exact functor ‘ﬁ@ﬂip[ g1 — to the triangles (39) and (40).

To prove that these respective triangles belong to DPe™ (M) (rather than just D~ (M)) it
is then enough, since N ®Hip[ J] C1 and ‘ﬁ@ﬂz‘p[ J] C5 both belong to Dperf(‘ﬁ), to prove that
the complex C' := 7=_; (M ®Hip[J] Ip+) also belongs to DPf(91).

To do this we note that, by assumption, C' is represented by a bounded complex of
projective 9t-modules and, by [22, Prop. 5.15(i)], all cohomology groups of C are finitely
generated over 9. Taken together, these facts combine with a standard construction of
resolutions to imply C belongs to DP°™ (M), as required. O

Since 7>_1(MN ®Hz‘p[ J] Ir) is acyclic outside finitely many degrees the stated condition in

Proposition 6.3 is automatically satisfied if the order 9 is hereditary (and hence, by [11,
Th. (26.12)], if it is a maximal order).
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With Theorem 4.10 in mind, in the next section we will show that, under suitable con-
ditions on Ap; and F’/M the condition in Proposition 6.3 can also be satisfied by orders
that are not maximal.

Then, in §8, we shall study in greater detail the long exact cohomology sequences of the
exact triangles in Proposition 6.3.

7. CRYSTALLINE COHOMOLOGY AND TAME RAMIFICATION

We continue to use the general notation of §6. We also assume that the extension F’/F is
tamely ramified and write 7 : X — X g for the corresponding cover of smooth projective
curves. We fix a log structure on X g associated to the divisor Xp — Upr, write X%—v for
the associated log scheme and note that the natural map 7 : X%, — Xlﬁw is Kummer-étale
(in the sense of [29, Def. 2.13]).

We write w : (X%/Zp)crys — Xpe¢ and o' : (X?,,/Zp)crys — (Xp)e for the natural
morphism of topoi.

In this section we shall construct certain complexes of )-equivariant étale Zj,-modules
that represent RusD(—Er)© and Ru;D(—E)Eg,), where E is the pull back of a suitable
divisor Er of Xp supported exactly at Xp\Up. This construction will play an important
role in the proof of Theorem 4.10.

7.1. Digression on log de Rham complexes. The main result of this section is the
following general observation concerning crystalline sheaves.

Proposition 7.1. Let £ be a locally free crystal of O¢py-modules (with O¢py 1= Oy y ).
F P

(i) There exists a bounded below complex C(n%*E) of torsion free Z,[Q]-modules that
has both of the following properties.
(a) Each term of C(n%*&) is an induced Z,[Q]-modules; in other words, in each
degree i there is an isomorphism Zy[Q]-modules

C'(7**€) = nd? (C'(x**€)9),

where e denotes the identity element of Q.
(b) For each normal subgroup J of Q there is an isomorphism in D(Z,[Q/J])

Homg, (71(Zy, C(rb*€)) = chrys(Xﬁ,(,/Zp, w?,’*g),
#

where T Xlﬂw,J — X% is the natural projection.
(ii) If there is a short exact sequence of sheaves

08" —»&—i F—0

XL /Ly
for a vector bundle F on Xp, then claim (i) is also true with & replaced by E°.

7.1.1. As preparation for the proof of this result we start with the following technical result.

Lemma 7.2. There exists a formal scheme ﬁ{g; over Zy, that is a smooth lift ofX%. Further-
more, for any finite Kummer-étale covering X%, — X%, there exists a finite Kummer-étale
covering 7t %iﬂ, — %iﬁ that lifts ©@ X%, — Xgﬁ.
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Proof. This lemma is obtained from the infinitesimal deformation theory for smooth log
schemes (cf. [21, Prop. 3.14]). More precisely, if %%n is a (flat) lift of X over Z,/p", then

it is easy to see that %ﬁF ,, 1s log smooth over Z,/p" (where Z,/p" is given the trivial log

structure). To see this, one applies Kato’s criterion [21, Th. 3.5]. By [21, Prop. 3.14(4)],

the obstruction class for lifting %ﬁFn over Z/p" ! lies in H*(Xp,wY, ) = 0, where w, is
) Xp Xp

the sheaf of differentials with log poles at Xr — Up. We write %gy for the natural inverse
limit lim }:%;n

Since the sheaf of relative log differentials w y is trivial, it follows that the finite

Xt /X
F

Kummer-étale covering nf : X%, — X% canonically lifts to #f : .’{ﬂF/ — f{ﬂ , (cf. [21,
Prop. 3.14]). This produces the desired finite Kummer-étale covering 7Tﬁ %ﬁ — %ﬁ ([l

We use this lemma to obtain some complexes representing Ru4& and Rul,(7*E) for a
locally free crystal & of O¢py-modules. Given such &, we obtain a vector bundle £, that
F

is equipped with an integrable connection with log poles V : .4 — &4 ®03€F &\)xu
F F

Furthermore, since X% — %g is a good embedding in the sense of [22, § 5.6], it follows

that £ is functorially determined by (£,4,V) by [21, Th. 6.2]. The same holds for any
F

locally free crystal £ of O¢pry-modules, and the associated vector bundle with integrable
connection with log poles (5’u , V).

F/

Recall that the map 7 : ¥ — X is flat! and we have T W = wyt by [21, Prop. 3.12],
F 2

so we can define pull back and push forward by 7 for vector bundles with connection with
log poles (just as the unramified case).

Furthermore, by unwinding the proof of [21, Th. 6.2], one can see that the construction
E v (E,4,V) (and the same construction for £) respects the pull back and push forward

o
by 7 so that one has both (1#*€) s V) = (€4, V) and (72€) . V) = fr*(f;’ﬁ 9.

xﬁ ) x’i)

In particular, both (7#*& )y and (Wié” )x L have natural horizontal actions of Q.

Let X, denote the closed subscheme of % F cut out by the ideal generated by p™. Then
a coherent Oz, -modules F, can be seen as a torsion étale sheaf on Xp, where for any
étale morphism f : Y — Xp, we have F,(Y) := I'(Y, f*F,,). Similarly, any coherent Ox,.-
module F can be viewed as a Zjy-étale sheaf on Xp; namely, the inverse system of torsion
étale sheaves {F|x, }.

Now, for any locally free crystal £ of O py-module, the complex Rus& can be computed

«t » where the first
F

term is placed in degree zero (cf. [22, § 5.6]). One also obtains a similar expression for
Rul,(m*&) as a complex of ‘Z,[Q]-étale sheaves’ on Xp.

via the complex of Zy-étale sheaves on Xp given by &+ Y, Ext ®(93£F‘:)
F F

1t suffices to verify the flatness at the formal neighbourhood of any closed point. And by Abhyankar’s
lemma (cf. [15, A.11]), the map of completed local rings induced by 7 is of the form W(F,)[[t]] —
W (F,[[t"/¢]]) for some e not divisible by p.
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Given a short exact sequence
08 —E&—-F—0,

where F is a vector bundle on X viewed as a log crystalline sheaf, we have a short exact
sequence 0 — Ru,E® — Ru.E — F — 0, where F is viewed as a torsion étale sheaf on Xp.
Therefore, we may express

0 o V - ~
(41) Ru.&E” = [5 Ii — 5%3;®O3€Fw3€§:]’

F.

where 50 denotes the kernel of £ x iy

%F / Lp,*
Remark 7.3. Note that .’{ﬁF can be obtained as a p—adic completion of a proper smooth
log scheme X7, X% over Zy, where the underlymg scheme X F is a smooth lift of X and the
log structure is given by relative divisor ZcX r smoothly lifting Z := | Xp — Up|.

Let us now give some examples of Rus& for some £. When & = O¢p, then Ru,Opy is
the log de Rham complex of %g,; that is, the p-adic completion of the de Rham complex of
X with log poles along Z.

Given any divisor Fr of X supported in Z, one obtains a rank one locally free crystal
of (9<F>—m0dules = O<F>(EF)

Let us now describe Ru*(’)<F>(EF). Viewing }ZﬁF as the p-adic completion of the log
scheme )N([ﬁ? with divisorial log structure associated to Z , we can find a relative divisor Er

of Xp that lifts Ep and is supported in Z. Then from the definition of O¢ry(EF) (cf. [22
§ 5.12]), one can check that

Ru, Oy (Br) = [0, (Er) = O, (Er) Qw1 ®o, Oz

where V is induced by the universal derivation d : Oy — wg: = Q5 (log Z ). (Here, V is
F

well defined since E 7 is supported in Z , where wgs is allowed to have log poles.)
F

7.1.2. We are now ready to prove Proposition 7.1.

We shall, for brevity, only prove claim (ii) since this is directly relevant to the proof of
Theorem 4.10 and claim (i) can be proved by exactly the same argument.

Our strategy is to use Proposition A.7 to construct a complex C(7%*£°) of induced Z,[Q]-
modules that represents Rfcrys(X%//Zp, 7h*€0) in such a way that C(£°) := C(x#*£%)9 is
naturally isomorphic in D(Z,) to RFCWS(X?;/ZP,EO). (Since each term of C(7#*£%) is an
induced Z,[Q]-module, the complex C(£°) of term-wise Q-invariants of C(7%*£%) represents
RHomy, [q)(Zy, C(x**£0)).)

We recall that Rl“crys(X%/Zp,SO) identifies with RD¢ (X r, Ru.EY) and that Ru.&0 is

v ~
equal to the complex 5’;&7 — & Q0% Lot -
are ‘coherent Oy ,-modules’, we can compute RI's (X, Ru.EY) via Zariski topology on Xp
(viewing Ru.E® as a complex of coherent Oy ,-modules with additive differential). Note

that the same properties hold for Ru/, (7%*£°) as well.

