
Two-Dimensional Quantum Field Theory Epiphany Term 2009
Lecturer: Dr. Benjamin Doyon

Homework 1 – due 12 March 2009

A way of defining the free, real bosonic QFT model is by providing the various objects of
the general QFT axioms. We start with the canonical algebra of the modes:

[Â(θ), Â†(θ′)] = 4πδ(θ − θ′), [Â(θ), Â(θ′)] = [Â†(θ), Â†(θ′)] = 0 (1)

where θ, θ′ ∈ R. Then:

• Hilbert space. We construct H, the Hilbert space, as the Fock space over the algebra
(1), with the Hermitian structure obtained by saying that † gives the Hermitian conjugate.
That is, there is a vacuum state |vac〉 with

Â(θ)|vac〉 = 0 ∀θ

and a basis of H is obtained by

|θ1, . . . , θn〉 = Â†(θ1) · · · Â†(θn)|vac〉, θ1 ≥ . . . ≥ θn.

• Hamiltonian. We construct the Hamiltonian operator as:

Ĥ =
1
4π

∫
dθ m cosh(θ)Â†(θ)Â(θ) (2)

(integration symbols without limits are over R). It is Hermitian and has the property that
Ĥ|vac〉 = 0, and that the energies of all other staes are positive, as it should.

• Relativistic invariance. We construct the momentum operator and the generator of
boosts as

P̂ =
1
4π

∫
dθ m sinh(θ)Â†(θ)Â(θ), B̂ =

1
4π

∫
dθ

(
−i

d

dθ
Â†(θ)

)
Â(θ). (3)

They are Hermitian and have the properties that P̂ |vac〉 = B̂|vac〉 = 0 as they should
again. The boost generator is slightly formal because of the derivative of the mode operator
involved, but it can more precisely be defined through the corresponding group action on
any state:

eiαB̂|θ1, . . . , θn〉 = |θ1 + α, . . . , θn + α〉. (4)

We check that they satisfy the correct Poincaré-algebra commutation relations:

[Ĥ, P̂ ] = 0, [B̂, P̂ ] = iĤ, [B̂, Ĥ] = iP̂ . (5)
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• Locality. We write all these operators as integration of local Hermitian densities:

Ĥ =
∫

dx ĥ(x), P̂ =
∫

dx p̂(x), B̂ =
∫

dx xĥ(x) (6)

where

ĥ(x) =
∫

dθdθ′

(4π)2

[(
−EθEθ′ − pθpθ′ + m2

2

)(
ei(pθ+pθ′ )xA(θ′)A(θ) + h.c.

)
+
(
EθEθ′ + pθpθ′ + m2

)
ei(pθ−pθ′ )xA†(θ′)A(θ)

]
(7)

p̂(x) =
∫

dθdθ′

(4π)2

[(
Eθpθ′ + Eθ′pθ

2

)(
ei(pθ+pθ′ )xA(θ′)A(θ) + h.c.

)
+(Eθpθ′ + Eθ′pθ) ei(pθ−pθ′ )xA†(θ′)A(θ)

]
. (8)

We check that they satisfy the locality relations:

[ĥ(x), ĥ(x′)] = [p̂(x), p̂(x′)] = [ĥ(x), p̂(x′)] = 0 for x 6= x′ (9)

and the homogeneous density relations

[P̂ , ĥ(x)] = i
d

dx
ĥ(x), [P̂ , p̂(x)] = i

d

dx
p̂(x). (10)

——— QUESTION 1
Show explicitly that indeed, from the densities (7) and (8), we find the three equations of (6),
that the relations (10) hold, and that we have

〈vac|[ĥ(x), p̂(x′)]|vac〉 = 0 for x 6= x′.

Answer. First, we use∫
dx ei(pθ−pθ′ )x = 2πδ(pθ−pθ′) =

2π

Eθ
δ(θ−θ′),

∫
dx ixei(pθ−pθ′ )x = 2πδ′(pθ−pθ′) =

2π

Eθ

d

dθ

(
δ(θ − θ′)

Eθ

)
,
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so that we get∫
dx ĥ(x) =

∫
dθ

8πEθ

[(
−E2

θ + p2
θ + m2

2

)(
A(θ)2 + h.c.

