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Chapter 1

Elementary operator theory

1.2 Bounded linear operators

page 14. Solution of Problem 1.2.5 of LOTS

This depends on the fact that if ab− ze is invertible for some non-zero z ∈ C then
ba− ze is invertible with inverse

z−1
(
e+ b(ze− ab)−1a

)
.

If a, b are bounded linear operators on some Banach space, then this identity
implies a very close connection not only between the spectra of ab and ba, but also
between their pseudospectra; see Section 9.2.

Problem 1.2.6 of LOTS states that λ ∈ C has the same geometric multiplicity as
an eigenvalue of AB and as an eigenvalue of BA. The following theorem proves
the same for algebraic multiplicities in a more general context.

Theorem 1.1 Let λ ∈ C\{0}, and let A : U → V and B : V → U be linear maps.
Given n ∈ N, define the linear subspaces Mn and Nn by

Mn = {u ∈ U : (BA− λI)nu = 0},
Nn = {v ∈ V : (AB − λI)nv = 0}.

Then dim(Mn) = dim(Nn) for all n ∈ N.

Proof If u ∈Mn then

(AB − λI)nAu = A(BA− λI)nu = 0.

This proves the first half of

A(Mn) ⊆ Nn, B(Nn) ⊆Mn. (1.1)
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The second half has a similar proof. If u ∈ Mn and Au = 0 then 0 = (BA −
λI)nu = (−λ)nu so u = 0. Therefore A : Mn → Nn is one-one. If v ∈ Nn then
0 = (AB − λI)nv = Ax + (−λ)nv where x = B(AB)n−1v + . . . + n(−λ)n−1Bv,
so x ∈ Mn by repeated applications of (1.1). Therefore v = −(−λ)−nAx and
A :Mn → Nn is onto.

The two results in the last paragraph imply that Mn and Nn are linearly isomor-
phic, and therefore have the same dimension. �

Remark 1.2 Under the conditions of Theorem 1.1, put W = U ⊕ V and define
D :W →W by D(u⊕ v) = (Bv)⊕ (Au), or equivalently, in matrix notation, by

D =

(
0 B
A 0

)
.

Then

D2 =

(
BA 0
0 AB

)
,

so D2|U and D2|V have the same non-zero eigenvalues with the same algebraic
multiplicities. �

page 17. Solution of Problem 1.2.14 of LOTS

This can be deduced from the following theorem by putting B = C and replacing
A by A− λI for any chosen λ ∈ C.

Theorem 1.3 The operator A : B → C is invertible if and only if A∗ : C∗ → B∗ is
invertible.

Proof If A is invertible then there exists B : C → B such that AB = BA = I.
This implies that B∗A∗ = A∗B∗ = I, so A∗ is invertible with inverse B∗.

Conversely suppose that A∗C = CA∗ = I for some C : B∗ → C∗. If D = C∗ :
C∗∗ → B∗∗, then we deduce that DA∗∗f = f for all f ∈ B∗∗. Moreover A∗∗ is an
extension of A if B is regarded as a subspace of B∗∗ in the usual manner. Therefore
DAf = f for all f ∈ B. The bound ‖f‖ ≤ ‖D‖ ‖Af‖ now implies that A is one-
one with closed range in C. If its range is not equal to C then the Hahn-Banach
theorem implies that there exists a non-zero φ ∈ C∗ such that 〈φ,Af〉 = 0 for all
f ∈ B. We deduce that A∗φ = 0 so φ = CA∗φ = 0. The contradiction implies that
the range of A equals C and hence, using the inverse mapping theorem, that A is
invertible. �

page 18. Inverses of triangular matrices

The following algebraic result is related to Problem 1.2.9 of LOTS. It has very
similar versions in which ‘upper’ is replaced by ‘lower’ or the finite-dimensionality
of U is replaced by the same assumption for V .
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Theorem 1.4 Let U and V be two vector spaces over the field F and let X :
U ⊕ V → U ⊕ V have an upper triangular block matrix

X =

(
A B
0 D

)
.

(This is equivalent to the condition A(U) ⊆ U .) If U is finite-dimensional then X
is invertible if and only if A and D are invertible, and in this case its inverse is

X−1 =

(
A−1 −A−1BD−1

0 D−1

)
.

One also has

Spec(X) = Spec(A) ∪ Spec(D).

Proof This is obtained by manipulations of the eight equations that are equivalent
to XY = Y X = I, where

Y =

(
E F
G H

)
.

The finite-dimensionality of U enables one to deduce AE = I from EA = I. The
final statement follows by considering the invertibility of X − λI, where λ ∈ C is
arbitrary. �

Corollary 1.5 An n × n upper triangular matrix A is invertible if and only if
its diagonal entries are all non-zero. If this is the case its inverse is also upper
triangular. Hence, the set T of all upper triangular n× n matrices is an inverse-
closed subalgebra of the algebra of all n× n matrices.

The second statement of the corollary is a special case of the following proposition.

Proposition 1.6 Let A be a subalgebra of the algebra of all n × n matrices over
a field F, then A is inverse-closed.

Proof If A ∈ A is invertible then its minimum polynomial p has a non-zero
constant coefficient c ∈ F. Therefore p(x) = xq(x) + c for all x ∈ F, where q is
also a polynomial.This yields

A−1 = −c−1q(A),

which implies the stated result immediately. �

page 18. Consequences of results on the zeros of polynomials

The following new material goes at the end of Section 1.2. It assumes that the
reader is familiar with the theory of the Jordan canonical form.
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There is an elementary proof of the fact that the set U of n×n matrices that have
n distinct eigenvalues (and hence are diagonalizable) is open and dense in the set
M of all n× n matrices, but the following is deeper. The theorem and the lemma
following it are classical.

Theorem 1.7 The set C =M\U of all n× n matrices whose characteristic poly-
nomials have at least one repeated root is closed and has zero Lebesgue measure.

Proof If A ∈M then

p(λ) := det(λI − A) = λn +
n−1∑
r=0

brλ
r

where each br is a polynomial in the coefficients of A. If λ1, . . . , λn are the roots
of p then the discriminant

δ =
∏
r<s

(λr − λs)2

which is the square of the Vandermonde determinant, is a symmetric function of
the roots of p, so by a standard theorem about symmetric polynomials there exists
a polynomial q in n variables such that

δ = q(b0, . . . , bn−1) = f(A)

where f is a polynomial in the n2 coefficients of the matrix A. Since

C = {A : f(A) = 0},

the proof is completed by the following lemma. �

An analytic variety is the set of common zeros of one or more analytic functions of
several (real or complex) variables. Such a variety may have regular and singular
points, the former being points near which the zero set is an analytic manifold.
An algebraic variety is obtained by assuming that the analytic functions above are
all polynomials in several variables. The real case of the following lemma has an
identical proof. Both are immediate consequences of the detailed structure theorem
available for an analytic variety, which is far from elementary in the real case. The
complex case is explained on p.93 of B Buffoni and J Toland, Analytic Theory of
Bifurcation, Princeton Univ. Press, 2003.

Lemma 1.8 If f : Cm → C is an entire function and not identically zero then

N = {z ∈ Cm : f(z) = 0}

is a closed subset of Cm with zero Lebesgue measure.
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Proof If m = 1 the set N is discrete, so the lemma is elementary. We assume
inductively that the lemma holds for m = n − 1 and prove that it then holds for
m = n.

Let U ⊆ Cn−1 be the set of ẑ = (z1, . . . , zn−1) such that g(zn) = f(ẑ, zn) is not
identically zero. Then U is open in Cn−1 and {zn : g(zn) = 0} is discrete and
therefore of zero measure. This shows that N ′ = N ∩ (U×C) is a null set. Now let
S ⊆ Cn−1 be the set of ẑ = (z1, . . . , zn−1) such that g(zn) = f(ẑ, zn) is identically
zero. Choose a ∈ C such that h(ẑ) = f(ẑ, a) is not identically zero. Such an a
exists because f is not identically zero by hypothesis. Then T = {ẑ : h(ẑ) = 0} is
a null set in Cn−1 by the inductive hypothesis. The formula S ⊆ T implies that
S ×C is a null set in Cn. We conclude that N = (S ×C) ∪N ′ is a null set. �

The following is one of many applications of the same circle of ideas.

Theorem 1.9 Let C be a convex set of n× n matrices and let D be the set of all
n × n matrices that have n distinct eigenvalues. If C ∩D is not empty then it is
dense in C.

Proof Let A ∈ C and B ∈ C ∩D and put A(s) = (1− s)A+ sB. Then

p(λ) = det(λI − A(s)) = λn +
n−1∑
r=0

br(s)λ
r

where each br is a polynomial in s. The discriminant δ(s), defined as before, is also
a polynomial in s and it is non-zero for s = 1 by the hypothesis on B. Therefore
δ(s) 6= 0 for all s that do not lie in the finite set of roots of δ, and this includes all
small enough positive s, for which A(s) ∈ C by the convexity of C. �

1.4 Differentiation of vector-valued functions

Problem 1.4.6 of LOTS omits the assumption that A(t) is invertible for all t ∈ [a, b].
The following extension of this problem is proved by induction on n and will be
used later.

Problem 1.10 If B is a Banach algebra with identity and A : [a, b] → B is n
times continuously norm differentiable and A(t) is invertible for every t ∈ [a, b]
then t→ A(t)−1 is n times norm continuously differentiable on [a, b]. �

1.6 Banach algebras and the Sylvester Equation

Much of the theory of this chapter can be developed at a Banach algebra level.
In particular Gel’fand’s representation theorem for commutative Banach algebras
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is used in Lemma 2.4. of LOTS and Theorem 8.2.7 of LOTS. We will not write
out the details of the Gel’fand theory but explain how it may be used to provide a
nice solution of the Sylvester equation for bounded operators on a Banach space.
This equation is of great importance in a variety of fields and has been studied
intensively from many different points of view. See ‘R Bhatia, P Rosenthal, How
and why to solve the operator equation AX − XB = Y , Bull. London Math.
Soc. 29 (1) (1997) 1-21’. The paper ‘E B Davies, Algebraic Aspects of Spectral
Theory, preprint, 2010’ provides an algebraic version of the theorem, in which the
underlying field F may be arbitrary; in control theory one might wish to let F be
the field of all rational functions on the complex plane.

Let a, b, c be bounded operators on the Banach space B and let A denote the
algebra of bounded operators on B. The problem is to find x ∈ A that solves the
Sylvester equation ax− xb = c.

Theorem 1.11 If Spec(a)∩Spec(b) = ∅ then the Sylvester equation is soluble and
the solution is unique.

Proof We recast the equation in the form L(x)−M(x) = c where L, M : A → A
are defined by L(x) = ax and M(x) = xb. The problem is to prove that L−M is
invertible. We claim that Spec(L) ⊆ Spec(a) and that Spec(M) ⊆ Spec(b). These
have similar proofs and we only treat the first.

If z /∈ Spec(a) then there exists r ∈ A such that r(a− ze) = (a− ze)r = e where
e is the identity operator on B. If R : A → A is defined by R(x) = rx then
R(L− zI) = (L− zI)R = I, and this proves that z /∈ Spec(L).

We conclude that L, M are commuting bounding operators on A with disjoint
spectra. Let D be the Banach algebra of all bounded linear operators on A,
let C be a maximal commutative subalgebra of D containing L and M , and let̂: C → C(Ω) be the Gel’fand representation of C. Then

Spec(L−M) = {(L−M )̂ (ω) : ω ∈ Ω}
⊆ {L̂(ω) : ω ∈ Ω} − {M̂(ω) : ω ∈ Ω}
= Spec(L)− Spec(M).

Therefore 0 /∈ Spec(L−M) and L−M is invertible. �

6



Chapter 2

Function spaces

2.3 Approximation and regularization

The Stone-Weierstrass theorem does not provide an algorithm for approximating
a continuous function by polynomials, but one can often do this by interpolation.
Using a uniformly distributed set of interpolation points is not, however, to be
recommended. The Lagrange interpolation theorem is as follows.

Theorem 2.1 (Lagrange) Let a ≤ a1 < a2 < . . . < an ≤ b and let f be an n
times differentiable function on [a, b]. Suppose also that f (n) is bounded on [a, b].
Then there exists a unique interpolating polynomial of degree at most n − 1, i.e.
a polynomial p of that degree satisfying p(ar) = f(ar) for all r ∈ {1, . . . , an}.
Moreover

|f(x)− p(x)| ≤ |q(x)|
n!

sup{|f (n)(ξ)| : ξ ∈ (a, b)} (2.1)

for all x ∈ [a, b], where q(x) =
∏n

r=1(x− ar).

Proof The polynomial

p(x) =
n∑
r=1

f(xr)pr(x)

interpolates as required if

pr(x) =
∏
{s:s 6=r}

x− as
ar − as

.

The proof uses the identities pr(ar) = 1 and pr(as) = 0 if r 6= s. If p, p̃ are two
interpolating polynomials then p− p̃ is a polynomial of degree at most n− 1 that
vanishes at every ar. However, such a polynomial has at most n − 1 roots unless
it vanishes identically.
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The proof of the bound (2.1) is trivial if x = ar for some r so we suppose that this
is not the case. We now define

g(s) = f(s)− p(s)− kq(s) (2.2)

for all s ∈ [a, b] where k is chosen so that g(x) = 0. The function g is n times
differentiable with at least n + 1 distinct zeros, so by applying Rolle’s theorem n
times, g′ is n times differentiable with at least n distinct zeros. Repeating this
argument inductively, g(n) has at least one zero. We call it ξ ∈ (a, b) and, after
putting s = x in (2.2), deduce that f (n)(ξ)− k n! = 0. Solving for k yields

f(x)− p(x) =
q(x)f (n)(ξ)

n!

and then the bound of the theorem. �

The following corollary has an easy proof, but it is better to approach Chebychev
polynomial approximation by using the Fourier cosine series expansion of the even
periodic function f(cos(θ)).1

Corollary 2.2 Let [a, b] = [−1, 1]. If p is the polynomial that interpolates f at the
roots a1, . . . , an of the nth Chebychev polynomial Tn, then

|f(x)− p(x)| ≤ 1

2n−1n!
sup{|f (n)(ξ)| : ξ ∈ (a, b)} (2.3)

for all x ∈ [−1, 1].

Proof Since the leading coefficient of Tn is 2n−1 we have

|q(ξ)| = 2−(n−1)|Tn(ξ)| ≤ 2−(n−1)

for all ξ ∈ (−1, 1). �

2.4 Absolutely convergent Fourier series

The Weiner space A is defined here but some of its simpler properties should have
been listed. These include the following, all of which are proved in any advanced
text on Fourier analysis.

1. A contains the algebra of all smooth periodic functions on [0, 2π];

1For a detailed exposition of many of the traps that people have fallen into with polynomial
approximation, and much more about the numerical implementation of various algorithms, see
L. N. Trefethen, Approximation Theory and Approximation Practice, book in preparation, 2011.
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2. Membership of A is a local property: f ∈ A whenever the following holds.
For all x ∈ [0, π] there exist ε > 0 and g ∈ A such that f = g in the
ε-neighbourhood of x.

3. f ∈ A if f is periodic and there exist α > 1
2

and c > 0 such that

|f(x)− f(y)| ≤ c|x− y|α

for all x, y ∈ [0, 2π].

4. The function f considered in Theorem 3.3.11 of LOTS is continuous and
periodic but cannot lie in A because its Fourier series does not converge
uniformly to f .

Our proof of Wiener’s Theorem 2.4.2 of LOTS does not extend to the non-commutative
context, but the following weaker version is useful. Let A be a Banach algebra with
identity and let B denote the space of all f : Z→ A that decrease in norm super-
polynomially as n→ ±∞. Then B is a (generally non-commutative) algebra with
identity under convolution:

(f ∗ g)n =
∑
m∈Z

fn−mgm.

Theorem 2.3 The Fourier map F : B → Cper([−π, π],A) defined by

(Ff)(θ) =
∑
n∈Z

fne−inθ.

is an algebra homomorphism if multiplication of functions in Cper([−π, π],A) is
defined pointwise. Moreover f is invertible as an element of B if and only if (Ff)(θ)
is invertible in A for every θ ∈ [−π, π].

Proof We start by proving that F is one-one. If f ∈ B, Ff = 0 and φ ∈ A∗ then

0 = 〈(Ff)(θ), φ〉 =
∑
n∈Z

〈fn, φ〉e−inθ

for all θ ∈ [−π, π]. Since the scalar Fourier transform is one-one on `1(Z), we
deduce that 〈fn, φ〉 = 0 for all n ∈ Z and all φ ∈ A∗. The Hahn-Banach theorem
now implies that fn = 0 for all n ∈ Z. It follows routinely that g = Ff is solved
for f by calculating the Fourier coefficients of g, provided one knows that f ∈ B
exists.

Most of the statements in the theorem are routine. Suppose that (Ff)(θ) is in-
vertible in A for every θ ∈ [−π, π]. The function g : [−π, π] → A defined by
g(θ) = ((Ff)(θ))−1 is norm infinitely differentiable by Problem 1.10. Repeated
integration by parts implies that the Fourier coefficients of g decrease super-
polynomially in norm, and hence that g = Fh where h ∈ B is the sequence of
Fourier coefficients of g. We deduce that F(f∗h) = F(h∗f) = 1 in Cper([−π, π],A).
Therefore f ∗ h = h ∗ f = 1 in B. �
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Chapter 3

Fourier transforms and bases

3.3 Bases of Banach spaces

page 80. Completeness of eigenvectors

I have written almost nothing about this subject, in spite of the large Soviet lit-
erature proving the completeness of the (generalized) eigenvectors of compact op-
erators on a Hilbert space subject to certain trace class conditions. See Chapter
7, 8 and 10 of I. Gohberg, A. Goldberg and M. A. Kaashoek, Classes of Linear
Operators, vol. 1, Birkhäuser, Basel, 1990.

page 83. An exactly soluble wild operator

An example of a wild biorthogonal pair is given in Section 14.5 of LOTS, but the
following example is closer to the spirit of this chapter. It is closely related to a class
of evolution equations that may be solved by means of an integral representation
involving a carefully chosen contour in the complex plane; see A S Fokas and B
Pelloni.

The spectral properties of the operator Lf(x) = d3f
dx3 acting in L2(0, 1) depend heav-

ily on the boundary conditions imposed. Thus for periodic boundary conditions,
L is a skew-adjoint operator with a complete orthonormal set of eigenfunctions.

Theorem 3.1 (D A Smith, 2010) If L is the above operator, subject to the
boundary conditions f(0) = f ′(0) = f(1) = 0, then the eigenvalues of L are of
the form λ = z3, where z are the zeros of the entire function

∆(z) = eiz + ωeiωz + ω2eiω
2z

and ω = e2πi/3. There are infinitely many such zeros diverging to infinity in three
asymptotic directions. The corresponding eigenfunctions are complete but form a
wild sequence in L2(0, 1).

11



D A Smith (Ph D thesis, Reading University, 2010) has obtained a closed formula
for the eigenfunctions and has obtained the exact exponential asymptotics of the
norms of the spectral projections.
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Chapter 4

Intermediate Operator Theory

4.3 Fredholm Operators

We consider semi-Fredholm operators in Section 4.6 below, but here we continue
with the Fredholm theory.

Theorem 4.1 Let B = B0 ⊕ B1 where B1 is finite-dimensional. Let L : B → B be
associated with the operator-valued matrix

(
A B
C D

)
where A : B0 → B0 is bounded

and B, C, D are finite rank operators. Then L is Fredholm if and only if A is
Fredholm, and in this case Ind(L) = Ind(A).

Proof If L0 =
(
A 0
0 D

)
then L is Fredholm if and only if L0 is Fredholm by Corol-

lary 4.3.8 of LOTS. Also L0 is Fredholm if and only if A is Fredholm by an ele-
mentary argument.

Writing Lt = L0 + tK where t ∈ R and K = L − L0 is compact, Theorem 4.3.11
of LOTS implies that Ind(Lt) does not depend on t. Therefore Ind(L) = Ind(L0).
The identity Ind(L0) = Ind(A) is elementary. �

Corollary 4.2 Let A : `2(N)→ `2(N) be defined by

(Af)n =
b∑

r=a

cn,rfn+r

where we adopt the convention that fn = 0 if n ≤ 0. Suppose also that limn→∞ cn,r =
cr for all r. Then A is a Fredholm operator and its index equals that of the Toeplitz
operator A∞, where

(A∞f)n =
b∑

r=a

crfn+r

Proof Let As be the truncation of A to `2(Ns), where Ns is the set of integers n
such that n ≥ s. Then ‖As−A∞‖ converges to 0 as s→∞, so Ind(As) is Fredholm
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and Ind(As) = Ind(A∞) for all large enough s by Theorem 4.3.11 of LOTS. Also
Ind(As) = Ind(A) for all s by Theorem 4.1. �

page 119. Theorem 4.3.9 of LOTS only proves the statement given (that if A is
a Fredholm operator then so is A∗) in one direction. If B is reflexive this implies
the converse. The general case is harder and follows from Banach’s closed range
theorem below. See Theorem 4.11 below.

Theorem 4.3 Let A be a Fredholm operator on the Banach space B. Then A has
zero index if and only if there exists K in the space K(B) of all compact operators
such that A+K is invertible. The set of all Fredholm operators with zero index is
closed under multiplication.

Proof We follow the notation of Theorem 4.3.5 of LOTS. If Ind(A) = 0 then
B1 and C1 have the same finite dimension. If C : B1 → C1 is invertible then
A′ =

(
A 0
0 C

)
is invertible and A−A′ is finite rank, and hence compact. Conversely

if A+K is invertible for some K ∈ K(B), then Ind(A+K) = 0. Now Ind(A+ tK)
is independent of t ∈ R by Theorem 4.3.11, so Ind(A) = 0.

The second statement of the theorem is an immediate corollary of Theorem 4.3.7
of LOTS. �

Theorem 4.4 Let A1, A2 be Fredholm operators on the Banach space B. Then
A1A2 is a Fredholm operator and

Ind(A1A2) = Ind(A1) + Ind(A2).

Proof Let L : `2(N) → `2(N) be the left shift operator (Lf)n = fn+1 and let R
be the right shift R = L∗. A direct calculation establishes that Ind(Lm) = m and
Ind(Rm) = −m for all m ≥ 0. Now let B′ = B⊕ `2(N)⊕ `2(N). If Ind(Ar) = pr for
r = 1, 2 then there exist mr ≥ 0 and nr ≥ 0 such that pr +mr−nr = 0. Therefore
Br = Ar ⊕ Lmr ⊕ Rnr : B′ → B′ has zero index for r = 1, 2. Theorem 4.3 now
yields

0 = Ind(B1B2)

= Ind(A1A2) + (m1 +m2)− (n1 + n2)

= Ind(A1A2)− p1 − p2

= Ind(A1A2)− Ind(A1)− Ind(A2).

