
Quantum Mechanics III Michaelmas Term 2009
Lecturer: Dr. Benjamin Doyon

Homework 3 – due 8 December 2009

The hamiltonian of the harmonic oscillator is

Ĥ =
P̂ 2

2m
+
mω2

2
X̂2 (1)

Its eigenvalues are

EN = ~ω
(

1
2

+N

)
(2)

For its normalised eigenstates |N〉, we know the action of the ladder operators â = (P̂ +
imωX̂)/

√
2m and â† = (P̂ − imωX̂)/

√
2m:

â|N〉 =
√

(N + 1)~ω|N + 1〉, â†|N〉 =
√
N~ω|N − 1〉, (3)

and we know the explicit form of the eigenfunctions, which are for the first few states, with
α = mω/~:

〈x|0〉 =
(α
π

) 1
4
e−

αx2

2

〈x|1〉 = i

(
4α
π

) 1
4 (√

αx
)
e−

αx2

2

〈x|2〉 = −
(

4α
π

) 1
4
(
αx2 − 1

2

)
e−

αx2

2 (4)

Some integrals (for Re(α) > 0 and in general x0 ∈ C):∫ ∞

−∞
dx e−α(x−x0)2 =

√
π

α
,

∫ ∞

−∞
dx (x− x0)2 e−α(x−x0)2 = − d

dα

√
π

α
, etc. (5)

1. Derive the explicit form of the wave function for the third and fourth energy levels, 〈x|3〉
and 〈x|4〉, using the ladder operators and the wave function 〈x|2〉 given above.

2. For the eigenstate |N〉, calculate explicitly, using the ladder operators, the averages E(X),
E(X2) and E(X3). Calculate also the average kinetic energy E(P 2/2m) (hint: it can be
deduced immediately from knowing the total energy and the average potential energy).

3. Normalise the wave function ψ(x) = Axe−kx2
(for k > 0). What is the probability, in this

state, of finding the energy of the harmonic oscillator to be ~ω/2? To be 3~ω/2?

4. Normalise the vector |ψ〉 = A(2|0〉+ |1〉). In this state, what is the probability of finding
the position to be in the range [−∞, 0]? What is the probability density of finding the
momentum of the particle to be p?
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Answers

1. We use the action of â on wave functions obtained from that of P̂ and X̂:

〈x|â|ψ〉 =
1√
2m

(
−i~ d

dx
+ imωx

)
〈x|ψ〉

so that

〈x|3〉 =
1√
3~ω

〈x|â|2〉

=
i√
6α

(
− d

dx
+ αx

)
〈x|2〉

= − i√
6α

(
4α
π

) 1
4 (

2α2x3 − 3αx
)
e−

αx2

2

= −i
(

16α
9π

) 1
4
(

(
√
αx)3 − 3

2
√
αx

)
e−

αx2

2 .

Then also,

〈x|4〉 =
1√
4~ω

〈x|â|3〉

=
i√
8α

(
− d

dx
+ αx

)
〈x|3〉

=
1√
8

(
16α
9π

) 1
4
(

2(
√
αx)4 − 6(

√
αx)2 +

3
2

)
e−

αx2

2

=
(

4α
9π

) 1
4
(
α2x4 − 3αx2 +

3
4

)
e−

αx2

2 .

We observe that we always have polynomials of parity (−1)N and degree N , as it should.
We can also observe that the number of zeros of the polynomials on the real x-line is equal
to N . This is quite a general phenomenon of quantum mechanics: the number of nodes
(zeroes) of a one-dimensional wave function increases with the energy level. It essentially
means that as the energy is increased, the wave function becomes more oscillating, so it
has more zeroes.

2. We must write the momentum and position operators in terms of the ladder operators,
whose action on all states we know:

X̂ =
â− â†

iω
√

2m
, P̂ =

√
m

2
(â+ â†). (6)

Then we can evaluate all averages using the orthonormality relation 〈N |N ′〉 = δN,N ′ .

First,

E(X) = 〈N |X̂|N〉

= 〈N | â− â†

iω
√

2m
|N〉

=
1

iω
√

2m
〈N |

(√
(N + 1)~ω|N + 1〉 −

√
N~ω|N − 1〉

)
= 0.
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That is, the average position is 0, which is after all expected from the symmetry X → −X
of the quadratic potential, and which is in agreement with the physical intuition that the
particle, as it “oscillates”, spends as much time on one side as it does on the other. Second

E(X2) = 〈N |X̂2|N〉

= − 1
2mω2

〈N |(â− â†)2|N〉

= − 1
2mω2

〈N |(â2 − ââ† − â†â+ (â†)2)|N〉

= − 1
2mω2

〈N |(â2 + (â†)2 − 2ââ† − ~ω)|N〉

In the last line, we used the commutator [â†, â] = ~ω in the relation â†â = ââ† + [â†, â].
This is useful, because we can use the result

ââ†|N〉 = â
√
N~ω|N − 1〉 = N~ω|N〉 (7)

which expresses the fact that the operator ââ† “counts” the number of excitations in the
state |N〉 (giving each of them an energy ~ω; note that the Hamiltonian is just ââ†+~ω/2;
this is the excitation energy plus the ground-state energy). Then, using the fact that
â2|N〉 ∝ |N + 2〉 and that (â†)2|N〉 ∝ |N − 2〉, we immediately find

E(X2) =
~
mω

(
1
2

+N

)
.