)
+
(
E2

θ + p2
θ + m2

)
A†(θ)A(θ)

]

=
∫

dθ

4π
EθA

†(θ)A(θ),∫
dx p̂(x) =

∫
dθ

8πEθ

[(
−Eθpθ + Eθpθ

2

)(
A(θ)2 + h.c.

)
+ 2EθpθA

†(θ)A(θ)

]

=
∫

dθ

4π
pθA

†(θ)A(θ),∫
dx xĥ(x) = −i

∫
dθ

16π

[
−A(θ)

d

dθ
A(θ) +

pθA(θ)
Eθ

d

dθ

pθA(θ)
Eθ

+ m2 A(θ)
Eθ

d

dθ

A(θ)
Eθ

+ h.c.

+2
(

d

dθ
A†(θ)

)
A(θ) + 2

(
d

dθ

pθA
†(θ)

Eθ

)
pθA(θ)

Eθ
+ 2m2

(
d

dθ

A†(θ)
Eθ

)
A(θ)
Eθ

]

= −i

∫
dθ

16π

[
1
2

d

dθ

((
−1 +

p2
θ

E2
θ

+
m2

E2
θ

)
A(θ)2

)
+ h.c.

+2
(

1 +
p2

θ

E2
θ

+
m2

E2
θ

)(
d

dθ
A†(θ)

)
A(θ) +

d

dθ

(
p2

θ

E2
θ

+
m2

E2
θ

)
A†(θ)A(θ)

]

=
1
4π

∫
dθ

(
−i

d

dθ
Â†(θ)

)
Â(θ).

As for the relations (10), we must use

[P̂ , A(θ)] = −pθA(θ), [P̂ , A†(θ)] = pθA
†(θ)

which immediately gives

[P̂ , ei(pθ−pθ′ )xA†(θ′)A(θ)] = i
d

dx

(
ei(pθ−pθ′ )xA†(θ′)A(θ)

)
,

[P̂ , ei(pθ+pθ′ )xA(θ′)A(θ)] = i
d

dx

(
ei(pθ+pθ′ )xA(θ′)A(θ)

)
.

Finally, for evaluating the commutator 〈vac|[ĥ(x), p̂(x′)]|vac〉, we start by looking at 〈vac|ĥ(x)p̂(x′)|vac〉.
Only the terms in A†A† stay for the factor p̂(x′), and only the terms in AA stay for the factor
ĥ(x). Hence, we have

〈vac|ĥ(x)p̂(x′)|vac〉 = 〈vac|
∫

dθdθ′

(4π)2

(
−EθEθ′ − pθpθ′ + m2

2

)
ei(pθ+pθ′ )xA(θ′)A(θ)×

×
∫

dβdβ′

(4π)2

(
Eβpβ′ + Eβ′pβ

2

)
e−i(pβ+pβ′ )x′

A†(β′)A†(β)|vac〉

There are two Wick contractions, but thanks to the symmetry of the factors in β, β′, they lead
to the same thing. Hence, we are left with

〈vac|ĥ(x)p̂(x′)|vac〉 =
∫

dθdθ′

2(4π)2
(
−EθEθ′ − pθpθ′ + m2

)
(Eθpθ′ + Eθ′pθ) ei(pθ+pθ′ )(x−x′)
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On the other hand, the term 〈vac|p̂(x′)ĥ(x)|vac〉 gives exactly the same answer, up to the change
of sign θ 7→ −θ, θ′ 7→ −θ′, which just changes the sign of the whole integral. Substracting, we
get twice the same answer, and using the symmetry under θ ↔ θ′, we find

〈vac|[ĥ(x), p̂(x′)]|vac〉 = 2
∫

dθdθ′

(4π)2
(
−EθEθ′ − pθpθ′ + m2

)
Eθpθ′ei(pθ+pθ′ )(x−x′)

In order to recognise that this is zero for x 6= x′, let us evaluate∫
dθ Eθe

ipθ(x−x′) = ±i

∫
dθ pθe

−Eθ|x−x′| = 0

where we shifted the contour by ±iπ/2 for x− x′ > 0 or x− x′ < 0. The last equation follows
by anti-symmetry of pθ. Note that the first integral is in fact not convergent, but conditionally
convergent; it was transformed into a convergent integral by contour shift, made possible by
x 6= x′. Similarly, we find∫

dθ Eθpθe
ipθ(x−x′) = −

∫
dθ pθEθe

−Eθ|x−x′| = 0.

