Homework 2 - due 26 February 2009

1. A particle of mass m in one dimenion is subject to the potential

$$
V(x)= \begin{cases}V_{1} & (x<0) \\ 0 & (0<x<L) \\ V_{2} & (x>L)\end{cases}
$$

where $V_{2}>V_{1}>0$.
(a) In each of the following regions of energy E, determine if there may be states (i.e. eigenstates of the Hamiltonian), and if so, if they are confined states or scattering states: $E<0,0<E<V_{1}, V_{1}<E<V_{2}, E>V_{2}$.
(b) In each of the regions where there may be states: if they are scattering states, determine the reflection and transmission coefficients for particles incoming from the left (from $x=-\infty$), and if they are confined states, derive the algebraic equation (involving the variable E and the parameters V_{1}, V_{2}, L, m) that fixes the energy levels.

Answer

(a) $E<0$: no states, because E is smaller than the minimum of the potential. $0<E<V_{1}$: bound states, because E is between the minimum of the potential and the minimum of the asymptotic values of the potential. $V_{1}<E<V_{2}$: scattering states, because E is larger than the minimum of the asymptotic values of the potential (which is V_{1} here). $E>V_{2}$: scattering states, same reason.
(b) For $V_{1}<E<V_{2}$: we have scattering states without any transmission, since in the region $x>L$, the wave function is exponentially decreasing. Hence $T=0$, and a calculation would give a reflection coefficient $R=1$, since the formula $R+T=1$ is always valid. No need to calculate it explicitly!

Consider $E>V_{2}$. We write the wave function for $x<0$ as ψ_{1}, that of $0<x<L$ as ψ_{0}, and that of $x>L$ as ψ_{2}. Then, we immediately have, since the potential is flat in the three regions,

$$
\begin{aligned}
& \psi_{1}(x)=A e^{i p_{1} x / \hbar}+B e^{-i p_{1} x / \hbar}, \quad p_{1}=\sqrt{2 m\left(E-V_{1}\right)}>0 \\
& \psi_{0}(x)=C \sin \left(p_{0} x / \hbar\right)+D \cos \left(p_{0} x / \hbar\right), \quad p_{0}=\sqrt{2 m E}>0 \\
& \psi_{2}(x)=E e^{i p_{2} x / \hbar}, \quad p_{2}=\sqrt{2 m\left(E-V_{2}\right)}>0
\end{aligned}
$$

In the first region, we put both the incident and the reflected waves. In the second region, we also have both right-moving and left-moving waves, but we wrote them in terms of sine and cosine functions instead for convenience. In the third region, we only have transmitted waves.

The continuity equations at $x=0$ give

$$
\begin{align*}
\psi_{1}(0)=\psi_{0}(0) & \Rightarrow A+B=D \\
\psi_{1}^{\prime}(0)=\psi_{0}^{\prime}(0) & \Rightarrow i p_{1}(A-B)=p_{0} C \tag{1}
\end{align*}
$$

and those at $x=L$ give

$$
\begin{align*}
& \psi_{0}(0)=\psi_{2}(0) \quad \Rightarrow C s+D c=E e \\
& \psi_{0}^{\prime}(0)=\psi_{2}^{\prime}(0) \Rightarrow p_{0}(C c-D s)=i p_{2} E e \tag{2}
\end{align*}
$$

where we define for convenience

$$
\begin{equation*}
s \equiv \sin \left(p_{0} L / \hbar\right), \quad c \equiv \cos \left(p_{0} L / \hbar\right), \quad e \equiv e^{i p_{2} L / \hbar} \tag{3}
\end{equation*}
$$

Putting the continuity equations together by eliminating the intermediate constants C and D (which only have to do with the waves in the region $0<x<L$, hence are not directly involved in the calculation of R and T), we get

$$
\begin{aligned}
\frac{i p_{1}}{p_{0}}(A-B) s+(A+B) c & =E e \\
i p_{1}(A-B) c+p_{0}(A+B) s & =i p_{2} E e
\end{aligned}
$$

We write that as a matrix equation for the vector $\binom{A}{B}$:

$$
\left(\begin{array}{cc}
\frac{i p_{1}}{p_{0}} s+c & -\frac{i p_{1}}{p_{0}} s+c \\
i p_{1} c-p_{0} s & -i p_{1} c-p_{0} s
\end{array}\right)\binom{A}{B}=E e\binom{1}{i p_{2}}
$$

