1. Calculate the commutator

$$
\begin{equation*}
-i\left[\hat{X}^{2}, \hat{P}^{2}\right] \tag{1}
\end{equation*}
$$

What observable does this correspond to? Explain using the quantisation conditions.
2. Given an observable \hat{A}, we can take the set of its independent eigenvectors as a basis of the Hilbert space. We may then define the operator $f(\hat{A})$, for any function f from the spectrum of \hat{A} to \mathbb{C}, by its action on all eigenvectors of \hat{A} :

$$
\begin{equation*}
f(\hat{A})|a\rangle=f(a)|a\rangle \tag{2}
\end{equation*}
$$

for any eigenvector $|a\rangle$ with \hat{A}-eigenvalue a.
(a) Show that with this definition, we have for n a non-negative integer,

$$
\begin{equation*}
f(\hat{A})=\hat{A} \hat{A} \ldots \hat{A}(n \text { times }) \quad \text { if the function is } \quad f(a)=a^{n} \tag{3}
\end{equation*}
$$

(b) Consider a unitary operator U. Show by directly taking the $n^{\text {th }}$ power of the observables that

$$
\begin{equation*}
\left(U \hat{A} U^{\dagger}\right)^{n}=U \hat{A}^{n} U^{\dagger} \tag{4}
\end{equation*}
$$

(c) Show from the general definition that

$$
\begin{equation*}
f\left(U \hat{A} U^{\dagger}\right)=U f(\hat{A}) U^{\dagger} \tag{5}
\end{equation*}
$$

(d) If $\hat{P}_{a}^{\hat{A}}$ is the projection operator on the \hat{A}-eigenspace of eigenvalue a, deduce that

$$
\begin{equation*}
U \hat{P}_{a}^{\hat{A}} U^{\dagger}=\hat{P}_{a}^{U \hat{A} U^{\dagger}} \tag{6}
\end{equation*}
$$

3. (a) Evaluate

$$
\begin{equation*}
e^{-i \hat{P} x / \hbar} \hat{X} e^{i \hat{P} x / \hbar} \tag{7}
\end{equation*}
$$

where x is some real number.
(b) Consider a normalised state-vector $|\psi\rangle$. Is the vector $e^{i \hat{P} x / \hbar}|\psi\rangle$ still normalised? If $|\psi\rangle$ has average position x_{0}, what is the average position of $e^{i \hat{P} x / \hbar}|\psi\rangle$?

Answers

1. We must use repeatedly the general formulas $[\hat{A} \hat{B}, \hat{C}]=[\hat{A}, \hat{C}] \hat{B}+\hat{A}[\hat{B}, \hat{C}]$ and $[\hat{A}, \hat{B} \hat{C}]=$ $[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]$, and we must use $[\hat{X}, \hat{P}]=i \hbar$. We have

$$
\begin{align*}
-i\left[\hat{X}^{2}, \hat{P}^{2}\right] & =-i\left(\left[\hat{X}, \hat{P}^{2}\right] \hat{X}+\hat{X}\left[\hat{X}, \hat{P}^{2}\right]\right) \\
& =-i([\hat{X}, \hat{P}] \hat{P} \hat{X}+\hat{P}[\hat{X}, \hat{P}] \hat{X}+\hat{X}[\hat{X}, \hat{P}] \hat{P}+\hat{X} \hat{P}[\hat{X}, \hat{P}]) \\
& =-i(i \hbar \hat{P} \hat{X}+\hat{P} i \hbar \hat{X}+\hat{X} i \hbar \hat{P}+\hat{X} \hat{P} i \hbar) \\
& =2 \hbar(\hat{P} \hat{X}+\hat{X} \hat{P}) \tag{8}
\end{align*}
$$

In order to identify the observable, we reason as follows: First, we know that the observable $\widehat{X^{2}}$, corresponding to the classical phase-space variable X^{2}, is just \hat{X}^{2}. Similarly, $\widehat{P^{2}}=\hat{P}^{2}$. But by the Dirac's quantisation conditions, we have that

$$
\begin{equation*}
\left[\widehat{X^{2}}, \widehat{P^{2}}\right]=i \hbar\left\{\widehat{X^{2}, P^{2}}\right\} \tag{9}
\end{equation*}
$$

and evaluating the Poisson brackets gives

$$
\begin{equation*}
\left\{X^{2}, P^{2}\right\}=\frac{\partial\left(X^{2}\right)}{\partial X} \frac{\partial\left(P^{2}\right)}{\partial P}-\frac{\partial\left(X^{2}\right)}{\partial P} \frac{\partial\left(P^{2}\right)}{\partial X}=4 X P \tag{10}
\end{equation*}
$$

