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Preface to the Second Edition

The first edition of this book was published 5 years ago. When we have been
asked to prepare another edition, we decided not only to correct typographical
errors, update the references, and improve some of the proofs but also to add
new material, some appearing in printed form for the first time.

The major changes in this edition are the following:

(1) A new section about non–commutative Gröbner basis is added to chapter
one, written mainly by Viktor Levandovskyy.

(2) Two new sections about characteristic sets and triangular sets together
with the corresponding decomposition–algorithm are added to chapter
four.

(3) There is a new appendix about polynomial factorization containing uni-
variate factorization over Fp and Q and algebraic extensions, as well as
multivariate factorization over these fields and over the algebraic closure
of Q.

(4) The system Singular has improved quite a lot. A new CD is included,
containing the version 3-0-3 with all examples of the book and several
new Singular–libraries.

(5) The appendix concerning Singular is rewritten corresponding to the
version 3-0-3. In particular, more examples on how to write libraries and
about the communication with other systems are given.

We should like to thank many readers for helpful comments and finding
typographical errors in the first edition. We thank the Singular Team for the
support in producing the new CD. Special thanks to Anne Frühbis–Krüger,
Santiago Laplagne, Thomas Markwig, Hans Schönemann, Oliver Wienand,
for proof–reading, Viktor Levandovskyy for providing the chapter on non–
commutative Gröbner bases and Petra Bäsell for typing the manuscript.

Kaiserslautern, July, 2007 Gert–Martin Greuel
Gerhard Pfister



Preface to the First Edition

In theory there is no difference
between theory and practice.

In practice there is.

Yogi Berra

A SINGULAR Introduction to Commutative Algebra offers a rigorous intro-
duction to commutative algebra and, at the same time, provides algorithms
and computational practice. In this book, we do not separate the theoretical
and the computational part. Coincidentally, as new concepts are introduced,
it is consequently shown, by means of concrete examples and general proce-
dures, how these concepts are handled by a computer. We believe that this
combination of theory and practice will provide not only a fast way to enter
a rather abstract field but also a better understanding of the theory, showing
concurrently how the theory can be applied.

We exemplify the computational part by using the computer algebra sys-
tem Singular, a system for polynomial computations, which was developed
in order to support mathematical research in commutative algebra, algebraic
geometry and singularity theory. As the restriction to a specific system is
necessary for such an exposition, the book should be useful also for users of
other systems (such as Macaulay2 and CoCoA ) with similar goals. Indeed,
once the algorithms and the method of their application in one system is
known, it is usually not difficult to transfer them to another system.

The choice of the topics in this book is largely motivated by what we
believe is most useful for studying commutative algebra with a view toward
algebraic geometry and singularity theory. The development of commutative
algebra, although a mathematical discipline in its own right, has been greatly
influenced by problems in algebraic geometry and, conversely, contributed
significantly to the solution of geometric problems. The relationship between
both disciplines can be characterized by saying that algebra provides rigour
while geometry provides intuition.

In this connection, we place computer algebra on top of rigour, but we
should like to stress its limited value if it is used without intuition.

During the past thirty years, in commutative algebra, as in many parts
of mathematics, there has been a change of interest from a most general
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theoretical setting towards a more concrete and algorithmic understanding.
One of the reasons for this was that new algorithms, together with the devel-
opment of fast computers, allowed non–trivial computations, which had been
intractable before. Another reason is the growing belief that algorithms can
contribute to a better understanding of a problem. The human idea of “under-
standing”, obviously, depends on the historical, cultural and technical status
of the society and, nowadays, understanding in mathematics requires more
and more algorithmic treatment and computational mastering. We hope that
this book will contribute to a better understanding of commutative algebra
and its applications in this sense.

The algorithms in this book are almost all based on Gröbner bases or stan-
dard bases. The theory of Gröbner bases is by far the most important tool for
computations in commutative algebra and algebraic geometry. Gröbner bases
were introduced originally by Buchberger as a basis for algorithms to test the
solvability of a system of polynomial computations, to count the number of
solutions (with multiplicities) if this number is finite and, more algebraically,
to compute in the quotient ring modulo the given polynomials. Since then,
Gröbner bases have played an important role for any symbolic computations
involving polynomial data, not only in mathematics. We present, right at the
beginning, the theory of Gröbner bases and, more generally, standard bases,
in a somewhat new flavour.

Synopsis of the Contents of this Book

From the beginning, our aim is to be able to compute effectively in a poly-
nomial ring as well as in the localization of a polynomial ring at a maximal
ideal. Geometrically, this means that we want to compute globally with (affine
or projective) algebraic varieties and locally with its singularities. In other
words, we develop the theory and tools to study the solutions of a system of
polynomial equations, either globally or in a neighbourhood of a given point.

The first two chapters introduce the basic theories of rings, ideals, modules
and standard bases. They do not require more than a course in linear algebra,
together with some training, to follow and do rigorous proofs. The main
emphasis is on ideals and modules over polynomial rings. In the examples,
we use a few facts from algebra, mainly from field theory, and mainly to
illustrate how to use Singular to compute over these fields.

In order to treat Gröbner bases, we need, in addition to the ring structure,
a total ordering on the set of monomials. We do not require, as is the case
in usual treatments of Gröbner bases, that this ordering be a well–ordering.
Indeed, non–well–orderings give rise to local rings, and are necessary for a
computational treatment of local commutative algebra. Therefore, we intro-
duce, at an early stage, the general notion of localization. Having this, we
introduce the notion of a (weak) normal form in an axiomatic way. The stan-
dard basis algorithm, as we present it, is the same for any monomial ordering,
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only the normal form algorithm differs for well–orderings, called global or-
derings in this book, and for non–global orderings, called local, respectively
mixed, orderings.

A standard basis of an ideal or a module is nothing but a special set of
generators (the leading monomials generate the leading ideal), which allows
the computation of many invariants of the ideal or module just from its
leading monomials. We follow the tradition and call a standard basis for a
global ordering a Gröbner basis. The algorithm for computing Gröbner bases
is Buchberger’s celebrated algorithm. It was modified by Mora to compute
standard bases for local orderings, and generalized by the authors to arbitrary
(mixed) orderings. Mixed orderings are necessary to generalize algorithms
(which use an extra variable to be eliminated later) from polynomial rings to
local rings. As the general standard basis algorithm already requires slightly
more abstraction than Buchberger’s original algorithm, we present it first in
the framework of ideals. The generalization to modules is then a matter of
translation after the reader has become familiar with modules. Chapter 2 also
contains some less elementary concepts such as tensor products, syzygies and
resolutions. We use syzygies to give a proof of Buchberger’s criterion and,
at the same time, the main step for a constructive proof of Hilbert’s syzygy
theorem for the (localization of the) polynomial ring. These first two chapters
finish with a collection of methods on how to use standard bases for various
computations with ideals and modules, so–called “Gröbner basics”.

The next four chapters treat some more involved but central concepts of
commutative algebra. We follow the same method as in the first two chapters,
by consequently showing how to use computers to compute more complicated
algebraic structures as well. Naturally, the presentation is a little more con-
densed, and the verification of several facts of a rather elementary nature are
left to the reader as an exercise.

Chapter 3 treats integral closure, dimension theory and Noether normal-
ization. Noether normalization is a cornerstone in the theory of affine alge-
bras, theoretically as well as computationally. It relates affine algebras, in a
controlled manner, to polynomial algebras. We apply the Noether normaliza-
tion to develop the dimension theory for affine algebras, to prove the Hilbert
Nullstellensatz and E. Noether’s theorem that the normalization of an affine
ring (that is, the integral closure in its total ring of fractions) is a finite ex-
tension. For all this, we provide algorithms and concrete examples on how to
compute them. A highlight of this chapter is the algorithm to compute the
non–normal locus and the normalization of an affine ring. This algorithm is
based on a criterion due to Grauert and Remmert, which had escaped the
computer algebra community for many years, and was rediscovered by T. de
Jong. The chapter ends with an extra section containing some of the larger
procedures, written in the Singular programming language.

Chapter 4 is devoted to primary decomposition and related topics such
as the equidimensional part and the radical of an ideal. We start with the
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usual, short and elegant but not constructive proof, of primary decomposition
of an ideal. Then we present the constructive approach due to Gianni, Trager
and Zacharias. This algorithm returns the primary ideals and the associated
primes of an ideal in the polynomial ring over a field of characteristic 0,
but also works well if the characteristic is sufficiently large, depending on the
given ideal. The algorithm, as implemented in Singular is often surprisingly
fast. As in Chapter 3, we present the main procedures in an extra section.

In contrast to the relatively simple existence proof for primary decom-
position, it is extremely difficult to actually decompose even quite simple
ideals, by hand. The reason becomes clear when we consider the constructive
proofs which are all quite involved, and which use many non–obvious results
from commutative algebra, field theory and Gröbner bases. Indeed, primary
decomposition is an important example, where we learn much more from the
constructive proof than from the abstract one.

In Chapter 5 we introduce the Hilbert function and the Hilbert poly-
nomial of graded modules together with its application to dimension the-
ory. The Hilbert polynomial, respectively its local counterpart, the Hilbert–
Samuel polynomial, contains important information about a homogeneous
ideal in a polynomial ring, respectively an arbitrary ideal, in a local ring.
The most important one, besides the dimension, is the degree in the homoge-
neous case, respectively the multiplicity in the local case. We prove that the
Hilbert (–Samuel) polynomial of an ideal and of its leading ideal coincide,
with respect to a degree ordering, which is the basis for the computation of
these functions. The chapter finishes with a proof of the Jacobian criterion
for affine K–algebras and its application to the computation of the singular
locus, which uses the equidimensional decomposition of the previous chapter;
other algorithms, not using any decomposition, are given in the exercises to
Chapter 7.

Standard bases were, independent of Buchberger, introduced by Hironaka
in connection with resolution of singularities and by Grauert in connection
with deformation of singularities, both for ideals in power series rings. We
introduce completions and formal power series in Chapter 6. We prove the
classical Weierstraß preparation and division theorems and Grauert’s gen-
eralization of the division theorem to ideals, in formal power series rings.
Besides this, the main result here is that standard bases of ideals in power
series rings can be computed if the ideal is generated by polynomials. This is
the basis for computations in local analytic geometry and singularity theory.

The last chapter, Chapter 7, gives a short introduction to homological
algebra. The main purpose is to study various aspects of depth and flatness.
Both notions play an important role in modern commutative algebra and al-
gebraic geometry. Indeed, flatness is the algebraic reason for what the ancient
geometers called “principle of conservation of numbers”, as it guarantees that
certain invariants behave continuously in families of modules, respectively va-
rieties. After studying and showing how to compute Tor–modules, we use Fit-
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ting ideals to show that the flat locus of a finitely presented module is open.
Moreover, we present an algorithm to compute the non–flat locus and, even
further, a flattening stratification of a finitely presented module. We study, in
some detail, the relation between flatness and standard bases, which is some-
what subtle for mixed monomial orderings. In particular, we use flatness to
show that, for any monomial ordering, the ideal and the leading ideal have
the same dimension.

In the final sections of this chapter we use the Koszul complex to study
the relation between the depth and the projective dimension of a module.
In particular, we prove the Auslander–Buchsbaum formula and Serre’s char-
acterization of regular local rings. These can be used to effectively test the
Cohen–Macaulay property and the regularity of a local K–algebra.

The book ends with two appendices, one on the geometric background
and the second one on an overview on the main functionality of the system
Singular.

The geometric background introduces the geometric language, to illus-
trate some of the algebraic constructions introduced in the previous chap-
ters. One of the objects is to explain, in the affine as well as in the projective
setting, the geometric meaning of elimination as a method to compute the
(closure of the) image of a morphism. Moreover, we explain the geometric
meaning of the degree and the multiplicity defined in the chapter on the
Hilbert Polynomial (Chapter 5), and prove some of its geometric properties.
This appendix ends with a view towards singularity theory, just touching
on Milnor and Tjurina numbers, Arnold’s classification of singularities, and
deformation theory. All this, together with other concepts of singularity the-
ory, such as Puiseux series of plane curve singularities and monodromy of
isolated hypersurface singularities, and many more, which are not treated in
this book, can be found in the accompanying libraries of Singular.

The second appendix gives a condensed overview of the programming
language of Singular, data types, functions and control structure of the
system, as well as of the procedures appearing in the libraries distributed
with the system. Moreover, we show by three examples (Maple, Mathematica,
MuPAD), how Singular can communicate with other systems.

How to Use the Text

The present book is based on a series of lectures held by the authors over the
past ten years. We tried several combinations in courses of two, respectively
four, hours per week in a semester (12 – 14 weeks). There are at least four
aspects on how to use the text for a lecture:

(A) Focus on computational aspects of standard bases, and syzygies.

A possible selection for a two–hour lecture is to treat Chapters 1 and 2
completely (possibly omitting 2.6, 2.7). In a four–hour course one can treat,
additionally, 3.1 – 3.5 together with either 4.1 – 4.3 or 4.1 and 5.1 – 5.3.
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(B) Focus on applications of methods based on standard basis, respectively
syzygies, for treating more advanced problems such as primary decom-
position, Hilbert functions, or flatness (regarding the standard basis,
respectively syzygy, computations as “black boxes”).

In this context a two–hour lecture could cover Sections 1.1 – 1.4 (only treat-
ing global orderings), 1.6 (omitting the algorithms), 1.8, 2.1, Chapter 3 and
Section 4.1. A four–hour lecture could treat, in addition, the case of local
orderings, Section 1.5, and selected parts of Chapters 5 and 7.

(C) Focus on the theory of commutative algebra, using Singular as a tool
for examples and experiments.

Here a two–hour course could be based on Sections 1.1, 1.3, 1.4, 2.1, 2.2, 2.4,
2.7, 3.1 – 3.5 and 4.1. For a four–hour lecture one could choose, additionally,
Chapter 5 and Sections 7.1 – 7.4.

(D) Focus on geometric aspects, using Singular as a tool for examples.

In this context a two–hour lecture could be based on Appendix A.1, A.2 and
A.4, together with the needed concepts and statements of Chapters 1 and 3.
For a four–hour lecture one is free to choose additional parts of the appendix
(again together with the necessary background from Chapters 1 – 7).

Of course, the book may also serve as a basis for seminars and, last but
not least, as a reference book for computational commutative algebra and
algebraic geometry.

Working with SINGULAR

The original motivation for the authors to develop a computer algebra system
in the mid eighties, was the need to compute invariants of ideals and modules
in local rings, such as Milnor numbers, Tjurina numbers, and dimensions
of modules of differentials. The question was whether the exactness of the
Poincaré complex of a complete intersection curve singularity is equivalent
to the curve being quasihomogeneous. This question was answered by an
early version of Singular: it is not [190]. In the sequel, the development of
Singular was always influenced by mathematical problems, for instance, the
famous Zariski conjecture, saying that the constancy of the Milnor number in
a family implies constant multiplicity [111]. This conjecture is still unsolved.

Enclosed in the book one finds a CD with folders EXAMPLES, LIBRARIES,
MAC, MANUAL, UNIX and WINDOWS. The folder EXAMPLES contains all Singular

Examples of the book, the procedures and the links to Mathematica, Maple
and MuPAD. The other folders contain the Singular binaries for the respec-
tive platforms, the manual, a tutorial and the Singular libraries. Singular

can be installed following the instructions in the INSTALL <platform>.html
(or INSTALL <platform>.txt) file of the respective folder. We also should
like to refer to the Singular homepage
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http://www.singular.uni-kl.de

which always offers the possibility to download the newest version of Singu-

lar, provides support for Singular users and a discussion forum. Moreover,
one finds there a lot of useful information around Singular, for instance,
more advanced examples and applications than provided in this book.

Comments and Corrections

We should like to encourage comments, suggestions and corrections to the
book. Please send them to either of us:

Gert–Martin Greuel greuel@mathematik.uni-kl.de
Gerhard Pfister pfister@mathematik.uni-kl.de

We also encourage the readers to check the web site for A SINGULAR In-
troduction to Commutative Algebra,

http://www.singular.uni-kl.de/Singular-book.html

This site will contain lists of corrections, respectively of solutions for selected
exercises.
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1. Rings, Ideals and Standard Bases

1.1 Rings, Polynomials and Ring Maps

The concept of a ring is probably the most basic one in commutative and
non–commutative algebra. Best known are the ring of integers Z and the
polynomial ring K[x] in one variable x over a field K.

We shall now introduce the general concept of a ring with special emphasis
on polynomial rings.

Definition 1.1.1.

(1) A ring is a set A together with an addition + : A×A→ A, (a, b) �→ a+b,
and a multiplication · : A×A→ A, (a, b) �→ a · b = ab, satisfying
a) A, together with the addition, is an abelian group; the neutral ele-

ment being denoted by 0 and the inverse of a ∈ A by −a;
b) the multiplication on A is associative, that is, (ab)c = a(bc) and the

distributive law holds, that is, a(b+c) = ab+ac and (b+c)a = ba+ca,
for all a, b, c ∈ A.

(2) A is called commutative if ab = ba for a, b ∈ A and has an identity if there
exists an element in A, denoted by 1, such that 1 · a = a · 1 for all a ∈ A.

