Homework 2 - due 20 February 2008

Question 1. Consider a particle of mass m moving in a one-dimensional infinite square well potential

$$
V(x)= \begin{cases}\infty & (x<0) \\ 0 & (0<x<a) \\ \infty & (x>a)\end{cases}
$$

(a) Determine the energy levels and the corresponding wavefunctions.
(b) Calculate $\langle\hat{x}\rangle, \Delta \hat{x},\langle\hat{p}\rangle$ and $\Delta \hat{p}$, where \hat{x} and \hat{p} are the position and momentum operators, respectively.

Question 2. Consider the operator $\hat{\mathcal{P}}_{a}$ defined by $\hat{\mathcal{P}}_{a}|x\rangle=|a-x\rangle$. Evaluate $\hat{\mathcal{P}}_{a}^{2}, \hat{\mathcal{P}}_{a} \hat{x} \hat{\mathcal{P}}_{a}$, $\hat{\mathcal{P}}_{a} f(\hat{x}) \hat{\mathcal{P}}_{a}$ (for some function $\left.f(\hat{x})\right), \hat{\mathcal{P}}_{a} \hat{p} \hat{\mathcal{P}}_{a}$, and $\hat{\mathcal{P}}_{a} \hat{p}^{2} \hat{\mathcal{P}}_{a}$. Is the hamiltonian of question 1 invariant under this transformation? If yes, what is the $\hat{\mathcal{P}}_{a}$ eigenvalue associated to the $n^{\text {th }}$ energy level?

ANSWERS

1.

(a) The wave function is non-zero only in the region $0<x<a$, where we will denote it $\psi(x)$. There, the potential is flat and 0 , so the wave function is that of a free particle, given in general by

$$
\psi(x)=A \cos (k x)+B \sin (k x)
$$

with $k=\sqrt{2 m E} / \hbar$ where E is the energy. Continuity of the wave function at $x=0$ and $x=a$ gives

$$
\psi(0)=0, \quad \psi(a)=0
$$

and there is no continuity of the derivative of the wave function, because the potential is infinite at $x<0$ and $x>a$. The first equation means that we must have $A=0$, and the second, that

$$
\sin (k a)=0
$$

This gives

$$
k=k_{n} \equiv \frac{n \pi}{a}, \quad n=1,2,3, \ldots
$$

so that the energy levels are

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

and the corresponding (unnormalised) wave functions are

$$
\psi(x)=\psi_{n}(x)=B \sin \left(k_{n} x\right)
$$

In order to normalise them, we impose

$$
1=\int_{0}^{a} \psi^{*}(x) \psi(x)=|B|^{2} \int_{0}^{a} \sin \left(k_{n} x\right)^{2}=\frac{a|B|^{2}}{2}
$$

so that we can take

$$
B=\sqrt{\frac{2}{a}}
$$

(b) We may make use of the formulas

$$
\int e^{u x} d x=\frac{e^{u x}}{u}, \quad \int x e^{u x} d x=\frac{\partial}{\partial u} \frac{e^{u x}}{u}=(x u-1) \frac{e^{u x}}{u^{2}}, \quad \int x^{2} e^{u x} d x=\frac{\partial^{2}}{\partial u^{2}} \frac{e^{u x}}{u}=\left(x^{2} u^{2}-2 x u+2\right) \frac{e^{u x}}{u^{3}}
$$

We have

$$
\begin{aligned}
\langle\hat{x}\rangle & =\int_{0}^{a} \psi^{*}(x) x \psi(x) d x \\
& =\frac{2}{a} \int_{0}^{a} x \sin ^{2}\left(k_{n} x\right) d x \\
& =\frac{1}{2 a} \int_{0}^{a} x\left(2-e^{2 i k_{n} x}-e^{-2 i k_{n} x}\right) d x \\
& =\frac{1}{2 a}\left(x^{2}-2 \operatorname{Re}\left(e^{2 i k_{n} x} \frac{1-2 i k_{n} x}{4 k_{n}^{2}}\right)\right)_{x=0}^{x=a} \\
& =\frac{a}{2}
\end{aligned}
$$

where we used $e^{2 i k_{n} a}=1$. Also,

$$
\begin{aligned}
\left\langle\hat{x}^{2}\right\rangle & =\int_{0}^{a} \psi^{*}(x) x^{2} \psi(x) d x \\
& =\frac{1}{2 a} \int_{0}^{a} x^{2}\left(2-e^{2 i k_{n} x}-e^{-2 i k_{n} x}\right) d x \\
& =\frac{1}{2 a}\left(\frac{2 x^{3}}{3}-2 \operatorname{Re}\left(e^{2 i k_{n} x} \frac{-4 k_{n}^{2} x^{2}-4 i k_{n} x+2}{-8 i k_{n}^{3}}\right)\right)_{x=0}^{x=a} \\
& =\frac{a^{2}}{3}-\frac{1}{2 k_{n}^{2}}
\end{aligned}
$$

and we find

$$
\Delta \hat{x}=\sqrt{\left\langle\hat{x}^{2}\right\rangle-\langle\hat{x}\rangle^{2}}=a \sqrt{\frac{1}{12}-\frac{1}{2 n^{2} \pi^{2}}}
$$