Hence, we find that

$$
\begin{equation*}
-i\left[\hat{X}^{2}, \hat{P}^{2}\right]=-i\left[\widehat{X^{2}}, \widehat{P^{2}}\right]=\hbar\left\{\widehat{X^{2}, P^{2}}\right\}=4 \hbar \widehat{X P} \tag{11}
\end{equation*}
$$

Hence, $-i\left[\hat{X}^{2}, \hat{P}^{2}\right]$ is the observable corresponding to $4 \hbar X P$. With (8), we thus find the observable corresponding to the product of classical phase-space variables $X P$ in a nice symmetric form:

$$
\begin{equation*}
\widehat{X P}=\frac{\hat{P} \hat{X}+\hat{X} \hat{P}}{2} \tag{12}
\end{equation*}
$$

2. (a) From the definition, if $f(a)=a^{n}$, then

$$
\begin{equation*}
f(\hat{A})|a\rangle=f(a)|a\rangle=a^{n}|a\rangle \tag{13}
\end{equation*}
$$

But the right-hand side of (3) is, by repeatedly using the eigenvalue equation $\hat{A}|a\rangle=$ $a|a\rangle$,

$$
\begin{equation*}
\hat{A} \hat{A} \ldots \hat{A}|a\rangle=\hat{A} \hat{A} \ldots a|a\rangle=\cdots=\hat{A} a \ldots a|a\rangle=a a \ldots a|a\rangle=a^{n}|a\rangle \tag{14}
\end{equation*}
$$

Hence both left- and right-hand sides are the same when they act on any eigenstate of \hat{A}. Since these states form a basis, this means that both sides are the same as operators on the Hilbert space.
(b) All we have to use is that if some given operator U is unitary, then this means that $U^{\dagger} U=1$. In order to directly take the $n^{\text {th }}$ power, perhaps the best proof is by induction. Clearly formula (4) is true for $n=1$. Let us assume it is true for $n=m-1$. Then

$$
\begin{equation*}
\left(U \hat{A} U^{\dagger}\right)^{m}=U \hat{A} U^{\dagger}\left(U \hat{A} U^{\dagger}\right)^{m-1}=U \hat{A} U^{\dagger} U \hat{A}^{m-1} U^{\dagger}=U \hat{A} \hat{A}^{m-1} U^{\dagger}=U \hat{A}^{m} U^{\dagger} \tag{15}
\end{equation*}
$$

hence formula (4) also holds for $n=m$. This completes the induction.
(c) In order to use the general definition of a function of an observable, we must act on some vector $|v\rangle$ with both the left-hand side and the right-hand side, and verify that we get the same result for any vector $|v\rangle$ in a given basis. First, recall that if $|a\rangle$ is eigenstate of \hat{A} with eigenvalue a, then $U|a\rangle$ is eigenstate of $U \hat{A} U^{\dagger}$ with the same eigenvalue a; that is becasue $U \hat{A} U^{\dagger} U|a\rangle=U \hat{A}|a\rangle=U a|a\rangle=a U|a\rangle$. So, for the vector $|v\rangle$ we may take $U|a\rangle$, and from the general definition, we have for the left-hand side of (5),

$$
\begin{equation*}
f\left(U \hat{A} U^{\dagger}\right) U|a\rangle=f(a) U|a\rangle \tag{16}
\end{equation*}
$$

On the other hand, the right-hand side, acting on the same vector $U|a\rangle$, gives

$$
\begin{equation*}
U f(\hat{A}) U^{\dagger} U|a\rangle=U f(\hat{A})|a\rangle=U f(a)|a\rangle=f(a) U|a\rangle \tag{17}
\end{equation*}
$$

