
Quantum Mechanics III Epiphany Term 2009
Lecturer: Dr. Benjamin Doyon

Homework 2 – due 26 February 2009

1. A particle of mass m in one dimenion is subject to the potential

V (x) =


V1 (x < 0)
0 (0 < x < L)
V2 (x > L)

where V2 > V1 > 0.

(a) In each of the following regions of energy E, determine if there may be states (i.e.
eigenstates of the Hamiltonian), and if so, if they are confined states or scattering
states: E < 0, 0 < E < V1, V1 < E < V2, E > V2.

(b) In each of the regions where there may be states: if they are scattering states, de-
termine the reflection and transmission coefficients for particles incoming from the
left (from x = −∞), and if they are confined states, derive the algebraic equation
(involving the variable E and the parameters V1, V2, L, m) that fixes the energy
levels.

Answer

(a) E < 0: no states, because E is smaller than the minimum of the potential. 0 < E < V1:
bound states, because E is between the minimum of the potential and the minimum of the
asymptotic values of the potential. V1 < E < V2: scattering states, because E is larger
than the minimum of the asymptotic values of the potential (which is V1 here). E > V2:
scattering states, same reason.

(b) For V1 < E < V2: we have scattering states without any transmission, since in the region
x > L, the wave function is exponentially decreasing. Hence T = 0, and a calculation
would give a reflection coefficient R = 1, since the formula R+ T = 1 is always valid. No
need to calculate it explicitly!

Consider E > V2. We write the wave function for x < 0 as ψ1, that of 0 < x < L as ψ0,
and that of x > L as ψ2. Then, we immediately have, since the potential is flat in the
three regions,

ψ1(x) = Aeip1x/~ +Be−ip1x/~, p1 =
√

2m(E − V1) > 0

ψ0(x) = C sin(p0x/~) +D cos(p0x/~), p0 =
√

2mE > 0

ψ2(x) = Eeip2x/~, p2 =
√

2m(E − V2) > 0
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In the first region, we put both the incident and the reflected waves. In the second region,
we also have both right-moving and left-moving waves, but we wrote them in terms of sine
and cosine functions instead for convenience. In the third region, we only have transmitted
waves.

The continuity equations at x = 0 give

ψ1(0) = ψ0(0) ⇒ A+B = D

ψ′
1(0) = ψ′

0(0) ⇒ ip1(A−B) = p0C

(1)

and those at x = L give

ψ0(0) = ψ2(0) ⇒ Cs+Dc = Ee

ψ′
0(0) = ψ′

2(0) ⇒ p0(Cc−Ds) = ip2Ee

(2)

where we define for convenience

s ≡ sin(p0L/~), c ≡ cos(p0L/~), e ≡ eip2L/~ (3)

Putting the continuity equations together by eliminating the intermediate constants C and
D (which only have to do with the waves in the region 0 < x < L, hence are not directly
involved in the calculation of R and T ), we get

ip1

p0
(A−B)s+ (A+B)c = Ee

ip1(A−B)c+ p0(A+B)s = ip2Ee

We write that as a matrix equation for the vector

(
A

B

)
:

 ip1

p0
s+ c − ip1

p0
s+ c

ip1c− p0s −ip1c− p0s

( A

B

)
= Ee

(
1
ip2

)

In order to invert the matrix, we need its determinant, which is very simple:

det =
(
ip1

p0
s+ c

)
(−ip1c− p0s)−

(
− ip1

p0
s+ c

)
(ip1c− p0s)

= 2iIm
[(

ip1

p0
s+ c

)
(−ip1c− p0s)

]
= −2ip1 (4)

using s2 + c2 = 1. Then,(
A

B

)
= − 1

2ip1

 −ip1c− p0s
ip1

p0
s− c

−ip1c+ p0s
ip1

p0
s+ c

Ee

(
1
ip2

)
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In particular, we find

A = − Ee

2ip1

(
−i(p1 + p2)c−

p2
0 + p1p2

p0
s

)
so that

|A|2 =
|E|2

4p2
1

(
(p1 + p2)2c2 +

(
p2
0 + p1p2

p0

)2

s2

)

=
|E|2

4p2
1

(
4p1p2 + (p1 − p2)2c2 +

(
p2
0 − p1p2

p0

)2

s2

)

where we used |e| = 1. Hence, the transmission coefficient is

T =
|E|2p2

|A|2p1
=

4p1p2

4p1p2 + U

where

U = (p1 − p2)2c2 +
(
p2
0 − p1p2

p0

)2

s2.

The reflection coefficient is simply

R = 1− T =
U

4p1p2 + U

Note that the only cases where there can be pure transmission (where U = 0) are when
both of the following equations are satisfied:

p1 = p2, sin(p0L/~) = 0

Finally, consider the case 0 < E < V1 (the bound states). The starting point is the
following form of the wave function in the various regions, satisfying the condition of a
vanishing wave function at ±∞:

ψ1(x) = Aeq1x/~, q1 =
√

2m(V1 − E) > 0

ψ0(x) = B sin(p0x/~) + C cos(p0x/~), p0 =
√

2mE > 0

ψ2(x) = De−q2x/~, q2 =
√

2m(V2 − E) > 0

The continuity equations give

A = C

q1A = p0B

and

Bs+ Cc = Df

p0(Bc− Cs) = −q2Df (5)

3



where s and c are as before, and where f = e−q2L/~. Putting these equations together, we
find

q1
p0
s+ c =

Df

A

q1c− p0s = −q2
Df

A
(6)

so that, eliminating D in order to obtain an equation that does not involve any coefficients
(just the energy variable remains)

p0(q1 + q2)c+ (q1q2 − p2
0)s = 0

which gives

tan(p0L/~) =
p0(q1 + q2)
p2
0 − q1q2

This is the algebraic equation that determines the possible values of energy, recalling that

p0 =
√

2mE, q1 =
√

2m(V1 − E), q2 =
√

2m(V2 − E)
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