In particular, since all the terms of Ru.EY



39

We now choose the disjoint union of some @Q-stable finite affine open covering LlﬁF of f{ﬂF,
and regard it as a Kummer-étale covering of 1{% We then let C'(£°) denote the total complex
associated to the Cech resolution of Ru,E” with respect to ilﬁF. Similarly, we let C(7*£0)
denote the total complex associated to the Cech resolution of Ru/,(7%*£°) with respect to
the Kummer-étale covering ilﬁF X x5, %iﬂ, of %ﬁF,, which is a complex of Z,[Q]-modules where
the Q-action is induced from the @Q-action on Xg. Then, by Proposition A.7, we know
that C(£Y) is isomorphic in D(Z,) to RFcrys(Xg/Zp,EO) and that C(7%*£9) is isomorphic
in D(Zy[Q]) to RTerys(X 4, /Z,, wt*E0).

In addition, one has il%; X X, Xt~ il%; x (@ and so in each degree 7 there is an isomorphism
of Z,[Q]-modules

C'(w**€°) =~ Homy, (Z,[Q], C' (7)) = Ind, C*(£°),

where C*(7#*£0) and C*(£Y) denote the i-th term of C(7%*£Y%) and C(E£°), respectively.
(Indeed, we have that each term of Ru/,(7%#*£°) is obtained by the pull back of the terms

of Ru,E" as coherent sheaves, using the isomorphism 77'*(/«\1:{1:1 = cfjgle,j obtained in [21,
F !

Prop. 3.12].) Therefore, we have C(E%) = C(r#*£%)?. (To see that the Cech differentials
on both sides match, we note that the Cech resolution C(7#*£°) is constructed with respect
to the pull back ilg, Xxp Xpr of the Kummer-étale covering L[ﬁF of X, which was used for
constructing the Cech resolution C(£°).)

It remains to show that for any subgroup J of @) the complex C(Wu’*E‘O)J represents

RFCrys(Xg‘,J/Zp, 77*EY). Note that we have

W x g Xy =t x e (X)) = 96 x (Q/1),

So it follows that C(7#*£%)7 is the total complex of the Cech resolution of RUF/Jy*(TF(u]’*gO)
with respect to the Kummer-étale covering iliﬁ Xt %ﬁF, ; of %ﬁw ,, and so C(7%*£9)7 repre-
F
sents Rfcrys(Xﬁ,,J/Zp, 75 EY) by Proposition A.7.
This completes the proof of Proposition 7.1.

7.2. The complex I. The following consequence of Proposition 7.1 regarding the com-
plex Ip constructed in §6 will play an important role in the proof of Theorem 4.10.

Proposition 7.4. If the extension F'/F is tamely ramified, then I lies in DP*(Z,[Q)])
and is acyclic in all degrees outside 0,1 and 2.

Proof. Throughout this proof we use the notation introduced at the beginning of §6 with

K' = F. By applying Proposition 7.1 to £° = D(—Ep)® (so we have 7#*£0 = D(—E)(Pg) as

E = 1*EF), we obtain a complex of torsion-free induced Z,[Q]-modules Cp representing
Rlarys(X}/Zy, D(~E)})) = Rl (Xpr, R, (D(~E)p))

such that for any subgroup J of Q the complex C, represents Rfcrys(va /2y, D(—E F/J)Eg,)J)

where Eps is the pull back of Ep to Xp.. In particular, in each degree ¢ there is an

isomorphism of Z,[Q]-modules C%, = Homg, (Z,[Q], (C%)?).
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Since ( }7)‘] is Zy-flat in all degrees i, for any normal subgroup J of @ there is an

isomorphism in D(Z,[Q/J])
Ip = (C%' &z, Qp/Zp)*
where the complexes on the right hand side are defined by the term-wise operations.
If we set I%, := (Ch ®z, Qp/Zy)* and Ik = ((C%,)? ®z, Qp/Z,)* for any i, then we have

I%/ = ZP[Q] ®Zp I}*—‘a
which is a flat Z,[Q]-module. Therefore for any subgroup J of @ the derived coinvariants
Ly, ®Hip[ J] I can be represented by the following complex defined by term-wise operations:

Zp @z, (Cr Rz, Qp/Zp)* = ((CF’)J ®z, Qp/Zp)*.

This implies, in particular, that Z, ®Hip[J] I+ is isomorphic in D(Z,[Q/J]) to Ig..

Thus, since each complex Iz is acyclic outside degrees 0,1 and 2 and each cohomology
group of I is finitely generated over Z,, a standard argument (as already used at the
beginning of the proof of Proposition 3.7) implies that Iz belongs to DP*™(Z,[Q]), as
claimed. 0

8. CRYSTALLINE COHOMOLOGY, SEMISIMPLICITY AND VANISHING ORDERS

As further preparation for the proof of Theorem 4.10, in this section we establish a link
between the long exact cohomology sequences of the exact triangles constructed in Lemma
6.2 and the rational height pairing of Schneider and then use it to study the orders of
vanishing of Hasse-Weil-Artin L-series.

Throughout we use the notation of Lemma 6.2. For convenienc, we also set

Qn = Gal(F'/M)
and YQp =Qp ®z, Y for each Zp-module Y.
8.1. Height pairings and semisimplicity. At the outset we recall that, by the general
discussion given at the beginning of [22, §4.3], for each intermediate field M of L'/K the

Dieudonné isocrystal D(Anlv,,) ® Qp on (Ups/z, )erys comes from an overconvergent F-
isocrystal on Ujys that we shall denote by

DY, = D (Ay).
We further recall that, by [22, §4.9 and Prop. 5.15], there are natural identifications
(42) Qp ®z, I = Q, ®z, P = RHomg, (Rlyig.o(Upr, D}), Q) [~2]

with respect to which the morphism 1 in the exact triangle (40) corresponds to the identity
endomorphism on RIyig o(Upr, D},).

Upon combining these identifications with the long exact cohomology sequence of the
exact triangle (39) we obtain a composite homomorphism

HO(o' HL (6
(43) Baprp: Qp®z ANF) 0 HY(Pr)g, = H' (Ir)g, > Q, @2 Homyz(A(F'), Z).

We also write
har ps: Qp®z AHF') — Qp ®z Homg(A(F'),Z)
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for the isomorphism of Q,[Qas]-modules that is induced by the algebraic height pairing
ha,F that occurs in §5.3.

Proposition 8.1. If II(A/F’) is finite, then the following claims are valid.
(i) One has Baprp = (£1)*AF 2 X hg pry, . for a computable integer aa s, in {0,1}.
(ii) The homomorphisms H'(¢)q, are bijective for all i 1, where ¢ :=1— .
(iii) The Qp[Qnr]-module ker(H'($))q, is naturally isomorphic to Q, ® A'(F").
(iv) The composite map ker(H())g, = H*(Pp)g, = H'(Ip)q, — cok(H'(¢))q, is
bijective.

Proof. Write € for the quotient of the category of Z,[Qar]-modules by the category of finite
Zp|Q pr]-modules.

Then, since III(A/F") is assumed to be finite, the (non-degenerate) pairing h4 s induces
an isomorphism in € of the form

(44) A(F') ®z Qp/Zp — HomZ(At(F'), Qp/Zy).

Next we set C' := RFar,VF,(U rry Ator).  Then, since the kernel of the homomorphism
H'(C") — Selgz(Apr) in Proposition 3.2 is finite the natural map A(F') ®z Q/Z —
Selgz(Ap) factors through a map A(F') ®z Q/Z — H'(C') in €. This homomorphism
then gives rise to a composite homomorphism in € of the form

(45) A(F')®zQ/Z — H'(C"), — H'(I%) > H'(PL)
- HQ(C/)IJ - HomZ(SelZ(At), Qp/Zp) - HomZ(At(F’), Qp/Zp)a

where the second and fourth maps are induced by the exact triangle (39) and the fifth by
Proposition 3.2.

To prove claim (i) it is sufficient, after taking Pontryagin duals, to show that the mor-
phisms (44) and (45) in € coincide up to a computable sign and this is precisely what is
established by the argument of Kato and Trihan in [22, 3.3.6.2].

To prove the other claims we note that the long exact cohomology sequence of the exact
triangle (39) combines with the descriptions in Proposition 3.7(ii) to imply that H*($)q, is
bijective for all i ¢ {0,1}, that ker(H°(¢))q, and cok(H?($))g, vanish and that there are
exact sequences of Qp[Qps]-modules

0 0(p’
0 — cok(HO($))g, ~— > @y ® A(F) “-s ker(H'(¢))g, — 0,

" H (6 H (0 “
0 — cok(H'($))g, 2 Q, @z Homz(AY(F"), Z) 2, ker(H2())g, — 0.

(46)

Now, since hZ s is bijective, claim (i) implies the same is true of the map 4 r and this
fact combines with the above exact sequences to imply that the spaces cok(H°(¢))g, and
ker(H?(¢))g, vanish, as required to complete the proof of claim (ii), and hence that the
upper sequence in (46) gives an isomorphism of the sort required by claim (iii).

Finally, claim (iv) is true because the bijectivity of 84 p» combines with the upper se-
quence in (46) to imply ker(H'())q, is disjoint from ker(H?(6))g, whilst the lower sequence
in (46) implies that ker(H'(6))q, is equal to im(H"())q, - O
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8.2. Orders of vanishing and leading terms. We now derive from Proposition 8.1
the following result about the order of vanishing 74 a(x) at ¢ = p~! of the functions
Zuy (Anr, x, t) that are defined in §5.3 for each character x in Ir(Qar).

We fix (and do not in the sequel explicitly indicate) an isomorphism of fields C = C,, and
hence do not distinguish between Ir(Qys) and the set of irreducible C,-valued characters of
Qum.

In particular, for x in Ir(Qas) we may then fix a representation Qny — Autc, (Vy) (that
we also denote by x) of character x, where V) is a finite dimensional vector space over C,,.