Continuing,

$$
\begin{aligned}
\langle\hat{p}\rangle & =\int_{0}^{a} \psi^{*}(x)(-i \hbar) \frac{d}{d x} \psi(x) d x \\
& =-\frac{2 i \hbar}{a} \int_{0}^{a} \sin \left(k_{n} x\right) \frac{d}{d x} \sin \left(k_{n} x\right) d x \\
& =-\frac{i \hbar}{a} \int_{0}^{a} \frac{d}{d x} \sin ^{2}\left(k_{n} x\right) d x \\
& =-\frac{i \hbar}{a}\left(\sin ^{2}\left(k_{n} x\right)\right)_{0}^{a} \\
& =0
\end{aligned}
$$

This was to be expected, since the average momentum in any bound state is exactly zero. Also,

$$
\begin{aligned}
\left\langle\hat{p}^{2}\right\rangle & =\int_{0}^{a} \psi^{*}(x)\left(-\hbar^{2}\right) \frac{d^{2}}{d x^{2}} \psi(x) d x \\
& =\frac{2 \hbar^{2} k_{n}^{2}}{a} \int_{0}^{a} \sin ^{2}\left(k_{n} x\right) d x \\
& =\hbar^{2} k_{n}^{2} \\
& =\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}}
\end{aligned}
$$

This was to be expected, since the energy operator in the interval $0<x<a$ is just the kinetic energy, $\hat{p}^{2} /(2 m)$, and we are evaluating averages in energy eigenstates, $\langle\hat{H}\rangle=E_{n}$. That is, $\left\langle\hat{p}^{2} /(2 m)\right\rangle=n^{2} \pi^{2} \hbar^{2} /\left(2 m a^{2}\right)$. Hence

$$
\Delta \hat{p}=\sqrt{\left\langle\hat{p}^{2}\right\rangle-\langle\hat{p}\rangle^{2}}=\frac{n \pi \hbar}{a}
$$

Note that $\Delta \hat{p} \Delta \hat{x}$ takes the value $(0.56786 \ldots) \hbar$ for $n=1$, and this is indeed larger than $\hbar / 2$, in agreement with the general theorem. For $n>1, \Delta \hat{p} \Delta \hat{x}$ becomes even larger.
2.

By definition, $\hat{\mathcal{P}}_{a}|x\rangle=|a-x\rangle$. Then,

$$
\begin{aligned}
\hat{\mathcal{P}}_{a}^{2}|x\rangle & =\hat{\mathcal{P}}_{a}|a-x\rangle \\
& =|a-(a-x)\rangle \\
& =|x\rangle
\end{aligned}
$$

This is valid for all $|x\rangle$, which form a basis of the Hilbert space. Hence we conclude that $\hat{\mathcal{P}}_{a}^{2}=1$, the identity on the Hilbert space.

We have

$$
\begin{aligned}
\hat{\mathcal{P}}_{a} \hat{x} \hat{\mathcal{P}}_{a}|x\rangle & =\hat{\mathcal{P}}_{a} \hat{x}|a-x\rangle \\
& =\hat{\mathcal{P}}_{a}(a-x)|a-x\rangle \\
& =(a-x) \hat{\mathcal{P}}_{a}|a-x\rangle \\
& =(a-x)|x\rangle \\
& =(a-\hat{x})|x\rangle
\end{aligned}
$$

Again, this is valid for all vectors $|x\rangle$, hence we find the operator equation

$$
\hat{\mathcal{P}}_{a} \hat{x} \hat{\mathcal{P}}_{a}=a-\hat{x}
$$

Here, the number a on the right-hand side just means the scalar a times the identity operator on the Hilbert space.

