Homework 3 - due 4 December 2008

The hamiltonian of the harmonic oscillator is

$$
\begin{equation*}
\hat{H}=\frac{\hat{P}^{2}}{2 m}+\frac{m \omega^{2}}{2} \hat{X}^{2} \tag{1}
\end{equation*}
$$

Its eigenvalues are

$$
\begin{equation*}
E_{N}=\hbar \omega\left(\frac{1}{2}+N\right) \tag{2}
\end{equation*}
$$

For its normalised eigenstates $|N\rangle$, we know the action of the ladder operators $\hat{a}=(\hat{P}+$ $i m \omega \hat{X}) / \sqrt{2 m}$ and $\hat{a}^{\dagger}=(\hat{P}-i m \omega \hat{X}) / \sqrt{2 m}$:

$$
\begin{equation*}
\hat{a}|N\rangle=\sqrt{(N+1) \hbar \omega}|N+1\rangle, \quad \hat{a}^{\dagger}|N\rangle=\sqrt{N \hbar \omega}|N-1\rangle, \tag{3}
\end{equation*}
$$

and we know the explicit form of the eigenfunctions, which are for the first few states, with $\alpha=m \omega / \hbar:$

$$
\begin{align*}
& \langle x \mid 0\rangle=\left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} e^{-\frac{\alpha x^{2}}{2}} \\
& \langle x \mid 1\rangle=i\left(\frac{4 \alpha}{\pi}\right)^{\frac{1}{4}}(\sqrt{\alpha} x) e^{-\frac{\alpha x^{2}}{2}} \\
& \langle x \mid 2\rangle=-\left(\frac{4 \alpha}{\pi}\right)^{\frac{1}{4}}\left(\alpha x^{2}-\frac{1}{2}\right) e^{-\frac{\alpha x^{2}}{2}} \tag{4}
\end{align*}
$$

A useful integral:

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\alpha x^{2}}=\sqrt{\frac{\pi}{\alpha}} \quad(\operatorname{Re}(\alpha)>0) \tag{5}
\end{equation*}
$$

1. For the eigenstate $|N\rangle$, calculate the average momentum $\mathbb{E}(P)$, the variance of the momentum $\sqrt{\mathbb{E}\left(P^{2}\right)-\mathbb{E}(P)^{2}}$, the average kinetic energy $\mathbb{E}\left(P^{2} / 2 m\right)$, the average position $\mathbb{E}(X)$ and the variance of the position $\sqrt{\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}}$.
2. (a) Normalise the wave function $\psi(x)=A e^{-k x^{2}}$ (for $k>0$). What is the probability, in this state, of finding the energy of the harmonic oscillator to be $\hbar \omega / 2$? To be $3 \hbar \omega / 2$?
(b) Normalise the vector $|\psi\rangle=A(3|0\rangle+4|2\rangle)$. In this state, what is the probability density of finding the particle at position x ? What is the probability of finding the position to be in the range $[0, \infty]$?
3. Any operator \hat{B} can be written in the basis of the hamiltonian eigenstates, in the form

$$
\begin{equation*}
\hat{B}=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} b_{m, n}|m\rangle\langle n| \tag{6}
\end{equation*}
$$

for some (generally complex) coefficients $b_{M, N}$. Write down the hamiltonian \hat{H}, the momentum \hat{P} and the position \hat{X} in this form.

Answers

1. We must write the momentum and position operators in terms of the ladder operators, whose action on all states we know:

$$
\begin{equation*}
\hat{X}=\frac{\hat{a}-\hat{a}^{\dagger}}{i \omega \sqrt{2 m}}, \quad \hat{P}=\sqrt{\frac{m}{2}}\left(\hat{a}+\hat{a}^{\dagger}\right) \tag{7}
\end{equation*}
$$

Then we can evaluate all averages using the orthonormality relation $\left\langle N \mid N^{\prime}\right\rangle=\delta_{N, N^{\prime}}$. First,

$$
\begin{align*}
\mathbb{E}(P) & =\langle N| \hat{P}|N\rangle \\
& =\langle N| \sqrt{\frac{m}{2}}\left(\hat{a}+\hat{a}^{\dagger}\right)|N\rangle \\
& =\sqrt{\frac{m}{2}}\langle N|(\sqrt{(N+1) \hbar \omega}|N+1\rangle+\sqrt{N \hbar \omega}|N-1\rangle) \\
& =0 \tag{8}
\end{align*}
$$