In this book, except for chapter 1.9, a ring always means a commutative ring
with identity. Because of (1) a ring cannot be empty but it may consist only
of one element 0, this being the case if and only if 1 = 0.

Definition 1.1.2.

(1) A subset of a ring A is called a subring if it contains 1 and is closed under
the ring operations induced from A.

(2) u ∈ A is called a unit if there exists a u′ ∈ A such that uu′ = 1. The set
of units is denoted by A∗; it is a group under multiplication.

(3) A ring is a field if 1 �= 0 and any non–zero element is a unit, that is
A∗ = A− {0}.

(4) Let A be a ring, a ∈ A, then 〈a〉 := {af | f ∈ A}.
Any field is a ring, such as Q (the rational numbers), or R (the real numbers),
or C (the complex numbers), or Fp = Z/pZ (the finite field with p elements
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where p is a prime number, cf. Exercise 1.1.3) but Z (the integers) is a ring
which is not a field.

Z is a subring of Q, we have Z
∗ = {±1}, Q

∗ = Q � {0}. N ⊂ Z denotes
the set of nonnegative integers.

Definition 1.1.3. Let A be a ring.

(1) A monomial in n variables (or indeterminates) x1, . . . , xn is a power
product

xα = xα1
1 · . . . · xαn

n , α = (α1, . . . , αn) ∈ N
n .

The set of monomials in n variables is denoted by

Mon(x1, . . . , xn) = Monn := {xα | α ∈ N
n} .

Note that Mon(x1, . . . , xn) is a semigroup under multiplication, with neu-
tral element 1 = x0

1 · . . . · x0
n.

We write xα | xβ if xα divides xβ , which means that αi ≤ βi for all i and,
hence, xβ = xγxα for γ = β − α ∈ N

n.
(2) A term is a monomial times a coefficient (an element of A),

axα = axα1
1 · . . . · xαn

n , a ∈ A .

(3) A polynomial over A is a finite A–linear combination of monomials, that
is, a finite sum of terms,

f =
∑

α

aαx
α =

finite∑

α∈Nn

aα1...αnx
α1
1 · . . . · xαn

n ,

with aα ∈ A. For α ∈ N
n, let |α| := α1 + · · ·+ αn.

The integer deg(f) := max{|α| | aα �= 0} is called the degree of f if f �= 0;
we set deg(f) = −1 for f the zero polynomial.

(4) The polynomial ring A[x] = A[x1, . . . , xn] in n variables over A is the set
of all polynomials together with the usual addition and multiplication:

∑

α

aαx
α +

∑

α

bαx
α :=

∑

α

(aα + bα)xα,

(
∑

α

aαx
α

)
·
⎛

⎝
∑

β

bβx
β

⎞

⎠ :=
∑

γ

⎛

⎝
∑

α+β=γ

aαbβ

⎞

⎠ xγ .

A[x1, . . . , xn] is a commutative ring with identity 1 = x0
1 · . . . · x0

n which we
identify with the identity element 1 ∈ A. Elements of A ⊂ A[x] are called
constant polynomials , they are characterized by having degree≤ 0. A is called
the ground ring of A[x], respectively the ground field , if A is a field.
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Note that any monomial is a term (with coefficient 1) but, for example, 0 is
a term but not a monomial. For us the most important case is the polynomial
ring K[x] = K[x1, . . . , xn] over a field K. By Exercise 1.3.1 only the non–zero
constants are units of K[x], that is, K[x]∗ = K∗ = K � {0}.

If K is an infinite field, we can identify polynomials f ∈ K[x1, . . . , xn]
with their associated polynomial function

f̃ : Kn −→ K, (p1, . . . , pn) �−→ f(p1, . . . , pn) ,

but for finite fields f̃ may be zero for a non–zero f (cf. Exercise 1.1.4).
Any polynomial in n− 1 variables can be considered as a polynomial in n

variables (where the n–th variable does not appear) with the usual ring oper-
ations on polynomials in n variables. Hence, A[x1, . . . , xn−1] ⊂ A[x1, . . . , xn]
is a subring and it follows directly from the definition of polynomials that

A[x1, . . . , xn] = (A[x1, . . . , xn−1])[xn] .

Hence, we can write f ∈ A[x1, . . . , xn] in a unique way, either as

f =
finite∑

α∈Nn

aαx
α, aα ∈ A

or as

f =
finite∑

ν∈N

fνx
ν
n , fν ∈ A[x1, . . . , xn−1] .

The first representation of f is called distributive while the second is called
recursive.

Remark 1.1.4. Both representations play an important role in computer al-
gebra. The practical performance of an implemented algorithm may depend
drastically on the internal representation of polynomials (in the computer).
Usually the distributive representation is chosen for algorithms related to
Gröbner basis computations while the recursive representation is preferred
for algorithms related to factorization of polynomials.

Definition 1.1.5. A morphism or homomorphism of rings is a map ϕ : A→
B satisfying ϕ(a+ a′) = ϕ(a) + ϕ(a′), ϕ(aa′) = ϕ(a)ϕ(a′), for all a, a′ ∈ A,
and ϕ(1) = 1. We call a morphism of rings also a ring map, and B is called
an A–algebra.1

We have ϕ(a) = ϕ(a · 1) = ϕ(a) · 1. If ϕ is fixed, we also write a · b instead of
ϕ(a) · b for a ∈ A and b ∈ B.

1 See also Example 2.1.2 and Definition 2.1.3.
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Lemma 1.1.6. Let A[x1, . . . xn] be a polynomial ring, ψ : A→ B a ring
map, C a B–algebra, and f1, . . . , fn ∈ C. Then there exists a unique ring
map

ϕ : A[x1, . . . , xn] −→ C

satisfying ϕ(xi) = fi for i = 1, . . . , n and ϕ(a) = ψ(a) · 1 ∈ C for a ∈ A.

Proof. Given any f =
∑
α aαx

α ∈ A[x], then a ring map ϕ with ϕ(xi) = fi,
and ϕ(a) = ψ(a) for a ∈ A must satisfy (by Definition 1.1.5)

ϕ(f) =
∑

α

ψ(aα)ϕ(x1)α1 · . . . · ϕ(xn)αn .

Hence, ϕ is uniquely determined. Moreover, defining ϕ(f) for f ∈ A[x] by
the above formula, it is easy to see that ϕ becomes a homomorphism, which
proves existence.

We shall apply this lemma mainly to the case where C is the polynomial ring
B[y1, . . . , ym].

In Singular one can define polynomial rings over the following fields:

(1) the field of rational numbers Q,
(2) finite fields Fp, p a prime number ≤ 32003,
(3) finite fields GF(pn) with pn elements, p a prime, pn ≤ 215,
(4) transcendental extensions of Q or Fp,
(5) simple algebraic extensions of Q or Fp,
(6) simple precision real floating point numbers,
(7) arbitrary prescribed real floating point numbers,
(8) arbitrary prescribed complex floating point numbers.

For the definitions of rings over fields of type (3) and (5) we use the fact that
for a polynomial ring K[x] in one variable x over a field and f ∈ K[x] � {0}
the quotient ring K[x]/〈f〉 is a field if and only if f is irreducible, that is, f
cannot be written as a product of two polynomials of lower degree (cf. Ex-
ercise 1.1.5). If f is irreducible and monic, then it is called the minimal
polynomial of the field extension K ⊂ K[x]/〈f〉 (cf. Example 1.1.8).

Remark 1.1.7. Indeed, the computation over the above fields (1) – (5) is
exact, only limited by the internal memory of the computer. Strictly speaking,
floating point numbers, as in (6) – (8), do not represent the field of real (or
complex) numbers. Because of rounding errors, the product of two non–zero
elements or the difference between two unequal elements may be zero (the
latter case is the more serious one since the individual elements may be very
big). Of course, in many cases one can trust the result, but we should like
to emphasize that this remains the responsibility of the user, even if one
computes with very high precision.
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In Singular, field elements have the type number but notice that one can
define and use numbers only in a polynomial ring with at least one variable
and a specified monomial ordering. For example, if one wishes to compute
with arbitrarily big integers or with exact arithmetic in Q, this can be done
as follows:

SINGULAR Example 1.1.8 (computation in fields).
In the examples below we have used the degree reverse lexicographical or-
dering dp but we could have used any other monomial ordering (cf. Section
1.2). Actually, this makes no difference as long as we do simple manipulations
with polynomials. However, more complicated operations on ideals such as
the std or groebner command return results which depend very much on
the chosen ordering.

(1) Computation in the field of rational numbers :

ring A = 0,x,dp;
number n = 12345/6789;
n^5; //common divisors are cancelled
//-> 1179910858126071875/59350279669807543

Note: Typing just 123456789^5; will result in integer overflow since
123456789 is considered as an integer (machine integer of limited size)
and not as an element in the field of rational numbers; however, also
correct would be number(123456789)^5;.

(2) Computation in finite fields :

ring A1 = 32003,x,dp; //finite field Z/32003
number(123456789)^5;
//-> 8705

ring A2 = (2^3,a),x,dp; //finite (Galois) field GF(8)
//with 8 elements

number n = a+a2; //a is a generator of the group
//GF(8)-{0}

n^5;
//-> a6
minpoly; //minimal polynomial of GF(8)
//-> 1*a^3+1*a^1+1*a^0

ring A3 = (2,a),x,dp; //infinite field Z/2(a) of
//characteristic 2

minpoly = a20+a3+1; //define a minimal polynomial
//a^20+a^3+1
//now the ground field is
//GF(2^20)=Z/2[a]/<a^20+a^3+1>,

number n = a+a2; //a finite field
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//with 2^20 elements
n^5; //a is a generator of the group

//GF(2^20)-{0}
//-> (a10+a9+a6+a5)

Note: For computation in finite fields Z/pZ, p ≤ 32003, respectively
GF (pn), pn ≤ 215, one should use rings as A1 respectively A2 since for
these fields Singular uses look–up tables, which is quite fast. For other
finite fields a minimal polynomial as in A3 must be specified. A good
choice are the Conway polynomials (cf. [126]). Singular does not, how-
ever, check the irreducibility of the chosen minimal polynomial. This can
be done as in the following example.

ring tst = 2,a,dp;
factorize(a20+a2+1,1);
//-> _[1]=a3+a+1 //not irreducible! We have two factors
//-> _[2]=a7+a5+a4+a3+1
factorize(a20+a3+1,1); //irreducible
//-> _[1]=a20+a3+1

To obtain the multiplicities of the factors, use factorize(a20+a2+1);.

(3) Computation with real and complex floating point numbers , 30 digits
precision:

ring R1 = (real,30),x,dp;
number n = 123456789.0;
n^5; //compute with a precision of 30 digits
//-> 0.286797186029971810723376143809e+41

Note: n5 is a number whose integral part has 41 digits (indicated by
e+41). However, only 30 digits are computed.

ring R2 = (complex,30,I),x,dp;//I denotes imaginary unit
number n = 123456789.0+0.0001*I;
n^5; //complex number with 30 digits precision
//-> (0.286797186029971810723374262133e+41

+I*116152861399129622075046746710)

(4) Computation with rational numbers and parameters , that is, in Q(a, b, c),
the quotient field of Q[a, b, c]:

ring R3 = (0,a,b,c),x,dp;
number n = 12345a+12345/(78bc);
n^2;
//->(103021740900a2b2c2+2641583100abc+16933225)/(676b2c2)
n/9c;
//-> (320970abc+4115)/(234bc2)
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We shall now show how to define the polynomial ring in n variables x1, . . . , xn
over the above mentioned fields K. We can do this for any n, but we have
to specify an integer n first. The same remark applies if we work with tran-
scendental extensions of degree m; we usually call the elements t1, . . . , tm of
a transcendental basis (free) parameters . If g is any non–zero polynomial in
the parameters t1, . . . , tm, then g and 1/g are numbers in the corresponding
ring.

For further examples see the Singular Manual [116].

SINGULAR Example 1.1.9 (computation in polynomial rings).

Let us create polynomial rings over different fields. By typing the name of
the ring we obtain all relevant information about the ring.

ring A = 0,(x,y,z),dp;
poly f = x3+y2+z2; //same as x^3+y^2+z^2
f*f-f;
//-> x6+2x3y2+2x3z2+y4+2y2z2+z4-x3-y2-z2

Singular understands short (e.g., 2x2+y3) and long (e.g., 2*x^2+y^3) input.
By default the short output is displayed in rings without parameters and with
one–letter variables, whilst the long output is used, for example, for indexed
variables. The command short=0; forces all output to be displayed in the
long format.

Computations in polynomial rings over other fields follow the same pat-
tern. Try ring R=32003,x(1..3),dp; (finite ground field), respectively ring
R=(0,a,b,c),(x,y,z,w),dp; (ground field with parameters), and type R;
to obtain information about the ring. The command setring allows switch-
ing from one ring to another, for example, setring A4; makes A4 the
basering.

We use Lemma 1.1.6 to define ring maps in Singular. Indeed, one has three
possibilities, fetch, imap and map, to define ring maps by giving the name
of the preimage ring and a list of polynomials f1, . . . , fn (as many as there
are variables in the preimage ring) in the current basering. The commands
fetch, respectively imap, map an object directly from the preimage ring to
the basering whereas fetch maps the first variable to the first, the second to
the second and so on (hence, is convenient for renaming the variables), while
imap maps a variable to the variable with the same name (or to 0 if it does
not exist), hence is convenient for inclusion of sub–rings or for changing the
monomial ordering.

Note: All maps go from a predefined ring to the basering.



8 1. Rings, Ideals and Standard Bases

SINGULAR Example 1.1.10 (methods for creating ring maps).

map: preimage ring −→ basering

(1) General definition of a map:

ring A = 0,(a,b,c),dp;
poly f = a+b+ab+c3;

ring B = 0,(x,y,z),dp;
map F = A, x+y,x-y,z;//map F from ring A (to basering B)

//sending a -> x+y, b -> x-y, c -> z
poly g = F(f); //apply F
g;
//-> z3+x2-y2+2x

(2) Special maps (imap, fetch):

ring A1 = 0,(x,y,c,b,a,z),dp;
imap(A,f); //imap preserves names of variables
//-> c3+ba+b+a
fetch(A,f); //fetch preserves order of variables
//-> c3+xy+x+y

Exercises

1.1.1. The set of units A∗ of a ring A is a group under multiplication.

1.1.2. The direct sum of rings A⊕B, together with component–wise addi-
tion and multiplication is again a ring.

1.1.3. Prove that, for n ∈ Z, the following are equivalent:

(1) Z/〈n〉 is a field.
(2) Z/〈n〉 is an integral domain.
(3) n is a prime number.

1.1.4. Let K be a field and f ∈ K[x1, . . . , xn]. Then f determines a polyno-
mial function f̃ : Kn → K, (p1, . . . , pn) �→ f(p1, . . . , pn).

(1) If K is infinite then f is uniquely determined by f̃ .
(2) Show by an example that this is not necessarily true for K finite.
(3) Let K be a finite field with q elements. Show that each polynomial

f ∈ K[x1, . . . , xn] of degree at most q − 1 in each variable is already de-
termined by the polynomial function f̃ : Kn → K.

1.1.5. Let f ∈ K[x] be a non–constant polynomial in one variable over the
field K. f is called irreducible if f �∈ K and if it is not the product of two
polynomials of strictly smaller degree. Prove that the following are equivalent:
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(1) K[x]/〈f〉 is a field.
(2) K[x]/〈f〉 is an integral domain.
(3) f is irreducible.

1.1.6. An irreducible polynomial f = anx
n + · · ·+ a1x+ a0 ∈ K[x], K a

field, is called separable, if f has only simple roots in K, the algebraic closure
of K.

An algebraic field extensionK ⊂ L is called separable if any element a ∈ L
is separable over K, that is, the minimal polynomial of a over K is separable.

(1) Show that f �= 0 is separable if and only if f and its formal derivative
Df := nanx

n−1 + · · ·+ a1 have no common factor of degree ≥ 1.
(2) A finite separable field extension K ⊂ L is generated by a primi-

tive element , that is, there exists an irreducible f ∈ K[x] such that
L ∼= K[x]/〈f〉.

(3) K is called a perfect field if every irreducible polynomial f ∈ K[x] is
separable. Show that finite fields, algebraically closed fields and fields of
characteristic 0 are perfect.

1.1.7. Which of the fields in Singular, (1) – (5), are perfect, which not?

1.1.8. Compute (10!)^5 with the help of Singular.

1.1.9. Declare in Singular a polynomial ring in the variables x(1), x(2),
x(3), x(4) over the finite field with eight elements

1.1.10. Declare in Singular the ring A = Q(a, b, c)[x, y, z, w] and compute
f2/c2 for f = (ax3+ by2+ cz2)(ac− bc).
1.1.11. Declare in Singular the rings A = Q[a, b, c] and B = Q[a]. In A de-
fine the polynomial f = a+ b+ ab+ c3. Try in B the commands imap(A,f)
and fetch(A,f).

1.1.12. Declare in Singular the ring Q(i)[u, v, w], i2 = −1, and compute(
(i+ i2+ 1)(uvw)

)3
.

1.1.13. Write a Singular procedure, depending on two integers p, d, with
p a prime, which returns all polynomials in Fp[x] of degree d such that the
corresponding polynomial function vanishes. Use the procedure to display all
f ∈ (Z/5Z)[x] of degree ≤ 6 such that f̃ = 0.

