Angular momentum operators:

$$
\begin{equation*}
\hat{L}_{x}=\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y}, \quad \hat{L}_{y}=\hat{z} \hat{p}_{x}-\hat{x} \hat{p}_{z}, \quad \hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x} \tag{1}
\end{equation*}
$$

Abstract angular momentum algebra:

$$
\begin{equation*}
\left[\hat{J}_{p}, \hat{J}_{q}\right]=i \hbar \epsilon_{p q r} \hat{J}_{r} \tag{2}
\end{equation*}
$$

(summation over repeated indices implies). Module construction: $\hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y}$, states $|j m\rangle, m \in\{-j,-j+1, \ldots, j\}, j=0,1 / 2,1,3 / 2, \ldots$ with

$$
\begin{align*}
& \left(\hat{J}_{x}^{2}+\hat{J}_{y}^{2}+\hat{J}_{z}^{2}\right)|j m\rangle=\hbar^{2} j(j+1)|j m\rangle, \quad \hat{J}_{z}|j m\rangle=\hbar m|j m\rangle \tag{3}\\
& \hat{J}_{+}|j m\rangle=\hbar \sqrt{(j+m+1)(j-m)}|j, m+1\rangle, \quad \hat{J}_{-}|j m\rangle=\hbar \sqrt{(j-m+1)(j+m)}|j, m-1\rangle
\end{align*}
$$

1. Calculate the commutators $\left[\hat{L}_{z}, \hat{x}^{2}\right],\left[\hat{L}_{z}, \hat{y}^{2}\right]$ and $\left[\hat{L}_{z}, \hat{z}^{2}\right]$, and deduce the commutator $\left[\hat{L}_{z}, \hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right]$. What is the geometric interpretation of the latter result?
2. (a) A representation is a linear map from abstract algebra elements to matrices, in such a way that the algebra relations are satisfied by the matrices under the usual matrix operations. Using completeness relations in fixed- j subspaces, show that the matrices $M_{q}, q=x, y, z$ whose matrix elements are given by $\left(M_{q}\right)_{m m^{\prime}}=\langle j m| \hat{J}_{q}\left|j m^{\prime}\right\rangle$ for a fixed j, form a representation of the abstract angular-momentum algebra - or $S U(2)$ algebra - defined by (2). These are called "spin- j representations".
(b) Construct the matrices in the spin- $1 / 2$ representation of $\hat{J}_{x}, \hat{J}_{y}, \hat{J}_{z}$.
3. An electron has a spin of $1 / 2$, and the average of the z-component of its spin is $\hbar / 2$. What normalised vector describes its state? If a measurement of the x-component of the spin is measured, what are the possible values that can be obtained? Calculate the probability of measuring a positive value.

Answers

1. First calculate

$$
\begin{align*}
{\left[\hat{L}_{z}, \hat{x}\right] } & =\left[\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}, \hat{x}\right] \\
& =-\left[\hat{y} \hat{p}_{x}, \hat{x}\right] \quad \text { because both } \hat{x} \text { and } \hat{p}_{y} \text { commute with } \hat{x} \\
& =-\hat{y}\left[\hat{p}_{x}, \hat{x}\right] \quad \text { because } \hat{y} \text { commutes with } \hat{x} \\
& =-\hat{y}(-i \hbar) \\
& =i \hbar \hat{y} \tag{4}
\end{align*}
$$

then

$$
\begin{align*}
{\left[\hat{L}_{z}, \hat{y}\right] } & =\left[\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}, \hat{y}\right] \\
& =\left[\hat{x} \hat{p}_{y}, \hat{y}\right] \quad \text { because both } \hat{y} \text { and } \hat{p}_{x} \text { commute with } \hat{y} \\
& =\hat{x}\left[\hat{p}_{y}, \hat{y}\right] \quad \text { because } \hat{x} \text { commutes with } \hat{y} \\
& =\hat{x}(-i \hbar) \\
& =-i \hbar \hat{x} \tag{5}
\end{align*}
$$

and finally

$$
\begin{align*}
{\left[\hat{L}_{z}, \hat{z}\right] } & =\left[\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}, \hat{z}\right] \\
& =0 \quad \text { because } \hat{x}, \hat{p}_{y}, \hat{y}, \hat{p}_{x} \text { all commute with } \hat{z} \tag{6}
\end{align*}
$$

