1. Prove that

$$
\widehat{X^{2} P}=\frac{\hat{X}^{2} \hat{P}+\hat{X} \hat{P} \hat{X}+\hat{P} \hat{X}^{2}}{3}
$$

by calculating the commutator $\left[\hat{X}^{3}, \hat{P}^{2}\right]$ and using Dirac's quantisation condition.
2. Consider a particle on a circle of circumference L. We showed in class that the momentum eigenvalues are $p_{n}=2 \pi n \hbar / L$ for $n \in \mathbb{Z}$, and that the corresponding eigenstates $\left|p_{n}\right\rangle$ have wave functions given by

$$
\left\langle x \mid p_{n}\right\rangle=a e^{i 2 \pi n x / L} \quad(a \in \mathbb{C})
$$

(a) Show that we have $\left\langle p_{n} \mid p_{n^{\prime}}\right\rangle=\delta_{n, n^{\prime}}$ for an appropriately chosen a (and calculate that $a)$.
(b) Using the completeness relations $\sum_{n \in \mathbb{Z}}\left|p_{n}\right\rangle\left\langle p_{n}\right|=\mathbf{1}$ and $\int_{0}^{L} d x|x\rangle\langle x|=\mathbf{1}$, derive the formulas that give the coefficients $\tilde{\psi}_{n}$ in terms of the wave function $\psi(x)$ and vice versa, in

$$
|\psi\rangle=\sum_{n \in \mathbb{Z}} \tilde{\psi}_{n}\left|p_{n}\right\rangle=\int_{0}^{L} d x \psi(x)|x\rangle
$$

3. Consider the space of functions ψ supported on the interval $[0, L]$, with twisted periodicity condition $\psi(x+L)=e^{i \theta} \psi(x)$ for some fixed $\theta \in \mathbb{R}$, and with the usual inner product $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int_{0}^{L} \psi_{1}^{*}(x) \psi_{2}(x) d x$.
(a) Show that the momentum operator $\hat{P}=-i \hbar d / d x$ is Hermitian on that space.
(b) Find the spectrum of \hat{P} and its normalised eigenfunctions, and show that they are orthonormal.
(c) Explain why the wave function

$$
\psi(x)=A e^{i \theta x / L} \cos (2 \pi x / L)
$$

is an example of a function in this space. Normalise this wave function. If a measurement of momentum is made, what values can be obtained and with what probabilities? Evaluate the expectation of the momentum $\langle\hat{P}\rangle$.

Answers

1. The most direct way of doing it is using the general formuli

$$
\begin{equation*}
[\hat{A} \hat{B} \hat{C}, \hat{D}]=\hat{A} \hat{B}[\hat{C}, \hat{D}]+\hat{A}[\hat{B}, \hat{D}] \hat{C}+[\hat{A}, \hat{D}] \hat{B} \hat{C} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
[\hat{A}, \hat{B} \hat{C}]=\hat{B}[\hat{A}, \hat{C}]+[\hat{A}, \hat{B}] \hat{C} \tag{2}
\end{equation*}
$$

We get

$$
\begin{align*}
{\left[\hat{X}^{3}, \hat{P}^{2}\right] } & =\hat{X}^{2}\left[\hat{X}, \hat{P}^{2}\right]+\hat{X}\left[\hat{X}, \hat{P}^{2}\right] \hat{X}+\left[\hat{X}, \hat{P}^{2}\right] \hat{X}^{2} \\
{\left[\hat{X}, \hat{P}^{2}\right] } & =\hat{P}[\hat{X}, \hat{P}]+[\hat{X}, \hat{P}] \hat{P}=2 i \hbar \hat{P} \tag{3}
\end{align*}
$$

where we used the canonical commutation relations $[\hat{X}, \hat{P}]=i \hbar$. Hence

$$
\begin{equation*}
\left[\hat{X}^{3}, \hat{P}^{2}\right]=2 i \hbar\left(\hat{X}^{2} \hat{P}+\hat{X} \hat{P} \hat{X}+\hat{P} \hat{X}^{2}\right) \tag{4}
\end{equation*}
$$

But also, according to the quantisation condition,

$$
\begin{equation*}
\left[\hat{X}^{3}, \hat{P}^{2}\right]=\left[\widehat{X^{3}}, \widehat{P^{2}}\right]=i \hbar\left\{\widehat{X^{3}, P^{2}}\right\} \tag{5}
\end{equation*}
$$

and the Poisson bracket is

$$
\begin{equation*}
\left\{X^{3}, P^{2}\right\}=\frac{\partial X^{3}}{\partial X} \frac{\partial P^{2}}{\partial P}-\frac{\partial X^{3}}{\partial P} \frac{\partial P^{2}}{\partial X}=6 X^{2} P \tag{6}
\end{equation*}
$$

