
Quantum Mechanics III Michaelmas Term 2008
Lecturer: Dr. Benjamin Doyon

Homework 2 – due 17 November 2008

1. Calculate the commutator
−i[X̂2, P̂ 2] (1)

What observable does this correspond to? Explain using the quantisation conditions.

2. Given an observable Â, we can take the set of its independent eigenvectors as a basis of
the Hilbert space. We may then define the operator f(Â), for any function f from the
spectrum of Â to C, by its action on all eigenvectors of Â:

f(Â)|a〉 = f(a)|a〉 (2)

for any eigenvector |a〉 with Â-eigenvalue a.

(a) Show that with this definition, we have for n a non-negative integer,

f(Â) = ÂÂ...Â (n times) if the function is f(a) = an. (3)

(b) Consider a unitary operator U . Show by directly taking the nth power of the observ-
ables that

(UÂU †)n = UÂnU † (4)

(c) Show from the general definition that

f(UÂU †) = Uf(Â)U † (5)

(d) If P̂ Â
a is the projection operator on the Â-eigenspace of eigenvalue a, deduce that

UP̂ Â
a U

† = P̂UÂU†
a (6)

3. (a) Evaluate
e−iP̂ x/~ X̂ eiP̂ x/~ (7)

where x is some real number.

(b) Consider a normalised state-vector |ψ〉. Is the vector eiP̂ x/~|ψ〉 still normalised? If
|ψ〉 has average position x0, what is the average position of eiP̂ x/~|ψ〉?
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Answers

1. We must use repeatedly the general formulas [ÂB̂, Ĉ] = [Â, Ĉ]B̂ + Â[B̂, Ĉ] and [Â, B̂Ĉ] =
[Â, B̂]Ĉ + B̂[Â, Ĉ], and we must use [X̂, P̂ ] = i~. We have

−i[X̂2, P̂ 2] = −i([X̂, P̂ 2]X̂ + X̂[X̂, P̂ 2])

= −i([X̂, P̂ ]P̂ X̂ + P̂ [X̂, P̂ ]X̂ + X̂[X̂, P̂ ]P̂ + X̂P̂ [X̂, P̂ ])

= −i(i~P̂ X̂ + P̂ i~X̂ + X̂i~P̂ + X̂P̂ i~)

= 2~(P̂ X̂ + X̂P̂ ) (8)

In order to identify the observable, we reason as follows: First, we know that the observable
X̂2, corresponding to the classical phase-space variable X2, is just X̂2. Similarly, P̂ 2 = P̂ 2.
But by the Dirac’s quantisation conditions, we have that

[X̂2, P̂ 2] = i~ ̂{X2, P 2} (9)

and evaluating the Poisson brackets gives

{X2, P 2} =
∂(X2)
∂X

∂(P 2)
∂P

− ∂(X2)
∂P

∂(P 2)
∂X

= 4XP (10)

Hence, we find that

−i[X̂2, P̂ 2] = −i[X̂2, P̂ 2] = ~ ̂{X2, P 2} = 4~X̂P (11)

Hence, −i[X̂2, P̂ 2] is the observable corresponding to 4~XP . With (8), we thus find the
observable corresponding to the product of classical phase-space variables XP in a nice
symmetric form:

X̂P =
P̂ X̂ + X̂P̂

2
(12)

2. (a) From the definition, if f(a) = an, then

f(Â)|a〉 = f(a)|a〉 = an|a〉 (13)

But the right-hand side of (3) is, by repeatedly using the eigenvalue equation Â|a〉 =
a|a〉,

ÂÂ...Â|a〉 = ÂÂ...a|a〉 = · · · = Âa...a|a〉 = aa . . . a|a〉 = an|a〉 (14)

Hence both left- and right-hand sides are the same when they act on any eigenstate
of Â. Since these states form a basis, this means that both sides are the same as
operators on the Hilbert space.