If R denotes either Z,[Qar] or Q,[Qas], then for each finitely generated R-module W
and each x in Ir(Qys) we define a C,-vector space by setting

WX = Hom(cp[QM](VX, (Cp[QM] ®R W)
Theorem 8.2. For each x in Ir(Qnr) the following claims are valid.
(i) ran(x) = dime((C @z A'(F))X) = x(1)~ - dimg (e (C @z A(F))). ,
(ii) In each degree i the homomorphism H'(1—) induces an automorphism H'(1—p)5,
of any fized complement to ker(H'(1 — ¢))X in H'(Ppr)X.
(iif) Zf,, (Apr,x,ph) = H;j det(H* (1 — cp)?c)(*l)wl, where the leading term is nor-
malised as in (27).

Proof. We fix a finite Galois extension A of Q, such that for any y in Ir(Qas) the Cp[Qar]-
module V,, descends to a A[@Qy]-module V) n. We write kj for the residue field of A and
set ¢ := #(ka). Then, for each x in Ir(Q), we fix a A[Qa]-module V) 5 such that
Cp @A Vya = Vy and, for any Qp[Qpr]-module W, we set

W;\‘ = HomA[QM](VX,A, A ®q, wW).

tig.cUrr, D%,)X and H'(1— )5 , in terms of
the rigid cohomology of overconvergent A-F-isocrystal; cf. [39, (7.1)]. (In fact, we will work
with overconvergent Ag-F-isocrystal for some suitable subfield Ag of A.) We recall that an
A-F-isocrystal is, roughly speaking, an isocrystal with scalars in A (instead of Q,) equipped
with A-linear ¢-Frobenius operator (denoted by cp(A)). In particular, given an overconvergent
F-isocrystal (€, ) over Ups, one can ‘extend scalars’ to obtain an overconvergent A-F-
isocrystal €y in the following way: if F’ contains ky and we set r := [ky : Fp], then
(€,¢") is an overconvergent Q,-F-isocrystal and so one can set (£, M) := (£ ®g, A ¢" ®
A). In addition, there is the following base change result (¢f. [7, Th. 11.8.1]): for any
overconvergent isocrystal £ over Ug», there is in each degree i a natural isomorphism

Hi, J(Upr, &) ®qg, A = Hyy (Upr, 1)

rig,c

We now give an alternative description of H?

(and similarly for the rigid cohomology without support condition).

Now, following the above discussion, if we are to construct overconvergent A-F-isocrystals,
we should assume that the base field contains k. To do this, we shall, if necessary, replace
F' by F" := F'-F,. Then F”/M is a Galois extension and, setting Q, := Gal(F"/M),
we regard Ir(Qas) as a subset of Ir(Q”,) in the natural way. Now, if W” is a finitely gener-
ated module over either Z,[Q",] or Q,[Q%,] then (W)X = WX with W := (W")GalF"/F"),
Hence, to prove the claimed result, we can assume without loss of generality that ky < F’.
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In this case, ng (Upr, F,) is a Ag-vector space and there is a natural isomorphism

g o(Upr, Dpy) ®g, Qg = HGal(Qq/@ \Hitg (U, D 2

with respect to which the endomorphism ¢ ® ¢ of the left hand side corresponds to the
following block matrix on the right hand side

o1 0 - 0
o 0o 1 --- 0
0o 0 --- 0 1
e 0 - 0 0

One therefore obtains M—equivariant isomorphisms

H}\/’I‘: I‘lg C(UFI ) ®Q Qq - rlg c(UF/ Qq)(AT)7

where the left hand side is the product of generalised X -eigenspace for ¢ and the right hand
side is the generalised A"-eigenspace for ¢(Qa) := 7. (Note that the underlying isocrystal
for DTF,@(I is D},, equipped with the Q,-linear g-Frobenius ¢".)

Extending scalars from Q, to A, we now obtain an isomorphism

H)\/'r:)\r rig, C(UF/ F’)(X) ®Qp A= rlg C(UF’ ( )A)(Ar)v
where the right hand side is the generalised A"-eigenspace for 1) := " ® A, and so
detg, (H'(1—t- ) = dety (H'(1 — ol 5(M))),

Now, by the main theorem of Tsuzuki [39, Th. 7.2.3], there exists an overconvergent
unit-root F-isocrystal Of(x) over Uy with monodromy given by Via, viewed as a Qp[Qar]-
module. Furthermore, Of(x) has a natural action of A commuting with the p-Frobenius
operator ¢ and the connection; that is, O(y) is a Q,-F-isocrystal with A-action in the
sense of Definition B.3 for Ag = Q,. (Indeed, the A-action on the level of convergent
Aop-F-isocrystal is clear by construction since the A-action on V, A commutes with the
Qp[@nr]-action, and the A-action extends by the full faithfulness result [38, 5.1.1].)

We then obtain another Q,-F-isocrystal D;rw(x) = O0T(x) ®q, D}Lw with A-action and, in
each degree 7, we regard

HJl\J(X) = rlgc(UMvDT ( ))
as a A-vector space equipped with A-linear p-Frobenius operator ¢. We then claim that
there is an identity of functions

=2 .
(47) Zua (Anr xopt) = [ [ deta(1 = pt - o | Hyy ()Y

Indeed, this identity is a standard consequence of Lefschetz trace formula for rigid coho-
mology of Q,-F-isocrystals with A-action; c¢f. Theorem B.9. (Its proof is a straightforward
adaptation of the Lefschetz trace formula for A-F-isocrystals in [14, Th. 6.3]. In fact, in the
special case that M contains kj, one can directly construct a A-F-isocrystal on Ujys that
computes Zy,, (Awm, X, pt) via the more classical Lefschetz trace formula in loc. cit.)

i+1
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Now, from Proposition 8.1(ii) we know that, fqr both ¢ = 0 and ¢ = 2, the endomorphism
H'(1 — ¢) is invertible on the Qp-linear dual Hj,(x)Y of Hj,;(x). From the identity (47),
we can therefore deduce that

¢ | HM(X )

(ker(1 — )
(ker(1 - | HM(X)V))
= dlmA (ker(l - ‘ rlg c(UF’ ( )A)V)X)
= dimy (ker(1 — ¢ | HY'(A ®z, Pr)X)
= dimc (A" (F')X).

Here the second equality is clear, the third follows from the isomorphism in Lemma 8.3
below, the fourth from (42) and the first and fifth from Proposition 8.1(iii) and (iv). This
proves claim (i).

Claim (ii) follows directly from Proposition 8.1(iv) and the fact (already noted above)
that H*(1 — ¢) is invertible on Hj,(x)" for i = 0 and i = 2.

Next we note the equality (48) implies that

det(1—pt - ¢ | ker(1 — ¢ | HY(Pp/)X)) = (1 — pt)ram 0,

(48) ram(x) =dimp (ker(1

=dimp

Given this equality, and our chosen normalisation of leading terms, the formula in claim
(iii) follows directly upon combining claim (ii) with the identity (47). O

Lemma 8.3. For every absolutely irreducible representation x : Qn — Autpa(Vya) as
above, and every degree i, there is a natural A-linear, Frobenius equivariant isomorphism

H}ig oUnt: Dy (X)) = (Hsy o(Upr, (DJ)a) ).

Proof. All isomorphisms in the proof below can be checked to be Frobenius equivariant.
Poincaré duality identifies the A-modules HZ (UM,D}LW(X))V and H’ (UF/,(D];,)A)V

rig,c rig,c

with Hfng(UM,DT (x)Y) and Hig’(UF/ (D} 7)) respectively, where D}LV[( )V and (D}’,V)A

denote the dual as an overconvergent F- 1socrystal and an overconvergent A-F-isocrystal re-
spectively. It therefore suffices to prove there exists a natural isomorphism

(49) Hiiy(Upr, (DR )A)X = Hisy (Ung, DY, (0)Y).

To show this we use the canonical isomorphism 7%, ,,, M (DT ) = D} pr» Where 7y denotes
the natural morphism Xp — Xj;. We also note that the proof of [10, Prop. 1.3] implies

the overconvergent vector bundle DL, has a natural Qps-action that commutes with its nat-
ural Frobenius operator. (To see this, note that the natural @ys-action and the Frobenius

commute on the log Dieudonné crystal D?,g, and so the same must be true on the associated
convergent isocrystal. Then one need only note that, by [38, 5.1.1], the category of over-
convergent F-isocrystals on Ugr is naturally a full subcategory of the category of convergent
F-isocrystals on Upr.)

Now, by construction of DL (x), there is a natural isomorphism of @ j/-equivariant over-
convergent F-isocrystals w7}, /M(DJTW(X)V) >~ Via ®q, D;l,v , where Vg a is viewed as a
Qp[@nr]-module and Qs acts diagonally on the tensor product. This isomorphism also
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respects the natural QQp/- and p-Frobenius equivariant A-actions on both sides. Hence,
since the underlying overconvergent isocrystal for Vi ®q, D];,v coincides with that of

Vin @a (D}’,v )A, one obtains the required isomorphism (49) via the induced composite
isomorphisms

Hiy (Unr, DY (x)Y) = Hig(Upr, wh g (DR (0)¥)) 2

s Hiy (Upr, Vioa ®n (D)) @M

= HE (U, (DL )a)X.

T

Here the first map is induced by Shapiro’s Lemma and its bijectivity is proved in [35,
Prop. 4.6] and the change from x to x that occurs in the third isomorphism is for the
reason outlined in Remark 2.3. O

9. PROOF OF THE MAIN RESULT

In this section we use results from earlier sections to obtain a proof of Theorem 4.10. At
the outset we note that Theorem 4.10(i) is proved by Theorem 8.2(i) and that Remark 4.11
allows us to assume that III(A/L) is finite. We therefore focus on establishing the validity
of the equality in Conjecture 4.3(iii).

For convenience, for each Galois extension F'/M (as in Proposition 6.3) we define an
element of Ko(Z[Qa], Q[Qar]) by setting

XA, F' /M) := 00, (255, (Ast) prjars 0™ 1)) = XGor(Anr, Vier)
+ XGyy (Anr, Vi) — X, (Am),
where, we recall, the leading term element is normalised via (27).

