Homework 3 - due 12 March 2009

1. For the isotropic three-dimensional simple harmonic oscillator (with $V(\mathbf{x})=\frac{m \omega^{2}}{2}|\mathbf{x}|^{2}$), construct annihilation and creation operators for each of the x, y and z components and write down their commutation rules. From them find expressions for $\hat{H}, \hat{L}^{2}, \hat{L}_{ \pm}$and \hat{L}_{z}, and verify the commutation rules for these operators. In the two separate cases of energy $E=3 \hbar \omega / 2$ and energy $E=5 \hbar \omega / 2$, find the possible values of l (associated to the eigenvalues of \hat{L}^{2} as usual), and express energy and angular momentum eigenstates $|E l m\rangle$ in terms of states $\left|n_{x}, n_{y}, n_{z}\right\rangle$, parametrised by the three harmonic-oscillator quantum numbers n_{z}, n_{y}, n_{z} associated with the three cartesian directions.

Answer

We just have to take the results of the one-dimenional harmonic oscillator, one for each coordinates, since the three-dimensional Hamiltonian is just a sum of independent one-dimensional Hamiltonians:

$$
\begin{equation*}
\hat{a}_{j}=\frac{\hat{P}_{j}+i m \omega \hat{X}_{j}}{\sqrt{2 m}}, \quad \hat{a}_{j}^{\dagger}=\frac{\hat{P}_{j}-i m \omega \hat{X}_{j}}{\sqrt{2 m}} \tag{1}
\end{equation*}
$$

for $j=1,2,3$ representing the three directions x, y, z. They satisfy the commutation relations

$$
\begin{equation*}
\left[\hat{a}_{j}, \hat{a}_{k}\right]=\left[\hat{a}_{j}^{\dagger}, \hat{a}_{k}^{\dagger}\right]=0, \quad\left[\hat{a}_{j}^{\dagger}, \hat{a}_{k}\right]=\delta_{j, k} \hbar \omega \tag{2}
\end{equation*}
$$

Then, the full Hamiltonian is just

$$
\begin{equation*}
\hat{H}=\frac{3 \hbar \omega}{2}+\sum_{j=1}^{3} \hat{a}_{j} \hat{a}_{j}^{\dagger}=\frac{3 \hbar \omega}{2}+\sum_{j=1}^{3} \hat{n}_{j} \tag{3}
\end{equation*}
$$

where we introduce the operators $\hat{n}_{j}=\hat{a}_{j} \hat{a}_{j}^{\dagger}$ for the components j, counting the energy difference with respect to the ground state energy of the associated Hamiltonian. For the angular momentum operator, we use

$$
\begin{equation*}
\hat{X}_{j}=\frac{\hat{a}_{j}-\hat{a}_{j}^{\dagger}}{i \omega \sqrt{2 m}}, \quad \hat{P}_{j}=\sqrt{\frac{m}{2}}\left(\hat{a}_{j}+\hat{a}_{j}^{\dagger}\right) \tag{4}
\end{equation*}
$$

and we have

$$
\begin{aligned}
\hat{L}_{z}= & \hat{X}_{1} \hat{P}_{2}-\hat{P}_{1} \hat{X}_{2}=\frac{1}{i \omega}\left(\hat{c}_{12}-\hat{c}_{21}\right) \\
\hat{L}_{+}= & \hat{L}_{x}+i \hat{L}_{y}=\frac{1}{i \omega}\left(\hat{c}_{23}-\hat{c}_{32}+i \hat{c}_{31}-i \hat{c}_{13}\right) \\
\hat{L}_{-}= & \hat{L}_{+}^{\dagger}=\frac{1}{i \omega}\left(\hat{c}_{23}-\hat{c}_{32}-i \hat{c}_{31}+i \hat{c}_{13}\right) \\
\hat{L}^{2}= & \hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}=-\frac{1}{\omega^{2}}\left(\hat{c}_{12}^{2}+\hat{c}_{21}^{2}+\hat{c}_{23}^{2}+\hat{c}_{32}^{2}+\hat{c}_{31}^{2}+\hat{c}_{13}^{2}\right. \\
& \left.-2\left(\hat{n}_{1} \hat{n}_{2}+\hat{n}_{2} \hat{n}_{3}+\hat{n}_{3} \hat{n}_{1}\right)-2 \hbar \omega\left(\hat{n}_{1}+\hat{n}_{2}+\hat{n}_{3}\right)\right)
\end{aligned}
$$

where we introduce the operators

$$
\begin{equation*}
\hat{c}_{i j}=\hat{a}_{i} \hat{a}_{j}^{\dagger} \tag{5}
\end{equation*}
$$

(in particular, $\hat{c}_{i i}=\hat{n}_{i}$), and used the relations

$$
\begin{equation*}
\hat{c}_{12} \hat{c}_{21}=\hat{n}_{1} \hat{n}_{2}+\hbar \omega \hat{n}_{2}, \quad \hat{c}_{21} \hat{c}_{12}=\hat{n}_{1} \hat{n}_{2}+\hbar \omega \hat{n}_{1} \tag{6}
\end{equation*}
$$

and similar relations obtained by cyclic permuttations $1,2,3 \mapsto 2,3,1 \mapsto 3,1,2$. In order to verify the commutation relations, let us use the operators \hat{n}_{j} and $\hat{c}_{i j}$. We have

$$
\begin{equation*}
\left[\hat{n}_{i}, \hat{n}_{j}\right]=0 \tag{7}
\end{equation*}
$$

(since the \hat{n}_{i} 's count an energy differences in different directions), and

$$
\begin{equation*}
\left[\hat{n}_{i}, \hat{c}_{j k}\right]=\hbar \omega\left(\delta_{i j}-\delta_{i k}\right) \tag{8}
\end{equation*}
$$

