Quantum Mechanics III Michaelmas Term 2008

Lecturer: Dr. Benjamin Doyon

Homework 2 — due 17 November 2008

1. Calculate the commutator

—i[X?, P (1)

What observable does this correspond to? Explain using the quantisation conditions.

2. Given an observable A, we can take the set of its independent eigenvectors as a basis of

the Hilbert space. We may then define the operator f (fl), for any function f from the

spectrum of A to C, by its action on all eigenvectors of A:

f(A)la) = f(a)|a) (2)

for any eigenvector |a) with A-eigenvalue a.

(a)

(b)

Show that with this definition, we have for n a non-negative integer,

f(A) = AA...A (n times) if the function is f(a) = a™. (3)

Consider a unitary operator U. Show by directly taking the n'" power of the observ-
ables that
(UAUN = UAUT (4)

Show from the general definition that
FUAUT) = U (AT (5)
If 15(;4 is the projection operator on the fl—eigenspace of eigenvalue a, deduce that
UBiUt = pUAY! (6)

Evaluate
e—iPx/hX eiPm/h (7)
where z is some real number.

Consider a normalised state-vector [¢). Is the vector eife/ R4p) still normalised? If

|1) has average position xg, what is the average position of eiPa/ Rp)?



Answers

1.

2.

We must use repeatedly the general formulas [AB, C] = [A, C]B+ A[B,C] and [A, B(] =
[A, B]C + B[A, C], and we must use [X, P] = ih. We have
_i[X27 P2] = _Z([X7 PQ]X + X[X? P2])

= —i([X,P)PX + P[X,P|X + X[X, P]P + XP[X, P])
= —i(ihPX + PihX + XihP + X Pih)
= 2n(PX + XP) (8)
In order to identify the observable, we reason as follows: First, we know that the observable
X2, corresponding to the classical phase-space variable X2, is just X2 Similarly, P2 = P2,
But by the Dirac’s quantisation conditions, we have that

(X2, PP = in{ X2, P2} (9)
and evaluating the Poisson brackets gives

2 2 2 2

Hence, we find that

_i[X2, P = —i[X2, P?] = h{X2, P2} = AhX P (11)
Hence, —i[X 2, ]52] is the observable corresponding to 4hX P. With (8), we thus find the
observable corresponding to the product of classical phase-space variables X P in a nice
symmetric form:

—  PX+XP
XP:% (12)

(a) From the definition, if f(a) = a™, then

f(A)la) = f(a)la) = a"a) (13)

But the right-hand side of (3) is, by repeatedly using the eigenvalue equation /Al|a> =
ala),
AA.. Ala) = AA...ala) = --- = Aa...ala) = aa. . .a|a) = a"|a) (14)
Hence both left- and right-hand sides are the same when they act on any eigenstate
of A. Since these states form a basis, this means that both sides are the same as
operators on the Hilbert space.
(b) All we have to use is that if some given operator U is unitary, then this means
that UTU = 1. In order to directly take the n'" power, perhaps the best proof is
by induction. Clearly formula (4) is true for n = 1. Let us assume it is true for

n=m — 1. Then
(UAUNY™ = UAUNUAUYY™ ! = UAUTUA™'WUT = UAA™ Ut = UA™UT  (15)

hence formula (4) also holds for n = m. This completes the induction.



(¢) In order to use the general definition of a function of an observable, we must act
on some vector |v) with both the left-hand side and the right-hand side, and verify
that we get the same result for any vector |v) in a given basis. First, recall that if
|a) is eigenstate of A with eigenvalue a, then Ula) is eigenstate of UAU' with the
same eigenvalue a; that is becasue UAUT Ula) = UA|a) = Uala) = aUla). So, for
the vector |v) we may take Ula), and from the general definition, we have for the
left-hand side of (5),

FUAUNUa) = f(a)Ula) (16)

On the other hand, the right-hand side, acting on the same vector Ula), gives
Uf(A)UUa) = Uf(A)|a) = Uf(a)la) = f(a)Ula) (17)

Hence both are the same. Now the vectors Ula) themselves form a basis. Indeed,
as we said they are eigenvectors of the observable U AU . but also they are all of
its eigenvectors. That’s because if |a)’ is an eigenvector of U AUT with eigenvalue a,
then U'|a)’ is an eigenvector of A with the same eigenvalue (just reverse the process:
AU a) = UTUAUYa)Y = Utala) = aUtla)’). So for any UAU*-eigenvector |a)’,
there is a A-eigenvetor |a) such that Ut|a)’ = |a), that is, |a)’ = Ula).

(d) Here the easiest way is to use the definition of the projection operator as follows!:

. o 1 =
PA = f.(A) where fo(z)= e (18)
0 z#a
This indeed gives the fundamental property of the projection operator:
Al [a) a=a
Pila) = _ (19)
0 a#a
Hence we have
UPAUY = U s (AUt = f(UAUT) = PTAY (20)
3. (a) Here, we may use the general formula
. 3 i1 N PN 1.~ ~ & 1 ~ ~ & 4
eABe ™ =B =B+ A B + SAA B+ A A A B +... (1)

Happily, in the case at hand, only the first and second terms are non-zero, since

[P, X] = —ih which commutes with everything. Hence, we find

e—iPm/hXeiﬁm/h _ X — (22)

1'We take discrete eigenvalues — otherwise we would have needed the projection operator on an interval [a,a’]

of eigenvalues, If’[‘jya/].



(b) If |¢) is normalised, this means that (1|¢)) = 1. Then, with |¢) = eiﬁx/hW}, we have
(818} = (wle™ /MMy = (gl PP My = () =1 (23)

which is still normalised. Here, we used the general result
eAeB =eAB it [A,B]=0 (24)

(or equivalently, we used (21) with B = 1). Supposing that (1)|X|¢)) = z0, we can

evaluate the average position corresponding to the vector |¢):

(@|X|¢) = (e PR P/

= (WX — 1))
= (X)) — z(|y)
= 29— (25)

That is, it is just shifted by the value —zx.



