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ABSTRACT. We use the Tate-sequences of Ritter and Weiss to establish both non-trivial bounds
on the number of independent Minkowski units in Galois extensions of number fields and
also concrete links between the Galois structures of ideal class groups and the Krull-Schmidt
decompositions of global unit groups.

1. INTRODUCTION

We fix a prime p and a finite Galois extension of number fields L/K of p-power degree.
We set G := Gal(L/K) and, for a finite set of places S of K that contains the set S∞

K of all
archimedean places, we write OL,S for the ring of algebraic S-integers of L. We also write
Fp for the finite field of cardinality p and, with µL denoting the group of roots of unity in L,
define a Zp[G]-lattice by setting UL,S := Zp ⊗Z (O×

L,S/µL).
If the G-module UL,S/U

p
L,S has a direct summand isomorphic to Fp[G]

m for a natural num-
ber m, one says that L/K has a family of ‘m independent Minkowski S-units’. In partic-
ular, by the Krull-Schmidt Theorem, the maximum size mL/K,S of a family of independent
Minkowski S-units for L/K is well-defined. Following beautiful work of Ozaki [20] and of
Hajir, Maire and Ramakrishna [12, 13], it is known that mL/K,S plays an important role in
relation to studies of the tame Fontaine-Mazur Conjecture, tamely ramified pro-p extensions,
deficiencies of p-class tower groups and the inverse Galois problem for the p-class field tower.

The explicit determination of mL/K,S is, however, a difficult problem and, aside from a few
special cases that are dealt with by ad hoc techniques (see, for example, [11], [4] and [16]),
there is still little known. With this in mind, our primary aim is to show that results of Ritter
and Weiss [24] and Gruenberg and Weiss [8] can be combined to establish relatively explicit,
non-trivial, upper and lower bounds for mL/K,S in the general case.

To state a representative result, we introduce some general notation. For any abelian group
N we set N/p := N/pN , N [p] := {n ∈ N : p · n = 0} and Np := Zp ⊗Z N . If Γ is a
topologically finitely generated pro-p group, then we respectively write d(Γ) and r(Γ) for the
cardinalities of a minimal set of (topological) generators and relations for Γ, and we denote the
(topological) deficiency d(Γ) − r(Γ) of Γ by D(Γ). In particular, for any such Γ the quotient
Γab/p is finite and one has d(Γ) = d(Γab) = dimFp(Γ

ab/p) (cf. [19, Prop. (3.9.1)]). Assume
now Γ is finite. Then for a (left) Zp[Γ]-lattice N , we set rk(N) := dimQp(Qp ⊗Zp N) and
write corΓ(N) for the direct sum of all non-projective indecomposable summands in a Krull-
Schmidt decomposition ofN over Zp[Γ]. (The module corΓ(N) is referred to as the ‘core’ ofN
(cf. [7, p. 26]) and is independent, up to isomorphism, of the Krull-Schmidt decomposition.)
For a Zp[Γ]-module N , we write NΓ and NΓ for its maximal submodule and quotient module
upon which Γ acts trivially and Ĥ i(Γ, N) for its Tate-cohomology in degree i.

We write RE/K for the set of places of K that ramify in a field extension E of K and set

R∞
E/K := RE/K ∩ S∞

K and Rf
E/K := RE/K \ S∞

K = RE/K \R∞
E/K .
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If E/K is finite, we also set

ρE/K := |RE/K |, ρ∞E/K := |R∞
E/K | and ρfE/K := |Rf

E/K | = ρE/K − ρ∞E/K ,

and write AE,S for the p-part of the ideal class group Cl(OE,S). Finally, for each place v of K
we fix a place w of L above v, write Gv and Iv for the decomposition and inertia subgroups of
w in G and set

δL/K :=
∑

v∈Rf
L/K

d
(
Gv

)
.

In the sequel we will often omit the subscript S in the case it is equal to S∞
K , thereby writing

OL, UL, AL and mL/K in place of OL,S∞
K

, UL,S∞
K

, AL,S∞
K

and mL/K,S∞
K

etc.
We can now state an example of the sort of results proved in §2.2 (and see also Remark 2.5).

Theorem 1.1. Write L′ for the maximal extension of K(µL,p) in L that has exponent dividing
p and is abelian over K. Then one has

mL/K ≥ rk(UK)− (δL/K + ρ∞L/K) + D(G)− d(Ĥ−2(G,AL))− d(GL′/K(µL,p)), (1)

mL/K ≤ rk(UK)− (δL/K + ρ∞L/K) + d(G) + d(AL,G) + ρfL/K + 1 (2)

and also

rk(corG(UL)) < |G|(δL/K + d(Ĥ−2(G,AL)) + ρ∞L/K/2 + d(GL′/K(µL,p))−D(G)).

SincemL/K is obviously at most rk(UK), the inequality (2) is of interest only if δL/K+ρ∞L/K
is strictly greater than d(G)+d(AL,G)+ρ

f
L/K+1. However, in §2.4 we explain how, in special

cases, a closer analysis of the proof of Theorem 1.1 can give stronger bounds. For example,
for finite Hilbert p-classfield towers one obtains in this way a formula for mL/K that clarifies
aspects of the main results of Hajir at el [13] and for (possibly ramified) cyclic extensions a
formula that both complements, and extends, the main result of Lim, Maire and the present
author in [4].

To state a general consequence of Theorem 1.1, we fix an abstract finite p-group Γ and write
F(Γ) for the family of Galois extensions of number fields F/E with Gal(F/E) isomorphic
to Γ. We also write Ft(Γ) for the subset of F(Γ) comprising tamely ramified extensions F/E
(that is, extensions that are unramified at all p-adic places).

Corollary 1.2. There exist constants c1 and c2 that depend only on Γ and are such that

rk(corΓ(UF )) ≤ (d(AF ) + ρF/E)c1 + c2 for all F/E ∈ F(Γ) (3)

and

rk(corΓ(UF )) ≤ (d(AE) + ρF/E)2|Γ|c1 + c2 + (1− |Γ|) for all F/E ∈ Ft(Γ).

By optimising the choice of constants c1 and c2 that arise in the proof of this result (given
in §2.3) one obtains a strong improvement of the recent result [16, Th. A] of Kumon and Lim.
For brevity, however, we prefer to leave the derivation of explicit such formulas for c1 and c2
to the reader.

We next recall that, whilst there are infinitely many isomorphism classes of indecomposable
Zp[Γ]-lattices unless Γ is cyclic and |Γ| ≤ p2 (cf. [15]), in all cases the Jordan-Zassenhaus
Theorem [5, Th. (24.2)] implies there are only finitely many isomorphism classes of Zp[Γ]-
lattices of any fixed rank. In particular, if for m > 0 we write Fm(Γ) for the subset of F(Γ)
comprising extensions F/E for which d(AF ) + ρF/E ≤ m, then the bound (3) implies that
only finitely many isomorphism classes of Zp[Γ]-lattices arise from corΓ(UF ) as F/E ranges
over Fm(Γ).

An effective version of the Jordan-Zassenhaus Theorem therefore leads, via (3), to an ef-
fective bound in terms of d(AF ) + ρF/E for the number of possible isomorphism classes, as
a Zp[Γ]-lattice, of corΓ(UF ). Even in such cases, however, it can still be very difficult to
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determine the decomposition of corΓ(UF ) as a direct sum of indecomposable lattices. In this
direction, in §3 we use Heller’s theory of loop operators to show that, under certain conditions,
the argument proving Theorem 1.1 can be finessed to give explicit structural information about
both corΓ(UF ) and AF . For interesting examples of such results, see Proposition 3.4 and Re-
mark 3.6.

We note finally that the methods we use to prove the above results can be extended in a
straightforward way to establish analogous results in the case of arbitrary finite Galois exten-
sions (rather than just p-extensions). However, since no essentially new ideas are involved, we
again prefer to leave the derivation of such results to the reader.

Acknowledgement The author is very grateful to Christian Maire for his generous sharing
of ideas and expertise, for his strong encouragement and for many helpful suggestions. He
is also grateful to Donghyeok Lim for stimulating discussions, useful suggestions and a very
careful reading of an earlier version of this article and to Manabu Ozaki for his kind encour-
agement and, especially, for sharing a preliminary version of the preprint [21].

