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Overview

1 Linear algebra

A Hilbert space is a linear space over C with a (non-degenerate) inner product, and that is
complete under the metric induced by this inner product. We do not go into the details of this
induced metric or of the completeness.

Vectors in the Hilbert space are usually denoted by |v〉. The formal way of denoting the
inner product between two vectors |v〉 and |w〉 is (|v〉, |w〉). By linearity, a|v〉 + b|w〉 is also a
vector. The inner product is anti-linear on the first vector, and linear on the second:

(a|v〉+ b|w〉, |u〉) = a∗(|v〉, |u〉) + b∗(|w〉, |u〉), (|u〉, a|v〉+ b|w〉) = a(|u〉, |v〉) + b(|u〉, |w〉).

The inner product also satisfies
(|v〉, |w〉)∗ = (|w〉, |v〉).

Dual vectors are linear maps from the Hilbert space to C. For any vector |v〉, the dual
vector associated to it is denoted 〈v|. Its action on a vector |w〉 is denoted by 〈v|w〉: this gives a
complex number in general. By definition, the action of 〈v| on |w〉 is given by the inner product
between the vectors |v〉 and |w〉, that is,

〈v|w〉 ≡ (|v〉, |w〉).

Dual vectors also form a linear space, so that a〈v|+ b〈w| is also a dual vector, whose action on
|u〉 is obtained by linearity:

(a〈v|+ b〈w|)|u〉 = a〈v|u〉+ b〈w|u〉.

By anti-linearity on the first factor of the inner product, we have that the dual vector associated
to the vector a|v〉 is a∗〈v|.

A linear operator on the Hilbert space (or simply an operator) is a linear map from the
Hilbert space to itself. The application of the linear operator Â on the vector |v〉 is denoted
Â|v〉: this gives a new vector. The product of two linear operators, ÂB̂, means that we first
apply B̂, then we apply Â. That is, (ÂB̂)|v〉 = Â(B̂|v〉).

An orthonormal basis for the Hilbert space is a set of orthogonal vectors |vj〉 of length 1,
〈vj |vj′〉 = δj,j′ , such that any other vector can be written as a linear combination of these. If
|w〉 =

∑
j cj |vj〉, then by orthonormality, cj = 〈vj |w〉. This can be written in a different form,

in the form of the completeness relation, using simply |w〉 = 1|w〉 with the identity operator
written as

1 =
∑

j

|vj〉〈vj |
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(both sides are seen as linear maps). If the basis forms a continuum, |vs〉 for s ∈ R, then the
normalisation is rather that of a delta-function: 〈vs|vs′〉 = δ(s− s′), and the expansion of other
vectors is through integrals: |w〉 =

∫
ds cs|vs〉. The completeness relation is then

1 =
∫
ds |vs〉〈vs|,

and we have cs = 〈vs|w〉.
An eigenvector of a linear operator Â is a vector |v〉 such that Â|v〉 = λ|v〉 for some number

λ. This number is the eigenvalue associated to the vector |v〉. For a given eigenvalue λ, there
may be many eigenvectors, |vλ,i〉 for i in some set. Any linear combinations of these is still
an eigenvector with eigenvalue λ, so these eigenvectors form a linear space by themselves, the
eigenspace associated to λ. We may choose i to parametrise an orthonormal basis in this space.

The Hermitian conjugate of a linear map Â is a linear map Â† such that

(|v〉, Â|w〉) = (Â†|v〉, |w〉)

for all |v〉 and |w〉 in the Hilbert space (this is its definition). Its has the properties that
(Â†)† = Â and (ÂB̂)† = B̂†Â†. We also talk of the dual vector to |v〉 as its Hermitian conjugate:
〈v| = (|v〉)†. Then, by definition of the Hermitian conjugation, (Â|v〉)† = 〈v|Â†.

A Hermitian operator is a linear operator Â such that Â† = Â. It has the properties that
its eigenvalues are real, that eigenvectors with different eigenvalues are orthonormal, and if it is
complete, that its normalised eigenvectors form an orthonormal basis for the Hilbert space (if
we choose in each eigenspace an orthonormal basis).