Clearly, then, $\left[\sum_{i} \hat{n}_{i}, \hat{c}_{j k}\right]=0$, so that \hat{H} commutes with all angular momentum operators. For the other commutation relations, we use the commutation relations

$$
\begin{equation*}
\left[\hat{c}_{i j}, \hat{c}_{k l}\right]=\hbar \omega\left(\hat{c}_{i l} \delta_{j k}-\hat{c}_{k j} \delta_{i l}\right) \tag{9}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left.\left[\hat{L}_{z}, \hat{L}_{ \pm}\right]=-\frac{\hbar}{\omega}\left(\hat{c}_{13}-\hat{c}_{31} \mp i \hat{c}_{32} \pm i \hat{c}_{23}\right)\right)= \pm \hbar \hat{L}_{ \pm} \tag{10}
\end{equation*}
$$

and since we know that \hat{L}^{2} can be constructed out of $\hat{L}_{ \pm}$and \hat{L}_{z}, and its commutation relations follow from those of $\hat{L}_{ \pm}$and \hat{L}_{z}, this is sufficient.

Now, consider the case $E=3 \hbar \omega / 2$. There, we must have $n_{1}=n_{2}=n_{3}=0$, so that the only state is $|000\rangle$. Since all operators $\hat{c}_{i j}$ and \hat{n}_{i} annihilate $|000\rangle$, because the \hat{a}_{i}^{\dagger} are always placed on the right, it follows that both \hat{L}^{2} and \hat{L}_{z} are zero on $|000\rangle$. Hence, this is directly an eigenstate of \hat{L}^{2} and \hat{L}_{z} with $l=0$ and $m=0:|E=3 \hbar \omega / 2, l=0, m=0\rangle=|000\rangle$.

Finally, consider the case $E=5 \hbar \omega / 2$. There are three states that have this energy:

$$
|100\rangle, \quad|010\rangle, \quad|001\rangle
$$

which correspond to the three solutions to the equation $n_{1}+n_{2}+n_{3}=1$. The action of angular momentum operators on these states can be obtained by realising that $\hat{c}_{i j}$, on these states, essentially moves the value of n_{j} to the i th position if n_{j} is nonzero, and puts a factor $\hbar \omega$ in front; otherwise it gives 0:

$$
\hat{c}_{12}|100\rangle=0, \quad \hat{c}_{12}|010\rangle=\hbar \omega|100\rangle, \quad \hat{c}_{12}|001\rangle=0
$$

and similar equations for \hat{c}_{23} and \hat{c}_{31}, etc. In general, $\hat{c}_{i j}$ decreases the number on the j th place, and increase the number on the i th place. On the other hand, the operators \hat{n}_{j} act like

$$
\hat{n}_{1}|100\rangle=\hbar \omega|100\rangle, \quad \hat{n}_{1}|010\rangle=\hat{n}_{1}|001\rangle=0
$$

and similarly for \hat{n}_{2} and \hat{n}_{3}. (These formulas are derived from the action of \hat{a}_{j} and \hat{a}_{j}^{\dagger}, see homework 3). Then, we find

$$
\hat{L}^{2}|100\rangle=2 \hbar^{2}|100\rangle, \quad \hat{L}^{2}|010\rangle=2 \hbar^{2}|010\rangle, \quad \hat{L}^{2}|001\rangle=2 \hbar^{2}|001\rangle
$$

where only the last term $-2 \hbar \omega\left(\hat{n}_{1}+\hat{n}_{2}+\hat{n}_{3}\right)$ in the parenthesis in the expression of \hat{L}^{2} actually contributes. Hence, all these states have $l=1$ (since then $l(l+1) \hbar^{2}=2 \hbar^{2}$). These states then form a subspace of fixed l value, and in this subspace, we need to diagonalise \hat{L}_{z} in order to find eigenvectors with fixed values of \hat{m}. It is clear that $\hat{L}_{z}|001\rangle=0$, so that we already have an eigenvector with $m=0$. That is, we already found that $|E=5 \hbar \omega / 2, l=1, m=0\rangle=|001\rangle$. For the other two possible values of m, which are ± 1 since we have $l=1$, we need to write down the eigenvalue equation on some arbitrary linear combination of $|100\rangle$ and $|010\rangle$. So, we say, for $m=1$:

$$
\begin{aligned}
\hat{L}_{z}(A|100\rangle+B|010\rangle) & =\hbar(A|100\rangle+B|010\rangle) \\
\Rightarrow \frac{1}{i \omega}(-A \hbar \omega|010\rangle+B \hbar \omega|100\rangle) & =\hbar(A|100\rangle+B|010\rangle)
\end{aligned}
$$

which gives two equations, when we look at the coefficients of $|000\rangle$ and $|010\rangle$. These two equations are consistent, and give

$$
i A=B
$$

so that, with proper normalisation, we have

$$
|E=5 \hbar \omega / 2, l=1, m=1\rangle=\frac{1}{\sqrt{2}}(|100\rangle+i|010\rangle)
$$

Similarly, for $m=-1$, we have

$$
\begin{aligned}
\hat{L}_{z}(A|100\rangle+B|010\rangle) & =-\hbar(A|100\rangle+B|010\rangle) \\
\Rightarrow \frac{1}{i \omega}(-A \hbar \omega|010\rangle+B \hbar \omega|100\rangle) & =-\hbar(A|100\rangle+B|010\rangle)
\end{aligned}
$$

so that

$$
-i A=B
$$

and, with proper normalisation, we have

$$
|E=5 \hbar \omega / 2, l=1, m=-1\rangle=\frac{1}{\sqrt{2}}(|100\rangle-i|010\rangle) .
$$