Now, if we look at all the terms we got for 〈vac|[ĥ(x), p̂(x′)]|vac〉 above, each of them factorises
into an integal over θ and an integral over θ′, and for each of the terms, there is always one of
these two factors that is an integal of one of the types above, so that is zero (the other factor
is not of the type above, so is non-zero and can be evaluated by similar methods). One could
expect that for x − x′ general, what we have is in fact delta-functions, as suggested by the
equations: ∫

dθ Eθe
ipθ(x−x′) =

∫
dp eip(x−x′) = 2πδ(x− x′)

and ∫
dθ Eθpθe

ipθ(x−x′) =
∫

dp peip(x−x′) = −2πiδ′(x− x′).

However, this does not fully decipher the form of 〈vac|[ĥ(x), p̂(x′)]|vac〉, because the delta-
functions are multiplied by functions that are divergent at x = x′. In order to know what is
happening, we need a more precise way of obtaining finite integrals over θ. A way of doing
this, when evaluating the product of two local fields like ĥ(x)p̂(x′) for instance, is to put these
fields at different “imaginary time”, t = −iτ . So, in this example we should calculate instead
ĥ(x, τ)p̂(x′, 0) with τ > 0. Then, all integrals are convergent, as the parameter τ implements
a cut-off on each individual θ variables. This justifies the contour change on individual θ vari-
ables for evaluating the conditionally convergent intergals. For the commutator, one must then
evaluate the limit τ → 0 of ĥ(x, τ), p̂(x′, 0)− p̂(x′, τ)ĥ(x, 0), which is a generalised function of x.
Our calculation essentially showed that this limit, in the vacuum, is zero for any fixed x 6= x′.
A complete analysis of what happens “at x = x′”, or under integration over x, is beyond the
scope of the present homework...
———

4



A local field is an operator Ô(x) with two properties:

[P̂ , Ô(x)] = i
d

dx
Ô(x), [ĥ(x), Ô(x′)] = 0 for x 6= x′. (11)

We can make more precise the second property. The commutator can be written

[ĥ(x), Ô(x′)] =
∞∑

n=0

δ(n)(x− x′)Ôn(x′) (12)

for some operators Ôn(x′), and where δ(n)(x− x′) is the nth derivative of δ(x− x′). In general,
this series in fact terminates, and we certainly have Ô0(x) = [Ĥ, Ô(x)] = −idÔ(x)/dt.
——— QUESTION 2
By considering

Q̂ =
∫ x′+ε

x′−ε
dx (x− x′)n[ĥ(x), Ô(x′)],

show that the operators Ôn(x′) in (12) are also local fields. In particular, deduce that [Ĥ, Ô(x)]
is a local field.
Answer. First, let us verify the commutation relations with P̂ . We have

[P̂ , Q̂] =
∫ x′+ε

x′−ε
dx (x− x′)n([[P̂ , ĥ(x)], Ô(x′)] + [ĥ(x), [P̂ , Ô(x′)]])

=
∫ x′+ε

x′−ε
dx (x− x′)ni

(
d

dx
+

d

dx′

)
[ĥ(x), Ô(x′)]

=
∫ x′+ε

x′−ε
dx i

d

dx′

(
(x− x′)n[ĥ(x), Ô(x′)]

)
+ iεn[ĥ(ε), Ô(x′)]− i(−ε)n[ĥ(−ε), Ô(x′)]

= i
d

dx′

(∫ x′+ε

x′−ε
dx (x− x′)n[ĥ(x), Ô(x′)]