Hence, combining (4) with (5), we find

$$
\begin{equation*}
2 i \hbar\left(\hat{X}^{2} \hat{P}+\hat{X} \hat{P} \hat{X}+\hat{P} \hat{X}^{2}\right)=6 \widehat{X^{2} P} \tag{7}
\end{equation*}
$$

which proves it. Note that we could also have done

$$
\begin{align*}
{\left[\hat{X}^{3}, \hat{P}^{2}\right] } & =\hat{P}\left[\hat{X}^{3}, \hat{P}\right]+\left[\hat{X}^{3}, \hat{P}\right] \hat{P} \\
{\left[\hat{X}^{3}, \hat{P}\right] } & =\hat{X}^{2}[\hat{X}, \hat{P}]+\hat{X}[\hat{X}, \hat{P}] \hat{X}+[\hat{X}, \hat{P}] \hat{X}^{2}=3 i \hbar \hat{X}^{2} \tag{8}
\end{align*}
$$

so that

$$
\begin{equation*}
\left[\hat{X}^{3}, \hat{P}^{2}\right]=3 i \hbar\left(\hat{X}^{2} \hat{P}+\hat{P} \hat{X}^{2}\right) \tag{9}
\end{equation*}
$$

How can that be the same as (4)? It's just using the canonical commutation relations again, as follows:

$$
\begin{aligned}
3 i \hbar\left(\hat{X}^{2} \hat{P}+\hat{P} \hat{X}^{2}\right) & =3 i \hbar\left(\frac{2}{3} \hat{X}^{2} \hat{P}+\frac{1}{3} \hat{X}^{2} \hat{P}+\frac{1}{3} \hat{P} \hat{X}^{2}+\frac{2}{3} \hat{P} \hat{X}^{2}\right) \\
& =3 i \hbar\left(\frac{2}{3} \hat{X}^{2} \hat{P}+\frac{1}{3}(\hat{X} \hat{P} \hat{X}+\hat{X}[\hat{X}, \hat{P}])+\frac{1}{3}(\hat{X} \hat{P} \hat{X}+[\hat{P}, \hat{X}] \hat{X})+\frac{2}{3} \hat{P} \hat{X}^{2}\right) \\
& =3 i \hbar\left(\frac{2}{3} \hat{X}^{2} \hat{P}+\frac{1}{3}(\hat{X} \hat{P} \hat{X}+i \hbar \hat{X})+\frac{1}{3}(\hat{X} \hat{P} \hat{X}-i \hbar \hat{X})+\frac{2}{3} \hat{P} \hat{X}^{2}\right) \\
& =2 i \hbar\left(\hat{X}^{2} \hat{P}+\hat{X} \hat{P} \hat{X}+\hat{P} \hat{X}^{2}\right)
\end{aligned}
$$

In fact, generalising this process, we can write

$$
\begin{equation*}
\left[\hat{X}^{3}, \hat{P}^{2}\right]=6 i \hbar\left(a \hat{X}^{2} \hat{P}+(1-2 a) \hat{X} \hat{P} \hat{X}+a \hat{P} \hat{X}^{2}\right) \tag{10}
\end{equation*}
$$

for any a, so that

$$
\begin{equation*}
\widehat{X^{2} P}=a \hat{X}^{2} \hat{P}+(1-2 a) \hat{X} \hat{P} \hat{X}+a \hat{P} \hat{X}^{2} . \tag{11}
\end{equation*}
$$

For $a=0$, we get the simpler result $\widehat{X^{2} P}=\hat{X} \hat{P} \hat{X}$, but the one we had to prove for this Question 1 is the more "standard" form.
2. (a) Since \hat{P} is hermitian (as we showed in class), it is clear that $\left\langle p_{n} \mid p_{n^{\prime}}\right\rangle=0$ for $n \neq n^{\prime}$, since they are eigenvectors corresponding to different eigenvalues. But we can work this out explicitly:

$$
\begin{align*}
\left\langle p_{n} \mid p_{n^{\prime}}\right\rangle & =\int_{0}^{L} d x\left\langle p_{n} \mid x\right\rangle\left\langle x \mid p_{n^{\prime}}\right\rangle \\
& =\int_{0}^{L} d x|a|^{2} e^{2 \pi i\left(n^{\prime}-n\right) x / L} \\
& n^{\prime \neq n^{\prime}}= \\
& \frac{L|a|^{2}}{2 \pi i\left(n^{\prime}-n\right)}\left(e^{2 \pi i\left(n^{\prime}-n\right)}-1\right) \tag{12}\\
n^{\prime} \neq n^{\prime} & 0 .
\end{align*}
$$