1.2 Monomial Orderings

The presentation of a polynomial as a linear combination of monomials is
unique only up to an order of the summands, due to the commutativity of
the addition. We can make this order unique by choosing a total ordering on
the set of monomials. For further applications it is necessary, however, that
the ordering is compatible with the semigroup structure on Monn.
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Definition 1.2.1. A monomial ordering or semigroup ordering is a total
(or linear) ordering > on the set of monomials Monn = {xα | α ∈ N

n} in n
variables satisfying

xα > xβ =⇒ xγxα > xγxβ

for all α, β, γ ∈ N
n. We say also > is a monomial ordering on A[x1, . . . , xn],

A any ring, meaning that > is a monomial ordering on Monn.

We identify Monn with N
n, and then a monomial ordering is a total ordering

on N
n, which is compatible with the semigroup structure on N

n given by ad-
dition. A typical, and important, example is provided by the lexicographical
ordering on N

n: xα > xβ if and only if the first non–zero entry of α − β is
positive. We shall see different monomial orderings later.

Monomial orderings provide an extra structure on the set of monomials
and, hence, also on the polynomial ring. Although they have been used in
several places to prove difficult mathematical theorems they are hardly part
of classical commutative algebra. Monomial orderings, however, can be quite
powerful tools in theoretical investigations (cf. [98]) but, in addition, they are
indispensable in many serious and deeper polynomial computations.

From a practical point of view, a monomial ordering > allows us to write
a polynomial f ∈ K[x] in a unique ordered way as

f = aαx
α + aβx

β + · · ·+ aγx
γ ,

with xα > xβ > · · · > xγ , where no coefficient is zero (a sparse representation
of f). Moreover, this allows the representation of a polynomial in a computer
as an ordered list of coefficients, making equality tests very simple and fast
(assuming this is the case for the ground field). Additionally, this order does
not change if we multiply f with a monomial. For highly sophisticated presen-
tations of monomials and polynomials in a computer see [10]. There are many
more and deeper properties of monomial orderings and, moreover, different
orderings have different further properties.

Definition 1.2.2. Let > be a fixed monomial ordering. Write f ∈ K[x],
f �= 0, in a unique way as a sum of non–zero terms

f = aαx
α + aβx

β + · · ·+ aγx
γ , xα > xβ > · · · > xγ ,

and aα, aβ , . . . , aγ ∈ K. We define:

(1) LM(f) := leadmonom(f):= xα, the leading monomial of f ,
(2) LE(f) := leadexp(f):= α, the leading exponent of f ,
(3) LT(f) := lead(f):= aαx

α, the leading term or head of f ,
(4) LC(f) := leadcoef(f):= aα, the leading coefficient of f
(5) tail(f) := f− lead(f)= aβx

β + · · ·+ aγx
γ , the tail of f .
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Let us consider an example with the lexicographical ordering. In Singular

every polynomial belongs to a ring which has to be defined first. We define
the ring A = Q[x, y, z] together with the lexicographical ordering.

A is the name of the ring, 0 the characteristic of the ground field Q, x, y, z
are the names of the variables and lp defines the lexicographical ordering with
x > y > z, see Example 1.2.8.

SINGULAR Example 1.2.3 (leading data).

ring A = 0,(x,y,z),lp;
poly f = y4z3+2x2y2z2+3x5+4z4+5y2;
f; //display f in a lex-ordered way
//-> 3x5+2x2y2z2+y4z3+5y2+4z4
leadmonom(f); //leading monomial
//-> x5
leadexp(f); //leading exponent
//-> 5,0,0
lead(f); //leading term
//-> 3x5
leadcoef(f); //leading coefficient
//-> 3
f - lead(f); //tail
//-> 2x2y2z2+y4z3+5y2+4z4

The most important distinction is between global and local orderings.

Definition 1.2.4. Let > be a monomial ordering on {xα | α ∈ N
n}.

(1) > is called a global ordering if xα > 1 for all α �= (0, . . . , 0),
(2) > is called a local ordering if xα < 1 for all α �= (0, . . . , 0),
(3) > is called a mixed ordering if it is neither global nor local.

Of course, if we turn the ordering around by setting xα >′ xβ if xβ > xα,
then >′ is global if and only if > is local. However, local and global (and
mixed) orderings have quite different properties. Here are the most important
characterizations of a global ordering.

Lemma 1.2.5. Let > be a monomial ordering, then the following conditions
are equivalent:

(1) > is a well–ordering.
(2) xi > 1 for i = 1, . . . , n.
(3) xα > 1 for all α �= (0, . . . , 0), that is, > is global.
(4) α ≥nat β and α �= β implies xα > xβ.

The last condition means that> is a refinement of the natural partial ordering
on N

n defined by

(α1, . . . , αn) ≥nat (β1, . . . , βn) :⇐⇒ αi ≥ βi for all i .
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Proof. (1)⇒ (2): if xi < 1 for some i, then xpi < xp−1
i < 1, yielding a set of

monomials without smallest element (recall that a well–ordering is a total
ordering on a set such that each non–empty subset has a smallest element).

(2)⇒ (3): write xα = xα
′
xj for some j and use induction. For (3)⇒ (4)

let (α1, . . . , αn) ≥nat (β1, . . . , βn) and α �= β. Then γ := α− β ∈ N
n

� {0},
hence xγ > 1 and, therefore, xα = xβxγ > xβ .

(4)⇒ (1): Let M be a non–empty set of monomials. By Dickson’s Lemma
(Lemma 1.2.6) there is a finite subset B ⊂M such that for each xα ∈M
there is an xβ ∈ B with β ≤nat α. By assumption, xβ < xα or xβ = xα, that
is, B contains a smallest element of M with respect to >.

Lemma 1.2.6 (Dickson, 1913). Let M ⊂ N
n be any subset. Then there

is a finite set B ⊂M satisfying

∀ α ∈M ∃ β ∈ B such that β ≤nat α .

B is sometimes called a Dickson basis of M .

Proof. We write ≥ instead of ≥nat and use induction on n. For n = 1 we can
take the minimum of M as the only element of B.

For n > 1 and i ∈ N define

Mi = {α′ = (α1, . . . , αn−1) ∈ N
n−1 | (α′, i) ∈M}

and, by induction, Mi has a Dickson basis Bi.
Again, by induction hypothesis,

⋃
i∈N

Bi has a Dickson basis B′. B′ is
finite, hence B′ ⊂ B1 ∪ · · · ∪Bs for some s.

We claim that

B := {(β′, i) ∈ N
n | 0 ≤ i ≤ s, β′ ∈ Bi}

is a Dickson basis of M .
To see this, let (α′, αn) ∈M . Then α′ ∈Mαn and, since Bαn is a Dickson

basis of Mαn , there is a β′ ∈ Bαn with β′ ≤ α′. If αn ≤ s, then (β′, αn) ∈ B
and (β′, αn) ≤ (α′, αn). If αn > s, we can find a γ′ ∈ B′ and an i ≤ s such
that γ′ ≤ β′ and (γ′, i) ∈ Bi. Then (γ′, i) ∈ B and (γ′, i) ≤ (α′, αn).

Remark 1.2.7. If A is an n× n integer matrix with only non–negative entries
and determinant �= 0, and if > is a monomial ordering, we can define a matrix
ordering >(A,>) by setting

xα >(A,>) x
β :⇐⇒ xAα > xAβ

where α and β are considered as column vectors. By Exercise 1.2.6 (2), >(A,>)

is again a monomial ordering. We can even use matrices A ∈ GL(n,R) with
real entries to obtain a monomial ordering by setting

xα >A x
β :⇐⇒ Aα > Aβ ,
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where > on the right–hand side is the lexicographical ordering on R
n.

Robbiano proved in [196], that every monomial ordering arises in this way
from the lexicographical ordering on R

n. However, we do not need this fact
(cf. Exercise 1.2.9).

Important examples of monomial orderings are:

Example 1.2.8 (monomial orderings).
In the following examples we fix an enumeration x1, . . . , xn of the variables,
any other enumeration leads to a different ordering.

(1) Global Orderings

(i) Lexicographical ordering >lp (also denoted by lex):

xα >lp x
β :⇐⇒ ∃ 1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi > βi .

(ii) Degree reverse lexicographical ordering >dp (denoted by degrevlex):

xα >dp x
β :⇐⇒ deg xα > deg xβ

or
(
deg xα = deg xβ and ∃ 1 ≤ i ≤ n :

αn = βn, . . . , αi+1 = βi+1, αi < βi
)
,

where deg xα = α1 + · · ·+ αn.
(iii) Degree lexicographical ordering >Dp (also denoted by deglex):

xα >Dp x
β :⇐⇒ deg xα > deg xβ

or
(
deg xα = deg xβ and ∃ 1 ≤ i ≤ n :

α1 = β1, . . . , αi−1 = βi−1, αi > βi
)
.

In all three cases x1, . . . , xn > 1. For example, we have x3
1 >lp x

2
1x

2
2 but

x2
1x

2
2 >dp,Dp x

3
1. An example where dp and Dp differ: x2

1x2x
2
3 >Dp x1x

3
2x3

but x1x
3
2x3 >dp x

2
1x2x

2
3.

Given a vector w = (w1, . . . , wn) of integers, we define the weighted degree
of xα by

w–deg(xα) := 〈w,α〉 := w1α1 + · · ·+ wnαn ,

that is, the variable xi has degree wi. For a polynomial f =
∑
α aαx

α,
we define the weighted degree,

w–deg(f) := max
{
w–deg(xα)

∣∣ aα �= 0
}
.

Using the weighted degree in (ii), respectively (iii), with all wi > 0, in-
stead of the usual degree, we obtain the weighted reverse lexicographical
ordering, wp(w1, . . . , wn), respectively the weighted lexicographical order-
ing, Wp(w1, . . . , wn).
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(2) Local Orderings

(i) Negative lexicographical ordering >ls:

xα >ls x
β :⇐⇒ ∃ 1 ≤ i ≤ n, α1 = β1, . . . , αi−1 = βi−1, αi < βi .

(ii) Negative degree reverse lexicographical ordering >ds:

xα >ds x
β :⇐⇒ deg xα < deg xβ , where deg xα = α1 + · · ·+ αn,

or
(
deg xα = deg xβ and ∃ 1 ≤ i ≤ n :

αn = βn, . . . , αi+1 = βi+1, αi < βi
)
.

(iii) Negative degree lexicographical ordering >Ds:

xα >Ds x
β :⇐⇒ deg xα < deg xβ ,

or
(
deg xα = deg xβ and ∃ 1 ≤ i ≤ n :

α1 = β1, . . . , αi−1 = βi−1, αi > βi
)
.

Similarly, as above, we can define weighted versions ws(w1, . . . , wn) and
Ws(w1, . . . , wn) of the two last local orderings.

(3) Product or Block Orderings

Now consider >1, a monomial ordering on Mon(x1, . . . , xn), and >2, a
monomial ordering on Mon(y1, . . . , ym). Then the product ordering or
block ordering>, also denoted by (>1, >2) on Mon(x1, . . . , xn, y1, . . . , ym),
is defined as

xαyβ > xα
′
yβ

′
:⇐⇒ xα >1 x

α′

or
(
xα = xα

′
and yβ >2 y

β′)
.

If >1 is a global ordering then the product ordering has the property
that monomials which contain an xi are always larger than monomi-
als containing no xi. If the special orderings >1 on Mon(x1, . . . , xn)
and >2 on Mon(y1, . . . , ym) are irrelevant, for a product ordering on
Mon(x1, . . . , xn, y1, . . . , ym) we write just x� y.
If >1 and >2 are global (respectively local), then the product ordering
is global (respectively local) but the product ordering is mixed if one of
the orderings >1 and >2 is global and the other local. This is how mixed
orderings arise in a natural way.

Definition 1.2.9. A monomial ordering > on {xα | α ∈ N
n} is called a

weighted degree ordering if there exists a vector w = (w1, . . . , wn) of non–
zero integers such that

w–deg(xα) > w–deg(xβ) =⇒ xα > xβ .

It is called a global (respectively local) degree ordering if the above holds for
wi = 1 (respectively wi = −1) for all i.
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Remark 1.2.10. Consider a matrix ordering defined by A ∈ GL(n,R). Since
the columns of A are lexicographically greater than the 0–vector if and only
if the variables are greater than 1, it follows that a matrix ordering >A is a
well–ordering if and only if the first non–zero entry in each column of A is
positive. It is a (weighted) degree ordering if and only if all entries in the first
row of A are non–zero.

Of course, different matrices can define the same ordering. For examples
of matrices defining the above orderings see the Singular Manual.

Although we can represent any monomial ordering > as a matrix ordering
>A for some A ∈ GL(n,R), it turns out to be useful to represent > just by
one weight vector. This is, in general, not possible on the set of all monomials
(cf. Exercise 1.2.10) but it is possible, as we shall see, for finite subsets.

For this purpose, we introduce the set of differences

D := {α− β | xα > xβ} ⊂ Z
n

associated to a monomial ordering on Mon(x1, . . . , xn). D has the following
properties,

• 0 �∈ D,
• γ1, γ2 ∈ D =⇒ γ1 + γ2 ∈ D.

The last property follows from the fact that > is a semigroup ordering.
Namely, if γ1 = α1 − β1, γ2 = α2 − β2 ∈ D, then xα1 > xβ1 implies that
xα1+α2 > xβ1+α2 , and xα2 > xβ2 implies that xβ1+α2 > xβ1+β2 , therefore
xα1+α2 > xβ1+β2 and γ1 + γ2 = (α1 + α2)− (β1 + β2) ∈ D.

It follows that
∑k

i=1 niγi ∈ D for ni ∈ N � {0} and γi ∈ D, and, hence,∑k
i=1 riγi �= 0 for any finite linear combination of elements ofD with ri ∈ Q>0.

In particular, no convex combination
∑k

i=1 riγi, ri ∈ Q≥0,
∑k
i=1 ri = 1, yields

0, that is, 0 is not contained in the convex hull of D. This fact will be used
in the following lemma.

Lemma 1.2.11. Let > be a monomial ordering and M ⊂ Mon(x1, . . . , xn) a
finite set. Then there exists some w = (w1, . . . , wn) ∈ Z

n such that xα > xβ

if and only if 〈w,α〉 > 〈w, β〉 for all xα, xβ ∈M . Moreover, w can be chosen
such that wi > 0 for xi > 1 and wi < 0 if xi < 1.

The integer vector w is called a weight–vector and we say that w induces >
on M .

Proof. Since 〈w,α〉 > 〈w, β〉 if and only if 〈w,α − β〉 > 0, we have to find
w ∈ Z

n such that 〈w, γ〉 > 0 for all

γ ∈ DM := {α− β ∈ D | xα, xβ ∈M, xα > xβ} .
This means thatDM should be in the positive half–space defined by the linear
form 〈w,−〉 on Q

n. Since 0 is not contained in the convex hull of DM and
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since DM is finite, we can, indeed, find such a linear form (see, for example,
[221], Theorem 2.10).

To see the last statement, include 1 and xi, i = 1, . . . , n, into M . Then
wi > 0 if xi > 1 and wi < 0 if xi < 1.

Example 1.2.12. A weight vector for the lexicographical ordering lp can be
determined as follows. For M ⊂ Monn finite, consider an n–dimensional cube
spanned by the coordinate axes containingM . Choose an integer v larger than
the side length of this cube. Then w = (vn−1, vn−2, . . . , v, 1) induces lp on
M .

We shall now define in Singular the same ring Q[x, y, z] with different or-
derings, which are considered as different rings in Singular. Then we map a
given polynomial f to the different rings using imap and display f as a sum
of terms in decreasing order, the method by which f is represented in the
given ring.

SINGULAR Example 1.2.13 (monomial orderings).
Global orderings are denoted with a p at the end, referring to “polynomial
ring” while local orderings end with an s, referring to “series ring”. Note that
Singular stores and outputs a polynomial in an ordered way, in decreasing
order.

(1) Global orderings:

ring A1 = 0,(x,y,z),lp; //lexicographical
poly f = x3yz + y5 + z4 + x3 + xy2; f;
//-> x3yz+x3+xy2+y5+z4

ring A2 = 0,(x,y,z),dp; //degree reverse lexicographical
poly f = imap(A1,f); f;
//-> y5+x3yz+z4+x3+xy2

ring A3 = 0,(x,y,z),Dp; //degree lexicographical
poly f = imap(A1,f); f;
//-> x3yz+y5+z4+x3+xy2

ring A4 = 0,(x,y,z),Wp(5,3,2);//weighted degree
//lexicographical

poly f = imap(A1,f); f;
//-> x3yz+x3+y5+xy2+z4

(2) Local orderings:

ring A5 = 0,(x,y,z),ls; //negative lexicographical
poly f = imap(A1,f); f;
//-> z4+y5+xy2+x3+x3yz
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ring A6 = 0,(x,y,z),ds; //negative degree reverse
//lexicographical

poly f = imap(A1,f); f;
//-> x3+xy2+z4+y5+x3yz

ring A7 = 0,(x,y,z),Ws(5,3,2);//negative weighted degree
//lexicographical

poly f = imap(A1,f); f;
//-> z4+xy2+x3+y5+x3yz

(3) Product and matrix orderings:

ring A8 = 0,(x,y,z),(dp(1),ds(2)); //mixed product ordering
poly f = imap(A1,f); f;
//-> x3+x3yz+xy2+z4+y5

intmat A[3][3] = -1, -1, -1, 0, 0, 1, 0, 1, 0;
print(A);
//-> -1 -1 -1
//-> 0 0 1
//-> 0 1 0

Now define your own matrix ordering using A:

ring A9 = 0,(x,y,z),M(A); //a local ordering
poly f = imap(A1,f); f;
//-> xy2+x3+z4+x3yz+y5

Exercises

1.2.1. Show that lp, dp, Dp, wp(w(1..m)), Wp(w(1..n)), respectively ls,
ds, Ds, ws(w(1..m)), Ws(w(1..n)), as defined in Example 1.2.8 are indeed
global, respectively local, monomial orderings.