2. THE PROOFS OF THEOREM 1.1 AND COROLLARY 1.2

2.1. Preliminary results. We fix a finite set S of places ofK that contains S∞
K . We then recall

that the argument of Ritter and Weiss in [24, §4] implies the existence of an exact sequence of
finitely generated G-modules

0 → O×
L,S →M0 →M1 → ∇L,S → 0 (4)

in which M0 is cohomologically-trivial, M1 is free and ∇L,S lies in a short exact sequence

0 → Cl(OL,S) → ∇L,S →
(⊕

v∈S
iGGv

Z
)
⊕
(⊕

v∈RL/K\S
iGGv
W ∗

v

) ϵL,S−−→ Z → 0. (5)

Here, for each place v ∈ RL/K , we have abbreviated the induction functor IndG
Gv

to iGGv
and

written W ∗
v for the Z-linear dual of the ‘inertial’ Z[Gv]-lattice Wv = W (Lw/Kv) defined by

Gruenberg and Weiss in [8, §11] (for more details see Remark 3.7).
As far as we are aware, the sequences (4) and (5) were first used to study an aspect of the

Krull-Schmidt decompositions of unit lattices (in unramified Galois extensions) by Ozaki in
[21]. In the next two results, we derive some further consequences of these sequences that will
be useful for us. In particular, the first of these results reduces the computation of mL/K,S to
an analysis of the Tate cohomology of ∇L,S .

For a G-module N , integer a and place v of K we use the respective Tate cohomology
groups

Ĥa(N) := Ĥa(G,N) and Ĥa
v (N) := Ĥa(Gv, N)

of N . We also set
βL/K,S := d(Ĥ0(O×

L,S))− d(Ĥ0(UL,S)).

Proposition 2.1.
(i) mL/K,S = rk(UK,S)− d(Ĥ−2(∇L,S)) + βL/K,S .

(ii) If µL,p = (0), then βL/K,S = 0. If µL,p ̸= (0), then

−d(GL′/K(µL,p)) ≤ βL/K,S ≤ 1,

where L′ is as in the statement of Theorem 1.1.

Proof. In this, and subsequent, arguments we repeatedly use the following easy fact: for any
exact sequence of finitely generated Zp-modules N1

θ1−→ N2
θ2−→ N3 one has

max
{
d(im(θ1)), d(im(θ2))

}
≤ d(N2) ≤ d(N1) + d(N3). (6)
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At the outset we note UK,S is isomorphic to a submodule of UG
L,S of finite index and hence

rk(UK,S) = rk(UG
L,S). In addition, since theG-modulesM0 andM1 are both cohomologically-

trivial, the double-coboundary map Ĥ−2(∇L,S) → Ĥ0(O×
L,S) induced by the exact sequence

(4) is bijective. These observations imply that

rk(UK,S)− d(Ĥ−2(∇L,S)) + βL/K,S =rk(UG
L,S)− d(Ĥ0(O×

L,S)) + βL/K,S (7)

=rk(UG
L,S)− d(Ĥ0(UL,S)).

To prove (i), we are thereby reduced to proving that

mL/K,S = rk(UG
L,S)− d(Ĥ0(UL,S)). (8)

To do this, we set M := UL,S , write T for the map M → MG ⊆ M sending each m to∑
g∈G g(m), and then T/p and T for the respective maps M/p → M/p and M → MG/p

induced by T . As M is torsion-free, the natural map MG/p → M/p is injective and we use it
to identify im(T ) with im(T/p). Setting d := dimFp(im(T/p)), one thus has

d
(
Ĥ0(M)

)
= dimFp

(
MG/(im(T ) + pMG)

)
=dimFp

((
MG/p

)
/im(T )

)
=dimFp

(
MG/p

)
− dimFp(im(T ))

= rk(MG)− d.

To prove (8) we are therefore reduced to proving mL/K,S = d. In addition, if M is any free
Fp[G]-direct summand of M/p of rank mL/K,S , then (T/p)(M) is a subspace of im(T/p) of
dimension mL/K,S and so mL/K,S ≤ d. It is thus enough to show that, if {mi}1≤i≤d is any
subset of M such that {(T/p)(mi)}1≤i≤d is a basis of im(T/p), where mi denotes the image
of mi in M/p, then the Zp[G]-submodule M ′ of M generated by {mi}1≤i≤d is a free direct
summand of rank d.

To prove this we use the map of Zp[G]-modules ψ : Zp[G]
d ↠ M ′ ⊆ M that sends the i-th

element in the standard basis of Zp[G]
d to mi. Then the induced map ψ/p : Fp[G]

d → M/p
is injective. Indeed, since G is a p-group (and ker(ψ/p) is finite), this follows from the fact
that the linear independence of the elements {(T/p)(mi)}1≤i≤d implies the map (Fp[G]

d)G →
(M/p)G obtained by restriction of ψ/p is injective. Now, since ψ/p is injective, one has
ker(ψ) ⊆ p·Zp[G]

t and hence, asM is torsion-free, ker(ψ) = p·ker(ψ) so that, by Nakayama’s
Lemma, ψ is injective. It follows that M ′ is a free Zp[G]-module of rank d (as required) and
hence also that H0(G,M ′) = T (M ′) and H1(G,M ′) = (0). Writing ι for the inclusion
M ′ ⊆M , the long exact sequence of G-cohomology associated to the tautological sequence

0 →M ′ ι−→M → cok(ι) → 0 (9)

therefore gives an exact sequence of Zp-modules

0 → T (M ′) →MG → cok(ι)G → 0. (10)

Now, as the elements {(T/p)(mi)}1≤i≤d are linearly independent inMG/p, Nakayama’s Lemma
implies {T (mi)}1≤i≤d can be extended to give a basis of the Zp-module MG and so (10) im-
plies cok(ι)G is torsion-free. It follows that the (finite) torsion-subgroup cok(ι)tor of cok(ι)
satisfies (cok(ι)tor)G = (cok(ι)G)tor = (0), and hence, as G is a p-group, that cok(ι)tor = (0).
Thus cok(ι) is free over Zp and so, since the ring Zp[G] is Gorenstein (and M ′ is free), the
short exact sequence (9) splits over Zp[G], as required to complete the proof of (i).

If µL,p = (0), then the natural map Ĥ0(O×
L,S) → Ĥ0(UL,S) is bijective and so claim (ii) is

clear. We therefore assume in the sequel that µL,p ̸= (0). We set E := K(µL,p), H := GL/E

and Γ := GE/K = G/H and recall µL,p is a cohomomologically-trivial Γ-module (cf. [4,
Rem. 2.2]). In particular, from the exact sequence of low-degree terms

0 → H1(Γ, µL,p) → H1(G, µL,p) → H1(H,µL,p)
Γ → H2(Γ, µL,p)
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that is induced by the inflation-restriction spectral sequence, one obtains an identification

H1(G, µL,p)[p] ∼= H1(H,µL,p)
Γ[p] = Hom(Hab, µL[p])

Γ = Hom(Hab/p,Z/p)Γ,
where the second equality is valid since µL[p] = µK [p] (as L/K is a p-extension and p is odd).
In addition, by Pontryagin duality, there are identifications

Hom(Hab/p,Z/p)Γ ∼= Hom((Hab/p)Γ,Z/p) = Hom(GL′/E,Z/p)

and so d(H1(G, µL,p)) = d(Hom(GL′/E,Z/p)) = d(GL′/E). Thus, from the canonical long
exact sequence Ĥ0(µL,p) → Ĥ0(O×

L,S) → Ĥ0(UL,S) → H1(µL,p), we can therefore deduce
(by a suitable application of (6)) that

1 ≥ d(Ĥ0(µL,p)) ≥ βL/K,S ≥ −d(H1(µL,p)) = −d(GL′/E),

as required. □

Remark 2.2. The above argument also has the following useful consequence: if S ′ is any finite
set of places of K containing S, then mL/K,S ≤ mL/K,S′ . To see this, note the cokernel of
the inclusion UL,S → UL,S′ is torsion-free and hence that the induced map UL,S/p → UL,S′/p
is injective. In particular, since Fp[G] is self-injective, any free direct summand of the Fp[G]-
module UL,S/p is a free direct summand of UL,S′/p. By the argument of Proposition 2.1(i),
this fact implies the claimed inequality mL/K,S ≤ mL/K,S′ .

An alternative to the formula for mL/K,S given in Proposition 2.1(i) will be established
(under the assumption that µL[p] = (0)) in Proposition 3.3 below. However, to demonstrate
the usefulness of the above formula, we next provide explicit bounds for d

(
Ĥ−2(∇L,S)

)
.

Lemma 2.3. Set S∗ := {v ∈ S : Gv ̸= {1}}. Then the following claims are valid.

(i) d
(
Ĥ−2(∇L,S)

)
≤ δL/K +

(∑
v∈S∗\Rf

L/K
d(Gv)

)
+ d(Ĥ−2(AL,S)) + d(Ĥ−3(Z)).

(ii) If AL,S = (0), then

d
(
Ĥ−2(∇L,S)

)
≥ (δL/K − ρfL/K) + |S ∩Rf

L/K |+
(∑

v∈S∗\Rf
L/K

d(Gv)
)
− d(G).