9.1. A first reduction step. For a finite group I', a prime number ¢ and an element x
of Ko(Z[T'],Q[I']) we write x, for the image of z in Ky(Z¢[T'], Q/[I']) under the canonical
decomposition (8).

Proposition 9.1. Assume II(A/L) is finite. Then the statement of Theorem 4.10 is valid
if and only if the following conditions are satisfied.
(i) If My, is any given mazimal Zy,-order in Q,[G] that contains Zy[G], then x (A, L/K),
belongs to the kernel of the homomorphism Ko(Z,[G], Qp[G]) — Ko(Mp, Qp[G]).
(ii) Assume that the set ¥4 U 3o in (13) is non-empty. Fiz a field K' € ¥; U Yo,
set L' = LK' and write P' for the normal subgroup of H' := Gal(L'/K') that is
generated by the Sylow p-subgroups of the inertia groups of all places that ramify in
L'/K'. Then x(A, (L)Y /K"), vanishes.
(iii) For each prime { % p one has

0a.0(ZE (AL p™"))e = X6 (A, Ve )e = Xx& (A)e.
Proof. 1t suffices to check that the stated conditions are equivalent to the validity of the
equality in Conjecture 4.3(iii).
Thus, after taking account of Proposition 5.6, the decomposition (8) combines with the
explicit definition of the subgroup T4 1k to reduce us to showing that the stated conditions
imply the validity of each of the following assertions:
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(C1) x(A,L/K), has finite order;
(Cy) for every field K’ that belongs to either ¥ or X9, x(A, L/K), is the image under
74 of an element of Ko(Z,[G'], Q,[G"]) that belongs to ker(ﬂgl,/P,);

(C3) x(A, L/K), vanishes if ¢ + p.

To check this, we first recall (from [4, §4.5, Lem. 11(d)]) that Ko(Z,[G], Qp[G])tor is equal
to the kernel of the scalar extension homomorphism Ky(Z,[G], Qy[G]) — Ko(IM,, Q,[G)).
Given this fact, condition (i) directly implies that x(A, L/K), has finite order, and hence
verifies (Cq).

Next, we note that, for any K’ € 31 U X9, the result of Proposition 9.2 below implies (in
terms of the notation of condition (ii)) that one has both x(4, L/K), = 7& (x(A, L'/K),)
and ﬁg/,/P,(X<A,L//K)p) = x(A4, (L)' /K"),. In particular, in this case, condition (ii)
implies x (A, L'/K), belongs to ker(ﬂg’, / pr), as required to verify (Cg).

Finally, to verify (Cs) we note that if £ # p, then Xg?h(A, V1)e vanishes. Thus, in this
case, the vanishing of the image in Ko(Z/[G], Q¢[G]) of the equality in Conjecture 4.3(iii)
is clearly equivalent to the equality stated in condition (iii). O

Before stating the next result we note that if J is a normal subgroup of a subgroup H of
G, and we set @@ := H/J, then there is a natural commutative diagram

(50) Ky (QIG]) —* . Ky (QUH]) — s Ky (@QIQ))
30,@{ QOG’H laH,Q o, . \PQ,@

Ko(Z[G], Q[G]) — Ko(Z[H], Q[H]) — Ko(Z[Q], Q[Q])
where GiG’ g and G%Q are the natural restriction and coinflation homomorphisms.

Proposition 9.2. If J is a normal subgroup of a subgroup H of G, with Q = H/J, then
the composite homomorphism 90H7Q o 9%7}[ sends x(A, L/K), to x(Apu, L7 /LT),.

Proof. We set 6}  := 0}y 00y, E := L and F := L7,

At the outset we note that, by a standard argument using the Artin formalism of L-
functions, one finds that HlG’Q(Z(”}(AL/K,pfl)) = ZﬁE((AE)F/E,pfl) and so the commuta-
tive diagram (50) implies

(51) 06,0 (0c.0(Z5 (AL, p™))) = C0.0(Z5, (Ap) /s p ™))

It is also clear that Hé,Q(<Q - AY(L),—1)) = {Q - AY(F),—1) and, given this, an explicit
comparison of the equalities in Proposition 8.1(i) with F’ equal to L and F implies
(52) 0. (A)p) = X5 (AB)y.

To proceed we write 7,7’ and 7" for the natural morphisms X; — X, X; — Xg and
Xp — X. We fix families of subgroups Vi, and Wy, for the extension L/K as in §3.4 (the
choice of which is, following Proposition 5.3, unimportant) and write £, for the associated
coherent O x [G]-submodule of 7, Lie(Ax, ). In the same way we fix families of subgroups V/

and W] for the extension L/E and write £, for the associated coherent O, [H ]-submodule
of w,Lie(Ax, ).
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We assume, as we may, that V;, € V/, and hence also W, < W . This implies that there
are exact triangles in DPf(Z[H]) of the form

SCy; (A, L/E) — SCv, (Ap, L/K) — (V/VL)*[-1] —
and
RT(Xp,L1)" — RO(X, L))" — (W1/WL)*[1] —,
where, in the latter case, we have used the fact that the complexes RI'(X, 7, L)) and

RT'(Xg, L)) are canonically isomorphic since 7} is exact. These triangles in turn give rise
to equalities in Ko(Z[H],Q[H])

(53) 661(xCiy (A VE) = X&™(A, V1)) = Xig (A, VE) + Xz, 1 (VE/ V) *[-1],0)
— (XA VL) + Xz, () (WL/W)*[-1],0))
= Xi0 (A, VL)) = X5 (A, VL),

where the last equality is valid since xz,(g)((V7/VL)*[~1],0) = xz,12)((WL/W)*[-1],0)
(by the same argument as used in the proof of Proposition 5.3).

Upon combining the equalities (51), (52) and (53) one finds that the proof is reduced to
showing that there are equalities

{ 0% o (D (AR, VE)) = xBD(Ag, (V1))
GHQ(X(I:-(I)h<AE7VL/)) = COh(AE7(VL) ).

These equalities follow directly from the isomorphisms in DP®f(Z[Q])

[Q] @Z RI(Xp, L))" = RF(XE, (L))",
that are respectively used in the proofs of Proposition 3.7 and Lemma 3.9. ]

9.2. The case ¢ = p. In this section we verify that the conditions (i) and (ii) in Proposition
9.1 are satisfied.

The key observation we shall use in this regard is provided by the following result. In
this result we use the notation and hypotheses of Proposition 9.1(ii).

Lemma 9.3. Fiz a field K’ in X1 U Yo (so that, by assumption, I(A/L’) is finite) and a
Galois extension of fields Ma/My with K € My < My < L. Set J := Gal(Ma2K'/My) and
Q := Gal(My/My). Also fix a Zy-order N in Qp[J] as in Proposition 6.3 with F' = MyK'
and M = My, and write M for the image of N in Qp[Q].

Then x(A, Ma/Mj), belongs to the kernel of the natural scalar extension homomorphism

Ko(Z,[Q], @p[Q]) — Ko(0, Q[ Q]).

Proof. Under the present hypotheses, the exact triangles in Proposition 6.3 lie in DPef(91).
Hence, after taking account of the relevant cases of the isomorphisms (54), the exact functor
A(=) := MY — takes these triangles to exact triangles in DP™ (D) of the form

1- a7 *
A(Tz_l(m®ﬂzdp[J]PF/)) __(e) A(Tz—l(m®ﬂip[J]IF/)) - m@%p[Q]RFar,V]M2 (UMgaAtOI")p [_2] -
A(r> 1 (M@, 1) Pr) = A(ro s (M &G, 1) 1)) = N &, ) RL (X, (£)7)*[-2] -,
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with H := Gal(MaK'/M,). These triangles satisfy all of the conditions (a), (b) and (c) of
Proposition 5.1: in fact, the only condition that is not straightforward to check in this case
is (b) and this follows from the results of Proposition 8.1(ii) and (iv).

In particular, by applying Proposition 5.1 in this context, and taking account of the equal-
ity in Proposition 8.1(i), one finds that the image of x(A, Ma/M), in Ko(M, Q,[Q]) is equal
to the image under the natural connecting homomorphism K1(Q,[Q]) — Ko(M, Q,[Q]) of
the product element

(55)  Zi (A )aon v ) [ oann)3,) ) € Ki(@,[Q)).

Here we write 1 — oy, /py, for the morphism denoted by 1 — ¢ in the first of the exact
triangles displayed above, and identify each automorphism H'(1 — ¢y, /M1)6p with the
induced element of K1(Q,[Q]).

It is thus enough to prove that the element (55) vanishes, or equivalently, that its image
under the (injective) map Nrdg, [q) : K1(Qp[Q]) — ¢(Q,[Q])* is trivial. In addition, given
the characterisation of Z{}Ml ((Aas) mo/nay -2~ 1) in Proposition 5.6(i), the required triviality
is deduced directly from the formula of Theorem 8.2(iii) (with F’/M replaced by My/My)
for every x € Ir(Q) and the fact that, in terms of the notation of the corresponding case of
Theorem 8.2(ii), for every i € {0, 1,2} and x € Ir(Q) one has

Nrd@p[Q](Hl(l - S0]\/[2/]\41)?@1,))( = det(Hl(l - ¢M2/M1)§)'
]

Turning now to consider the conditions in Proposition 9.1, we first fix a maximal Z,-
order 9 in Q,[G’] that contains Z,[G']. Then N is regular and so satisfies the conditions
of Proposition 6.3 with F’ = L' and M = K (so J = G’). From Lemma 9.3 (with My = L
and My = K, so @ = G), it therefore follows that x(A, L/K), belongs to the kernel of the
scalar extension Ko(Z,[G],Qp[G]) — Ko(9M, Q,[G]), where 9 denotes the image of I in
Qp[G]. In particular, since 9 is a maximal Zy-order in Q,[G] that contains Z,[G], this
shows that the condition of Proposition 9.1(i) is satisfied.