In order to evaluate $\hat{\mathcal{P}}_{a} f(\hat{x}) \hat{\mathcal{P}}_{a}$, let us take $f(\hat{x})=\hat{x}^{n}$ for some integrer power $n \geq 0$. We have

$$
\begin{aligned}
\hat{\mathcal{P}}_{a} \hat{x}^{n} \hat{\mathcal{P}}_{a} & =\hat{\mathcal{P}}_{a} \hat{x} \hat{\mathcal{P}} \hat{\mathcal{P}}_{a} \hat{x} \hat{\mathcal{P}}_{a} \cdots \hat{\mathcal{P}}_{a} \hat{x} \hat{\mathcal{P}}_{a}(n \text { times }) \\
& =\left(\hat{\mathcal{P}}_{a} \hat{x} \hat{\mathcal{P}}_{a}\right)^{n} \\
& =(a-\hat{x})^{n}
\end{aligned}
$$

where in the first line, we used $\hat{\mathcal{P}}_{a}^{2}=1$. Hence, for any function $f(x)$ that has a Taylor series expansion at $x=0$, we have

$$
\hat{\mathcal{P}}_{a} f(\hat{x}) \hat{\mathcal{P}}_{a}=f(a-\hat{x})
$$

This is then true for $f(x)=\left(x-x_{0}\right)^{n}$ for any number x_{0}. Hence we conclude that this stays true for any function that has a Taylor series expansion around some point x_{0} - any function which is analytic in some domain! More precisely, this will stay true when applied on any state which involves position eigenstates $|x\rangle$ for x points where $f(x)$ is analytic. For instance, this also holds if $f(x)$ is defined by part (i.e. it is some analytic function in some region, another analytic function in another region, etc., like the potential of Question 1).

Now consider

$$
\begin{aligned}
\hat{\mathcal{P}}_{a} \hat{p} \hat{\mathcal{P}}_{a}|x\rangle & =\hat{\mathcal{P}}_{a} \hat{p}|a-x\rangle \\
& =\hat{\mathcal{P}}_{a}\left(i \hbar \frac{d}{d x^{\prime}}\left|x^{\prime}\right\rangle\right)_{x^{\prime}=a-x} \\
& =-\hat{\mathcal{P}}_{a} i \hbar \frac{d}{d x}|a-x\rangle \\
& =-i \hbar \frac{d}{d x} \hat{\mathcal{P}}_{a}|a-x\rangle \\
& =-i \hbar \frac{d}{d x}|x\rangle \\
& =-\hat{p}|x\rangle
\end{aligned}
$$

so that, again for the same reasons, $\hat{\mathcal{P}}_{a} \hat{p} \hat{\mathcal{P}}_{a}=-\hat{p}$.
Finally,

$$
\hat{\mathcal{P}}_{a} \hat{p}^{2} \hat{\mathcal{P}}_{a}=\left(\hat{\mathcal{P}}_{a} \hat{p} \hat{\mathcal{P}}_{a}\right)^{2}=\hat{p}^{2}
$$

Then, with the hamiltonian being given by $\hat{H}=\hat{p}^{2} /(2 m)+V(\hat{x})$, we have

$$
\hat{\mathcal{P}}_{a} \hat{H} \hat{\mathcal{P}}_{a}=\hat{p}^{2} /(2 m)+V(a-\hat{x})
$$

The potential given in Question 1 is invariant under $x \rightarrow a-x$, so that $\hat{\mathcal{P}}_{a} \hat{H} \hat{\mathcal{P}}_{a}=\hat{H}$: the hamiltonian is invariant under this transformation. For the $n^{\text {th }}$ eigenstate, $\psi_{n}(x)=B \sin \left(k_{n} x\right)$.

The action of $\hat{\mathcal{P}}_{a}$ on a wave function is obtained through $\hat{\mathcal{P}}_{a} \psi(x)=\langle x| \hat{\mathcal{P}}_{a}|\psi\rangle$ if $\psi(x)=\langle x \mid \psi\rangle$. This give $\hat{\mathcal{P}}_{a} \psi(x)=\psi(a-x)$ (here we are using $\hat{\mathcal{P}}_{a}^{\dagger}=\hat{\mathcal{P}}_{a}$ - which is proved by $\langle x| \hat{\mathcal{P}}_{a}\left|x^{\prime}\right\rangle=$ $\delta\left(x+x^{\prime}-a\right)=\left\langle x^{\prime}\right| \hat{\mathcal{P}}_{a}|x\rangle^{*}=\langle x| \hat{\mathcal{P}}_{a}^{\dagger}\left|x^{\prime}\right\rangle$ - then we are using $\left.\langle x| \hat{\mathcal{P}}_{a}=\left(\hat{\mathcal{P}}_{a}|x\rangle\right)^{\dagger}=(|a-x\rangle)^{\dagger}=\langle a-x|\right)$. We then have

$$
\hat{\mathcal{P}}_{a} \psi_{n}(x)=\psi_{n}(a-x)=B \sin (n \pi(a-x) / a)=(-1)^{n+1} \psi_{n}(x)
$$

That is, the eigenvalue of $\hat{\mathcal{P}}_{a}$ on $\psi_{n}(x)$ is $(-1)^{n+1}$. Note that the ground state, with $n=1$, has eigenvalue 1 (that is, is invariant under the transformation).

