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We review in elementary, non-technical terms the description of topological B-type of D-branes in terms of

boundary Landau-Ginzburg theory, as well as some applications.

1. INTRODUCTION

D-branes (see e.g. ref. [1]) play an important
rôle for understanding certain properties of string
and field theories, as well as for building semi-
realistic models. However, practically all litera-
ture on string phenomenology deals with weakly
coupled theories, where compactification radii are
large and notions of classical geometry apply:
e.g., supergravity solutions, branes wrapping p-
dimensional cycles, gauge field configurations on
top of branes, etc. All this corresponds just to the
boundary of the parameter space, which (presum-
ably) is a subset of measure zero of the full string
parameter space.

In order to improve the understanding of how
string theory behaves in the main part of its pa-
rameter space, we thus need to move away from
the large radius/weak coupling regime. However,
naive geometrical notions, such as a D-brane
wrapping some p-dimensional cycle of a Calabi-
Yau manifold, then start to break down. When
distances become small or curvatures large, quan-
tum corrections tend to blur notions of classical
geometry, such as the dimension of a wrapped
submanifold. Various physical phenomena can
arise, like branes can become unstable and de-
cay in ways that are not visible classically; orien-
tifold planes can disintegrate; new branches in the
moduli space can open up; new, non-perturbative
critical points of the effective potential can de-
velop; and contrarily, the moduli space of branes
can be obstructed while classically it seems unob-

structed (in other words, a non-perturbative su-
perpotential can be generated). Recent examples
of string phenomenology deep inside the “bulk”
of the moduli space are given e.g., by refs. [2, 3].

In order to enter the bulk of the moduli space
and meaningfully describe such phenomena, we
need to adopt a suitable language for describ-
ing general D-brane configurations that goes be-
yond the notion of branes wrapping cycles. For
topological B-type [4–6] D-branes, the proper
mathematical framework is a certain enhanced,
bounded derived category of coherent sheaves
[7–12]; via homological mirror symmetry this
maps to the category of A-type branes, which
wrap Lagrangian cycles of the Fukaya category
[6, 13] or coisotropic A-type branes [14–16].

This framework treats branes as abstract, not
necessarily naive geometrical objects, but even in
the geometrical, large radius limit it retains more
data than the more familiar characterization of
branes in terms of K-theory or cohomology (i.e.,
RR charges). It thus provides a much sharper
description of D-branes. That is, the category
also contains the information about the brane lo-
cations, and other possible gauge bundle moduli.
For instance, a configuration consisting of an anti-
D0-brane located at some point u1 of the com-
pactification manifold, plus aD0-brane located at
some other point u2, is trivial from the K-theory
point of view, but is a non-trivial object in the
categorical description as long as u1 6= u2. Obvi-
ously, this extra information is crucial for under-
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standing questions such as whether, for a givenD-
configuration, deformations are obstructed or not
(i.e., what is the effective superpotential and the
moduli space of its flat directions). Moreover, the
language of categories is tailor-made for address-
ing questions about stability and bound state for-
mation, which can be described more physically
by tachyon condensation. Excellent reviews of
these matters may be found in refs. [17–19].

Often physicists associate with derived cat-
egories just an abstract collection of objects
(the D-branes) and maps (open strings) between
them, and wonder what concrete physical benefit
such a formal picture might provide. Indeed, by
merely tracing arrows around a quiver diagram,
all one obtains is a list of possible terms in the ef-
fective superpotential and these terms are usually
added up with unit coefficients. However, there is
much more to these maps than just being pointers
between objects: in general they depend on var-
ious parameters like Calabi-Yau and brane mod-
uli, and thus encode valuable extra information
beyond mere combinatorics. Accordingly, super-
potential terms derived from quiver diagrams will
in general have pre-factors depending on the var-
ious moduli of the geometry, a fact that is often
neglected in the physics literature.

For B-type topological branes, the notions of
objects and morphisms (maps) can, in fact, be
easily translated into a very concrete and useful
language more familiar to physicists, namely the
language of two-dimensional topological (twisted
N = 2 supersymmetric) boundary Landau-
Ginzburg (LG) models [20–22]. As we will ex-
plain in more detail below, the objects, which
correspond to the D-branes (respective boundary
conditions of open string world-sheets), are rep-
resented by matrix factorizations [23,24], and the
maps between them are represented by certain
matrix valued, moduli dependent open-string ver-
tex operators. That this simple physical model
faithfully represents the abstract mathematical
notion of the category of coherent sheaves is
highly non-trivial, and has been proven recently
[25] to quite some generality (see also [26, 27]).
The key point is that the relevant category of
topological B-type D-branes on a Calabi-Yau

manifold described by W = 0, is isomorphic
to a certain category of matrix factorizations of
W [28, 29]. These factorizations of the from
W1 = J · E then have a direct interpretation in
terms of the boundary Landau-Ginzburg model,
where W figures as the bulk superpotential and
J as a boundary superpotential. Given a bulk
Calabi-Yau geometry defined by W = 0, the spe-
cific choice of J (and consequently, E) encodes
the specific D brane geometry that the LG model
describes.

A great advantage of the LG formulation, over
approaches based on rational boundary CFT
[30, 31], is that one can easily study the depen-
dence of physical observables on moduli, and as
well as on relevant deformations. In particu-
lar, it allows to quantitatively study phenomena
like tachyon condensation [32], and to explicitly
compute instanton corrected, effective superpo-
tentials on world-volumes of intersecting branes
[33–38]. Moreover, it allows to address global
properties of branes in the Kähler moduli space
[39], and more generally an extension to gauged
linear σ-models allows to interpolate the brane
data among different points in the Kähler moduli
space [27]. Some works analyze the connection of
matrix factorizations to rational boundary CFTs
at the Gepner point [40–43], show the relation of
matrix factorizations to homological knot invari-
ants [44], or extend matrix factorizations to ori-
entifold models [45,46]. For works covering other
aspects of matrix factorizations see, for example,
refs. [37, 47–56].

In these lectures, we will review some of these
aspects in simple terms, leaving more complicated
mathematics and technical details to the original
papers. In the next section, we will recall some
basic features of boundary LG theory in relation
to matrix factorizations. In section 3 we will then
study deformations of matrix factorizations and
show how obstructions of them lead very directly
to effective superpotentials. In section 4, we will
turn to discussing in more detail, as a case study,
branes on the elliptic curve. This geometry is
well understood both from the mathematics as
well as from the physics side, and it is non-trivial
enough in order to get some idea about how the
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general case works. Specifically, we will show how
the bundle data (r(E), c1(E), u), that characterize
a given brane, are explicitly encoded by certain
properties of the matrices. Moreover we will dis-
cuss a simple example of tachyon condensation.

2. LG MODELS AND MATRIX FAC-
TORIZATIONS

We start by briefly reviewing the bulk Landau-
Ginzburg model; for more details about this well-
known theory, see for example [6]. It is easiest
written in terms of d = 2, N = (2, 2) superspace
language as follows:

SLG =

∫

d2zdθ4K(Φi, Φ̄i)+

∫

d2zdθ2W (Φi)+c.c. ,

(1)

Here, Φi, i = 1, ..., n are chiral superfields,
which form reduced supermultiplets that satisfy
D̄±Φi = 0 (in the following we will use the no-
tation xi when we consider the fields as com-
plex variables rather than superfields). More-
over, K(xi, x̄i) is the Kähler potential which is
a non-holomorphic function of the LG fields, and
by standard renormalization group arguments it
does not play a rôle in the infrared. The super-
potential W (x), on the other hand, is a holo-
morphic function and thus protected by super-
symmetry. For a quasi-homogenous superpoten-
tial, which means that it uniformly scales like
W (sqixi) = sW (xi), the theory flows in the in-
frared to a superconformal fixed point theory
that only depends on the singularity type of W .
Given the R-charges qi of the LG fields, the
central charge of that SCFT is simply given by
c = 3

∑

(1 − 2qi). Note that this does certainly
not specify the CFT uniquely, rather W may in
general contain continuous parameters on which
the singularity type, and thus the CFT, depends.