Two very much used types Hilbert spaces are:

• The vector spaces Rn for n = 1, 2, 3, . . .. Vectors can be simply represented by column
vectors with n components,

|v〉 =


v1
...
vn

 ,

and linear maps by matrices n by n. Hermitian conjugation is a complex conjugation
of the matrix followed by a transpose (or the other way around, it’s the same thing):

Â† = (Â∗)t.

Likewise, the dual vector to |v〉 is

〈v| = ((|v〉)∗)t =
(
v∗1 · · · v∗n

)
,

from which follows the inner product:

〈v|w〉 =
n∑

j=1

v∗jwj .
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• The vector spaces of functions on Rn. Vectors are functions Rn 7→ C, linear maps are for
instance the derivatives, or the multiplication by a given function. For |f〉 represented by
the function f : x 7→ f(x), we sometimes write |f〉 = f . The standard inner product is

(f, g) = 〈f |g〉 =
∫ ∞

−∞
dx1 · · · dxn (f(x))∗g(x).

2 Physical concepts

A physical state is a ray in a Hilbert space. This means that a given physical state may be
represented by a normalised vector, a vector |v〉 whose length is 〈v|v〉 = 1, or by any other
vector obtained from |v〉 by multiplying by a phase, eiθ|v〉, θ ∈ R.

An observable is a linear operator on the Hilbert space, with the properties that it is
Hermitian and complete. For matrices, all we have to verify is that (Â∗)t = Â. For operators
on a space of functions, we have to go back to the basic definition of Hermitian conjugation: if
Â is Hermitian, then (f, Âg) = (Âf, g). For differential operators, this can be verified by using
integration by parts. In general we don’t have to worry about completeness (it is usually there
essentially by definition of our Hilbert space as a representation space of the observables).

The spectrum of an observable is the possible values that can be obtained when we make
a measurement associated to this observable. The spectrum is given by the set of all possible
eigenvalues of the observable. In order to find the eigenvalues of a matrix, we have to solve
the characteristic equation det(Â − λ1) = 0 (the set of solutions is the set of eigenvalues). In
order to find the eigenvectors, we have to solve Â|vλ〉 = λ|vλ〉 for λ in the set of eigenvalues.
For operators on the space of functions, in order to find the eigenvectors and eigenvalues we
have to solve the (usually differential) equation Â|fλ〉 = λ|fλ〉. The set of allowed eigenvalues
is obtained by imposing constraints on the asymptotic behaviour of the function at large
|x| (for instance, lim|x|→∞ fλ(x) = 0), or by imposing boundary conditions (for instance,
fλ(L) = fλ(0), or fλ(0) = 0, fλ(L) = 0). Which asymptotic condition or boundary condition
we must consider depend on the problem at hand.

The probability of observing λ upon a measurement of Â in a state |w〉 is given by

|〈vλ|w〉|2

if there is a unique eigenvector |vλ〉 associated to λ (all vectors must be normalised). If there
are many eigenvectors associated to λ, then they form a linear space, and we have to choose a
basis of orthonormal eigenvectors in this space, |vλ,i〉. Then, the probability is∑

i

〈vλ,i|w〉|2.

A similar formula holds if the index i is in fact a continuous index, where the sum is replaced
by an integral.
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Just after the measurement, the state has collapsed to the eigenstate (or the eigenspace)
corresponding to the value measured:

|w〉 7→ |vλ〉 or |w〉 7→
∑

i |vλ,i〉〈vλ,i|w〉√∑
i〈w|vλ,i〉〈vλ,i|w〉

,

if the value λ was actually obtained in the laboratory.
For a quantum mechanical particle, the position observable (here in one dimension) is

denoted X̂. Its eigenvectors are denoted by |x〉 for x ∈ R corresponding to positions on the
real line (in principle x has appropriate dimensions, like centimeters, etc.), and the associated
eigenvalues are x. That is,

X̂|x〉 = x|x〉.

The orthonormality relation is 〈x|x′〉 = δ(x−x′) and the completeness relation is 1 =
∫∞
−∞ dx |x〉〈x|.

The wave function associated to a vector |f〉 is the function f : x 7→ f(x) = 〈x|f〉. The
space of wave functions forms a natural Hilbert space with the inner product mentioned above,
because, for instance in one dimension,

〈f |g〉 =
∫
dx 〈f |x〉〈x|g〉 =

∫
dx (f(x))∗g(x).