To get the value of a, we do the case $n=n^{\prime}$ separately:

$$
\begin{align*}
\left\langle p_{n} \mid p_{n}\right\rangle & =\int_{0}^{L} d x\left\langle p_{n} \mid x\right\rangle\left\langle x \mid p_{n}\right\rangle \\
& =\int_{0}^{L} d x|a|^{2} \\
& =|a|^{2} L \tag{13}
\end{align*}
$$

so that we can choose $a=1 / \sqrt{L}$.
(b) We have

$$
\begin{align*}
|\psi\rangle & =\sum_{n \in \mathbb{Z}} \tilde{\psi}_{n}\left|p_{n}\right\rangle \\
& =\sum_{n \in \mathbb{Z}} \tilde{\psi}_{n} \int_{0}^{L} d x|x\rangle\left\langle x \mid p_{n}\right\rangle \\
& =\int_{0}^{L} d x \frac{1}{\sqrt{L}} \sum_{n \in \mathbb{Z}} e^{2 \pi i n x / L} \tilde{\psi}_{n}|x\rangle \tag{14}
\end{align*}
$$

so that

$$
\begin{equation*}
\psi(x)=\frac{1}{\sqrt{L}} \sum_{n \in \mathbb{Z}} e^{2 \pi i n x / L} \tilde{\psi}_{n} \tag{15}
\end{equation*}
$$

Likewise,

$$
\begin{align*}
|\psi\rangle & =\int_{0}^{L} d x \psi(x)|x\rangle \\
& =\int_{0}^{L} d x \psi(x) \sum_{n \in \mathbb{Z}}\left|p_{n}\right\rangle\left\langle p_{n} \mid x\right\rangle \\
& =\sum_{n \in \mathbb{Z}} \frac{1}{\sqrt{L}} \int_{0}^{L} d x e^{-2 \pi i n x / L} \psi(x)\left|p_{n}\right\rangle \tag{16}
\end{align*}
$$

so that

$$
\begin{equation*}
\tilde{\psi}_{n}=\frac{1}{\sqrt{L}} \int_{0}^{L} d x e^{-2 \pi i n x / L} \psi(x) \tag{17}
\end{equation*}
$$

3. (a) In order to show hermiticity, we must show that $\left\langle\psi_{1}\right| \hat{P}\left|\psi_{2}\right\rangle^{*}=\left\langle\psi_{2}\right| \hat{P}\left|\psi_{1}\right\rangle$. We have, using integration by parts,

$$
\begin{align*}
\left\langle\psi_{1}\right| \hat{P}\left|\psi_{2}\right\rangle & =\int_{0}^{L} d x \psi_{1}^{*}(x)(-i \hbar) \frac{d}{d x} \psi_{2}(x) \\
& =i \hbar \int_{0}^{L} d x \frac{d}{d x} \psi_{1}^{*}(x) \psi_{2}(x)-\left.i \hbar\left(\psi_{1}^{*}(x) \psi_{2}(x)\right)\right|_{x=0} ^{x=L} \\
& =i \hbar \int_{0}^{L} d x \frac{d}{d x} \psi_{1}^{*}(x) \psi_{2}(x)-i \hbar\left(\psi_{1}^{*}(L) \psi_{2}(L)-\psi_{1}^{*}(0) \psi_{2}(0)\right) \\
& =i \hbar \int_{0}^{L} d x \frac{d}{d x} \psi_{1}^{*}(x) \psi_{2}(x)-i \hbar\left(e^{-i \theta} \psi_{1}^{*}(0) e^{i \theta} \psi_{2}(0)-\psi_{1}^{*}(0) \psi_{2}(0)\right) \\
& =i \hbar \int_{0}^{L} d x \frac{d}{d x} \psi_{1}^{*}(x) \psi_{2}(x) \tag{18}
\end{align*}
$$

where we used the twisted periodicity conditions. Hence, we find

$$
\begin{align*}
\left\langle\psi_{1}\right| \hat{P}\left|\psi_{2}\right\rangle^{*} & =-i \hbar \int_{0}^{L} d x \psi_{2}^{*}(x) \frac{d}{d x} \psi_{1}(x) \\
& =\left\langle\psi_{2}\right| \hat{P}\left|\psi_{1}\right\rangle \tag{19}
\end{align*}
$$