�

4.4 Finding the essential spectrum

page 134,2. Delete indexMartinez .
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4.5 The stable spectrum

In this new section we determine the part of the spectrum of a bounded operator
A on a Banach space B that is stable under compact perturbations of the operator.
We call this part Stab(A).1 If A is self-adjoint then it is easy to prove that Stab(A)
coincides with the essential spectrum Ess(A) as we have defined it, but in general
this is far from being the case, and one only has

Ess(A) ⊆ Stab(A) ⊆ Spec(A).

Lemma 4.5 If A is a bounded operator then

C = Ess(A) ∪
⋃
n∈Z

Un(A) (4.1)

where Ess(A) is closed, Un(A) are all open, all the sets on the right-hand side are
disjoint and

Un(A) = {λ ∈ C : A− λI is Fredholm and Ind(A− λI) = n} (4.2)

where Ind(X) denotes the index of X for all X.

Proof The sets Un(A) are open by Theorem 4.3.11 of LOTS. The fact that Ess(A)
is closed follows from Theorem 4.3.7 of LOTS or directly from (4.1). �

Theorem 4.6 (Schechter) Let A be a bounded operator on B and put

Stab(A) = Ess(A) ∪
⋃
n6=0

Un(A) = C\U0(A). (4.3)

Then Stab(A) is closed and

Stab(A+K) = Stab(A) ⊆ Spec(A). (4.4)

for every compact operator K. Indeed

Stab(A) =
⋂
{Spec(A+K) : K is compact}.

1There are many different definitions of the essential spectrum of a bounded operator, all
of which coincide for self-adjoint operators. What we refer to as the stable spectrum of A is
called σe4(A) in Section IX.1 of D E Edmunds and W D Evans, Spectral Theory and Differential
Operators, OUP, 1987. It was introduced in M Schechter, Invariance of the essential spectrum,
Bull. Amer. Math. Soc. 71 (1965) 365-367 and J. Math. Anal. Appl., On the essential
spectrum of an arbitrary operator, I, 13 (1966) 205-215, where it was denoted σem(A). See also
K Gustafson and J Weidmann, On the essential spectrum, J. Math. Anal. Appl. 25 (1969),
121-127. Theorem 4.6 was proved by Schechter; see BAMS 1965 above.
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Proof The second identity in (4.3) implies that Stab(A) is closed. It also implies
the inclusion in (4.4). Corollary 4.3.8 of LOTS implies that Ess(A+K) = Ess(A).
By applying Theorem 4.3.11 of LOTS to the one-parameter family t → A + tK,
one sees that Un(A+K) = Un(A) for all n ∈ Z. These imply the equality in (4.4).

The instability under arbitrarily small finite rank perturbations of any point λ ∈
Spec(A)∩U0(A) is proved by using Theorem 4.3.5 of LOTS. Replacing A by A−λI,
we may reduce to the case in which λ = 0. In the notation of Theorem 4.3.5, B1

and C1 have the same finite dimension, so there exists a finite rank operator K
mapping B1 one-one onto C1. If ε > 0 and one associates B : B → C with the
matrix

(
A0 0
0 εK

)
, where A0 is defined as in Theorem 4.3.5, then B is an invertible

finite rank perturbation of A, so 0 /∈ Spec(B). �

Our next theorem describes the part of Spec(A) in the set

U0(A) = {λ ∈ C : A− λI is Fredholm and Ind(A− λI) = 0}

Note that Spec(A), Ess(A) and Un(A) are all invariant under compact perturba-
tions of A.

Theorem 4.7 Let A be a bounded operator on the Banach space B and let V be a
connected component of the open set U0(A). Then one of the following two cases
holds.

1. V ⊆ Spec(A);

2. V ∩Spec(A) is at most countable. Every point λ ∈ V ∩Spec(A) is an isolated
point and the corresponding spectral projection has finite rank.

Case 2 is generic in the following sense. If K(B) denotes the set of all compact
operators on B then Case 2 holds for A + K, provided K lies in a certain dense
open subset of K(B).

Proof If Case 1 is false then there exists a ∈ U0(A) for which A− aI is invertible.
Replacing A by A − aI everywhere, there is no loss in assuming that a = 0 and
that A itself is invertible. The following facts are immediate consequences of the
formula

A−1 − λ−1I = λ−1A−1(λI − A)

in which we assume that λ 6= 0. λ−1 ∈ Spec(A−1) if and only if λ ∈ Spec(A).
λ−1 ∈ Ess(A−1) if and only if λ ∈ Ess(A). Assuming that λ /∈ Ess(A), Ind(A−1 −
λ−1I) = Ind(A− λI). λ−1 ∈ U0(A

−1) if and only if λ ∈ U0(A).

Since 0 ∈ V we deduce that V −1 is the unbounded component of U0(A
−1). The

properties claimed in Case 2 are now obtained by applying Theorem 4.3.18 of
LOTS.
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If A+K0 is in Case 2 then there exists λ ∈ V such that A+K0 = λI is invertible.
The same applies to all K close enough to K0 by a perturbation argument. There-
fore such A + K also fall into Case 2. This implies that the set of K for which
A+K falls into Case 2 is open in K(B). It remains to prove that it is dense. The
instability of Case 1 under arbitrarily small finite rank perturbations was shown
in the proof of Theorem 4.6. �

Theorem 4.8 Let B =
⊕n

r=1 Br and let A ∈ L(B) be associated with the operator-
valued matrix {Ar,s}1≤r,s≤n where Ar,s : Bs → Br are bounded for all r, s and
compact if r 6= s. Then

Ess(A) =
n⋃
r=1

Ess(Ar,r)

and

Stab(A) =
n⋃
r=1

Ess(Ar,r) ∪
⋃
M

{Um1(A1,1) ∩ . . . ∩ Umn(An,n)} (4.5)

where Un(·) are defined in (4.2) and M = {(m1, . . . ,mn) : m1 + . . .+mn 6= 0}. If
Bs is finite-dimensional for some s then one may omit that index in the formula
(4.5).

Proof We first observe that A has the same essential spectrum as B, where Br,s =
Ar,s if r = s and Br,s = 0 otherwise. Also

Ess(B) =
n⋃
r=1

Ess(Ar,r).

Equivalently B − λI is Fredholm if and only if Ar,r − λI is Fredholm for all r ∈
{1, . . . , n}. If B − λI is Fredholm, we put mr = Ind(Ar,r − λI) for all r, or
equivalently suppose that λ ∈ Um1(A1,1) ∩ . . . ∩ Umn(An,n). Then

Ind(A− λI) = Ind(B − λI)

=
n∑
r=1

Ind(Ar,r − λI)

=
n∑
r=1

mr.

Therefore λ ∈ Stab(A) if and only if
∑n

r=1mr 6= 0.

If Bs is finite-dimensional then Ind(As,s − λI) = 0 for all λ ∈ C. Therefore the
only relevant value of ms is 0 and

∑n
r=1mr 6= 0 if and only if

∑
{r:r 6=s}mr 6= 0. �
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4.6 Operators with closed ranges

Subsection 4.6.1 An extension of Banach’s closed range theorem below to un-
bounded closed operators may be found in Kato ‘Perturbation Theory for Linear
Operators’, Theorem 5.13 and Corollary 5.14, and also in Yosida ‘Functional Anal-
ysis’, section VII.5.

Theorem 4.9 (Banach) Let A : X → Y be a bounded linear operator, where
X, Y are any Banach spaces. Then the following are equivalent.

1. Ran(A) is a closed subspace of Y ;

2. Ran(A∗) is a weak* closed subspace of X∗;

3. Ran(A∗) is a norm closed subspace of X∗.

The proof is achieved in a series of steps.

Step 1 If B : X → Y is one-one with closed range R, then B∗ has range X∗.

Proof One may write B = iC where C : X → R is one-one onto and i : R → Y
is the natural injection. Therefore B∗ = C∗i∗ and

Ran(B∗) = C∗(Ran(i∗)) = C∗(R∗) = X∗.

In the last step we use the fact that C∗ : R∗ → X∗ is invertible with (C∗)−1 =
(C−1)∗. �

Step 2 Item 1 implies Items 2 and 3.

Proof Let A : X → Y be bounded with kernel K and closed range R. If i : X →
X/K is the standard quotient map then A = Bi where B : X/K → Y is one-one
with range R. Step 1 now yields

A∗(Y ∗) = i∗B∗(Y ∗) = i∗((X/K)∗) = K⊥,

where
K⊥ = {φ ∈ X∗ : 〈x, φ〉 = 0 for all x ∈ K}

is a weak* closed subspace of X∗. �

Step 3 If B : X → Y is one-one and B∗ has weak* closed range L ⊆ X∗ then B
has closed range.

Proof If L 6= X∗ then by applying the Hahn-Banach theorem to L as a closed
subspace of X∗ subject to the weak* topology, there exists a non-zero x ∈ X
satisfying 〈x, φ〉 = 0 for all φ ∈ L. This is equivalent to 〈x,B∗ψ〉 = 0 for all
ψ ∈ Y ∗ and thus to 〈Bx, ψ〉 = 0 for all ψ ∈ Y ∗. We deduce that Bx = 0 and hence
that x = 0. The contradiction implies that L = X∗.
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The identity Ran(B∗) = X∗ implies that B∗∗ is one-one. On applying the fact
that Item 1 implies Item 2 to B∗ we deduce that B∗∗ : X∗∗ → Y ∗∗ has norm
closed range. The inverse mapping theorem now implies that there exists c > 0
such that ‖B∗∗ξ‖ ≥ c‖ξ‖ for all ξ ∈ X∗∗. Restricting to X, which is canonically
and isometrically embedded as a subspace of X∗∗, we obtain ‖Bx‖ ≥ c‖x‖ for all
x ∈ X. This implies that Ran(B) is closed. �

Step 4 Item 2 implies Item 1.

Proof We assume that A : X → Y has kernel K and that A∗ : Y ∗ → X∗ has weak*
closed range. If i : X → X/K is the canonical quotient map then B : X/K → Y ,
defined by A = Bi, is one-one and satisfies Ran(B) = Ran(A). We have to prove
that Step 3 is applicable to B in order to complete the proof.

Since A∗ = i∗B∗ and i∗ : (X/K)∗ → X∗ is one-one, the range of B∗ is the inverse
image under i∗ of the range of A∗. As the inverse image under a weak* continuous
map of a weak* closed subspace, the range of B∗ must be weak* closed, as required
for Step 3. �

Step 5 Item 3 implies Item 2.

Proof Let R be the norm closure of Ran(A) and let i : R → Y be the natural
injection. Then A = iB where B : X → R equals A. Step 1 implies that i∗ :
Y ∗ → R∗ is surjective and this implies that A∗ = B∗i∗ has the same range as B∗.
Therefore the range of A∗ is weak* closed if and only if the range of B∗ is weak*
closed. The fact that B : X → R has dense range implies that B∗ is one-one. We
now focus attention on B.

Put L = Ran(A∗) = Ran(B∗) ⊆ X∗. We define

Lc = L ∩ {φ ∈ X∗ : ‖φ‖ ≤ c}
= {φ = B∗ψ : ψ ∈ R∗ and ‖φ‖ ≤ c}
= B∗(S)

where

S = {ψ ∈ R∗ : ‖B∗ψ‖ ≤ c}
=

⋂
{x∈X:‖x‖≤1}

{ψ ∈ R∗ : |〈ψ,Bx〉| ≤ c},

which is weak* closed.

We next observe that B∗ : R∗ → L is one-one onto, where L is norm closed by
assumption. The inverse mapping theorem now implies that there exists b > 0
such that ‖B∗ψ‖ ≥ b‖ψ‖ for all ψ ∈ R∗. Therefore

S ⊆ {ψ ∈ R∗ : ‖ψ‖ ≤ b−1c},

which is weak* compact. Therefore S is weak* compact. Since B∗ is weak* con-
tinuous Lc = B∗(S) is weak* compact and therefore weak* closed. It now follows
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that L is weak* closed by the Krein-Šmulian theorem. (See N Dunford and J T
Schwartz, ‘Linear Operators, Part 1’, Theorem V.5.7, Interscience, 1958). �

Example 4.10 Let X = C[0, 1] and let B : X → X be defined by (Bf)(x) =
xf(x). Then B is one-one but Step 3 of Theorem 4.9 is not applicable to B
because the range of B∗ is not closed or even weak* dense in X∗. Moreover B∗∗ is
not one-one. �

Theorem 4.11 If A : X → Y is a bounded linear operator then A is Fredholm if
and only if A∗ is Fredholm. If X = Y then

Ess(A) = Ess(A∗).

Proof Theorem 4.3.9 of LOTS contains a proof that A∗ is Fredholm if A is Fred-
holm; the assumption that X = Y is irrelevant. A second proof can be based on
the ideas below.

If A∗ is Fredholm then A∗ has closed range by Theorem 4.3.4. Theorem 4.9 now
implies that A∗ has weak* closed range and that A has closed range. Let K1 =
Ker(A), R1 = Ran(A), K2 = Ker(A∗) and R2 = Ran(A∗). Standard applications
of the Hahn-Banach Theorem now yield K∗1 ∼ X∗/R2 and (Y/R1)

∗ ∼ K2, where
∼ denotes a canonical isometric isomorphism. Since we are assuming that A∗ is
Fredholm, we deduce that K1 and Y/R1 are finite-dimensional. Therefore A is
Fredholm.

The second statement follows immediately, because λ /∈ Ess(A) if and only if A−λI
is Fredholm, by definition. Similarly for A∗. �

Subsection 4.6.2 Semi-Fredholm operators provide a second topic relating to
operators with closed ranges. Given a Banach space B we say that A : B → B is
semi-Fredholm if Ker(A) is finite-dimensional and Ran(A) is closed with infinite
co-dimension. In the following we will assume that Ker(A) = {0}; the general
case may be treated by using the techniques developed for Fredholm operators in
LOTS.

Lemma 4.12 Let A : [0, 1]→ L(B) be a norm continuous operator-valued function
such that Ker(At) = {0} for all t ∈ [0, 1]. Then the following are equivalent.

1. Ran(At) is closed for all t ∈ [0, 1];

2. There exists a constant c > 0 such that ‖Atf‖ ≥ c‖f‖ for all f ∈ B and all
t ∈ [0, 1].

Proof The implication 2⇒ 1 is elementary, so we concentrate on 1⇒ 2. Let

αt = max{c : ‖Atf‖ ≥ c‖f‖ for all f ∈ B}.
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The inverse mapping theorem implies that αt > 0. If s, t ∈ [0, 1] then

αt ≥ αs − ‖At − As‖.

This implies that

|αt − αs| ≤ ‖At − As‖

for all s, t ∈ [0, 1], and hence that αs depends continuously on s. The lemma
follows. �

Theorem 4.13 Let A(·) be a family of operators with all the properties listed in
Lemma 4.12. Then exactly one of the following occurs.

1. At is Fredholm for all t ∈ [0, 1] and Ind(At) is independent of t;

2. the codimension of Ran(At) is infinite for all t ∈ [0, 1].

Proof The set U = {s ∈ [0, 1] : Codim(Ran(As)) <∞} is open (relative to [0, 1])
by Theorem 4.3.11 of LOTS. If we can prove that

V = {s ∈ [0, 1] : Codim(Ran(As)) =∞},

is also open then by the connectedness of [0, 1] it follows that U = [0, 1] or V =
[0, 1].

In order to prove that V is open, let s ∈ V , and let L be a subspace of dimension
n < ∞ in B satisfying Ran(A) ∩ L = {0}. Under these conditions it is easy to
prove that C = Ran(A) + L is a closed subspace of B. Let B : B ⊕ L to B be
defined by B(f⊕v) = Af +v. Then B is bounded and it maps B⊕L one-one onto
C. The inverse mapping theorem now implies that ‖Bg‖ ≥ c‖g‖ for some c > 0
and all g ∈ B ⊕ L. If one defines Bt : B ⊕ L to B by Bt(f ⊕ v) = atf + v, then
the proof of Lemma 4.12 implies that there exists δ > 0 such that ‖Btg‖ ≥ c

2
‖g‖

for all g ∈ B ⊕ L, provided |t − s| < δ. This implies that At has closed range
and that Ran(At) ∩ L = {0} for all such t. Since n can be taken arbitrarily
large, the codimension of Ran(At) is infinite provided |t − s| < δ. Therefore the
δ-neighbourhood of s is contained in V . �

Corollary 4.14 Let A(·) be a family of operators with all the properties listed in
Lemma 4.12. If At is invertible for some t ∈ [0, 1] then it is invertible for all such
t.

Proof The assumptions imply that At is Fredholm with index 0 and Theorem 4.13
implies that the same holds for all t ∈ [0, 1]. But Ker(At) = {0} for every such t
so the codimension of Ran(At) is 0 for all such t. In other words Ran(At) = B and
At is invertible for all such t. �
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4.7 Unbounded Fredholm operators

I should have mentioned in LOTS that Fredholm operators lie at the core of the
K-theory of Atiyah and Singer, developed in the 1960s. The Atiyah-Singer index
theorem in effect uses the index of a system of differential operators to study
the geometry of a related compact manifold. We will not pursue this, but it
demonstrates the importance of the present subject matter. The following explains
the application of Fredholm theory to unbounded linear operators.

If X is a compact Riemannian manifold, these facts may be applied to a differential
operator A of order n whose domain is the Sobolev space D = W n,2(X). If one
puts Jf = (1 − ∆)−n/2, where ∆ is the Laplace-Beltrami operator on X, then
Ran(J) = W n,2(X) and B = AJ is a pseudodifferential operator of zero order.

Let A be an unbounded closed operator with domain D acting in the Banach
space B. Let A′ be the same operator, but regard as acting on the Banach space
D′, which is the vector space D provided with the graph norm |||f ||| = ‖f‖+ ‖Af‖,
or any equivalent norm. Let I ′ : D′ → B denote the bounded restriction of the
identity operator I. One says that the unbounded operator A − λI is Fredholm
if A′ − λI ′ : D′ → B is Fredholm. One defines Ess(A) to be the set of λ ∈ C for
which A′ − λI ′ is not Fredholm. If λ /∈ Ess(A) then one puts

Ind(A− λI) = dim(Ker(A− λI))− dim(Coker(A− λI))

as in the bounded case.

The following example can be extended to an analysis of the spectrum of an un-
bounded operator on a graph, some of whose edges are discrete while others are
continuous.

Example 4.15 Let B = L2(−∞, 0) ⊕ `2(N) and let D be the closed subspace of
W 2,2(−∞, 0)⊕ `2(N) consisting of all f ⊕ g that satisfy the ‘continuity’ condition
f ′(0) = g1 − g0, where we adopt the convention g0 = f(0). Let A : D → B be the
bounded linear operator

(A(f ⊕ g))(x) =

{
−f ′′(x) + f(x) if x ≤ 0,

αxgx−1 + βxgx + γxgx+1 if x ∈ N,

where α, β, γ are bounded complex-valued sequences. We will consider whether A
is a Fredholm operator; the answer to this question does not depend on whether
we regard A as bounded or unbounded in the above senses. �

Theorem 4.16 Let T be the truncation T of A to `2(N). Then the bounded
operator A : D → B is Fredholm if and only if 0 /∈ Ess(T ), and in this case
Ind(A) = Ind(T ).

Proof Let U : E = W 2,2
0 (−∞, 0)⊕ `2(N)→ D be the bounded invertible operator

defined by U(h⊕ g) = f ⊕ g where

f(x) = h(x) + δex
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for all x ≤ 0, and 2δ = g1 − h′(0). The operator B = AU : E → B is a rank

one perturbation of
(
S 0
0 T

)
where Sf = −f ′′ + f , which is invertible as a bounded

operator from W 2,2
0 (−∞, 0) to L2(−∞, 0), with zero index. Corollary 4.3.8 of

LOTS implies that B (and hence A) is Fredholm if and only if T is Fredholm, and

Ind(A) = Ind(B) = Ind
(
S 0
0 T

)
= Ind(S) + Ind(T ) = Ind(T ).

�

4.8 Real Operators

One defines a conjugation C on a Banach space B to be a bounded conjugate
linear map such that C2 = I. If B is a space of functions f : X → C, the map
(Cf)(x) = f(x) is called the standard conjugation. This assumes, of course, that
f ∈ B implies f ∈ B, but this is the case for most of the function spaces in
this book. A bounded (complex linear) operator A : B → B is said to be real if
AC = CA.

The following theorem has a straightforward adaptation to unbounded real opera-
tors A, in which case one imposes the further condition that Dom(A) is invariant
under C.

Theorem 4.17 If A is a real linear operator on B then Spec(A) and Ess(A) are
closed under complex conjugation. If λ /∈ Ess(A) then

Ind(A− λI) = Ind(A− λI). (4.6)

Proof Each of the statements follows directly from the following facts, whose
proofs are elementary.

1.

Ker(A− λI) = C (Ker(A− λI)) .

Hence the two kernels have the same dimension.

2.

Ran(A− λI) = C (Ran(A− λI)) .

Hence one range is closed if and only if the other range is closed.

3. If M is a finite-dimensional subspace such that M ∩ Ran(A − λI) = {0}
and M+ Ran(A− λI) = B, then N = C(M) has the same properties with
respect to Ran(A− λI). Moreover M and N have the same dimension.
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The following is a limited version of a perturbation result of general importance.

Theorem 4.18 Let A and B be bounded real operators on the Banach space B
and suppose that λ is an isolated real eigenvalue of A with algebraic multiplicity 1.
The A+ sB has an isolated eigenvalue λs, with algebraic multiplicity 1, near λ for
all small enough s ∈ R. Moreover λs ∈ R for all such s.

Proof Let γ be a circle with centre λ and assume that it is sufficiently small so
that λ is the only point of Spec(A) on or inside γ. Everything except the final
statement of the theorem is given in Theorem 1.5.6 of LOTS. Since there is only
one eigenvalue of A + sB inside γ for all small enough s ∈ R, Item 1 of the proof
of Theorem 1 implies that it is real. �

Generically, as s increases the eigenvalue λs moves along the real axis until it meets
another eigenvalue, after which the eigenvalues emerge as a complex conjugate
pair. At the critical value of s the eigenvalue has algebraic multiplicity 2 but
geometric multiplicity 1. The eigenvalue itself has a square root singularity as s
passes through the critical value. These phenomena are all seen in Example 8.9.
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Chapter 5

Operators on Hilbert space

5.7 The compactness of f (Q)g(P )

pages 160-162. Strictly speaking this section treats certain bounded operators
A(f, g) defined using Fourier transform techniques. Whether these operators equal
f(Q)g(P ) as defined is a separate question, but if f and g are bounded in addition
to satisfying the stated conditions there is no problem.

