1. Simplicial Galois Representations

1.1. Motivation. First we need to discuss how to define a derived version of a deformation of a Galois representation. Since the coefficients are now allowed to be simplicial Artin rings, we need a new definition.

So what do we mean by \(G_{K,S} \rightarrow G(A) \)?

Here \(G_{K,S} \) is the Galois group of the maximal algebraic extension of \(K \) unramified outside a finite set of places \(S \), \(G \) is a reductive group (later we may take \(G \) to be adjoint), and \(A \in \text{sArt}_k \) (the category of simplicial local Artin rings, as defined in Raffael’s talk).

The naive idea (which doesn’t work) is to define \(G(A) \) directly.

1. Let \(A \in \text{sArt}_k \). We could just say \(p \mapsto G(A_p) \), which will define a simplicial group. Unfortunately, this is not homotopy invariant: to see this note that

\[
G(A_p) = \text{Hom}_{\text{CR}}(\mathcal{O}_G, A_p) = \text{Hom}_{\text{sCR}}(\mathcal{O}_G, A^\Delta) = \text{Hom}_{\text{sCR}}(\mathcal{O}_G, A),
\]

where we view \(\mathcal{O}_G \) as a constant simplicial ring in the third and fourth term and the underline denotes simplicial enrichment. Therefore, our attempt is just

\[
A \mapsto \text{Hom}_{\text{sCR}}(\mathcal{O}_G, A).
\]

But \(\mathcal{O}_G \) (viewed as a discrete simplicial ring) will almost never be cofibrant, so there’s no reason to expect that we should get something homotopy invariant.

2. So instead we could define \(G(A) := \text{Hom}_{\text{sCR}}(c(\mathcal{O}_G), A) \). This is now homotopy invariant, but unfortunately it’s not a simplicial group, because cofibrant replacement won’t respect the Hopf algebra structure of \(\mathcal{O}_G \), so this isn’t quite what we want.

3. (Comment/speculation from the audience) maybe we could put a model structure on the category of simplicial Hopf algebras and then try to cofibrantly replace \(\mathcal{O}_G \), now viewed as a constant simplicial Hopf algebra? Unclear.

So instead of trying to define \(G(A) \) directly, we make the observation that actually \(G_{K,S} = \pi_1^{\text{et}}(\mathbb{Z}[[\frac{1}{S}]], \ast) \). But this profinite group can be viewed as the fundamental group of a pro-(pointed simplicial set) \(X \) (in fact there are two ways of doing this, which we will describe in a moment). Then we make the observation that in the discrete case, i.e when \(A \) is an ordinary ring,

\[
\{ \rho : G_{K,S} \rightarrow G(A) \} = \{ (G(A))\text{-torsors over } |X| \} = \text{Hom}_{\text{top}}(|X|, BG(A))/\sim
\]

where \(|X| \) denotes the geometric realization of the pro-(simplicial set) \(X \), \(BG(A) \) is the classifying space of the group \(G(A) \), and \(\sim \) means that we’re taking homotopy classes of morphisms.

So what are these spaces \(X \)? One candidate is the étale topological type defined in [?] following [?]. This is a pro-(simplicial set) \((X_i)_i \) indexed by étale hypercoverings of the scheme \(\text{Spec} \mathbb{Z}[[\frac{1}{S}]] \), whose \(\pi_1(X_i, \ast) := \)

\[\text{Date: March 6, 2019.}\]
lim_\alpha \pi_1(X_\alpha, \ast) recovers the étale fundamental group of Spec \mathbb{Z}[1/\mathfrak{p}]$. For our purposes we can do something simpler, which is to note that $G_{K,S} = \lim_\alpha G_\alpha$ is a profinite group, and then we can take X to be the pro-system $(X_\alpha)_\alpha = (N(G_\alpha))_\alpha$, where N denotes the nerve of a group, viewed as a one-object groupoid.

1.2. Defining BG. So we now need to define some notion of $BG(A)$ for $A \in \text{sArt}_k$. For ordinary commutative rings A, note $BG(A)$ is the geometric realization of the nerve of $G(A)$: i.e. if $N_p(G(A))$ denotes the p-simplices of the nerve, then the functor of points

$$A \mapsto N_p(G(A))$$

is represented by $G \times^p$. Why is this true? To construct BG for a discrete group, we construct EG a contractible space and has a free action of G, and then we take $BG = EG/G$.

To do this, let C be the category whose objects are indexed by elements of G, and whose morphisms are $g \to gh$. Let D have one object, with morphisms labelled by G and composition is multiplication. Then there’s a map $C \to D$.