The significance of W is that it describes
the internal compact background geometry on
which the closed strings propagate. The clearest
and most important geometrical interpretation is
when n = d + 2 and

∑

qi = 1: then the hyper-
surface defined by W = 0 describes a Calabi-Yau
d-fold XW with vanishing first Chern class. For

example, in Section 4 we will focus on

W (xi, a) = x1
3 +x2

3 +x3
3−3 a x1x2x3 . (2)

The equation W (xi, a) = 0 describes the cubic
elliptic curve as a sub-manifold of CP2, and a
parametrizes its complex structure; more details
about this later.

Such a LG theory can be “twisted” by adding
a background charge [6], to the effect that two
of the N = 2 supercharges turn into spin zero
BRST operators. Here we will consider the “B-
type” twist for which the BRST operators are
given by Q̄+ and Q̄−. Upon such a twisting, the
theory becomes a topological CFT with a finite
dimensional Hilbert space defined by the non-
trivial cohomology of Q̄± (which implies that the
anti-chiral sector is dropped). More precisely, the
spectrum of physical operators is given by the set
of primary chiral fields, which can be represented
by simple polynomials of the LG field x, subject
to a truncation condition given by the gradient
of the superpotential. In other words, the physi-
cal spectrum consists of the following polynomial
ring:

R ∼= C[xi]/[∂iW (x) = 0] . (3)

We now consider the open string version,
namely the LG model (1) with superpotential W
on a Riemann surface with boundary, i.e., on the
disk D. The boundary breaks the N = (2, 2) su-
persymmetry of the bulk theory to N = 2 super-
symmetry, and we will choose “B-type” boundary
conditions [4] that are compatible with the topo-
logical twist. The surviving supercharge (rather:
BRST operator) can then be taken as QB ≡
Q̄+ + Q̄−.

However, as is typical for supersymmetric La-
grangians, (1) is supersymmetry invariant only
up to a total derivative. Therefore, in the pres-
ence of a boundary, supersymmetry is broken by
a boundary term, which in the present context is
called “Warner term” [20]. It has the following
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form:

QB ·

∫

D

d2zd2θW (Φ)

=

∫

D

d2zdθ+dθ− (θ+∂+ + θ−∂−)W (Φ)

=

∫

∂D

dσdθW (Φ|∂D) . (4)

To restore supersymmetry, one may introduce ex-
tra degrees of freedom living on the boundary,
and cook up a suitable boundary potential whose
supersymmetry variation cancels (4). As we will
see, there is in general a large ambiguity in do-
ing so, and the set of all consistent choices corre-
sponds, essentially, to the set of all supersymmet-
ric boundary conditions, or topologicalB-typeD-
branes, that are compatible with a given closed
string geometry XW .

The simplest possibility is to introduce bound-
ary fermions [20, 57] πa, π̄a, a = 1, ..., k for some
k, which satisfy a Clifford algebra: {πa, π̄b} = δab.
These fields fit into fermionic supermultiplets of
the d = 1, N = 2 superalgebra, which can
be compactly written as superfields of the form
Πa ≡ (πa + θℓa), where ℓa are auxiliary fields. A
peculiarity of such superfields is that they are not
truly chiral but satisfy [21, 22]

D̄Πa = Ea(Φ|∂D) , (5)

where Ea(x) are a priori arbitrary polynomials in
x.

Given the fermionic boundary superfields, we
can then add the following boundary superpoten-
tial term:

S∂ =

∫

∂D

dσdθ
∑

a

ΠaJa(Φ|∂D) , (6)

and one can easily check that its QB-variation
indeed cancels the Warner term (4) iff [23, 24]

∑

a

Ja(x)Ea(x) = W (x) . (7)

This simple equation turns out to have impor-
tant consequences! Before discussing those, let
us first rewrite it by making use of the fact that

the BRST operator associated with the boundary
degrees of freedom can be represented as

Q(x) = πaJa(x)+π̄aEa(x) =

(

0 J (x)
E(x) 0

)

2k×2k

.

(8)

Here we have represented the k pairs of boundary
fermions by generalized, 2k×2k dimensional Pauli
matrices. The condition (7) then turns into the
following matrix equation:

Q2(x) = J (x)·E(x) = E(x)·J (x) = W (x)1 .

(9)

This equation is, in fact, more fundamental than
(7), since introducing boundary fermions is not
really necessary; using appropriate superholon-
omy factors in the path integral [58] one can avoid
fermions alltogether and write everything directly
in terms of matrices. This lifts the restriction on
the dimension of the matrices to coincide with the
dimension of a Clifford algebra.

Eq. (9) means, essentially, that all the su-
persymmetric B-type boundary conditions (and
thus, B-type D-branes) compatible with a closed
string background XW described by W = 0, are
one-to-one to all the possible factorizations of the
superpotential W (x) into matrices J and E that
have polynomial entries in the xi and otherwise
are arbitrary. This is a very non-trivial math-
ematical statement, since we know that the B-
type D-branes are described by a certain cate-
gory Db(Coh(XW )) of coherent sheaves associ-
ated with XW , which has in general a very com-
plicated structure (in particular for Calabi-Yau
threefolds). As mentioned in the introduction,
this statement has been proven in [25–27] by con-
structing a category of matrix factorizations asso-
ciated with W , and showing that it is equivalent
to Db(Coh(XW )).

A key ingredient is that the objects P in this
category of matrix factorizations have a compos-
ite structure, essentially determined by the block
off-diagonal pieces J and E of Q. These can be
viewed as maps between “constituents” p+ and
p−, so that one can represent the object P as a
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complex of the form:1

P ∼=
(

p+
E

// p−
J

oo

)

. (10)

This abstract mathematical construction (which
is due to Kontsevich [28]) has a nice physical in-
terpretation [23] which has been made rigorous
in [58]: The “components” p± correspond to D-
branes and anti-D-branes, and the presence of the
potential W forces them to condense, in the IR
limit, into the D-brane configuration that we are
interested in to describe. The maps J and E ,
which figure as boundary potentials and whose
presence is required for restoring supersymmetry
(c.f., (9)), are viewed as a tachyon field configu-
ration that effects this condensation.

This simple picture also allows us to easily un-
derstand what the geometry of the resulting D-
brane is in terms of J and E . As a toy exam-
ple, consider the situation with just one LG field.
Then one can write

J (x) = J(x) =

L
∏

a=1

(x− ua) , (11)

which describes a system of L D0 branes (located
at the zeros ua) that arises via condensation of a
D2-D̄2 system. This system does not completely
annihilate because the tachyon configuration is
topologically non-trivial (this is an idea originally
due to Sen [59]). The first Chern class of the
tachyon condensate is given by the winding num-
ber of the map J(x), and thus is equal to L. Via
the usual K-theory arguments, c1 = L indeed
measures the number of D0-branes.