5.8 The Cp spaces

The Cp spaces have many applications in the theory of Schrödinger operators, and
the theory in covered in great detail in many places. We assume throughout that
H is a Hilbert space and that 1 ≤ p <∞. The following list of results is extracted
from Chapters 1 and 2 of [Simon2005A].

Proposition 5.1

1. If A is a bounded operator on H then A, A∗, |A| and |A∗| are all compact if
any one of them is. We assume that this condition holds below.

2. The singular values sn(A) and sn(A∗) coincide if they are enumerated in
decreasing order and repeated according to their multiplicities.

3. We say that A ∈ Cp if ‖A‖p = [
∑

n sn(A)p]1/p converges. The function ‖ · ‖p
is a norm which makes Cp into a Banach space.

4. If A ∈ Cp and B, C are bounded then BAC ∈ Cp and ‖BAC‖p ≤ ‖B‖ ‖A‖p ‖C‖.
5. Let O denote the family of all finite or countable orthonormal sequences in
H. Then

‖A‖pp = sup
φ,ψ∈O

{∑
n

|〈Aφn, ψn〉|p
}
,
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the right hand side being finite if and only if A ∈ Cp.
6. Let A ∈ Cp and let {λn} be the finite or countable sequence of non-zero

eigenvalues of A, each eigenvalue being repeated according to its algebraic
multiplicity. Then

‖A‖pp ≥
∑
n

|λn|p.

The proof of this uses item 5 with ψ = φ and Lemma 5.2.

Lemma 5.2 (Schur) Let T be a bounded operator on H. Then there exists a
finite or countable orthonormal sequence {φn} in H such that

1. L = lin{φn} is an invariant subspace for T ;

2. The restriction of T to L has an upper triangular matrix;

3. {〈Tφn, φn〉} is the sequence of all non-zero isolated eigenvalues with finite al-
gebraic multiplicity of T , each repeated according to its algebraic multiplicity.

Proof We start by observing that there are at most countably many isolated
eigenvalues with finite algebraic multiplicities. Each one is associated with an
finite-dimensional invariant subspace within which T can be written in its Jordan
form. This leads to the representation of T as an upper triangular matrix with
respect to a finite or countable sequence of vectors en in which Tn,n are the eigen-
values of T repeated according to their algebraic multiplicities, Tn,n+1 equals 0 or
1 for each n and all other Tr,s vanish. The linear span L of the en may or may not
be dense in H but it is always invariant under the action of T . We now apply the
Gram-Schmidt method to the sequence {en} to produce an orthonormal sequence
{φn}. The matrix of T with respect to this sequence is still upper triangular and
its diagonal entries are unchanged. �

The following theorem of Hansmann may be used to bound the complex eigenval-
ues of non-self-adjoint Schrödinger operators and the zeros of a class of analytic
functions on the unit disc.1 This contrasts with an earlier work which uses known
properties of the zeros of analytic functions on the unit disc to obtains bounds
on the distribution of the discrete eigenvalues of small perturbations of unitary
operators.2

Theorem 5.3 (Hansmann) Let A be a bounded operator on H, let B ∈ Cp and
let {λn} be the sequence of all isolated eigenvalues with finite algebraic multiplicity

1See M. Hansmann, An eigenvalue estimate and its application to non-selfadjoint Jacobi and
Schrödinger operators, Lett. Math. Phys. 98(1) (2011) 79-95 and M. Hansmann, G. Katriel,
From spectral theory to bounds on zeros of holomorphic functions, arXiv:1103.1487v2

2S. Favorov and L. Golinskii, A Blaschke-type condition for analytic and subharmonic func-
tions and application to contraction operators, pp. 37-47 in “Linear and Complex Analysis:
Dedicated to V. P. Havin on the Occasion of His 75th Birthday”, Translation Amer. Math. Soc.
226, 2009.
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of A+B, each repeated according to its multiplicity. Then∑
n

[
dist(λn,Num(A))

]p
≤ ‖B‖pp. (5.1)

Proof Since B is compact, A and A+B have the same essential spectrum, which
is contained in Num(A). Therefore the part of the spectrum of A + B outside
Num(A) consists entirely of isolated eigenvalues with finite algebraic multiplicity,
which can only accumulate in Ess(A) ⊆ Num(A). Other eigenvalues of A + B do
not contribute to the sum in (5.1).

Adopting the notation of Lemma 5.2 with T = A+B, we have∑
n

[
dist(λn,Num(A))

]p
≤

∑
n

|λn − 〈Aφn, φn〉|p

=
∑
n

|〈Tφn, φn〉 − 〈Aφn, φn〉|p

=
∑
n

|〈Bφn, φn〉|p

≤ ‖B‖pp.

The last inequality uses item 5 of Proposition 5.1 with φ = ψ. �

Corollary 5.4 Let A be a contraction on H, let B ∈ Cp and let {λn} be the
sequence of all eigenvalues λ of A + B such that |λ| > 1, each repeated according
to its algebraic multiplicity. Then∑

n

(|λn| − 1)p ≤ ‖B‖pp.

Example 5.5 One cannot replace Num(A) by Spec(A) in the statement of Theo-
rem 5.3. Let H = `2(Z) and define the unitary operator A on H by (Af)n = fn+1

for all n ∈ Z. Then define the rank 1 perturbation B by

(Bf)n =

{
−f1 if n = 0,

0 otherwise.

It may be seen that A+B decomposes as the direct sum of two operators on `2(Z+)
and `2(Z−), and then that every λ ∈ C such that |λ| < 1 is an eigenvalue of A+B.
Therefore the number of such eigenvalues is uncountable and the (modified) sum
in (5.1) is infinite. �
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Chapter 6

One-parameter semigroups

6.1 Basic properties of semigroups

page 165. Problem 6.1.4 Replace Z by A twice.

6.3 Some standard examples

page 183. Theorem 6.3.2

The proof of the second part of the theorem was omitted. The fact that Tt is
positivity preserving under the extra hypothesis is elementary. Corollary 2.2.19
and the comments at the top of page 53 imply that each Tt is a contraction.

page 188,5. Complete proof with a box symbol.

29



30



Chapter 7

Special classes of semigroup

7.1 Norm continuity

page 191. Theorem 7.1.2 of LOTS

The bound on page 191,-4 of the proof only shows that Tt is norm continuous on
the right at c. However one can also use it to prove norm continuity on the left at
any point b = t+ c by regarding c as the variable. One then needs to note that if
0 < a < c < b then ‖ZTc‖ ≤ ‖ZTba‖ ‖Tc−a‖ ≤ k where k does not depend on c.

7.2 Trace class semigroups

page 194 On the line before Lemma 7.2.1 of LOTS Replace problem by lemma.

page 196,-7. The reference to (7.8) should be to the bound on line 9.

7.4 Differentiable and analytic vectors

page 201,-6. Replace Section 1.5 by Section 1.4.

7.5 Subordinated semigroups

page 207,7. The formula for (λ − Z)−1f depends on Theorem 8.2.1 of LOTS,
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on page 218, as well as on the use of the equation on p207,5. The simplest proof
of p207,5 involves taking Fourier transforms of both sides, and then using Theo-
rem 3.1.15 of LOTS on page 74 to invert the identity obtained.
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Chapter 8

Resolvents and generators

8.2 Resolvents and semigroups

page 224,4. This should refer to page 178.

8.3 Classification of generators

page 230,-3. Theorem 8.3.1

This theorem can be extended in various ways, the following being typical. An
alternative proof can be based on Theorem 8.3.11, which is closely related to the
Legendre transform as developed in Section 10.2 of LOTS.

Theorem 8.1 If Z is the generator of a one-parameter semigroup Tt on the Ba-
nach space B then the following are equivalent.

1.
‖Tt‖ ≤M(1 + ct)eat (8.1)

for all t ≥ 0;

2.

‖R(λ+ a, Z)n‖ ≤ M

λn

(
1 +

nc

λ

)
for all λ > 0 and n ≥ 1.

Proof We start by replacing Tt by e−atTt, which reduces the proof to the case
a = 0.
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1⇒2 The formula

R(λ, Z)nv =
1

Γ(n)

∫ ∞
0

tn−1e−λtTtv dt

valid for all λ > 0, n ≥ 1 and v ∈ B, implies that

‖R(λ, Z)nv‖ ≤ 1

Γ(n)

∫ ∞
0

tn−1e−λt‖Ttv‖ dt

≤ M‖v‖
Γ(n)

∫ ∞
0

tn−1e−λt(1 + ct) dt

=
M‖v‖
Γ(n)

(
Γ(n)

λn
+ c

Γ(n+ 1)

λn+1

)
=

M‖v‖
λn

(
1 +

nc

λ

)
for all λ > 0 and v ∈ B. The result follows.

2⇒1 We follow the same calculations and use the same notation as in the proof of
Theorem 8.3.1. of LOTS, except for the need to modify (8.20) and its proof. The
crucial bound is

‖T λt ‖ = ‖eλ(−I+λRλ)t‖

≤ e−λt
∞∑
n=0

tnλ2n‖Rn
λ‖/n!

≤ e−λtM
∞∑
n=0

tnλn(1 + nc/λ)/n!

= M(1 + ct).

�

Example 8.2 Prove an analogue of Theorem 8.1 when (8.1) is replaced by the
condition that

‖Tt‖ ≤Meat(1 + bt+ ct2)

for all t ≥ 0. �

page 232,3. This uses Problem 6.1.2 page 165.

page 235,-1. The word is semigroups

8.5 Operator-valued multiplication operators

Within LOTS the phrase ‘multiplication operator’ is taken to refer to multiplication
by complex-valued functions. In this section we consider a more general class of
multiplication operators.
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Theorem 8.3 Let X be a set with a countably generated compact Hausdorff topol-
ogy and let B = L2(X, C, dx), where C is a Banach space and dx is a Borel measure
with support equal to X. Let A : B → B be the bounded linear operator defined
by (Af)(x) = a(x)f(x) for all f ∈ B, where a : X → L(C) is a bounded norm
continuous function. Then

Spec(A) =
⋃
x∈X

Spec(a(x)). (8.2)

If dx has no atoms then Spec(A) = Ess(A).

Proof If the union in (8.2) is denoted by S and λ /∈ S then λ− a(x) is invertible
for every x ∈ X. Problem 5 above, with n = 0, implies that (λ−a(x))−1 is a norm
continuous (and hence bounded) function of x. The operator B : B → B defined
by (Bf)(x) = (λ − a(x))−1f(x) is bounded and a direct calculation shows that
B(λI − A) = (λI − A)B = I, so λ /∈ Spec(A).

Conversely suppose that λ ∈ S, or more specifically λ ∈ Spec(a(u)) for some
u ∈ X. Lemma 1.2.13 of LOTS implies that one of the following holds.

1. There exists a sequence fn ∈ C such that ‖fn‖ = 1 for all n and
‖a(u)fn − λfn‖ < 1/n;

2. There exists a sequence fn ∈ C∗ such that ‖fn‖ = 1 for all n and
‖a(u)∗fn − λfn‖ < 1/n;

We start with Case 1. If {u} has positive measure c then gn = c−1/2fnδu ∈ B
satisfies ‖gn‖ = 1 and ‖Agn− λgn‖ < 1/n for all n. Therefore λ ∈ Spec(A). If {u}
has zero measure then one defines gn ∈ B by

gn(x) =

{
|Wn|−1/2fn if x ∈ Wn,

0 otherwise,

where Wn is an open subset of X and |Wn| > 0 is its measure, so that ‖gn‖ = 1. We
choose Wn to be a small enough neighbourhood of u to ensure that ‖Agn−λgn‖ <
1/n and |Wn| < 1/n; this is possible by the norm continuity of the function a. It
follows from the conditions on Wn that gn converges weakly to 0 in B and that
limn→∞ ‖Agn − λgn‖ = 0. Therefore λ lies in the essential spectrum of A by
Lemma 4.3.15 of LOTS.

In Case 2 a similar argument may be applied to A∗, and the proof is completed by
using Theorem 4.11. �

The following theorem may be also formulated in terms of pseudospectra.

Theorem 8.4 Let X be a set with a countably generated locally compact Hausdorff
topology and let dx be a Borel measure on X with support equal to X. let C
be a Banach space and let a : X → L(C) be norm continuous and uniformly
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bounded on X. Let A be the bounded operator on B = L2(X, C, dx) defined by
(Af)(x) = a(x)f(x). Then

Spec(A) = S1 ∪ S2

where
S1 =

⋃
x∈X

Spec(a(x))

and S2 is the set of λ /∈ S1 such that ‖(a(x)− λI)−1‖ is an unbounded function on
X.

Proof If λ /∈ S1 ∪ S2 then the formula (Bf)(x) = (a(x) − λI)−1f(x) defines a
bounded operator on B and one readily checks that B(A− λI) = (A− λI)B = I.
Therefore λ /∈ Spec(A).

If λ ∈ S1 then λ ∈ Spec(A) by minor changes to the argument of Theorem 8.3.

If λ ∈ S2 then for each n ∈ N there exist xn ∈ X and hn ∈ C such that ‖hn‖ = 1
and ‖(a(xn)− λI)−1hn‖ > n. Equivalently there exists fn ∈ C such that ‖fn‖ = 1
and ‖(a(xn) − λI)fn‖ < 1/n. One then puts gn = |Un|−1/2χUnfn, where Un is
a small enough neighbourhood of xn to ensure that ‖Agn − λgn‖ < 1/n; this is
possible because a(x) depends norm continuously on x. Letting n→∞, it follows
that λ ∈ Spec(A). �

Problem 8.5 Following the assumptions and notation of Theorem 8.4, suppose
in addition that C is a Hilbert space and that each operator a(x) is normal. Prove
that

Spec(A) = S1.

�

8.6 Indefinite spectral problems

In this section we provide an introduction to the theory of indefinite spectral prob-
lems and explain the relevance of Krein spaces. This is a research field in its own
right, and those who wish to pursue it could turn to one of the sources in the foot-
note.1 We do not present the theory with maximum generality and often restrict
attention to bounded operators for technical simplicity.

1 References to some of further important papers and books may be found in H. Langer,
Spectral functions of definitizable operators in Krein spaces, eds. D. Butkovic et al., pp. 1-46
in ‘Functional analysis’, Lect. Notes in Math. 948, Springer (1982); H. Langer, A. Markus, V.
Matsaev, Locally definite operators in indefinite inner product spaces, Math. Ann. 308 (1997)
405-424; J. Behrndt, R. Möws and C. Trunk, Singular Indefinite Sturm-Liouville Operators with
a Spectral Gap, J. Spectral Theory 1 (3) (2011) 327-347; A. Zettl, Sturm-Liouville Theory,
Amer. Math. Soc., Providence, RI, 2005; J. Behrndt and C. Trunk, On the negative squares
of indefinite Sturm-LiouvillE operators, J. Diff. Eqns. 238 (2007) 491-519; J. Behrndt and F.
Philipp, Spectral analysis of singular ordinary differential operators with indefinite weights, J.
Diff. Eqns. 248 (2010) 2015-2037.
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Let H and B be self-adjoint operators on a Hilbert space H, and assume for
simplicity that B is bounded. One may wish to find the spectrum of the linear
pencil P (λ) = H − λB, that is the set of all λ ∈ C for which P (λ) does not
map Dom(H) one-one onto H. More modestly one might seek non-zero solutions
f ∈ Dom(H) and λ ∈ C of Hf = λBf .

In this paragraph we restrict attention to the important special case in which B
is self-adjoint and bounded with a bounded inverse. If λ ∈ C and B is positive
the spectrum of P (λ) equals that of K − λI, where K = B−1H, which is self-
adjoint with respect to the equivalent inner product 〈f, g〉B = 〈Bf, g〉. Therefore
the spectrum of the pencil is real. A similar reduction is possible if H is positive.
If both operators are indefinite, we shall see that Spec(P (·)) need not be real.

There are two obvious ways of calculating Spec(P (·)). In the first, one puts B =
R−2J where R = |B|−1/2 and J is self-adjoint with J2 = I. The spectral problem

is equivalent to that for R2H − λJ and also to that for RHR− λJ = H̃ − λJ , and
finally to that for A− λI where A = JH̃. Therefore

Spec(P (·)) = Spec(A).

In the second method, one finds all λ such that 0 ∈ Spec(H − λB) directly –
perhaps, but not necessarily, by calculating the entire spectrum of H − λB. This
method does not require B to be bounded or to have a bounded inverse.

We next describe some of the basic ideas of the theory of Krein spaces. Let (H, 〈·, ·〉)
be a Hilbert space and let J : H → H be a bounded linear operator satisfying
J = J∗ and J2 = I. The Krein space (H, [[·, ·]]) is by definition the vector space H
provided with the indefinite inner product [[f, g]] = 〈Jf, g〉. It follows immediately
that [[f, f ]] ∈ R for all f ∈ H and |[[f, g]]| ≤ ‖f‖ ‖g‖ for all f, g ∈ H. Given
(H, 〈·, ·〉), J may be called the fundamental symmetry of the Krein space; however
a Krein space has many different such symmetries associated with different choices
of [[·, ·]].
Every bounded linear functional φ : H → C is of the form φ(f) = [[f, g]] for some
g ∈ H, and ‖φ‖ = ‖g‖. The weak topology on H may therefore be defined by
reference to all functionals f → [[f, h]]. Note that an operator on H is bounded if
and only if it is weakly continuous, by the closed graph theorem, and that a linear
subspace of H is norm closed if and only if it is weakly closed, by the Hahn-Banach
theorem.

Given an unbounded operator A = JH, let D denote the set of all f ∈ H such
that [[Ag, f ]] = [[g, h]] for all g ∈ Dom(A) and some (necessarily unique) h ∈ H.
We then define A†f = h, with Dom(A†) = D; the identity A† = JA∗J is always
valid. The identity H = H∗ implies A = A† by a routine argument. If A = A†

and Af = λf then an elementary calculation implies that λ ∈ R unless [[f, f ]] = 0;
however, complex eigenvalues may occur.

Theorem 8.6 Let H be a self-adjoint operator acting in a Hilbert space H, and
suppose that there exists c > 0 such that H ≥ cI. Suppose also that A = JH where
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J is a bounded self-adjoint operator with spectrum {±1}, so that J2 = I. Then

Spec(A) ⊆ (−∞,−c ] ∪ [ c,∞).

Proof
Version 1 The hypotheses of the theorem imply that ‖J‖ = 1 and ‖H−1‖ ≤ c−1.
If λ ∈ C and |λ| < c then JH − λI = JH(I − λH−1J) and an application of
Theorem 1.2.11 of LOTS yields λ /∈ Spec(JH) and

‖(JH − λI)−1‖ ≤ ‖(JH)−1‖
1− |λ| ‖H−1J‖

=
‖H−1‖

1− |λ| ‖H−1‖
≤ 1

c− |λ|
.

The identity JH − λI = λJ(λ−1H − J) implies that λ /∈ Spec(A) if and only if
λ−1H − J is invertible. We use numerical range ideas to prove that λ−1H − J is
invertible for all λ /∈ R. Suppose that λ = reiθ where r > 0 and 0 < |θ| < π. If
f ∈ Dom(H) then

‖(λ−1H − J)f‖ ‖f‖ ≥ |〈(λ−1H − J)f, f〉|
≥ |Im 〈(λ−1H − J)f, f〉|
= r−1| sin(θ)|〈Hf, f〉
≥ c r−1| sin(θ)| ‖f‖2.

Therefore there exists k > 0 such that

‖(λ−1H − J)f‖ ≥ k‖f‖

for all such f . This implies that Ker(λ−1H − J) = {0} and that Ran(λ−1H − J)
is closed. If f ⊥ Ran(λ−1H − J) then

f ∈ Ker((λ−1H − J)∗) = Ker(λ−1H − J) = {0}

because λ /∈ R. Therefore Ran(λ−1H − J) = H and λ−1H − J has a bounded
inverse.

Version 2 This proof is easier and more natural, provided one puts a little time
into understanding the theory of Krein spaces. The hypotheses of the theorem
imply that [[Af, f ]] ≥ c‖f‖2 for all f ∈ Dom(A) and that A is invertible with
‖A−1‖ = ‖H−1‖ ≤ c−1. If λ ∈ C and |λ| < c then A − λI = A(I − λA−1) is
invertible by Theorem 1.2.11 of LOTS and

‖(A− λI)−1‖ ≤ ‖A−1‖
1− |λ| ‖A−1‖

≤ 1

c− |λ|
,

so such λ do not lie in Spec(A).
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If λ /∈ R then λ = reiθ where r > 0 and 0 < |θ| < π. Then

‖(A− λI)f‖ ‖f‖ ≥ |λ| |[[(λ−1A− I)f, f ]]|
≥ |λ| |Im [[(λ−1A− I)f, f ]]|
= | sin(θ)| [[Af, f ]]

≥ k‖f‖2

where k = c| sin(θ)| > 0. Therefore A− λI is one one with closed range.

We continue assuming that λ /∈ R. If [[(A− λI)g, f ]] = 0 for all g ∈ Dom(A) then

f ∈ Ker(A† − λI†) = Ker(A− λI) = {0}.

because λ /∈ R. Since Ran(A− λI) is closed, we deduce that A− λI is invertible,
and hence that λ /∈ Spec(A).

Version 3 If H is bounded the following simpler proof is valid. One has A = JH =
H−1/2BH1/2 where B = H1/2AH1/2 = B∗. Therefore Spec(A) = Spec(B) ⊆ R.
The fact that A is similar to the self-adjoint operator B also shows that A has a
full spectral calculus, including a bounded but non-self-adjoint spectral projection
associate with every Borel subset of R. �

One may classify simple eigenvalues of an operator A ∈ L(H) into positive, negative
and neutral types depending on whether [[f, f ]] is positive, negative or zero, where
f is an eigenvector corresponding to the eigenvalue in question. The hypotheses
of the next theorem may often be verified by using Theorem 1.5.6 of LOTS, or
an extension of that theorem. We focus on the value t = 0 for simplicity, but the
theorem may be applied to any other value by considering Bt = At+a.