The position observable X̂ acts by multiplication by the argument x: (X̂f)(x) = xf(x).
The momentum observable (again, in one dimension) is denoted P̂ . It satisfies the canon-

ical commutation relation with the position observable,

[X̂, P̂ ] = i~.

The momentum operator acts by differentiation on the space of wave functions: (P̂1f)(x) =
−i~ d

dxf(x) (here with P̂1 representing the momentum in the x direction; in one dimension, it is
just denoted P̂ ). Its eigenfunctions are denoted by |p〉 for p ∈ R (with appropriate momentum
dimensions), with corresponding eigenvalues p, that is,

P̂ |p〉 = p|p〉.

The orthonormality relation is 〈p|p′〉 = δ(p−p′) and the completeness relation is 1 =
∫∞
−∞ dp |p〉〈p|.

The overlap between position and momentum eigenfunctions are

〈x|p〉 =
1√
2π~

eixp/~,

this gives the wave function of |p〉, fp : x 7→ 〈x|p〉, which indeed satisfies (P̂ fp)(x) = −i~dfp(x)/dx =
pfp(x).

The Dirac quantisation condition (or correspondence principle) is the general statement
from which the canonical commutation relation is derived. Given a classival variable A (in
general, for a particle in one dimension for instance, this a function of X and P ), there is a map
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ˆ : A 7→ Â to a quantum observable, such that for any two classical variables A and B and their
corresponding quantum observables Â and B̂, we have the Dirac quantisation condition:

[Â, B̂] = i~{̂A,B}

where {A,B} is the Poisson bracket of classical mechanics,

{A,B} =
∂A

∂X

∂B

∂P
− ∂B

∂X

∂A

∂P
.

In the case A = X and B = P , this give the canonical commutation relation. In general, this
allows us to identify the classical meaning of a given quantum observable.

The Probability density is
ρ(x) = |ψ(x)|2

for a wave function ψ(x). This means that the probability of finding the particle in a volume V
is
∫
V dxdydz |ψ(x)|2. The Probability current is

j(x) = Re

(
(ψ(x))∗

P̂
m
ψ(x)

)
= Re

(
(ψ(x))∗

(−i~)
m

∇ψ(x)
)

The continuity relation, which has to do with time evolution, is

∂ρ(x, t)
∂t

+∇ · j(x, t) = 0.

Additional topics: Heisenberg uncertainty relation, the harmonic oscillator, the angular mo-
mentum, ...

3 Time evolution

The observable that allows us to describe time evolution is the Hamiltonian Ĥ, the quantum
observable associated to the Hamiltonian of classical mechanics. When the Hamiltonian is
explicitly time-independent (which is the only case that we actually considered), then it is
the total energy observable. For one particle of mass m in a potential V (x), the quantum
Hamiltonian is

Ĥ =
P̂2

2m
+ V (X̂).

For other quantum systems, the Hamiltonian may look different; for instance, for systems with
just finitely many basis states, the Hamiltonian is just some Hermitian matrix.

In the Schrödinger picture, what changes in time is the physical state, and the observ-
ables stay the same. The state vector changes in time as:

|ψ〉(t) = e−iĤt/~|ψ〉(0).

This means that if we want to evolve a given initial state vector |ψ〉 in time, we may first write
it in the basis of Hamiltonian eigenstates |E, i〉 (with eigenvalue E),

|ψ〉 =
∑
E,i

|E, i〉〈E, i|ψ〉
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then evolve each eigenstate in this expansion:

|ψ〉(t) =
∑
E,i

e−iĤt/~|E, i〉〈E, i|ψ〉 =
∑
E,i

e−iEt/~|E, i〉〈E, i|ψ〉.

A stationary state is a physical state that does not change in time. The state vector of a
stationary state can only acquire a phase when evolved in time (so that it corresponds to the
same physical state). Hence, the state vector of a stationary state is an eigenstate of the
Hamiltonian,

∑
i ci|E, i〉. All physical properties of a stationary state are invariant with time,

no matter what observable we are looking at.
The evolution equation can also be written in infinitesimal form,

i
d

dt
|ψ〉(t) = Ĥ|ψ〉(t).