Proof. As a first step, we claim that, for each v ∈ Rf
L/K , one has

d(Gv)− 1 ≤ d
(
Ĥ−2(iGGv

W ∗
v )
)
≤ d(Gv). (11)

To show this, we first take the Z-linear dual of the exact sequence

0 → Z αv−→ Wv
βv−→ I(Gv) → 0 (12)

of [24, Lem. 5(b)] to obtain an exact sequence of Gv-modules

0 → I(Gv)
∗ → W ∗

v → Z → 0. (13)

We also note the Z-dual of the tautological exact sequence 0 → I(Gv) → Z[Gv] → Z → 0
gives an exact sequence

0 → Z → Z[Gv] → I(Gv)
∗ → 0 (14)

that induces an isomorphism Ĥa
v (I(Gv)

∗) ∼= Ĥa+1
v (Z) in each degree a. Hence, as Ĥ−1

v (Z)
vanishes, Ĥ−2

v (W ∗
v )

∼= Ĥ−2(iGGv
W ∗

v ) and Ĥ0
v (Z) ∼= Z/|Gv|Z, the short exact sequence (13)

induces an exact sequence 0 → Ĥ−2(iGGv
W ∗

v ) → Ĥ−2
v (Z) → Z/|Gv|Z. This implies (via (6))

the claimed inequalities (11) since, for any finite group Γ, the group Ĥ−2(Γ,Z) ∼= H1(Γ,Z) is
isomorphic to Γab.

Next we note that the exact sequence (5) induces long exact sequences

Ĥ−2(AL,S) → Ĥ−2(∇L,S) → Ĥ−2(ker(ϵL,S)) → Ĥ−1(AL,S) (15)
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v∈S∗

Ĥ−3(iGGv
Z)

)
⊕

(⊕
v∈RL/K\S

Ĥ−3(iGGv
W ∗

v )
)
→ Ĥ−3(Z) → Ĥ−2(ker(ϵL,S))

→
(⊕

v∈S∗
Gab

v

)
⊕
(⊕

v∈RL/K\S
Ĥ−2(iGGv

W ∗
v )
)
→ Gab. (16)

Then, by using these sequences, and (11), one verifies claim (i) via the following computa-
tion

d
(
Ĥ−2(∇L,S)

)
≤ d

(
Ĥ−2(AL,S)

)
+ d

(
(Ĥ−2(ker(ϵL,S))

)
≤ d

(
Ĥ−2(AL,S)

)
+ d

(
Ĥ−3(Z)

)
+
(∑

v∈S∗
d(Gv)

)
+
(∑

v∈RL/K\S
d(Gv)

)
= δL/K +

(∑
v∈S∗\Rf

L/K

d(Gv)
)
+ d

(
Ĥ−2(AL,S)

)
+ d

(
Ĥ−3(Z)

)
(in which (6) has been applied several times).

In addition, if AL,S = (0), then (15) and (16) combine with (11) to imply that

d
(
Ĥ−2(∇L,S)

)
=d

(
Ĥ−2(ker(ϵL,S))

)
≥
(∑

v∈S∗
d(Gv)

)
+
(∑

v∈RL/K\S
(d(Gv)− 1)

)
− d(G)

= (δL/K − ρfL/K) + |S ∩Rf
L/K |+

(∑
v∈S∗\Rf

L/K

d(Gv)
)
− d(G),

as required to prove claim (ii). □

We finally give a conceptual interpretation of the quantity d(Ĥ−3(Z)) in Lemma 2.3(i).

Lemma 2.4. For a finite p-group Γ, there exists a non-canonical short exact sequence of
abelian groups

0 → H1(Γ,Z/p) → H2(Γ,Z/p) → H2(Γ,Q/Z)[p] → 0.

In particular, one has D(Γ) = −d(Ĥ−3(Γ,Z)).

Proof. In each degree a, the short exact sequence 0 → Z/p → Q/Z ×p−→ Q/Z → 0 induces a
canonical short exact sequence of Fp-modules

0 → Ha(Γ,Q/Z)/p→ Ha+1(Γ,Z/p) → Ha+1(Γ,Q/Z)[p] → 0.

In particular, since H0(Γ,Q/Z) = Q/Z is divisible, the group H1(Γ,Z/p) is canonically iso-
morphic to H1(Γ,Q/Z)[p], and hence (since H1(Γ,Q/Z) is finite) non-canonically isomor-
phic to H1(Γ,Q/Z)/p. The claimed short exact sequence is therefore obtained by combining
this isomorphism with the above displayed sequence with a = 1.

We note next that d(Ĥ−3(Γ,Z)) = dimFp

(
H2(Γ,Q/Z)[p]

)
as a consequence of the canon-

ical isomorphism Ĥ−3(Γ,Z) = H2(Γ,Z) ∼= Hom
(
H2(Γ,Q/Z),Q/Z

)
. Given the displayed

exact sequence in the statement, the final assertion therefore follows directly from the fact that
dimFp(H

1(Γ,Z/p)) = d(Γ) and dimFp(H
2(Γ,Z/p)) = r(Γ) (see, for example, [19, Prop.

(3.9.1) and Cor. (3.9.5)]). □

2.2. The proof of Theorem 1.1. The inequality (1) is true since Proposition 2.1(i) (with S =
S∞
K ) implies that mL/K is equal to

rk(UK)− d(Ĥ−2(∇L,S∞
K
)) + βL/K,S∞

K

≥ rk(UK)− δL/K − |R∞
L/K | − d(Ĥ−2(AL))− d(Ĥ−3(Z)) + βL/K,S∞

K

≥ rk(UK)− (δL/K + ρ∞L/K) + D(G)− d(Ĥ−2(AL))− d(GL′/K(µL,p)).

Here the first inequality follows from Lemma 2.3(i) (with S = S∞
K , so S∗ \ Rf

L/K = R∞
L/K)

and the second from Lemma 2.4 and the result of Proposition 2.1(ii).
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To prove the inequality (2) we note that, by Nakayama’s Lemma, the minimal number of
generators of AL as a G-module is d(AL,G). By Chebotarev’s density theorem, we can there-
fore fix a set S ′ of d(AL,G) non-archimedean places of K that split completely in L and are
such that AL,S = (0), with S := S∞

K ∪S ′. One then has S∩Rf
L/K = ∅ and S∗ \Rf

L/K = R∞
L/K

(in the notation of Lemma 2.3) and also mL/K ≤ mL/K,S by Remark 2.2. Upon combining
Proposition 2.1(i) with Lemma 2.3(ii) one therefore has

mL/K ≤ mL/K,S = rk(UK,S)− d
(
Ĥ−2(∇L,S)

)
+ βL/K,S

= rk(UK) + d(AL,G)− d
(
Ĥ−2(∇L,S)

)
+ βL/K,S

≤ rk(UK) + d(AL,G)− (δL/K − ρfL/K + ρ∞L/K − d(G)) + 1

= rk(UK)− (δL/K + ρ∞L/K) + d(G) + d(AL,G) + ρfL/K + 1.

This completes the proof of (2).
Next we note that, sinceG is a p-group, Swan’s Theorem implies a finitely generated Zp[G]-

module is projective if and only if it is free (cf. [5, Th. (32.11)]). Given this fact, the definition
of mL/K combines with the argument of Proposition 2.1(i) to imply that UL is isomorphic, as
a Zp[G]-module, to a direct sum Zp[G]

mL/K ⊕ corG(UL). In addition, an easy exercise shows
that rk(UL) is equal to |G|(rk(UK) + 1− ρ∞L/K/2)− 1, and hence that

rk(corG(UL)) = rk(UL)− rk(Zp[G])mL/K

= |G|(rk(UK) + 1− ρ∞L/K/2)− 1− |G|mL/K

< |G|(rk(UK) + 1− ρ∞L/K/2−mL/K).

The final inequality of Theorem 1.1 now follows as a direct consequence of (1).

2.3. The proof of Corollary 1.2. We first bound each of the terms δL/K , d(GL′/K(µL,p)) and
d(Ĥ−2(Γ,M)) that occur in the final inequality of Theorem 1.1.

If c is the maximal possible value of d(∆) as ∆ runs over subgroups of Γ, then it is clear that
δL/K ≤ ρfL/K · c. Since L′/K is abelian, it is also clear that d(GL′/K(µL,p)) ≤ d(Gab) = d(G).