1.2.2. Determine the names of the orderings given by the following matrices:

(
1 1
0 −1

)
, ( 1 0

0 1 ) ,
(−1 −1

0 −1

)
,

(−1 0
0 −1

)
,

(
1 2
0 −1

)
,

( 1 1 0 0
0 −1 0 0
0 0 −1 −1
0 0 0 −1

)
.

1.2.3. Order the polynomial x4 + z5 + x3z + yz4 + x2y2 with respect to the
orderings dp,Dp,lp,ds,Ds,ls,wp(5,3,4),ws(5,5,4).

1.2.4. Compute the leading term and the leading coefficient

f = 4xy2z + 4z2 − 5x3 + 7xy2 − 7y4

with respect to the orderings lp on Q[x, y, z], lp on Q(x)[z, y], lp on Q[z, y, x],
Dp on (Z/2Z)[z, y, x], ls on Q[x, y, z], wp(w(1..3)) on (Z/2Z)[x, y, z], where
wp(w(1..3)) is given by w–deg(xαyβzγ) := 3α+ 2β + γ.
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1.2.5. Determine matrices defining the orderings dp, Dp, lp, ds, Ds, ls,
wp(5,3,4), ws(5,5,4).

1.2.6. Let > be any monomial ordering on Mon(x1, . . . , xn).

(1) Let w = (w1, . . . , wn) ∈ R
n be arbitrary. Show that

xα >w x
β :⇐⇒ 〈w,α〉 > 〈w, β〉 or 〈w,α〉 = 〈w, β〉 and xα > xβ

defines a monomial ordering on Mon(x1, . . . , xn).
Note that the ordering >w is a (weighted) degree ordering. It is a global
ordering if wi > 0 for all i and a local ordering if wi < 0 for all i.

(2) Let A be an n × n integer matrix with non–negative entries, which is
invertible over Q. Show that

xα >(A,>) x
β ⇔ xAα > xAβ

defines a monomial ordering on Mon(x1, . . . , xn).

1.2.7. (1) Prove the claim made in Example 1.2.12.
(2) Consider a matrix ordering >A for some matrix A ∈ GL(n,Q) and M ⊂

Monn a finite set. Use (1) and the fact that xα >A xβ if and only if
Aα >lex Aβ to determine a weight vector which induces >A on M .

1.2.8. (1) Determine weight vectors w which induce dp, respectively ds, on
M = {xiyjzk | 1 ≤ i, j, k ≤ 5}.

(2) Check your result, using Singular, in the following way: create a poly-
nomial f , being the sum of all monomials of degree ≤ 5 in the rings
with ordering dp, respectively ds, and convert f to a string. Then do the
same in the rings with ordering wp(w), respectively ws(-w), ((a(w),lp),
respectively (a(-w),lp)), and compare the respective strings.

1.2.9. Show that any monomial ordering> can be defined as >A by a matrix
A ∈ GL(n,R).
(Hint: You may proceed as follows: first show that a semigroup ordering on
(Zn≥0,+) extends in a unique way to a group ordering on (Qn,+). Then show
that, for any Q–subvector space V ⊂ Q

n of dimension r, the set

V0 :=

{
z ∈ R

n

∣∣∣∣∣
∀ ε > 0 ∃ z+(ε), z−(ε) ∈ Uε(z) ∩ V

such that z+(ε) > 0, z−(ε) < 0

}

is an R–subvector space in R
n of dimension r − 1. Use this to construct,

successively, the rows of A.)

1.2.10. Let w1, . . . , wn ∈ R be linearly independent over Q and define >
by setting xα < xβ if

∑n
i=1 wiαi <

∑n
i=1 wiβi. Prove that > is a monomial

ordering. Show that there is no matrix A ∈ GL(n,Q) defining this ordering.
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1.3 Ideals and Quotient Rings

Ideals are in the centre of commutative algebra and algebraic geometry. Here
we introduce only the basic notions related to them.

Let A be a ring, as always, commutative and with 1.

Definition 1.3.1. A subset I ⊂ A is called an ideal if it is an additive sub-
group which is closed under scalar multiplication, that is,

f, g ∈ I =⇒ f + g ∈ I
f ∈ I, a ∈ A =⇒ af ∈ I.

Definition 1.3.2.

(1) Let I ⊂ A be an ideal. A family (fλ)λ∈Λ, Λ any index set, and fλ ∈ I, is
called a system of generators of I if every element f ∈ I can be expressed
as a finite linear combination f =

∑
λ aλfλ for suitable aλ ∈ A. We then

write
I = 〈fλ | λ ∈ Λ〉A = 〈fλ | λ ∈ Λ〉 =

∑

λ∈Λ
fλA

or, if Λ = {1, . . . , k},

I = 〈f1, . . . , fk〉A = 〈f1, . . . , fk〉 .

(2) I is called finitely generated if it has a finite system of generators; it is
called principal if it can be generated by one element.

(3) If (Iλ)λ∈Λ is a family of ideals, then
∑
λ∈Λ Iλ denotes the ideal generated

by
⋃
λ∈Λ Iλ.

(4) If I1, I2 are ideals, then I1I2 (or I1 · I2) denotes the ideal generated by
the set {ab | a ∈ I1, b ∈ I2}.

Note that the union of ideals is, in general, not an ideal (but the intersection
is). We have

∑

λ∈Λ
Iλ =

{
∑

λ∈Λ
aλ

∣∣∣∣ aλ ∈ Iλ, aλ = 0 for almost all λ

}
.

Because the empty sum is defined to be 0, the 0–ideal is generated by the
empty set (but also by 0). The expression f =

∑
λ aλfλ as a linear com-

bination of the generators is, in general, by no means unique. For exam-
ple, if I = 〈f1, f2〉 then we have the trivial relation f1f2 − f2f1 = 0, hence
a1f1 = a2f2 with a1 = f2, a2 = f1. Usually there are also further relations,
which lead to the notion of the module of syzygies (cf. Chapter 2).

Ideals occur in connection with ring maps. If ϕ : A→ B is a ring homo-
morphism and J ⊂ B an ideal, then the preimage
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ϕ−1(J) = {a ∈ A | ϕ(a) ∈ J}

is an ideal. In particular,

Kerϕ = {a ∈ A | ϕ(a) = 0}

is an ideal in A. On the other hand, the image

ϕ(I) = {ϕ(a) | a ∈ I}

of an ideal I ⊂ A is, in general, not an ideal. In particular, Imϕ = ϕ(A) ⊂ B
is not, generally, an ideal (for example, consider Z ⊂ Q, then no non–zero
ideal in Z is an ideal in Q). All these statements are very easy to check.

ϕ is called injective if Kerϕ = 0, and surjective if Imϕ = B. A bijec-
tive, that is injective and surjective, morphism is called an isomorphism, an
isomorphism from A to A an automorphism.

Singular contains the built–in command preimage which can be used to
compute the kernel of a ring map.

If a ring map ϕ : K[x1, . . . , xk] → K[y1, . . . , ym] is given by f1, . . . , fk,
that is, ϕ(xi) = fi, then ϕ is surjective if and only if y1, . . . , ym are contained
in the subring Imϕ = K[f1, . . . , fm] of K[y1, . . . , ym]. This fact is used in
Singular to check surjectivity.

We shall explain the algorithms for checking injectivity, surjectivity, bi-
jectivity of a ring map in Chapter 2. Here we just apply the corresponding
procedures from algebra.lib.

SINGULAR Example 1.3.3 (properties of ring maps).
(1) Checking injectivity:

ring S = 0,(a,b,c),lp;
ring R = 0,(x,y,z),dp;
ideal i = x, y, x2-y3;
map phi = S,i; //a map from S to R, a->x, b->y, c->x2-y3
LIB "algebra.lib"; //load algebra.lib

By default, Singular displays the names and paths of those libraries which
are used by algebra.lib and which are also loaded. We suppress this mes-
sage.

We test injectivity using the procedure is_injective, then we compute
the kernel by using the procedure alg_kernel (which displays the kernel, an
object of the preimage ring, as a string).

is_injective(phi,S);
//-> 0 // phi is not injective
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ideal j = x, x+y, z-x2+y3;
map psi = S,j; // another map from S to R
is_injective(psi,S);
//-> 1 // psi is injective

alg_kernel(phi,S);
//-> b^3-a^2+c // <b^3-a^2+c> = Ker(phi)
alg_kernel(psi,S);
//-> 0

(2) Computing the preimage:
Using the preimage command, we must first go back to S, since the preimage
is an ideal in the preimage ring.

ideal Z; //the zero ideal in R
setring S;
preimage(R,phi,Z); //computes kernel of phi in S
//-> _[1]=a2-b3-c //kernel of phi = preimage of Z

(3) Checking surjectivity and bijectivity.

setring R;
is_surjective(psi,S);
//-> 1
is_bijective(psi,S); //faster than is_injective,

//is_surjective
//-> 1

Definition 1.3.4. A ring A is called Noetherian if every ideal in A is finitely
generated.

It is a fundamental fact that the polynomial ring A[x1, . . . , xn] over a Noethe-
rian ring A is again Noetherian; this is the content of the Hilbert basis theo-
rem. Since a field is obviously a Noetherian ring, the polynomial ring over a
field is Noetherian. It follows that the kernel of a ring map between Noethe-
rian rings is finitely generated. An important point of the Singular Example
1.3.3 is that we can explicitly compute a finite set of generators for the kernel
of a map between polynomial rings.

Theorem 1.3.5 (Hilbert basis theorem). If A is a Noetherian ring then
the polynomial ring A[x1, . . . , xn] is Noetherian.
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For the proof of the Hilbert basis theorem we use

Proposition 1.3.6. The following properties of a ring A are equivalent:

(1) A is Noetherian.
(2) Every ascending chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ . . . ⊂ Ik ⊂ . . .

becomes stationary (that is, there exists some j0 such that Ij = Ij0 for all
j ≥ j0).

(3) Every non–empty set of ideals in A has a maximal element (with regard
to inclusion).

Condition (2) is called the ascending chain condition and (3) the maximality
condition. We leave the proof of this proposition as Exercise 1.3.9.

Proof of Theorem 1.3.5. We need to show the theorem only for n = 1, the
general case follows by induction.

We argue by contradiction. Let us assume that there exists an ideal I ⊂
A[x] which is not finitely generated. Choose polynomials

f1 ∈ I, f2 ∈ I � 〈f1〉, . . . , fk+1 ∈ I � 〈f1, . . . , fk〉, . . .

of minimal possible degree. If di = deg(fi),

fi = aix
di + lower terms in x ,

then d1 ≤ d2 ≤ . . . and 〈a1〉 ⊂ 〈a1, a2〉 ⊂ . . . is an ascending chain of ideals
in A. By assumption it is stationary, that is, 〈a1, . . . , ak〉 = 〈a1, . . . , ak+1〉 for
some k, hence, ak+1 =

∑k
i=1 biai for suitable bi ∈ A. Consider the polynomial

g = fk+1 −
k∑

i=1

bix
dk+1−difi = ak+1x

dk+1 −
k∑

i=1

biaix
dk+1 + lower terms .

Since fk+1 ∈ I�〈f1, . . . , fk〉, it follows that g ∈ I�〈f1, . . . , fk〉 is a polynomial
of degree smaller than dk+1, a contradiction to the choice of fk+1.

Definition 1.3.7. Let I be any ideal in the ring A. We define the quotient
ring or factor ring A/I as follows.

(1) A/I is the set of co–sets {[a] := a+ I | a ∈ A}2 with addition and mul-
tiplication defined via representatives:

[a] + [b] := [a+ b],
[a] · [b] := [a · b].

2 a + I := {a + f | f ∈ I}.
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It is easy to see that the definitions are independent of the chosen represen-
tatives and that (A/I,+, ·) is, indeed, a ring. Moreover, A/I is not the zero
ring if and only if 1 �∈ I.
(2) The residue map or quotient map is defined by

π : A −→ A/I , a �−→ [a] .

π is a surjective ring homomorphism with kernel I.

The following lemma is left as an easy exercise.

Lemma 1.3.8. The map J �→ π(J) induces a bijection

{ideals in A containing I} −→ {ideals in A/I}
with J ′ �→ π−1(J ′) being the inverse map.

Definition 1.3.9.

(1) An element a ∈ A is called a zerodivisor if there exists an element b ∈
A� {0} satisfying ab = 0; otherwise a is a non–zerodivisor .

(2) A is called an integral domain if A �= 0 and if A has no zerodivisors
except 0.

(3) A is a principal ideal ring if every ideal in A is principal; if A is, moreover,
an integral domain it is called a principal ideal domain.

Polynomial rings over a field are integral domains (Exercise 1.3.1 (4)). This is,
however, not generally true for quotient rings K[x1, . . . , xn]/I. For example,
if I = 〈f · g〉 with f, g ∈ K[x1, . . . , xn] polynomials of positive degree, then
[f ] and [g] are zerodivisors in K[x1, . . . , xn]/I and not zero.

A ring A, which is isomorphic to a factor ring K[x1, . . . , xn]/I, is called
an affine ring over K.

Definition 1.3.10. Let I ⊂ A be an ideal.

(1) I is a prime ideal if I �= A and if for each a, b ∈ A : ab ∈ I ⇒ a ∈ I or
b ∈ I.

(2) I is a maximal ideal if I �= A and if it is maximal with respect to inclusion
(that is, for any ideal I ′ � A and I ⊂ I ′ implies I = I ′).

(3) The set of prime ideals is denoted by Spec(A) and the set of maximal
ideals by Max(A).

The set of prime ideals Spec(A) of a ring A is made a topological space
by endowing it with the so–called Zariski topology, creating, thus, a bridge
between algebra and topology. We refer to the Appendix, in particular A.3,
for a short introduction. In many cases in the text we use Spec(A) just as
a set. But, from time to time, when we think we should relax and enjoy
geometry, then we consider the affine space Spec(A) instead of the ring A
and the variety V (I) ⊂ Spec(A) instead of the ideal I. Most of the examples
deal with affine rings over a field K.
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Lemma 1.3.11.

(1) I ⊂ A is a prime ideal if and only if A/I is an integral domain.
(2) I ⊂ A is a maximal ideal if and only if A/I is a field.
(3) Every maximal ideal is prime.

Proof. Let I � A. For a, b ∈ A we have ab ∈ I ⇐⇒ [ab] = [a] · [b] = 0 in A/I,
which implies (1). By Lemma 1.3.8, A/I has only the trivial ideals 0 and
A/I, if and only if I and A are the only ideals of A which contain I, which
implies (2). Finally, (3) follows from (2) and (1), since a field is an integral
domain.

If ϕ : A→ B is a ring map and I ⊂ B is a prime ideal, then ϕ−1(I) is a prime
ideal (an easy check). However, the preimage of a maximal ideal need not be
maximal. (Consider Z ⊂ Q, then 0 is a maximal ideal in Q but not in Z.)

Lemma 1.3.12. Let A be a ring.

(1) Let P, I, J ⊂ A be ideals with P prime. Then I �⊂ P , IJ ⊂ P implies
J ⊂ P .

(2) Let I1, . . . , In, P ⊂ A be ideals with P prime and
⋂n
i=1 Ii ⊂ P (respec-

tively
⋂
i Ii = P ), then P ⊃ Ii (respectively P = Ii) for some i.

(3) (Prime avoidance) Let P1, . . . , Pn, I ⊂ A be ideals with Pi prime and
I ⊂ ⋃n

i=1 Pi, then I ⊂ Pi for some i.

Proof. For (1) let J = 〈f1, . . . , fn〉 and x ∈ I such that x �∈ P . By assumption,
we have xfi ∈ P for all i. Now P is prime and, therefore, fi ∈ P for all i. This
implies that J ⊂ P .

To prove (2) assume that
⋂
Ii ⊂ P . Then

∏
Ii ⊂ P and, therefore, using

(1), Ik ⊂ P for some k. If, additionally,
⋂
Ii = P , then P = Ik.

To prove (3) we use induction on n. The case n = 1 is trivial. Assume
(3) is true for n− 1 prime ideals. If I ⊂ ⋃

j �=i Pj for some i, then I ⊂ Pk for
some k.

We may assume now that I �⊂ ⋃
j �=i Pj for all i = 1, . . . , n and choose

x1, . . . , xn ∈ I such that xi �∈
⋃
j �=i Pj . This implies especially that xi ∈ Pi

because xi ∈ I ⊂
⋃
Pj .

