
Quantum Mechanics III Epiphany Term 2009
Lecturer: Dr. Benjamin Doyon

Homework 3 – due 12 March 2009

1. For the isotropic three-dimensional simple harmonic oscillator (with V (x) = mω2

2 |x|2),
construct annihilation and creation operators for each of the x, y and z components and
write down their commutation rules. From them find expressions for Ĥ, L̂2, L̂± and
L̂z, and verify the commutation rules for these operators. In the two separate cases of
energy E = 3~ω/2 and energy E = 5~ω/2, find the possible values of l (associated to the
eigenvalues of L̂2 as usual), and express energy and angular momentum eigenstates |Elm〉
in terms of states |nx, ny, nz〉, parametrised by the three harmonic-oscillator quantum
numbers nz, ny, nz associated with the three cartesian directions.

Answer
We just have to take the results of the one-dimenional harmonic oscillator, one for each coor-

dinates, since the three-dimensional Hamiltonian is just a sum of independent one-dimensional
Hamiltonians:

âj =
P̂j + imωX̂j√

2m
, â†j =

P̂j − imωX̂j√
2m

(1)

for j = 1, 2, 3 representing the three directions x, y, z. They satisfy the commutation relations

[âj , âk] = [â†j , â
†
k] = 0, [â†j , âk] = δj,k~ω. (2)

Then, the full Hamiltonian is just

Ĥ =
3~ω

2
+

3∑
j=1

âj â
†
j =

3~ω

2
+

3∑
j=1

n̂j (3)

where we introduce the operators n̂j = âj â
†
j for the components j, counting the energy differ-

ence with respect to the ground state energy of the associated Hamiltonian. For the angular
momentum operator, we use

X̂j =
âj − â†j

iω
√

2m
, P̂j =

√
m

2
(âj + â†j) (4)

and we have

L̂z = X̂1P̂2 − P̂1X̂2 =
1
iω

(ĉ12 − ĉ21)

L̂+ = L̂x + iL̂y =
1
iω

(ĉ23 − ĉ32 + iĉ31 − iĉ13)

L̂− = L̂†+ =
1
iω

(ĉ23 − ĉ32 − iĉ31 + iĉ13)

L̂2 = L̂2
x + L̂2

y + L̂2
z = − 1

ω2
(ĉ2

12 + ĉ2
21 + ĉ2

23 + ĉ2
32 + ĉ2

31 + ĉ2
13

−2(n̂1n̂2 + n̂2n̂3 + n̂3n̂1)− 2~ω(n̂1 + n̂2 + n̂3))
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where we introduce the operators
ĉij = âiâ

†
j (5)

(in particular, ĉii = n̂i), and used the relations

ĉ12ĉ21 = n̂1n̂2 + ~ωn̂2, ĉ21ĉ12 = n̂1n̂2 + ~ωn̂1 (6)

and similar relations obtained by cyclic permuttations 1, 2, 3 7→ 2, 3, 1 7→ 3, 1, 2. In order to
verify the commutation relations, let us use the operators n̂j and ĉij . We have

[n̂i, n̂j ] = 0 (7)

(since the n̂i’s count an energy differences in different directions), and

[n̂i, ĉjk] = ~ω(δij − δik). (8)

Clearly, then, [
∑

i n̂i, ĉjk] = 0, so that Ĥ commutes with all angular momentum operators. For
the other commutation relations, we use the commutation relations

[ĉij , ĉkl] = ~ω(ĉilδjk − ĉkjδil). (9)

We have
[L̂z, L̂±] = − ~

ω
(ĉ13 − ĉ31 ∓ iĉ32 ± iĉ23)) = ±~L̂± (10)

and since we know that L̂2 can be constructed out of L̂± and L̂z, and its commutation relations
follow from those of L̂± and L̂z, this is sufficient.

Now, consider the case E = 3~ω/2. There, we must have n1 = n2 = n3 = 0, so that the
only state is |000〉. Since all operators ĉij and n̂i annihilate |000〉, because the â†i are always
placed on the right, it follows that both L̂2 and L̂z are zero on |000〉. Hence, this is directly an
eigenstate of L̂2 and L̂z with l = 0 and m = 0: |E = 3~ω/2, l = 0, m = 0〉 = |000〉.

Finally, consider the case E = 5~ω/2. There are three states that have this energy:

|100〉, |010〉, |001〉

which correspond to the three solutions to the equation n1 +n2 +n3 = 1. The action of angular
momentum operators on these states can be obtained by realising that ĉij , on these states,
essentially moves the value of nj to the ith position if nj is nonzero, and puts a factor ~ω in
front; otherwise it gives 0:

ĉ12|100〉 = 0, ĉ12|010〉 = ~ω|100〉, ĉ12|001〉 = 0

and similar equations for ĉ23 and ĉ31, etc. In general, ĉij decreases the number on the jth place,
and increase the number on the ith place. On the other hand, the operators n̂j act like

n̂1|100〉 = ~ω|100〉, n̂1|010〉 = n̂1|001〉 = 0
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and similarly for n̂2 and n̂3. (These formulas are derived from the action of âj and â†j , see
homework 3). Then, we find

L̂2|100〉 = 2~2|100〉, L̂2|010〉 = 2~2|010〉, L̂2|001〉 = 2~2|001〉

where only the last term −2~ω(n̂1 + n̂2 + n̂3) in the parenthesis in the expression of L̂2 actually
contributes. Hence, all these states have l = 1 (since then l(l + 1)~2 = 2~2). These states then
form a subspace of fixed l value, and in this subspace, we need to diagonalise L̂z in order to find
eigenvectors with fixed values of m̂. It is clear that L̂z|001〉 = 0, so that we already have an
eigenvector with m = 0. That is, we already found that |E = 5~ω/2, l = 1, m = 0〉 = |001〉. For
the other two possible values of m, which are ±1 since we have l = 1, we need to write down
the eigenvalue equation on some arbitrary linear combination of |100〉 and |010〉. So, we say, for
m = 1:

L̂z (A|100〉+ B|010〉) = ~ (A|100〉+ B|010〉)

⇒ 1
iω

(−A~ω|010〉+ B~ω|100〉) = ~ (A|100〉+ B|010〉)

which gives two equations, when we look at the coefficients of |000〉 and |010〉. These two
equations are consistent, and give

iA = B

so that, with proper normalisation, we have

|E = 5~ω/2, l = 1, m = 1〉 =
1√
2
(|100〉+ i|010〉).

Similarly, for m = −1, we have

L̂z (A|100〉+ B|010〉) = −~ (A|100〉+ B|010〉)

⇒ 1
iω

(−A~ω|010〉+ B~ω|100〉) = −~ (A|100〉+ B|010〉)

so that
−iA = B

and, with proper normalisation, we have

|E = 5~ω/2, l = 1, m = −1〉 =
1√
2
(|100〉 − i|010〉).

3