The construction is analogous for general B-
type D-brane geometries. At large radius where
semi-classical geometry applies, they can be
thought of as vector bundles (or sheaf general-
izations thereof), localized on holomorphic sub-
manifolds of XW . Again, the maps J and E
encode certain topological data such as Chern
classes of bundles and sheaves on the space XW ,

1One of the main points of the proof is to “unfold” this
Z2-graded complex into a Z-graded complex that describes
a coherent sheaf in the geometrical, large radius limit. For
details see [25–27].

RG flow

D2D̄2

J , E

Figure 1. Tachyon condensation of a D2-D̄2 sys-
tem, triggered by the boundary potentials J and
E , leads in the infrared to a residual D0-brane
configuration described by the matrix factoriza-
tion J · E = W .

and these Chern classes directly translate to the
RR-charges of the D-brane configuration that re-
mains after tachyon condensation. We will exem-
plify this for the elliptic curve in Section 4.

Note, however, that this construction is more
general than just K-theory, i.e., RR-charges. The
maps J and E may depend also on continuous ge-
ometrical data, which correspond to deformations
of the D-brane configuration; in the previous ex-
ample these are theD0 brane locations ua in (11).
In general, two configurations which have differ-
ent values of the moduli but otherwise are the
same, correspond to different objects in the cat-
egory, while they are indistinguishable from the
K-theory viewpoint. For certain values, the maps
may degenerate and lead to interesting physical
effects, like jumps in the spectrum of physical op-
erators. Moreover, the moduli dependence of the
boundary potentials J and E trickles down to
the correlation functions of the LG theory, and
eventually leads to a (sometimes explicitly com-
putable) moduli dependence of the effective ac-
tion [33–38].

In order to address this kind of questions, we
first of all need to define the spectrum of the
physical open-string states. Again, these are
viewed as maps, but now as maps between the
composite objects (10). For open strings begin-
ning and ending on the same brane Pa, which
correspond to “boundary preserving” vertex op-
erators Ψa = Ψaa(ua), the spectrum is simply
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given by the non-trivial BRST cohomology of
Qa =Qa(ua). Mathematically speaking, they are
associated with maps from the given brane onto
itself, and the cohomology problem is best char-
acterized by writing Ψa ∈ Exts(Pa, Pa), because
Ψa can be viewed as an extension group element
at some grade s (for details see e.g., [19, 60]).

On the other hand, open strings that go be-
tween different branes are described by “bound-
ary changing” operators: Ψab =Ψab(ua, ub); these
map between different matrix factorizations and
are thus in general given by non-square matri-
ces. For those, the proper notion of being BRST
closed is:

[

Q,Ψab

]

≡ Qa ·Ψab−(−)sΨab ·Qb = 0 , (12)

and analogously for being BRST exact (the sign
reflects the statistics of Ψab). Again, the co-
homology problem has a well-recognized math-
ematical meaning, namely in terms of extension
groups Ψab ∈ Exts(Pa, Pb) between the two D-
branes Pa and Pb. Such operators are local-
ized at the intersections of the D-branes, and
accordingly their (net) number is given by the
intersection number between the branes which
can be written as a topological index: χab =
Trab(−1)pdimExtp(Pa, Pb).

One often represents the open string spectrum
of a brane configuration in terms of a “quiver dia-
gram”. See for example Fig. 2 which exhibits the
rôle of boundary changing and boundary preserv-
ing maps, both from the space-time as well as the
world-sheet perspective.

The simplest of all factorizations is the triv-
ial factorization, where Ja = 1 and Ea = W .
One can easily see that there is no non-trivial
open-string cohomology associated with it (not
even the open-string vacuum exists), and this
means that there is no D-brane present at all.
This corresponds to the total annihilation of the
DD̄ pair due to a topologically trivial tachyon
configuration. Brane configurations differing by
such trivial brane-antibrane pairs are physically
equivalent, and correspondingly in the mathemat-
ical formulation, the category is modded out by
such ”perfect complexes”. For LG models this
means that two factorizations of different dimen-

P1

P2

P3

Ψ12
Ψ12

Ψ23
Ψ23 Ψ31

Ψ31

Ψ11

Ψ11

P1

P1

P2

P3

Figure 2. Left: Quiver diagram, where the nodes
correspond to D-branes and the arrows to open
strings mapping between them. Right: Disk
world sheet with corresponding boundary pre-
serving and boundary changing vertex operator
insertions.

sions that are related via the addition or removal
of matrix blocks of the form (1,W1), are equiva-
lent.

What happens if we swap J and E? While ob-
viously the factorization of W stays invariant, J
and E enter differently in the LG lagrangian. It
turns out that JP → −EP and EP → −JP maps
a brane P into its anti-brane P̄ (in the math lit-
erature the anti-object is commonly denoted by
P [1]). A way to see this is to show that such a
PP̄ configuration can completely annihilate un-
der tachyon condensation.

We will outline this in the next section, but be-
fore that we introduce another feature that we are
going to need, namely that of gauge symmetries.
Indeed a factorization (9) is invariant under local
gauge transformations of the form:

J (x) → UL(x)J (x)UR(x) ,

E(x) → U−1
R (x) E(x)U−1

L (x) ,
(13)

for polynomial matrices UL,R(x) that are invert-
ible over C[xi]. In particular, this means we can
do arbitrary row and column reduction operations
on J (respectively, E), as long as we do the cor-
responding inverse operations on E (respectively,
J ). This is an important tool for exhibiting the
nature of a given factorization, for example a triv-
ial block structure of the form (1,W1) may not
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be manifestly visible in a random gauge. It is
therefore useful for determining the outcome of a
condensation process.

3. DEFORMATIONS

3.1. Bulk and boundary moduli

One of the main advantages of the formulation
of B-type of D-branes via matrix LG models over
other approaches, is that it is easy to incorporate
continuous deformations. It allows to study their
effects on the spectrum and as well to derive the
effective potential induced on them. As we will
show, one can easily implement ideas of abstract
deformation theory; this is useful because when
deformations are obstructed and an effective po-
tential is generated, the theory is off-shell away
from the critical locus of the effective potential,
and therefore we need to have a formalism that
is robust enough to deal with this.

We will be interested in the following three
classes of perturbations of the open string B-
model: First, there are the usual complex struc-
ture perturbations of the bulk geometry:

W (x) −→ W (x, t) = W0(x)+ tiφi + ... (14)

where the dots indicate that generically we will
consider also higher orders in the perturbation.

Then there are analogous perturbations in the
open string, boundary sector. Here we distin-
guish, as before, boundary preserving and bound-
ary changing perturbations. The latter arise for
multiple, intersecting brane configuration, and
we will discuss such perturbations further below.
The boundary preserving deformations

Q(x) −→ Q(x, u) = Q0(x)+uaΨa + ... (15)

are tied to a single brane and typically correspond
to location moduli.2 More precisely, from the su-
persymmetric GSO projection we know that the

2Note that because the actual perturbation one adds to
the action is of the form ua

R

dx{G−,Ψa}, bosonic per-
turbation parameters are related to fermionic vertex op-
erators and vice versa. Only the bosonic parameters are
natural physical deformations of the theory and will be
considered below.

bulk operators and boundary preserving bound-
ary operators have integral charges; specifically
with “moduli” we refer to operators with R-
charge q = 2 in the bulk, or q = 1 on the
boundary, so that ti and uα are dimensionless
and can appear in correlation functions in a non-
polynomial way. Strictly speaking, because an
effective potential will be generically generated,
some or all of these parameters won’t be true
moduli but will be constrained.