Theorem 8.7 Suppose that At ∈ L(H), ft ∈ H\{0} and λt ∈ C are defined for all
sufficiently small real t and that Atft = λtft for all such t. Suppose also that each
of the functions is norm differentiable at t = 0 and that A0 = A†0. Then λ0 /∈ R
implies that λ0 is of neutral type. If [[f0, f0]] 6= 0, so that λ0 ∈ R, then

λ′0 =
[[A′0f0, f0]]

[[f0, f0]]
, (8.3)

where the prime refers to the first derivative with respect to t.

Proof
Version 1 The assumptions imply that

[[Atft, ft]] = λt[[ft, ft]] (8.4)

for all small enough t ∈ R. The first statement of the theorem follows by putting
t = 0 and using A0 = A†0 to prove that [[A0f0, f0]] ∈ R. Differentiating (8.4) at
t = 0 yields

[[A′0f0, f0]] + [[A0f
′
0, f0]] + [[A0f0, f

′
0]]

= λ′0[[f0, f0]] + λ0[[f
′
0, f0]] + λ0[[f0, f

′
0]].
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Using A0 = A†0 again, this implies that

[[A′0f0, f0]] = λ′0[[f0, f0]],

which yields (8.3) immediately.

Version 2 The hypothesis can also be written in the form

Htft = λtJft

for all sufficiently small t ∈ R, where Ht = JAt. From this point onwards we
assume for simplicity that Ht and J are self-adjoint and bounded but do not need
to assume that J is invertible. Differentiating both sides of

〈Htft, ft〉 = λt〈Jft, ft〉

at t = 0 leads to the same conclusion as in Version 1, in the form

λ′0 =
〈H ′0f0, f0〉
〈Jf0, f0〉

.

�

The following example and the program following it illustrate how the different
types of eigenvalue move as the parameter c varies.

Example 8.8 Let A = JH be the N ×N matrix which is constructed by analogy
with the case N = 4, for which

H =


c −1
−1 c −1

−1 c −1
−1 c

 , J =


−1

−1
1

1

 .

Theorem 8.6 implies that A has real spectrum if c > 2. However, simple numerical
calculations indicate that A has some real and some complex eigenvalues if 0 <
c < 2. Figure 8.1 plots the eigenvalues of A for one particular case. �

Figure 8.1: Spectrum of A for N = 40 and c = 1
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Example 8.9 The following MATLAB animation of the dependence of the spec-
trum on the parameter c is well worth running. The different types of eigenvalue
are coloured red, green and black. The range of c considered depends on the choices
of cinit and cfinal. The program may be downloaded from
http://www.mth.kcl.ac.uk/staff/eb davies/colouranimate5.m

% This calculates the eigenvalues of

% an indefinite tridiagonal matrix

% and plots it as a function of c

close(’all’)

% basic definitions

M=25;

N=2*M; % size of matrix

J=diag([-ones(1,M) ones(1,M)]);

% set up plot data

xmin = -5;

xmax = 5;

ymax = 0.2;

ymin = -0.2;

axis normal

axis([xmin xmax ymin ymax]);

hold on

% initialize plot data off window

xred=ones(1,N);

yred=ones(1,N);

xgreen=ones(1,N);

ygreen=ones(1,N);

xblack=ones(1,N);

yblack=ones(1,N);

% calculate eigenvalues and classify them into types

fr=100; %number of frames to be shown

cinit=0.9; % intial value of c

cfinal=0.6; % final value of c

for r=1:fr

c=cinit*(fr-r)/fr+cfinal*r/fr;

H=diag(c*ones(1,N))-diag(ones(1,N-1),1)-diag(ones(1,N-1),-1);

A=J*H;

redvec=8*ones(1,N); % initialize plot data off window
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blackvec=8*ones(1,N); % initialize plot data off window

greenvec=8*ones(1,N); % initialize plot data off window

[V,D]=eig(A);

for s=1:N

ve=V(:,s);

la=D(s,s);

if ve’*J*ve>0.0001

redvec(1,s)=la;

elseif ve’*J*ve<-0.0001

greenvec(1,s)=la;

else blackvec(1,s)=la;

end

end

% clear previous plot

plot(xred,yred,’w.’,’MarkerSize’,10);

plot(xgreen,ygreen,’w.’,’MarkerSize’,10);

plot(xblack,yblack,’wx’,’MarkerSize’,4);

% set up new plot data

xred=real(redvec);

yred=imag(redvec); %+0.001*ones(1,N);

xgreen=real(greenvec);

ygreen=imag(greenvec);% -0.001*ones(1,N);

xblack=real(blackvec);

yblack=imag(blackvec);

% plot eigenvalues

p1=plot(xred,yred,’r.’,’MarkerSize’,10);

p2=plot(xblack,yblack,’kx’,’MarkerSize’,4);

p3=plot(xgreen,ygreen,’g.’,’MarkerSize’,10);

drawnow

end;

�
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We turn to the applications of the above theory to ordinary differential equations.
The following sets the scene. A much more thorough account of such problems has
recently been given in a series of papers by Behrndt, Möws and Trunk.

Problem 8.10 Let H be the self-adjoint operator acting in L2((α, β), dx) and
given formally by

(Hf)(x) = − d

dx

(
p(x)

df

dx

)
+ v(x)f(x)

subject to Dirichlet boundary conditions. We assume that p is positive, that v is
real, that p, p−1 are bounded and that v ∈ L2. The domain of H depends on p
but H may also be defined as the self-adjoint operator associated with the closed
quadratic form

Q(f) =

∫ β

α

p(x)|f ′(x)|2 + v(x)|f(x)|2 dx

defined on W 1,2
0 ((α, β), dx).

Now let a be a real-valued function on (α, β) that is bounded and bounded away
from zero, and define the operator J by (Jf)(x) = sign(a(x))f(x). Prove that if
|a| is sufficiently regular (specify) the eigenvalue problem Hf = λaf is equivalent

to the eigenvalue problem H̃f = λJf , and hence also to the eigenvalue problem
JH̃f = λf , where H̃ is of the same form as H, but for functions p̃ and ṽ that you
should determine. �

The following example illustrates some general features of indefinite spectral prob-
lems.

Theorem 8.11 Let A = JH act in L2(R) with domain D = W 2,2(R), where
(Jf)(x) = sign(x)f(x), Hf = −f ′′ + V f and the real potential V is taken to be
bounded with finite limits c±∞ at ±∞. Then the essential spectrum of A is given
by

Ess(A) = [c∞,∞) ∪ (−∞,−c−∞].

Proof Let A0 = JH0 where H0 is the same operator as H but with domain
D0 = D+ ⊕ D−, where D+ = W 2,2

0 (0,∞) and D− = W 2,2
0 (−∞, 0). A and A0

are both closed because J is invertible and H, H0 are closed, indeed self-adjoint.
Neither domain contains the other, but Lemma 11.3.2 of LOTS implies that A and
A0 have the same essential spectrum. Now A0 is the direct sum of H+ and H−
where H+f = −f ′′ + V acts in L2(0,∞), while H−f = f ′′ − V acts in L2(−∞, 0),
subject to Dirichlet boundary conditions at 0 in both cases. Therefore

Ess(A) = Ess(A0) = Ess(H+) ∪ Ess(H−).

One may write H+ = B+C where Bf = −f ′′+c∞f subject to Dirichlet boundary
conditions at 0, while Cf = V f − c∞f . Now C is relatively compact perturbation
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of B by a slight modification of Theorem 5.7.1 of LOTS. Therefore

Ess(H+) = Ess(B) = [c∞,∞).

The proof that Ess(H−) = (−∞,−c−∞] is similar. �

The operator A of Theorem 8.11 is not elliptic and it may have complex eigenvalues;
because the operator is real, these must occur in complex conjugate pairs. This
issue may be investigated at a general level, but we shall give a complete analysis of
an exactly soluble example, which involves a ‘delta function potential’ concentrated
at 0, because it illustrates some of the possibilities.

Example 8.12 Given γ, δ > 0, we define a self-adjoint operator Hγ,δ acting in
L2(R) as follows. Formally (Hγ,δf)(x) = −f ′′(x) + γf(x) on the domain D con-
sisting of all functions f = f−⊕ f+ where f− ∈ W 2,2(−∞, 0) and f+ ∈ W 2,2(0,∞)
satisfy f−(0) = f+(0) and f ′+(0) − f ′−(0) = −δf+(0). Alternatively, Hγ,δ is the
self-adjoint operator associated with the closed quadratic form

Q(f) =

∫
R

(
|f ′(x)|2 + γ|f(x)|2

)
dx− δ|f(0)|2,

defined on the domain W 1,2(R). We are interested in finding the spectrum of
Aγ,δ = JHγ,δ, where (Jf)(x) = sign(x)f(x), the domain of Aγ,δ being the same as
that of Hγ,δ. �

Theorem 8.13 Let Aγ,δ be the operator defined in Example 8.12. Then

Spec(Aγ,δ) = S1 ∪ S2 (8.5)

where

S1 = Ess(Aγ,δ) = (−∞,−γ] ∪ [γ,∞) (8.6)

and S2 = Eig(Aγ,δ) depends on δ, γ as follows.

1. If 0 < δ2 ≤ 2γ then S2 = ∅.

2. If 2γ < δ2 ≤ 4γ then S2 = {±δ
√
γ − δ2/4}.

3. If 4γ < δ2 <∞ then S2 = {±iδ
√
δ2/4− γ}.

Moreover

Ind(Aγ,δ − λI) = 0 for all λ /∈ Ess(Aγ,δ). (8.7)

Proof We abbreviate Aγ,δ to A throughout. The proof of (8.6) follows that of
Theorem 8.11 closely. In the following calculations,

√
z always stands for the

square root whose argument lies in (−π, π].
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If λ is an eigenvalue of A then the corresponding eigenfunction must be

f(x) =

{
e−
√
γ−λx if x > 0,

e
√
γ+λx if x < 0.

The conditions for λ to be an eigenvalue are

Re
√
γ − λ > 0, (8.8)

Re
√
γ + λ > 0, (8.9)√

γ − λ+
√
γ + λ = δ. (8.10)

Putting µ = λ/γ ∈ C and τ = δ/
√
γ > 0, the conditions become

Re
√

1− µ > 0, (8.11)

Re
√

1 + µ > 0, (8.12)√
1− µ+

√
1 + µ = τ. (8.13)

Squaring both sides of (8.13) yields

2 + 2
√

1− µ2 = τ 2

and then
µ = ±τ

√
1− τ 2/4. (8.14)

However, the same ‘solutions’ are obtained from all four of the equations

±
√

1− µ±
√

1 + µ = τ,

so some caution is necessary. Given τ > 0 we put µ = τ
√

1− τ 2/4 and have to
determine whether µ satisfies (8.11-8.13). We consider a series of cases, applicable
for different values of τ .

Case τ1. If 0 < τ <
√

2 then 0 < µ < 1 because the function g(τ) = τ
√

1− τ 2/4

is strictly monotone increasing on [0,
√

2] with g(0) = 0 and g(
√

2) = 1.
The function f(t) =

√
1− t +

√
1 + t is strictly concave on (−1, 1) with

f(±1) =
√

2. Therefore
√

2 < f(µ) = τ . The contradiction implies that
(8.13) has no solution.

Case τ2. If τ =
√

2 then µ = 1 and f(µ) =
√

2. The condition (8.11) fails so
there is no solution of (8.11-8.13).

Case τ3. If
√

2 < τ < 2 then 0 < µ < 1 because the function g is strictly monotone
decreasing on [

√
2, 2] with g(

√
2) = 1 and g(2) = 0. Therefore (8.11) and

(8.12) are valid. If one puts ν =
√

1 + µ +
√

1− µ then the properties of
the function f ensure that

√
2 < ν < 2. Moreover µ = ν

√
1− ν2/4 by the

arguments used to prove (8.14). Therefore g(τ) = g(ν). The strict motonicity
of g implies that τ = ν, so (8.13) also holds. We conclude that there are two
solutions of (8.11-8.13), both real, namely µ = ±τ

√
1− τ 2/4.
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Case τ4. If τ = 2 then µ = 0 and f(µ) = 2. Also
√

1 + µ =
√

1− µ = 1 so the
conditions (8.11-8.13) have a single solution, namely µ = 0.

Case τ5. If τ > 2 then τ 2/4 − 1 > 0 so µ = iτ
√
τ 2/4− 1 is purely imaginary.

Therefore | arg(1 ± µ)| < π/2 and | arg
√

1± µ | < π/4. This implies (8.11)
and (8.12).

Also
1− µ2 = 1 + τ 2(τ 2/4− 1) = (τ 2/2− 1)2

so √
1− µ2 = τ 2/2− 1 > 0.

This is equivalent to (√
1 + µ+

√
1− µ

)2

= τ 2,

and implies (8.13) by an application of (8.11) and (8.12). We conclude that
there are two solutions of (8.11-8.13), namely µ = ±iτ

√
τ 2/4− 1.

We can now prove the assertions of the theorem. Item 1 is a direct consequence
of Cases τ1 and τ2, once one translates from τ and µ back to λ, γ and δ. Item 2
follows from Cases τ3 and τ4, while Item 3 follows from Case τ5.

We next prove (8.7). The identities

(A− λI)∗ = (J(H − λJ))∗ = (H − λJ)J = J(A− λI)J

imply that
dim(Ker((A− λI)∗) = dim(Ker(A− λI)).

Items 1 to 3 establish that

dim(Ker(A− λI)) = dim(Ker(A− λI)),

the value being 0 or 1. Therefore

Ind(A− λI) = dim(Ker(A− λI))− dim(Ker(A− λI)∗) = 0

for all λ /∈ Ess(A). Finally (8.7) implies that

Spec(A)\Ess(A) ⊆ Eig(A),

which yields (8.5) immediately. �

46



Chapter 9

Quantitative bounds on operators

9.1 Pseudospectra

page 251. More on the Airy operator

The fact that ‖Tt‖ ≤ 1 for all t ≥ 0 implies that the numerical range of A lies in
{z : Re (z) ≤ 0} and that the resolvent operators (zI − A)−1 satisfy

‖(zI − A)−1‖ ≤ Re (z)−1

if Re (z) > 0. Bounds on ‖(zI − A)−1‖ for Re (z) < 0 have been obtained by
several people. The sharpest current result, below, is taken from ‘W Bordeaux-
Montrieux, Estimation de résolvante et construction de quasimode près du bord
du pseudospectre, preprint 2010’.

Theorem 9.1 The quantity ‖((x+ iy)I −A)−1‖ is independent of y and satisfies

‖((x+ iy)I − A)−1‖ ∼
√
π

2
|x|−1/4 exp(4|x|2/3/3)

as x→ −∞.

9.2 Generalized spectra and pseudospectra

page 252. Before Example 9.2.3 insert: We discuss the concept of numerical
range for operator pencils in a new Section 9.8.

page 257,6. Replace ‘local minimum’ by ‘strict local minimum’.
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page 261,-2. The dot after C is intended to mean ‘such that’. p273,3 Interchange
minimum and maximum on this line.

9.2.1 Local constancy of the resolvent norm

Theorem 9.2.8 of LOTS should state that the resolvent norm of an operator on a
Banach space is continuous and cannot have a strict local maximum. This does
not, however, prevent it from being locally constant.

Shargorodsky1 has given a detailed account of the state of the art in this field, as
well as being responsible for most of the recent results, and we summarize some
of the known results without proof; see footnote 1 for references to the original
papers.

Proposition 9.2 Let H be an infinite-dimensional Hilbert space.

1. (Daniluk) If A is a bounded operator on H, then ρ(z) = ‖(A − zI)−1‖
cannot be constant on any open subset of U = C\Spec(A).

2. (Globevnik) If A is a bounded operator on a Banach space B, and U =
C\Spec(A) is connected then ρ(z) = ‖(A−zI)−1‖ cannot be constant on any
open subset of U .

3. (Globevnik, Shargorodsky and Shkarin) There exists a bounded oper-
ator A on a separable, strictly convex, reflexive Banach space B such that
ρ(·) is constant in a neighbourhood of 0. However, this is not possible if B is
complex uniformly convex.

4. (Shargorodsky) There exists a closed densely defined operator A on a sep-
arable Hilbert space H and a non-empty open subset of U = C\Spec(A) on
which ρ(·) is constant.

5. (Shargorodsky) Let A be the generator of a strongly continuous one-parameter
semigroup acting on H. If V is an open connected subset of U = C\Spec(A)
and ρ(z) ≤M for all z ∈ V then ρ(z) < M for all z ∈ V .

The following result is unpublished and is included with the permission of the
author.

Theorem 9.3 (Shargorodsky) Let X be a complex strictly convex Banach space
(X is not required to be complex uniformly convex) and let B : X → X be a closed
densely defined operator with a compact resolvent R(λ) := (B − λI)−1. Let Ω be

1E. Shargorodsky, On the level sets of the resolvent norm of a linear operator, Bull. London
Math. Soc. 40 (2008) 493-504; E. Shargorodsky, Pseudospectra of semigroup generators, Bull.
London Math. Soc. 42 (2010) 1031-1024.
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a connected open subset of the resolvent set of B. If ‖R(λ)‖ ≤ M for all λ ∈ Ω,
then ‖R(λ)‖ < M for all λ ∈ Ω.

Proof The proof is similar to that of Theorem 2.6 in Shargorodsky.2

Suppose the contrary: there exists λ0 ∈ Ω such that ‖R(λ0)‖ = M . Then Theorem
2.1 in footnote 2 or the maximum principle3 imply that ‖R(λ)‖ = M , ∀λ ∈ Ω.
Shifting the independent variable if necessary, we can assume that 0 ∈ Ω.

According to Lemma 1.1 of Globevnik and Vidav,4 there exists r > 0 such that
|λ| ≤ r implies ∥∥R(0) + λR2(0)

∥∥ = ‖R(0) + λR′(0)‖ ≤M.

Since ‖R(0)‖ = M , there exist un ∈ X, n ∈ N such that ‖un‖ = 1
M

and
‖R(0)un‖ → 1 as n → ∞. Since R(0) is compact, one can assume, after go-
ing to a subsequence, that R(0)un converges to a vector x ∈ X and ‖x‖ = 1. Then
y := rR(0)x 6= 0 and |ζ| ≤ 1 implies

‖x+ ζy‖ = lim
n→∞

∥∥R(0)un + ζrR2(0)un
∥∥

≤
∥∥R(0) + ζrR2(0)

∥∥ ‖un‖
≤ M/M = 1.

This contradicts the complex strict convexity of X. �

9.3 The numerical range

page 268,2. In this example the convex hull and the closed convex hull coincide.

page 269,-9. Replace Num(A) by Num(Jn).

page 270. Lemma 9.3.14

In the final equation of the statement of the lemma, either side is allowed to be
infinite. The proof of the lemma is too brief and may be expanded as follows.
Let a, b /∈ Num(A) where a /∈ Spec(A). By the connectedness hypothesis there
exists a continuous curve γ : [0, 1]→ C\Num(A) such that γ(0) = a and γ(1) = b.

2E. Shargorodsky ‘On the level sets of the resolvent norm of a linear operator’, Bull. Lond.
Math. Soc. 40 (2008) 493–504.

3see, e.g., Theorem 3.13.1 in E. Hille and R.S. Phillips, Functional analysis and semigroups
(American Mathematical Society, Providence, R. I., 1957) or Ch. III, Sect. 14 in N. Dunford
and J.T. Schwartz, Linear Operators. I. General theory (Interscience Publishers, New York and
London, 1958)

4J. Globevnik and I. Vidav, ‘On operator-valued analytic functions with constant norm’, J.
Funct. Anal. 15 (1974) 394–403.
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We claim that there exists δ > 0 such that if γ(σ) /∈ Spec(A) for some σ ∈ [0, 1] then
γ(s) /∈ Spec(A) whenever |s−σ| < δ. This is enough to prove that γ(1) /∈ Spec(A)
and hence that Spec(A) ⊆ Num(A).
The proof of the claim follows the given proof of the lemma. The fact that δ > 0
may be chosen to be independent of σ depends on the lower bound

min{dist(γ(s),Num(A)) : s ∈ [0, 1]} > 0.

page 274,13. Replace kβ by Aβ.

page 274,-2. Replace ‘except’ by ‘expect’.

page 275,-2. Insert space before orthonormal.

page 276,13. Replace imaginary by real.

9.4 Higher order hulls and ranges

page 278. Lemma 9.4.4

This lemma requires the definition of Num2(A) to be extended to unbounded self-
adjoint operators. The calculations may be justified by using the spectral theorem
for self-adjoint operators in Section 5.4, starting on page 143.

page 279,-10. Replace p1(z) /∈ Num(A) by p1(z) /∈ Num(p1(A)).

page 282,-5. Replace Num(A2) by Num(A2).

page 283-8. I should have written λ := β2/α2 and µ := 2β2.

9.5 Von Neumann’s theorem

9.6 Peripheral point spectrum

page 289,5 and 6. Replace 1 by I three times.

page 291,-1. Extra ( at start of subscript.
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page 292,14. In the definition of Hi,j replace n by n+ 1 twice.

9.7 2× 2 block operator matrices

The following new section combines a few results already in the book with new
material. A much more complete account may be found in ‘C Tretter, Spectral
Theory of Block Operator Matrices and Applications, Imperial College Press, Lon-
don, 2008’, referred to below as Tretter.

Inverting block matrices Some special results are available for operators that
act in a Hilbert space that is decomposed in a natural way as a direct sum of two
orthogonal subspaces, H = H1 ⊕H2. This is particularly relevant to the study of
self-adjoint operators that are not bounded above or below and have a gap in the
spectrum containing 0. Here are a few representative theorems on the subject. We
assume that the operators in question are given in block form with respect to the
direct sum decomposition of H, and that the blocks are all bounded; this condition
can often be weakened.

The following theorem was proved in a matrix context by Schur. See Grushin for
applications to differential operators. We assume that H denotes a Hilbert space,
although in some theorems it could be a Banach space.

Lemma 9.4 Let L : H → H be defined by

L :=

(
A 0
C D

)
,

where H := H1 ⊕H2 and A,C,D are bounded operators acting between the appro-
priate subspaces. If A is invertible in H1 then L is invertible in H if and only if
D is invertible in H2. Moreover

L−1 =

(
A−1

−D−1CA−1 D−1

)
.