which proves hermiticity.
(b) Certainly, the functions $\psi_{p}(x)=\langle x \mid p\rangle$ that are eigenfunctions of the differential operator $\hat{P}=-i \hbar d / d x$, with eigenvalue p, must be as usual, $\psi_{p}(x)=a_{p} e^{i p x / \hbar}$ (note that in general, the normalisation constant a_{p} may depend on the eigenvalue p). But then we must guarantee that they are in the space that we are looking at. That is, they must satisfy the condition $\psi_{p}(x+L)=e^{i \theta} \psi_{p}(x)$. Hence,

$$
\begin{equation*}
a_{p} e^{i p(x+L) / \hbar}=a_{p} e^{i p x / \hbar+i \theta} \quad \Rightarrow \quad e^{i p L / \hbar}=e^{i \theta} \tag{20}
\end{equation*}
$$

so that we find the eigenvalues

$$
\begin{equation*}
p=p_{n}:=\frac{(2 \pi n+\theta) \hbar}{L}, \quad n \in \mathbb{Z} \tag{21}
\end{equation*}
$$

The set $\left\{p_{n}: n \in \mathbb{Z}\right\}$ is the spectrum of \hat{P} on that space. For the eigenfunctions

$$
\psi_{p_{n}}(x)=\left\langle x \mid p_{n}\right\rangle=a_{p_{n}} e^{(2 \pi n+\theta) i x / L}
$$

we know that they are orthogonal for different n, since they correspond to different eigenvalues of a Hermitian operator (and this is enough of a proof!). We can also check explicitly orthonality as in Question 2, by evaluating explicitly the integrals; it's exactly the same calculation, since the $e^{i \theta x / L}$ factors just cancel out. To get the value of a, we do the case $n=n^{\prime}$ again, and the same cancellation occurs:

$$
\begin{align*}
\left\langle p_{n} \mid p_{n}\right\rangle & =\int_{0}^{L} d x\left\langle p_{n} \mid x\right\rangle\left\langle x \mid p_{n}\right\rangle \\
& =\int_{0}^{L} d x\left|a_{p_{n}}\right|^{2} \\
& =\left|a_{p_{n}}\right|^{2} L \tag{22}
\end{align*}
$$

so that we can choose again $a_{p_{n}}=1 / \sqrt{L}$.
(c) The function $\psi(x)$ satisfies $\psi(x+L)=e^{i \theta} \psi(x)$, so it is in the space we are looking at. In order to normalise it, we must have

$$
\begin{equation*}
1=\int_{0}^{L} d x \psi^{*}(x) \psi(x)=\int_{0}^{L} d x|A|^{2} \cos ^{2}(2 \pi x / L)=L|A|^{2} / 2 \tag{23}
\end{equation*}
$$

hence we can choose $A=\sqrt{2 / L}$. In order to assess the probabilities of momentum measurements, we must evaluate the overlap with the momentum eigenfunctions $\psi_{p_{n}}(x)$. The easiest way is to recognise that the cosine can be written as a sum of exponentials, and directly write $\psi(x)$ as a linear combination of momentum eigenfunctions:

$$
\begin{align*}
\psi(x) & =\sqrt{\frac{2}{L}} e^{i \theta x / L} \frac{e^{2 \pi i x / L}+e^{-2 \pi i x / L}}{2} \\
& =\frac{1}{\sqrt{2 L}}\left(e^{(2 \pi+\theta) i x / L}+e^{(-2 \pi+\theta) i x / L}\right) \\
& =\frac{1}{\sqrt{2}}\left(\psi_{p_{1}}(x)+\psi_{p_{-1}}(x)\right) \tag{24}
\end{align*}
$$

Since the momentum eigenfunctions are orthonormal, we can immediately read-off the coefficients:

$$
\left\langle p_{n} \mid \psi\right\rangle= \begin{cases}\frac{1}{\sqrt{2}} & (n=1,-1) \tag{25}\\ 0 & \text { (otherwise) }\end{cases}
$$

Hence, the probabilities are

$$
\begin{equation*}
P(\text { momentum }=(2 \pi+\theta) \hbar / L)=\frac{1}{2}, \quad P(\text { momentum }=(-2 \pi+\theta) \hbar / L)=\frac{1}{2} \tag{26}
\end{equation*}
$$

other probabilities being zero (of course, since these two add to 1). The average is then simply

$$
\begin{equation*}
\mathbb{E}(P)=\frac{1}{2} p_{1}+\frac{1}{2} p_{-1}=\frac{\theta \hbar}{L} . \tag{27}
\end{equation*}
$$

