
Quantum Mechanics III Michaelmas Term 2008
Lecturer: Dr. Benjamin Doyon

Homework 4 – due 15 December 2008

Angular momentum operators:

L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x. (1)

Abstract angular momentum algebra:

[Ĵp, Ĵq] = i~εpqrĴr (2)

(summation over repeated indices implies). Module construction: Ĵ± = Ĵx ± iĴy, states
|jm〉, m ∈ {−j,−j + 1, . . . , j}, j = 0, 1/2, 1, 3/2, . . . with

(Ĵ2
x + Ĵ2

y + Ĵ2
z )|jm〉 = ~2j(j + 1)|jm〉, Ĵz|jm〉 = ~m|jm〉, (3)

Ĵ+|jm〉 = ~
√

(j +m+ 1)(j −m)|j,m+ 1〉, Ĵ−|jm〉 = ~
√

(j −m+ 1)(j +m)|j,m− 1〉

1. Calculate the commutators [L̂z, x̂
2], [L̂z, ŷ

2] and [L̂z, ẑ
2], and deduce the commutator

[L̂z, x̂
2 + ŷ2 + ẑ2]. What is the geometric interpretation of the latter result?

2. (a) A representation is a linear map from abstract algebra elements to matrices, in such
a way that the algebra relations are satisfied by the matrices under the usual matrix
operations. Using completeness relations in fixed-j subspaces, show that the matrices
Mq, q = x, y, z whose matrix elements are given by (Mq)mm′ = 〈jm|Ĵq|jm′〉 for a
fixed j, form a representation of the abstract angular-momentum algebra – or SU(2)
algebra – defined by (2). These are called “spin-j representations”.

(b) Construct the matrices in the spin-1/2 representation of Ĵx, Ĵy, Ĵz.

3. An electron has a spin of 1/2, and the average of the z-component of its spin is ~/2. What
normalised vector describes its state? If a measurement of the x-component of the spin is
measured, what are the possible values that can be obtained? Calculate the probability of
measuring a positive value.

Answers

1. First calculate

[L̂z, x̂] = [x̂p̂y − ŷp̂x, x̂]

= −[ŷp̂x, x̂] because both x̂ and p̂y commute with x̂

= −ŷ[p̂x, x̂] because ŷ commutes with x̂

= −ŷ(−i~)

= i~ŷ (4)
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then

[L̂z, ŷ] = [x̂p̂y − ŷp̂x, ŷ]

= [x̂p̂y, ŷ] because both ŷ and p̂x commute with ŷ

= x̂[p̂y, ŷ] because x̂ commutes with ŷ

= x̂(−i~)

= −i~x̂ (5)

and finally

[L̂z, ẑ] = [x̂p̂y − ŷp̂x, ẑ]

= 0 because x̂, p̂y, ŷ, p̂x all commute with ẑ (6)

Then, we may evaluate the commutators we are looking for:

[L̂z, x̂
2] = x̂[L̂z, x̂] + [L̂z, x̂]x̂

= i~(x̂ŷ + ŷx̂)

= 2i~x̂ŷ (7)

then

[L̂z, ŷ
2] = ŷ[L̂z, ŷ] + [L̂z, ŷ]ŷ

= −i~(ŷx̂+ x̂ŷ)

= −2i~x̂ŷ (8)

and finally

[L̂z, ẑ
2] = ẑ[L̂z, ẑ] + [L̂z, ẑ]ẑ

= 0 (9)

Hence, we find
[L̂z, x̂

2 + ŷ2 + ẑ2] = 0 (10)

which simply means that the square of the length of the position vector is invariant under
rotation with respect to the z axis, as it should.