Proof Put

M =

(
E F
G H

)
and expand LM = ML = I into its constituent equations. The claimed result is
then routine algebra. �

Theorem 9.5 (Schur) Let L : H → H be defined by

L :=

(
A B
C D

)
,
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where H := H1 ⊕ H2 and A,B,C,D are bounded operators acting between the
appropriate subspaces. If A is invertible in H1 then L is invertible in H if and only
if S := D − CA−1B is invertible in H2.

Proof Combine the lemma above with the elementary formula(
A−1 0

0 1

)(
A B
C D

)(
I A−1B
0 I

)
=

(
I 0
C D − CA−1B

)
�

Corollary 9.6 In the above theorem if H is finite-dimensional and A is invertible
then

det(L) = det(A) det(D − CA−1B).

Example 9.2.3 is a typical application of the theorem.

Block matrices and numerical range The following is taken from ‘H. Langer
et al., A new concept for block operator matrices: the quadratic numerical range,
Lin. Alg. and Appl. 330 (2001) 89-112’. This paper further develops the notion
of quadratic numerical range, introduced in ‘H. Langer, C. Tretter, Spectral de-
composition of some non-self-adjoint block operator matrices, Operator Theory,
39 (1998) 339-359’. The extension of the theory to unbounded operators may be
found in ‘C. Tretter, Spectral inclusion for unbounded block operator matrices, J.
Funct. Anal. 256 (2009) 3806-3829’. See also C. Tretter, Spectral Theory of Block
Operator Matrices and Applications, Imperial College Press, 2008 .

Theorem 9.7 Let X =
(

A B
B∗ −C

)
where A+ A∗ ≥ 2αI, C + C∗ ≥ 2αI and α > 0.

Then the spectrum of X is disjoint from the set {x+ iy : |x| < α}.

Proof If we put Ã = A− αI and C̃ = C − αI and X̃ =
(

Ã B

B∗ −C̃

)
then

X∗X = X̃∗X̃ + α

(
Ã+ Ã∗ 0

0 C̃ + C̃∗

)
+ α2I

≥ α2I.

Combining this with a similar inequality for XX∗, one deduces that X is invertible
and ‖X−1‖ ≤ 1/α. The theorem follows by applying this result to X + (u + is)I
for all s ∈ R and suitable u ∈ R. �

If X =
(
A B
C D

)
then one defines

W 2(X) =

{
λ ∈ C : det(Xf,g − λI2) = 0 for some

(
f
g

)
∈ Σ

}
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where

Σ =

{(
f
g

)
: f ∈ H1, g ∈ H2, ‖f‖ = ‖g‖ = 1

}
,

Xf,g =

(
〈Af, f〉 〈Bg, f〉
〈Cf, g〉 〈Dg, g〉

)
.

Theorem 9.8 One has

Spec(X) ⊆ W 2(X) ⊆ Num(X) (9.1)

for all operators X on H. If X =
(
A B
C D

)
, dim(H1) > 1 and dim(H2) > 1 then

Num(A) ∪ Num(D) ⊆ W 2(X).

Proof See ‘V Kostrykin, K A Makarov, A K Motovilov, Perturbation of spectra
and spectral subspaces, Trans. Amer. Math. Soc. 359 (1) (2007) 77-89’ and
Tretter. The inclusions

Eig(X) ⊆ W 2(X) ⊆ Num(X)

depend on calculations with 2 × 2 matrices that are similar to those below; they
suffice to prove (9.1) if H is finite-dimensional. We will prove the general case of
the first inclusion in (9.1).

If λ ∈ Spec(X) then either there exists a sequence of unit vectors vn = (fn, gn)′

such that ‖Xvn − λvn‖ → 0 as n → ∞ or there exists a sequence of unit vectors
vn = (fn, gn)′ such that ‖X∗vn−λvn‖ → 0 as n→∞. We treat only the first case,
the other one being similar.

The assumptions imply that

‖(A− λI)fn +Bgn‖ → 0

‖Cfn + (D − λI)gn‖ → 0

as n→∞, and hence

|〈(A− λI)fn +Bgn, (fn/‖fn‖)〉| → 0

|〈Cfn + (D − λI)gn, (gn/‖gn‖)〉| → 0.

These equations may be written in the form

|(αn − λ)un + βnvn| → 0

|γnun + (δn − λ)vn| → 0

where αn = 〈Afn, fn〉/‖fn‖2, βn = 〈Bgn, fn〉/(‖fn‖ ‖gn‖), γn = 〈Cfn, gn〉/(‖fn‖ ‖gn‖),
δn = 〈Dgn, gn〉/‖gn‖2, un = ‖fn‖ and vn = ‖gn‖. We next observe that αn, βn, γn,
δn are uniformly bounded and that |un|2 + |vn|2 = 1 for all n. Therefore

lim
n→∞

det (Mn − λI) = 0
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where Mn =
(
αn βn
γn δn

)
, and λ is a limit of the eigenvalues of the matrices Mn as

n→∞. This implies that λ ∈ W 2(X). �

Theorem 9.9 If X is self-adjoint with a = min(Spec(X)) and b = max(Spec(X))
then either W 2(X) = [a, b] or there exist c, d such that

W 2(X) = [a, c] ∪ [d, b].

Block matrices and pseudospectra

The following ideas are due to ‘R. Byers, A bisection method for measuring the
distance of a stable matrix to the unstable matrices, SIAM J. Sci. Statist. Comput.,
9 (1988) 875-881’. They were developed further in ‘M. A. Freitag, A. Spence, The
calculation of the distance to instability by the computation of a Jordan block,
preprint 2010’, where the resulting algorithms were applied to a range of matrices
associated with certain differential operators. We assume that A is an n×n matrix;
if this matrix arises by applying the finite element method to a differential operator,
one should also have appropriate bounds on the numerical range or resolvent norm
of the original operator for z ∈ C with large imaginary and small real parts to
ensure that instability problems do not arise for such z. We assume that the
spectrum of A is contained in C− = {z : Re (z) < 0}. We define the degree of
instability ε of A to be the norm of the smallest perturbation E such that the
spectrum of A+ E does not lie in C−.

The theory of pseudospectra implies that

ε−1 = sup{‖(zI − A)−1‖ : z ∈ iR}.

Equivalently
ε2 = inf

ω∈R
σ ((A− iω)∗(A− iω)) ,

where σ(B) is defined to be the smallest eigenvalue of B = B∗, which is positive
in our case.

Given ω ∈ R, let σ be the smallest eigenvalue of (A − iω)∗(A − iω) and x the
corresponding normalized eigenvector. If we put y = ε−1(A− iω)x then

(A− iω)x = εy

(A∗ + iω)y = εx.

Equivalently, introducing the matrix B, we have

B

(
x
y

)
=

(
A −ε
ε −A∗

)(
x
y

)
= iω

(
x
y

)
.

The matrix B is Hamiltonian in the sense that B∗ = −JBJ−1 where J =
(

0 −1
1 0

)
.

Therefore the set of eigenvalues of B is invariant under reflection in the imaginary
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axis. If ε = 0 then B has no purely imaginary eigenvalues. These facts imply
that one can follow its eigenvalues as ε increases until two of them meet on the
imaginary axis. This critical value of ε is the measure of instability of A. The paper
of Freitag and Spence provides efficient algorithms for implementing the procedure
just described.

9.8 The numerical range for operator pencils

Let A(λ) =
∑n

r=0 λ
rAr, where Ar are bounded operators on a Hilbert space H and

An = I. In Section 9.3 we defined the spectrum of A(·) to be the set of λ ∈ C such
that A(λ) is not invertible. We define the numerical range Num(A(·)) by

Num(A(·)) =
⋃

06=x∈H

{λ : 〈A(λ)x, x〉 = 0}

Note that for each non-zero x ∈ H, px(λ) = 〈A(λ)x, x〉 is a polynomial with degree
n, and so has at most n zeros. It is easy to prove that if A(λ) = B − λI, then
Num(A(·)) equals the numerical range of B as defined in Section 9.3. The results in
this section are well-known in the operator pencil community; they are sometimes
called variational bounds.5

Theorem 9.10 One has

Spec(A(·)) ⊆ Num(A(·))

Proof The inclusion Eig(A(·)) ⊆ Num(A(·)) is elementary, and this suffices if H
is finite-dimensional.

In the general case if λ ∈ Spec(A(·)) then there exists a sequence xr ∈ H such that
‖xr‖ = 1 for all r and either limr→∞ ‖A(λ)xr‖ = 0 or limr→∞ ‖A(λ)∗xr‖ = 0. In
both cases we deduce that

lim
r→∞
〈A(λ)xr, xr〉 = 0.

If

〈A(z)xr, xr〉 =
n∏
s=1

(z − γr,s)

for all z ∈ C, then we may deduce that

lim
r→∞

min
1≤s≤n

|λ− γr,s| = 0.

5For further developments and references see D Eschwé and M Langer, Variational principles
for eigenvalues of self-adjoint operator functions, Int. Eqns. Oper. Theory 49 (2004) 287-321 and
M Langer and C Tretter, Variational principles for eigenvalues of the Klein-Gordon equation, J.
Math. Phys. 47 (2006) 103506, 18 pp.
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Since γr,s ∈ Num(A(·)) for all r, s, it follows that λ ∈ Num(A(·)). �

From this point onwards we restrict attention to the special case A(λ) = λ2I+λB+
C, where B and C are bounded self-adjoint operators. Extensions to unbounded
operators are possible under suitable conditions. There is a large literature on such
problems, which may have non-real eigenvalues. We are interested in conditions
which imply that the spectrum of such a pencil is real. It should be mentioned
that generalizations of the results below have been applied to the Klein-Gordon
equation.6

The pencil A(·) is said to be hyperbolic if it satisfies the condition

〈Bx, x〉2 > a‖x‖2〈Cx, x〉

for all non-zero x ∈ H. This is equivalent to assuming the positivity of certain
discriminants and to the conditions of the following theorem.7

Theorem 9.11 The following are equivalent.

1. There exists α ∈ R such that A(α) < 0 in the sense that Spec(A(α)) ⊆
(−∞, c] for some c < 0.

2. The set Num(A(·)) is the union of two disjoint, separated, real intervals I,
J .

Proof Assume (1). If A(α) < 0 then A(s) < 0 for some ε > 0 and all s ∈ (α−ε, α+
ε). If 0 6= x ∈ H then px is a quadratic polynomial with real coefficients. Since
px(s)→ +∞ as s→ ±∞ through real values and px(s) < 0 for all s ∈ (α−ε, α+ε),
the roots of px(λ) = 0 are real and distinct. If we denote these roots by βx and γx,
where βx < γx, then each depends continuously on x so

I = {βx : ‖x‖ = 1}, J = {γx : ‖x‖ = 1}

are non-empty intervals. Moreover I ⊆ (−∞, α− ε] and J ⊆ [α + ε,∞).

Conversely, given (2), each polynomial px has real roots, which we denote by βx
and γx, satisfying βx ≤ γx. The intervals I, J are assumed to be disjoint so there
exists α and ε > 0 such that I ⊆ (−∞, α− ε] and J ⊆ [α+ ε,∞), Since px(α) < 0
for all non-zero x ∈ H we deduce that Aα < 0. �

Corollary 9.12 If there exists α ∈ R such that A(α) < 0 then Spec(A(·)) ⊆ R.

6See ‘Matthias Langer and Christiane Tretter, Variational principles for eigenvalues of the
Klein-Gordon equation, J. Math. Phys. 47 (2006) 103506, 18 pp.’

7See R J Duffin, A minimax theory for overdamped networks, J. Rational Mech. Anal. 4,
(1955) 221-233, M G Krein and G K (Heinz) Langer, The spectral function of a selfadjoint
operator in a space with indefinite metric, Dokl. Akad. Nauk SSSR 152 (1963) 39-42, Section 31
of A S Markus : Introduction to the spectral theory of polynomial operator pencils, vol.71,
Translation of mathematical monographs, American Mathematical Society 1988, and F Tisseur,
K Meerbergen, The quadratic eigenvalue problem, SIAM Review 43, No. 2 (2001) 235-286.
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In principle the computation of Spec(A(·)) is easy in this situation, at least for
matrices. One simply computes Eig(A(s)) for each s ∈ R, to obtain a family of
real curves depending continuously on s. One then determines the set of s for
which one of the eigenvalues vanishes.

9.9 Jacobi matrices

The theory of Jacobi matrices and their associated orthogonal polynomials is vast,
and we can do no more than provide an introduction. One says that a tridiagonal
N × N matrix A is a Jacobi matrix if it is real and symmetric and Ar,s > 0
whenever r − s = ±1. One could weaken the last condition to Ar,s ≥ 0 whenever
r − s = ±1, but if any such Ar,s vanishes, the matrix can be decomposed into two
or more independent blocks. We will say that A is a infinite bounded Jacobi matrix
if one replaces {1, 2, . . . , N} by Z+ = N ∪ {0} and there is a uniform bound on
the coefficients. It follows directly that if A is an infinite bounded Jacobi matrix
then it determines a bounded self-adjoint operator on `2(Z+); moreover the vector
e0 ∈ `2(Z+) defined by e0,0 = 1 and e0,n = 0 for all other n is cyclic in the sense
that the linear span of {Ane0 : n ∈ Z+} is norm dense in `2(Z+). Further results
on the subject of this section may be found in Sections 4.4 and 9.3 of LOTS. Cyclic
vectors also play a role in Example 1.5.7 and Lemma 11.2.9 of LOTS, although
this is not mentioned there.

Theorem 9.13 (M. H. Stone) Let H be a bounded self-adjoint operator on the
infinite-dimensional Hilbert space H, and suppose that there is a unit vector e0 ∈ H
that is cyclic in the sense that the linear span of {Hne0 : n ∈ Z+} is norm dense in
H. Then there exists a complete orthonormal sequence {en}n∈Z+ in H such that the
matrix Am,n = 〈Hen, em〉 is an infinite Jacobi matrix whose entries are bounded.

Proof If one applies the Gram-Schmidt orthogonalization procedure to the se-
quence fn = Hne0, n ∈ Z+, one obtains an orthonormal sequence {en}n∈Z+ such
that lin{en : n ∈ Z+} = lin{fn : n ∈ Z+}. The latter is dense by cyclicity, so
{en}n∈Z+ is a complete orthonormal sequence. The construction yields

Hen = An+1,nen+1 + An,nen + . . . A0,ne0 (9.2)

where An+1,n > 0 for all n and Am,n = 0 if m > n+1. This yields 〈Hen, em〉 = Am,n
for all m, n ≥ 0. The self-adjointness of H implies that An,m = Am,n = 0 if
m > n + 1, so A is tridiagonal. The definition of Am,n implies that |Am,n| ≤ ‖H‖
for all m,n ∈ Z+. �

Theorem 9.14 Let H be a bounded self-adjoint operator acting in H with cyclic
vector e. Then there exists a probability measure µ on R with support S = Spec(A)
and a unitary map U : H → L2(S, µ) such that Ue = 1 and (UHU−1f)(x) = xf(x)
for all f ∈ L2(S, µ) and almost all x ∈ S with respect to µ .
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Proof This is a direct statement of the spectral theorem for some versions of
that theorem. In others it follows from the spectral theorem. See, for example,
Theorem 2.5.2 of E B Davies, Spectral Theory and Differential Operators, Camb.
Univ. Press, 1995. �

These theorems are related to the theory of orthogonal polynomials. This subject
goes back to the nineteenth century, and the classical families of orthogonal poly-
nomials are associated with unbounded self-adjoint differential operators acting in
L2(a, b) for some interval (a, b), possibly of infinite length. There is also a well de-
veloped theory of orthogonal polynomials on the unit circle, associated in a similar
way to a unitary operator with a cyclic vector.8

Theorem 9.15 Let µ be a probability measure on R with infinite compact sup-
port X. Then the operator H : L2(X,µ) → L2(X,µ) defined by (Hf)(x) = xf(x)
is bounded and self-adjoint with ‖H‖ = max{|x| : x ∈ supp(µ)}. The unit vec-
tor p0(x) = 1 is cyclic with respect to H. If {pn}n∈Z+ is the orthonormal basis
constructed as in Theorem 9.13 then pn is a polynomial of degree n with positive
leading coefficient. The polynomials satisfy the second order recurrence relation

An+1,npn+1(x) + (An,n − x)pn(x) + An−1,npn−1(x) = 0. (9.3)

subject to p0 = 0 and p1 = 1.

Proof The cyclicity of p0 with respect to H follows by the Stone-Weierstrass
theorem: the set of all polynomials on X is uniformly dense in C(X) and hence
norm dense in L2(X,µ). The space L2(X,µ) is infinite-dimensional because we are
assuming that the support of µ is infinite. If Fn = Hnp0 then fn is a polynomial
of degree n, and the nature of the Gram-Schmidt construction implies that pn is
of degree n with positive leading coefficient for all n. The recurrence relation (9.3)
is equivalent to the more abstract identity

Hpn = An+1,npn+1 + An,npn + An−1,npn−1,

which is a special case of (9.2), subject to the fact that Am,n = 0 if |m − n| > 1;
see the proof of Theorem 9.13. �

8A recent account of this was given in B. Simon, Orthogonal polynomials on the unit circle,
Parts 1 and 2, Amer. Math. Soc., Providence, RI, 2005.
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Chapter 10

Quantitative bounds on
semigroups

10.1 Long term growth bounds

page 296,(ii). This should assume that Z is closed or refer to Problem 6.1.2
page 165, where it is proved that closedness follows from the other assumptions.

10.2 Short term growth bounds

page 300,-13. Replace n by n−1 except on its third occurrence in this equation.

page 303. This page assumes a degree of familiarity with the Legendre transform
and associated ideas from convexity theory. There are ample resources on the web
about this.

page 306. More on Example 10.2.9 .

In semiclassical analysis one replaces a pure differential expression Dα by h|α|Dα

and studies the asymptotic behaviour of the resulting operator as h → 0. In
Example 10.2.9 this leads to the study of the paradigmatic Hamiltonian operator

(Lhf)(x) = hf ′(x) + v(x)f(x),

acting in L2(R) for small h > 0. The corresponding classical Hamiltonian is
`(x, ξ) = v(x) + iξ. The semiclassical spectrum of Lh is, by definition, the closure
of {`(x, ξ) : x, ξ ∈ R}. This equals {(x, ξ) : a ≤ x ≤ b} where a = inf Re {v(x) :
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x ∈ R} and b = sup Re {v(x) : x ∈ R}. This happens to coincide with Num(Lh)
for all h > 0.

J Sjöstrand, M Zworski, N Dencker, M Hager and others have studied the connec-
tion between the pseudospectra of much more general operators and the semiclas-
sical spectrum, following an initial insight in ‘E B Davies, Semi-classical states for
non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200(1) (1999) 35-41’.
The semiclassical limit of the spectrum itself is harder to analyze.

Lemma 10.1 If the function

a(x) =

∫ x

0

v(s) ds

is bounded, then the spectrum of Lh equals iR for all h > 0.

Proof One may use the bounded functions exp(±h−1a(·)) to prove that Lh is
similar to the operator h d

dx
, whose spectrum equals iR. Note, however, that the

condition number of the similarity transformation increases exponentially as h→ 0.
�

The above example is not typical – it does not satisfy a natural extension of the
Weyl law to non-self-adjoint operators. In her PhD thesis Hager proved that if one
considers very small random perturbations of a periodic potential that satisfies the
conditions of the lemma, then the spectrum of the perturbed Lh becomes dense
in the semiclassical spectrum as h → 0. She has also elucidated the asymptotic
behaviour of the spectrum near the boundaries {(x, ξ) : x = a, b}. This work
was generalized in many ways in higher dimensions in ‘M Hager, J Sjöstrand,
Eigenvalue asymptotics for randomly perturbed non-self-adjoint operators, Math.
Ann, 342(1) (2008) 177-243’ and ‘W Bordeaux Montrieux, Johannes Sjöstrand,
Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact
manifolds, preprint 2009’.

page 307,3. This should be

f(x) := exp
{
zx− cx1−γ} .

10.3 Contractions and dilations

10.4 The Cayley transform

page 310. At various places I am using Problem 6.1.2 on page 165 to deduce the
closedness of Z without mentioning that fact.
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page 311,12. This multi-line equation could be expanded to

‖C(δH + f)‖2 = ‖δCh+ f‖2

= |δ|2 ‖Ch‖2 + 2ε|〈Ch, f〉|2 + ‖f‖2

≥ 2ε|〈Ch, f〉|2 + ‖f‖2

> ε2|〈Ch, f〉|2‖h‖2 + ‖f‖2

= |δ|2 ‖h‖2 + ‖f‖2

= ‖δh+ f‖2

for all small enough ε > 0.

page 311,17. Replace ‘terms’ by ‘a term’.

page 312,-14 and -11. Replace Lemma 5.4.4 by Theorem 5.4.5.

page 313, Theorem 10.4.4. Replace the final H by iH.

10.5 One-parameter groups

page 316,11. The first A on the RHS of this displayed equation should be Ar.

page 318,2. Replace a ∈ S by a ∈ X.

page 318,12 and 14. Replace c2 by c4.

10.6 Resolvent bounds in Hilbert space

page 321,6. It would be better to replace H by B.

page 324, Theorem 10.6.5. Replace λ by z.

No analogue of the Eisner-Zwart theorem exists in a Banach space context, even
if it is assumed to be reflexive. If one does not assume that eAt is a one-parameter
semigroup this is contained in Theorem 8.3.10. If one does make such an as-
sumption then one may consider (Af)(x) = (i + ε)f ′′(x) acting in Lp(R) where
1 ≤ p < 2, and use Theorem 8.1.3 to prove that a suitable bound that is uniform
with respect to ε > 0 cannot exist.
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page 324. Integral conditions for exponential decay

The following theorem has something in common with the contents of the new
Section 10.8. The question addressed is that of obtaining an upper bound on

ω0 := inf
0<t<∞

{t−1 log(‖eAt‖)} = lim
0<t<∞

{t−1 log(‖eAt‖)} (10.1)

from weak decay conditions involving certain integrals. See Theorem 10.1.6 of
LOTS for the proof of (10.1). By considering the case in which dim(B) = 1, one
sees that the first part of the following lemma is optimal of its type.

Lemma 10.2 If eAt is a one-parameter semigroup on the Banach space B and
0 < p <∞ then

k :=

∫ ∞
0

‖eAt‖p dt <∞

implies that

ω0 ≤ −
1

kp
.

Either ‖eAt‖ = 0 for all t > k or there exists t < k such that ‖eAt‖ < 1.

Proof We start by observing that (10.1) implies that eω0t ≤ ‖eAt‖ for all t ≥ 0.
Therefore ∫ ∞

0

eω0tp dt ≤
∫ ∞

0

‖eAt‖p dt = k <∞.