Hence the average momentum is 0 , which is in agreement with the intuition that the particle "goes back an forth" but overall stays in the same region (it does not escape to infinity). This is a statement that stays true for energy eigenstates associated to any confining potential. Second,

$$
\begin{align*}
\mathbb{E}\left(P^{2}\right) & =\langle N| \hat{P}^{2}|N\rangle \\
& =\langle N| \frac{m}{2}\left(\hat{a}+\hat{a}^{\dagger}\right)^{2}|N\rangle \\
& =\frac{m}{2}\langle N|\left(\hat{a}^{2}+\hat{a} \hat{a}^{\dagger}+\hat{a}^{\dagger} \hat{a}+\left(\hat{a}^{\dagger}\right)^{2}\right)|N\rangle \\
& =\frac{m}{2}\langle N|\left(\hat{a}^{2}+\left(\hat{a}^{\dagger}\right)^{2}+2 \hat{a} \hat{a}^{\dagger}+\hbar \omega\right)|N\rangle \tag{9}
\end{align*}
$$

In the last line, we used the commutator $\left[\hat{a}^{\dagger}, \hat{a}\right]=\hbar \omega$ in the relation $\hat{a}^{\dagger} \hat{a}=\hat{a} \hat{a}^{\dagger}+\left[\hat{a}^{\dagger}, \hat{a}\right]$. Then, we may use the useful result

$$
\begin{equation*}
\hat{a} \hat{a}^{\dagger}|N\rangle=\hat{a} \sqrt{N \hbar \omega}|N-1\rangle=\sqrt{N \hbar \omega} \sqrt{N \hbar \omega}|N\rangle=N \hbar \omega|N\rangle \tag{10}
\end{equation*}
$$

as well as the fact that $\hat{a}^{2}|N\rangle \propto|N+2\rangle$ and $\left(\hat{a}^{\dagger}\right)^{2}|N\rangle \propto|N-2\rangle$, to get

$$
\begin{equation*}
\left.\mathbb{E}\left(P^{2}\right)=\frac{m}{2}\langle N|(2 N+1) \hbar \omega\right)|N\rangle=m \hbar \omega\left(\frac{1}{2}+N\right) \tag{11}
\end{equation*}
$$

Hence the variance of the momentum is

$$
\begin{equation*}
\sqrt{\mathbb{E}\left(P^{2}\right)-\mathbb{E}(P)^{2}}=\sqrt{m \hbar \omega\left(\frac{1}{2}+N\right)} \tag{12}
\end{equation*}
$$

We see that for higher energies, the variance is higher; the momentum is more spread around its average 0 , because the particle goes faster in general. Third, this directly gives us the average kinetic energy operator

$$
\begin{equation*}
\mathbb{E}\left(P^{2} / 2 m\right)=\frac{\hbar \omega}{2}\left(\frac{1}{2}+N\right) \tag{13}
\end{equation*}
$$

Interestingly, this is exactly half of the total energy for the state $|N\rangle, E_{N}=\hbar \omega(1 / 2+N)$. This means that for the harmonic oscillator, half of the total energy is in the kinetic energy; so the other half is in the potential energy. The same thing happens in the classical statistical mechanics of many oscillators, where it is the "virial theorem". Fourth,

$$
\begin{align*}
\mathbb{E}(X) & =\langle N| \hat{X}|N\rangle \\
& =\langle N| \frac{\hat{a}-\hat{a}^{\dagger}}{i \omega \sqrt{2 m}}|N\rangle \\
& =0 \tag{14}
\end{align*}
$$

That is, the average position is 0 , which is after all expected from the symmetry $X \rightarrow-X$ of the quadratic potential. Finally,

$$
\begin{align*}
\mathbb{E}\left(X^{2}\right) & =\langle N| \hat{X}^{2}|N\rangle \\
& =-\frac{1}{2 m \omega^{2}}\langle N|\left(\hat{a}-\hat{a}^{\dagger}\right)^{2}|N\rangle \\
& =-\frac{1}{2 m \omega^{2}}\langle N|\left(\hat{a}^{2}-\hat{a} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a}+\left(\hat{a}^{\dagger}\right)^{2}\right)|N\rangle \\
& =-\frac{1}{2 m \omega^{2}}\langle N|\left(\hat{a}^{2}+\left(\hat{a}^{\dagger}\right)^{2}-2 \hat{a} \hat{a}^{\dagger}-\hbar \omega\right)|N\rangle \\
& =\frac{\hbar}{m \omega}\left(\frac{1}{2}+N\right) \tag{15}
\end{align*}
$$

using again (10). Hence the variance of the position is

$$
\begin{equation*}
\sqrt{\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2}}=\sqrt{\frac{\hbar}{m \omega}\left(\frac{1}{2}+N\right)} \tag{16}
\end{equation*}
$$