Now consider the element x1 + x2 · . . . · xn ∈ I. Since I ⊂ ⋃
Pj , there

exists a k such that x1 + x2 · . . . · xn ∈ Pk. If k = 1 then, since x1 ∈ P1,
we obtain x2 · . . . · xn ∈ P1. This implies that x	 ∈ P1 for some � > 1
which is a contradiction to the choice of x	 �∈

⋃
j �=	 Pj . If k > 1 then, since

x2 · . . . · xn ∈ Pk, we obtain x1 ∈ Pk which is again a contradiction to the
choice of x1 �∈

⋃
j �=1 Pj .

Many of the concepts introduced so far in this section can be treated effec-
tively using Singular. We define a quotient ring and test equality and the
zerodivisor property in the quotient ring.
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SINGULAR Example 1.3.13 (computation in quotient rings).
(1) Define a quotient ring:

ring R = 32003,(x,y,z),dp;
ideal I = x2+y2-z5, z-x-y2;
qring Q = groebner(I); //defines the quotient ring Q = R/I
Q;
//-> // characteristic : 32003
//-> // number of vars : 3
//-> // block 1 : ordering dp
//-> // : names x y z
//-> // block 2 : ordering C
//-> // quotient ring from ideal
//-> _[1]=y2+x-z
//-> _[2]=z5-x2+x-z

(2) Equality test in quotient rings:
Equality test in quotient rings is difficult. The test f==g checks only formal
equality of polynomials, it does not work correctly in quotient rings. Instead,
we have to compute a normal form of the difference f− g. Why and how this
works, will be explained in Section 1.6 on standard bases.

poly f = z2+y2;
poly g = z2+2x-2z-3z5+3x2+6y2;
reduce(f-g,std(0)); //normal form, result is 0 iff f=g in Q
//-> 0

The same can be tested without going to the quotient ring.

setring R;
poly f = z2+y2; poly g = z2+2x-2z-3z5+3x2+6y2;
reduce(f-g,groebner(I)); //result is 0 iff f-g is in I
//-> 0

(3) Zerodivisor test in quotient rings:

setring Q;
ideal q = quotient(0,f);//this defines q = <0>:<f>
q = reduce(q,std(0)); //normal form of ideal q in Q
size(q); //the number of non-zero generators
//-> 0 //hence, f is a non-zerodivisor in Q

Testing primality of a principal ideal 〈f〉 in a polynomial ring is easily
achieved by using factorize(f);. For an arbitrary ideal this is much more
involved. One can use primdecGTZ or primdecSY from primdec.lib, as will
be explained in Chapter 4.
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(4) Computing the inverse in quotient rings:
If I ⊂ K[x] = K[x1, . . . , xn] is a maximal ideal, then the quotient ring K[x]/I
is a field. To be able to compute effectively in the field K[x]/I we need,
in addition to the ring operations, the inverse of a non–zero element. The
following example shows that we can effectively compute in all fields of finite
type over a prime field.

If the polynomial f is invertible, then the command lift(f,1)[1,1]
gives the inverse (lift checks whether 1 ∈ 〈f〉 and then expresses 1 as a
multiple of f):

ring R=(0,x),(y,z),dp;
ideal I=-z5+y2+(x2),-y2+z+(-x);
I=std(I);
qring Q=I;

We shall now compute the inverse of z in Q = R/I.

poly p=lift(z,1)[1,1];
p;
//->1/(x2-x)*z4-1/(x2-x)

We make a test for p being the inverse of z.

reduce(p*z,std(0));
//->1

The ideal I is a maximal ideal if and only if R/I is a field. We shall now
prove that, in our example, I is a maximal ideal.

ring R1=(0,x),(z,y),lp;
ideal I=imap(R,I);
I=std(I);
I;
//-> I[1]=y10+(5x)*y8+(10x2)*y6+(10x3)*y4+(5x4-1)*y2+(x5-x2)
//-> I[2]=z-y2+(-x)

Since Q(x)[z, y]/〈z − y2− x〉 ∼= Q(x)[y], we see that

R/I ∼= Q(x)[y]/〈y10+ 5xy8+ 10x2y6+ 10x3y4+ (5x4− 1)y2+ x5− x2〉 .

factorize(I[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y10+(5x)*y8+(10x2)*y6+(10x3)*y4+(5x4-1)*y2
//-> +(x5-x2)
//-> [2]:
//-> 1,1
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The polynomial is irreducible and, therefore, R/I is a field and I a maximal
ideal.

Definition 1.3.14. Let A be a ring and I, J ⊂ A ideals.

(1) The ideal quotient of I by J is defined as

I : J :=
{
a ∈ A ∣∣ aJ ⊂ I

}
.

The saturation of I with respect to J is

I : J∞ =
{
a ∈ A ∣∣ ∃ n such that aJn ⊂ I

}
.

(2) The radical of I, denoted by
√
I or rad(I) is the ideal

√
I =

{
a ∈ A ∣∣ ∃ d ∈ N such that ad ∈ I} ,

which is an ideal containing I. I is called reduced or a radical ideal if
I =

√
I.

(3) a ∈ A is called nilpotent if an = 0 for some n ∈ N; the minimal n is called
index of nilpotency. The set of nilpotent elements of A is equal to

√〈0〉
and called the nilradical of A.

(4) The ring A itself is called reduced if it has no nilpotent elements except
0, that is, if

√〈0〉 = 〈0〉. For any ring, the quotient ring

Ared = A/
√
〈0〉

is called the reduction of A or the reduced ring associated to A.

The ideal quotient I : J is an ideal in A which is very useful. In Singular the
command quotient(I,J); computes generators of this ideal. In particular,

〈0〉 : J = AnnA(J)

is the annihilator of J and, hence, 〈0〉 : 〈f〉 = 〈0〉 if and only if f is a non–
zerodivisor of A.

It is clear that Ared is reduced and that A = Ared if and only if A is
reduced. Any integral domain is reduced.

Computing the radical is already quite involved (cf. Chapter 4). The rad-
ical membership problem is, however, much easier (cf. Section 1.8.6).

SINGULAR Example 1.3.15 (computing with radicals).

(1) Compute the radical of an ideal:

ring R = 0,(x,y,z),dp;
poly p = z4+2z2+1;
LIB "primdec.lib"; //loads library for radical
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radical(p); //squarefree part of p
//-> _[1]=z2+1

ideal I = xyz, x2, y4+y5; //a more complicated ideal
radical(I);
//-> _[1]=x
//-> _[2]=y2+y //we see that I is not reduced

(2) Compute the index of nilpotency in a quotient ring:
Since y2+ y is contained in the radical of I, some power of y2+ y must be
contained in I. We compute the minimal power k so that (y2+ y)k is con-
tained in I by using the normal form as in Example 1.3.13. This is the same
as saying that y2+ y is nilpotent in the quotient ring R/I and then k is the
index of nilpotency of y2+ y in R/I.

ideal Is = groebner(I);
int k;
while (reduce((y2+y)^k,Is) != 0 ) {k++;}
k;
//-> 4 //minimal power (index of nilpotency) is 4

Exercises

1.3.1. Let A be a ring and f =
∑

|α|≥0 aαx
α ∈ A[x1, . . . , xn]. Prove the fol-

lowing statements:

(1) f is nilpotent if and only if aα is nilpotent for all α.
(Hint: choose a monomial ordering and argue by induction on the number
of summands.)
In particular: A[x1, . . . , xn] is reduced if and only if A is reduced.

(2) f is a unit in A[x1, . . . , xn] if and only if a0,...,0 is a unit in A and aα are
nilpotent for α �= 0.
(Hint: Remember the geometric series for 1/(1− g) and use (1).)
In particular: (A[x1, . . . , xn])∗ = A∗ if and only if A is reduced.

(3) f is a zerodivisor in A[x1, . . . , xn] if and only if there exists some a �= 0
in A such that af = 0. Give two proofs: one by induction on n, the other
by using a monomial ordering.
(Hint: choose a monomial ordering and g ∈ A[x1, . . . , xn] with minimal
number of terms so that f ·g = 0, consider the biggest term and conclude
that g must be a monomial.)

(4) A[x1, . . . , xn] is an integral domain if and only if deg(fg) = deg(f) +
deg(g) for all f, g ∈ A[x1, . . . , xn].
In particular: A[x1, . . . , xn] is an integral domain if and only if A is an
integral domain.
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1.3.2. Let ϕ : A → B be a ring homomorphism, I an ideal in A and J an
ideal in B. Show that:

(1) ϕ−1(J) ⊂ I is an ideal.
(2) ϕ(I) is a subring of B, not necessarily with 1, but, in general, not an

ideal.
(3) If ϕ is surjective then ϕ(I) is an ideal in B.

1.3.3. Prove the following statements:

(1) Z and the polynomial ring K[x] in one variable over a field are principal
ideal domains [use division with remainder].

(2) Let A be any ring, then A[x1, . . . , xn], n > 1, is not a principal ideal
domain.

1.3.4. Let A be a ring. A non–unit f ∈ A is called irreducible if f = f1f2,
f1, f2 ∈ A, implies that f1 or f2 is a unit. f is called a prime element if 〈f〉 is
a prime ideal. Prove Exercise 1.1.5 with K[x] replaced by any principal ideal
domain A. Moreover, prove that the conditions (1) – (3) of Exercise 1.1.5 are
equivalent to

(4) The ideal 〈f〉 is a prime ideal.
(5) The ideal 〈f〉 is a maximal ideal.

1.3.5. Let R be a principal ideal domain. Use Exercise 1.3.4 to prove that
every non–unit f ∈ R can be written in a unique way as a product of finitely
many prime elements. Unique means here modulo permutation and multipli-
cation with a unit.

1.3.6. The quotient ring of a principal ideal ring is a principal ideal ring.
Show, by an example, that the quotient ring of an integral domain (respec-
tively a reduced ring) need not be an integral domain.

1.3.7. (1) If A,B are principal ideal rings, then, also A⊕B.
(2) A⊕B is never an integral domain, unless A or B are trivial.
(3) How many ideals has K ⊕ F if K and F are fields?

1.3.8. Prove the following statements:

(1) Let n > 1, then Z/nZ is reduced if and only if n is a product of pairwise
different primes.

(2) Let K be a field, and let f ∈ K[x1, . . . , xn] be a polynomial of degree
≥ 1. Then K[x1, . . . , xn]/〈f〉 is reduced (respectively an integral domain)
if and only if f is a product of pairwise different irreducible polynomials
(respectively irreducible).

1.3.9. Prove Proposition 1.3.6.

1.3.10. Prove Lemma 1.3.8.

1.3.11. Let A be a Noetherian ring, and let I ⊂ A be an ideal. Prove that
A/I is Noetherian.
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1.3.12. Let A be a Noetherian ring, and let ϕ : A→ A be a surjective ring
homomorphism. Prove that ϕ is injective.

1.3.13. (Chinese remainder theorem) Let A be a ring, and let I1, . . . , Is be
ideals in A. Assume that

⋂s
j=1 Ij = 〈0〉 and Ij + Ik = A for j �= k. Prove that

the canonical map

A −→
s⊕

j=1

A/Ij , a �−→ (a+ I1, . . . , a+ Is) ,

is an isomorphism of rings3

1.3.14. Let K be a field and A a K–algebra. Then A is called an Artinian
K–algebra if dimK(A) <∞. Prove the following statements:

(1) An Artinian K–algebra is Noetherian.
(2) A is an Artinian K–algebra if and only if each descending chain of ideals

I1 ⊃ I2 ⊃ I3 ⊃ . . . ⊃ Ik ⊃ . . .

becomes stationary (that is, there exists some j0 such that Ij = Ij0 for
all j ≥ j0). 4

1.3.15. Show that Q[x]/〈x2+ 1〉 is a field and compute in this field the quo-
tient (x3+ x2+ x)/(x3+ x2+ 1), first by hand and then by using Singular

as in Example 1.3.13. Alternatively use the method of Example 1.1.8 (in
characteristic 0), defining a minpoly.

1.3.16. Let f = x3+ y3+ z3+ 3xyz, and let I be the ideal in Q[x, y, z], re-
spectively F3[x, y, z], generated by f and its partial derivatives. Moreover, let
R := Q[x, y, z]/I and S := F3[x, y, z]/I.

(1) Is xyz a zerodivisor in R, respectively in S ?
(2) Compute the index of nilpotency of x+ y + z in R, respectively S.

(Hint: type ?diff; or ?jacob; to see how to create the ideal I.)

1.4 Local Rings and Localization

Localization of a ring means enlarging the ring by allowing denominators,
similar to the passage from Z to Q. The name, however, comes from the ge-
ometric interpretation. For example, localizing K[x1, . . . , xn] at 〈x1, . . . , xn〉
3 If A = Z the theorem can be reformulated as follows: Let a1, . . . , as ∈ Z such

that gcd (ai, aj) = 1 for i �= j and a =
s∏

i=1

ai. Then for given x1, . . . , xs ∈ Z

the congruences x ≡ xi mod ai, 1 ≤ i ≤ s have a solution which is uniquely
determined modulo a. The procedure chineseRem of the library crypto.lib
computes this solution.

4 This is the usual way to define an Artinian ring .
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means considering rational functions f/g where f and g are polynomials with
g(0) �= 0. Of course, any polynomial f = f/1 is of this form but, as g may
have zeros arbitrary close to 0, f/g is defined only locally, in an arbitrary
small neighbourhood of 0 (cf. Appendix A.8).

Definition 1.4.1. A ring A is called local if it has exactly one maximal
ideal m.A/m is called the residue field ofA. Rings with finitely many maximal
ideals are called semi–local . We denote local rings also by (A,m) or (A,m,K)
where K = A/m.

Fields are local rings. A polynomial ring K[x1, . . . , xn] with n ≥ 1 over a field
K is, however, never local. To see this, consider for any (a1, . . . , an) ∈ Kn the
ideal ma := 〈x1 − a1, . . . , xn − an〉. Since ϕ : K[x1, . . . , xn]→ K[x1, . . . , xn],
ϕ(xi) := xi − ai, is an isomorphism sending m0 = 〈x1, . . . , xn〉 to ma, it fol-
lows that K[x1, . . . , xn]/ma

∼= K is a field, hence ma is a maximal ideal. Since
K has at least two elements, Kn has at least two different points and, hence,
K[x1, . . . , xn] has at least as many maximal ideals asKn points (those of type
ma). If K is algebraically closed, then the ideals ma, a ∈ Kn are all maximal
ideals of K[x1, . . . , xn] (this is one form of Hilbert’s Nullstellensatz).

A typical local ring is the formal power series ring K[[x1, . . . , xn]] with
maximal ideal m = 〈x1, . . . , xn〉, that is, all power series without constant
term. That this ring is local follows easily from Lemma 1.4.3. We shall treat
power series rings in Chapter 6. Other examples are localizations of polyno-
mial rings at prime ideals, cf. Example 1.4.6.

Theorem 1.4.2. Every ring A �= 0 contains at least one maximal ideal. If
I � A is an ideal, then there exists a maximal ideal m ⊂ A such that I ⊂ m.

Proof. The first statement follows from the second with I = 0. If I is not
maximal there exists an f1 ∈ A such that I � I1 := 〈I, f1〉 � A. If I1 is not
maximal there is an f2 such that I1 � I2 = 〈I1, f2〉 � A. Continuing in this
manner, we obtain a sequence of strictly increasing ideals I � I1 � I2 � . . .
which must become stationary, say Im = In for m ≥ n if A is Noetherian
by Proposition 1.3.6. Thus, In is maximal and contains I. In general, if A is
not Noetherian,

⋃
n≥1 In is an ideal containing I, and the result follows from

Zorn’s lemma.5

Lemma 1.4.3. Let A be a ring.

(1) A is a local ring if and only if the set of non–units is an ideal (which is
then the maximal ideal).

(2) Let m ⊂ A be a maximal ideal such that every element of the form 1 + a,
a ∈ m is a unit. Then A is local.

5 Zorn’s Lemma says: let S be a non–empty system of sets such that for each chain
I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . . in S , the union of the chain elements belong to S . Then
any element of S is contained in a maximal element (w.r.t. inclusion) of S . This
“lemma” is actually an axiom, equivalent to the axiom of choice.
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Proof. (1) is obvious. To see (2) let u ∈ A�m. Since m is maximal 〈m, u〉 = A
and, hence, 1 = uv + a for some v ∈ A, a ∈ m. By assumption uv = 1 − a
is a unit. Hence, u is a unit and m is the set of non–units. The claim follows
from (1).

Localization generalizes the construction of the quotient field: if A is an in-
tegral domain, then the set

Quot(A) := Q(A) :=
{
a

b

∣∣∣∣ a, b ∈ A, b �= 0
}
,

together with the operations

a

b
+
a′

b′
=
ab′ + a′b
bb′

,
a

b
· a

′

b′
=
aa′

bb′

is a field, the quotient field or field of fractions of A. Here a/b denotes the
class of (a, b) under the equivalence relation

(a, b) ∼ (a′, b′) :⇐⇒ ab′ = a′b .

The map A→ Q(A), a �→ a/1 is an injective ring homomorphism and we
identify A with its image. Since a/b = 0 if and only if a = 0, every element
a/b �= 0 has an inverse b/a and, therefore, Q(A) is a field.

The denominators in Q(A) are the elements of the set S = A� {0} and
S satisfies
(1) 1 ∈ S,
(2) a ∈ S, b ∈ S =⇒ ab ∈ S.