This increases with N , which means that although the average position is always 0, the
particle becomes more and more spread around 0 as the energy increases. This is again in
agreement with physical intuition, that the particle goes further away from its equilibrium
position as it oscillates with higher energy. Third, we have

E(X3) = 〈N |X̂3|N〉

= i
1

(2m)3/2ω3
〈N |(â− â†)3|N〉

= i
1

(2m)3/2ω3
〈N |(â3 − â2â† − ââ†â− â†â2 + â(â†)2 + â†ââ† + (â†)2â− (â†)3)|N〉

= 0 (8)

where the last line is obtained by noticing that every term has different numbers of raising
operators and lowering operators, so that from |N〉 one always gets a state proportional
to |N ′〉 with N ′ 6= N . Of course, this result is again natural considering the symmetry of
the potential.

For the average kinetic energy E(P 2/2m), we may use

EN = ~ω
(

1
2

+N

)
= 〈N |Ĥ|N〉 = 〈N | P̂

2

2m
|N〉+ 〈N |mω

2X2

2
|N〉
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and our previous result. We find, for the average potential energy,

〈N |mω
2X2

2
|N〉 =

~ω
2

(
1
2

+N

)
so that

E(P 2/2m) = 〈N | P̂
2

2m
|N〉 =

~ω
2

(
1
2

+N

)
.

Interestingly, each of the average kinetic and potential energies take exactly half of the
total average energy EN for the state |N〉. This means that for the quantum harmonic
oscillator, half of the total energy is in the kinetic energy, the other half is in the potential
energy. The same thing happens in the classical statistical mechanics of many oscillators,
where it is the “virial theorem”.

3. We need to impose that
∫∞
−∞ dx ψ̄(x)ψ(x) = 1. That is,

1 =
∫ ∞

−∞
dx |A|2x2e−2kx2

=
1
2

√
π

(2k)3
|A|2 (9)

so that A = (32k3/π)
1
4 up to a phase, which we can take as we wish (for instance, to

be 1) since this wave function represents a physical state. The probability that we find
the energy to be ~ω/2, or the level to be N = 0 (i.e. the ground state), is given by
the absolute-value-squared of the overlap between the wave function 〈x|0〉 and the wave
function ψ(x):

P (E = ~ω/2) = P (N = 0) =

∣∣∣∣∣
(

32k3α

π2

) 1
4
∫ ∞

−∞
dxxe−(α/2+k)x2

∣∣∣∣∣
2

= 0 (10)

where we used the fact that the integrand is anti-symmetric (odd) under x → −x. A
more fundamental explanation is that the state |0〉 is an eigenvector of the parity operator
Q̂, defined by Q̂|x〉 = | − x〉, with eigenvalue 1; whereas ψ(x) represents an eigenvector
with eigenvalue −1. Hence they must be orthogonal. The probability of observing energy
3~ω/2 is

P (E = 3~ω/2) = P (N = 1) =

∣∣∣∣∣
(

128k3α

π2

) 1
4
∫ ∞

−∞
dx
√
αx2 e−(α/2+k)x2

∣∣∣∣∣
2

=
(

8k3α3

π2

) 1
2 π

(α/2 + k)3

=

( √
2kα

α/2 + k

)3

(11)

4. The normalisation condition reads

1 = 〈ψ|ψ〉 = |A|2(4 + 1) = 5|A|2 (12)
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using 〈0|1〉 = 〈1|0〉 = 0 and 〈0|0〉 = 〈1|1〉 = 1. Hence we can take A = 1/
√

5. The
probability density of finding the particle at position x is simply given by

|〈x|ψ〉|2 = |A|2 |2〈x|0〉+ 〈x|1〉|2

=
1
5

(α
π

) 1
2
e−αx2 |2 + i

√
2αx|2

=
2
5

(α
π

) 1
2
e−αx2

(2 + αx2),

so that the probability is ∫ 0

−∞
|〈x|ψ〉|2 =

1
2

∫ ∞

−∞
|〈x|ψ〉|2 =

1
2

where we used the normalisation 〈ψ|ψ〉 and the fact that the function |〈x|ψ〉|2 is symmetric
(even) under x → −x. That the probability be 1/2 is not a generic result; for instance,
with |ψ〉 = A(2|0〉+ i|1〉), we would obtain a different result.

For the probability density of finding the particle to have momentum p, this is given by

|〈p|ψ〉|2 =
∣∣∣∣∫ ∞

−∞
dx 〈p|x〉〈x|ψ〉

∣∣∣∣2
=

1
10π~

(α
π

) 1
2

∣∣∣∣∫ ∞

−∞
dx e−ipx/~−αx2/2(2 + i

√
2αx)

∣∣∣∣2
=

1
10π~

(α
π

) 1
2

∣∣∣∣∫ ∞

−∞
dx e−

α
2 (x2+ 2ipx

mω )(2 + i
√

2αx)
∣∣∣∣2

=
1

10π~

(α
π

) 1
2

∣∣∣∣∣
∫ ∞

−∞
dx e

−α
2

„
(x+ ip

mω )2
+ p2

(mω)2

«
(2 + i

√
2αx)

∣∣∣∣∣
2

=
1

10π~

(α
π

) 1
2
e
− αp2

(mω)2

∣∣∣∣∫ ∞

−∞
dx e−

αx2

2

(
2 + i

√
2α
(
x− ip

mω

))∣∣∣∣2
=

1
10π~

(α
π

) 1
2
e
− αp2

(mω)2

(
2π
α

) ∣∣∣∣∣2 +
√

2αp
mω

∣∣∣∣∣
2

=
4

5mω

(α
π

) 1
2
e
− αp2

(mω)2

(
1 +

√
2αp
mω

+
αp2

2(mω)2

)
.

Hence, it is decaying as |p| → ∞ like a Gaussian (times a polynomial), in the same way
as the position density |〈x|ψ〉|2 does as |x| → ∞. The momentum, like the position, is
essentially concentrated around 0
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