Indeed, it is obvious that generic perturba-
tions (14,15) will spoil a given factorization and
thus lead away from a supersymmetric configura-
tion. The true moduli comprise precisely those
deformations that preserve the factorization, i.e.,
Q(u)2 = W (t), and these form a sub-locus of the
deformation space, as is schematically shown in
Fig. 3.

ti

ua
P0

P1

P2 ⊗ P3

Figure 3. The supersymmetry preserving defor-
mations form a sub-locus of the joint open/closed
string deformations space. It coincides with the
locus of matrix factorization which is also the crit-
ical locus of the effective superpotential. Along
the sub-locus, the brane content and the open
string cohomology may or may not vary, depend-
ing on whether the boundary perturbation is rel-
evant or marginal.

As is familiar from other instances (for exam-
ple from [61]), factorized geometries tend to be
related to critical loci of effective superpotentials,
and as we will see, this is also the case here. This
has been discussed and explicitly worked out in
detail [53, 62] for the topological minimal models
as special examples, and more general discussions
in the context of matrix factorizations have been
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given in refs. [33,63,64]. All this is just a specific
realization of some general deformation theoret-
ical ideas, readable accounts of which are given,
for example, by [65–67]. We will give here only
a crude presentation of some of the underlying
ideology, and refer the reader to those papers for
precise definitions and more details.

The basic principle is very simple: start with
a perturbation of the BRST operator by a coho-
mology element as in (15), i.e., Q = Q0 + Q1,
with Q1 = uaΨa ∈ Ext1(P, P ). This will in gen-
eral spoil factorization at the second order level,
i.e., schematically:

Q2 −W = u2{Ψ,Ψ } ≡: λ2(Ψ,Ψ) . (16)

One can try to cancel this by introducing a second
order correction, i.e., by adding

Q2 = −Uλ2(Ψ,Ψ) , (17)

where U is a charge −1 operator that is the con-
jugate or “inverse” of Q in the sense that U2 = 0
and Π = 1 − {Q,U} is a projector on physi-
cal states. There is an ambiguity in this defi-
nition, and we fix it by requiring a Siegel type
of gauge by requiring UΨ = 0 on all physical
states. Thus, roughly speaking, as long λ2(Ψ,Ψ)
is BRST exact, we can use Q2 to cancel the
RHS of (16); however then a third order term,
m3(Ψ

⊗3), is induced. But the procedure may
be iterated and eventually yields a solution for
Q = Q0 +

∑∞
n>0Qn given by:

Qn = −U · λn(Ψ⊗n) . (18)

Here λn are certain higher “Massey” products
which are recursively defined as follows (see e.g.,
refs. [67, 68] for reviews):

λn(Ψ1, ...,Ψn) = (19)

(−)n−1[Uλn−1(Ψ1, ...,Ψn−1)] · Ψn

−(−)n|Ψ1|Ψ1 · Uλn−1(Ψ2...,Ψn)

−
∑

l+k=n

k,l≥2

(−)S [Uλk(Ψ1...,Ψk)] · [Uλl(Ψk+1...,Ψn)]

where |Ψ| ∈ {0, 1} denotes the statistics degree
of a field, and (−)S is some complicated sign.

They form part of an A∞ structure that is in-
herent to any open string theory on the disk,
and their recursive structure can be interpreted
in terms of tree level Feynman diagrams associ-
ated with open string field theory [65–67]; this
just reflects the inherent off-shell nature of this
formalism which goes beyond conformal field the-
ory.

However, the procedure goes through only if Q
can be inverted at every step – otherwise it trun-
cates, signaling an obstruction against the given
perturbation at that order. Obviously Q cannot
be inverted if some λn is not BRST exact, i.e.,
if it is a non-trivial cohomology element.3 The
condition for a perturbation to be unobstructed,
and thus to preserve the matrix factorization of
W , is

∑

mn(Ψ⊗n) ≡
∑

Πλn(Ψ⊗n) = 0 . (20)

Taking the moduli dependence of the λn into ac-
count, this singles out a sub-locus of the full pa-
rameter space.

In deformation theory, the equations (20) are
known as generalized Maurer-Cartan equations
[65–67]. They can also be interpreted as equa-
tions of motion of an open string field theory of
Chern-Simons type, and within this context they
can be interpreted as the critical locus of an effec-
tive superpotential. That is, from its definition as
generating function of disk correlators, the latter
is given by

Weff(t, u) =

∞
∑

n=2

1

n+ 1
〈Ψ,mn(Ψ⊗n)〉 , (21)

where 〈 , 〉 is a suitable inner product on the
off-shell Hilbert space, and certain cyclicity prop-
erties of the mn are implicitly assumed to hold.
Eqs. (20) are then simply the equations of motion
associated with Weff(t, u).

There is one other important aspect to note,
concerning the uniqueness of the effective poten-

3Noting that the degree s of Ψ ∈ Ext1(P, P ) equals to one,
it follows that the degree of all the λn is two, which means
that abstractly speaking, the obstructions are measured by
classes in Ext2(P, P )). The pattern continues: Ext3(P, P )
measures obstructions to obstructions, and so on [19, 60,
69].
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tial. We already noted that the inversion of Q
is ambiguous, because one can always add BRST
closed pieces to a BRST non-invariant one. One
may fix this ambiguity by adopting the Siegel
type gauge U(Ψ) = 0 as above, but different
gauges are equally well possible and lead to differ-
ent results for Weff(t, u). However, one can show
[65] that the physically relevant data, i.e., the
critical locus of Weff(t, u), remain (essentially) in-
variant, while the directions in field space off the
critical locus are ambiguous; this reflects that a
given physical theory can have different off-shell
completions. More precisely speaking, all those
data are determined only up to field redefini-
tions, and that’s almost the best one can hope
for a topological field theory. Namely, in order to
pin down the parametrization one would need to
know the kinetic terms of the effective action as
well, but these are not available in a TFT corre-
sponding to N = 1 space-time supersymmetry.

These statements apply to generic boundary
perturbations, which are typically obstructed.
However, in certain few circumstances, the open
moduli space is flat and this can then be used to
treat it similar to the closed string moduli space,
i.e., define preferred flat coordinates on it. An ex-
ample are D0 branes on the elliptic curve which
we will discuss below; the moduli space of a D0
brane on some manifold XW is given by XW it-
self, which is flat for the torus. In contrast, D0
branes on a Calabi-Yau threefold certainly don’t
have a flat moduli space.

3.2. Relevant boundary deformations:
tachyon condensation

As said before, there is another class of per-
turbations in the open string sector, namely by
boundary changing operators, Ψab, acting be-
tween branes Pa and Pb. They have quite differ-
ent properties as compared to the boundary pre-
serving moduli. In particular, their charges de-
pend on the difference of the ‘grades’ of the branes
they couple to [8]. These grades change continu-
ously when we vary the Kähler moduli [70, 71],
and therefore the charges of the open strings
change too. This effect is of course not visible
in the topological B-model, which does not de-

pend on Kähler moduli. In the un-twisted physi-
cal theory, however, the Kähler moduli do matter
and the masses of the open strings will depend
on them. Depending on the Kähler parameters,
the open strings may become tachyonic, and this
is why we will denote the associated deformation
parameters by T = Tab.