In general, if C is a small category, then NC is a simplicial set where the 0-simplices are objects of C, and for $k > 0$, the k-simplices are k-tuples of composable morphisms.

So essentially, the nerve of C (above) is contractible, and if we quotient by G, then we get the nerve of D.

With this in mind, we can now define BG for a simplicial ring.

Definition 1.1. Consider the bisimplicial set $[p] \mapsto \text{Hom}_{\text{sCR}}(c(\mathcal{G}N,G),A)$. Then $BG(A)$ is Ex^∞ (fibrant replacement) of the geometric realization of $\text{Hom}_{\text{sCR}}(c(\mathcal{G}N,G),A)$: note the geometric realization can be computed either by taking the ”total simplicial set” of the bisimplicial set, or by taking the diagonal: in fact these are homotopy equivalent (this is not easy: see [?]).

Concretely, if A is discrete, then $BG(A)$ is weakly equivalent to $NG(\pi_0(A))$. In the definition, we need the cofibrant replacements and the Ex^∞ fibrant replacement in order for this thing to behave well, at least homotopy theoretically.

1.3. Galois Deformations. Now we can talk about Galois deformations. So let $(X_\alpha)_\alpha$ be either the étale topological type for Spec $\mathbb{Z}[1/\mathfrak{p}]$, or the pro-simplicial set NG_α where α varies over the finite Galois groups.

Definition 1.2. Now fix a map $\vec{p} : X \to BG(k)$ in pro sSet. Then define the **unframed deformation functor**

$$F_{\mathbb{Z}[1/\mathfrak{p}],\vec{p}} = \text{Hom}_{\text{pro} - \text{sSet}}(X, BG(A)) \times^h_{\text{Hom}_{\text{pro} - \text{sSet}}(X, BG(k))} \vec{p}$$

where $\text{Hom}_{\text{pro} - \text{sSet}}(X, BG(A)) = \colim_\alpha \text{Hom}_{\text{sSet}}(X_\alpha, BG(A))$ and \vec{p} is really Δ^0 with the map to $\text{Hom}_{\text{pro} - \text{sSet}}(X, BG(k))$ given by \vec{p}. There is also a framed version, where one replaces pro sSet with pro sSet_*, the pro-category of pointed simplicial sets (and choosing basepoints for X and BG). Keeping track of this basepoint can be roughly thought of as keeping track of a basis, which explains why this is the framed thing.

2. Pro-Representability

Recall the derived Schlessinger criterion from last week. This says that if $F : \text{sArt}_k \to \text{sSet}$ is formally cohesive, then it is pro-representable if and only if $\pi_i(tF) = 0$ for $i > 0$, where tF is the tangent complex of F as defined by Dougal last week.

But in our situation, $BG(k)$ will not be contractible, so BG won’t be formally cohesive. So instead of having a tangent complex, we get a local system tBG on $BG(k)$, i.e. a functor $L : \text{Simp}(BG(k)) \to \text{Ch}(k)$ sending all morphisms to quasi-isomorphisms (this was defined by Dougal last week). Recall the following result:
Proposition 2.1. If $F : \mathsf{Art}_k \to \mathsf{sSet}$ is now any homotopy invariant functor which preserves pullbacks (in the sense of Dougal’s talk), and given $\rho : X \to \mathcal{F}(k)$, consider the new functor

$$\text{F}_X,\rho(A) := \text{hofib}(\text{Hom}_{\mathsf{sSet}}(X, F(A)) \to \text{Hom}_{\mathsf{sSet}}(X, F(k))).$$

This is formally cohesive, and the tangent complex is

$$\text{tF}_X,\rho \cong C^*(X, \rho^*tF)$$

where C^* is the cochains construction introduced last week.

So all we need to know is that BG is homotopy invariant and preserves homotopy pullbacks, and then we can hope to apply the Derived Schlessinger Criterion by computing the homotopy groups of tF_X,ρ.

Note BG is homotopy invariant because of the fibrant replacement we took in the definition. There’s a criterion to check that BG preserves homotopy pullbacks.

Proposition 2.2. If $F : \mathsf{Art}_k \to \mathsf{sSet}$ is homotopy invariant, $F(A)$ is path-connected for all A, $A \to \Omega F(A)$ (loop space) preserves homotopy pullbacks, and $\pi_0\Omega F(A) \to \pi_0\Omega F(B)$ is surjective whenever $\pi_0 A \to \pi_0 B$ is surjective, then F preserves homotopy pullbacks.

To apply this, we use that $G(A) := \text{Hom}_{s\mathsf{CR}}(\mathcal{C}(\mathcal{G}), A) \to \Omega BG(A)$ is a weak equivalence, which should heuristically be true by looking at the homotopy groups.