Next we note that, for any finitely generated Zp[Γ]-module M , the Γ-module Z[Γ] ⊗Z M
(with diagonal action) is cohomologically-trivial. Thus, writing I(Γ) for the augmentation
ideal of Z[Γ], the natural short exact sequence of Zp[Γ]-modules

0 → I(Γ)⊗Z M → Z[Γ]⊗Z M →M → 0

induces an identification of Ĥ−2(Γ,M) with the subquotient Ĥ−1
(
Γ, I(Γ)⊗ZM

)
of I(Γ)⊗ZM

and thereby implies d(Ĥ−2(Γ,M)) ≤ d(I(Γ)⊗Z M) = (|Γ| − 1)d(M).
Upon combining these bounds with the final assertion of Theorem 1.1, one can directly

obtain constants c1 and c2 that depend only on Γ and are such that the inequality (3) is valid.
For a finite (possibly empty) set Σ of places of a number field E, we now write ME,Σ for the

maximal pro-p extension of E that is unramified outside Σ and set GE,Σ := Gal(ME,Σ/E).
We then fix L/K in F(Γ) and set R := RL/K . Then one has

d(AL) ≤ d(GL,R) ≤ |Γ|(d(GK,R)− 1) + 1 = |Γ| · d(GK,R) + (1− |Γ|),

where the first inequality is true since AL is isomorphic to a quotient of GL,R and the second
follows from a direct application of Schreier’s Inequality to the open subgroup GL,R of GK,R

(cf. [23, Cor. 3.6.3]). In addition, if L/K belongs to Ft(Γ), then every place in R is tamely
ramified in MK,R and hence has cyclic inertia group in GK,R. In particular, by applying the
exact sequence of [19, Lem. 10.7.4(i)] (with S = R and T = ∅) and the general result of [19,
Prop. (3.9.1)] in this case, one finds that d(GK,R) ≤ d(GK,∅) + |R| = d(AK) + ρL/K and
hence, from the above displayed inequality, that
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d(AL) + ρL/K ≤ |Γ|(d(AK) + ρL/K) + (1− |Γ|) + ρL/K

≤ 2|Γ|(d(AK) + ρL/K) + (1− |Γ|).

Upon substituting this inequality into (3) one obtains the second claimed inequality in Corol-
lary 1.2. This therefore completes the proof of Corollary 1.2.

Remark 2.5. It will be clear that, by the same arguments, the results of §2.1 actually imply
completely analogous versions of Theorem 1.1 and Corollary 1.2 for the quantities mL/K,S

and rk(corG(UL,S)) for any given finite set of places S of K containing S∞
K .

2.4. Special cases. To illustrate Theorem 1.1, and the general approach of §2.1, we discuss
some concrete applications. As a first step, however, we record another useful general result.

Lemma 2.6. Assume there exists a place v0 /∈ S with Gv0 = G and set S ′ := S ∪ {v0}.
Then there exists an exact sequence of Zp[G]-modules 0 → UL,S → UL,S′ → Zp → 0 and
inequalities mL/K,S ≤ mL/K,S′ ≤ mL/K,S + 1.

Proof. Write IL,S for the group of fractional ideals of OL,S and θ for the map UL,S′ → IL,S,p
that sends each x to xOL,S,p. Then UL,S = ker(θ) and, since Gv0 = G, the image of θ is
isomorphic, as a Zp[G]-module, to Zp. The claimed exact sequence is thus clear.

Setm := mL/K,S andm′ := mL/K,S′ . Thenm ≤ m′ by Remark 2.2 and to provem′ ≤ m+1

we set U := UL,S, U
′ := UL,S′ and X := corG(U

′). Then U ′ decomposes as X ⊕Zp[G]
m′ and

so the exact sequence 0 → U → U ′ → Zp → 0 induces a map θ : Zp[G]
m′ → Zp and hence

an exact commutative diagram

ker(θ)/p Fp[G]
m′ Fp

ker(θ)/p Fp[G]
m′ Fp

ϕ

θ/p

0

θ/p

in which all vertical arrows send x to T (x) :=
∑

g∈Gg(x). Hence, by the Snake Lemma, one
has dimFp(im(ϕ)) ≥ m′ − 1 and so, by the argument of Proposition 2.1(i), the submodule
ker(θ) of U has a direct summand isomorphic to Zp[G]

m′−1. Since U/ ker(θ) is isomorphic to
a submodule of X , and hence torsion-free, and Zp[G] is Gorenstein, it then follows U has a
direct summand isomorphic to Zp[G]

m′−1. This implies m ≥ m′ − 1, as required. □

2.4.1. Locally cyclic extensions. If Gv is cyclic for all v ∈ RL/K , then δL/K = ρfL/K .
In particular, if L/K is unramified, then Theorem 1.1 and the argument of Corollary 1.2

combine to imply the existence of a natural number c(G) := d(G) + D(G) that depends only
on the abstract group G and is such that

mL/K > rk(UK)− d(Ĥ−2(AL))− c(G)

and
rk(corG(UL)) < |G|(d(Ĥ−2(AL)) + c(G) + 1).

On the other hand, if G is itself cyclic (and L/K possibly ramified), then, by Chebotarev’s
Density Theorem, we can fix a place v0 of K with Gv0 = G and set S := S∞

K ∪ {v0}. In this
case the definition of ϵL,S ensures (even if G is non-cyclic) that there is an isomorphism of
Zp[G]-modules

ker(ϵL,S) ∼=
(⊕

v∈S∞
K

iGGv
Z
)
⊕
(⊕

v∈Rf
L/K

iGGv
W ∗

v

)
. (17)
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In particular, if we also assume R∞
L/K = ∅, there is an induced isomorphism of Tate cohomol-

ogy groups

Ĥ−2(ker(ϵL,S)) ∼=
⊕

v∈RL/K

Ĥ−2
v (W ∗

v )
∼=

⊕
v∈RL/K

Ĥ0
v (W

∗
v ),

where the second isomorphism follows from the cyclicity of each Gv. In addition, for each
place v ∈ Rf

L/K , the exact sequence (13) implies W ∗
v spans Q[Gv], whilst results of Gruen-

berg and Weiss [9] imply W ∗
v is not cohomologically-trivial over Gv (see the proof of Propo-

sition 3.4 below). By a Herbrand quotient argument, these facts imply Ĥ0
v (W

∗
v ) is a non-

trivial cyclic group and hence d(Ĥ0
v (W

∗
v )) = 1. The above isomorphism therefore implies

d(Ĥ−2(ker(ϵL,S))) = ρL/K(= ρfL/K). By the periodicity of Tate cohomology over G, one has

d(Ĥ−2(AL,S)) = d(Ĥ0(AL,S)) ≤ d(AG
L,S).

In addition, writing M∨ for the Pontryagin dual of a finite G-module M (endowed with con-
tragredient G-action), the duality isomorphism Ĥ−1(AL,S) ∼= Ĥ0(A∨

L,S)
∨ in Tate cohomology

(cf. [3, Chap. VI, Prop. (7.1)]) implies that

d(Ĥ−1(AL,S)) = d(Ĥ0(A∨
L,S)) ≤ d((A∨

L,S)
G) = d((AL,S,G)

∨) = d(AL,S,G).

Setting ε(v0) := ρfL/K − d(Ĥ−2(∇L,S)), the exact sequence (15) therefore implies that

−d(AG
L,S) ≤ −d(Ĥ−2(AL,S)) ≤ ε(v0) ≤ d(Ĥ−1(AL,S)) ≤ d(AL,S,G).

Now since rk(UK,S) = rk(UK) + 1, Proposition 2.1(i) implies that

mL/K,S = (rk(UK) + 1) + (ε(v0)− ρfL/K) + βL/K,S.

By Lemma 2.6, this quantity is equal to eithermL/K ormL/K+1. In addition, sincemL/K,S ≥
0, the formula combines with the upper bound for ε(v0) established above to imply that

d(AL,S,G) ≥ ρfL/K − (rk(UK) + 1)− βL/K,S.

Proposition 2.1(ii) implies |βL/K,S| ≤ 1 (as G is cyclic) and so, for large ρfL/K , this inequality
gives a non-trivial restriction on the G-structure of AL,S . For example, if µK [p] = (0) (so
µL[p] = (0) and hence βL/K,S = 0), then it implies AL,S,G, and therefore also AL, is non-
trivial whenever ρfL/K is greater than rk(UK) + 1.

This non-vanishing criterion is of the same form as those obtained by using genus theory
(see, for example, the result [18, Cor. 3.6] of Maire) and also complements recent results of
Lim, Maire and the present author. Specifically, in [4, Lem. 2.3, Exam. 2.4] it is shown that
if AK is cyclic, then there are infinitely many cyclic p-extensions L/K for which ρfL/K =

rk(UK) + 1 and, for some v ∈ Rf
L/K , one has AL,S′ = (0) with S ′ = S∞

K ∪ {v}. Finally, we
note that the latter article also provides (in the case that G is a cyclic p-group) an alternative
approach to studying mL/K,S for certain sets S.