Next we consider condition (ii) of Proposition 9.1. To do this we note that, by our
assumption on K, the group III(A/L') is finite. In addition, the field F' := (L) is a
tamely ramified Galois extension of K’ and so Proposition 7.4 implies that the conditions
of Proposition 6.3 are satisfied by the data J = Gal(F’/K’) and 9N = Zp[J]. In this case,
therefore, Lemma 9.3 implies that x (A, (F')""/K"), vanishes, and hence that condition (ii)
of Proposition 9.1 is satisfied.

Remark 9.4. A close reading of the above argument shows that we actually prove a
(possibly) finer version of Theorem 4.10(ii). Specifically, the validity of the equality in
Conjecture 4.3(iii) is proved modulo the subgroup of Ty ;, /K that is obtained by replacing
the group Ko(Zy[G], Qp[G])tor in the intersection (13) by its subgroup

ker (Ko(Zy[G1. Q[ G])ior 2225 @), Ko(T, Q,[G])).

Here in the intersection 9 runs over all Z,-orders of Q,[G’] that contain Z,[G'] and satisfy
the hypotheses of Proposition 6.3 (with F/ = L' and M = K), M is the image of 91 in
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Q,[G] and each Ay is the scalar extension map that arises from the inclusion Z,[G] < .
We recall that the hypotheses of Proposition 6.3 are automatically satisfied if the order 91
is hereditary but that, aside from this, finding other interesting, and explicit, examples of
such orders (beyond those that are used in the above argument) seems difficult.

9.3. The case ¢ # p. In this section we verify that condition (iii) in Proposition 9.1 is
satisfied, and thereby complete the proof of Theorem 4.10.

To do this we fix a prime ¢ % p, write Ty(A) for the ¢-adic Tate module of A and set
Vi(A) = Qr ®z, Te(A). We also write I}, for its algebraic closure of F), and ¢, for the
Frobenius automorphism at p and set Uf := UL xp, F},.

For each x € Ir(G) we fix an associated representation space Vj, over C,. For each finitely
generated Qy[G]-module W, we set

WX = HOng[G] (VX7 CZ[G] ®QZ[G] W)

Then by repeating the proof of Lemma 8.3 for /-adic cohomology in place of rigid cohomol-
ogy, we obtain isomorphisms

Hi, (U, Vi ®q, Vi(A))Y = (Hy, o(UF, Ve(A)¥)* = Hi (UF, Ve(A))X,

where the second isomorphism is induced by the Poincaré duality theorem (as stated, for
example, in [28, Chap. VI, Cor. 11.2]). Therefore the identity (1) implies that

+
(56) U(A ) =] | det(1— g, -t 2 B, (U, Vy ®g, Vi(A) T
:H- det 1_90p't etc(Uc V ®Q£ w( ) )

_H det l—cpp t: Hét<ULv‘/Z(At))) )+

We now set SC; := Zy ®z SCy, (A, L/K). Then the result of Proposition 3.7(ii)(b)
combines with Remark 3.3 and the Artin-Verdier duality theorem to imply there are natural
isomorphisms

SCy¢ = Zy ®z RUar v, (Ur, A{})*[2] = R4 (UL, A{£})*[2] = RT« (UL, Ty(A"))

and hence also a natural exact triangle in DP(Z,[G]) of the form

(57) SCy — RUa (U, To(A)) 2 RU (U, Ty(A")) — SC[1].
We consider the composite homomorphism
Bare: Q®zAYL) = HY(SCp)q, — H& (UL, Vi(A")) — H'(SCr)q, = Qe®zHomz(A(L), Z),

where the isomorphisms are from Proposition 3.7(ii)(a) and the other maps are induced by
the long exact cohomology sequence of (57).

Then it is shown by Schneider in [31] (and also noted at the beginning of [22, §6.8]) that
there exists a computable integer a4 1 ¢ € {0,1} such that

(58) Bae = (=1)*"" - hapes

where hy 1 is the isomorphism Qp ®7 A*(L) =~ Q¢ ®z Homy(A(L),Z) induced by the
height pairing ha r.



50 DAVID BURNS, MAHESH KAKDE, WANSU KIM

Taken in conjunction with the same argument used in Proposition 8.1 this observation
implies firstly that the endomorphism H%(1 — ©p)q, is bijective for i + 1, secondly that (57)
satisfies all of the hypotheses of Proposition 5.1 (with 2 = Z,[G]) regarding the left hand
triangle in (14), and thirdly (in view of (56)) that

ord;_,1 (ZU(A, X,t)) = dimg, (ker(Hl(l —op) | HomCZ[G](VX, Cr ®q, Hgt(Ui, Vg(At)))).

By applying Proposition 5.1 with the left and right hand triangles in (14) taken to be
(57) and the zero triangle respectively we can therefore deduce that

v e(XG G (A, VL) + X&"(A)) = Xz,161(SCo, B 04) + 2406100 Baze 0 hx'p 4 )
= X2,[61(SCe; T1-,)
= Oza ]Qe(H (1 - 9p)g,)
= Oz,01,0.(Nrdg,ia)) ™ (Z5 (A, X 0™ ))yerr(@))
= On,061.0,(Zi (AL, p )
).

Here the first equality follows directly from the definition of x*¢"(A, L/K), in terms of the
integer a4 1, ¢, the equality (58) and the result of Lemma 9.5. In addition, the fourth equality
follows from (56), the fifth directly from the definition of the term Zj (A k., p~') and all
remaining equalities are clear.

This argument completes the proof that condition (iii) in Proposition 9.1 is satisfied
and hence also, when combined with the observations made in §9.2, completes the proof of
Theorem 4.10.

= 16,(0c,0(Zi(AL/k, P~

9.4. The proof of Propositions 4.7 and 4.8. Throughout this section, we shall use the
notation of §4.2.3.

9.4.1. The proof of Proposition 4.7. As a first step, we recall that Proposition 3.7(i) implies
SCy, belongs to DP*™(Z[G]) and is acyclic outside degrees 0, 1 and 2. In this case, therefore,
the construction of resolutions used in the proofs of Lemma 3.8(iii) and Proposition 6.3
implies SCy, is isomorphic in D(Z[G]) to a complex

(59) P, et p

in which P_; is a finitely generated projective Z[G]-module that is placed in degree —1
and all other modules P; are finitely generated and free. By taking the direct sum with

complexes of the form Z[G] EN Z|G], with the first term placed in appropriate degrees, one
can also assume that the G-rank rkg(F;) of P; is greater than 1 for every i.

To prove claim (i) it is therefore enough to show that the G-module P_; is free, or
equivalently (by the Bass Cancellation Theorem [11, Th. (41.20)], since rkg(P-1) > 1) that
the Euler characteristic xg(SCy, ) of SCy, in K(Z[G]) vanishes. In addition, writing o,
for the connecting homomorphism Ky(Z[G],R[G]) — Ko(Z[G]), the (assumed) equality in
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Conjecture 4.3(iii) implies that

xc(SCv,) = 05 (x&*P (A, V1))
= 06 (06 (L (ALk. 1)) + 06 (x&" (A, V1)) — 06 (xE"(A))
= 05 (xE"(A, V1)) — 0 (x&"(4)),

where the final equality follows directly from the fact that df, o d¢ is the zero map.

To prove claim (i), we are therefore reduced to showing that if G has p-power order,
then the last two terms in the above expression vanish. However, in this case, every finite
projective [F,[G]-module is free so that the image of the homomorphism (11) belongs to

coh

the kernel of 0y, and hence 0, (XG (A, VL)) automatically vanishes. In addition, the term

sgn

0¢: (X" (A)) vanishes since Lemma 9.5 below implies that x5 (A) is equal to

(60)  dco(Q- A (L), (~=1)*))p = d6,o(Q - A'(L), (~1)™)) = dc((R - AY(L), (—1)*)).

This proves claim (i).

To prove claim (ii) we note that A(K)[p] = A(L)[p] and A*(K)[p] = A*(L)[p]®. Hence,
if A(K)[p] and A*(K)[p] vanish, then A(L)[p] and A*(L)[p] also vanish since G is a p-
group. In this case, therefore, Proposition 3.7(i) implies SCy, ) is acyclic outside degrees
0 and 1 and H°(SCy, ) is torsion-free. This in turn implies that SCy, (,) is isomorphic
in D(Z)[G]) to a complex of projective Z,)[G]-modules of the form (59) in which P
vanishes and so there are exact sequences of Z,)[G]-modules

0— P,1 - Po g COk(d_l)(p) —0
and
0 -1 d° 1
0—-H (SCVL,(p)) — COk(d )(p) —> Pl — H (SCVL,(P)) — 0.

The first of these sequences implies cok(dfl)(p) is a c-t G-module and the second implies it
is torsion-free. These two properties combine to imply cok(dil)(p) is a projective Z,)[G]-
module (by [2, Th. 8]).

At this stage we therefore know that SCy, (,) is isomorphic in D(Z)[G]) to a complex
of Z)[G]-modules cok(d™1)(,) — Py in which the first term is projective and the second is
free (and of rank greater than 1). To see that this is a complex of the required form it is
then enough to note that, since the Euler characteristic of SCy, () in Ko(Z,)[G]) vanishes,
the Bass Cancellation Theorem implies that the module Cok(dfl)(

This completes the proof of Proposition 4.7.

p) i isomorphic to P;.

Lemma 9.5. If{ is any prime that does not divide #G, then d¢o({Q-A*(L), —1)), vanishes.