Lemma 2.3. The tangent complex of $A \to BG(A)$ is a local system on $BG(k)$ whose homology is \mathfrak{g}, the Lie algebra of $G(k)$, concentrated in degree 1 with a $G(k)$-action (via the adjoint action, conjugation) at a basepoint.

Note the $G(k)$-action arises because for any Z a simplicial set and $L : \text{Simp}(Z) \to \text{Ch}(k)$ a local system, one can check directly that $\pi_1(Z, z)$ naturally acts on $H_*(L_z)$, where $z : \Delta^0 \to Z$ is some basepoint.

Proposition 2.4. The tangent complex $\text{tF}_{Z[1/\mathfrak{s}]},\rho$ is quasi-isomorphic to $C^{*+1}(X, \rho^*\mathfrak{g})$, and

$$\pi_{-i}(\text{tF}_{Z[1/\mathfrak{s}]},\rho) \cong H^{i+1}(X, \rho^*\mathfrak{g}) = H^{i+1}(Z[1/\mathfrak{s}]), \text{ad } \rho)$$

for $i \geq -1$ (for $i > 1$ we have $\pi_i(\text{tF}_{Z[1/\mathfrak{s}]},\rho) = 0$).

The last identification with étale cohomology (i.e. continuous group cohomology in this case) can be seen by identifying the cochains construction with étale cochains.

So if G is an adjoint group (i.e. has trivial centralizer) and ρ is Schur (i.e. the centralizer of ρ is the center of the group), then this is telling us that $H^0(Z[1/\mathfrak{s}], \text{ad } \rho) = 0$, so we’re pro-representable by derived Schlessinger’s criterion. In general, one can modify this construction to take into account groups whose center is non-trivial (like GL_n): for the purposes of this study group, we’ll ignore this, but the details are worked out in Section 5.4 of [?].

Lemma 2.5. The functor $\pi_0\text{F}_{Z[1/\mathfrak{s}]},\rho : \mathsf{Art}_k \to \mathsf{Set}$ is isomorphic to the usual deformation functor if ρ is Schur, i.e. the centralizer of ρ is $Z(G)$.

We get a similar result for the framed deformations, without assuming the Schur condition.

Proof. This is basically unwinding definitions. We’re asking about components of $\text{Hom}_{\mathsf{sSet}}(X, BG(A))$, which correspond to isomorphism classes of $G(A)$-torsors over X, which in turn correspond to conjugacy classes of Galois representations $\rho : Z[1/S] \to G(A)$.
To dig a bit into why this should be true, consider the following equalities in the framed case. Suppose $A \in \text{Art}_k$ is an ordinary (underived) Artin ring with residue field k. Then if $G_{K,S} = \lim \alpha G_{\alpha}$

$$\pi_0 \text{Hom}_{\text{pro-}(s\text{Set})}((N(G_{\alpha}),*,(BG(A),*)) = \pi_0 \text{colim} \alpha \text{Hom}_{s\text{Set}}((N(G_{\alpha}),*,(BG(A),*))$$

$$= \text{colim} \alpha \pi_0 \text{Hom}_{s\text{Set}}((N(G_{\alpha}),*,(BG(A),*))$$

$$= \text{colim} \alpha \pi_0 \text{Hom}_{\text{Set}}((N(G_{\alpha}),*,(N(G(A)),*))$$

$$= \text{colim} \alpha \text{Hom}_{\text{Grp}}(G_{\alpha},G(A))$$

$$= \text{Hom}_{\text{pro-}(\text{Grp})}((G_{\alpha}),G(A))$$

$$= \text{Hom}_{\text{cont}}(\lim_{\alpha} G_{\alpha},G(A)).$$

The first equality is the definition of Hom sets in the pro-category, the second is the fact that π_0 commutes with filtered colimits, the third is the equivalence of $BG(A)$ with $N(G(A))$ when A is discrete, the fourth is the adjunction between π_1 and the classifying space (in the homotopy category), the fifth is the definition of Hom in a pro-category again, and the sixth is the fact that pro-(finite groups) are the same as profinite groups with the profinite topology. \qed

3. Local Conditions

Let $\overline{\rho} : \pi_1 \text{Spec } Z[\frac{1}{\mathfrak{p}}] \to G(k)$ be a fixed Galois representation. If $v \in S$ is some finite place, let $F_{Q_v,\overline{\rho}}$ denote the deformation functor for $\overline{\rho}$ pulled back to $\pi_1 \text{Spec } Q_v$. We then get a natural transformation

$$F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}} \to F_{Q_v,\overline{\rho}}$$

Definition 3.1. A local condition is a simplicially enriched functor $D_v : s\text{Art}_k \to s\text{Set}$ equipped with a natural transformation

$$D_v \to F_{Q_v,\overline{\rho}}.$$

The corresponding global deformation functor with local conditions is defined to be

$$F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}}^D := F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}} \times_{F_{Q_v,\overline{\rho}}} D_v$$

Remark 3.2. We don’t necessarily need a map $D_v \to F_{Q_v,\overline{\rho}}$: we can take a zig-zag instead, where the maps going the “wrong way” are weak equivalences, and still make the theory work. See the remark after (9.1) in [?].

