
Two-Dimensional Quantum Field Theory Epiphany Term 2009
Lecturer: Dr. Benjamin Doyon

Homework 2 – due 19 March 2009

A model of quantum field theory possesses one particle of mass M in its spectrum, without
any additional quantum number. Hence, a basis of states, for instance the in basis, can be taken
as |θ1, θ2, . . . , θn〉 for n = 0, 1, 2, 3, . . . (denoted |vac〉 in the case n = 0), where θ1 > θ2 > . . . > θn.
In terms of these, we have the decomposition of the identity:

1 =
∞∑

n=0

1
(2π)n

∫
θ1>...>θn

dθ1 · · · dθn|θ1, . . . , θn〉〈θ1, . . . , θn|. (1)

For a local field Ô(x, t), the matrix elements

F Ô(θ1, . . . , θn) = 〈vac|Ô(0, 0)|θ1, . . . , θn〉

are called form factors. In fact, they are defined here for ordered rapidities, but as functions of
the rapidities, we can analytically continue them to any order, and to complex rapidities. Form
factors are these analytically continued matrix elements. A straightforward property of form
factors is:

• Relativistic covariance:

F Ô(θ1 + β, . . . , θn + β) = es(Ô)βF Ô(θ1, . . . , θn)

where s(Ô) is the spin of Ô.

If the model under consideration is integrable, form factors have additional properties, which
are called, by a slight abuse of language, form-factor equations. They in fact constitute a
(generalisation of a) Riemann-Hilbert problem, and it is believed that the set of all solutions to
these properties, given a scattering matrix, is the set of all local fields of the model with that
scattering matrix. Given the two-particle scattering matrix S(θ1 − θ2) (which just depends on
the difference of rapidities by relativistic invariance), the form-factor equations are as follows:

• Meromorphicity: as functions of the variable θi− θj , for any i, j ∈ {1, . . . , n}, form factors
are analytic inside the strip 0 < Im(θi − θj) < 2π except for simple poles;

• Generalized Watson’s theorem:

F Ô(θ1, . . . , θj , θj+1, . . . , θn) = S(θj − θj+1)F Ô(θ1, . . . , θj+1, θj , . . . , θn)

• Semi-locality:

F Ô(θ1, . . . , θn−1, θn + 2πi) = (−1)fÔfΨ̂e2πiω(Ô,Ψ)F Ô(θn, θ1, . . . , θn−1)

where fÔ is 1 if Ô is fermionic, 0 if it is bosonic, Ψ̂ is the fundamental field associated to
the particle, and ω(Ô, Ψ̂) is the semi-locality index (or mutual locality index) of Ô with
respect to Ψ̂;
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• Kinematic pole: as a function of the variable θn, there are poles at θj+iπ for j ∈ {1, . . . , n−
1}. For j = n− 1, the residue is given by

−iF Ô(θ1, . . . , θn) ∼ F (θ1, . . . , θn−2)
θn − θn−1 − iπ

×(
1− (−1)fÔfΨ̂e2πiω(Ô,Ψ̂)S(θn−1 − θn−2)S(θn−1 − θn−3) · · ·S(θn−1 − θ1)

)
.

(In fact, there are other form factor equations, having to do with the possible presence of bound
states; also, the semi-locality equation can be modified to account for local fields with more
general semi-locality property with respect to the fundamental field Ψ̂.)

In our model, two Hermitian homoneous local fields, ε̂(x, t) and σ̂(x, t), have the following
form factors:

〈vac|ε̂(0, 0)|vac〉 = aM

〈vac|ε̂(0, 0)|θ1, θ2〉 = − iM
2π

sinh
(

θ1 − θ2

2

)
and

〈vac|σ̂(0, 0)|θ1, θ2, . . . , θ2l〉 = bM
1
8 il

∏
1≤j<k≤2l

tanh
(

θk − θj

2

)
(l = 0, 1, 2, . . .)

for some constants a and b, other form factors being exacly zero.

1. Using the decomposition of the identity, write down the two-point function 〈vac|ε̂(x, t)ε̂(0, 0)|vac〉
as a sum of convergent integrals involving the relativistic space-like distance s =

√
x2 − t2

(there is no need to evaluate the integrals). Do the same for 〈vac|σ̂(x, t)σ̂(0, 0)|vac〉, but
using the decomposition of the identity up to, and including, the two-particle sector only.

2. Deduce, from the form factors, the spins of ε̂ and of σ̂. Knowing that the model is
integrable, deduce the two-particle scattering matrix. Knowing further that both fields
have bosonic statistics, deduce the semi-locality index of the fields ε̂ and σ̂. Verify that
the form factors satisfy the correct remaining form-factor equations.