Proof. If £ does not divide #G, then the Zs-order Z;[G] is maximal and so Q; ®z A*(L) has
a full sublattice that is a projective Z¢[G]-module. This implies {(Q; ®z A*(L), —1) belongs
to the image of the natural map K;(Zy[G]) — K1(Q¢[G]) and hence that the element
0c,({Q- AN (L), =1))¢ = 0z,(61,0,((Qe®z A'(L), —1)) vanishes as a consequence of the long
exact sequence of relative K-theory (see (7)). O
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9.4.2. The proof of Proposition 4.8. We abbreviate the connecting homomorphism ¢y, ) [GLR
to dp and use the natural scalar extension map

= 16+ Ko(ZIGLRIG]) — Ko(Zy)[G) RGY).
Then, as a first step, we note that there are equalities
(61) Lp(Xngn(A)) = &p(<R~At(L), (—1)“P>) and Lp( BSD(A Vi) = 8p(<R[ 1, LET[‘/ )

The first of these follows directly from (60) and the second from a routine comparison of
the definition of the automorphism (N A L with the explicit computation of XBSD (A, Vg) in
terms of the non-abelian determinant of the representative of SCy, (,) fixed in Proposition
4.7(i).
We next claim that

(62) (XE" (A, V1)) = G (RG], pM9)).

To show this we recall from (the proof of) Lemma 3.9 that the complex C := RI'(X, Lr)*
belongs to DP°™(F,[G]) and is acyclic outside degrees 0 and 1. Since G is a p-group, C is
therefore isomorphic in D(F,[G]) to a complex of the form F,[G]™ — F,[G]", where the

first term is placed in degree 0 and ng and n; are suitable natural numbers. By using this
representative, one computes that

coh(A VL) = XG(RF()(7 ['L)*, 0) _ ap(<R[G],pn0_”1>)'

To deduce (62) it is now enough to note that a computation of Euler characteristics in
Ko(F,) = Z implies that

X(£) == xr,(RT(X,£)*) = xr, (RHomg,[¢)(Fp, RT(X, L1)*))
= XFp (R HomIFp[G] (Fp, Fp[G]™ — IFP[G]M))
= xr, (Fp° — F}')
= ng —ni,

where the first aligned equality follows from the isomorphism (6).
Thus, if one defines an element of K;(R[G]) by setting

Z = L (A, 1) x RIGT, iy~ x (RIGT, X)) < (R - AY(L), (—1))~!
then the equalities (61) and (62) imply that
(L) = 1p(0a(LE(ALyie, 1)) = X80 (A, Vi) + x& (A, V) = x & (4)).

In addition, an explicit computation of reduced norm combines with the definition (12) of
each term Z(A, ) to imply that

Nidg(e)(£) = 3 gy (A ¥)ew € C(CIGD ™.

This equality implies the conditions stated in Proposition 4.8(i) are equivalent to asserting
Nrdgj) (<) belongs to ((Q[G])*. Hence, since K1(Q[G]) is the full pre-image under 0,
of the subgroup Ko(Z,)[G], Q[G]) of Ko(Z,)[G],R[G]), these conditions are true if the
equality in Conjecture 4.3(iii) is valid modulo Ky(Z[G],Q[G]). Their validity thus follows
directly from the assumed validity of Conjecture 4.3(i) and (ii) and the argument of §5.3.
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In a similar way, if G is abelian, then the above computation shows that Conjecture
4.3(iii) implies Nrdgj;)(Z) belongs to Z,)[G]*. In addition, since Z,)[G] is a local ring
(as G is a p-group), the latter containment is valid if and only if Nrdg(q(-Z) belongs to

X
(p
are in turn equivalent to requiring .2 (A, 1¢) belongs to Z(Xp ) and, also, for all g € G one has

Z¢elr(0)¢(g_l)$<A’ V) € |G- Zg).

To deduce the result of Proposition 4.8(ii) it is thus enough to note that, for each abelian
subquotient @ = H/J of G, the arguments of Propositions 5.6 and 9.2 combine to imply
that the validity of Conjecture 4.3(iii) for the data (A, L/K) implies the validity modulo
ker(ig ) of the equality in Conjecture 4.3(iii) for the data (Aym, L’ /LH).

Finally, to prove Proposition 4.8(iii) we assume the validity of Conjecture 4.3 and hence
that the element .Z belongs to the image of K1(Z[G]) in K1(R[G]). Thus, if we fix an
embedding of fields j : R — C,, then the image of % under the induced map K;(R[G]) —
K (C,[G]) belongs to the image of the natural map K;(Zy[G]) — K1 (Cy[G]).

Given this containment, the equalities in claim (iii) follow from the general result of [5,
Th. 2.1] (with A = Z,) and the fact that, for each subgroup H of G, the argument of
Proposition 9.2 implies >} o1, (gav)-Z (Apm, ¥)ey is equal to the image of Nrdgq)(-Z) under
the upper composite map in the diagram

Z(p)|G] and its image under the projection Z,)[G] — Z, belongs to Z ) These conditions

/

CR[G)* —=— ((C[G])* —— ((C[H])* —T ((C[H™])* = C[H™]"

Nrdc[g I ~ >~ T Nrdcim)

06,
Ki(C[G]) —— Ki(C[H])
Here 95, g is the natural restriction of scalars map, gy is defined by the requirement that

the square commutes and ¢/ is the natural projection map.
This completes the proof of Proposition 4.8.

APPENDIX A. KUMMER-ETALE DESCENT FOR COHERENT COHOMOLOGY

In this first appendix, we show that the coherent cohomology over a ‘separated’ formal fs
log scheme can be computed via the Cech resolution with respect to an affine Kummer-étale
covering (not necessarily a Zariski open covering). Whilst this result seems to be well known
to experts, we have not been able to locate a good reference for it in the literature.

A.1. Fs log schemes and their fibre products. The main purpose of this section is
to review the construction of fibre products for fs log schemes, which we need for the sheaf
theory on Kummer-étale sites and the construction of Cech complexes. We will briefly recall
some definitions of monoids and log schemes needed for the construction of fibre products.
We do not give a complete review of basic definitions on monoids and log geometry but
rather refer readers to [21] and [29] for basic definitions in log geometry and to [30] for a
more comprehensive reference.

Recall that a (always commutative) monoid P is said to be fine if it is finitely generated
and the natural map P — P®P is injective (where P2P is the commutative group obtained
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by adjoining the inverse of each element of P). A fine monoid P is said to be saturated if
for any « € P8P, we have a" € P for some n > 0 if and only if « € P. By a fs monoid, we
mean a fine and saturated monoid.

For each monoid P we define a saturation P¥' := {a € P8; o" € P for some n > 0}.

Lemma A.1. If P is finitely generated, then the monoid P%' is fs.

Proof. 1t suffices to show that P is finitely generated, which is a direct consequence of
Gordon’s Lemma (cf. [30, Ch. I, Th. 2.3.19]). O

A log scheme X% is called fs (i.e., fine and saturated) if étale locally on the underlying
scheme X, the log structure is generated by a map of monoids P — Ox where P is a
fs monoid. Our log schemes and formal schemes are always assumed to be fs (i.e., fine
saturated).

Let X% and Y* be fs log schemes over S* (with underlying schemes denoted as X, Y, and
S). We want to construct a fs log scheme X* x g: Y# satisfying the universal property of
fibre product (cf. [30, Ch. III, Cor. 2.1.6]).

By replacing the formal log schemes with suitable étale coverings, we choose charts P —
Ox, Q@ — Oy and M — Og defining the log structures (where P, Q and M are fs monoids,
viewed as constant sheaves), such that there exist maps M — P,Q giving rise to the
structure morphism X% Y# — S% (The existence of such local charts follows from [21,
Lem. 2.10].)

The most natural candidate is to endow X X gY with the log structure associated to the
chart P @y Q — Ox Qog Oy, where P @) @ is the amalgamated sum of monoids. But
this may not always work as P ®p; () may not be fine nor saturated.

Writing P @53 Q for the saturation of P @) Q we can define the following fs log scheme

XFxg Y= (X xgY) Xspeczipanq) SPec Z[P &5 Q]

with the log structure given by the chart P @5 Q — O Xtx v naturally extending P @y
Q — Oxxgy. By glueing this étale-local construction, we obtain the fibre products for
any fs log schemes. We repeat this construction to obtain fibre products of formal fs log
schemes.

Note that this notion of fibre product may not be compatible with fibre products of (for-
mal) schemes without log structure, as we can see from the explicit étale-local construction.
Instead, we have the following lemma, which is a consequence of Lemma A.1. (See [30,
Ch. III, Cor. 2.1.6] for the proof.)

Lemma A.2. The underlying scheme for X* X gt Yt is finite over X xgY. The same holds
for formal fs log schemes.

Remark A.3. To give a concrete example in which the underlying scheme for X x St Yyt

#
differs from X xg¢ Y we fix a finite Galois Kummer-étale cover  : X% I Xt of group G.
In this case one has X% X x4 X% ~ G x X% whereas X xx X; = G x X, only if 7 is
unramified.

The following corollary of lemma A.2 will be used later.
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Corollary A.4. Let X! be a fs log scheme, such that the underlying scheme is separated.
Let Ut and U™ be fs log schemes over X, such that the underlying schemes U and U’ are
affine. Then U* x ys U™ is also affine. The same holds for formal fs log schemes.

Proof. Under the hypotheses, the scheme U x x U’ is affine, which follows from the cartesian
diagram below:

UxxUC——UxU'

L, ]

XX Ly x X,

Now by lemma A.2, the underlying scheme of U* x s U is finite over an affine scheme
U x x U’. This proves the corollary. O

A.2. Cech-to-derived functor spectral sequence for Kummer-étale cohomology.
For a log formal scheme X, we write .’{f(ét for the associated Kummer-étale site (as per [29,
Def. 2.13]).

We quickly recall the definition of Cech complex and Cech-to-derived functor spectral
sequences in this setting.

Definition A.5. Let 4 be an Kummer-étale covering of X* (i.e., the structure morphism
U — xF is Kummer-étale and surjective), and let F be a sheaf of abelian groups on the
Kummer-étale site .’{lﬁ(ét. Then we can form a Cech complex

C* (S, F) := [T, F) — T8 x4 8, F) — T x g s x g s, F) — -],

with differentials defined in a standard way.