Hence both are the same. Now the vectors $U|a\rangle$ themselves form a basis. Indeed, as we said they are eigenvectors of the observable $U \hat{A} U^{\dagger}$, but also they are all of its eigenvectors. That's because if $|a\rangle^{\prime}$ is an eigenvector of $U \hat{A} U^{\dagger}$ with eigenvalue a, then $U^{\dagger}|a\rangle^{\prime}$ is an eigenvector of \hat{A} with the same eigenvalue (just reverse the process: $\left.\hat{A} U^{\dagger}|a\rangle^{\prime}=U^{\dagger} U \hat{A} U^{\dagger}|a\rangle^{\prime}=U^{\dagger} a|a\rangle^{\prime}=a U^{\dagger}|a\rangle^{\prime}\right)$. So for any $U \hat{A} U^{\dagger}$-eigenvector $|a\rangle^{\prime}$, there is a \hat{A}-eigenvetor $|a\rangle$ such that $U^{\dagger}|a\rangle^{\prime}=|a\rangle$, that is, $|a\rangle^{\prime}=U|a\rangle$.
(d) Here the easiest way is to use the definition of the projection operator as follows ${ }^{1}$:

$$
\hat{P}_{a}^{\hat{A}}=f_{a}(\hat{A}) \quad \text { where } \quad f_{a}(x)= \begin{cases}1 & x=a \tag{18}\\ 0 & x \neq a\end{cases}
$$

This indeed gives the fundamental property of the projection operator:

$$
\hat{P}_{a}^{\hat{A}}|\tilde{a}\rangle= \begin{cases}|\tilde{a}\rangle & \tilde{a}=a \tag{19}\\ 0 & \tilde{a} \neq a\end{cases}
$$

Hence we have

$$
\begin{equation*}
U \hat{P}_{a}^{\hat{A}} U^{\dagger}=U f_{a}(\hat{A}) U^{\dagger}=f_{a}\left(U \hat{A} U^{\dagger}\right)=\hat{P}_{a}^{U \hat{A} U^{\dagger}} \tag{20}
\end{equation*}
$$

3. (a) Here, we may use the general formula

$$
\begin{equation*}
e^{\hat{A}} \hat{B} e^{-\hat{A}}=e^{[\hat{A},]} \hat{B} \equiv \hat{B}+[\hat{A}, \hat{B}]+\frac{1}{2}[\hat{A},[\hat{A}, \hat{B}]]+\frac{1}{3!}[\hat{A},[\hat{A},[\hat{A}, \hat{B}]]]+\ldots \tag{21}
\end{equation*}
$$

Happily, in the case at hand, only the first and second terms are non-zero, since $[\hat{P}, \hat{X}]=-i \hbar$ which commutes with everything. Hence, we find

$$
\begin{equation*}
e^{-i \hat{P} x / \hbar} \hat{X} e^{i \hat{P} x / \hbar}=\hat{X}-x \tag{22}
\end{equation*}
$$

[^0](b) If $|\psi\rangle$ is normalised, this means that $\langle\psi \mid \psi\rangle=1$. Then, with $|\phi\rangle=e^{i \hat{P} x / \hbar}|\psi\rangle$, we have
\[

$$
\begin{equation*}
\langle\phi \mid \phi\rangle=\langle\psi| e^{-i \hat{P} x / \hbar} e^{i \hat{P} x / \hbar}|\psi\rangle=\langle\psi| e^{-i \hat{P} x / \hbar+i \hat{P} x / \hbar}|\psi\rangle=\langle\psi \mid \psi\rangle=1 \tag{23}
\end{equation*}
$$

\]

which is still normalised. Here, we used the general result

$$
\begin{equation*}
e^{\hat{A}} e^{\hat{B}}=e^{\hat{A}+\hat{B}} \quad \text { if } \quad[\hat{A}, \hat{B}]=0 \tag{24}
\end{equation*}
$$

(or equivalently, we used (21) with $\hat{B}=1$). Supposing that $\langle\psi| \hat{X}|\psi\rangle=x_{0}$, we can evaluate the average position corresponding to the vector $|\phi\rangle$:

$$
\begin{align*}
\langle\phi| \hat{X}|\phi\rangle & =\langle\psi| e^{-i \hat{P} x / \hbar} \hat{X} e^{i \hat{P} x / \hbar}|\psi\rangle \\
& =\langle\psi|(\hat{X}-x)|\psi\rangle \\
& =\langle\psi| \hat{X}|\psi\rangle-x\langle\psi \mid \psi\rangle \\
& =x_{0}-x \tag{25}
\end{align*}
$$

That is, it is just shifted by the value $-x$.

[^0]: ${ }^{1}$ We take discrete eigenvalues - otherwise we would have needed the projection operator on an interval $\left[a, a^{\prime}\right]$ of eigenvalues, $\hat{P}_{\left[a, a^{\prime}\right]}^{\hat{A}}$.