This notion can be generalized as follows.

Definition 1.4.4. Let A be a ring.

(1) A subset S ⊂ A is called multiplicative or multiplicatively closed if con-
ditions (1) and (2) above hold.

(2) Let S ⊂ A be multiplicatively closed. We define the localization or the
ring of fractions S−1A of A with respect to S as follows:

S−1A :=
{
a

b

∣∣∣∣ a ∈ A, b ∈ S
}

where a/b denotes the equivalence class of (a, b) ∈ A× S with respect to
the following equivalence relation:

(a, b) ∼ (a′, b′) :⇐⇒ ∃ s ∈ S such that s(ab′ − a′b) = 0 .

Moreover, on S−1A we define an addition and multiplication by the same
formulas as for the quotient field above.
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The following proposition is left as an exercise.

Proposition 1.4.5.

(1) The operations + and · on S−1A are well–defined (independent of the
chosen representatives) and make S−1A a ring (commutative and with
1 = 1/1).

(2) The map j : A→ S−1A, a �→ a/1 is a ring homomorphism satisfying
a) j(s) is a unit in S−1A if s ∈ S,
b) j(a) = 0 if and only if as = 0 for some s ∈ S,
c) j is injective if and only if S consists of non–zerodivisors,
d) j is bijective if and only if S consists of units.

(3) S−1A = 0 if and only if 0 ∈ S.
(4) If S1 ⊂ S2 are multiplicatively closed in A and consist of non–zerodivisors,

then S−1
1 A ⊂ S−1

2 A.
(5) Every ideal in S−1A is generated by the image of an ideal in A under

the map j. Moreover, the prime ideals in S−1A are in one–to–one corre-
spondence with the prime ideals in A which do not meet S.

Examples 1.4.6.

(1) A�P is multiplicatively closed for any prime ideal P ⊂ A. The localiza-
tion of A with respect to A� P is denoted by AP and

AP =
{
a

b

∣∣∣∣ a, b ∈ A, b �∈ P
}

is called the localization of A at the prime ideal P .
The set

PAP =
{
a

b

∣∣∣∣ a ∈ P, b �∈ P
}

is clearly an ideal in AP . Any element a/b ∈ AP � PAP satisfies a �∈ P ,
hence, b/a ∈ AP and, therefore, a/b is a unit.
This shows that AP is a local ring with maximal ideal PAP by Lemma
1.4.3. In particular, if m ⊂ A is a maximal ideal then Am is local with
maximal ideal mAm.

(2) For any f ∈ A, the set S := {fn | n ≥ 0} is multiplicatively closed (with
f0 = 1). We use the special notation

Af := S−1A =
{
a

fn

∣∣∣∣ a ∈ A, n ≥ 0
}
,

not to be confused with A〈f〉, if 〈f〉 ⊂ A is a prime ideal.
(3) The set S of all non–zerodivisors of A is multiplicatively closed. For this

S, S−1A =: Q(A) =: Quot(A) is called the total ring of fractions or the
total quotient ring ofA. IfA is an integral domain, this is just the quotient
field of A.
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Two special but important cases are the following: ifK[x1, . . . , xn] is the poly-
nomial ring over a field, then the quotient field is denoted by K(x1, . . . , xn),

K(x1, . . . , xn) := Q(K[x1, . . . , xn]) ,

which is also called the function field in n variables; the xi are then also called
parameters . For computing with parameters cf. Singular-Example 1.1.8.

The localization of K[x] = K[x1, . . . , xn] with respect to the maximal
ideal 〈x〉 = 〈x1, . . . , xn〉 is

K[x]〈x〉 =
{
f

g

∣∣∣∣ f, g ∈ K[x], g(0) �= 0
}
.

It is an important fact that we can compute in this ring without explicit de-
nominators, just by defining a suitable monomial ordering onK[x] (cf. Section
1.5). More generally, we can compute in K[x]ma , ma = 〈x1 − a1, . . . xn− an〉,
for any a = (a1, . . . , an) ∈ Kn, by translating our polynomial data to K[x]〈x〉
via the ring map xi �→ xi + ai.

Proposition 1.4.7. Let ϕ : A→ B be a ring homomorphism, S ⊂ A mul-
tiplicatively closed, and j : A→ S−1A the canonical ring homomorphism
a �→ a/1.

(1) Assume
(i) ϕ(s) is a unit in B for all s ∈ S.
Then there exists a unique ring homomorphism ψ : S−1A→ B such that
the following diagram commutes:

A
ϕ

��

j
���������� B

S−1A

ψ

����������

(2) Assume moreover
(ii) ϕ(a) = 0 implies sa = 0 for some s ∈ S,
(iii) every element of B is of the form ϕ(a)ϕ(s)−1.
Then ψ is an isomorphism.

Property (1) is called the universal property of localization.

Proof. (1) Since ϕ(a) = ψ(a/1) for a ∈ A, we obtain, for any a/s ∈ S−1A,
that ψ(a/s) = ψ(a/1) · ψ(1/s) = ψ(a/1)ψ(s/1)−1 = ϕ(a)ϕ(s)−1. In particu-
lar, ψ is unique if it exists. Now define ψ(a/s) := ϕ(a)ϕ(s)−1 and check that
ψ is well–defined and a ring homomorphism.
(2) (ii) implies that ψ is injective and (iii) that ψ is surjective.

Lemma 1.4.8. Let S ⊂ A be multiplicatively closed and j : A→ S−1A the
canonical ring homomorphism a �→ a/1.
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(1) If J ⊂ S−1A is an ideal and I = j−1(J) then IS−1A = J . In particular,
if f1, . . . , fk generate I over A then f1, . . . , fk generate J over S−1A.

(2) If A is Noetherian, then S−1A is Noetherian.

Proof. (1) If f/s ∈ J then f/1 = s · f/s ∈ J , hence f ∈ I = j−1(J) and,
therefore, f/s = f · 1/s ∈ IS−1A. The other inclusion is clear. Statement (2)
follows directly from (1).

To define the local ring K[x]〈x〉 = K[x1, . . . , xn]〈x1,...,xn〉 in Singular, we
have to choose a local ordering such as ds, Ds, ls or a weighted local or-
dering. This is explained in detail in the next section. We shall now show the
difference between local and global rings by some examples. Note that objects
defined in the local ring K[x]〈x〉 contain geometric information (usually only)
about a Zariski neighbourhood of 0 ∈ Kn (cf. A.2, page 454), while objects
in K[x] contain geometric information which is valid in the whole affine space
Kn.

Consider the ideal I = 〈y(x− 1), z(x− 1)〉 ⊂ Q[x, y, z] and consider the
common zero–set of all elements of I,

V (I) = {(x, y, z) ∈ C
3 | f(x, y, z) = 0 ∀ f ∈ I}

= {(x, y, z) ∈ C
3 | y(x− 1) = z(x− 1) = 0} .

The real picture of V (I) is displayed in Figure 1.1.

• •
0 1 x

Fig. 1.1. The real zero–set of 〈y(x−1), z(x−1)〉.

Although we treat dimension theory later, it should be intuitively clear
from the picture that the (local) dimension of V (I) is 1 at the point (0, 0, 0)
and 2 at the point (1, 0, 0).

We compute the global dimension of V (I) (which is the maximum of
the dimensions at each point) and then the dimension of V (I) in the points
(0, 0, 0) and (1, 0, 0). As we shall see in Section 3.3, we always have to compute
a standard basis of the ideal with respect to the given ordering first and then
apply the command dim.
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SINGULAR Example 1.4.9 (global versus local rings).

(1) Compute the dimension of V (I), that is, compute dim(I), the Krull di-
mension of S/I, S = Q[x, y, z] (cf. Chapter 3, Section 3.3).

ring S = 0,(x,y,z),dp;
ideal I = y*(x-1), z*(x-1);
ideal J = std(I); //compute a standard basis J of I in S
J; //J = <z(x-1),y(x-1)>
//-> J[1]=xz-z
//-> J[2]=xy-y
dim(J); //the (global) dimension of V(I) is 2
//-> 2

reduce(y,J); //y is not in I
//(result is 0 iff y is in I)

//-> y

(2) Compute the dimension of V (I) at 0 = (0, 0, 0), that is, compute dim(I),
the Krull dimension of R/IR, R = Q[x, y, z]〈x,y,z〉.

ring R = 0,(x,y,z),ds;
ideal I = fetch(S,I);//fetch I from S to basering
ideal J = std(I); //compute a standard basis J of I in R
J;
//-> J[1]=y //J = <y,z> since x-1 is a unit in R
//-> J[2]=z
dim(J);
//-> 1 //(local) dimension of V(I) at 0 is 1
reduce(y,J);
//-> 0 //now y is in IR = JR

(3) Compute the dimension of V (I) at (1, 0, 0), that is, compute dim(I1), the
Krull dimension of R/I1R in R = Q[x, y, z]〈x,y,z〉 where I1 is the translation
of I to (1, 0, 0).

map trans = S, x+1,y,z; //replace x by x+1 and leave
//y,z fixed, i.e., translate
//(0,0,0) to (1,0,0)

ideal I1 = trans(I);
I1;
//-> I1[1]=xy
//-> I1[2]=xz
dim(std(I1)); //dimension of V(I) at (1,0,0) is 2
//-> 2

(4) Compute the (global) dimension of V (I) after translation.
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setring S; //go back to global ring S
map trans = S, x+1,y,z;
ideal I1 = trans(I); //translate I, as in (3)
I1;
//-> I1[1]=xy
//-> I1[2]=xz
dim(std(I1)); //(global) dimension of translated
//-> 2 //variety has not changed

kill S,R;

The above computation illustrates what is intuitively clear from the picture
in Figure 1.1: the dimension of the local rings varies. Dimension theory is
treated in detail in Chapter 3, Section 3.3. For this example, it is enough
to have an intuitive feeling for the dimension as it is visualized in the real
picture of V (I).

Exercises

1.4.1. Prove Proposition 1.4.5.

1.4.2. Let A be a ring, I ⊂ A an ideal and f ∈ A.
Prove that IAf ∩A is the saturation of I with respect to f , that is, equal to
I : 〈f〉∞ = {g ∈ A | ∃n such that gfn ∈ I}.
1.4.3. Let (A,m) be a local K–algebra, K a field, and I ⊂ A an ideal such
that dimK(A/I) <∞. Show that mn ⊂ I for some n.

1.4.4. Let A be a ring and J(A) the intersection of all maximal ideals of A,
which is called the Jacobson radical of A. Prove that for all x ∈ J(A), 1 + x
is a unit in A.

1.4.5. Let S and T be two multiplicatively closed sets in the ring A. Show
that ST is multiplicatively closed and that (ST )−1(A) and T−1(S−1A) are
isomorphic, if T denotes also the image of T in S−1A.

In particular, if S ⊂ T then T−1A ∼= T−1(S−1A). Hence, for Q ⊂ P two
prime ideals we obtain AQ ∼= (AP )QAP .

1.4.6. Let S ⊂ A be the set of non–zerodivisors. Show the following state-
ments about the total ring of fractions Quot(A) = S−1A:

(1) S is the biggest multiplicatively closed subset of A such that A→ S−1A
is injective.

(2) Each element of Quot(A) is either a unit or a zerodivisor.
(3) A ring A, such that each non–unit is a zerodivisor, is equal to its total

ring of fractions, that is, A→ Quot(A) is bijective.
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1.4.7. (1) Consider the two rings

A = C[x, y]/〈x2 − y3〉 and B = C[x, y]/〈xy〉

and the multiplicative sets:
• S the set of non–zerodivisors of A, respectively of B, and
• T := A� 〈x, y〉A, respectively T := B � 〈x, y〉B.
Determine the localizations of A and B with respect to T and S.

(2) Are any two of the six ringsA,B, S−1A, S−1B, T−1A, T−1B isomorphic?

1.4.8. Let A be a ring and B = A/(P1 ∩ · · · ∩ Pr) with Pi ⊂ A prime ide-
als. Show that the rings Quot(B) and

⊕r
i=1 Quot(A/Pi) are isomorphic. In

particular, Quot(B) is a direct sum of fields.
(Hint: use Exercise 1.3.13.)

1.4.9. Let A be a unique factorization domain (that is, A is a domain and
every non–unit of A can be written as a product of irreducible elements such
that the factors are uniquely determined up to multiplication with units)
and S ⊂ A multiplicatively closed. Show that S−1A is a unique factorization
domain.
(Hint: enlarge, if necessary, S to a multiplicative system S̃ such that
(1) S̃−1A = S%−1A and
(2) if s ∈ S̃ and s = s1s2 then s1, s2 ∈ S̃.)

1.4.10. Let A be an integral domain. Then, for any prime ideal P ⊂ A, we
consider the localization AP as a subring of the quotient field Quot(A) and,
hence, we can consider their intersection. Show that

A =
⋂

P∈SpecA

AP =
⋂

m∈MaxA

Am .

1.4.11. Let I = I1I2I3 ⊂ Q[x, y, z] be the product of the ideals I1 = 〈z − x2〉,
I2 = 〈y, z〉 and I3 = 〈x〉. Compute, as in Singular Example 1.4.9, the di-
mension of V (I) at the points (0, 0, 0), (0, 0, 1), (1, 0, 0) and (1, 1, 1). Draw a
real picture of V (I) and interpret your results geometrically.

1.5 Rings Associated to Monomial Orderings

In this section we show that non–global monomial orderings lead to new rings
which are localizations of the polynomial ring. This fact has far–reaching
computational consequences. For example, choosing a local ordering, we can,
basically, do the same calculations in the localization of a polynomial ring
as with a global ordering in the polynomial ring itself. In particular, we can
effectively compute in K[x1, . . . , xn]〈x1,...,xk〉 for k ≤ n (by Lemma 1.5.2 (3)
and Example 1.5.3).
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Let > be a monomial ordering on the set of monomials Mon(x1, . . . , xn) =
{xα | α ∈ N

n}, and K[x] = K[x1, . . . , xn] the polynomial ring in n variables
over a field K. Then the leading monomial function LM has the following
properties for polynomials f, g ∈ K[x] \ {0}:
(1) LM(gf) = LM(g) LM(f).
(2) LM(g+f) ≤ max{LM(g),LM(f)} with equality if and only if the leading

terms of f and g do not cancel.

In particular, it follows that

S> := {u ∈ K[x] � {0} | LM(u) = 1}

is a multiplicatively closed set.

Definition 1.5.1. For any monomial ordering > on Mon(x1, . . . , xn), we
define

K[x]> := S−1
> K[x] =

{
f

u

∣∣∣∣ f, u ∈ K[x], LM(u) = 1
}
,

the localization of K[x] with respect to S> and call K[x]> the ring associated
to K[x] and >.

Note that S> = K∗ if and only if > is global and S> = K[x] � 〈x1, . . . , xn〉
if and only if > is local.

Lemma 1.5.2. Let K be a field, K[x] = K[x1, . . . , xn], and let > be a mono-
mial ordering on Mon(x1, . . . , xn). Then

(1) K[x] ⊂ K[x]> ⊂ K[x]〈x〉.
(2) The set of units in K[x]> is given by

(K[x]>)∗ =
{
v

u

∣∣∣∣ u, v ∈ K[x], LM(v) = LM(u) = 1
}
,

and satisfies (K[x]>)∗ ∩K[x] = S>.
(3) K[x] = K[x]> if and only if > is a global ordering and K[x]> = K[x]〈x〉

if and only if > is a local ordering.
(4) K[x]> is a Noetherian ring.
(5) K[x]> is factorial.

We shall see later (Corollary 7.4.6) that the inclusions of Lemma 1.5.2 (1)
are flat ring morphisms.

Proof. (1) The first inclusion is clear by Proposition 1.4.5 (2), the second
follows from Proposition 1.4.5 (4) since LM(u) = 1 implies u �∈ 〈x〉.

(2) If f/u is a unit in K[x]>, there is a h/v such that (f/u) · (h/v) = 1.
Hence, fh = uv and LM(f) LM(h) = 1, which implies LM(f) = 1.
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(3) By Proposition 1.4.5 (2), K[x] = K[x]> if and only if S> consists of
units of K[x], that is if and only if S> ⊂ K∗, which is equivalent to >
being global. The second equality follows since K[x] � 〈x〉 consists of
units in K[x]> if and only if every polynomial with non–zero constant
term belongs to S> which is equivalent to > being local.

(4) Follows from Lemma 1.4.8.
(5) Since K[x] is factorial, this follows from Exercise 1.4.9.

Examples 1.5.3. We describe some familiar and some less familiar rings, as-
sociated to a polynomial ring and a monomial ordering.

(1) Let K[x, y] = K[x1, . . . , xn, y1, . . . , ym] and consider the product order-
ing > = (>1, >2) on Mon(x1, . . . , xn, y1, . . . , ym), where >1 is global on
Mon(x1, . . . , xn) and >2 is local on Mon(y1, . . . , ym). Then

xαyγ > 1 > yβ for all α, β �= 0, all γ

and hence S> = K∗ + 〈y〉 ·K[y]. It follows that

K[x, y]> = (K[y]〈y〉)[x] ,

which equals K[y]〈y〉 ⊗K K[x] (cf. Section 2.7 for the tensor product).
(2) Now let >1 be local and >2 global, > = (>1, >2), then

xαyγ < 1 < yβ for all α, β �= 0, all γ

and hence S> = K∗ + 〈x〉K[x, y]. We obtain strict inclusions

(K[x]〈x〉)[y] � K[x, y]> � K[x, y]〈x〉 ,

since 1/(1 + xy) is in the second but not in the first and 1/y is in the
third but not in the second ring.