2.4.2. p-Hilbert classfield towers. Fix a number field E with µE[p] ̸= (0) and the p-Hilbert
classfield tower LE/E of finite degree, and set GE := Gal(LE/E).

Then LE/E is unramified andALE vanishes, and so we can combine Proposition 2.1(i) with
the exact sequences (15) and (16) with S = S∞

E and S∗ = RLE/E = ∅. In this way, we deduce

rk(UE)−mLE/E =d(Ĥ−2(GE,∇LE ,S∞
E
))− βLE/E,S∞

E

=d(Ĥ−3(GE,Z))− βLE/E,S∞
E

= −D(GE)− βLE/E,S∞
E
,

where the last equality follows from Lemma 2.4. The resulting formula for mLE/E is a refine-
ment (in the case of finite p-Hilbert classfield towers) of the inequalities for mLE/E that are
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established by the main result (Theorem A) of Hajir et al [13]. (Note here that our definition
of the deficiency of a group is the negative of that used in loc. cit.)

In addition, for any finite p-group Γ and large enough integer k, the result [12, §1, Th.] of
Hajir et al implies there are infinitely many extensions K/E of degree pk with Gal(LK/K) ∼=
Γ. For such fields LK , Corollary 1.2 gives an upper bound for rk(corΓ(ULK )) that depends
only on Γ, and hence implies mLK/K → ∞ as [K : E] → ∞.

2.4.3. Uniform pro-p extensions. Fix an abelian number fieldK, with cyclotomic Zp-extension
K∞, and a finite Galois p-extension L of K with L ∩ K∞ = K. Set Γ := Gal(L/K) ∼=
Gal(LKn/Kn), where Kn is such that K ⊆ Kn ⊂ K∞ and [Kn : K] = pn. Then the Iwasawa
µ-invariant of LK∞/L vanishes (asK is abelian and L/K of p-power degree) and so d(ALKn)
is bounded independently of n (by [25, Prop. 13.23]). The result of Corollary 1.2 therefore
implies the existence of an upper bound for rk(corΓ(ULKn)) that is independent of n.

To generalise this example, we fix a Galois extension K ′
∞/K of number fields with RK′

∞/K

finite and G := Gal(L/K) a uniform pro-p group. We write (Gn)n for the p-central descending
series of G and, for each n, set K ′

n := (K ′
∞)Gn . We then fix a finite Galois extension L/K

with L ∩K ′
∞ = K, write X∞ for the Galois group of the maximal unramified p-extension of

LK ′
∞ and assume X∞[p] is torsion over the Iwasawa algebra Fp[[G]].

In this situation, results of Perbet [22] imply that

d(ALK′
n
) = O(p−n[K ′

n : K])

and so, if no place in RL/K has finite decomposition group in K ′
∞/K, the first inequality

of Theorem 1.1 combines with the argument of Corollary 1.2 to imply mLK′
n/K

′
n
→ ∞ as

n → ∞. However, if X∞[p] is not torsion over Fp[[G]] (which, by Hajir et al [10, Th. 1.3],
should happen often), then a more delicate analysis is required to extract information about the
asymptotic behaviour of mLK′

n/K
′
n

from Theorem 1.1.

3. UL AND LOOP OPERATORS

In this section we show that, under suitable hypotheses, the general approach of §2.1 com-
bine with Heller’s algebraic theory of loop operators to derive concrete information about the
Zp[G]-structures of both corG(UL) andAL (see, in particular, Proposition 3.4 and Remark 3.6).

3.1. Loop operators. Fix a finite group Γ. For a finitely generated Zp[Γ]-lattice M , we write
dΓ(M) and rΓ(M) for the minimal numbers of its generators and relations (as a Zp[Γ]-module)
and denote its ‘deficiency’ dΓ(M)−rΓ(M) by DΓ(M). We also write mΓ(M) for the maximal
rank of a free direct Zp[Γ]-summand of M (as determined by its Krull-Schmidt decomposi-
tion). In particular, if M is free, then it is isomorphic to Zp[Γ]

mΓ(M).
We next recall that Zp[Γ] is semi-perfect and hence that every finitely generated Zp[Γ]-

module M has a projective cover θ : P → M that is unique up to isomorphism (cf. [5, Prop.
(6.20), Th. (6.23)]). The Zp[Γ]-module

ΩΓ(M) = Ω1
Γ(M) := ker(θ)

is then independent, up to isomorphism, of θ and, for each integer n > 1, we inductively set

Ωn
Γ(M) := ΩΓ(Ω

n−1
Γ (M)).

These modules form part of the theory of ‘loop-operators’ introduced by Heller [14] and their
properties are essentially well-understood. In particular, the following result records several
properties relevant to our study.

Lemma 3.1. Let M1, M2 and M3 be Zp[Γ]-lattices, and N a Zp[∆]-lattice for some subgroup
∆ of Γ.
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(i) ΩΓ(M1) = (0) ⇐⇒ M1 is free; ΩΓ(M1) is non-free indecomposable ⇐⇒ corΓ(M1)
is non-zero indecomposable; ΩΓ(M1 ⊕M2) is isomorphic to ΩΓ(M1)⊕ ΩΓ(M2).

(ii) If M1 ↪→ M2 ↠ M3 is a short exact sequence, then mΓ(M2) ≥ mΓ(M1) + mΓ(M3)
and there exists an exact sequence of Zp[Γ]-lattices

0 → corΓ(M1) → corΓ(M2)⊕ Zp[Γ]
mΓ(M2)−mΓ(M1)−mΓ(M3) → corΓ(M3) → 0.

(iii) If N1 ↪→ N2 ↠ N3 is a short exact sequence of finitely generated Zp[Γ]-modules, then
DΓ(N2) ≥ DΓ(N1) + DΓ(N3) and there exists an exact sequence of Zp[Γ]-lattices

0 → Ω2
Γ(N1) → Ω2

Γ(N2)⊕ Zp[Γ]
DΓ(N2)−DΓ(N1)−DΓ(N3) → Ω2

Γ(N3) → 0.

Further, the element of Ext1Zp[Γ](Ω
2
Γ(N3),Ω

2
Γ(N1)) that corresponds to this sequence is

uniquely determined by the element of Ext1Zp[Γ](N3, N1) that corresponds to the origi-
nal sequence.

(iv) ΩΓ(M1) = ΩΓ(corΓ(M1)) = corΓ(ΩΓ(M1)) and ΩΓ(i
Γ
∆N) = iΓ∆(Ω∆(N)).

(v) corΓ(i
Γ
∆(N)) is a direct summand of iΓ∆(cor∆(N)), with equality if ∆ is normal in Γ.

Proof. The first assertion of (i) is clear since Γ is a p-group and so a finitely generated pro-
jective Zp[Γ]-module is free (by Swan’s Theorem). The second assertion of (i) follows, for
example, from [9, Lem. 5.1] (and is also straightforward to prove directly) and the third is true
since the direct sum of projective covers of M1 and M2 is a projective cover of M1 ⊕M2.

To prove (ii), we note that given sequence combines with the Krull-Schmidt theorem to
induce a short exact sequence of Zp[Γ]-modules

0 → corΓ(M1)⊕ Zp[Γ]
mΓ(M1) → corΓ(M2)⊕ Zp[Γ]

mΓ(M2) → corΓ(M3)⊕ Zp[Γ]
mΓ(M3) → 0.

This induces the claimed exact sequence since Zp[Γ] is Gorenstein, and hence then also implies
the claimed inequality mΓ(M2)−mΓ(M1)−mΓ(M3) ≥ 0.

To prove (iii) we fix projective covers θi : Pi → Ni for i ∈ {1, 3} and consider the exact
diagram

P1 P1 ⊕ P3 P3

N1 N2 N3.

ϕ1

θ1 θ′2

ϕ2

θ3 (18)

Here the lower row is the given sequence, the maps ϕ1 and ϕ2 are the obvious maps and θ′2
is chosen to make the diagram commute. Then θ′2 is surjective, and so, for a projective cover
θ2 : P2 → N2, the module P1⊕P3 is isomorphic to P2⊕Zp[Γ]

t for some non-negative integer
t. Upon applying the Snake lemma to the above diagram, one therefore obtains a short exact
sequence of the form

ΩΓ(N1) ↪→ ΩΓ(N2)⊕ Zp[Γ]
t ↠ ΩΓ(N3). (19)

Given the universal property of projective covers, it is straightforward to check that the Yoneda
extension class of this sequence (regarded as a 1-extension of Zp[Γ]-modules) is uniquely
determined by that of the original sequence. In addition, since P1, P2 and P3 are respectively
free (over Zp[Γ]) of ranks dΓ(N1), dΓ(N2) and dΓ(N3), the exactness of the upper row of (18)
implies t = dΓ(N1) + dΓ(N3)− dΓ(N2). Noting that rΓ(Ni) = dΓ(ΩΓ(Ni)) for i ∈ {1, 2, 3},
one can therefore obtain the claimed exact sequence in (ii) by repeating the argument after
replacing the given sequence by (19). Given the claimed sequence, one then also deduces that
the exponent DΓ(N2)−DΓ(N1)−DΓ(N3) must be non-negative, as claimed.