Example 3.3 (Sanity Check). Suppose $\overline{\rho}$ is actually unramified at v, and let $S' = S \setminus \{v\}$. Then we have a natural transformation

$$F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}} \to F_{Q_v,\overline{\rho}}.$$

If we take $D_v = F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}}$, then the global deformation functor

$$F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}}^D = F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}} \times_{F_{Q_v,\overline{\rho}}} D_v$$

is weakly equivalent to $F_{Z[\frac{1}{\mathfrak{p}}],\overline{\rho}}$: in [?] they prove this by noting that each functor is formally cohesive, so it suffices to check that the induced fiber sequence of tangent complexes is an isomorphism: see Section 8 of their paper for the details.

In practice, Galatius and Venkatesh want to turn underived local conditions into derived local conditions. Assume $F_{Q_v,\overline{\rho}}$ is pro-representable (this is the only case they will care about later) with simplicial pro-ring \mathcal{R}_v. Then we have maps

$$\mathcal{R}_v \to \pi_0 R_v =: R_v \to R_v^D,$$

where R_v^D is the underived local condition. Now let

$$D_v := \text{Hom}(c(R_v^D),-).$$
We then get a zig-zag
\[R_v \xrightarrow{\sim} c(R_v) \to c(R_v) \to c(R_v^D), \]
and by taking Hom we get
\[\text{Hom}_{sSet}(c(R_v^D), -) \to \text{Hom}_{sSet}(c(R_v), -) \to \text{Hom}_{\text{pro-sSet}}(c(R_v), -) \xrightarrow{\sim} \text{Hom}_{\text{pro-sSet}}(R_v, -). \]
Now use Remark 3.2 to obtain a local condition.

Theorem 3.4. Suppose R_v^D is formally smooth. Then
\[t^i F_{D[1/\mathcal{S}], \mathfrak{p}} \cong H^{i+1}(Z[1/\mathcal{S}], \text{ad} \rho). \]

Proof Sketch. We have a map $tD_v \to tF_{Q_v, \mathfrak{p}}$ and a quasi-isomorphism $\tau_{\geq 0}(tD_v) \to tD_v$. Therefore,
\[tF_{Z[1/\mathcal{S}], \mathfrak{p}} \xrightarrow{\sim} \text{hofib}(tF_{Z[1/\mathcal{S}], \mathfrak{p}} \oplus \tau_{\geq 0}(tD_v) \to tF_{Q_v, \mathfrak{p}}). \]
is a natural weak equivalence.

But we have a factorization $\tau_{\geq 0}(D_v) \to \tau_{\geq 0}(tF_{Q_v, \mathfrak{p}}) \to tF_{Q_v, \mathfrak{p}}$. The source and target of the first map have homotopy only in degree 0, so the first map induces a quasi-isomorphism onto the subcomplex $\tau_{\geq 0}(tF_{Q_v, \mathfrak{p}})$ whose cohomology is $H^1_{\text{dR}}(Q_v, \text{ad} \rho)$. Note the fact that this is true is not obvious.

Going forward, we have some extra assumptions on \mathfrak{p}:

1. $H^0(Q_p, \text{ad} \mathfrak{p}) = H^2(Q_p, \text{ad} \mathfrak{p}) = 0$: this means that at p, the universal deformation problem is pro-representable and formally smooth.

2. For $v \in S \setminus \{p\}$, $H^j(Q_v, \text{ad} \mathfrak{p}) = 0$ for $j = 0, 1, 2$: this means that we have trivial deformation theory away from p in S.

3. (big image) The image of $\mathfrak{p}|_{Q(\zeta_p)}$ contains the image of $G^{sc}(k)$ (simply connected cover) in $G(k)$.

4. At p, \mathfrak{p} is torsion crystalline, and there is an unobstructed subfunctor $\text{Def}^{\text{cris}} \subset \text{Def}_p$ such that the tangent space is $H^1_{\text{dR}}(Q_v, \text{ad} \mathfrak{p})$.
