
Quantum Mechanics III Epiphany Term 2008
Lecturer: Dr. Benjamin Doyon

Homework 1 – due 1 February 2008

A quantum system has an observable Â that can take values 1, 2 and 3. The corresponding
orthonormal eigenstates are |1〉, |2〉 and |3〉. The system evolves in time with the hamiltonian
Ĥ whose action on these states is given by

Ĥ|1〉 = −|1〉+ 2i|2〉

Ĥ|2〉 = −2i|1〉+ 2i|3〉

Ĥ|3〉 = −2i|2〉+ |3〉

(a) Find the eigenvalues and eigenstates of the hamiltonian.

(b) Initially Â is measured and found to be 2. The system then evolves for a time t. At
that time, if a measure of Â is performed, what values may be obtained and with what
probabilities? What are the expectation value 〈Â〉 and standard deviation ∆Â of Â? If,
instead, a measure of the energy is performed at the time t, what values may be obtained
and with what probabilities?

Answer

(a) In matrix form:

|1〉 =

 1
0
0

 , |2〉 =

 0
1
0

 , |3〉 =

 0
0
1


the hamiltonian is

Ĥ =

 −1 −2i 0
2i 0 −2i

0 2i 1

 (1)

The characteristc polynomial equation that gives the eigenvalues E is

0 = det(H − E1) = E(1− E2) + 4(1 + E)− 4(1− E) = E(1− E2) + 8E

There is a factor E, so that E = 0 is one eigenvalue. If E 6= 0, then

0 = 1− E2 + 8 = 9− E2

so that E = ±3 are the two other eigenvalues. For the eigenstates, consider |v〉 = v1|1〉+
v2|2〉+ v3|3〉. The eigenvalue equation Ĥ|v〉 = E|v〉 gives:

−v1 − 2iv2 = Ev1

2iv1 − 2iv3 = Ev2

2iv2 + v3 = Ev3
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In the case E = 0, we have v1 = v3 from the second equation, and v1 = v3 = −2iv2

consistently from the first and the last equation. In the case E = 3, we have v2 = 2iv1

from the first equation, v3 = iv2 = −2v1 from the last equation, and this is consistent
with the second equation. Finally, in the case E = −3, we have v2 = 2iv3 from the last
equation, v1 = iv2 = −2v3 from the first equation, and this is consistent with the second
equation. Normalising to 〈v|v〉 = 1, we find:

E = 0 : |E = 0〉 =
1
3

(−2i|1〉+ |2〉 − 2i|3〉)

E = 3 : |E = 3〉 =
1
3

(|1〉+ 2i|2〉 − 2|3〉) (2)

E = −3 : |E = −3〉 =
1
3

(−2|1〉+ 2i|2〉+ |3〉)

(b) When a measurement is performed, the state of the system just after the measurement is
the state corresponding to the value observed. Hence, here we have |Ψ(0)〉 = |2〉. We have
to write this initial state in the basis of the hamiltonian eigenstates, in order to be able
to evolve it in time. With the decomposition of the identity operator in the energy basis,
1 = |E = 0〉〈E = 0|+ |E = 3〉〈E = 3|+ |E = −3〉〈E = −3|, we have

|2〉 = 〈E = 0|2〉 |E = 0〉+ 〈E = 3|2〉 |E = 3〉+ 〈E = −3|2〉 |E = −3〉

so that
|Ψ(0)〉 =

1
3

(|E = 0〉 − 2i|E = 3〉 − 2i|E = −3〉) (3)

Evolving this state for a time t, we just have to multiply by e−iĤt/~, giving

|Ψ(t)〉 =
1
3

(
|E = 0〉 − 2ie−3it/~|E = 3〉 − 2ie3it/~|E = −3〉

)
The values of Â that can be obtained are just those stated in the question: 1, 2 and 3. In
order to find their respective probabilities, we must re-write the evolved state in the basis
of the Â-eigenstates, |1〉, |2〉 and |3〉, using the explicit expressions we found for |E = 0〉,
|E = 3〉 and |E = −3〉. This gives:

|Ψ(t)〉 =
1
9

(
(−2i− 2ie−

3it
~ + 4ie

3it
~ )|1〉+ (1 + 4e−

3it
~ + 4e

3it
~ )|2〉+ (−2i + 4ie−

3it
~ − 2ie

3it
~ )|3〉

)
The probability for measuring a value n is just P (n) = |〈n|Ψ(t)〉|2, for n = 1, 2, 3. Hence,
the probabilities are as follows:

P (1) =
1
81

(
24− 4e−

3it
~ − 4e

3it
~ − 8e−

6it
~ − 8e

6it
~

)
=

1
81

(
24− 8 cos

3t

~
− 16 cos

6t

~

)
P (2) =

1
81

(
33 + 8e−

3it
~ + 8e

3it
~ + 16e−

6it
~ + 16e

6it
~

)
=

1
81

(
33 + 16 cos

3t

~
+ 32 cos

6t

~

)
P (3) = P (1) =

1
81

(
24− 8 cos

3t

~
− 16 cos

6t

~

)
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Note that they add up to 1 for any t, as it should. Also, at t = 0, we have P (1) = P (3) = 0
and P (2) = 1, as it should also, since the initial state was just after measuring the value
2. The expectation value of Â is just P (1) + 2P (2) + 3P (3), that is

〈Â〉 = 2

Interestingly, it is time-independent. This is not generic, it is particular to this system and
to the initial condition we chose. It is due to a very special transformation that keeps the
hamiltonian almost unchanged. Let us consider the hamiltonian in the basis |1〉, |2〉, |3〉,
as in (1). Then we see that if we do a complex conjugation of the matrix iHt/~, as well
as the change of basis |1〉 → |3〉, |3〉 → |1〉 and |2〉 → −|2〉, it stays exactly the same (in
other words, the hamiltonian H itself changes its sign under this transformation). This is
true for any power of the matrix iHt/~, because complex conjugation just applies to each
factor independently, and the rest is a change of basis. Hence it is also true for e−iHt/~.
Then we have that

(〈1|e−iHt/~|2〉)∗ = −〈3|e−iHt/~|2〉 , (〈3|e−iHt/~|2〉)∗ = −〈1|e−iHt/~|2〉

Since the probabilities are P (n) = |〈n|e−iHt/~|2〉|2, we find P (1) = P (3) for all times: the
probability is always distributed equally on the values 1 and 3 of the operator Â. Then,
P (1) + 2P (2) + 3P (3) = 4P (1) + 2P (2), and the condition 1 = P (1) + P (2) + P (3) =
2P (1) + P (2) implies 4P (1) = 2− 2P (2) so that the average is always 2.

There is a different transformation that is similar in spirit and more common: complex
conjugation in the basis of the hamiltonian eigenstates, which is called time-inversion sym-
metry. It keeps the hamiltonian invariant because in this basis, it is a diagonal matrix with
real elements, so it is a true symmetry. This also holds for any power of the hamiltonian.
But under this symmetry, the evolution operator e−iHt/~ transforms into eiHt/~: this is a
time inversion.

As for the variance, we have

∆Â = 〈Â2〉 − 〈Â〉2 = P (1) + 4P (2) + 9P (3)− 4 =
16
27

− 16
81

cos
3t

~
− 32

81
cos

6t

~

Finally, if we measure the energy instead, the values we can obtain are 0, 3 or −3, and the
probabilities are just given by the modulus squared of each the coefficients in the decom-
position (3) (time evolution doesn’t affect these probabilities, because Ĥ is a conserved
quantity):

P (E = 0) =
1
9

P (E = 3) =
4
9

P (E = −3) =
4
9

which add up to 1 as it should.
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