This implies that ω0 < 0 and k ≥ (|ω0|p)−1. The stated bound follows immediately.

If we put

E = {t ≥ 0 : ‖eAt‖ ≥ 1}

then k ≥ |E|. If E ⊇ [0, k) then E equals [0, k) or 0, k] and ‖eAt‖ = 0 for almost
all t > k. The subadditivity of the norm then implies that ‖eAt‖ = 0 for all t > k.
If E ⊇ [0, k) is false then there exists t < k for which ‖eAt‖ < 1. �

Surprisingly one can obtain more detailed conclusions from weaker hypotheses in
the Hilbert space context. Theorems 10.3, 10.4 and 10.10 are of this type. No
analogue of the Eisner-Zwart theorem exists in a Banach space context.

Theorem 10.3 Let eAt be a one-parameter semigroup acting on the Banach space
B and let 0 < k <∞. Each of the following statements implies the next.

1. ∫ ∞
0

‖eAtv‖ dt ≤ k‖v‖ for all v ∈ B.
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2. If
M = sup

0≤t≤k
‖eAt‖ (10.2)

then ‖eAt‖ ≤M for all t > k. Moreover Spec(A) ⊆ {z : Re (z) < 0} and

‖(iyI − A)−1‖ ≤ k

for all y ∈ R.

3. Spec(A) ⊆ {z : Re (z) ≤ −1/k} and

‖(zI − A)−1‖ ≤ 2M

Re (z) + 1/k
(10.3)

for all z such that Re (z) > −1/k.

4. Assume in addition that B is a Hilbert space. Then there exists K <∞ such
that

‖eAt‖ ≤ K(1 + t)e−t/k

for all t ≥ 0.

Proof

1⇒2. If t > k then

‖eAtv‖ ≤ ‖eAs‖ ‖eA(t−s)v‖ ≤M‖eA(t−s)v‖

for all s ∈ [0, k] and v ∈ H. Therefore

‖eAtv‖ ≤ M
k

∫ k

0

‖eA(t−s)v‖ ds ≤M‖v‖

for all v ∈ H. This proves the first assertion of item 2. The proof of the second
assertion involves a small modification of the proof of Theorem 8.2.1 of LOTS.

2⇒3. This follows Lemma 3.11.7 of ‘O Staffan, Well-posed Linear Systems, Ency-
clopedia of Mathematics and its Applications, no. 103, Camb. Univ. Press, 2009’.
We break the proof into three cases, and use the inequality M ≥ 1. If z = −u− iv
where 0 ≤ u < 1/k and v ∈ R, we use the resolvent perturbation expansion (8.3)
and Corollary 8.1.4 of LOTS. We have

‖(zI − A)−1‖ = ‖ {uI + (A+ ivI)}−1 ‖

≤ 1

‖(A+ ivI)−1‖−1 − u

≤ 1

1/k − u

=
1

1/k + Re (z)
.
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If 0 ≤ Re (z) ≤ 1/k then

‖(zI − A)−1‖ ≤ k ≤ 2

1/k + Re (z)
.

Finally if 1/k ≤ Re (z) <∞ then (10.2) implies that

‖(zI − A)−1‖ ≤ M

Re (z)
≤ 2M

1/k + Re (z)
.

3⇒4. If one puts Z = A + k−1I and w = z + 1/k then (10.3) becomes ‖(wI −
Z)−1‖ ≤ 2M/Re (w) for all w such that Re (w) > 0, so the Eisner-Zwart theorem
(Theorem 10.6.5 of LOTS) is directly applicable. �

A slight modification to the proof yields a more general result below. A sharper
result for the case p = 2 is presented in Theorem 10.10.

Theorem 10.4 Let eAt be a one-parameter semigroup acting on the Banach space
B. Let 0 < k < ∞ and 1 < p < ∞. Each of the following statements implies the
next.

1. ∫ ∞
0

‖eAtv‖p dt ≤ k‖v‖p for all v ∈ B.

2. If
M = sup

0≤t≤k
‖eAt‖

then ‖eAt‖ ≤M for all t > k. Moreover Spec(A) ⊆ {z : Re (z) ≤ 0} and

‖(zI − A)−1‖ ≤ k1/p

(qx)1/q

for all z such that Re(z) > 0, where 1
p

+ 1
q

= 1.

3. Spec(A) ⊆ {z : Re (z) ≤ −1/(pk)} and

‖(zI − A)−1‖ ≤ 2M

Re (z) + 1/(pk)
(10.4)

for all z such that Re (z) > −1/(pk).

4. Assume in addition that B is a Hilbert space. Then there exists K <∞ such
that

‖eAt‖ ≤ K(1 + t)e−t/(pk)

for all t ≥ 0.
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Proof

1⇒2. The proof of the first assertion of item 2 is a small adaptation of that in
Theorem 10.3. If z = x+ iy where x > 0 and y ∈ R then

‖(zI − A)−1‖ ≤
∫ ∞

0

‖eAt‖e−xt dt

≤
{∫ ∞

0

‖eAt‖p dt

}1/p{∫ ∞
0

e−xtq dt

}1/q

≤ k1/p

(qx)1/q
.

2⇒3. If x > 0 is small enough, we deduce from the resolvent perturbation expan-
sion that

‖(iyI − A)−1‖ ≤ ‖ {xI − (zI − A)}−1 ‖

≤ ‖(zI − A)−1‖
1− x‖(zI − A)−1‖

=
{
‖(zI − A)−1‖−1 − x

}−1

≤
{

(qx)1/q

k1/p
− x
}−1

=

{
x

(
q

(qxk)1/p
− 1

)}−1

.

On putting x = 1
qk

we obtain

‖(iyI − A)−1‖ ≤ pk

for all y ∈ R. The remainder of the proof of the theorem uses 2 ⇒ 3 and then
3⇒ 4 of Theorem 10.3, but with k replaced by pk. �

10.7 Growth bounds using the Schur decompo-

sition

In this section we restrict attention to n × n matrices. The ideas in this section
are due to C F van Loan.

The Schur decomposition theorem states that for every square matrix A, there
exists a unitary matrix U such that UAU∗ = D + T where D is diagonal and T
is strictly upper triangular. If the eigenvalues of A are all distinct there are n!
such decompositions, up to trivial phases, but if A has any degenerate eigenvalues
there may be infinitely many decompositions. It is not clear how to find the
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decomposition that minimizes the norm of T . If one uses the Frobenius (Hilbert-
Schmidt) norm this problem does not arise because T then has the same norm for
all decompositions, by

‖A‖2F = ‖D‖2F + ‖T‖2F =
n∑
i=1

|λi(A)|2 + ‖T‖2F .

Since ‖B‖ ≤ ‖B‖F ≤
√
n‖B‖ for all n×n matrices B, the issue is not a huge one.

‖T‖F is sometimes used as a measure of non-normality.

Forgetting the unitary transformation, if A = D + T where D is diagonal with
entries λr = −µr + iνr where µr > 0 and νr ∈ R and T is strictly upper triangular
then eAt decreases exponentially for large t > 0 with approximate decay rate e−µ1t,
assuming that µ1 ≤ µr for all r > 1.

Theorem 10.5 Continuing with the notation above we have

e−µ1t ≤ ‖eAt‖ ≤ e−µ1ten(‖T‖t)

for all t ≥ 0, where

en(s) =
n−1∑
r=0

sr

r!
.

Proof The lower bound is an immediate consequence of the fact that every diag-
onal entry of D is an eigenvalue of A. To obtain the upper bound we estimate the
terms in the finite perturbation expansion

eAt = eDt +
n−1∑
r=1

Jr(t)

where

Jr(t) =

∫
A(r,t)

eD(t−sr)T eD(sr−sr−1)T . . . eD(s2−s1)T eDs1 drs

and A(r, t) = {s ∈ Rr : 0 ≤ s1 ≤ . . . ≤ sr ≤ t}. The remaining terms in the
infinite perturbation expansion (11.10) of LOTS vanish because T is strictly upper
triangular and eDs is diagonal for all s ∈ Rr. Now

‖Jr(t)‖ ≤
∫
A(r,t)

‖eD(t−sr)T eD(sr−sr−1)T . . . eD(s2−s1)T eDs1‖ drs

≤ e−µ1t‖T‖rtr/r!

because ‖eDs‖ = e−µ1s for all s ≥ 0 and |A(r, t)| = tr/r! The theorem follows
immediately. �

66



Example 10.6 The leading term in the long time asymptotics can be determined
exactly if D = 0. One then has

eTt =
n−1∑
r=0

T rtr/r!

so
‖eTt‖ = ‖T n−1‖tn−1/(n− 1)! +O(tn−2)

as t→∞. Moreover T n−1
r,s = 0 unless r = 1 and s = n, so

‖T n−1‖ = |(T n−1)1,n| = |T1,2T2,3 . . . Tn−1,n|.

�

10.8 Growth bounds using a Liapounov operator

K Veselić and Yu M Nechepurenko have introduced another measure of non-
normality which leads to different bounds on ‖eAt‖. The results below are taken
from ‘K Veselić, Bounds for exponentially stable semigroups, Lin. Alg. Appl. 358
(2003) 309-333’. Similar bounds for matrices were obtained in ‘Yu M Nechep-
urenko, A bound for the matrix exponential, J. Comp. Math. Phys. 42 (2002)
131-141’. The methods used are very closely related to those described in Sec-
tion 10.6 of LOTS, but Lemma 10.8 provides a method of computing the relevant
index ‖X‖ in applications.

We consider an n× n matrix A with eigenvalues λr = −µr + iνr where νr ∈ R for
all r and 0 < µ1 ≤ µ2 ≤ . . .. We then define

X =

∫ ∞
0

eA
∗teAt dt. (10.5)

This integral converges and defines a non-negative self-adjoint matrix X. The
next lemma shows that the constant c = 2µ1‖X‖ could be used as a measure of
non-normality of A.

Lemma 10.7 One has c ≥ 1 for all A of the above form. If A is normal then
c = 1.

Proof If Ax = λ1x and ‖x‖ = 1 then

‖X‖ ≥ 〈Xx, x〉 =

∫ ∞
0

‖eAtx‖2 dt =

∫ ∞
0

|eλ1t|2 dt =
1

2µ1

.

If A is normal and UAU∗ = D for some unitary U and diagonal D then

‖X‖ = ‖UXU∗‖ = ‖
∫ ∞

0

eD
∗teDt dt‖ =

1

2µ
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assuming that max Re Spec(D) = −µ < 0. �

The matrix X may be computed numerically by using standard routines for the
continuous Liapounov problem (these involve reducing A and A∗ to triangular form
independently) once the following is established.

Lemma 10.8 The matrix X is the unique solution of

A∗X +XA = −I. (10.6)

Proof The uniqueness of the solution of (10.6) follows from the fact that λ + λ
is non-zero for every eigenvalue λ of A. If we define the ‘superoperator’ L on the
space of n× n matrices by L(B) = A∗B +BA then

eLt(B) = eA
∗tBeAt

and eLt → 0 as t→ +∞. Moreover

−I =

∫ ∞
0

LeLt(I) dt

= L

∫ ∞
0

eA
∗teAt dt

= L(X)

= A∗X +XA.

�

Veselić contains the following results, attributing the second one to Godunov,
Kiriljuk and Kostin in 1990. He assumes that eAt is a strongly continuous one-
parameter semigroup acting on the Hilbert spaceH and that the weakly convergent
integral (10.5) converges to define a non-negative bounded self-adjoint operator X.
Typically X−1 is unbounded.

Theorem 10.9

‖X1/2eAt‖ ≤ ‖X1/2‖e−t/(2‖X‖)

for all t ≥ 0 and hence

‖eAt‖2 ≤ ‖X‖ ‖X−1‖e−t/‖X‖

The second bound may not be useful if X−1 has a very large norm or if it is
unbounded, but Veselić and Nechepurenko have other bounds in that case. The
following is the simplest.

Theorem 10.10 (Veselić, Theorem 2) Let eAt be a one-parameter semigroup
on the Hilbert space H and suppose that the non-negative self-adjoint operator X
defined by

〈Xu, v〉 =

∫ ∞
0

〈eAtu, eAtv〉 dt
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is bounded. Then

‖eAt‖ ≤

(
sup

0≤τ≤‖X‖
‖eAτ‖

)
exp

(
−t− ‖X‖

2‖X‖

)
for all t ≥ 0.

Proof Let ψ ∈ H and put c = ‖X‖. Then the differential inequality

d

dt
〈XeAtψ, eAtψ〉 =

d

dt

∫ ∞
t

〈eAsψ, eAsψ〉 ds

= −〈eAtψ, eAtψ〉
≤ −c−1〈XeAtψ, eAtψ〉

implies that
〈XeAtψ, eAtψ〉 ≤ e−t/c〈Xψ,ψ〉

for all t ≥ 0. If a > 0 and 0 ≤ t− a ≤ s ≤ t then

‖eAtψ‖2 ≤ ‖eA(t−s)‖2‖eAsψ‖2 ≤ C‖eAsψ‖2

where C = sup0≤u≤a ‖eAu‖2. If t ≥ a we deduce that

‖eAtψ‖2 =
1
a

∫ t

t−a
‖eAtψ‖2 ds

≤ C
a

∫ t

t−a
‖eAsψ‖2 ds

≤ C
a

∫ ∞
t−a
‖eAsψ‖2 ds

=
C
a
〈XeA(t−a)ψ, eA(t−a)ψ〉

≤ C
a

e−(t−a)/c〈Xψ,ψ〉

≤ Cc
a

e−(t−a)/c‖ψ‖2.

The proof is completed by putting a = c, and noting that the case 0 ≤ t ≤ ‖X‖ is
trivial. �

Note that if one has the further inequality

Re 〈Aψ,ψ〉 ≤ a‖ψ‖2

for all ψ ∈ Dom(A) then ‖eAt‖ ≤ eat for all t ≥ 0, so the theorem implies that

‖eAt‖ ≤ exp

(
a‖X‖ − t− ‖X‖

2‖X‖

)
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for all t ≥ ‖X‖.
The following example shows that Theorem 10.10 yields very poor long term de-
cay bounds in some cases. Theorem 10.3 is no better. However, the long time
asymptotic decay rate of a semigroup whose generator is a moderately sized Jor-
dan matrix is very unstable with respect to small perturbations, so one cannot
expect good bounds in such cases.

Example 10.11 If

A =

(
−1 c
0 −1

)
where c ≥ 0, then

eAt = e−t
(

1 ct
0 1

)
for all t ≥ 0, so eAt is a one-parameter contraction semigroup if 0 ≤ c ≤ 1, but not
if c ≥ 3. A direct calculation shows that

X =

(
1/2 c/4
c/4 1/2 + c2/4

)
.

If c = 1 then ‖X‖ ∼ 1.184 so 1/(2‖X‖) < 1/2, although the correct exponent for
this case is 1. For very large c one obtains

1

2‖X‖
=

2

c2
+O(c−1)

but the correct exponent remains 1 for all c > 0. �
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Chapter 11

Perturbation Theory

11.1 Perturbations of unbounded operators

page 329,-11. Replace the final f by fθ.

The following continuation of the section obtains a more detailed analysis of per-
turbations of the spectrum than that in Rellich’s Theorem 11.1.6 when the spectral
projection is of finite rank. We also assume that the operator A is bounded. This
does not result in an essential loss of generality, because the spectrum of an un-
bounded operator A is directly related to that of any of its resolvent operators
by Lemma 8.1.9. Perturbation theory is well understood when all the operators
concerned are self-adjoint, and we concentrate on issues that arise when non-trivial
Jordan forms are involved.

For the remainder of the section we assume that A is a bounded operator on the
Banach space B, that a ∈ C is an isolated point of Spec(A), and that the spectral
projection P0 of A associated with a by Theorem 1.5.4 has finite rank N . The
number N is called the algebraic multiplicity of a while the dimension M ≤ N
of the space of all eigenvectors of A associated with the eigenvalue a is called its
geometric multiplicity. In the definition of P0 we take the closed contour to be a
circle γ with centre a and radius δ > 0, where δ is small enough so that a is the
only point of Spec(A) inside γ.

We next assume that Az is an analytic family of bounded operators in the sense of
Section 1.4, defined for all z ∈ C such that |z| < ε for some ε > 0. We also assume
that A0 = A.

Theorem 11.1 If ε > 0 is small enough then Spec(Az)∩ γ = ∅ for all z such that
|z| < ε. The spectral projection Pz associated with the part of the spectrum of Az
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inside γ depends analytically on z, and it has rank N for all such z.

Proof This is an obvious adaptation of the proof of Theorem 11.1.6. One also
needs to note that F (λ, z) = (λI − Az)−1 exists and is a jointly analytic function
of (λ, z) provided λ is in a small enough neighbourhood of γ and |z| is sufficiently
small; this uses (1.5) in Theorem 1.2.9. �

Theorem 11.2 If N = 1 then Az has a single eigenvalue λz inside γ for all small
enough z. Moreover λz is an analytic function of z and it satisfies

λz = a+ z〈A′0x0, φ0〉+O(z2)

where Ax0 = ax0, A∗φ0 = aφ0 and 〈x0, φ0〉 = 1.

Proof The spectral projection P0 of A corresponding to the eigenvalue a is of rank
1 and therefore may be written in the form P0f = 〈f, φ0〉x0 where Ax0 = ax0 and
〈x0, φ0〉 = 1. Since P ∗0 is the corresponding projection of A∗, it also follows that
A∗φ0 = aφ0.

If x̃z = Pzx0 then x̃z is an analytic function of z, Azx̃z = λzx̃z and 〈x̃z, φ0〉 6= 0
provided z is small enough. Putting

xz = x̃z/〈x̃z, φ0〉

we deduce that xz is an analytic function of z, Azxz = λzxz and 〈xz, φ0〉 = 1 for
all small enough z. Hence 〈x′0, φ0〉 = 0. A similar construction yields an analytic
function φz ∈ B∗ such that A∗zφz = λzφz, 〈x0, φz〉 = 1 for all small enough z and
hence 〈x0, φ

′
0〉 = 0.

We now expand both sides of

〈Az, xz, φz〉 = λz〈xz, φz〉

as power series in z and identify the coefficients of 1 and z. This yields λ0 = a and
λ′0 = 〈A′0x0, φ0〉 after simplification. �

The next lemma will allow us to replace Az by a similar operator for which the
corresponding spectral projection does not depend on z.

Lemma 11.3 (Kato) 1 Let P, Q satisfy P 2 = P and Q2 = Q and let S = I −
(P −Q)2 and T = I − P −Q. Then T 2 = S and TQ = PT . If ‖P −Q‖ < 1 then
T is invertible and TQT−1 = P .

Proof The identities in the first sentence are proved by direct algebraic calcula-
tions. Under the final condition, S is invertible by Problem 1.2.8, so T is invertible
and T−1 = S−1T = TS−1. The final identity follows. �

1See section 1.4.6 of T. Kato, Perturbation Theory of Linear Operators, 1st edition, Springer,
1966. Note that T = (I − P )(I −Q)− PQ, whereas Kato considers T ′ = (I − P )(I −Q) + PQ.
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Lemma 11.4 There exists σ > 0 and an analytic family of bounded invertible
operators Tz defined for all z such that |z| < σ and satisfying T0 = I and

TzPzT
−1
z = P0.

Proof This follows directly from Lemma 11.3 by putting P = P0 and Q = Pz. �

If one puts Bz = TzAzT
−1
z then Bz is an analytic family of operators whose spectra

coincide with those of Az for every z. However, the spectral projection of Bz

associated with the region inside γ equals P0 by Lemma 11.4. Therefore we can
determine the spectrum of Az inside γ by considering the restrictions Mz = Bz|D
to the fixed finite-dimensional subspace L = P0B.

If N > 1 then the eigenvalues of Az need not be analytic functions of z. However,
the invariance of the trace under similarity transformations implies that

tr[AzPz] = tr[BzP0] = tr[Mz]

for all small enough z. Therefore the trace is an analytic function of z. Formulae
for calculating the coefficients of its power series expansion have been given by
Kato.2

For the remainder of this section we consider the linear family A + zB of N × N
matrices, assuming that A takes its Jordan canonical form for the standard basis
of CN and that 0 is the only eigenvalue of A. More explicitly A has a diagonal
block matrix in which each diagonal entry is an elementary M ×M Jordan matrix
JM of the form

JM,r,s =

{
1 if s = r + 1 and 1 ≤ r ≤M − 1,
0 otherwise.

The eigenvalues of A+ zB coincide with the zeros λ of

F (λ, z) = λN + λN−1fN−1(z) + . . .+ λf1(z) + f0(z)

where fr are polynomials. The asymptotic form of the zeros as |z| → 0 can be
analyzed using Rouche’s theorem in complex analysis. The range of possibilities is
very complicated and we content ourselves with a few examples and some general
comments.

Problem 11.5 Write down the formula for the eigenvalues of A+ zB where

A =

(
0 1
0 0

)
, B =

(
a b
c d

)
.

2See section 2.2 of T. Kato, Perturbation Theory of Linear Operators, 1st edition, Springer,
1966.
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and prove that the eigenvalues have leading asymptotics

λ = ±c1/2z1/2 +O(|z|)

as |z| → 0. This example suggests, correctly, that certain coefficients of the per-
turbation might be more important than others in determining the leading asymp-
totics for other values of N . �

Problem 11.6 We shall need the following result. Let B be the N × N matrix
with entries

Br,s =


br if s = r + 1 and 1 ≤ r ≤ N − 1,
bN if r = N and s = 1.
0 otherwise.

Prove that B is similar to the matrix bU where b = (b1b2 . . . bN)1/N and U is the
unitary matrix that corresponds to the choice br = 1 for all r above. Deduce that

Spec(B) = {bωr : 0 ≤ r ≤ N − 1}

where ω = e2πi/N . �

Problem 11.7 Let A = JN and let B be the N ×N matrix with entries

Br,s =

{
1 if r = N and s = 1,
0 otherwise.

Prove that

Spec(A+ zB) = {z1/Nωr : 0 ≤ r ≤ N − 1}

where ω = e2πi/N . �

Problem 11.8 Let A =
(
JM 0
0 JN−M

)
for some M < N , and let B be the N × N

matrix with entries

Br,s =


1 if r = M and s = M + 1,
1 if r = N and s = 1,
0 otherwise.