Given two matrix factorizations representing
branes Pa and Pb, and a cohomologically non-
trivial fermionic boundary changing operator
Ψab, we can form a composite matrix factoriza-
tion of the form

QC =

(

Qa T Ψab

0 Qb

)

. (22)

It is easy to check with eq. (12) that the new
matrix factorization QC fulfills for any value of
the coupling T the relation Q2

C = W1. However,
compared to deformations associated to open-
string moduli there is an important difference. In
the topological theory the coupling T does not
change the composite matrix factorization, QC,
in a continuous manner. Instead there are only
two distinct choices, namely either the coupling
T is zero, i.e. no composite is formed, or the cou-
pling T is non-zero and a composite is formed.
Different non-zero values of the coupling T , how-
ever, lead to gauge-equivalent composites, which
all represent the very same brane configuration.
Hence, in the topological theory the coupling T
gives only rise to a discrete choice, whereas an
open-string modulus u parametrizes a continuous
family of inequivalent matrix factorizations.

This reminds us that we should be careful
about the difference between topological tachyon
condensation and tachyon condensation in the
physical theory. We cannot decide within the
topological sector whether a composite is sta-
ble in the underlying physical theory: this de-
pends on whether the charge of Ψ is less than
one or not, i.e., whether Ψ is a relevant opera-
tor or not in the physical theory. Stability of a
composite is indeed a complicated concept due
its dependence on the Kähler moduli [70, 71].
Namely, in some region of the Kähler moduli
space the formation of the composite is energeti-
cally favorable and the coupling T acquires a non-
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zero (Kähler moduli dependent) vacuum expec-
tation value there. Then a bound state repre-
sented by the matrix factorization QC is formed
through tachyon condensation in the physical the-
ory. However, in other regions of the Kähler mod-
uli space, T = 0 may be the energetically favored
vacuum expectation value, and the composite is
unstable against the decay into its constituents,
Pa and Pb. For extensive treatments of the notion
of D-brane stability we recommend to the reader
the refs. [8, 11, 70–72].

As simplest possible example we consider, as
advertized, a generic brane system given by a ma-
trix factorization (22) for which

Qa =

(

0 J
E 0

)

, Qb = −

(

0 E
J 0

)

, Ψab =

(

0 1
1 0

)

.

(23)

It is easy to check that Ψab is a non-trivial coho-
mology element, satisfying (12) while being non-
exact. It is also easy to see that for T 6= 0 the
factorization can be brought via gauge transfor-
mations (13) to the form

QC =









0 0 0 1
0 0 −W 0
0 −1 0 0
W 0 0 0









, (24)

which, according to what we said before, repre-
sents the trivial brane configuration. This justi-
fies a posteriori the claim that Qb represents the
anti-brane of Qa.

4. BRANES ON THE ELLIPTIC CURVE

4.1. Setup

In this section we will discuss the LG descrip-
tion of B-type of D branes on the elliptic curve.
It is the simplest model with open string moduli,
but nevertheless exhibits sufficient complexity for
making its detailed study quite instructive.

The moduli space of the supersymmetric σ-
model with the elliptic curve as its target space is
locally a product of the Kähler and the complex
structure moduli space of the two-dimensional
torus. A Landau-Ginzburg formulation is pos-
sible at points in the Kähler moduli space where

the σ-model possesses enhanced discrete symme-
tries. For concreteness we choose the enhanced
Z3-symmetry point in the Kähler moduli space,
where the associated Landau-Ginzburg superpo-
tential becomes

W = x3
1 + x3

2 + x3
3 − 3 a x1x2x3 . (25)

The variable a parametrizes algebraically the
complex structure moduli space of the elliptic
curve and it is related the usual flat complex
structure modulus τ of the two-dimensional torus
by the modular invariant j-function:

j(τ) =
3a(a3 + 8)

a3 − 1
. (26)

The matrix factorizations of the cubic
curve (25) for a = 0 have been classified in
ref. [73]. To be specific, we present the two
simplest matrix factorizations explicitly, however
including a-dependence. Our first example is the
factorization QL, consisting of the following pair
of 3 × 3-matrices [34, 35]:

JL =





α1 x1 α3 x2 α2 x3

α2 x2 α1 x3 α3 x1

α3 x3 α2 x1 α1 x2



 ,

EL =
1

α1α2α3





G11 G22 G33

G23 G31 G12

G32 G13 G21



 ,

(27)

with the quadratic polynomials

Gjk = α[k+1]
3
α[k+2]

3
x2

j − α2
k x[j+1]

3
x[j+2]

3
.

(28)

Here [ · ]3 indicates that the indices should be
taken modulo three. The matrix pair, (JL, EL),
gives rise to a valid factorization of the cubic
Landau-Ginzburg superpotential W , as long as
the complex parameters αℓ obey the cubic con-
straint

0 ≡ α3
1 + α3

2 + α3
3 − 3 aα1α2α3 . (29)

Since the parameters αℓ appear only in the matrix
factorization but do not enter in the bulk Landau-
Ginzburg superpotential (25) they parametrize
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the open-string moduli space of the brane de-
scribed by the matrices (27). A closer look re-
veals that we generate a gauge-equivalent ma-
trix factorization by homogeneously rescaling the
open-string parameters αℓ. Therefore we can
view the parameters αℓ as projective coordinates
of the projective space CP2, which in addition
are constrained to the hypersurface (29) [32, 35].
Thus for the matrix factorization QL, we find
that the open-string moduli space is just the hy-
persurface (29), which in turn describes a two-
dimensional torus.4

The second example is the matrix factorization,
QS, which arises from the 2 × 2-matrix pair [35]

JS =

(

L1 F2

−L2 F1

)

, ES =

(

F1 −F2

L2 L1

)

.

(30)

The linear polynomials, L1 and L2, are given by

L1 = α3x1−α1x3 , L2 = α3x2−α2x3 . (31)

If we impose again the cubic constraint (29) on
the open-string parameters αℓ, then the cubic
Landau-Ginzburg superpotential W vanishes at
the intersection locus of the two linear polynomi-
als (31). Due to the Nullstellensatz we can then
always find two quadratic polynomials, F1 and
F2, such that

W ≡ L1F1 + L2F2 . (32)

Then the factorization (30) becomes well-defined.
For the matrix factorization QS we thus find
again a toroidal open-string moduli space,
parametrized by the projective coordinates αℓ

subject to the constraint (29).

So far we have ignored an important point. In
order to really describe the supersymmetric σ-
model of the elliptic curve at the enhanced sym-
metry point in the Kähler moduli space, we need
to consider a Z3 orbifold of the Landau-Ginzburg

4For the matrix factorization QL a detailed analysis re-
veals that due to gauge equivalences one needs to consider
further identifications between the parameters αℓ. How-
ever, the resulting open-string moduli space is still a two-
dimensional torus with the same complex structure [32].

theory with cubic potential. The appropriate Z3-
orbifold action on the Landau-Ginzburg fields, xℓ,
is generated by

xℓ → ω xℓ , ω ≡ e
2πi
3 . (33)

The topological B-branes of the resulting Landau-
Ginzburg orbifold theory are now captured in
terms of Z3-equivariant matrix factorizations of
the Landau-Ginzburg superpotential (25); that
is to say in order to incorporate the Z3-orbifold
action in the boundary sector, we need to en-
hance the matrix factorizations of the cubic su-
perpotential W to Z3-equivariant matrix factor-
izations [32, 50, 51]. This is achieved by supple-
menting a given factorization, defined by Q, with
a Z3 representation, R(k), k ∈ Z3, such that the
following equivariance condition is fulfilled:

Q(x) ≡ R(k)Q(ωkx)R(−k) . (34)

Note that given an equivariant matrix factoriza-
tion, (Q,R(k)), we immediately deduce a whole
Z3-equivariant orbit of matrix factorizations dis-
tinguished by the three representations

Ra(k) = ωakR(k) , a = 1, 2, 3 . (35)

Hence we associate to a given (indecomposable)
matrix factorization of the superpotential, W , a
whole orbit of equivariant matrix factorizations,
which differ by the Z3-valued label, a, or more
precisely by the Z3-representations, Ra(k).