)

where we did not need to use the fact that Ô(x) is local, just its homogeneity property. Hence,
Q̂ is homogeneous as a function of x′. Now, for the locality we have that obviously [ĥ(x′′), Q̂] = 0
for any x′′ with |x′′ − x′| > ε. But, using (12) we have

Q̂ = n!Ôn(x′)

for any ε > 0. Hence, we may take ε > 0 as small as we wish, without changing Q̂, so that we
deduce that [ĥ(x′′), Ôn(x′)] = 0 for any x′′ 6= x′. With n = 0, this implies that [Ĥ, Ô(x)] is a
local field.
———

We showed in class that if
∫

dx û(x) = 0 where û(x) is a local field, then it must be that
û(x) = idv̂(x)/dx for v̂(x) another local field. This, in particular, implies that if we have
a conserved charge Q̂ =

∫
dx q̂(x) (that is, with [Ĥ, Q̂] = 0) where q̂(x) is a local field, then

û(x) = [Ĥ, q̂(x)] is a local field (by the theorem of question 2) with
∫

dx û(x) = 0 (by conservation
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of Q̂), so that û(x) = idv̂(x)/dx for v̂(x) another local field. This implies that there is a Noether
current:

d

dt
q̂(x) +

d

dx
v̂(x) = 0

The Hamiltonian Ĥ and momentum P̂ operators naturally have dimension 1, hence their
densities have dimension 2. The generator of boosts B̂, then, has dimension 0. Looking at all
possible commutators between the densities ĥ(x) and p̂(x), we can easily evaluate the dimension
of the generated local fields (the Ôn(x) in the series (12)). There is a general statement that we
can never generate local fields of dimension 1 from densities associated to space-
time symmetries. Local fields of dimension 1 only occur as densities associated to internal
symmetries.
——— QUESTION 3
By considering [B̂, Ĥ] = iP̂ and using the concepts of the discussion above, show that

∂

∂t
ĥ(x) +

∂

∂x
p̂(x) = 0.

Answer. First, from the fact that ĥ(x) is the density of a local conserved charge and from the
discussion above, it must be that

[Ĥ, ĥ(x)] = i
d

dx
v̂(x)

for some local field v̂(x). Then,

0 = [B̂, Ĥ]− iP̂ =
∫

dx
(
x[ĥ(x), Ĥ]− ip̂(x)

)
=

∫
dx

(
−ix

d

dx
v̂(x)− ip̂(x)

)
=

∫
dx (iv̂(x)− ip̂(x)) .

Since the integrand is a local field, and since it integrates to zero, it must be a derivative of
another local field:

iv̂(x)− ip̂(x) = i
d

dx
ŵ(x).

But by dimensional analysis, ŵ(x) has dimension 1, and since there are no such fields in the field
algebra associated to space-time symmetries, we must have ŵ(x) = 0. Another way of saying
this is that we may well re-define p̂(x) by absorbing dŵ(x)/dx without changing P̂ . This shows
that v̂(x) = p̂(x), which indeed implies what we had to prove.
———
——— QUESTION 4
Using the result of question 3, show that if Ô(x) is a local field, then we have

[p̂(x), Ô(x′)] = 0 for x 6= x′.

Answer. We first evaluate, for x 6= x′,

[[Ĥ, ĥ(x)], Ô(x′)] = [Ĥ, [ĥ(x), Ô(x′)]]− [ĥ(x), [Ĥ, Ô(x′)]] = 0
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where the last equality follows from the fact that Ô(x′) is a local field, and that [Ĥ, Ô(x′)] also
is a local field. Hence, from the result of question 3, we have that, still for x 6= x′,

0 = [
d

dx
p̂(x), Ô(x′)] =

d

dx
[p̂(x), Ô(x′)].

Applying
∫∞
x′′ dx for x′′ > x′, we obtain [p̂(x′′), Ô(x′)] = 0 for x′′ > x′. Likewise, applying

∫ x′′

−∞ dx

for x′′ < x′, we obtain [p̂(x′′), Ô(x′)] = 0 for x′′ < x′.
———
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