Again, we see that it increases with N, which means that for higher energy states, the particles can go further away from the origin $X=0$. It is interesting to confirm that the average potential energy

$$
\begin{equation*}
\mathbb{E}\left(m \omega^{2} X^{2} / 2\right)=\frac{\hbar \omega}{2}\left(\frac{1}{2}+N\right) \tag{17}
\end{equation*}
$$

is indeed also half of the total energy.
2. (a) We need to impose that $\int_{-\infty}^{\infty} d x \bar{\psi}(x) \psi(x)=1$. That is,

$$
\begin{equation*}
1=\int_{-\infty}^{\infty} d x|A|^{2} e^{-2 k x^{2}}=\sqrt{\frac{\pi}{2 k}}|A|^{2} \tag{18}
\end{equation*}
$$

so that $A=(2 k / \pi)^{\frac{1}{4}}$ up to a phase, which we can take as we wish (for instance, to be 1) since this wave function represents a physical state. The probability that we find the energy to be $\hbar \omega / 2$, or the level to be $N=0$ (i.e. the ground state), is given by the absolute-value-squared of the overlap between the wave function $\langle x \mid 0\rangle$ and the wave function $\psi(x)$:

$$
\begin{equation*}
P(E=\hbar \omega / 2)=P(N=0)=\left|\left(\frac{2 k \alpha}{\pi^{2}}\right)^{\frac{1}{4}} \int_{-\infty}^{\infty} d x e^{-(\alpha / 2+k) x^{2}}\right|^{2}=\left(\frac{8 k \alpha}{(\alpha+2 k)^{2}}\right)^{\frac{1}{2}} \tag{19}
\end{equation*}
$$

Note that for $k=\alpha / 2$, we indeed recover a probability 1 , since in this case the wave function $\psi(x)$ is exactly the ground state wave function. For $k \rightarrow 0$, where $\psi(x)$ tends to a constant, the probability goes to zero proportionally to $k^{1 / 2}$. When $k \rightarrow \infty$, where the wave function becomes a Dirac delta-function supported at $x=0$, the probability tends to zero also, proportionally to $k^{-1 / 2}$. The probability to be in the state with energy $3 \hbar \omega / 2$, or the level $N=1$, is

$$
\begin{equation*}
P(E=2 \hbar \omega / 2)=P(N=1)=\left|\left(\frac{8 k \alpha}{\pi^{2}}\right)^{\frac{1}{4}} \int_{-\infty}^{\infty} d x \sqrt{\alpha} x e^{-(\alpha / 2+k) x^{2}}\right|^{2}=0 \tag{20}
\end{equation*}
$$

where we used the fact that the integrand is anti-symmetric (odd) under $x \rightarrow-x$. A more fundamental explanation is that the state $|1\rangle$ is an eigenvector of the parity operator \hat{Q}, defined by $\hat{Q}|x\rangle=|-x\rangle$, with eigenvalue -1 ; whereas $\psi(x)$ represents an eigenvector with eigenvalue 1. Hence they must be orthogonal.
(b) The normalisation condition now reads

$$
\begin{equation*}
1=\langle\psi \mid \psi\rangle=|A|^{2}(9+16)=25|A|^{2} \tag{21}
\end{equation*}
$$

using $\langle 0 \mid 2\rangle=\langle 2 \mid 0\rangle=0$ and $\langle 0 \mid 0\rangle=\langle 2 \mid 2\rangle=1$. Hence we can take $A=1 / 5$. The probability density of finding the particle at position x is simply given by

$$
\begin{align*}
|\langle x \mid \psi\rangle|^{2} & =|A|^{2}|3\langle x \mid 0\rangle+4\langle x \mid 2\rangle|^{2} \\
& =\frac{1}{25}\left(\frac{\alpha}{\pi}\right)^{\frac{1}{2}} e^{-\alpha x^{2}}\left(3+2 \sqrt{2}-4 \sqrt{2} \alpha x^{2}\right)^{2} \tag{22}
\end{align*}
$$

With a little bit of work, one can check that this integrates to 1 :