For the two matrix factorization, QL and QS ,
introduced in eqs. (27) and (30), we find respec-
tively the Z3-equivariant representations

RLa(k) = ωak diag
(

ω2k13×3, 13×3

)

, (36)

and

RSa(k) = ωak diag
(

12×2, ω
k, ω2k

)

. (37)

In the following we denote the brane config-
urations associated to these equivariant matrix
factorizations by the ‘long’ branes, La, and the
‘short’ branes, Sa. This nomenclature originates
from the mirror description, where these branes
wrap long and short diagonals of the A-model
mirror torus [35].
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4.2. Bundle geometry

At the large radius point of the Kähler moduli
space, quantum corrections are suppressed and
therefore classical geometry yields a good descrip-
tion. Thus in order to get a geometric intuitive
picture of topological B-branes in the Landau-
Ginzburg phase, we need to translate the notion
of matrix factorizations into geometric notions at
the large radius point (for a detailed upcoming
study, see [27]). In the large radius regime topo-
logical B-branes are realized as complex vector
bundles. For our purposes here the bundle pic-
ture of branes suffices, however, we should keep in
mind that a more accurate description of topolog-
ical B-branes at the large radius point is achieved
in terms of coherent sheaves or even more pre-
cisely in terms of objects in the bounded derived
category of coherent sheaves [8–12].

Our goal is now to deduce directly from the
matrix factorization the associated large radius
bundle data of the topological B-brane. For the
elliptic curve this procedure is straightforward,
since the (indecomposable) complex vector bun-
dles on the elliptic curve have been classified a
long time ago [74]. Namely such a bundle is com-
pletely characterized by its rank r, its first Chern
number c1, as well as by a point u on the elliptic
curve.5 We denote such an indecomposable vec-
tor bundle by V(r, c1, u). The second simplifica-
tion arises from the fact that at least one brane in
each equivariant orbit of an indecomposable ma-
trix factorization corresponds to a complex vec-
tor bundle in the large radius regime [32,73]. We
call this vector bundle the distinguished bundle.
The other branes in the same equivariant orbit
give rise to vector bundles of lower rank than the
distinguished bundle, and/or to more general ob-
jects such as coherent sheaves. This will become
somewhat more clear in a moment.

Thus our goal is to calculate for each ma-
trix factorization of the elliptic curve the distin-
guished bundle parameters (r, c1, u). In our two
examples of factorizations given by QL and QS ,
we have already encountered an open string mod-
ulus, which was encoded in the parameters αℓ via

5Rather, on the Jacobian which happens to be isomorphic
to the curve itself.

eq. (29). One can “uniformize” these functions
in terms of theta functions (roughly by rewrit-
ing α ∼ θ(u|τ), see [32, 35, 37] for details), and
this explicitly introduces an open string modulus
u which is a flat coordinate labeling a point of
the (Jacobian of the) curve. Physically this point
corresponds to the location of the D0-brane com-
ponent of the given brane configuration.

It thus remains to determine the rank r and the
first Chern number c1 of the complex vector bun-
dle. Physically these two integers represent the
large radius RR charges of the described brane:
(r, c1) = (ND2, ND0), up to some ambiguity to be
discussed momentarily.

The key ingredient to determine the integers
(r, c1) is to note that the image of the matrix J ,
restricted to the elliptic curve W ≡ 0, encodes
the relevant data of the distinguished bundle [32].
Furthermore, due to the factorization condition
W = J E = EJ , one can check that on the el-
liptic curve W ≡ 0, the image of the matrix J
coincides with the kernel of the matrix E . This
last property allows us to immediately deduce the
rank r, of the vector bundle by simply computing
the determinant of the matrix E :

det E ∼ W r . (38)

The first Chern number of the vector bundle is
just the first Chern number of the induced deter-
minant line bundle, which is obtained by counting
the number of zeros (with their multiplicities) of
a global holomorphic section. Here we construct
first a global holomorphic section of the image of
the matrix J , and then count the number of zeros
of the induced global section of the determinant
line bundle. These steps may sound a little com-
plicated, but they essentially just generalize the
simple picture of brane charges we gave in Sec-
tion 2. In practice this analysis is straightforward,
as will become clear by the following examples.

We consider first the distinguished bundle of
the matrix factorization, QL, of the ‘long’ branes.
Using eq. (29) we find

det EL = W 2 . (39)

Hence the distinguished bundle in question is
of rank two. A global section of this rank-two
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vector bundle is given by the image of the two
vectors (1, 0, 0)T and (0, 1, 0)T, namely by the
first two columns v1 = (α1x1, α2x2, α3x3)

T and
v2 = (α3x2, α1x3, α2x1)

T of the matrix JL. The
zeros of the induced global section of the deter-
minant line bundle arise at points [x1 : x2 : x3] in
CP2, where the vectors v1 and v2 become linearly
dependent and in addition are located on the el-
liptic curve W ≡ 0. A few steps of simple algebra
reveal three such distinct points

ps = [ωsα3 : α1 : ω−sα2] , s = 0, 1, 2 . (40)

Hence we deduce that the first Chern number of
the bundle is three, and the matrix factorization
QL describes the distinguished bundle, V(2, 3, ζ).
It is easy to check that two different columns of
the matrix JL lead to the same result.

Our second example is the matrix factoriza-
tion (30) of the ‘short’ branes. Again with
eq. (29) we compute det ES = W , and thus we find
that the factorization describes a distinguished
rank-one vector bundle, i.e., a line bundle. A
global section of this line bundle is given by the
image of the vector (1, 0)T, or in other words by
the first column, v1 = (L1,−L2)

T, of the matrix
JS . Here the determinant line bundle is obvi-
ously just the line bundle itself and hence we need
to determine the number of points on the elliptic
curve, where the vector v1 vanishes. These points
are given by the common zeros of the linear poly-
nomials, L1 and L2, of eq. (31). One immediately
finds a single zero at

p = [α1 : α2 : α3] . (41)

Thus we associate to the matrix factorization QS

the distinguished bundle V(1, 1, u).

Now there are a few comments in order. First
of all, in the second example the attentive reader
may have noticed that one obtains a different re-
sult if one constructs the global section of the im-
age of the matrix JS from the vector (0, 1)T. For
this choice one obtains the vector v1 = (F1, F2)

T,
and thus needs to determine the common zeros
of the quadratic polynomials F1 and F2. Since
a quadratic polynomial generically intersects the
cubic polynomial W in six points, the quadratics
F1 and F2 have each six zeros on the elliptic curve.

Furthermore, using the fact that the linears, L1

and L2, have three zeros on the elliptic curve with
one common zero at the point (41), and by care-
fully evaluating the relation (32) for all the zeros
of the polynomials, F1, F2, L1 and L2, one finds
that the polynomials F1 and F2 must have four
common zeros. Hence from the second column
of the matrix JS one arrives at the distinguished
bundle V(1, 4, u).