Prove that

Spec(A+ zB) = {z2/Nωr : 0 ≤ r ≤ N − 1}

where ω = e2πi/N . �

Problem 11.9 Let A = JN and B = J∗N . Prove that A+zB is similar to z1/2(JN+
J∗N). This implies that every eigenvalue of A+ zB is of order z1/2 as z → 0. Many
other fractional powers of z appear in other examples. �

74



Typically the eigenvalues of A+zB are uniformly distributed around a circle whose
radius is a fractional power of |z|, to leading order asymptotically as |z| → 0.
Rigorous studies of this problem started with Lidskii, but have continued up to
the present time.3

There is another approach to this problem, which assumes that the coefficients of
B are chosen randomly and independently according to some probability law. The
asymptotic behaviour of the spectrum of A + zB may then be determined with
probability 1 in a suitable sense.4

11.2 Relatively compact perturbations

page 332,1. Replace ‘by Theorem 4.2.4’ by ‘see Section 4.2’.

page 333,-9. Replace the displayed equation by

R(a,H) = R(a,H0)(I − V R(a,H0))
−1

11.3 Constant coefficient differential operators on

the half-line

page 337,-5. In order to apply Lemma 11.2.1 one has to prove that gn := fn/|||fn|||
converges weakly to zero inDL. Since |||gn||| = 1 for all n, a density argument implies
that it is sufficient to prove that 〈gn, h〉 → 0 for all h ∈ Cc[0,∞). This follows
from the fact that supp(gn) ⊆ [n, 4n].

page 338,1. Replace a2n = 0 by a2n = 1.

page 338,10. Replace γ by σ.

page 338. A formulation of Theorem 11.3.4 in terms of the Fredholm index and
subject to general boundary conditions at 0 is given in Theorem XVIII.6.2 of I.

3J. Moro, J. V. Burke and M. L. Overton, On The Lidskii-Vishik-Lyusternik perturbation
theory for eigenvalues of matrices with arbitrary Jordan structure, Siam J. Matrix Anal. Appl.
18, no. 4 (1997) 793-817; A. C. M. Rana, M. Wojtylak, Eigenvalues of rank one perturbations of
unstructured matrices, Linear Alg. Applic. 437 (2012) 589600.

4M. Hager and J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint
operators, Math. Annalen 342 (1) (2008) 177-243; E. B. Davies and M. Hager: Perturbations of
Jordan matrices. J. Approx. Theory 156 (2009) 82-94.
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Gohberg, A. Goldberg and M. A. Kaashoek, Classes of Linear Operators, vol. 1,
Birkhäuser, Basel, 1990.

page 339,6,8,12. Replace real by imaginary and ξr by iξr in several places.

page 340,1. Delete the two brackets.

page 340,13. The term ‖f‖ is missing.

page 350,17. Replace Section 5.1 by Section 11.1.

page 351,-5. a core

page 353,-3 and -2 and -1. Replace (b+ |c+ω|) by (b+ ε|c+ω|) on each line.

page 354,1 and 2 and 3. Replace b by bN on each line.
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Chapter 12

Markov chains and graphs

page 357,7. Delete commas around word Markov.

page 357,-16. Replace subscript 2 by subscript 1.

page 358,-6. Delete final ) .

page 360,4. If S is any subset of X

page 360,-9. End equation with ... = c‖f‖ .

page 370, eq (12.11). Replace t on second line of equation by n.

page 374,-2. See Theorem 2.4.4 on p. 65.

page 375, Lemma 12.6.1. State that J is the incidence matrix of a k-tree.
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Chapter 13

Positive semigroups

13.6 Positive semigroups on C(X)

page 405. The following new material should be included just before Theo-
rem 13.6.12.

Theorem 13.6.12 extends one result of the Perron-Frobenius theory, which applies
to all non-negative n× n matrices. We start with one of the original results of the
P-F theory.

Lemma 13.1 Let M be an n×n Markov matrix and let S ⊆ {1, . . . , n} be invari-
ant in the sense that i ∈ S and Mi,j > 0 implies j ∈ S. Then the restriction A of
M to i, j ∈ S is also a Markov matrix and Spec(A) ⊆ Spec(M).

Proof If one permutes the indices so that S = {1, . . . ,m} then one may write

M =

(
A 0
C D

)
from which all of the assertions follow by inspection. �

Lemma 13.2 Let M be an n× n Markov matrix and let Mf = zf where |z| = 1
and ‖f‖∞ = 1. Then S = {i : |fi| = 1} is an invariant set. Moreover fj = zfi if
i, j ∈ S and Mi,j > 0.

Proof If i ∈ S then

1 =
n∑
j=1

Mi,j
fj
zfi

=
n∑
j=1

Mi,jRe

(
fj
zfi

)
≤

n∑
j=1

Mi,j

∣∣∣∣ fjzfi
∣∣∣∣ ≤ 1.

Therefore |fj| = |zfi| = 1 and fj = zfi whenever Mi,j > 0. �
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Theorem 13.3 (Frobenius) If M is an n×n Markov matrix and z is an eigen-
value of M satisfying |z| = 1 then zm is an eigenvalue of M for all m ∈ Z.
Moreover zs = 1 for some s ∈ {1, . . . , n}.

Proof The two lemmas allow us to reduce to the case in which |fi| = 1 for all
i ∈ {1, . . . , n}. Since Mf = zf , it is sufficient to prove the theorem for positive
integers m, and we do this by induction. If Mg = zmg then

(M(fg))i =
n∑
j=1

Mi,jfjgj

=
n∑
j=1

Mi,jzfigj

= (zfi)(z
mgi)

= zm+1(fg)i,

so zm+1 is an eigenvalue with eigenvector fg. �

See Schaefer, Banach Lattices and Positive Operators, Theorem 1.2.7, p.8.
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Chapter 14

NSA Schrödinger operators

14.3 Bounds in one space dimension

The comment immediately after the proof of Theorem 14.3.1 is incorrect. One may
use the reflection principle to obtain a similar, but worse, bound on the half-line
subject to Dirichlet boundary conditions at 0. However, this does not yield a sharp
result, which, surprisingly, is different from that for the whole line. The theorem
below refers to a function g : R→ [1, 2) defined by

g(a) = sup
y≥0
|eiay − e−y|.

One easily sees that g(0) = 1 and lima→±∞ g(a) = 2. We do not attempt to specify
the precise domain of the operator H involved.

Theorem 14.1 (Frank, Laptev, Seiringer1) Let H = H0 + V act in L2(0,∞),
where H0f = −f ′′ subject to Dirichlet boundary conditions at 0 and V ∈ L1(0,∞),
so that H has essential spectrum [0,∞) together with a possible sequence of discrete
eigenvalues, each with finite algebraic multiplicity. If λ = |λ|eiθ is an eigenvalue of
H with 0 < θ < 2π, then

|λ| ≤ [g(cot(θ/2))]2

4
‖V ‖21.

This bound is sharp.

The proof of Theorem 14.1 is similar to, but more difficult than, that of The-
orem 14.3.1, relying heavily on bounds derived from the formula for the Green
function G(z, x, y) of (H0 + z2)−1, namely

G(z, x, y) =
e−z|x−y|

2z
− e−z(x+y)

2z
.

1R. L. Frank, A. Laptev, R. Seiringer, A sharp bound on eigenvalues of Schrödinger operators
on the half-line with complex-valued potentials, Oper. Theory: Adv. and Applic., 214 (2010)
39-44.
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Since LOTS was written the multi-dimensional analogue of this theory has devel-
oped a lot. New results are due to Laptev, Safronov and Frank. The following is
one of several such theorems.

Theorem 14.2 (Frank 2) Let d ≥ 2 and 0 < γ ≤ 1/2.Then any eigenvalue
λ ∈ C\[0,∞) of the Schrödinger operator −∆+V with complex potential V acting
in L2(Rd) satisfies

|λ|γ ≤ Dγ,d

∫
Rd

|V (x)|γ+d/2 dx.

The proof of Theorem 14.2 is not applicable to the results in this section dealing
with long range potentials, i.e. potentials that decay slowly as |x| → ∞.

14.5 The NSA harmonic oscillator

page 425. Theorem 14.5.1 establishes that the biorthogonal pair of sequences
φn and φ∗n is wild in the sense defined on page 83.

2R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials, Bull.
London Math. Soc. 43(4) (2011) 745-750.
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Chapter 15

Finite range matrices

15.1 Introduction

The material in this new chapter can be presented at many different levels. The
underlying space may be RN , a Riemannian manifold, a metric space, ZN or
N, the set of natural numbers, for example. The operator A of interest may be
a differential operator or a bounded operator presented by means of its matrix
elements. Finite range operators may be investigated directly or by using C*-
algebra theory, which enables one to classify the essential spectra of such operators
into parts geometrically.1

In this chapter we restrict attention to a discrete underlying space X. We assume
that (X, E) is a countable discrete graph in which every edge in E is an unordered
pair (x, y) of vertices in X; we will write x ∼ y instead of (x, y) ∈ E . We assume
that there is a uniform upper bound k on the degrees of the vertices and that X
is connected. Let d(x, y) denote the graph distance between x and y, where each
edge is taken to have length 1. If X = ZN or X = N then we assume that the
associated graph structure is invariant under translations.

A bounded operator A on `2(X) is said to be have finite range (or band width) ρ
if Am,n = 0 whenever d(m,n) > ρ. A finite range operator A acting in `2(Z) or
`2(Z+) is said to have a band matrix, and is said to be tridiagonal if it has range
1, i.e. Ar,s = 0 whenever |r − s| > 1.

The inverse of a band matrix is almost never a band matrix, but there are some
important cases in which this happens.2 This is relevant to wavelet transforms,

1See E. B. Davies, Decomposing the essential spectrum, J. Funct. Anal. 257 (2009) 506-
536; E. B. Davies and V. Georgescu, C*-algebras associated with some second order differential
operators, preprint 2011; S. N. Chandler-Wilde and M. Lindner, Limit operators, Collective
Compactness, and the Spectral Theory of Infinite Matrices, Mem. Amer. Math. Soc. No. 989,
2011, and many further references there.

2G. Strang, Fast transforms: Banded matrices with banded inverses, PNAS July 13, 2010 vol.
107 no. 28, 12413-12416.
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and allows very rapid numerical computations of the transform and its inverse.
Note that the set of all matrices that are banded and inverse banded is a group.

Operators that are periodic with respect to some discrete group arise in many dif-
ferent contexts and are the subject of Section 15.2. The material here is classical,
but it is usually written down for differential operators.3 Section 15.5 describes
the spectra of infinite triangular matrices that have different periodic structures
on the positive half-line and the negative half-line. Some of the results were moti-
vated by the study of certain classes of infinite random tridiagonal matrices,4 but
the treatment here is more systematic and involves the use of what we call the
stable spectrum of an operator. The fact that infinite triadiagonal matrices can be
investigated by using transfer matrices as in Section 15.4 is classical and many of
the formulae in this chapter can be extended to block tridiagonal matrices.5

Let X be a graph with the above properties and let K be a finite-dimensional
Hilbert space and let `2(X,K) denote the space of square-summable K-valued
functions on X. The theory developed in this chapter is much more limited than
that in other recent literature, where X = ZN , `2 is replaced by `p and K is
allowed to be an infinite-dimensional Banach space.6 On the other hand, the final
theorem of the chapter, Theorem 15.20, can be extended to the graph context.7

Unfortunately the standard theory of limit operators cannot be applied as it stands
to graphs because there is no translation group acting on X.

If Am,n ∈ L(K) for every m, n ∈ X, and Am,n = 0 if d(M,n) > ρ, then the formula

(Af)m =
∑
n∈X

Am,nfn (15.1)

may be used to evaluate Af for any f : X → K because the finite range condition
implies that the sums involved are all finite. Specifically, given m ∈ X

#{n ∈ X : d(m,n) ≤ ρ} ≤ kρ+1.

3See, for example, M. S. P. Eastham, Spectral Theory of Periodic Differential Equations, Scot-
tish Acad. Press, London, 1973, P. Kuchment, Floquet theory for partial differential equations,
Birkhäuser, Basel, 1993, and M. Reed and B. Simon, Methods of Modern Mathematical Physics,
IV, Academic Press, New York, 1975.

4See E. B. Davies, Spectral properties of random non-self-adjoint matrices and operators, Proc.
Roy. Soc. London A 457 (2001) 191-206 and E. B. Davies, Spectral Theory of Pseudo-ergodic
Operators, Commun. Math. Phys. 216 (2001) 687-704.

5See L G Molinari, Determinants of block tridiagonal matrices, Linear Alg. Appl. 429 (2008)
2221-2226, and other sources cited there.

6See V. S. Rabinovich, S. Roch, and B. Silbermann, Limit Operators and Their Applications in
Operator Theory, Birkhäuser, 2004, and S. N. Chandler-Wilde and M. Lindner, Limit Operators,
Collective Compactness, and the Spectral Theory of Infinite Matrices, Mem. Amer. Math. Soc.
no. 989, Amer. Math. Soc., Providence, RI, 2011.

7See E. B. Davies, Stable Spectrum of an Operator on an Infinite Discrete Graph, preprint,
2011.
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Lemma 15.1 If A is an infinite L(K)-valued matrix with finite range ρ then A is
associated with a bounded operator on `2(X,K) if and only if the constant

c = sup{‖Am,n‖ : m, n ∈ X}

is finite. In this case

c ≤ ‖A‖ ≤ ckρ+1.

Proof The lower bound is elementary and the upper bound is a discrete version
of Corollary 2.2.15 of LOTS. �

Operators with finite range also act on certain weighted spaces `2(X,w), in which
the norm is given by

‖f‖2w =
∑
x∈X

|f(x)|2w(x).

Lemma 15.2 Let A satisfy the conditions of Lemma 15.1. Let c > 0 and let
w : X → (0,∞) satisfy c−1 ≤ w(x)/w(y) ≤ c for all x, y satisfying x ∼ y. Then
the formula (15.1) defines a bounded operator Aw on `2(X,w).

Proof Let U : `2(X)→ `2(X,w) be the unitary operator (Uf)(x) = w(x)−1/2f(x)
and let B = U−1AwU , so that Aw is a bounded operator on `2(X,w) if and only if
B is a bounded operator on `2(X). We have (Bf)(x) =

∑
y∈X Bx,yf(y) where

Bx,y = w(x)1/2w(y)−1/2Ax,y

for all x, y ∈ X. Since |Ax,y| ≤ ‖A‖ and all x, y ∈ X and Ax,y = 0 unless
d(x, y) ≤ ρ, we deduce that |Bx,y| ≤ cρ/2‖A‖ for all x, y ∈ X and Bx,y = 0 unless
d(x, y) ≤ ρ. Therefore B is a bounded operator on `2(X) by Lemma 15.1. �

The following theorem is one of a range of related results, many of which relate to
differential operators. We say that f is subexponential at infinity if fε ∈ `2(ZN ,K)
for all ε > 0, where fε,n = e−ε|n|fn for all n ∈ ZN .

Theorem 15.3 (Sch’nol) Let A be a bounded operator on `2(ZN ,K) with finite
range ρ. If f : ZN → K is subexponential at infinity and it is not identically zero
and Af = λf , then λ lies in the `2 spectrum of A.

Proof Given f as above and ε > 0, let gε = Afε − λfε. Then

‖gε,n‖ = ‖
∑
|s|≤ρ

An,n+se
−ε|n+s|fn+s − λe−ε|n|fn‖

= ‖
∑
|s|≤ρ

An,n+rse
−ε|n+s|fn+s − λe−ε|n|fn − e−ε|n|(

∑
|s|≤ρ

An,n+sfn+s − λfn)‖

= ‖
∑
|s|≤ρ

An,n+s

(
e−ε|n+s| − e−ε|n|

)
fn+s‖.
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We now use the bound

|e−ε|n+s| − e−ε|n|| ≤ 2ερe−ε|n+s|

provided |s| ≤ ρ and 0 < ερ < 1. This yields

‖gε,n‖2 ≤ 4ε2ρ2
( ∑
|s|≤ρ

‖An,n+s‖ ‖fε,n+s‖
)2

≤ 4ε2ρ2k2
( ∑
|s|≤ρ

‖fε,n+s‖
)2

≤ 4ε2ρ2k2(2ρ+ 1)N
∑
|s|≤ρ

‖fε,n+s‖2

where k is the constant in Lemma 15.1. Summing over n, we obtain

‖(A− λI)fε‖22 ≤ 4ε2ρ2k2(2ρ+ 1)2N‖fε‖22.

Since ε > 0 may be arbitrarily small, it follows that A−λI cannot have a bounded
inverse, so λ ∈ Spec(A). �

15.2 Periodic matrices

The study of periodic differential operators has obvious importance in the quantum
theory of electron transport in crystal lattices. This is also true in two dimensions
when modelling surface waves. However, there is now another application, to the
propagation of EM waves in periodic microstructures, which can be manufactured
to have a wide range of forms. Application to optical, acoustic and water wave
cloaking are now being investigated using similar ideas. This section provides an
introduction to the underlying mathematics. A substantial part of this section may
also be found in Section 4.4 of LOTS, which also contains further results.

An operator A on `2(ZN) is said to be G-periodic if G is a group of translations
on ZN and AUg = UgA for all g ∈ G, where (Ugf)n = fn+g for all f ∈ `2(ZN). If
N = 1 and G = pZ, we say that A has period p. Our first result about periodic
operators holds at a greater level of generality.

Theorem 15.4 Let A be a bounded operator on the Hilbert space H and let AU =
UA where U is a unitary operator such that limn→∞ U

nf = 0 weakly for all f ∈ H.
Then

Spec(A) = Ess(A).

where Ess(A) denotes the essential spectrum of A. Moreover every eigenvalue of
A has infinite multiplicity.
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Proof Let λ ∈ Spec(A). Lemma 1.2.13 of LOTS implies that one of the two
following cases must occur.

Case 1. There exists a sequence fn ∈ H such that ‖fn‖ = 1 for all n and
limn→∞ ‖Afn − λfn‖ = 0. Let {er}∞r=1 be a complete orthonormal sequence in H.
For each n put gn = Um(n)fn where m(n) is large enough that |〈gn, er〉| < 1/n for
all 1 ≤ r ≤ n; this is possible by the weak convergence assumption on the powers
of U . Then ‖gn‖ = 1, limn→∞ gn = 0 weakly and

‖Agn − λgn‖ = ‖AUm(n)fn − λUm(n)fn‖
= ‖Um(n)(Afn − λfn)‖
= ‖Afn − λfn‖
→ 0

as n→∞. Therefore λ ∈ Ess(A) by Lemma 4.3.15 of LOTS.

Case 2. There exists a sequence fn ∈ H such that ‖fn‖ = 1 for all n and
limn→∞ ‖A∗fn − λfn‖ = 0. Since (U∗)nf converges weakly to 0 as n → ∞ for
every f ∈ H, by applying Case 1 to A∗ one sees that λ ∈ Ess(A∗). By applying
Theorem 4.3.9 of LOTS and using the fact that H is reflexive, one may deduce
that λ ∈ Ess(A); a more explicit proof is given in Theorem 4.11.

Finally, suppose that λ is an eigenvalue of A and that L is the corresponding
eigenspace. The fact that AU = UA implies that U(L) = L. If 0 6= f ∈ L then
fn = Unf ∈ L is a sequence of vectors with ‖fn‖ = ‖f‖ 6= 0 for all n, and fn
converges weakly to 0. This can only happen if L is infinite-dimensional. �

The spectrum of a periodic operator can often be determined by using the Bloch
decomposition, which applies Fourier analysis methods to the abelian group of
translations which commute with the operator.

For the remainder of this section we restrict attention to periodic tridiagonal ma-
trices. The restriction to one space dimension is justified for two reasons. The
first is that it gives an insight into the higher dimensional theory while avoiding
the notational complexity of the latter. The second is that there is much recent
interest in quantum wires and the more general quantum graphs, which are well
approximated by one-dimensional systems; even more recently optical communica-
tion devices and the nascent field of optical computers involve understanding the
passage of light along narrow channels.

The statement and proof of Theorem 15.5 below can be extended to periodic op-
erators with finite range acting on `2(ZN ,K); we avoid writing down the more
complicated formulae that this involves. The proof of the theorem uses a gen-
eral technique for reducing the range of an operator at the cost of increasing the
dimension of the auxiliary space K.

Theorem 15.5 Let A be the bounded operator that acts on `2(Z,K) according to
the formula

(Af)n = anfn−1 + bnfn + cnfn+1
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where an, bn, cn ∈ L(K). If an, bn, cn are all periodic with period p then

Spec(A) = Ess(A) =
⋃

θ∈[−π,π]

Spec (Mθ) (15.2)

where Mθ is the p× p L(K)-valued matrix

(Mθ)r,s = eiθK−1 +K0 + e−iθK1

and

(K0)r,s =


ar if r = s+ 1,
br if r = s,
cr if r = s− 1,

(K1)r,s =

{
a1 if r = 1 and s = p,
0 otherwise,

(K−1)r,s =

{
cp if r = p and s = 1,
0 otherwise,

where 1 ≤ r ≤ p and 1 ≤ s ≤ p throughout.

Proof We define the unitary operator U : `2(Z,K)→ `2(Z,Kp) by

(Uf)n,r = fnp+r

for all n ∈ Z and 1 ≤ r ≤ p. Then A has the same spectrum as B = UAU−1,
where B is a translation invariant operator on `2(Z,Kp). Indeed Br,s = Kr−s for
all r, s ∈ Z where Kt are the p × p matrices defined above for t = 0, ±1 and we
put Kt = 0 if |t| ≥ 2. The proof is completed by using Fourier series methods to
represent B as a matrix-valued multiplication operator on L2([−π, π],Kp, dθ) as in
Theorem 2.3 and then using Lemma 8.3. �

Theorem 15.6 Let A be as in Theorem 15.5. Then λ ∈ Spec(A) if and only if
there is a bounded function f : Z→ K such that fn+p = eiθfn for some θ ∈ R and
all n ∈ Z and Af = λf pointwise.

Proof If a function f with the stated properties exists than λ ∈ Spec(A) by
Theorem 15.3.