(3) If >1 is global, >2 arbitrary and > = (>1, >2) then S> consists of ele-
ments u ∈ K[y] satisfying LM>2(u) = 1. Hence,

K[x, y]> = (K[y]>2)[x]

(cf. Exercise 2.7.12). This ordering has the following elimination property
for x1, . . . , xn:

f ∈ K[x, y], LM(f) ∈ K[y]⇒ f ∈ K[y] .

(4) Let > be a local ordering on Mon(x1, . . . , xn) and K(y) the quotient field
of K[y] = K[y1, . . . , ym]. It is not difficult to see that

K(y)[x]> = K[x, y]〈x〉

(Exercise 1.5.6). Hence, we can effectively compute in the localization
K[x1, . . . , xn]P , where P is a prime ideal generated by a subset of the
variables.
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Definition 1.5.4. A monomial ordering> on K[x1, . . . , xn] having the elim-
ination property for x1, . . . , xs (cf. Example 1.5.3 (3)) is called an elimination
ordering for x1, . . . , xs.

An elimination ordering need not be a product ordering but must satisfy
xi > 1 for i = 1, . . . , s (since, if xi < 1 then LM(1 + xi) = 1 but 1 + xi �∈
K[xs+1, . . . , xn]), that is, an elimination ordering for x1, . . . , xs must be global
on Mon(x1, . . . , xs). Since the lexicographical ordering is the product of the
degree orderings on Mon(xi) for i = 1, . . . , n, it is an elimination ordering for
x1, . . . , xj , for j = 1, . . . , n. (Cf. Section 1.8.2 for applications of elimination
orderings.)

We now extend the leading data to K[x]>.

Definition 1.5.5. Let > be any monomial ordering:

(1) For f ∈ K[x]> choose u ∈ K[x] such that LT(u) = 1 and uf ∈ K[x]. We
define

LM(f) := LM(uf),
LC(f) := LC(uf),
LT(f) := LT(uf),
LE(f) := LE(uf),

and tail(f) = f − LT(f).
(2) For any subset G ⊂ K[x]> define the ideal

L>(G) := L(G) := 〈LM(g) | g ∈ G� {0}〉K[x] .

L(G) ⊂ K[x] is called the leading ideal of G.

Remark 1.5.6.

(1) The definitions in 1.5.5 (1) are independent of the choice of u.
(2) Since K[x]> ⊂ K[x]〈x〉 ⊂ K[[x]], where K[[x]] denotes the formal power

series ring (cf. Section 6.1), we may consider f ∈ K[x]> as a formal power
series. It follows easily that LM(f), respectively LT(f), corresponds to a
unique monomial, respectively term, in the power series expansion of f .
Hence tail(f) is the power series of f with the leading term deleted.

(3) Note that if I is an ideal, then L(I) is the ideal generated by all leading
monomials of all elements of I and not only by the leading monomials of
a given set of generators of I.

Example 1.5.7.

(1) Consider Q[x] with a local ordering (in one variable all local, respectively
global, orderings coincide). For f = 3x/(1 + x) + x we have LM(f) = x,
LC(f) = 4, LT(f) = 4x, LE(f) = 1 and tail(f) = −3x2/(1 + x).



42 1. Rings, Ideals and Standard Bases

(2) Let G = {f, g} with f = xy2+ xy, g = x2y + x2 − y ∈ Q[x, y] and mono-
mial ordering dp. If I = 〈f, g〉 then L(G) � L(I), since L(G) = 〈xy2, x2y〉,
but xf − yg = y2. Thus, y2 ∈ L(I), but y2 �∈ L(G).

Ring maps between rings associated to a monomial ordering are almost as
easy as ring maps between polynomial rings.

Lemma 1.5.8. Let ψ : K → L be a morphism of fields and >1, >2, mono-
mial orderings on Mon(x1, . . . , xn) and on Mon(y1, . . . , ym). Let f1, . . . , fn ∈
L[y1, . . . , ym]>2 and assume that, for all h ∈ S>1 , h(f1, . . . , fn) ∈ S>2 . Then
there exists a unique ring map

ϕ : K[x1, . . . , xn]>1 → L[y1, . . . , ym]>2

satisfying ϕ(xi) = fi for i = 1, . . . , n, and ϕ(a) = ψ(a) for a ∈ K.

Proof. By Lemma 1.1.6, there is a unique ring map ϕ̃ : K[x]→ L[y]>2 with
ϕ̃(xi) = fi and ϕ̃(a) = ψ(a), a ∈ K. The assumption says that ϕ̃(u) is a unit
in L[y]>2 for each u ∈ S>1 . Hence, the result follows from the universal prop-
erty of localization (Proposition 1.4.7).

In particular, if >1 is global, there is no condition on the fi and any elements
f1, . . . , fn ∈ K[y1, . . . , ym]> define a unique map

K[x1, . . . , xn] −→ K[y1, . . . , ym]>, xi �−→ fi ,

for any monomial ordering > on Mon(y1, . . . , ym).

Remark 1.5.9. With the notations of Lemma 1.5.8, the condition “h ∈ S>1

implies h(f1, . . . , fn) ∈ S>2” cannot be replaced by “1 >2 LM(fi) for those i
where 1 >1 xi”. Consider the following example: let >1, respectively >2, be
defined on K[x, y] by the matrix

(−2 1
1 0

)
, respectively

(−1 2
1 0

)
. Then x <1 y

and x <2 y but xy + 1 ∈ S<1 and xy + 1 �∈ S>2 .

SINGULAR Example 1.5.10 (realization of rings).
We show how to create the rings of Examples 1.5.3. Note that Singular

sorts the monomials with respect to the monomial ordering, the greatest
being first. Hence, the position of 1 in the output shows which monomials
are greater, respectively smaller, than 1.

int n,m=2,3;
ring A1 = 0,(x(1..n),y(1..m)),(dp(n),ds(m));
poly f = x(1)*x(2)^2+1+y(1)^10+x(1)*y(2)^5+y(3);
f;
//-> x(1)*x(2)^2+x(1)*y(2)^5+1+y(3)+y(1)^10

1>y(1)^10; //the monomial 1 is greater than y(1)^10
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//-> 1

ring A2 = 0,(x(1..n),y(1..m)),(ds(n),dp(m));
fetch(A1,f);
//-> y(1)^10+y(3)+1+x(1)*y(2)^5+x(1)*x(2)^2

x(1)*y(2)^5<1;
//-> 1

ring A3 = 0,(x(1..n),y(1..m)),(dp(n),ds(2),dp(m-2));
fetch(A1,f);
//-> x(1)*x(2)^2+x(1)*y(2)^5+y(3)+1+y(1)^10

Exercises

1.5.1. Prove Remark 1.5.6.

1.5.2. Give one possible realization of the following rings within Singular:

(1) Q[x, y, z],
(2) F5[x, y, z],
(3) Q[x, y, z]/〈x5 + y3 + z2〉,
(4) Q(i)[x, y], i2 = −1,
(5) F27[x1, . . . , x10]〈x1,...,x10〉,
(6) F32003[x, y, z]〈x,y,z〉/〈x5 + y3 + z2, xy〉,
(7) Q(t)[x, y, z],
(8)

(
Q[t]/(t3 + t2 + 1)

)
[x, y, z]〈x,y,z〉,

(9) (Q[t]〈t〉)[x, y, z],
(10) F2(a, b, c)[x, y, z]〈x,y,z〉.

(Hint: see the Singular Manual for how to define a quotient ring modulo
some ideal.)

1.5.3. What are the units in the rings of Exercise 1.5.2?

1.5.4. Write a Singular procedure, having as input a polynomial f and
returning 1 if f is a unit in the basering and 0 otherwise.
(Hint: type ?procedures;.)

Test the procedure by creating, for each ring of Exercise 1.5.2, two poly-
nomials, one a unit, the other not.

1.5.5. Write a Singular procedure, having as input a polynomial f and an
integer n, which returns the power series expansion of the inverse of f up to
terms of degree n if f is a unit in the basering and 0 if f is not a unit.
(Hint: remember the geometric series.)
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1.5.6. (1) Let > be a local ordering on Mon(x1, . . . , xn). Show that
K[x1, . . . , xn, y1, . . . , ym]〈x1,...,xn〉 = K(y1, . . . , ym)[x1, . . . , xn]>.

(2) Implement the ring Q[x, y, z]〈x,y〉 inside Singular.

1.6 Normal Forms and Standard Bases

In this section we define standard bases, respectively Gröbner bases, of an
ideal I ⊂ K[x]> as a set of polynomials of I such that their leading mono-
mials generate the leading ideal L(I). The next section gives an algorithm to
compute standard bases. For global orderings this is Buchberger’s algorithm,
which is a generalization of the Gaussian elimination algorithm and the Eu-
clidean algorithm. For local orderings it is Mora’s tangent cone algorithm,
which itself is a variant of Buchberger’s algorithm. The general case is a vari-
ation of Mora’s algorithm, which is due to the authors and implemented in
Singular since 1990.

The leading ideal L(I) contains a lot of information about the ideal I,
which often can be computed purely combinatorially from L(I), because the
leading ideal is generated by monomials. Standard bases have turned out to
be the fundamental tool for computations with ideals and modules. The idea
of standard bases is already contained in the work of Gordan [93]. Later,
monomial orderings were used by Macaulay [157] and Gröbner [117] to study
Hilbert functions of graded ideals, and, more generally, to find bases of zero–
dimensional factor rings. The notion of a standard basis was introduced later,
independently, by Hironaka [123], Grauert [98] (for special local orderings)
and Buchberger [32] (for global orderings).

In the following, special emphasis is made to axiomatically characterize
normal forms, respectively weak normal forms, which play an important role
in the standard basis algorithm. They generalize division with remainder to
the case of ideals, respectively finite sets of polynomials.

In the case of a global ordering, for any polynomial f and any ideal I,
there is a unique normal form NF(f | I) of f with respect to I, such that
no monomial of NF(f | I) is in the leading ideal L(I). This can be used to
decide, for instance, whether f is in the ideal I (if the normal form is 0).

In the general case, the above property turns out to be too strong. Hence,
the requirements for a normal form have to be weakened. For instance, for the
decision whether a polynomial is in an ideal or not, only the leading term of
a normal form NF(f | I) is important. Thus, for this purpose, it is enough to
require that NF(f | I) is either 0 or has a leading term, which is not in L(I).
After weakening the requirements, there is no more uniqueness statement for
the normal form.

Our intention is to keep the definition of a normal form as general as
possible. Moreover, our presentation separates the normal form algorithm
from a general standard basis algorithm and shows that different versions of
standard basis algorithms are due to different normal forms.
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The axiomatic definition of a normal form as presented in this section has
been introduced in [111, 112], although its properties have already commonly
been used before. It seems to be the minimal requirement in order to carry
through standard basis theory in the present context.

Let > be a fixed monomial ordering and let, in this section,

R = K[x1, . . . , xn]>

be the localization of K[x] = K[x1, . . . , xn] with respect to >. Recall that
R = S−1

> K[x] with S> = {u ∈ K[x] � {0} | LM(u) = 1}, and that R = K[x]
if > is global and R = K[x]〈x〉 if > is local. In any case, R may be considered
as a subring of the ring K[[x]] of formal power series (cf. Section 6.1).

Definition 1.6.1. Let I ⊂ R be an ideal.

(1) A finite set G ⊂ R is called a standard basis of I if

G ⊂ I, and L(I) = L(G) .

That is, G is a standard basis, if the leading monomials of the elements of
G generate the leading ideal of I, or, in other words, if for any f ∈ I � {0}
there exists a g ∈ G satisfying LM(g) | LM(f).

(2) If > is global, a standard basis is also called a Gröbner basis .
(3) If we just say that G is a standard basis, we mean that G is a standard

basis of the ideal 〈G〉R generated by G.

Let > be any monomial ordering on Mon(x1, . . . , xn). Then each non–zero
ideal I ⊂ K[x]> has a standard basis. To see this, choose a finite set of gen-
erators m1, . . . ,ms of L(I) ⊂ K[x], which exists, since K[x] is Noetherian
(Theorem 1.3.5). By definition of the leading ideal, these generators are lead-
ing monomials of suitable elements g1, . . . , gs ∈ I. By construction, the set
{g1, . . . , gs} is a standard basis for I.

Definition 1.6.2. Let G ⊂ R be any subset.

(1) G is called interreduced if 0 �∈ G and if LM(g) � LM(f) for any two ele-
ments f �= g in G. An interreduced standard basis is also called minimal .

(2) f ∈ R is called (completely) reduced with respect to G if no monomial of
the power series expansion of f is contained in L(G).

(3) G is called (completely) reduced if G is interreduced and if, for any g ∈ G,
LC(g) = 1 and tail(g) is completely reduced with respect to G.

Remark 1.6.3.

(1) If > is a global ordering, then any finite set G can be transformed into an
interreduced set: for any g ∈ G such that there exists an f ∈ G�{g} with
LM(f) | LM(g) replace g by g −mf , where m is a term with LT(g) =
mLT(f). The result is called the (inter)reduction of G; it generates the
same ideal as G.
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(2) Every standard basis G can be transformed into an interreduced one by
just deleting elements of G: delete zeros and then, successively, any g
such that LM(g) is divisible by LM(f) for some f ∈ G� {g}. The result
is again a standard basis. Thus, G is interreduced if and only if G is
minimal (that is, we cannot delete any element of G without violating
the property of being a standard basis).

(3) Let G ⊂ R be an interreduced set and g ∈ G. If tail(g) is not reduced
with respect to G, the power series expansion of tail(g) has a monomial
which is either divisible by L(g) or by L(f) for some f ∈ G� {g}. If > is
global, then no monomial of tail(g) is divisible by L(g) since > refines the
natural partial ordering on N

n, that is, tail(g) is reduced with respect to
{g}. For local or mixed orderings, however, it is possible to reduce tail(g)
with g and we actually have to do this.

(4) It follows that a Gröbner basis G ⊂ K[x], which consists of monic poly-
nomials, is (completely) reduced if for any f �= g ∈ G, LM(g) does not
divide any monomial of f .

We shall see later that reduced Gröbner bases can always be computed6

(cf. the remark after Algorithm 1.6.10), and are unique (Exercise 1.6.1), but
reduced standard bases are, in general, not computable (in a finite number
of steps).

The following two definitions are crucial for our treatment of standard
bases.

Definition 1.6.4. Let G denote the set of all finite lists G ⊂ R.

NF : R× G → R, (f,G) �→ NF(f | G) ,

is called a normal form on R if, for all G ∈ G,

(0) NF(0 | G) = 0 ,

and, for all f ∈ R and G ∈ G,

(1) NF(f | G) �= 0 =⇒ LM
(
NF(f | G)

) �∈ L(G).
(2) If G = {g1, . . . , gs}, then f − NF(f |G) (or, by abuse of notation, f) has

a standard representation with respect to NF(− | G), that is,

f −NF(f | G) =
s∑

i=1

aigi, ai ∈ R , s ≥ 0 ,

satisfying LM(Σs
i=1aigi) ≥ LM(aigi) for all i such that aigi �= 0.

NF is called a reduced normal form, if, moreover, NF(f | G) is reduced
with respect to G.

6 The Singular command std can be forced to compute reduced Gröbner bases
G (up to normalization) using option(redSB). To normalize G, one may use the
Singular command simplify(G,1).
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Definition 1.6.5.

(1) A map NF : R × G → R, as in Definition 1.6.4, is called a weak normal
form on R if it satisfies (0),(1) of 1.6.4 and, instead of (2),
(2’) for all f ∈ R and G ∈ G there exists a unit u ∈ R∗ such that uf has

a standard representation with respect to NF(− | G).
(2) A weak normal form NF is called polynomial if, whenever f ∈ K[x] and

G ⊂ K[x], there exists a unit u ∈ R∗ ∩K[x] such that uf has a standard
representation with ai ∈ K[x].

Remark 1.6.6.

(1) The notion of weak normal forms is only interesting for non–global order-
ings since for global orderings we have R = K[x] and, hence, R∗ = K∗.
Even in general, if a weak normal form NF exists, then, theoretically,
there exists also a normal form ÑF

(f,G) �−→ 1
u

NF(f | G) =: ÑF(f | G)

for an appropriate choice of u ∈ R∗ (depending on f and G). However,
we are really interested in polynomial normal forms, and for non–global
orderings 1/u is, in general, not a polynomial but a power series.
Note that R∗ ∩K[x] = S>.