The model we are dealing with, characterised by the Hilbert space and the scattering matrix you
found, is the so-called free Majorana fermion model. It turns out that it is the scaling limit of
the two-dimensional lattice Ising model. The field σ̂ is the so-called spin field (the scaling limit
of the spin variable σj in the classical Ising model), and the field ε̂ is the energy field (the scaling
limit of the density

∑
j neighbour of i σiσj of energy of the classical Ising model). The name “spin

field” for σ̂ is not to be confused with its actual spin, a property it has as a quantum fields. The
field ε̂ is not to be confused with the Hamiltonian density ĥ of the quantum field theory model,
which has different form factors.
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Answers.
1.
In general, for Ô(x) a homogeneous local fields (Ô(x) = e−iP̂ xÔ(0)eiP̂ x) that is Hermitian

(Ô(x)† = Ô(x)), we have

〈vac|Ô(x, t)Ô(0, 0)|vac〉 =
∞∑

n=0

1
(2π)n

∫
θ1>...>θn

dθ1 · · · dθn〈vac|Ô(x, t)|θ1, . . . , θn〉〈θ1, . . . , θn|Ô(0, 0)|vac〉

=
∞∑

n=0

1
(2π)n

∫
θ1>...>θn

dθ1 · · · dθn

〈vac|eiĤt−iP̂ xÔ(0, 0)e−iĤt+iP̂ x|θ1, . . . , θn〉〈θ1, . . . , θn|Ô(0, 0)|vac〉

=
∞∑

n=0

1
(2π)n

∫
θ1>...>θn

dθ1 · · · dθn

e
−it

Pn
j=1 Eθj

+ix
Pn

j=1 pθj 〈vac|Ô(0, 0)|θ1, . . . , θn〉〈θ1, . . . , θn|Ô(0, 0)|vac〉

=
∞∑

n=0

1
(2π)n

∫
θ1>...>θn

dθ1 · · · dθn

e
−it

Pn
j=1 Eθj

+ix
Pn

j=1 pθj

∣∣∣〈vac|Ô(0, 0)|θ1, . . . , θn〉
∣∣∣2 .

In the case of the field ε̂, the only non-zero form factors are those with zero particle (the vacuum
expectation value) and those with two particles. So, the full series simplifies to

〈vac|ε̂(x, t)ε̂(0, 0)|vac〉 = |〈vac|ε̂(0, 0)|vac〉|2 +
1

(2π)2

∫
θ1>θ2

dθ1dθ2

e−it(Eθ1
+Eθ2

)+ix(pθ1
+pθ2

) |〈vac|ε̂(0, 0)|θ1, θ2〉|2

= |a|2M2 +
M2

(2π)4

∫
θ1>θ2

dθ1dθ2 e−it(Eθ1
+Eθ2

)+ix(pθ1
+pθ2

) sinh2

(
θ1 − θ2

2

)
.

In order to get an expression that involves convergent integrals, expressed solely in terms of
s =

√
x2 − t2, we need to shift the θ1 and θ2 variables using relativistic invariance: the fact that

the form factors only depend on the difference of the rapidities (which has to do with the fact
that ε̂ is spinless). Note that it is possible to shift θ in xpθ− tEθ in order to have only a pθ part:

xpθ+β − tEθ+β = (x coshβ − t sinhβ)pθ − (t coshβ − x sinhβ)Eθ

so we only need to choose β such that
t

x
= tanhβ.

Clearly, then, sinhβ = At and coshβ = Ax for some A, which can easily be evaluated through
coshβ2 − sinhβ2 = 1 ⇒ A = 1/

√
x2 − t2. Hence, we have

xpθ+β − tEθ+β =
√

x2 − t2pθ.

Doing this shift for both θ1 and θ2, we find

〈vac|ε̂(x, t)ε̂(0, 0)|vac〉 = |a|2M2 +
M2

(2π)4

∫
θ1>θ2

dθ1dθ2 eis(pθ1
+pθ2

) sinh2

(
θ1 − θ2

2

)
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where s =
√

x2 − t2. In other words, a shift of θ is just a relativistic boost, which preserves the
relativistic (space-like) distance

√
x2 − t2. Hence, by invariance under shift of rapidities, we can

just replace the space-time point (x, t) by any other space-time point at the same relativistic
distance from (0, 0) (and in the same region, here space-like), for instance the point (

√
x2 − t2, 0).

Finally, in order to have a convergent integral, we shift the integration contour itself, θ 7→ θ+iπ/2,
using pθ+iπ/2 = iEθ, which gives

〈vac|ε̂(x, t)ε̂(0, 0)|vac〉 = |a|2M2 +
M2

(2π)4

∫
θ1>θ2

dθ1dθ2 e−s(Eθ1
+Eθ2

) sinh2

(
θ1 − θ2

2

)
.

This is nicely convergent, and can be evaluted in terms of modified Bessel functions.
For the field σ̂, the same principle holds, but the form-factor series expansion is an infinite

series. If we truncate it to the two-particle sector, we get something very similar to what we got
for the ε̂ field:

〈vac|σ̂(x, t)σ̂(0, 0)|vac〉 = |b|2M
1
4 +

|b|2M
1
4

(2π)2

∫
θ1>θ2

dθ1dθ2 e−s(Eθ1
+Eθ2

) tanh2

(
θ2 − θ1

2

)
.

2.
The relativistic covariance equation tells us that under shift of θ’s in the form factors, we

get an overall factor that defines the spin. In both cases ε̂ and σ̂, the form factors only depend
on the difference of rapidities, hence are invariant under shift of all rapidities by a common
constant, so both have zero spin.