(The usual definition of Cech complexes for the case without log structure, cf. [28,
Ch. III, §2], formally goes through.) For any bounded-below complexes F*, we define the
Cech complex C*(U*, F*) as the total complex of the double complex obtained from Cech
complex of each term of F°.

Whilst the Cech complex C*(4¥, F) does not necessarily represent RF(Z{u

Lets F ), there

exists a natural ‘Cech-to-derived functor spectral sequence’

(63) EX . HI(y)f

i, két?

F) = H™ (% F),

where il? is the (i 4 1)-fold self fibre product of 4* over X%. One way to read off this spectral
sequence from the literature is via the technique of cohomological descent for (simplicial)
topoi associated to the Kummer-étale sites iliét and %{i{ét (cf. SGA 4y, Exp. Vbis. [18]).
Indeed, since it admits a local section, {f — ¥ is a “morphism of universal cohomological
descent’ by [loc. cit., Prop. (3.3.1)] and so the above spectral sequence is just a special case
of the descent spectral sequence from [loc. cit., Prop. (2.5.5)]).

Remark A.6. The complex (Ei’o, d"9) coincides with C* (44, F) and so the above spectral

sequence implies C* (4, F) = RF(%ﬁét,]: ) if E} vanishes for all j > 0 and i > 0.
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A.3. Coherent cohomology. We first recall Kummer-étale descent theory for coherent
sheaves on schemes and formal schemes.

Let Xf be a log scheme over Z/p™ for some n and F a quasi-coherent Ox-module. Then,
by Kato’s unpublished result (cf. [29, Prop. 2.19]) the presheaf U e Z{ﬁét v T'(U, Fy) is

a sheaf on %iét, where Fy denotes the pull back of F via the structure morphism {4 — X
of the underlying schemes. We use the same notation F to denote the Kummer-étale sheaf
associated to a quasi-coherent sheaf F.

Now, if X be a locally noetherian formal fs log scheme over Spf Zy, wWe can associate,
to a coherent Ox-module F, a Kummer-étale Z,-sheaf F by extending the construction for
coherent sheaves on schemes via projective limit. (We restrict to coherent sheaves to avoid
technicalities regarding completion.)

Now, we are interested in C* (4f, F) when F is a vector bundle on ¥ (viewed as a Kummer-
étale sheaf), while {f remains a Kummer-étale covering of X%,

Proposition A.7. Let X* be a noetherian formal fs log scheme over Spf R (for some noe-
therian adic ring R, with trivial log structure), and assume that X is separated. Then for
any coherent Ox-module F there is a natural isomorphism RI’(Z{ﬁét,}") — RI(X,F).

Furthermore, for any Kummer-étale covering U4 — XF where 8 is affine, the Cech complex
C*(U¥, F) represents RT(X, F).

The same holds if we replace F with a bounded-below complex F* of coherent sheaves
of Ox-modules, such that the differential maps d* : F* — F* are additive morphisms of
Kummer-étale sheaves.

Proof. By standard argument with hypercohomology spectral sequences, the claim for F*
can be reduced to F.
Let us first assume that X is affine. Then by [29, Prop. 3.27] (and the theorem on formal

functions), we have RI‘(%ﬁkét, Oz) =T'(X%,0%). Now, by resolving F with free Ox-modules,
we obtain RT(X!,, F) = (X, F).
Choose a Kummer-étale covering U* — X% with ¢ affine. Then Corollary A.4 implies
ug = 8P g e X gy AP

v~

i+1 times

has an affine underlying formal scheme. Therefore, by the Cech-to-derived spectral sequence
argument it follows that C*(Uf, F) represents RI’(%f{ét,}" ) (cf. Remark A.6). Now if we
choose 4 to be the disjoint union of finite affine open covering of X (with the natural log
structure induced from X%), then C* (4, F) represents RI'(X, F), as claimed. O

Remark A.8. We apply Proposition A.7 to the log de-Rham complex F*, where the maps
d': F' — F*1 are not Ox-linear but are additive morphisms of Kummer-étale sheaves.

APPENDIX B. LEFSCHETZ TRACE FORMULA FOR RIGID COHOMOLOGY

In this second appendix, our aim is to establish a slight extension of the Lefschetz trace
formula for rigid cohomology that is proved in [14, Th. 6.3].
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As before, we let U be a smooth affine curve over a finite field of characteristic p > 0.
Let Ag be a finite extension of @@, and assume that Oy contains the residue field kg of Ag.
Set qo = p"° := #(ko)

Let O(TJ Ao denote the global section of the overconvergent structure with coefficients Ag.
To explain, let X be a smooth compactification of U, and let Xp Ao be a formal lift of X
over the valuation ring Oy, of Ag. Let X, denote its rigid generic fibre, which contains the
tube |U[a, of U as an open subspace. Then OITJ /Ao is the ring of rigid analytic functions

defined on some ‘strict neighbourhood’ of |U[4,. (We often call such rigid analytic functions
overconvergent along X\U.) Note that if A, is a finite extension of Ay whose residue field

is contained in Oy, then we have OZJ ay = OITJ /o ®n, Ap-

Since Oy contains the residue field kg of Ay, one can define an overconvergent Ag-F-
isocrystal £ over U; see §B.2. (See also [39, §7] for the definition and the natural context
where overconvergent Ag-F-isocrystals appear. In loc. cit. it is called an overconvergent
Ao-F"0-isocrystal where 1o := [ko : Fp], but let us suppress ro from the notation.) In our
intended application however, we would naturally like to remove the assumption that the
residue field of the coefficient field Ay is not contained in Q. (Cf. the proof of Theorem 8.2.)

Let A be finite extension of Q,. Unless the residue field of A is contained in Oy, the
usual definition of ‘overconvergent A-F-isocrystals’ over U does not apply. Instead, let us
consider a subextension Ay € A whose residue field kg is contained in Op. (For example,
we may choose ky to be the maximal subfield of the residue field kp of A that can be
embedded in Op.) Instead of defining ‘overconvergent A-F-isocrystals’ over U, we will
work with overconvergent Ag-F-isocrystals ‘equipped with A-action’; ¢f. §B.2. The aim of
this appendix is to extend the Lefschetz trace formula [14, 6.3] for the rigid cohomology
with coefficients in such overconvergent Ag-F-isocrystals with A-action when Oy does not
contain the residue field of A.

B.1. Overconvergent modules and duality. Let U and Ay be as before and let A be
a finite extension of Ag. We set U’ := U Xgpeck, Spec ka where kp is the residue field of A.

Set X' := X Xgpeck, Spec ka, which is a smooth compactification of U’. We also choose a
formal Ox-lift X/, of X', and we subsequently obtain its rigid generic fibre X} and the tube
JU'[ac X,. With this setting, we define (’)[TJ, Ja to be the ring of rigid analytic functions

defined on some strict neighbourhood of |U’[4. Then we have an isomorphism of A-algebras
(64) OZ]//A = OTU/AO ®AO A

By the very construction, (9;(] e and (QITJ/ /a are Fréchet algebras over Ay and A, respectively,
so any finite locally free modules over them are p-adic Fréchet spaces.

Let QTU JAo and QTU, /A denote the modules of overconvergent Kahler differentials. Then
we also have

(65) Qi p = Oy, ®ao A



58 DAVID BURNS, MAHESH KAKDE, WANSU KIM

Let |[U'[ac V' < X} be a strict neighbourhood, and let & be a vector bundle defined
over V'. We set

(66) € :=lim TV, &v),
W/

where the direct limit is taken over all strict neighbourhoods W’ contained in V'. Then &

turns out to be a locally free (’)TU, / A-module; hence, a Fréchet A-space. (The local freeness

claim can easily reduced to the case when U is an open subscheme of P!, which is standard;
cf. [19, §V, Théoreme 1].) Note that QTU, Jp can also be obtained from the line bundle
&y = Qy of Kahler differentials over V= X,.

To the ‘overconvergent vector bundle’ &, we define another (92], / A-module as follows:
Definition B.1. For a sufficiently small strict neighbourhood V' of \U'[a, we define
&= H]lU’[A (Vl, 8)//)7
where H]IU,[A(V’, Eyr) is the first cohomology of the mapping fibre of
RT(V',Eyr) — RT(V' A X\U'[a, Evr).
Note that E. does not depend on the choice of V'; cf. [14, §3.2].
If we set Eyr = Oy (respectively, Eyr := Oy ), then the corresponding &, is denoted as
((’)(T],/A)C (respectively, (QL,/A)C).
By shrinking V' if necessary, we may assume that V' is affinoid. In that case V'n]X"\U’[s
is quasi-Stein, so we can deduce the following
e &.is a Fréchet A-space.
e From the same argument as in [14, §3.2] we can deduce that

~ i
(67> gc = ®O[T]’/A (OU//A>c-

In particular, £ depends only on &£, not on the choice of strict neighbourhood V'.

Lemma B.2.

(i) There is a canonical trace map

tr: (Qf

U'/A)c - A,

which factors through an isomorphism Hﬁg’C(U’/A) = A.
(ii) Let &y be a vector bundle on some strict neighbourhood V' of 1U'[A, and consider
& as above. Then we have the following natural A-bilinear perfect pairing

(= =)0 x (€ ®OZJ’/A (QTU,/A)C) — A luym@we)? = tr(u(m) - we);
() HE By, D) ¥ Ee > A w@u,m® f)' 1= tr(u(m) - (9 ® o))

where we Y, meé&, fce (O(T]//A)c; We € (QL,/A)C and w € QL,/A.
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Proof. The first assertion is standard (cf. the proof of [14, Lem. 3.4(i)]). If X’ ~ P! and
U’ = A!, then the second and third assertions are proved in [14, §3.3]. In general, one can
find a finite covering f : X’ — ]P’/,l€A so that the preimage of A}CA is U’. Then although f may
not admit a formal lift, one can find a strict neighbourhood W’ of |U’[s contained in V', such
that its image in P} is a strict neighbourhood of JA[A; ¢f. the proof of Proposition 5.2.21
in [26, p. 151]. Since the claim can be checked after push-forward by finite covering, the
claim is reduced to the case when U’ = A!, which is already handled. U

B.2. Overconvergent F-isocrystals. Let us choose a Ag-linear ¢g-Frobenius operator
(68) o0t O ny = Ol as
which is possible by the approximation theorem; cf. [41, Th. 2.4.4].
Let us recall the following standard definition.
Definition B.3. An overconvergent Ag-F-isocrystal over U is a tuple (€, g, Ve), where
e & is a finite locally free O[T]/Ao-module. Note that such £ necessarily comes from a
vector bundle on some strict neighbourhood Vo of |U|a, via (66).

e Ve:£E—-E® QL/AO is a continuous integrable connection on &.
o e : & — & is a pp,-semilinear horizontal endomorphism of £.

