
Quantum Mechanics III Michaelmas Term 2008
Lecturer: Dr. Benjamin Doyon

Homework 1 – due 3 November 2008

1. Let Â and B̂ be linear operators on an inner-product vector space over C, and Â†, B̂† the
usual hermitian conjugates. Show that

(ÂB̂)† = B̂†Â†. (1)

2. Consider a vector |ψ〉 =
∫∞
−∞ dxψ(x)|x〉 written here as a decomposition into the basis of

normalised position eigenstates {|x〉, x ∈ R}. The wave function 〈x|ψ〉 = ψ(x) is

ψ(x) =
a

x+ iL
(2)

for some positive length L > 0 and complex a.

(a) Normalise the state (i.e. choose a such that 〈ψ|ψ〉 = 1).

(b) What is the probability that the particle is found in a position between 0 and L?

(c) Write down the state as a decomposition into the basis of normalised momentum
eigenstates {|p〉, p ∈ R} [hint: to do the integral, shift the contour towards ±i∞ as
appropriate, getting residues].

(d) What is the probability that the momentum of the particle is found to be positive?
That it is found negative? What is the average momentum?

3. Consider a 2-dimensional vector space with orthonormal basis {|1〉, |2〉}. Consider a linear
operator Â acting on it as follows:

Â|1〉 = |1〉+ i|2〉

Â|2〉 = −i|1〉+ |2〉 (3)

(a) Is Â an observable?

(b) If yes, find the possible results of a measurement of the associated physical quantity.
What are the probabilities of these measurement results on the state |ψ〉 = |1〉? What
is the normalised state just after the measurement if it is the smallest value that was
observed?

Answers

1. By definition, (Â†|v〉, |w〉) = (|v〉, Â|w〉). Then, ((ÂB̂)†|v〉, |w〉) = (|v〉, ÂB̂|w〉) = (Â†|v〉, B̂|w〉) =
(B̂†Â†|v〉, |w〉), which shows (1).
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2. (a) The condition of normalisation is

1 = 〈ψ|ψ〉

=
∫ ∞

−∞
dxψ(x)ψ(x)

=
∫ ∞

−∞
dx

|a|2

x2 + L2

=
π|a|2

L
(4)

hence we must have |a| =
√
L/π. We may choose a =

√
L/π (i.e. we may set the

phase to 0).

(b) The probability of finding the particle in a position between 0 and L is given by

p(X ∈ [0, L]) = ||P̂ X̂
[0,L]|ψ〉||

2

=
∫ ∞

−∞
dx 〈ψ|P̂ X̂

[0,L]|x〉〈x|P̂
X̂
[0,L]|ψ〉

=
∫ L

0
dx 〈ψ|x〉〈x|ψ〉

=
∫ L

0
dxψ(x)ψ(x)

=
∫ L

0
dx

L

π(x2 + L2)

=
1
4

(5)

Here, P̂ X̂
[0,L] is the projection operator on the eigenspace of X̂ associated to eigenvalues

in the interval [0, L]. That is, P̂ X̂
[0,L]|x〉 = |x〉 for x ∈ [0, L], and P̂ X̂

[0,L]|x〉 = 0 for other
values of x.

(c) We want to find ψ̃(p) such that |ψ〉 =
∫∞
−∞ ψ̃(p)|p〉. Hence, we have

ψ̃(p) = 〈p|ψ〉

=
∫ ∞

−∞
dx 〈p|x〉〈x|ψ〉

=

√
L

2π2~

∫ ∞

−∞
dx

e−ipx/~

x+ iL

=

√
L

2π2~
×

{
−2πie−pL/~ p > 0
0 p < 0

= −i
√

2L
~
e−pL/~Θ(p) (6)

where Θ(p) is Heaviside’s step function. In order to evaluate the integral, we shifted
the x contour all the way towards the positive imaginary direction for p < 0, and
the negative imaginary direction for p > 0, picking up the residues on the way. The
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completely shifted contour itself has zero contribution because our choice of direction
made the exponential factor vanish. Also, we used the wave function of momentum
eigenstates

〈x|p〉 =
1√
2π~

eipx/~ (7)

and the value of a found in 2(a). We can check that the resulting function ψ̃(p) gives
the correct normalisation:

〈ψ|ψ〉 =
∫ ∞

−∞
dp 〈ψ|p〉〈p|ψ〉

=
∫ ∞

−∞
dp ψ̃(p)ψ(p)

=
2L
~

∫ ∞

0
dp e−2pL/~

= 1 (8)

(d) The probability of finding the momentum to be positive is 1, and to be negative is 0,
since 〈p|ψ〉 = 0 for any p < 0. The average momentum is

〈ψ|P̂ |ψ〉 =
∫ ∞

−∞
dp ψ̃(p) p ψ̃(p)

=
2L
~

∫ ∞

0
dp p e−2pL/~

=
~
2L

(9)

Note that we can evaluate the same average momentum using the representation of
P̂ on wave functions:

〈ψ|P̂ |ψ〉 =
∫ ∞

−∞
dxψ(x)

(
−i~ d

dx

)
ψ(x)

=
iL~
π

∫ ∞

−∞
dx

1
(x− iL)(x+ iL)2

(10)

which indeed gives the same result.

3. (a) The most convenient way to do things, in this finite-dimensional case, is to use ma-
trices:

|1〉 ≡

(
1
0

)
, |2〉 ≡

(
0
1

)
(11)

with

Â =

(
1 −i
i 1

)
(12)

(note: the signs are all correct!). Then, the hermitian conjugation † is just the
combination of complex conjugation and transpose. Hence, we see immediately that

Â† = Â (13)
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so that this is an observable (completeness follows from hermiticity in the finite-
dimensional case).

(b) We need to find the eigenvalues of Â:

det

(
1− λ −i
i 1− λ

)
= 0 (14)

so that
(1− λ)2 − 1 = 0 (15)

which gives λ = 0, 2. These are the possible values of a measurement of the physical
quantity A associated to Â. The assocaited probabilities on the state |1〉 are |〈A =
0|1〉|2 and |〈A = 2|1〉|2 where |A = 0〉 and |A = 2〉 are the normalised eigenvectors
associated to eigenvalues 0 and 2. Hence, we need to diagonalise Â:(

1 −i
i 1

)(
v1

v2

)
= λ

(
v1

v2

)
(16)

Consider λ = 0. The first line gives v1 − iv2 = 0, hence

|A = 0〉 =
1√
2

(
i

1

)
(17)

Now consider λ = 2. The first line gives v1 − iv2 = 2v1, hence

|A = 2〉 =
1√
2

(
−i
1

)
(18)

Hence we find

p(A = 0) = |〈A = 0|1〉|2 =
1
2
, p(A = 2) = |〈A = 2|1〉|2 =

1
2

(19)

Note that these probabilities add up to 1 as it should be. If the smallest value was ob-
served, the value A = 0, then the normalised state vector just after the measurement
is |A = 0〉.
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