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=\int_{-\infty}^{\infty}|\langle x \mid \psi\rangle|^{2}=1 \tag{23}
\end{equation*}
$$

but this is just a check that there was no mistake in the computation, since we know that $\langle\psi \mid \psi\rangle=1$. The probability of finding the position in the range $[0, \infty]$ is simply

$$
\begin{equation*}
\int_{0}^{\infty}|\langle x \mid \psi\rangle|^{2}=\frac{1}{2} \int_{-\infty}^{\infty}|\langle x \mid \psi\rangle|^{2}=\frac{1}{2} \tag{24}
\end{equation*}
$$

where we used the fact that the function $|\langle x \mid \psi\rangle|^{2}$ is symmetric (even) under $x \rightarrow-x$.
3. Note that from the expansion of the operator \hat{B} in general, we have

$$
\begin{align*}
\langle M| \hat{B}|N\rangle & =\langle M|\left(\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} b_{m, n}|m\rangle\langle n|\right)|N\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} b_{m, n}\langle M \mid m\rangle\langle n \mid N\rangle \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} b_{m, n} \delta_{M, m} \delta_{N, n} \\
& =b_{M, N} \tag{25}
\end{align*}
$$

The left-hand side can be computed easily. We have

$$
\begin{align*}
\langle M| \hat{H}|N\rangle & =\langle M| E_{N}|N\rangle=E_{N} \delta_{M, N} \\
\langle M| \hat{P}|N\rangle & =\langle M| \sqrt{\frac{m}{2}}\left(\hat{a}+\hat{a}^{\dagger}\right)|N\rangle \\
& =\sqrt{\frac{m}{2}}\langle M|(\sqrt{(N+1) \hbar \omega}|N+1\rangle+\sqrt{N \hbar \omega}|N-1\rangle) \\
& =\sqrt{\frac{m \hbar \omega}{2}}\left(\sqrt{N+1} \delta_{M, N+1}+\sqrt{N} \delta_{M, N-1}\right) \\
\langle M| \hat{X}|N\rangle & =\langle M| \frac{\hat{a}-\hat{a}^{\dagger}}{i \omega \sqrt{2 m}}|N\rangle \\
& =\frac{1}{i \omega \sqrt{2 m}}\langle M|(\sqrt{(N+1) \hbar \omega}|N+1\rangle-\sqrt{N \hbar \omega}|N-1\rangle) \\
& =-i \sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{N+1} \delta_{M, N+1}-\sqrt{N} \delta_{M, N-1}\right) \tag{26}
\end{align*}
$$

These give the following expansions

$$
\begin{align*}
\hat{H} & =\sum_{N=0}^{\infty} E_{N}|N\rangle\langle N| \\
\hat{P} & =\sqrt{\frac{m \hbar \omega}{2}} \sum_{N=0}^{\infty}(\sqrt{N+1}|N+1\rangle\langle N|+\sqrt{N}|N-1\rangle\langle N|) \\
\hat{X} & =-i \sqrt{\frac{\hbar}{2 m \omega}} \sum_{N=0}^{\infty}(\sqrt{N+1}|N+1\rangle\langle N|-\sqrt{N}|N-1\rangle\langle N|) \tag{27}
\end{align*}
$$

(where we must remember that in these expression, when we see the vector $|N-1\rangle$ with $N=0$, we must replace this by 0 - that is, the term does not appear). These expansions can be seen as expressions of these operators as infinite matrices. Indeed, we can represent $|m\rangle\langle n|$ as a matrix $\mathcal{E}(m, n)$ where every element is zero except onyl one element, the element at the $(m+1)^{\text {th }}$ row and the $(n+1)^{\text {th }}$ column, which is just 1 . This reproduces the correct multiplication law $\mathcal{E}(m, n) \mathcal{E}\left(m^{\prime}, n^{\prime}\right)=|m\langle \rangle n|\left|m^{\prime}\langle \rangle n^{\prime}\right|=\left|m\langle \rangle n^{\prime}\right| \delta_{n, m^{\prime}}=\mathcal{E}\left(m, n^{\prime}\right) \delta_{n, m^{\prime}}$ (you
can check that these matrices indeed satisfy these identities). Hence, we can write

$$
\begin{align*}
\hat{H} & =\left(\begin{array}{cccc}
E_{0} & 0 & 0 & \cdots \\
0 & E_{1} & 0 & \cdots \\
0 & 0 & E_{2} & \cdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right) \\
\hat{P} & =\sqrt{\frac{m \hbar \omega}{2}}\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \cdots \\
1 & 0 & \sqrt{2} & 0 & \cdots \\
0 & \sqrt{2} & 0 & \sqrt{3} & \cdots \\
0 & 0 & \sqrt{3} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right) \\
\hat{X} & =-i \sqrt{\frac{\hbar}{2 m \omega}}\left(\begin{array}{ccccc}
0 & -1 & 0 & 0 & \cdots \\
1 & 0 & -\sqrt{2} & 0 & \cdots \\
0 & \sqrt{2} & 0 & -\sqrt{3} & \cdots \\
0 & 0 & \sqrt{3} & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right) \tag{28}
\end{align*}
$$