The first equality in (iv) follows directly from the exact sequence (19) withN1 ↪→ N2 ↠ N3

taken to be an exact sequence of the form corΓ(M1) ↪→ M1 ↠ Zp[Γ]
mΓ(M1). We next fix a

decomposition of M1 as a direct sum
⊕

i∈IM1i of indecomposable modules, and for each
index i a projective cover θi of M1i. Then

⊕
i∈Iθi is a projective cover of M1 and, given
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this, the equality ΩΓ(corΓ(M1)) = corΓ(ΩΓ(M1)) follows from (i). To prove the remainder
of (iv), and also (v), set M := iΓ∆N . Then, by Nakayama’s Lemma, one has dΓ(M) =
dimFp(Fp ⊗Zp[Γ] M) = dimFp(Fp ⊗Zp[∆] N) = d∆(N). Thus, if θ is a projective cover of the
Zp[∆]-module N , then iΓ∆θ is a projective cover of the Zp[Γ]-module iΓ∆N and so the second
assertion of (iv) is true since ΩΓ(M) = ker(iΓ∆θ) = iΓ∆(ker(θ)) = iΓ∆(Ω∆(N)).

The first assertion of (v) follows easily from the Krull-Schmidt Theorem. To prove the
second, write O for the valuation ring of the completion of the maximal unramified extension
Qun

p of Qp in Qc
p. Then, for a Zp-latticeM , the group Ω := Gal(Qun

p /Qp) acts semi-linearly on
M ′ := O⊗Zp M and M = H0(Ω,M ′). In particular, for a subgroup Υ of Γ, a Zp[Υ]-lattice L
has a free direct summand if and only if the O[Υ]-lattice L′ has a free direct summand and so
corΥ(L)

′ = corO[Υ](L
′). It follows that cor∆(N)′ is a direct sum of non-free indecomposable

O[∆]-lattices and hence, by Green’s Indecomposability Theorem [6], that iΓ∆(cor∆(N)′) =
corO[Γ](i

Γ
∆(N)′) provided ∆ is normal in Γ. In this case, therefore, one has

iΓ∆(cor∆(N)) = H0(Ω, iG∆(cor∆(N))′) = H0(Ω, iΓ∆(cor∆(N)′))

= H0(Ω, corO[Γ](i
Γ
∆(N)′)) = H0(Ω, corΓ(i

Γ
∆(N))′) = corΓ(i

Γ
∆(N)),

as required. □

Example 3.2. It is clear that ΩΓ(Zp[Γ]) = (0), ΩΓ(Zp) = I(Γ)p, corΓ(I(Γ)p) = I(Γ)p,
corΓ(Zp[Γ]) = (0) and corΓ(Zp) = Zp. In addition, since Zp ⊗Zp[Γ] I(Γ)p

∼= Ip(Γ)/Ip(Γ)
2 ∼=

Γab, Nakayama’s Lemma implies dΓ(I(Γ)p) = d(Γ) and so ΩΓ(I(Γ)p) is the kernel of a
surjective map θ : Zp[Γ]

d(Γ) → I(Γ)p. In particular, for the tautological short exact sequence
of Zp[Γ]-modules

0 → I(Γ)p → Zp[Γ] → Zp → 0, (20)
the short exact sequences in Lemma 3.1(ii) and (19) are respectively the sequence itself and
0 → ΩΓ(I(Γ)p) → Zp[Γ]

d(Γ) θ−→ I(Γ)p → 0.

3.2. Module deficiencies and the core of UL. We start by describing mL/K,S and corG(UL,S)
in terms of the module ∇L,S,p.

Proposition 3.3. Fix a finite set S of places of K that contains S∞
K , and assume µL[p] = (0).

Then mL/K,S = DG(∇L,S,p)− |RL/K \ S| and the Zp[G]-module corG(UL,S) is isomorphic to
Ω2

G(∇L,S,p).

Proof. Since µL[p] = (0) one has UL,S = O×
L,S,p. Hence, if we fix a projective cover of Zp[G]-

modules θ : P → ∇L,S,p, then a standard construction of homological algebra implies the
existence of an exact sequence of Zp[G]-modules

0 → UL,S → P1
θ1−→ P

θ−→ ∇L,S,p → 0 (21)

that has the same Yoneda extension class as the pro-p completion of (4). Then, since UL,S

and P are finitely generated and torsion-free the same is true of P1. In addition, since P is
projective and the modules M0 and M1 in (4) are both cohomologically-trivial (over G), the
module P1 must also be cohomologically-trivial. These facts combine with [1, Th. 8] to imply
that the Zp[G]-module P1 is projective, and hence free (by Swan’s Theorem) of rank mG(P1).
In addition, the exact sequences (5) and (13) (for each v ∈ RL/K \S) combine with Dirichlet’s
Unit Theorem to imply the existence of an isomorphism of Qp[G]-modules

Qp ⊗Zp ∇L,S,p = Qp ⊗Zp ker(ϵL,S)p
∼= (Qp ⊗Zp UL,S)⊕Qp[G]

|RL/K\S|

(see also [24, §1, Cor.]). From the exactness of (21), it therefore follows that

mG(P1) = mG(P )− |RL/K \ S| = dG(∇L,S,p)− |RL/K \ S|. (22)
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On the other hand, if we fix a projective cover θ′1 : P ′
1 → ker(θ), then there exists an

isomorphism of Zp[G]-modules ϕ : P1
∼= P ′

1 ⊕P ′′
1 for some projective, and hence free, Zp[G]-

module P ′′
1 so that θ1 ◦ ϕ−1 = θ′1 ⊕ 0P ′′

1
. There are therefore isomorphisms of Zp[G]-modules

UL,S
∼= ker(θ1) ∼= ker(θ1 ◦ ϕ−1) = ker(θ′1)⊕ P ′′

1
∼= Ω2

G(∇L,S,p)⊕ P ′′
1 .

Taken in conjunction with Lemma 3.1(iv), this implies corG(UL,S) is isomorphic to Ω2
G(∇L,S,p)

and hence that mL/K,S = mG(P
′′
1 ). It is therefore enough to note that (22) implies

mG(P
′′
1 ) = mG(P1)−mG(P

′
1) = (dG(∇L,S,p)− |RL/K \ S|)− dG(ker(θ))

= (dG(∇L,S,p)− |RL/K \ S|)− rG(∇L,S,p)

=DG(∇L,S,p)− |RL/K \ S|.

□

With further effort, the above result can be made much more explicit. To give a concrete
example of this, for each v ∈ Rf

L/K , we define an integer by setting

εv = εL/K,v := (d(Gv) + 1)− dGv(Wv,p).

These integers are considered in detail in Remark 3.7 below. For the moment, however, we
note only that d(Gv) = dGv(I(Gv)p) (cf. Example 3.2) and hence that the sequence (12)
implies εv is equal to either 0 or 1.

Proposition 3.4. Assume R∞
L/K = ∅ and the existence of v0 ∈ RL/K with Iv0 = G. Write

R′
L/K and R′′

L/K for {v ∈ RL/K : Iv ̸= Gv} and RL/K \ (R′
L/K ∪ {v0}) respectively. Set

tL/K := DG(∇L,S∞
K ,p)−DG(AL)− |S∞

K | − (ρL/K − δL/K) + (1− d(G))−
∑

v∈R′
L/K

εv

and define lattices

ML/K :=
⊕

v∈R′
L/K

iGGv
ΩGv(Wv,p) and NL/K :=

⊕
v∈R′′

L/K

(Ω2
G(i

G
Gv
Zp)⊕ ΩG(i

G
Gv
Zp)).

Then tL/K ≥ 0 and there exists a short exact sequence of Zp[G]-lattices

0 → Ω2
G(AL) → corG(UL)⊕ Zp[G]

tL/K → I(G)p ⊕ML/K ⊕NL/K → 0. (23)

The Zp[G]-lattices I(G)p, and both Ω2
G(i

G
Gv
Zp) and ΩG(i

G
Gv
Zp) for each v ∈ R′′

L/K , are non-
free indecomposable. For each v ∈ R′

L/K , the Zp[Gv]-lattice ΩGv(Wv,p) is non-free indecom-
posable and, if Gv is normal in G, then the Zp[G]-lattice iGGv

ΩGv(Wv,p) = ΩG(i
G
Gv
Wv,p) is also

non-free indecomposable.

