Homework 3 - due 29 February 2008

In one dimension a stream of particles of mass m and energy E is incident on a potential "hole"

$$
V(x)= \begin{cases}0 & x<0 \\ -V_{0} & 0<x<a \\ 0 & x>a\end{cases}
$$

with $V_{0}>0$. Find the transmission and reflection coefficients. Show that when

$$
2 m\left(E+V_{0}\right)=\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}}, \quad n=1,2,3, \ldots
$$

there is no reflection.

ANSWER

This is a scattering problem with potential having the same finite value at both $x= \pm \infty$, so particles transmitted have the same energy as that of incident and reflected particles. Let us assume that particles are incident from the left. Then, we have

$$
\psi(x)= \begin{cases}\psi_{<}(x) \equiv e^{i k x}+A e^{-i k x} & x \rightarrow-\infty \\ \psi_{>}(x) \equiv B e^{i k x} & x \rightarrow \infty\end{cases}
$$

with $k=\sqrt{2 m E / \hbar^{2}}$ (since the potential is 0 at $x= \pm \infty$) where $E>0$ is the energy of the incident, reflected and transmitted particles. The reflection R and transmission T coefficients are simply

$$
R=|A|^{2}, \quad T=|B|^{2}
$$

and we know that $R+T=1$ by conservation of the current. The potential is constant for $x<0$ and for $x>a$ so that in fact $\psi(x)=\psi_{<}(x)$ for $x<0$ and $\psi(x)=\psi_{>}(x)$ for $x>a$. In the region $0<x<a$, the potential is also constant but with a different value $-V_{0}$, so that in that region

$$
\psi(x)=\psi_{0}(x) \equiv C e^{i q x}+D e^{-i q x} \quad 0<x<a
$$

with $q=\sqrt{2 m\left(E+V_{0}\right) / \hbar^{2}}$. Note that since the energy has to be positive, then we necessarily have oscillating exponentials in $0<x<a$, where the potential is negative.

We now need to implement continuity of the wave function and its derivatives at $x=0$ and $x=a$. We have 4 equations:

$$
\begin{aligned}
& \psi_{<}(0)=\psi_{0}(0) \Rightarrow 1+A=C+D \\
& \psi_{<}^{\prime}(0)=\psi_{0}^{\prime}(0) \Rightarrow k(1-A)=q(C-D) \\
& \psi_{>}(a)=\psi_{0}(a) \Rightarrow B e^{i k a}=C e^{i q a}+D e^{-i q a} \\
& \psi_{>}^{\prime}(a)=\psi_{0}^{\prime}(a) \Rightarrow k B e^{i k a}=q\left(C e^{i q a}-D e^{-i q a}\right)
\end{aligned}
$$

Isolating A in the first equation and replacing it into the second leads to

$$
k(2-C-D)=q(C-D)
$$

On the other hand, isolating B in the third equation and replacing it into the fourth leads to

$$
k\left(C e^{i q a}+D e^{-i q a}\right)=q\left(C e^{i q a}-D e^{-i q a}\right)
$$

Hence we have two equations for two variables, C and D. One way to solve them is by writing them using matrices:

$$
\left(\begin{array}{cc}
k+q & k-q \\
(k-q) e^{i q a} & (k+q) e^{-i q a}
\end{array}\right)\binom{C}{D}=\binom{2 k}{0}
$$

Inverting the 2 by 2 matrix gives

$$
\binom{C}{D}=\frac{1}{(k+q)^{2} e^{-i q a}-(k-q)^{2} e^{i q a}}\left(\begin{array}{cc}
(k+q) e^{-i q a} & q-k \\
(q-k) e^{i q a} & k+q
\end{array}\right)\binom{2 k}{0}
$$

That is,

$$
\begin{aligned}
C & =\frac{2 k(k+q) e^{-i q a}}{(k+q)^{2} e^{-i q a}-(k-q)^{2} e^{i q a}} \\
D & =\frac{2 k(q-k) e^{i q a}}{(k+q)^{2} e^{-i q a}-(k-q)^{2} e^{i q a}}
\end{aligned}
$$

Hence, we can find B from its relation to C and D above:

$$
B e^{i k a}=\frac{2 k(k+q)+2 k(q-k)}{(k+q)^{2} e^{-i q a}-(k-q)^{2} e^{i q a}}=\frac{4 k q}{(k+q)^{2} e^{-i q a}-(k-q)^{2} e^{i q a}}
$$

This gives for the transmission coefficient $T=|B|^{2}$:

$$
T=\frac{16 k^{2} q^{2}}{(k+q)^{4}+(k-q)^{4}-2(k+q)^{2}(k-q)^{2} \cos (2 q a)}
$$

We see immediately that when $2 m\left(E+V_{0}\right)=n^{2} \pi^{2} \hbar^{2} / a^{2}$ with $n=1,2,3, \ldots$, then $q=n \pi / a$ and $\cos (2 q a)=1$ so that

$$
T=\frac{16 k^{2} q^{2}}{(k+q)^{4}+(k-q)^{4}-2(k+q)^{2}(k-q)^{2}}=\frac{16 k^{2} q^{2}}{\left((k+q)^{2}-(k-q)^{2}\right)^{2}}=\frac{16 k^{2} q^{2}}{(4 k q)^{2}}=1
$$

so that there is total transmission at these energies. Hence, since $R=1-T$, the reflection is zero at these energies. In general, the reflection coefficient is
$R=1-\frac{16 k^{2} q^{2}}{(k+q)^{4}+(k-q)^{4}-2(k+q)^{2}(k-q)^{2} \cos (2 q a)}=\frac{4(k+q)^{2}(k-q)^{2} \sin ^{2}(q a)}{(k+q)^{4}+(k-q)^{4}-2(k+q)^{2}(k-q)^{2} \cos (2 q a)}$