Then, we may evaluate the commutators we are looking for:

$$
\begin{align*}
{\left[\hat{L}_{z}, \hat{x}^{2}\right] } & =\hat{x}\left[\hat{L}_{z}, \hat{x}\right]+\left[\hat{L}_{z}, \hat{x}\right] \hat{x} \\
& =i \hbar(\hat{x} \hat{y}+\hat{y} \hat{x}) \\
& =2 i \hbar \hat{x} \hat{y} \tag{7}
\end{align*}
$$

then

$$
\begin{align*}
{\left[\hat{L}_{z}, \hat{y}^{2}\right] } & =\hat{y}\left[\hat{L}_{z}, \hat{y}\right]+\left[\hat{L}_{z}, \hat{y}\right] \hat{y} \\
& =-i \hbar(\hat{y} \hat{x}+\hat{x} \hat{y}) \\
& =-2 i \hbar \hat{x} \hat{y} \tag{8}
\end{align*}
$$

and finally

$$
\begin{align*}
{\left[\hat{L}_{z}, \hat{z}^{2}\right] } & =\hat{z}\left[\hat{L}_{z}, \hat{z}\right]+\left[\hat{L}_{z}, \hat{z}\right] \hat{z} \\
& =0 \tag{9}
\end{align*}
$$

Hence, we find

$$
\begin{equation*}
\left[\hat{L}_{z}, \hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right]=0 \tag{10}
\end{equation*}
$$

which simply means that the square of the length of the position vector is invariant under rotation with respect to the z axis, as it should.
2. (a) Let us evaluate $M_{q} M_{r}-M_{r} M_{q}$, where we have the matrix products for both orders of the matrices. We should find $i \hbar \epsilon_{q r s} M_{s}$ (summation over s implied), the matrix representation of $i \hbar \epsilon_{q r s} \hat{J}_{s}$. Let us look at the matrix element labelled by m, m^{\prime}, for both terms separately. We have, explicitly writing the matrix product,

$$
\begin{aligned}
\left(M_{q} M_{r}\right)_{m m^{\prime}} & =\sum_{m^{\prime \prime}=-j}^{j}\left(M_{q}\right)_{m m^{\prime \prime}}\left(M_{r}\right)_{m^{\prime \prime} m^{\prime}} \\
& =\sum_{m^{\prime \prime}=-j}^{j}\langle j m| \hat{J}_{q}\left|j m^{\prime \prime}\right\rangle\left\langle j m^{\prime \prime}\right| \hat{J}_{r}\left|j m^{\prime}\right\rangle \\
& =\langle j m| \hat{J}_{q} \hat{J}_{r}\left|j m^{\prime}\right\rangle
\end{aligned}
$$

where in the last step we used completeness on the j subspace,

$$
\begin{equation*}
\sum_{m^{\prime \prime}=-j}^{j}\left|j m^{\prime \prime}\right\rangle\left\langle j m^{\prime \prime}\right|=\mathbf{1}_{j} \tag{11}
\end{equation*}
$$

(that is, this is 1 when acting on any vector in the j subspace - more precisely, it is a projector on the subspace with \hat{J}^{2} eigenvalue j). Similarly, for the other term we have

$$
\begin{equation*}
\left(M_{r} M_{q}\right)_{m m^{\prime}}=\langle j m| \hat{J}_{r} \hat{J}_{q}\left|j m^{\prime}\right\rangle \tag{12}
\end{equation*}
$$

Hence

$$
\begin{align*}
\left(M_{q} M_{r}-M_{r} M_{q}\right)_{m m^{\prime}} & =\langle j m|\left(\hat{J}_{q} \hat{J}_{r}-\hat{J}_{r} \hat{J}_{q}\right)\left|j m^{\prime}\right\rangle \\
& =i \hbar \epsilon_{q r s}\langle j m| \hat{J}_{s}\left|j m^{\prime}\right\rangle \\
& =i \hbar \epsilon_{q r s}\left(M_{s}\right)_{m m^{\prime}} \tag{13}
\end{align*}
$$