2. (a) Let us evaluate MqMr −MrMq, where we have the matrix products for both orders
of the matrices. We should find i~εqrsMs (summation over s implied), the matrix
representation of i~εqrsĴs. Let us look at the matrix element labelled by m,m′, for
both terms separately. We have, explicitly writing the matrix product,

(MqMr)mm′ =
j∑

m′′=−j

(Mq)mm′′(Mr)m′′m′

=
j∑

m′′=−j

〈jm|Ĵq|jm′′〉〈jm′′|Ĵr|jm′〉

= 〈jm|ĴqĴr|jm′〉
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where in the last step we used completeness on the j subspace,

j∑
m′′=−j

|jm′′〉〈jm′′| = 1j (11)

(that is, this is 1 when acting on any vector in the j subspace – more precisely, it is
a projector on the subspace with Ĵ2 eigenvalue j). Similarly, for the other term we
have

(MrMq)mm′ = 〈jm|ĴrĴq|jm′〉 (12)

Hence

(MqMr −MrMq)mm′ = 〈jm|(ĴqĴr − ĴrĴq)|jm′〉

= i~εqrs〈jm|Ĵs|jm′〉

= i~εqrs(Ms)mm′ (13)

which shows that this is a representation of the angular-momentum algebra.

(b) We just need to evaluate explicitly the matrix elements using the known action of
Ĵx, Ĵy, Ĵz on the vectors with j = 1/2, that is, the vetors |1/2,−1/2〉 and |1/2, 1/2〉.
For simplicity, we will denote these vectors by |+〉 = |1/2, 1/2〉 and |−〉 = |1/2,−1/2〉;
the first has a spin “up” in the z direction, and the second has a spin “down”. We
have

Ĵx|−〉 =
Ĵ+ + Ĵ−

2
|−〉 =

1
2
Ĵ+|−〉 =

~
2
|+〉

Ĵx|+〉 =
Ĵ+ + Ĵ−

2
|−〉 =

1
2
Ĵ−|+〉 =

~
2
|−〉

Ĵy|−〉 =
Ĵ+ − Ĵ−

2i
|−〉 =

1
2i
Ĵ+|−〉 = − i~

2
|+〉

Ĵy|+〉 =
Ĵ+ − Ĵ−

2i
|−〉 = − 1

2i
Ĵ−|+〉 =

i~
2
|−〉

Ĵz|−〉 = −~
2
|−〉

Ĵz|+〉 =
~
2
|+〉

Hence, the matrices in the spin-1/2 representation are

Mx =
~
2

(
0 1
1 0

)
, My =

~
2

(
0 i

−i 0

)
, Mz =

~
2

(
−1 0
0 1

)
(14)

Note that Mz is diagonal. This is because our basis elements |−〉 and |+〉 are eigenvec-
tors of Ĵz, and in the representation, these basis elements just map to the “standard”
basis of column vectors:

|−〉 7→ vz
− =

(
1
0

)
, |+〉 7→ vz

+ =

(
0
1

)
(15)
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3. Since the electron has a spin 1/2, this means that j = 1/2, so the maximum value the
z component of its spin can have is ~/2. Since the average gives exactly this value, it
must be a state with this value for sure, corresponding to the vector |1/2, 1/2〉. Hence the
normalised vector representing its state is

|ψ〉 = |+〉 (16)

(using the notation of the previous question), or, in matrix notation,

ψ = vz
+ =

(
0
1

)
(17)

For a measurement of the x component, the possibilities are the same as the measurements
of the z component (or a measurement in any direction), that is ~/2 and −~/2. This can
be seen quite explicitly, by diagonalising the matrix Mx in order to find its eigenvectors
and eigenvalues. It is simple to diagonalise: the eigenvectors vx

± and eigenvalues λ± are

vx
+ =

1√
2

(
1
1

)
, λ+ =

~
2
; vx

− =
1√
2

(
1
−1

)
, λ− = −~

2
(18)

The two eigenvalues are indeeed ±~/2. The probability of measuring a positive value is
the probability of measuring ~/2. Hence, we need to take the absolute value squared of the
overlap (the matrix product) between the dual of the eigenvector vx

+ of Mx, with the state
vector ψ = vz

+. The dual vector of vx
+ is just (vx

+)†, that is, the transpose-and-complex-
conjugate. Hence, we have

P (Jx = ~/2) = |(vx
+)†vz

+|2 =
1
2

∣∣∣∣∣( 1 1
)( 0

1

)∣∣∣∣∣
2

=
1
2

(19)

This means that if we know for sure that the z component is ~/2, then we have no idea
what the x component may be!
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