Conversely if λ ∈ Spec(A) then λ ∈ Spec(Mθ) for some θ by Theorem 15.5. Let
φ ∈ Kp be a corresponding eigenvector. If f : Z → K is the unique function such
that fn+p = eiθfn for all n ∈ Z and fr = φr for 1 ≤ r ≤ p, then a direct calculation
shows that Af = λf . �

Theorem 15.7 Let A be as in Theorem 15.5. Then λ ∈ Spec(A) if and only if
there is a sequence hn ∈ `2(Z), each term of which is a function of finite support
and norm 1, and

lim
n→∞

‖Ahn − λhn‖ = 0. (15.3)

One can also require that supp(hn) ⊆ [n,∞) or supp(hn) ⊆ (−∞, n] for every n.
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Proof If λ ∈ Spec(A) then λ ∈ Spec(Mθ) for some θ ∈ [−π, π] by (15.2). The
proof of Lemma 8.3 yields a sequence fn ∈ `2(Z,K) such that ‖fn‖ = 1 and
limn→∞ ‖Afn − λfn‖ = 0. By truncating each fn far enough away from 0, one
obtains a sequence gn ∈ `2(Z,K), each term of which has finite support, and such
that ‖gn‖ = 1 and limn→∞ ‖Agn − λgn‖ = 0. Finally one may translate gn by
a distance that is a multiple of p to obtain a sequence hn ∈ `2(Z,K) such that
supp(hn) ⊆ [n,∞) or supp(hn) ⊆ [−∞, n) for every n. Since A is periodic with
period p, ‖Ahn − λhn‖ = ‖Agn − λgn‖ for every n and (15.3) follows.

The converse statement of the theorem follows directly from Lemma 4.3.15 of
LOTS. �

Theorem 15.8 Let A be as in Theorem 15.5, but with K = C. Then λ ∈ Spec(A)
if and only if there exists θ ∈ [−π, π] such that

γeiθ − βp(λ) + αe−iθ = 0 (15.4)

where α = a1a2 . . . ap, γ = c1c2 . . . cp and

βp(λ) = det(λI −M0) + α + γ (15.5)

is a monic polynomial of degree p in λ.

Equivalently λ ∈ Spec(A) if and only if one of the roots z ∈ C of the fundamental
polynomial

q(z) = γz2 − βp(λ)z + α (15.6)

satisfies |z| = 1.

Proof An examination of − det(λI−Mθ) shows that its dependence on θ is of the
form written in (15.4); this also allows one to verify that α and γ are as claimed.
The value of βp(λ) is determined by putting θ = 0 in the formula for− det(λI−Mθ).
The equation (15.6) follows by replacing eiθ by z. �

Lemma 15.9 If

q(z) = γz2 − βp(λ) + α (15.7)

is the fundamental polynomial associated with A−λI as in Theorem 15.8, then the
fundamental polynomial associated with A∗ − λI is

q̃(z) = αz2 − βp(λ) + γ. (15.8)

Therefore

q̃(z) = z2q(z−1) (15.9)

for all z, λ ∈ C.
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Proof

Let M̃θ be the matrices associated with A∗. An inspection of their coefficients shows
that M̃θ = (Mθ)

∗. This identity also follows immediately from the representation
of A as a matrix-valued multiplication operator on `2([−π, π],Cp, dθ); see the proof
of Theorem 15.5. Therefore

det(λI − M̃θ) = det((λI −Mθ)
∗)

= det(λI −Mθ)

= γeiθ − βp(λ) + αe−iθ

= αeiθ − βp(λ) + γe−iθ.

This proves (15.8), and (15.9) follows immediately. �

In the context of Theorem 15.5, (15.2) suggests that the spectrum of A might
be the union of p closed curves, but the situation is more complicated than this
because of possible crossings and degeneracies.

Problem 15.10 Let A : `2(Z)→ `2(Z) be the bounded operator defined by

(Af)n = anfn−1 + cnfn+1

where an = an+2 and cn = cn+2 for all n ∈ Z. Determine the spectrum of A and
work out how many components it has. �

15.3 The index of a Toeplitz operator

Theorem 4.4.2 of LOTS presented a simple version of theorem about the index of a
Toeplitz operator acting on `2(N), and we need to obtain similar results for matrix-
valued Toeplitz operators. In the next two sections we carry out the necessary
calculations from first principles for the operator of interest; see Theorem 15.16
below. In this section we put the problem in a more general context and state the
relevant theorem without proof.8 Let K be a finite-dimensional Hilbert space and
let P be the orthogonal projection of L2([−π, π],K) onto the Hardy subspace H2

consisting of all functions f ∈ L2([−π, π],K) whose Fourier coefficients fn vanish
for all n < 0. Also let M : [−π, π] → L(K) be a continuous periodic function
and let B be the bounded multiplication operator on L2([−π, π],K), defined by
(Bf)(θ) = Mθf(θ). According to Theorem 8.3

Spec(B) = Ess(B) =
⋃

−π≤θ≤π

Spec(Mθ).

8Comprehensive accounts of the theory of Toeplitz operators may be found in A. Böttcher
and S. M. Grudsky, Spectral Properties of Banded Toeplitz Matrices, SIAM, 2005, A. Böttcher
and B. Silbermann, Introduction to Large Truncated Toeplitz Matrices. Springer, New York,
1999, A. Böttcher and B. Silbermann, Analysis of Toeplitz Operators, Springer Monographs in
Mathematics, second edition, 2010, and I. Gohberg and I. A. Feldman, Convolution Equations
and Projection Methods for Their Solution. Amer. Math. Soc. Providence, RI, 1974.
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The Toeplitz operator associated with B is defined by TBf = PBf , where f and
TBf lie in H2.

Theorem 15.119 The essential spectrum of TB equals that of B. If λ /∈ Ess(TB)
then Ind(TB−λI) equals minus the winding number around the origin of the func-
tion δ : [−π, π]→ C defined by δ(θ) = det(Mθ − λI).

In order to translate this into our terminology, let F : L2([−π, π],K)→ `2(Z,K) be
the unitary operator associated with the Fourier series expansion. Then F(H2) =
`2(N ∪ {0},K) and A+ = FTBF−1 is the truncation of the operator A = FBF−1

to `2(N∪{0},K). The operator A always commutes with translations in `2(Z,K),
but it need not be convolution by a function in `1, let alone by a function of finite
support.

15.4 Transfer matrices

In this section we provide a new derivation of the formula (15.6) for the fundamental
polynomial by means of the theory of transfer matrices. Although the assumptions
are more stringent, the new method also allows one to determine the asymptotic
forms at ±∞ of the solutions of Af = λf for any λ ∈ C. The theory here may be
extended to block tridiagonal matrices.10

We assume that (Af)n = anfn−1+bnfn+cnfn+1 as before. If an and cn are non-zero
for all n ∈ Z, then the solution space of the equation

anfn−1 + bnfn + cnfn+1 = λfn (15.10)

is two-dimensional for every λ ∈ C. The spectral character of λ is determined by
the asymptotic behaviour of these solutions.

The recurrence relation (15.10) can be rewritten in the form(
fn
fn+1

)
=

(
0 1

−an/cn (λ− bn)/cn

)(
fn−1

fn

)
= Xn

(
fn−1

fn

)
= Tn

(
f0

f1

)
where Tn = XnXn−1 . . . X1.

9 See Theorem 6.5 in Böttcher and Silbermann, 1999, or Theorem 1.9 of Böttcher and Grudsky,
2005.

10See D K Salkuyeh, Comments on “A note on a three-term recurrence for a tridiagonal matrix”,
Appl. Math. Comp. 176 (2006) 442-444; T Sogabe, On a two-term recurrence for the determinant
of a general matrix, Appl. Math. Comp. 187 (2007) 785-788; L G Molinari, Determinants of
block tridiagonal matrices, Linear Alg. Appl. 429 (2008) 2221-2226.

91



The following theorem should be compared with Theorem 15.8.

Theorem 15.12 Let A be a bounded operator on `2(Z) defined by

(Af)n = anfn−1 + bnfn + cnfn+1

where an and cn are non-zero for all n ∈ Z. If A is periodic with period p then the
equation Af = λf has a solution f ∈ `∞(Z) if and only if one of the solutions z of

γz2 − τp(λ)z + α = 0 (15.11)

satisfies |z| = 1, where α = a1a2 . . . ap, γ = c1c2 . . . cp and τp(λ) = γ tr(Tp) is a
monic polynomial of degree p in λ. The following cases arise.

1. The equation (15.11) has a root with modulus 1. This happens if and only if
λ ∈ Spec(A) = Ess(A).

2. We write λ ∈ W2(A) if both solutions of (15.11) satisfy |z| < 1. For such
λ all non-zero solutions f of Af = λf decay exponentially as n → +∞ and
grow exponentially as n→ −∞.

3. We write λ ∈ W0(A) if both solutions of (15.11) satisfy |z| > 1. For such
λ all non-zero solutions f of Af = λf grow exponentially as n → +∞ and
decay exponentially as n→ −∞.

4. We write λ ∈ W1(A) if one solution of (15.11) satisfies |z| < 1 and the
other satisfies |z| > 1. For such λ one solution f of Af = λf decays expo-
nentially as n → +∞ and grows exponentially as n → −∞, another grows
exponentially as n → +∞ and decays exponentially as n → −∞, and all
other non-zero solutions grow exponentially as n→ ±∞.

The sets W0(A), W1(A) and W2(A) are disjoint and open and their union is
C\Spec(A).

Proof The asymptotic behaviour as n→ ±∞ of the solutions of Af = λf are
determined by the behaviour of (Tp)

m as m→±∞. This is turn is determined by
the eigenvalues of Tp, which are the solutions z of (15.11) because

det(Tp) =

p∏
r=1

det(Xr) =
α

γ

and τp(λ) = γ tr(Tp). It is easy to verify that τp(λ) is of the stated form.

Cases 1 follows directly from Theorems 15.5 and 15.6.

Cases 2 to 4 are easy to prove if Tp is diagonalizable. The idea is the same in
all cases. Each root z of (15.11) is an eigenvalue of Tp and is associated with an
eigenvector of Tp. If we denote this by (f0, f1) then the recurrence relation may
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be solved for this initial condition, and the resulting function f : Z → C satisfies
Af = λf and fn+p = zfn for all n ∈ Z. Its asymptotic form is therefore determined
by the value of z. If Tp is not diagonalizable one obtains similar conclusions by
using its Jordan canonical form.

The sets Wr(A) are obviously disjoint with the stated union, but we have to prove
that they are open. This follows from the fact that the roots of any polynomial
depend continuously on its coefficients; this is a special case of a theorem about
the zeros of analytic functions. In this case the coefficients are polynomials in λ.
�

Corollary 15.13 Let A be as in Theorem 15.12 and let U be a connected com-
ponent of C\Spec(A). Then there exist r ∈ {0, 1, 2} such that U ⊆ Wr(A). The
value of r can be determined by solving (15.11) for any single point in U .

Proof Because U is connected exactly one of the intersections on the right hand
side of the identity

U = (U ∩W0(A)) ∪ (U ∩W1(A)) ∪ (U ∩W2(A))

must be non-empty. If U ∩Wr(A) 6= ∅ then U = U ∩Wr(A), so U ⊆ Wr(A). The
final statement follows directly. �

An analogue of the following theorem for block triadiagonal matrices has been
proved by Molinari,11 who calls the identity of two closely related polynomials a
duality relation.

Theorem 15.14 The function βp(λ) defined in Theorem 15.8 coincides with the
function τp(λ) defined in Theorem 15.12.

Proof If p = 2 direct computations of both polynomials establish that

β2(λ) = τ2(λ) = (λ− b1)(λ− b2)− a1c2 − a2c1

but for general p we adopt a more indirect approach.

It follows from the two stated theorems that the two polynomials

q(λ) = βp(λ)− α− γ = det(λI −M0),

q̃(λ) = τp(λ)− α− γ = γ tr(Tp)− α− γ,

vanish if and only if Af = λf has a solution satisfying fn+p = fn for all n ∈ Z.
Since q and q̃ are both monic polynomials of degree p, it follows that they must
coincide provided the roots of q are all distinct.

We deal with the case in which q has repeated roots by a perturbation argument.
We fix ar, cr for all r ∈ {1, . . . , p} and make explicit the dependence of q(λ) on

11L G Molinari, Determinants of block tridiagonal matrices, Linear Alg. Appl. 429 (2008)
2221-2226, (arXiv:0712.0681v3).
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b = (b1, . . . , bp). If we put b̂r = rN for 1 ≤ r ≤ p then for all large enough N the
roots of qb̂ are close to rN and are therefore all distinct. The set of t ∈ R for which
the roots of q(1−t)b+t̂b are all distinct is a dense open subset of R by Theorem 1.9.
Since q = q̃ for all such t a limiting argument implies that they are also equal for
t = 0. �

Theorem 15.15 Let A be a periodic finite range operator acting on `2(Z) =
`2(M) ⊕ `2(N) where N is the set of natural numbers and M = Z\N. Let A

have the matrix form =
(
A− C
D A+

)
where A− : `2(M)→ `2(M), A+ : `2(N)→ `2(N)

and C, D are finite rank matrices. Then

Ess(A) = Ess(A+) = Ess(A−).

Proof The method of Corollary 4.3.8 of LOTS yields

Ess(A) = Ess
(
A+ 0
0 A−

)
= Ess(A+) ∪ Ess(A−).

We next prove that Ess(A) ⊆ Ess(A+). If λ ∈ Ess(A) then Theorem 15.7 yields a
sequence hn ∈ `2(Z) satisfying supp(hn) ⊂ [n,∞) and ‖hn‖ = 1 and limn→∞ ‖Ahn−
λhn‖ = 0. This implies that hn ∈ `2(N) and that hn converges weakly to 0 as
n→∞ and limn→∞ ‖A+hn − λhn‖ = 0. This implies that λ ∈ Ess(A+) by Theo-
rem 4.3.15 of LOTS.

The proof that Ess(A) ⊆ Ess(A−) is similar. �

The following theorem is a closely related to a similar result for Toeplitz operators
and has an analogue for constant coefficient differential operators on the half-line.12

The case in which some of the an and cn vanish is deduced from the following
‘regular’ version of the theorem.

Theorem 15.16 Let A be a bounded operator on `2(Z) defined by

(Af)n = anfn−1 + bnfn + cnfn+1

where an and cn are non-zero for all n ∈ Z. Suppose that A is periodic with period
p and that A± are defined as in Theorem 15.15. Given λ ∈ C let z1, z2 be the two
roots of the fundamental polynomial (15.11). The following cases cover all possible
values of λ.

1. λ ∈ Ess(A±) if and only if one of the roots zr has absolute value 1.

2. If |z1| < 1 and |z2| < 1 then A± − λI are Fredholm operators with
Ind(A+ − λI) = 1 and Ind(A− − λI) = −1.

3. If |z1| > 1 and |z2| > 1 then A± − λI are Fredholm operators with
Ind(A+ − λI) = −1 and Ind(A− − λI) = 1.

12See Corollary 7.4(iii) of D. E. Edmunds and W. D. Evans, Spectral Theory and Differential
Operators, OUP, 1987.
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4. If |z1| < 1 and |z2| > 1 then A± − λI are Fredholm operators with
Ind(A+ − λI) = Ind(A− − λI) = 0.

Proof For most of the proof we only consider the operator A+. The results for A−
follow by a simple trick explained at the end. The index of A+ − λI is calculated
by using the formula

Ind(A+ − λI) = dim(Ker(A+ − λI))− dim(Coker(A+ − λI))

= dim(Ker(A+ − λI))− dim(Ker(A∗+ − λI)).

This reduces the problem to finding the dimensions of certain eigenspaces.

Case 1. Theorem 15.12 case 1 implies that the existence of a root z such that
|z| = 1 is equivalent to λ ∈ Ess(A). Theorem 15.15 then establishes the equivalence
to λ ∈ Ess(A±).

Case 2. The space of all solutions of Af = λf is two-dimensional, so there must
exist a solution with f0 = 0; this extra condition is equivalent to A+f = λf . Any
solution of A+f = λf is uniquely determined by the value of f1 and it decays
exponentially as n→ +∞ by the hypothesis that |z1| < 1 and |z2| < 1. Therefore
ker(A+ − λI) is one-dimensional.

Lemma 15.9 implies that the roots z̃1 and z̃2 of the fundamental polynomial as-
sociated with A∗ − λI satisfy |z̃1| > 1 and |z̃2| > 1. Therefore every solution of
A∗f = λf grows exponentially as n → +∞. Therefore ker(A∗+ − λI) = {0} and
dim(Coker(A+ − λI)) = 0. Hence Ind(A+ − λI) = 1.

Case 3. This is similar to Case 2, but with the roles of A and A∗ interchanged.

Case 4. Lemma 15.9 implies that one of the roots z̃1 of the fundamental polynomial
associated with A∗ − λI satisfies |z̃1| < 1 while the other satisfies |z̃2| > 1.

The assumptions imply that, up to multiplicative constants, there is only one
solution of Af = λf . The restriction of f to N is a solution of A+f = λf if
and only if f0 = 0. Therefore dim(Ker(A+ − λI)) equals 1 if f0 = 0 and equals
0 otherwise. A similar argument applies to A∗+ − λI, the corresponding function

being denoted f̃ . We have to deal with several cases.

If f0 6= 0 and f̃0 6= 0 then dim(Ker(A+ − λI)) = 0 and dim(Ker(A∗+ − λI)) = 0, so
Ind(A+ − λI) = 0.

If f0 = 0 then dim(Ker(A+ − λI)) = 1 so Ind(A+ − λI) equals 1 or 0. We now
define A++ to be the restriction of A to `2(N+) where N+ = {n ∈ Z : n ≥ 2}.
The assumption f0 = 0 implies that f1 6= 0, because the recurrence relation is
second order. Therefore λ is not an eigenvalue of A++ and Ind(A++) equals 0
or −1. Also Ind(A++) = Ind(A+) by Theorem 4.1. Combining these facts yields
Ind(A+ − λI) = 0.

If f̃0 6= 0 then a similar argument implies that Ind(A+ − λI) = 0.
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We finally explain how to obtain the claimed results for A−. Since

A = A+ + A− +K

where K is finite rank and A± act independently on orthogonal subspaces, Corol-
lary 4.3.8 of LOTS enables one to deduce that

Ind(A− λI) = Ind(A+ − λI) + Ind(A− − λI).

But Ind(A− λI) = 0 for all λ /∈ Ess(A) by Theorem 15.4, so

Ind(A− − λI) = −Ind(A+ − λI)

for all such λ. �

If one or more of the coefficients an and cn vanish one can obtain a result similar to
that in Theorem 15.16 by two methods. The first involves modifying the method
to take account of the new situation and the second is to calculate the required
indexes by a limiting argument that uses Theorem 15.16. We give examples of
both methods.

Theorem 15.17 Suppose that A : `2(Z) → `2(Z) is as in Theorem 15.16, except
that an = 0 for at least one n ∈ Z and cm = 0 for at least one m ∈ Z. Then Spec(A)
consists of a finite set S of eigenvalues, each of infinite multiplicity. Moreover,
Ess(A±) = S and Ind(A± − λI) = 0 for all λ /∈ S.

Proof The new assumptions imply that α = γ = 0, so the spectrum of Mθ,
obtained from (15.4), does not depend on θ. If S is the finite set of eigenvalues
of M0 then Spec(A) = S by (15.2), and each λ ∈ S is an eigenvalue of infinite
multiplicity. The identity Ess(A±) = S is a consequence of Theorem 15.15 and the
vanishing of the index for all λ /∈ S follows from Theorem 4.3.18 of LOTS. �

The following theorem is of value because Ind(As − λI) can be calculated for all
s 6= 0 by using Theorem 15.16.

Theorem 15.18 Suppose that A : `2(Z) → `2(Z) is as in Theorem 15.16, but
omitting the assumption that an and cn are all non-zero. Given s ∈ R let As be
the operator

(Asf)n = an,sfn−1 + bn,sfn + cn,sfn+1

where an,s = an unless an = 0, in which case an,s = s, bn,s = bn for all n ∈ Z,
and cn,s = cn unless cn = 0, in which case cn,s = s. Then As depends norm
continuously on s as does Spec(As), if one uses the Hausdorff metric for compact
sets. If λ /∈ Spec(A) then

Ind(As,± − λI) = Ind(A± − λI)

for all sufficiently small s ∈ R.
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Proof The norm continuity ofAs as a function of s follows directly from Lemma 15.1,
but this is not sufficient to prove the continuous dependence of the spectrum on s;
see Problem 15.19 below. Theorem 15.5 yields

Spec(As) =
⋃

θ∈[−π,π]

Spec(Ms,θ)

where Ms,θ are p×p matrices that depend jointly continuously on s, θ. This implies
the continuous dependence of Spec(As) on s.

If λ /∈ Spec(A) then λ /∈ Ess(As,±) for all small enough s. Therefore A± − λI and
As,±− λI are Fredholm operators. They have equal indexes for small enough s by
Theorem 4.3.11 of LOTS and the fact that lims→0 ‖As,± − A±‖ = 0. �

Problem 15.19 Let As : `2(Z) → `2(Z) be defined by (Asf)n = cs,nfn+1 for all
n ∈ Z where cs,n = 1 if n 6= 0 and cs,0 = s. Prove that Spec(As) = {z : |z| = 1}
for all s 6= 0 and calculate Spec(A0). �

15.5 Doubly periodic tridiagonal matrices

In this section we describe the spectra of infinite tridiagonal matrices that have
different periodic structures on the right and left half-lines. Our main result,
Theorem 15.20, can be extended to suitable operators on an infinite discrete graph
X, under the assumption that the operator has a periodic structure on each of the
infinite leads of X.13 The key to the proof of our main result is the use of the
stable spectrum, as defined in Section 4.5.

Theorem 15.20 Let B be a tridiagonal operator acting on `2(Z) and satisfying

Br,s =

{
B1,r,s if r ≥ a,
B2,r,s if r ≤ −a,

for some a > 0, where B1 and B2 are periodic tridiagonal matrices. Suppose also
that Br,s 6= 0 for all r, s such that |r − s| = 1. Then

Stab(B) = Ess(B1) ∪ Ess(B2) ∪
⋃

m+n6=0

{Um(B1,+) ∩ Un(B2,−)}

where

Un(X) = {λ ∈ C : X − λI is Fredholm and Ind(X − λI) = n}

and B1,+ denotes the restriction of B1 to `2(Z ∩ [a,∞)) and B2,− denotes the
restrictions of B2 to `2(Z ∩ (−∞,−a])).

13See E. B. Davies, Stable Spectrum of an Operator on an Infinite Discrete Graph, preprint,
2011.
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Proof Since B −B1,+ −B2,− has finite rank, it follows that

Ess(B) = Ess(B1,+) ∪ Ess(B2,−) = Ess(B1) ∪ Ess(B2). (15.12)

The second equality in (15.12) is proved by applying Theorem 15.15 withA replaced
successively by B1 and B2. The proof is then completed by applying Theorems 4.8,
15.16 and 15.18. �
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