In order to invert the matrix, we need its determinant, which is very simple:

$$
\begin{align*}
\operatorname{det} & =\left(\frac{i p_{1}}{p_{0}} s+c\right)\left(-i p_{1} c-p_{0} s\right)-\left(-\frac{i p_{1}}{p_{0}} s+c\right)\left(i p_{1} c-p_{0} s\right) \\
& =2 i \operatorname{Im}\left[\left(\frac{i p_{1}}{p_{0}} s+c\right)\left(-i p_{1} c-p_{0} s\right)\right] \\
& =-2 i p_{1} \tag{4}
\end{align*}
$$

using $s^{2}+c^{2}=1$. Then,

$$
\binom{A}{B}=-\frac{1}{2 i p_{1}}\left(\begin{array}{cc}
-i p_{1} c-p_{0} s & \frac{i p_{1}}{p_{0}} s-c \\
-i p_{1} c+p_{0} s & \frac{i p_{1}}{p_{0}} s+c
\end{array}\right) E e\binom{1}{i p_{2}}
$$

In particular, we find

$$
A=-\frac{E e}{2 i p_{1}}\left(-i\left(p_{1}+p_{2}\right) c-\frac{p_{0}^{2}+p_{1} p_{2}}{p_{0}} s\right)
$$

so that

$$
\begin{aligned}
|A|^{2} & =\frac{|E|^{2}}{4 p_{1}^{2}}\left(\left(p_{1}+p_{2}\right)^{2} c^{2}+\left(\frac{p_{0}^{2}+p_{1} p_{2}}{p_{0}}\right)^{2} s^{2}\right) \\
& =\frac{|E|^{2}}{4 p_{1}^{2}}\left(4 p_{1} p_{2}+\left(p_{1}-p_{2}\right)^{2} c^{2}+\left(\frac{p_{0}^{2}-p_{1} p_{2}}{p_{0}}\right)^{2} s^{2}\right)
\end{aligned}
$$

where we used $|e|=1$. Hence, the transmission coefficient is

$$
T=\frac{|E|^{2} p_{2}}{|A|^{2} p_{1}}=\frac{4 p_{1} p_{2}}{4 p_{1} p_{2}+U}
$$

where

$$
U=\left(p_{1}-p_{2}\right)^{2} c^{2}+\left(\frac{p_{0}^{2}-p_{1} p_{2}}{p_{0}}\right)^{2} s^{2}
$$

The reflection coefficient is simply

$$
R=1-T=\frac{U}{4 p_{1} p_{2}+U}
$$

Note that the only cases where there can be pure transmission (where $U=0$) are when both of the following equations are satisfied:

$$
p_{1}=p_{2}, \quad \sin \left(p_{0} L / \hbar\right)=0
$$

Finally, consider the case $0<E<V_{1}$ (the bound states). The starting point is the following form of the wave function in the various regions, satisfying the condition of a vanishing wave function at $\pm \infty$:

$$
\begin{aligned}
& \psi_{1}(x)=A e^{q_{1} x / \hbar}, \quad q_{1}=\sqrt{2 m\left(V_{1}-E\right)}>0 \\
& \psi_{0}(x)=B \sin \left(p_{0} x / \hbar\right)+C \cos \left(p_{0} x / \hbar\right), \quad p_{0}=\sqrt{2 m E}>0 \\
& \psi_{2}(x)=D e^{-q_{2} x / \hbar}, \quad q_{2}=\sqrt{2 m\left(V_{2}-E\right)}>0
\end{aligned}
$$

The continuity equations give

$$
\begin{aligned}
A & =C \\
q_{1} A & =p_{0} B
\end{aligned}
$$

and

$$
\begin{align*}
B s+C c & =D f \\
p_{0}(B c-C s) & =-q_{2} D f \tag{5}
\end{align*}
$$

where s and c are as before, and where $f=e^{-q_{2} L / \hbar}$. Putting these equations together, we find

$$
\begin{align*}
\frac{q_{1}}{p_{0}} s+c & =\frac{D f}{A} \\
q_{1} c-p_{0} s & =-q_{2} \frac{D f}{A} \tag{6}
\end{align*}
$$

so that, eliminating D in order to obtain an equation that does not involve any coefficients (just the energy variable remains)

$$
p_{0}\left(q_{1}+q_{2}\right) c+\left(q_{1} q_{2}-p_{0}^{2}\right) s=0
$$

which gives

$$
\tan \left(p_{0} L / \hbar\right)=\frac{p_{0}\left(q_{1}+q_{2}\right)}{p_{0}^{2}-q_{1} q_{2}}
$$

This is the algebraic equation that determines the possible values of energy, recalling that

$$
p_{0}=\sqrt{2 m E}, \quad q_{1}=\sqrt{2 m\left(V_{1}-E\right)}, \quad q_{2}=\sqrt{2 m\left(V_{2}-E\right)}
$$