Proof. We start by noting the argument of Gruenberg and Weiss that proves [9, Th. 6.1] also
establishes the following facts about the Zp[Gv]-lattices W ∗

v,p.
If v ∈ R′

L/K , then W ∗
v,p (and hence also Wv,p) is non-free indecomposable. In particular,

since the sequences (13) and (14) combine to imply dGv(W
∗
v,p) ≤ 2 and Qp⊗ZpW

∗
v,p

∼= Qp[Gv],
one deduces in this case that

dGv(W
∗
v,p) = 2. (24)

From the short exact sequence 0 → Wv,p → Zp[Gv]⊕ Zp[Gv] → W ∗
v,p → 0 of [9, Lem. 4.1],

we can then deduce
rGv(W

∗
v,p) = dGv(Wv,p) (25)

and also that there exists an isomorphism of Zp[Gv]-modules

Ω2
Gv
(W ∗

v,p)
∼= ΩGv(Wv,p). (26)
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If now v ∈ RL/K \ R′
L/K , then the exact sequence of Gv-modules (13) splits and so W ∗

v,p

is isomorphic to the direct sum Zp ⊕ I(Gv)
∗
p. In this case, therefore, the exact sequence (14)

induces an isomorphism of Zp[Gv]-modules

Ω2
Gv
(W ∗

v,p)
∼= Ω2

Gv
(Zp)⊕ Ω2

Gv
(I(Gv)

∗
p)

∼= Ω2
Gv
(Zp)⊕ ΩGv(Zp) (27)

and also combines with the tautological short exact sequence (20) with Γ = Gv and equality
dG(I(Gv)p) = d(Gv) to imply

DGv(W
∗
v,p) = DGv(Zp) + DGv(I(Gv)

∗
p) = (1− d(Gv)) + (1− 1) = 1− d(Gv). (28)

In addition, since Gv0 = G, the splitting of (13) for v = v0 implies that the tautological exact
sequence of Zp[G]-modules

0 → ker(ϵL)p →
(⊕

v∈S∞
K

iGGv
Zp

)
⊕
(⊕

v∈Rf
L/K

iGGv
W ∗

v,p

) ϵL,p−−→ Zp → 0

is also split and hence that there is an isomorphism of Zp[G]-modules

ker(ϵL)p ∼=
(⊕

v∈S∞
K

iGGv
Zp

)
⊕ I(G)∗p ⊕ M̃L/K ⊕ ÑL/K (29)

with

M̃L/K :=
⊕

v∈R′
L/K

iGGv
W ∗

v,p and ÑL/K :=
⊕

v∈R′′
L/K

(iGGv
Zp ⊕ iGGv

I(Gv)
∗
p).

Since the Zp[G]-module
⊕

v∈S∞
K
iGGv

Z is a free of rank |S∞
K | (as R∞

L/K = ∅), the exact sequence
(5) (with S = S∞

K ) therefore induces an exact sequence

0 → AL → ∇L,p → Zp[G]
|S∞

K | ⊕ I(G)∗p ⊕ M̃L/K ⊕ ÑL/K → 0, (30)

with ∇L,p := ∇L,S∞
K ,p. Upon applying Lemma 3.1(iii) to this sequence, and recalling Ω2

G(∇L,p)
is isomorphic to corG(UL) (by Proposition 3.3 with S = S∞

K ), we thus derive an exact sequence

0 → Ω2
G(AL) → Ω2

G(∇L,p)⊕Zp[G]
t′
L/K → Ω2

G(I(G)
∗
p)⊕Ω2

G(M̃L/K)⊕Ω2
G(ÑL/K) → 0, (31)

with

t′L/K := DG(∇L,p)−DG(AL)−DG(Zp[G]
|S∞

K |)−DG(I(G)
∗
p)−DG(M̃L/K ⊕ ÑL/K).

It is clear DG(Zp[G]
|S∞

K |) = |S∞
K | and, as a consequence of the exact sequence (14) with Gv

replaced by G, also DG(I(G)
∗
p) = 0. In addition, after taking account of (24), (25) and (28),

one computes that the quantity DG(M̃L/K ⊕ ÑL/K) is equal to(∑
v∈R′

L/K

DGv(W
∗
v,p)

)
+
(∑

v∈R′′
L/K

(DGv(Zp) + DGv(I(Gv)
∗
p)
)

=
(∑

v∈R′
L/K

(2− dGv(Wv,p)
)
+
(∑

v∈R′′
L/K

(1− d(Gv))
)

=
(∑

v∈R′
L/K

(1− d(Gv) + εv)
)
+
(∑

v∈R′′
L/K

(1− d(Gv))
)

=
(∑

v∈RL/K\{v0}
(1− d(Gv))

)
+
∑

v∈R′
L/K

εv

=
(∑

v∈RL/K

(1− d(Gv))
)
− (1− d(Gv0)) +

∑
v∈R′

L/K

εv

=(ρfL/K − δL/K)− (1− d(G)) +
∑

v∈R′
L/K

εv.

Taken together, these computations prove t′L/K = tL/K . Given this, the claimed exact
sequence (23) is then obtained by combining the exact sequence (31) with the isomorphisms
(26) and (27) (and Lemma 3.1(iv)) and the fact Ω2

G(I(G)
∗
p)

∼= ΩG(Zp) ∼= I(G)p.
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It is now enough to verify the assertions regarding indecomposability. Firstly, the Zp[G]-
lattice I(G)∗p is clearly not free and so is indecomposable since dG(I(G)

∗
p) = 1. In addition,

for each v ∈ R′′
L/K , the Zp[Gv]-lattice iGGv

Zp is non-free indecomposable and so Lemma 3.1(i)
implies the same is true of both Ω2

G(i
G
Gv
Zp) and ΩG(i

G
Gv
Zp). We now fix v ∈ R′

L/K and note
that, since the Zp[Gv]-lattice Wv,p is non-free indecomposable, the same is true of ΩGv(Wv,p)
(by Lemma 3.1(i)). Further, if Gv is normal in G, then (using the notation of the proof of
Lemma 3.1(v)) Green’s Theorem combines with Lemma 3.1(i) to imply ΩG(i

G
Gv
Wv,p) is non-

free indecomposable provided O ⊗Zp Wv,p is a non-free indecomposable module over R :=
O[Gv]. Since this module is clearly not free (since Wv,p is not free over Zp[Gv]), it is enough
to show the R-module O ⊗Zp W

∗
v,p is indecomposable. However, if O ⊗Zp W

∗
v,p decomposes

as a direct sum M ⊕M ′ of non-zero modules, then precisely one of the summands, M say,
has zero isotypic component at the trivial character of Gv and so belongs to the kernel of the
map of R-modules θ : O ⊗Zp W

∗
v,p → O induced by the exact sequence (13). This implies a

decomposition ker(θ) =M⊕(M ′∩ker(θ)) and so, since ker(θ) is equal to the indecomposable
R-module N := O ⊗Zp I(G)

∗
p, it follows that M = N and M ′ ∩ ker(θ) = (0) so θ induces an

isomorphism M ′ ∼= O. This implies that the scalar extension of (13) splits over R and hence
that the original sequence splits over Z[Gv]. The latter contradiction therefore implies that the
R-module O ⊗Zp W

∗
v,p is indecomposable, as required. □

Remark 3.5. The existence of a place v0 ∈ RL/K with Iv0 = G strongly restricts L/K. How-
ever, with further effort, the approach of Proposition 3.4 allows one to prove similar results
for wider classes of extensions. For example, if L/K is any Galois extension for which there
exists a non-archimedean place v0 of K with Gv0 = G, and we set S := S∞

K ∪ {v0}, then the
above argument can be combined with the pro-p completion of the isomorphism (17) (in place
of (29)) to analyse the module corG(UL,S) and thereby also, via Lemmas 2.6 and 3.1(ii), the
module corG(UL).

Remark 3.6. Since tL/K ≥ 0, Propositions 3.3 (with S = S∞
K ) and 3.4 combine to imply that,

under the stated conditions, one has

mL/K + ρL/K =DG(∇L,S∞
K ,p)

≥DG(AL) + |S∞
K |+ (ρL/K − δL/K)− (1− d(G)) +

∑
v∈R′

L/K

εv

and hence also

DG(AL) ≤ κL/K := (mL/K − |S∞
K |) + (

∑
v∈RL/K\{v0}

d(Gv)) + (1−
∑

v∈R′
L/K

εv).