which shows that this is a representation of the angular-momentum algebra.
(b) We just need to evaluate explicitly the matrix elements using the known action of $\hat{J}_{x}, \hat{J}_{y}, \hat{J}_{z}$ on the vectors with $j=1 / 2$, that is, the vetors $|1 / 2,-1 / 2\rangle$ and $|1 / 2,1 / 2\rangle$. For simplicity, we will denote these vectors by $|+\rangle=|1 / 2,1 / 2\rangle$ and $|-\rangle=|1 / 2,-1 / 2\rangle$; the first has a spin "up" in the z direction, and the second has a spin "down". We have

$$
\begin{aligned}
& \hat{J}_{x}|-\rangle=\frac{\hat{J}_{+}+\hat{J}_{-}}{2}|-\rangle=\frac{1}{2} \hat{J}_{+}|-\rangle=\frac{\hbar}{2}|+\rangle \\
& \hat{J}_{x}|+\rangle=\frac{\hat{J}_{+}+\hat{J}_{-}}{2}|-\rangle=\frac{1}{2} \hat{J}_{-}|+\rangle=\frac{\hbar}{2}|-\rangle \\
& \hat{J}_{y}|-\rangle=\frac{\hat{J}_{+}-\hat{J}_{-}}{2 i}|-\rangle=\frac{1}{2 i} \hat{J}_{+}|-\rangle=-\frac{i \hbar}{2}|+\rangle \\
& \hat{J}_{y}|+\rangle=\frac{\hat{J}_{+}-\hat{J}_{-}}{2 i}|-\rangle=-\frac{1}{2 i} \hat{J}_{-}|+\rangle=\frac{i \hbar}{2}|-\rangle \\
& \hat{J}_{z}|-\rangle=-\frac{\hbar}{2}|-\rangle \\
& \hat{J}_{z}|+\rangle=\frac{\hbar}{2}|+\rangle
\end{aligned}
$$

Hence, the matrices in the spin- $1 / 2$ representation are

$$
M_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \tag{14}\\
1 & 0
\end{array}\right), \quad M_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), \quad M_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Note that M_{z} is diagonal. This is because our basis elements $|-\rangle$ and $|+\rangle$ are eigenvectors of \hat{J}_{z}, and in the representation, these basis elements just map to the "standard" basis of column vectors:
3. Since the electron has a spin $1 / 2$, this means that $j=1 / 2$, so the maximum value the z component of its spin can have is $\hbar / 2$. Since the average gives exactly this value, it must be a state with this value for sure, corresponding to the vector $|1 / 2,1 / 2\rangle$. Hence the normalised vector representing its state is

$$
\begin{equation*}
|\psi\rangle=|+\rangle \tag{16}
\end{equation*}
$$

(using the notation of the previous question), or, in matrix notation,

$$
\begin{equation*}
\psi=v_{+}^{z}=\binom{0}{1} \tag{17}
\end{equation*}
$$

For a measurement of the x component, the possibilities are the same as the measurements of the z component (or a measurement in any direction), that is $\hbar / 2$ and $-\hbar / 2$. This can be seen quite explicitly, by diagonalising the matrix M_{x} in order to find its eigenvectors and eigenvalues. It is simple to diagonalise: the eigenvectors $v_{ \pm}^{x}$ and eigenvalues $\lambda_{ \pm}$are

$$
\begin{equation*}
v_{+}^{x}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad \lambda_{+}=\frac{\hbar}{2} ; \quad v_{-}^{x}=\frac{1}{\sqrt{2}}\binom{1}{-1}, \quad \lambda_{-}=-\frac{\hbar}{2} \tag{18}
\end{equation*}
$$

The two eigenvalues are indeeed $\pm \hbar / 2$. The probability of measuring a positive value is the probability of measuring $\hbar / 2$. Hence, we need to take the absolute value squared of the overlap (the matrix product) between the dual of the eigenvector v_{+}^{x} of M_{x}, with the state vector $\psi=v_{+}^{z}$. The dual vector of v_{+}^{x} is just $\left(v_{+}^{x}\right)^{\dagger}$, that is, the transpose-and-complexconjugate. Hence, we have

$$
P\left(J_{x}=\hbar / 2\right)=\left|\left(v_{+}^{x}\right)^{\dagger} v_{+}^{z}\right|^{2}=\frac{1}{2}\left|\left(\begin{array}{ll}
1 & 1 \tag{19}
\end{array}\right)\binom{0}{1}\right|^{2}=\frac{1}{2}
$$

This means that if we know for sure that the z component is $\hbar / 2$, then we have no idea what the x component may be!