This apparent discrepancy, however, has a
simple physical resolution. In computing the
RR charges of the distinguished bundle, we im-
plicitly specify a path in the Kähler moduli space
from the Landau-Ginzburg to the large radius
phase. The result depends on the choice of this
path, and there is an ambiguity in the data of the
distinguished bundle that is given by the mon-
odromy about the large radius point. This mon-
odromy amounts to tensoring the bundle data
with the canonicial bundle of the ambient space
CP2 [32, 39, 73]6

V(r, c1, u)
LR monodromy

−−−−−−−−−−−→ V(r, c1±3r, u) . (42)

Note that we can also obtain the distinguished
bundle V(1, 4, u) from the first column of the ma-
trix JS , by considering the global section result-
ing from the image of the vector (x1, 0)T. Sim-
ilarly we can also deduce from the matrix fac-
torization QL the distinguished bundle V(2, 9, u),
by computing the global section from the image
of the matrix JL for the vectors (x1, 0, 0)T and
(0, x2, 0)T. Thus we can realize the large radius
monodromy shifts (42) by varying the preimage
sections of the matrices, J .7

So far we have described a method to calculate
on the elliptic curve the large radius RR charges
of the brane of an indecomposable matrix factor-
ization, which is associated to the distinguished
bundle. The RR charges of the remaining branes
in the equivariant orbit are then obtained by act-
ing on them with the Z3 monodromy associated
with the “Gepner point” in the Kähler moduli

6Here we refer to the large radius monodromy as seen from
the gauged linear σ-model point of view (c.f. ref. [39]).
7By also allowing for meromorphic preimage sections we
can also obtain negative shifts for the first Chern number.
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Figure 4. In the RR-charge lattice at the Z3-
symmetric Landau-Ginzburg point in the Kähler
moduli space, we depict the D-brane charges
(ND2, ND0) = (r, c1) of the ‘long’ and ‘short’
branes La and Sa, a = 1, 2, 3. The distinguished
bundles of the matrix factorizations QL and QS ,
are associated to the branes L1 and S2, respec-
tively.

space [39]. The resulting large radius RR charges
of all the ‘long’ and ‘short’ branes La and Sa have
been summarized in fig. 4.

Note that the charges are not necessarily ones
of nice vector bundles (i.e., of classical smooth
gauge field configurations on the world-volume).
For example, the D0 brane formally corresponds
to a “bundle” with vanishing rank but neverthe-
less with non-vanishing first Chern class. Clearly,
no such smooth gauge field configurations exist,
and this is one of the reasons why one needs to in-
troduce mathematical notions that are more gen-
eral than vector bundles, such as sheaves, in order
to properly describe such objects.

In principle the described method of evaluat-
ing the bundle data also generalizes to higher di-
mensional target space geometries, such as the
K3 surface or Calabi-Yau threefolds. There one
has to determine also higher Chern numbers by
counting zeros of appropriate bundles [75]. How-
ever, a closer look at a generic matrix factoriza-
tion in these higher dimensional geometries re-
veals that it is necessary to also take into account
the equivariant representations to extract the dis-
tinguished bundle data. Guided by the analysis
of ref. [27], where equivariant matrix factoriza-
tions are analytically continued to the large ra-

dius point in a systematic manner, it becomes
clear that one needs to truncate the matrices J
and E appropriately in order to determine the cor-
rect Chern numbers.

4.3. Deformations

4.3.1. Tachyon condensation

The matrix factorizations of the elliptic curve
serve also as a good example to study topologi-
cal tachyon condensation. Since the formation of
bound states preserves the brane charges of the
constituents, we obtain already selection rules for
possible condensation processes by simply look-
ing at the involved RR charges. For instance from
Fig. 4 we infer that charge conservation allows the
formation of the ‘long’ brane L1 from the ‘short’
brane S2 and the ‘short’ anti-brane S̄3. We will
demonstrate now that such a condensation pro-
cess is indeed possible.

Beforehand we point out that because a whole
Z3 equivariant orbit is associated with a given
matrix factorization, we need to somehow spec-
ify which precise composite out of which precise
members of the two orbits under consideration we
actually talk about. This extra input is provided
by the choice of boundary changing operator Ψ
that we switch on to condense. Each channel for
composite formation is characterized by a partic-
ular cohomology element, the charge of which is
determined by the relative angle of the intersect-
ing branes (in the mirror A-models). In other
words, given two matrix factorizations, there will
be a collection of boundary changing cohomol-
ogy elements with different charges, and a specific
choice will correspond to a tachyon consideration
between specific members of the two Z3 orbits.

Thus, if we want to form a composite out of
the constituents S2 and S̄3, we first need to find
the relevant fermionic boundary changing opera-
tor that triggers this particular condensation pro-
cess. Evaluating the BRST cohomology (12) of
the matrix factorizations QS and QS̄ , one finds a
fermionic operator, ΨS2S̄3

, which has the follow-
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ing form [32]8

ΨS2S̄3
=

(

0 ψ0(uS2
, uS̄3

)
ψ1(uS2

, uS̄3
) 0

)

. (43)

It depends on the open-string moduli, uS2
and

uS̄3
, of both constituents, S2 and S̄3. The matri-

ces, ψ0 and ψ1, schematically read:

ψ0(uS2
, uS̄3

) =

(

l5(x) q(x)
c l6(x)

)

,

ψ1(uS2
, uS̄3

) =

(

l1(x) l2(x)
l3(x) l4(x)

)

.

(44)

Here c is a constant, li(x) and q(x) are linear and
quadratic polynomials in the variable, x. In addi-
tion all entries have non-polynomial dependencies
on the open-string moduli, uS2

and uS̄3
.

If we now employ the condensation for-
mula (22), we obtain for the resulting matrix fac-
torization, QC , the 4 × 4 matrix pair

JC =

(

ES(uS̄3
) ψ0(uS2

, uS̄3
)

0 JS(uS2
)

)

,

EC =

(

JS(uS̄3
) ψ1(uS2

, uS̄3
)

0 ES(uS2
)

)

.

(45)

A straightforward but tedious calculation reveals
that this matrix pair is gauge equivalent to [32]

JC =

(

1 0
0 JL(uS2

− uS̄3
)

)

,

EC =

(

W 0
0 EL(uS2

− uS̄3
)

)

.

(46)

Hence by eliminating a trivial brane-anti-brane
pair, we find that the resulting matrix factoriza-
tion is indeed equivalent to the matrix factoriza-
tion QL of the ‘long’ brane L1. The appearance
of the trivial brane-anti-brane pair can be traced
back to the constant entry c in the fermionic
boundary changing operator (44), as it allows for
a chain of gauge transformations that eventually
makes the trivial brane-anti-brane pair manifest
[32]. Moreover, we observe that the condensate

8In order to determine the equivariant labels of the bound-
ary changing operator it is necessary to introduce an
equivariant grading for the BRST cohomology elements
(for details, c.f. refs. [32, 50, 51]).

depends again only on a single open string mod-
ulus given by uL ≡ uS2

− uS̄3
. This is in agree-

ment with the general property of indecompos-
able matrix factorizations on the elliptic curve,
which depend always just on a single open-string
modulus [73, 74].

A known feature of the elliptic curve is the fact
that any (indecomposable) matrix factorization
can be obtained through successive tachyon con-
densation out of ‘short’ branes [32, 73], so these
serve as generators of the D-brane charge lattice.
One certainly expects similar features to hold also
for higher dimensional Calabi-Yau’s.