(b) All we have to use is that if some given operator U is unitary, then this means
that U †U = 1. In order to directly take the nth power, perhaps the best proof is
by induction. Clearly formula (4) is true for n = 1. Let us assume it is true for
n = m− 1. Then

(UÂU †)m = UÂU †(UÂU †)m−1 = UÂU †UÂm−1U † = UÂÂm−1U † = UÂmU † (15)

hence formula (4) also holds for n = m. This completes the induction.
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(c) In order to use the general definition of a function of an observable, we must act
on some vector |v〉 with both the left-hand side and the right-hand side, and verify
that we get the same result for any vector |v〉 in a given basis. First, recall that if
|a〉 is eigenstate of Â with eigenvalue a, then U |a〉 is eigenstate of UÂU † with the
same eigenvalue a; that is becasue UÂU † U |a〉 = UÂ|a〉 = Ua|a〉 = aU |a〉. So, for
the vector |v〉 we may take U |a〉, and from the general definition, we have for the
left-hand side of (5),

f(UÂU †)U |a〉 = f(a)U |a〉 (16)

On the other hand, the right-hand side, acting on the same vector U |a〉, gives

Uf(Â)U †U |a〉 = Uf(Â)|a〉 = Uf(a)|a〉 = f(a)U |a〉 (17)

Hence both are the same. Now the vectors U |a〉 themselves form a basis. Indeed,
as we said they are eigenvectors of the observable UÂU †, but also they are all of
its eigenvectors. That’s because if |a〉′ is an eigenvector of UÂU † with eigenvalue a,
then U †|a〉′ is an eigenvector of Â with the same eigenvalue (just reverse the process:
ÂU †|a〉′ = U †UÂU †|a〉′ = U †a|a〉′ = aU †|a〉′). So for any UÂU †-eigenvector |a〉′,
there is a Â-eigenvetor |a〉 such that U †|a〉′ = |a〉, that is, |a〉′ = U |a〉.

(d) Here the easiest way is to use the definition of the projection operator as follows1:

P̂ Â
a = fa(Â) where fa(x) =

{
1 x = a

0 x 6= a
(18)

This indeed gives the fundamental property of the projection operator:

P̂ Â
a |ã〉 =

{
|ã〉 ã = a

0 ã 6= a
(19)

Hence we have
UP̂ Â

a U
† = Ufa(Â)U † = fa(UÂU †) = P̂UÂU†

a (20)

3. (a) Here, we may use the general formula

eÂB̂e−Â = e[Â,·]B̂ ≡ B̂ + [Â, B̂] +
1
2
[Â, [Â, B̂]] +

1
3!

[Â, [Â, [Â, B̂]]] + . . . (21)

Happily, in the case at hand, only the first and second terms are non-zero, since
[P̂ , X̂] = −i~ which commutes with everything. Hence, we find

e−iP̂ x/~ X̂ eiP̂ x/~ = X̂ − x (22)
1We take discrete eigenvalues – otherwise we would have needed the projection operator on an interval [a, a′]

of eigenvalues, P̂ Â
[a,a′].
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(b) If |ψ〉 is normalised, this means that 〈ψ|ψ〉 = 1. Then, with |φ〉 = eiP̂ x/~|ψ〉, we have

〈φ|φ〉 = 〈ψ|e−iP̂ x/~eiP̂ x/~|ψ〉 = 〈ψ|e−iP̂ x/~+iP̂ x/~|ψ〉 = 〈ψ|ψ〉 = 1 (23)

which is still normalised. Here, we used the general result

eÂeB̂ = eÂ+B̂ if [Â, B̂] = 0 (24)

(or equivalently, we used (21) with B̂ = 1). Supposing that 〈ψ|X̂|ψ〉 = x0, we can
evaluate the average position corresponding to the vector |φ〉:

〈φ|X̂|φ〉 = 〈ψ|e−iP̂ x/~X̂eiP̂ x/~|ψ〉

= 〈ψ|(X̂ − x)|ψ〉

= 〈ψ|X̂|ψ〉 − x〈ψ|ψ〉

= x0 − x (25)

That is, it is just shifted by the value −x.
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