This, in terms of wave functions for one particle, gives us the time-dependent Schrödinger
equation:

i
d

dt
ψ(x, t) = − ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t)

or in one dimension

i
d

dt
ψ(x, t) = − ~2

2m
d2

dx2
ψ(x, t) + V (x)ψ(x, t).

Clearly, knowing the Hamiltonian eigenstates (the stationary states) is a good way of obtain-
ing the time evolution of states. Hence, we often have to find the eigenstates and eigenvalues of
the Hamiltonian. For wave functions, the Hamiltonian eigenvalue equation Ĥ|ψ〉 = E|ψ〉 is the
time-independent Schrödinger equation:

− ~2

2m
∇2ψ(x, t) + V (x)ψ(x, t) = Eψ(x, t).

In the Heisenberg picture, as time passes all states stay the same, but the observables
change in time. The observables evolve as

Â(t) = eiĤt/~Â(0)e−iĤt/~.

Likewise, then, all eigenvectors of the observables change in time, but the eigenvalues always
stay the same: if Â(0)|a〉 = a|a〉, then Â(t)|a〉(t) = a|a〉(t) with |a〉(t) = eiĤt/~|a〉(0).

A conserved quantity is an observable Â that does not change with time, Â(t) = Â(0).
The only condition we need is that

[Â, Ĥ] = 0.

All averages and probabilities associated to a conserved quantity are invariant in time, no matter
what the initial state is.

The equivalence between the two pictures is obtained by realising, besides the fact that the
eigenvalues of observables are the same, that all overlaps between observable eigenvectors and
the state vector are the same in both pictures:

(|a〉(t))∗|ψ〉 = 〈a|e−iĤt/~|ψ〉 = 〈a|ψ〉(t).
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This means that all probabilities are the same, and that the collapsed vector after the measure-
ment is also the same.

Additional topics: Ehrenfest’s theorem, confined/scattering states, reflection/transmission
coefficients, three-dimensional problems, conserved quantities and separation of variables, the
hydrogen atom, ...

4 Commutators and related formulas

The commutator is [Â, B̂] = ÂB̂ − B̂Â. We immediately have [Â, B̂] = −[B̂, Â]. The Jacobi
identity tells us that

[Â, [B̂, Ĉ]] + [Ĉ, [Â, B̂]] + [B̂, [Ĉ, Â]] = 0.

The commutator is useful if we want to try to exchange the order of two operators: ÂB̂ =
B̂Â+ [Â, B̂]. For instance, X̂P̂ = P̂ X̂ + i~.

The basic commutator formula for product of operators is

[ÂB̂, Ĉ] = [Â, Ĉ]B̂ + Â[B̂, Ĉ].

We have to be careful with the order of operators everywhere. The formula also holds for the
other factor

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ].

It also generalises:
[Â, B̂ĈD̂] = [Â, B̂]ĈD̂ + B̂[Â, Ĉ]D̂ + B̂Ĉ[Â, D̂]

and
[ÂB̂Ĉ, D̂] = [Â, D̂]B̂Ĉ + Â[B̂, D̂]Ĉ + ÂB̂[Ĉ, D̂],

etc.
In order to evaluate commutators between operators on a space of functions, like [x2, xd/dx],

there are two possible ways. We may just recall that [d/dx, x] = 1 and use the formulas above
for product of operators. Or, we may apply both operators on arbitrary functions:

[x2, xd/dx]f(x) = x2 x(d/dx)f(x)−x(d/dx)(x2f(x)) = x3df(x)/dx−2x2f(x)−x3df(x)/dx = −2x2f(x)

from which we conclude that [x2, xd/dx] = −2x2.
Another important formula is that related to the exponential. We may define in general

eÂ = 1 + Â+
1
2
Â2 +

1
3!
Â3 + . . . .

Then, putting terms together, it turns out that there is a nice formula for the following object:

eÂB̂e−Â = B̂ + [Â, B̂] +
1
2
[Â, [Â, B̂]] +

1
3!

[Â, [Â, [Â, B̂]]] + . . . .

We often have something like eÂB̂e−Â in quantum mechanics (for instance for the time evolution
in the Heisenberg picture), so this is very useful.

7