4.3.2. Effective superpotential

By solving the cohomology problem for any
given factorization, one can obtain explicit ex-
pressions for the moduli-dependent open string
vertex operators. With those at hand, one may
want to go on and compute correlation functions,
for example ones that give rise to a superpoten-
tial on an intersecting brane configuration. Actu-
ally, computing correlators with more than three
boundary changing operator insertions is hard,
because they necessarily involve integrated inser-
tions and there is no simple method to evaluate
them except in favorable circumstances. So let’s
focus on three-point functions for three intersect-
ing ‘long diagonal’ branes on the cubic elliptic
curve for the time being [35] (see also [37]). Note
that the ‘long diagonal’ branes intersect three
times on the curve (in the A model picture), so
there are three boundary changing operators Ψi

ab,
i = 1, 2, 3, in the open string spectrum between
any pair of those branes, one for each intersection
point. The correlators thus have the following
form:

Cijk = 〈Ψi
12Ψ

j
23Ψ

k
31 〉 , (47)

and the issue is to compute their dependence on
the closed and open string moduli. Matrix rep-
resentatives for the Ψ′s were explicitly given in
refs. [32, 35], and the simplest method to evalu-
ate the correlators is to just plug these matrices
into the Kapustin-Li [23, 58] supertrace residue
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formula:

〈Ψi
12Ψ

j
23Ψ

k
31〉 =

∫

d3x
∏

dW (x)
Str

[

dQ∧3Ψi
12Ψ

j
23Ψ

k
31

]

,

(48)

and evaluate it in a straightforward manner. One
then obtains explicit expressions for the correla-
tors (47), which depend on the parameters a and
αℓ via the various matrices.

However the tricky part is to determine the cor-
rect normalization of the vertex operators: it is in
general moduli dependent, and thus the compu-
tation done so far is seriously incomplete. Deter-
mining the normalization factors is actually the
main part of the work. As it turns out [38], there
exist certain differential equations that determine
these normalization factors, but discussing those
here would lead too far outside the scope of this
lecture. At any rate, for the elliptic curve there
are other, indirect arguments to infer the correct
normalization [35].

After we have determined the correct normal-
ization factors in one way or other, it is then
at this point more interesting to switch to the
topological A-model picture. This is done by em-
ploying the mirror map, which maps the B-model
complex structure parameters a, αℓ to flat coor-
dinates τ , u. By mirror symmetry the latter coin-
cide with the Kähler variables of the A-model. As
already mentioned, this map is given by (26) for
the closed string modulus, and by certain theta
functions for the open string moduli:

αℓ(u, τ) = ω(ℓ−1) Θ

[ 1
3 (1 − ℓ) − 1

2

− 1
2

∣

∣

∣

∣

3 u, 3 τ

]

,

(49)

where ℓ = 1, 2, 3, ω = e2πi/3, q = e2πiτ and

Θ

[

c1
c2

∣

∣

∣

∣

u , τ

]

=
∑

m∈Z

q(m+c1)
2/2e2πi(u+c2)(m+c1) .

(50)

One can easily check that a(τ) and the αℓ(u, τ)
as given here satisfy the cubic constraint (29).

After taking all normalization factors properly
into account, the Yukawa couplings (47) then

eventually come out as follows:

C111(τ, ui) = α1(u1 + u2 + u3, τ)

C123(τ, ui) = α2(u1 + u2 + u3, τ) (51)

C132(τ, ui) = α3(u1 + u2 + u3, τ)

(plus obvious cyclic transforms of the indices).
This reproduces results first obtained in [76, 77].
Besides potentially interesting for phenomenolog-
ical model building, the A-model expressions (51)
are interesting also for other reasons: Under mir-
ror symmetry, the B typeD0,D2-branes map into
A type D1 branes wrapping special lagrangian 1-
cycles, and the interpretation of the q series ex-
pansion is in terms of disk instantons that span
between the three intersecting D1 branes in ques-
tion – see Fig. 5.

L1

L2

L3

L3

Ψ
(31)
1

Ψ
(12)
2 Ψ

(23)
3

L2

L1

Figure 5. In the A-model mirror picture, the
three-point function gets contributions from tri-
angle shaped instantons that are bounded by
three, pairwise intersectingD1 branes. As shown,
the instantons correspond to holomorphic maps
from the world-sheet disk into the target space
D-brane geometry (we drew it here on the cov-
ering space of the torus). Similarly, higher point
correlators get contributions from polygonal in-
stantons, some examples of which are shown as
well. For the elliptic curve they can be evalu-
ated directly in the A-model [37, 78–80]. How to
explicitly compute them for general Calabi-Yau
manifolds is an open problem.
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Having computed these expansions directly
from the topological B-model means that they
represent a test of homological mirror symme-
try [13, 81] (see [37] for similar computations for
the quartic curve). Particularly interesting would
be a generalization to higher dimensional, com-
pact Calabi-Yau manifolds, as the issue of homo-
logical mirror symmetry becomes for those much
more non-trivial. We intend to report progress
on this elsewhere.

Suffice it for the time being to approach the
problem of computing correlators also from a dif-
ferent angle, namely via the deformation theoret-
ical method outlines in Sect. 3.1. This method
is suitable for computing higher than three-point
functions, but we will restrict here ourselves, for
illustrative purposes, to briefly recover the pre-
vious result for the three point function in that
language.

We consider the following BRST operator,
which takes the brane geometry into account:

Q =





Q1 T i
12Ψ

i
12

Q2 T i
23Ψ

i
23

T i
31Ψ

i
31 Q3



 . (52)

We have seen in the previous section that when
we switch on just a single tachyon VEV, factor-
ization is unspoiled and thus, this deformation in
unobstructed. However if we now switch on two
tachyons, there is an obstruction at second order,
i.e.:

Q2 −W = T i
12T

j
23 λ2(Ψ

i
12,Ψ

j
23) . (53)

This is because in the OPE

λ2(Ψ
i
12,Ψ

j
23) ≡ Ψi

12·Ψ
j
23 = Ck

ij Φ13;k+
{

Q13, ∗
}

(54)

there appears non-trivial bosonic cohomology el-
ements, Φ13;k ∈ Ext2(P1, P3), on the RHS. This
means that the iterative procedure stops already
at second order. The boundary ring structure
constants, Ck

ij , essentially coincide with the three-
point correlators given above (again, correct nor-
malization of all operators is essential here). To
show this, it is crucial to make use of certain

theta-function identities. These are of the generic
form [81]

Θ(u1, τ)·Θ(u2, τ) ∼
∑

Θ(u1−u2, τ)·Θ(u1+u2, τ),

(55)

which mirrors the structure of the OPE (54) (such
identities actually encode the products in the rel-
evant Fukaya category).

As claimed in Section 3.1, the obstruction given
by the RHS of (53) determines a derivative of the
effective superpotential. From (21) the latter is
given (to third order) by

Weff(τ, u) ∼ T i
12T

j
23〈T

ℓ
31Ψ

ℓ
31, Πλ2(Ψ

i
12,Ψ

j
23)〉

= T i
12T

j
23T

k
31Cijk(τ, u) , (56)

where we have made use of Serre duality, i.e.,
〈Ψℓ

ab,Φcd;k〉 = δkℓδadδbc. Its derivative with re-
spect to T31 indeed yields the obstruction term
in (53) (after forming a scalar expression).
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