If the model is integrable, then an exchange of two neighbouring rapidities gives a factor that
is the scattering matrix (generalised Watson’s theorem). For the two-particle form factor of ε̂,
we see that exchanging θ1 and θ2 gives a minus sign, so we could say that the scattering matrix
is S(θ) = −1 (it is a constant, independent of θ). For the form factors of the σ̂ field, observe
that the product involves all rapidity differences θk − θj with k > j, each of them appearing in
exactly one factor. We could think of that as a product over all pairings of rapidities. Exchanging
two rapidities will still give a product with all rapidity differences appearing exactly once, but
some rapidity differences may be in a different order. Hence, all factors will be the same up
to, possibly, a sign. A sign, in a given factor or pairing, occurs if and only if the order of the
two rapidities in the resulting rapidity difference is θj − θk for j < k – the “wrong” order. But
if we exchange only two neighbouring rapidities, all pairings will have the same correct order,
except for the pairing that involves these two rapidities: only one factor acquires a minus sign,
so there is an overall minus sign under exchange of rapidities. Hence, this is in agreement with
S(θ) = −1.

From the semi-locality form factor equation, if a field has bosonic statistics fÔ = 0, then
a shift by 2πi of the last rapidity gives a form factor where this last rapidity is placed at the
beginning, times a phase that directly defines the semi-locality index. For the ε̂ field, a shift by
2πi of the two-particle form factor gives a minus sign times the same function, so that we have

〈vac|ε̂(0, 0)|θ1, θ2 + 2πi〉 = −〈vac|ε̂(0, 0)|θ1, θ2〉 = 〈vac|ε̂(0, 0)|θ2, θ1〉

4



hence we find that ω(ε̂, Ψ̂) = 0 (or any integer). For the field σ̂, we note that each factor
containing θ2l in the 2l-particle form factor is invariant under a shift by 2πi:

〈vac|σ̂(0, 0)|θ1, θ2, . . . , θ2l + 2πi〉 = 〈vac|σ̂(0, 0)|θ1, θ2, . . . , θ2l〉.

On the other hand, bringing the rapidity θ2l back to the front involves 2l − 1 exchanges of
neighbouring rapidities, and each exchange gives a factor −1. Since 2l − 1 is odd, we find an
overall minus sign:

〈vac|σ̂(0, 0)|θ1, θ2, . . . , θ2l + 2πi〉 = −〈vac|σ̂(0, 0)|θ2l, θ1, θ2, . . . , θ2l−1〉.

Hence, ω(σ̂, Ψ̂) = 1/2.
The remaining form factor equations are meromorphicity and the kinematic pole. Meromor-

phicity is clear for both fields. The two-particle form factor of the ε̂ field does not have any pole.
But from the two-particle kinematic pole equation, the residue is proportional to

1− (−1)fÔfΨ̂e2πiω(
ˆ̂O,Ψ̂).

This is exactly 0 for the field ε̂ (since it is bosonic and has semi-locality index 0). Hence this
is fine. The four-particle form factor is zero, so its pole is also zero. But the two-particle form
factor is non-zero, so we need to check that the kinematic pole equation also gives zero there.
We get, for the residue in the case of n = 4 particles, the factor (using that ε̂ is bosonic and has
semi-locality index 0)

1− S(θ3 − θ2)S(θ3 − θ1).

This is indeed zero because the scattering matrix is just −1. For the field σ̂, in any non-zero
form factor, there is one factor (or pairing) that has a pole:

tanh
(

θ2l − θ2l−1

2

)
∼ 2

θ2l − θ2l−1 − iπ
.

The residue of that pole is evaluated by taking θ2l = θ2l−1 +iπ in all other factors – the pairings
between θ2l and θ1, θ2, . . . , θ2l−2. These +iπ shifts transform the tanh factors into coth factors,
for all these pairings. But also, there are tanh factors corresponding to the pairings between
θ2l−1 and θ1, θ2, . . . , θ2l−2. Hence, for each coth factor, there is a corresponding tanh factor, so
all these cancel out. This cancels all pairings involving either θ2l or θ2l−1. Hence, we find the
pole

2
θ2l − θ2l−1 − iπ

bM
1
8 il

∏
1≤j<k≤2l−2

tanh
(

θk − θj

2

)
which is just

2i
θ2l − θ2l−1 − iπ

〈vac|σ̂(0, 0)|θ1, θ2, . . . , θ2l−2〉.

From the kinematic pole equation, 2i
θ2l−θ2l−1−iπ should be i

θ2l−θ2l−1−iπ times the factor

1 + S(θ2l−1 − θ2l−2)S(θ2l−1 − θ2l−3) · · ·S(θ2l−1 − θ1)

where we used the fact that σ̂ is bosonic and has semi-locality index 1/2. In the second term,
there are exactly 2l− 2 scattering matrix factors; this is even and each scattering matrix is just
−1, so this gives an overall 1 + 1 = 2. Hence this is in agreement with our previous result.
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