If Vg and pg are understood, then we simply use £ to denote an overconvergent Ag-F'-
1socrystal.

For a finite extension A of Ay, we define a A-action on overconvergent Ag-F-isocrystal
£ to be a A-action on the underlying module £ that is compatible with the Ag-action and
commutes with V¢ and ¢g. To be more explicit, an overconvergent Ag-F-isocrystal over U
with A-action consists of the following data:

e £ is a finite locally free module over OTU /o ®ho A.
e Ve:&E—-ER® QTU/AO is a A-linear continuous integrable connection on £.
o g : & — & is a A-linear pp,-semilinear horizontal endomorphism of €.

Since we have O[T] /8o ®ho A= O(TJ, A (64), we may view £ as coming from a vector bundle

on some strict neighbourhood V' of JU’[s. Also from (65), the connection Vg is defined
over some strict neighbourhood. On the other hand, ¢¢ can be described more naturally if
we view £ as a module over OZJ /o ®ho A (instead of OL, / A)- Indeed, p¢ is semilinear over

©Ao QA : OZTJ/AO ®ng A — OZ]/AQ ®no A,

the A-linear extension of ¢p,, which cannot be naturally defined for (’)L, /A without going
through the isomorphism (64).

Lemma B.4.
(i) Let pa, also denote the endomorphism on QL/AO induced by pp,. Then we have

tr(eoa,(w)) = qo - tr(w) Ywe QTU/AO’
where qo = #(ko) and tr is defined in Lemma B.2.
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(ii) Let € be an overconvergent Ao-F-isocrystal over U with A-action, and let (—,—)°
denote the duality pairing in Lemma B.2(ii). Then for any v € €Y, m € £ and

we € (QTU/AO)C, we have
(¥ (), pe(m) ® pag(we))’ = qo - (u,m @ we)’.

Proof. As in the proof of Lemma B.2, one can reduce the proof of this lemma to the case
when U =~ Al. In that case, the first claim is proved in [14, Prop. 4.2], and the second claim
is proved in [14, §4.3]. O

Definition B.5. Let & be an overconvergent Ao-F-isocrystal over U with A-action. Then
we define the Dwork operators ¢, fori = 0,1 to be A-linear endomorphisms

Pgu 1 EY > EY
1 . ecov ¥ \ T
d}SV ¥ ®OTU’/A QU’/A — & ®OTU’/A QU’/A’

which are respectively the adjoints of pg ® pn, and pg, with respect to the duality pairings
(=, =) fori=0,1; cf. Lemma B.j(ii).

Clearly, the Dwork operators ngv are o) -antilinear; i.e., for any f € OZJ/AO and ueé&v,

we have 12, (pa,(f) - u) = f -2, (u), and similarly for ¢}. Furthermore, by Lemma B.4 it
follows that

(69) Ve =qo- pf-

To make wév more explicit, let us consider the case when £ = O[T] Ao (with A = Ag),

equipped with the Frobenius operator ¢), and the usual connection. Then the duality
pairing (—, —)! in Lemma B.2(ii) takes the following form

i i
QU/AO X (OU/AO)C — AO-
Let
.of i
(70) Vo * Qyyng = Loag

f

denote the adjoint of ¢y, : (O;]/A())C — (O[T]/AO)C. Identifying €2;;,

(O], )er it Tollows that tx, = qo - @), We then have
Vi =Ygy @Y,

B.3. Rigid cohomology with coefficients. Let us recall the definition of rigid cohomol-
ogy with and without compact support with coefficients in Ag-F-isocrystals with A-actions.

Ao with Ag-linear dual of

Definition B.6. Let £ be an overconvergent Ag-F'-isocrystal over U with A-action. Suppose
that U s affine. Then we set

\% \% Vev \
RTig(U/Ag, EY) = {5 —£5¢ ot QL/AO}

U/Ag

which is a complex of Fréchet A-spaces concentrated in degrees [0, 1].
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Note that this complex represents the rigid cohomology with coefficients in £ viewed as
an overconvergent Ag-F-crystal. Furthermore, the Dwork operator ¢, as in Definition B.5
acts on the complex R (U/Ag,EY) as a nuclear operator on each term; cf. [14, Lem. 5.2].

To define the compactly supported variant, let us recall that we have a derivation

d: (OITJ/AO)C = Hyy,., (X, OXAO)HH]lU[Ao(XAO’QXAO) - (QE/AO)C

induced by the universal derivation d : Ox, — Qx,, -

(A0

Definition B.7. For £ as before, we set

Ve®d
)c 5—) E,‘ ®OT (QZ]/AO)C:| )

U/Ag

Rrrig,c(U/A()a g) = [0 - ®OT (OTU/AO

U/Ag
which is a complex of Fréchet A-spaces concentrated in degrees [1,2].

Note that this complex represents the compactly supported rigid cohomology with coef-
ficients in £ viewed as an overconvergent Ag-F-crystal. Furthermore, g induces a natural
(¢, ® A)-semilinear operator ¢z on the complex RI'yg(U/Ag,€), which is a nuclear op-
erator on each term; cf. [14, Lem. 5.2].

Proposition B.8. The duality pairing {—,—)* defined in Lemma B.2(ii) induces a natural
A-linear isomorphism

RTig(U/Ao, £Y) = RHomp (RTyig,(U/Ao, £), A[2]).

Furthermore, the Dwork operator g, corresponds to the A-linear dual of g wvia this iso-
morphism.

Proof. By repeating the proof of Lemma B.2(ii), the first claim can be reduced to the case
when U = A! and X = P!, which is proved in [14, §3.3]. The second claim directly follows
from Lemma B.4. O

B.4. L-functions and Lefschetz trace formula. Let £ be an overconvergent Ag-F-
isocrystal over U with A-action as before. Then given any closed point x of U with residue
field k(x), we obtain the fibre & at z, which is a finite-rank W (k(x)) ® (x,) A-module
equipped with a A-linear go-Frobenius operator ¢g ;.

To such £ we associate the L-functions as follows:

(71) Zy(E,t) = H%'U‘det/\(l — (t- gz )F@kol| £ )1,

For any positive integer r, let k(()r) be a degree-r extension of kg and set

(72) SH(UE) =), ot (Pl E2),
which is zero when k is not contained in k‘(()r).
One can check that

(73) Zu(E,1) = exp (2:":15;(0; £). tr/r) :

cf. [14, 2.3].
The main goal of the appendix is to prove the following slight generalisation of the
Lefschetz trace formula [14, Th. 6.3].
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Theorem B.9. Let £ be an overconvergent Ag-F-isocrystal over U with A-action. Then
we have

Zu(€,t) = (deta(1 —t- % | RTyigo(U,E)) "
= (detp(1 —t-¢2v| RTyg(U,EY)) ",
where for 0° = g or g, we let detp(1-10%): = [T, deta(1—t0")=D" denote the alternating
product Fredholm determinants of A-linear nuclear operators on each term.

Note that the Lefschetz trace formula proved in [14, Th. 6.3] applies only to overcon-
vergent A-F-isocrystals. In particular, it does not apply directly to our setting unless Oy
contains the residue field kp of A.

Proof. By the Poincaré duality it suffices to show the first equality (i.e., the equality via
the compactly supported rigid cohomology). By (73) it suffices to show

(74) Sr(U, €) = tra((¢z,)"| Blvigc(U,€))
for any . And to verify (74) it suffices to show that
(75) tra (2| Bligo(U.€)) =0 if Uky”) = &

i.e., the generalisation of [14, Lem. 5.3]. Indeed, if k is not contained in k(()r) then S, (U, &) =

0. If k is contained in k(()r), then we may apply the excision sequence for the compactly

supported rigid cohomology to the following setting
DB L 7 TR S

and conclude that (75) implies (74).

To verify (75) we use the following lemma.

Lemma B.10. Let R be a Fréchet A-algebra equipped with a A-linear lift of qy-Frobenius
morphism ¢ : R — R. Let M be a Fréchet R-module equipped with a nuclear @-semilinear
endomorphism oy : M — M. Then for any f € R we have

tra ((f —(f)) - om) =0

Proof. (Compare with the proof of Lemma 5.3 in [14].) Let us consider the following
morphism of exact sequences:

0 —— ker(f) M-t ——0.
OJ( so(f)woMJ Jf*PM Jo
0 — s ker(f) M-l MM ——0
Therefore it follows that tra(¢(f) - oar) = tra(f - ¢ar), hence the lemma. O

We will apply the above lemma to R = (’)[T] Ao ®a, A and rth iterated Frobenius operators.

Since U (k[()r)) = (J, the graph of the gj-Frobenius and the diagonal do not intersect in U x U.
Therefore, there exists f;, g; € R such that

ijjgj =1 and ij’"(fj)gj =0,
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so we have 1 = .(f; — ¢"(f;)) - 9;.
Apply the above lemma when M is one of the terms in RIgo(U/Ag,E) and ¢y =
gi(pg,)" for each j, we obtain

tra(pe.) = tra(Y, (5 — & (f))gi(#2,)")
= (5 = @ (fi)gi(w2)") = 0,

which proves (75), hence the theorem. O

1]
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