This gives a concrete link between mL/K and the G-structure of AL. For instance, if κL/K <
0, then it implies rG(AL) > dG(AL) (and so AL ̸= (0)). As a specific example, assume
RL/K = {v0} and mL/K < rk(UK): then κL/K = mL/K − |S∞

K | + 1 = mL/K − rk(UK) < 0
so AL ̸= (0) and hence, by [25, Th. 10.4], also AK ̸= (0). In particular, if K is any number
field for which µK [p] and AK both vanish, then for any finite Galois p-extension L/K that
is (totally) ramified at precisely one non-archimedean place one must have mL/K = rk(UK).
This result was first obtained, by different means and under the additional hypothesis that G is
cyclic, in [4, Exam. 5.2(i)], where it is also shown corG(UL) is isomorphic, as a Zp[G]-module,
to I(G)∗p. However, by using the approach of Bouazzaoui and Lim [2], one finds that the latter
isomorphism cannot be valid (under the stated conditions on K and RL/K) if G is not cyclic -
I am grateful to Donghyeok Lim for pointing this out to me.

Remark 3.7. Fix v ∈ R′
L/K and consider the integer εv defined just before Proposition 3.4. To

do this, set f := |Gv/Iv|, fix a generator ϕ of Gv/Iv and write π for the canonical projection
Z[Gv] → Z[Gv/Iv]. For a natural number t, set Tt :=

∑i=t−1
i=0 ϕi and then z(g) := (g−1, Ta(g))
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for g ∈ Gv, with a(g) the unique integer such that 1 ≤ a(g) ≤ f and π(g) = ϕa(g). Then,
from the discussion in [9, §1], one has

Wv = {(x, y) ∈ I(Gv)⊕ Z[Gv/Iv] : π(x) = (ϕ− 1)y},
(so z(g) ∈ Wv for each g) and the maps in (12) are such that αv(1) = (0, Tf ) and βv(z(g)) =
g − 1 for g ∈ G. Hence, if we set d := d(Gv) and fix a subset {gj}1≤j≤d of Gv so that
{gj−1}1≤j≤d generates the Zp[Gv]-module I(Gv)p, then the Zp[Gv]-moduleWv,p is generated
by the union of αv(1) and Z := {z(gj)}1≤j≤d. In particular, if some gj is such that its order
o(j) is equal to the order of π(gj), then (

∑o(j)−1
i=0 gij)z(gj) = αv(1) so that Wv,p is generated

by Z and hence εv = 1. (If G is abelian, one can even check that the existence of such an
element gj is a necessary condition for εv = 1.) Now an element gj with these properties
automatically exists, and so εv = 1, if Gv is the semi-direct product of Iv and Gv/Iv (which,
by [17, Lem. 3.3], one can always assume after composing Lw with the unramified extension
of Kv of degree [Lw : Kv]). However, it can be shown that such elements can also exist (and
hence one has εv = 1) if Gv is not a semi-direct product.

Remark 3.8. Since (29) implies ker(ϵL)p has a very explicit structure, the proof of Proposition
3.4 reduces the study of corG(UL) to determining both Ω2

G(AL) and the (Yoneda) extension
class of the sequence (30). Whilst the explicit determination (in a general setting) of Ω2

G(AL)
is surely difficult, the results of Ritter and Weiss imply the following ‘independence’ result
for the extension class of (30). Fix a finite p-group Γ, a finite set Σ and, for each σ ∈ Σ,
subgroups Γσ and Γ0

σ of Γ, with Γ0
σ normal in Γσ and Γσ/Γ

0
σ cyclic, and an element γσ of Γσ

that projects to a generator of Γσ/Γ
0
σ. Write (Γ,Σ) for the set of Galois extensions L/K of

number fields for which there exists a (fixed) group isomorphism ιL/K : Γ → Gal(L/K) and
bijection κL/K : Σ → RL/K so that, for each σ ∈ Σ, the groups ιL/K(Γσ) and ιL/K(Γ0

σ) are
the decomposition and inertia groups in Γ of some place of L above κL/K(σ), and ιL/K(γσ)
is an associated frobenius element. For L/K and L′/K ′ in (Γ,Σ), the maps ιL/K and ιL′/K′

make AL and AL′ into Zp[Γ]-modules and ker(ϵL)p and ker(ϵL′)p into canonically isomorphic
Zp[Γ]-modules. In particular, for any isomorphism of Γ-modules j : AL

∼= AL′ , there exists
an induced isomorphism of groups j∗ : Ext1Zp[Γ](ker(ϵL)p, AL) ∼= Ext1Zp[Γ](ker(ϵL′)p, AL′).
Then the argument used by Ritter and Weiss to prove [24, Th. 2] shows that the extension
classes of the respective sequences (30) for L/K and L′/K ′ correspond under j∗, and hence
that the Zp[Γ]-lattices corΓ(UL) and corΓ(UL′) are isomorphic, provided there exists an exact
commutative diagram of group homomorphisms

AL Gal(HL/K) Gal(L/K)

AL′ Gal(HL′/K ′) Gal(L′/K ′).

j j′ ιL′/K′◦ι−1
L/K

Here HL and HL′ are the p-Hilbert classfields of L and L′ and the rows are induced by Galois
theory and the identifications AL

∼= Gal(HL/L) and AL′ ∼= Gal(HL′/L′) given by Artin
reciprocity.
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Fröhlich (eds.), 94-115, Academic Press, London, 1967.

[2] Z. Bouazzaoui, D. Lim, On the Galois structure of units in totally real p-rational number fields, submitted
for publication; arXiv:2311.13525.

[3] K. S. Brown, Cohomology of groups, Grad. Texts Math. 87, Springer, New York, 1992.
[4] D. Burns, D. Lim, C. Maire, On the existence of Minkowski units, submitted for publication;

arXiv:2401.00181



UNITS, CLASS GROUPS AND LOOP OPERATORS 17

[5] C. W. Curtis, I. Reiner, Methods of Representation Theory, Vol. I, Wiley and Sons, New York, 1987.
[6] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1959) 430-445.
[7] K. W. Gruenberg, Relation modules of finite groups, Conference Board of the Mathematical Sciences Re-

gional Conference Series in Mathematics, No. 25. American Mathematical Society, Providence, R.I., 1976.
[8] K. W. Gruenberg, A. Weiss, Galois invariants for units, Proc. London Math. Soc. 70 (1995) 264-284.
[9] K. W. Gruenberg, A. Weiss, Galois invariants for local units, Quart. J. Math. Oxford Ser. (2) 47 (1996)

25-39.
[10] F. Hajir, C. Maire, Prime decomposition and the Iwasawa mu-invariant, Math. Proc. Cambridge Philos. Soc.

166 (2019) 599-617.
[11] F. Hajir, C. Maire, R. Ramakrishna, Cutting towers of number fields, Ann. Math. Québec. 45 (2021) 321-

345.
[12] F. Hajir, C. Maire, R. Ramakrishna, On Ozaki’s theorem realizing prescribed p-groups as p-class tower

groups, Algebra & Number Theory 18 (2024) 771-786.
[13] F. Hajir, C. Maire, R. Ramakrishna, Deficiency of p-class tower groups and Minkowski units, to appear in

Ann. Inst. Fourier.
[14] A. Heller, The loop-space functor in Homological Algebra, Trans. Amer. Math. Soc. 96 (1960) 382-394.
[15] A. Heller, I. Reiner, Representations of cyclic groups in rings of integers II, Ann. Math. (1963) 318-328.
[16] A. Kumon, D. Lim, On Krull-Schmidt decompositions of unit groups of number fields, to appear in Acta

Arith.
[17] H. Johnston, Explicit integral Galois module structure of weakly ramified extensions of local fields, Proc.

Amer. Math. Soc. 143 (2015) 5059-5071.
[18] C. Maire, Genus theory and governing fields, New York J. Math. 24 (2018) 1056-1067.
[19] J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, Springer, 2010
[20] M. Ozaki, Construction of maximal unramified p-extensions with prescribed Galois groups, Invent. Math.

183 (2011) 649-680.
[21] M. Ozaki, Construction of a cyclic p-extension of number fields whose unit group has prescribed Galois

module structure, preprint, 2024.
[22] G. Perbet, Sur les invariants d’Iwasawa dans les extensions de Lie p-adiques (French) [On Iwasawa invari-

ants in p-adic Lie extensions], Algebra & Number Theory 5 (2011) 819-848.
[23] L. Ribes, P. Zalesskii, Profinite Groups, Ergeb. Math. Grenzgeb. 40, Springer-Verlag, Berlin, 2010.
[24] J. Ritter, A. Weiss, A Tate sequence for global units, Compositio Math. 102 (1996) 147-178.
[25] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, Berlin,

1982.

KING’S COLLEGE LONDON, DEPARTMENT OF MATHEMATICS, LONDON WC2R 2LS, U.K.
Email address: david.burns@kcl.ac.uk