(2) Consider f = y, g = (y − x)(1 − y), andG = {g} inR = K[x, y]〈x,y〉 with
local ordering ls. Assume h := NF(f | G) ∈ K[x, y] is a polynomial nor-
mal form of f with respect to G. Since f �∈ 〈G〉R = 〈y − x〉R, we have
h �= 0, hence, LM(h) �∈ L(G) = 〈y〉. Moreover h− y = h− f ∈ 〈y − x〉R,
which implies LM(h) < 1. Therefore, we obtain h = xh′ for some h′ (be-
cause of the chosen ordering ls). However, y− xh′ �∈ 〈(y− x)(1− y)〉K[x,y]

(substitute (0, 1) for (x, y)) and, therefore no polynomial normal form of
(f,G) exists. On the other hand, setting u = (1 − y) and h = x(1 − y)
then uy− h = (y − x)(1− y) and, hence, h is a polynomial weak normal
form.

(3) For applications (weak) normal forms are most useful if G is a stan-
dard basis of 〈G〉R. We shall demonstrate this with a first application in
Lemma 1.6.7.

(4) f =
∑
i aigi being a standard representation means that no cancellation

of leading terms > LM(f) between the aigi can occur and that LM(f) =
LM(aigi) for at least one i.

(5) We do not distinguish strictly between lists and (ordered) sets. Since, in
the definition of normal form, we allow repetitions of elements in G we
need lists, that is, sequences of elements, instead of sets. We assume a
given set G to be ordered (somehow) when we apply NF(− | G).
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(6) The existence of a normal form resp. a polynomial weak normal form with
respect to G ⊂ K[x] which we prove in Algorithm 1.6.10 resp. Algorithm
1.7.6 says:
For any f ∈ R there exist polynomials u, a1, . . . , as ∈ K[x] such that

uf =
s∑

i=1

aigi + h, LM(u) = 1,

satisfying:
(1) If h �= 0 then LM(h) is not divisible by LM(gi), i = 1, . . . , s,
(2) LM(

∑s
i=1 aigi) ≥ LM(aigi) for all i with aigi �= 0 (and hence equality

holds for at least one i).
Moreover, if > is global then the unit u can be chosen as 1.

Thus the existence of a (weak) normal form is a division theorem where
f (resp. uf) is divided by G = {g1, . . . , gs} with main part

∑s
i=1 aigi and

remainder h = NF(f |G).
The Singular command reduce or NF resp. division returns the re-
mainder h resp. h together with the ai and the unit u.

Lemma 1.6.7. Let I ⊂ R be an ideal, G ⊂ I a standard basis of I and
NF(− | G) a weak normal form on R with respect to G.

(1) For any f ∈ R we have f ∈ I if and only if NF(f | G) = 0.
(2) If J ⊂ R is an ideal with I ⊂ J , then L(I) = L(J) implies I = J .
(3) I = 〈G〉R, that is, the standard basis G generates I as R–ideal.
(4) If NF(− | G) is a reduced normal form, then it is unique. 7

Proof. (1) If NF(f | G) = 0 then uf ∈ I and, hence, f ∈ I. If NF(f | G) �= 0,
then LM

(
NF(f | G)

) �∈ L(G) = L(I), hence NF(f | G) �∈ I, which implies
f �∈ I, since 〈G〉R ⊂ I. To prove (2), let f ∈ J and assume that NF(f | G) �= 0.
Then LM

(
NF(f | G)

) �∈ L(G) = L(I) = L(J), contradicting NF(f | G) ∈ J .
Hence, f ∈ I by (1).

(3) follows from (2), since L(I) = L(G) ⊂ L(〈G〉R) ⊂ L(I), in particular,
G is also a standard basis of 〈G〉R. Finally, to prove (4), let f ∈ R and assume
that h, h′ are two reduced normal forms of f with respect to G. Then no mono-
mial of the power series expansion of h or h′ is divisible by any monomial of
L(G) and, moreover, h− h′ = (f − h′)− (f − h) ∈ 〈G〉R = I. If h− h′ �= 0,
then LM(h− h′) ∈ L(I) = L(G), a contradiction, since LM(h− h′) is a mono-
mial of either h or h′.

Remark 1.6.8. The above properties are well–known for Gröbner bases with
R = K[x]. For local or mixed orderings it is quite important to work rigor-
ously with R instead of K[x]. We give an example showing that none of the
7 In the case of a global ordering, we shall see below that such a reduced normal

form exists. Then we also write NF(− | I) for NF(− | G), G any standard basis
of I , and call it the normal form with respect to I .
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above properties (1) – (3) holds for K[x], if they make sense, that is, if the
input data are polynomial.

Let f1 := x10− x9y2, f2 := y8− x2y7, f3 := x10y7, and consider the (local)
ordering ds on K[x, y]. Then R = K[x, y]〈x,y〉, (1− xy)f3 = y7f1 + x9yf2,
and we set

I := 〈f1, f2〉R = 〈f1, f2, f3〉R , I ′ := 〈f1, f2〉K[x,y] , J ′ := 〈f1, f2, f3〉K[x,y],

and G := {f1, f2}. Then G is a reduced standard basis of I (since we must
multiply f1 at least with y8 and f2 with x10 to produce new monomials,
but L(G) ⊃ 〈x, y〉17). If NF(− | G) is any weak normal form on R, then
NF(f3 | G) = 0, since f3 ∈ I. Hence, we have in this case

(1) NF(f3 | G) = 0, but f3 �∈ I ′,
(2) I ′ ⊂ J ′, L(I ′) = L(J ′), but I ′ �= J ′,
(3) G ⊂ J ′, but 〈G〉K[x] �= J ′.

Note that J ′ is even 〈x, y〉–primary (for a definition cf. Chapter 4).

We concentrate first on well–orderings, Gröbner bases and Buchberger’s algo-
rithm. To describe Buchberger’s normal form algorithm, we need the notion
of an s–polynomial, due to Buchberger.

Definition 1.6.9. Let f, g ∈ R � {0} with LM(f) = xα and LM(g) = xβ ,
respectively. Set

γ := lcm(α, β) :=
(
max(α1, β1), . . . ,max(αn, βn)

)

and let lcm(xα, xβ) := xγ be the least common multiple of xα and xβ . We
define the s–polynomial (spoly, for short) of f and g to be

spoly(f, g) := xγ−αf − LC(f)
LC(g)

· xγ−βg .

If LM(g) divides LM(f), say LM(g) = xβ , LM(f) = xα, then the s–polynomial
is particularly simple,

spoly(f, g) = f − LC(f)
LC(g)

· xα−βg ,

and LM
(
spoly(f, g)

)
< LM(f).

For the normal form algorithm, the s–polynomial will only be used in the
second form, while for the standard basis algorithm we need it in the general
form above. In order to be able to use the same expression in both algorithms,
we prefer the above definition of the s–polynomial and not the symmetric
form LC(g)xγ−αf − LC(f)xγ−βg. Both are, of course, equivalent, since we
work over a field K. However, in connection with pseudo standard bases
(Exercise 2.3.6) we have to use the symmetric form.
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Algorithm 1.6.10 (NFBuchberger(f | G)).
Assume that > is a global monomial ordering.

Input: f ∈ K[x], G ∈ G

Output: h ∈ K[x], a normal form of f with respect to G.

• h := f ;
• while (h �= 0 and Gh := {g ∈ G | LM(g) divides LM(h)} �= ∅)

choose any g ∈ Gh;
h := spoly(h, g);

• return h;

Note that each specific choice of “any” can give a different normal form
function.

Proof. The algorithm terminates, since in the i–th step of the while loop we
create (setting h0 := f) an s–polynomial

hi = hi−1 −migi, LM(hi−1) > LM(hi) ,

where mi is a term such that LT(migi) = LT(hi−1), and gi ∈ G (allowing
repetitions).

Since > is a well–ordering, {LM(hi)} has a minimum, which is reached at
some step m. We obtain

h1 = f −m1g1

h2 = h1 −m2g2 = f −m1g1 −m2g2

...

hm = f −
m∑

i=1

migi,

satisfying LM(f) = LM(m1g1) > LM(migi) > LM(hm). This shows that
h := hm is a normal form with respect to G.

Moreover, if h �= 0, then Gh = ∅ and, hence, LM(h) �∈ L(G) if h �= 0. This
proves correctness, independent of the specific choice of “any” in the while
loop.

It is easy to extend NFBuchberger to a reduced normal form. Either we
do tail–reduction during NFBuchberger, that is, we set

h := spoly(h, g);

h := LT(h) + NFBuchberger(tail
(
h) | G);

in the while loop, or do tail–reduction after applying NFBuchberger, as
in Algorithm 1.6.11. Indeed, the argument holds for any normal form with
respect to a global ordering.
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Algorithm 1.6.11 (redNFBuchberger(f | G)).
Assume that > is a global monomial ordering.

Input: f ∈ K[x], G ∈ G
Output: h ∈ K[x], a reduced normal form of f with respect to G

• h := 0, g := f ;
• while (g �= 0)

g := NFBuchberger (g | G);
if (g �= 0)
h := h+ LT(g);
g := tail(g);

• return h/LC(h);

Since tail(g) has strictly smaller leading term than g, the algorithm termi-
nates, since > is a well–ordering. Correctness follows from the correctness of
NFBuchberger.

Example 1.6.12. Let > be the ordering dp on Mon(x, y, z),

f = x3+ y2+ 2z2+ x+ y + 1 , G = {x, y} .

NFBuchberger proceeds as follows:

LM(f) = x3, Gf = {x},
h1 = spoly(f, x) = y2 + 2z2 + x+ y + 1,
LM(h1) = y2, Gh1 = {y},
h2 = spoly(h1, y) = 2z2 + x+ y + 1, Gh2 = ∅.

Hence, NFBuchberger(f | G) = 2z2+ x+ y + 1. For the reduced normal
form in Algorithm 1.6.11 we obtain:

g0 = NFBuchberger(f | G) = 2z2 + x+ y + 1, LT(g0) = 2z2,
h1 = 2z2, g1 = tail(g0) = x+ y + 1,
g2 = NFBuchberger(g1 | G) = 1, LT(g2) = 1,
h2 = 2z2 + 1, g3 = tail(g2) = 0.

Hence, RedNFBuchberger(f | G) = z2+ 1/2.

SINGULAR Example 1.6.13 (normal form).
Note that NF(f | G) may depend on the sorting of the elements of G. The
function reduce computes a normal form.

ring A = 0,(x,y,z),dp; //a global ordering
poly f = x2yz+xy2z+y2z+z3+xy;
poly f1 = xy+y2-1;
poly f2 = xy;
ideal G = f1,f2;
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ideal S = std(G); //a standard basis of <G>
S;
//-> S[1]=xy
//-> S[2]=y2-1

reduce(f,G);
//** G is no standardbasis
//-> y2z+z3 //NF w.r.t. a non-standard basis

G=f2,f1;
reduce(f,G);
//** G is no standardbasis
//-> y2z+z3-y2+xz+1 //NF for a different numbering in G

reduce(f,S,1); //NFBuchberger
//-> z3+xy+z

reduce(f,S); //redNFBuchberger
//-> z3+z

Remark 1.6.14. There exists also the notion of a standard basis over a
ring. Namely, let R be Noetherian and R[x] = R[x1, . . . , xn]. The leading
data of f ∈ R[x1, . . . , xn] � {0} with respect to a monomial ordering > on
Mon(x1, . . . , xn) are defined as in Definition 1.2.2. If I ⊂ R[x] is an ideal and
G ⊂ I a finite set, then G is a standard basis of I if

〈LT(f) | f ∈ I〉 = 〈LT(g) | g ∈ G〉 .

Note that we used leading terms and not leading monomials (which is, of
course, equivalent if R is a field). The normal form algorithm over rings is
more complicated than over fields. For example, if > is a global ordering, the
algorithm NFBuchberger has to be modified to
h := f ;
while (h �= 0 and Gh = {g1, . . . , gs} �= ∅ and LT(h) ∈ 〈LT(g) | g ∈ Gh〉)

choose ci ∈ R� {0} and monomialsmi withmi LM(gi) = LM(h) such that
LT(h) = c1m1 LT(g1) + · · ·+ csms LT(gs);

h := h−∑s
i=1 cimigi;

return h;
The determination of the ci requires the solving of linear equations over

R and not just a divisibility test for monomials as for s–polynomials. With
this normal form, standard bases can be computed as in the next section. For
details see [1], [90], [129].

In practice, however, this notion is not frequently used so far and there
seems to be no publicly available system having this implemented. A weaker
concept are the comprehensive Gröbner bases of Weispfenning [232], which
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are Gröbner bases depending on parameters and which specialize to a
Gröbner basis for all possible fixed values of the parameters.

For a simple criterion, when the specialization of a standard basis is again
a standard basis, see Exercises 2.3.7, 2.3.8, where we introduce pseudo stan-
dard bases .

Exercises

Let > be any monomial ordering and R = K[x1, . . . , xn]>.

1.6.1. Let I ⊂ R be an ideal. Show that if I has a reduced standard basis,
then it is unique.

1.6.2. Let > be a local or mixed ordering. Prove that Algorithm 1.6.11
computes, theoretically, (possibly in infinitely many steps) for f ∈ R and
G ⊂ R a reduced normal form. Hence, it can be used to compute, for local
degree orderings, a normal form which is completely reduced up to a finite,
but arbitrarily high order.

1.6.3. Show by an example, with f and G consisting of polynomials and
> not global, that a completely reduced normal form of f with respect to
G does not exist in R. (Note that Exercise 1.6.2 only says that it exists as
formal power series.)

1.6.4. Apply NFBuchberger to (f,G,>) without using Singular:

(1) f = 1, G = {x− 1} and ordering lp, respectively ls.
(2) f = x4 + y4 + z4 + xyz, G = {∂f/∂x, ∂f/∂y, ∂f/∂z} and ordering dp.

1.6.5. Give a direct argument that the set G in Exercise 1.6.4 (2) is a stan-
dard basis with respect to dp.

1.6.6. Write a Singular procedure, having two polynomials f, g as input
and returning spoly(f, g) as output.

1.6.7. Write your own Singular procedure, having a polynomial f and an
ideal I as input and NFBuchberger (f | I) as output by always choosing
the first element from Gh. (Note that an ideal is given by a list of polynomi-
als.)

1.6.8. Implement, as Singular procedures, the two ways described in the
text to compute a reduced normal form. (The first method is a good exercise
in recursive programming.)

Check your procedures with the Singular Example 1.6.13.

1.6.9. Let R = K[t1, . . . , tn], K a field. Write a Singular procedure which
computes the normal form NFBuchberger over the ring R, as explained in
Remark 1.6.14.
(Hint: use the Singular command lift.)
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1.7 The Standard Basis Algorithm

Let > be a fixed monomial ordering and let, in this section,

R = K[x1, . . . , xn]>

be the localization of K[x], x = (x1, . . . , xn), with respect to >. Recall that
R = S−1

> K[x] with S> = {u ∈ K[x] � {0} | LM(u) = 1}, and that R = K[x]
if > is global and R = K[x]〈x〉 if > is local. In any case, R may be considered
as a subring of the ring K[[x]] of formal power series.

The idea of many standard basis algorithms may be formalized as follows:

Algorithm 1.7.1 (Standard(G,NF)).

Let > be any monomial ordering, and R := K[x1, . . . , xn]>.

Input: G ∈ G, NF an algorithm returning a weak normal form.
Output: S ∈ G such that S is a standard basis of I = 〈G〉R ⊂ R

• S := G;
• P := {(f, g) | f, g ∈ S, f �= g}, the pair–set;
• while (P �= ∅)

choose (f, g) ∈ P ;
P := P � {(f, g)};
h := NF

(
spoly(f, g) | S);

if (h �= 0)
P := P ∪ {(h, f) | f ∈ S};
S := S ∪ {h};

• return S;

To see termination of Standard, note that if h �= 0 then LM(h) �∈ L(S) by
property (i) of NF. Hence, we obtain a strictly increasing sequence of mono-
mial ideals L(S) of K[x], which becomes stationary as K[x] is Noetherian.
That is, after finitely many steps, we always have NF

(
spoly(f, g) | S) = 0 for

(f, g) ∈ P , and, again after finitely many steps, the pair-set P will become
empty. Correctness follows from applying Buchberger’s fundamental standard
basis criterion below.

Remark 1.7.2. If NF is a reduced normal form and if G is reduced, then S,
as returned by Standard(G,NF), is a reduced standard basis if we delete
elements whose leading monomials are divisible by a leading monomial of
another element in S. If G is not reduced, we may apply a reduced normal
form afterwards to (f, S � {f}) for all f ∈ S in order to obtain a reduced
standard basis.

Theorem 1.7.3 (Buchberger’s criterion). Let I ⊂ R be an ideal and
G = {g1, . . . , gs} ⊂ I. Let NF(− | G) be a weak normal form on R with respect
to G. Then the following are equivalent: 8

8 Usually, the implication (4) ⇒ (1) is called Buchberger’s criterion. But with our
concept of (weak) normal forms, we need, indeed, the implication (5) ⇒ (1) to
prove the correctness of the standard basis algorithm.
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(1) G is a standard basis of I.
(2) NF(f | G) = 0 for all f ∈ I.
(3) Each f ∈ I has a standard representation with respect to NF(− | G).
(4) G generates I and NF

(
spoly(gi, gj) | G

)
= 0 for i, j = 1, . . . , s.

(5) G generates I and NF
(
spoly(gi, gj) | Gij

)
= 0 for a suitable subset Gij ⊂

G and i, j = 1, . . . , s.

Proof. The implication (1)⇒ (2) follows from Lemma 1.6.7, (2)⇒ (3) is triv-
ial. To see (3)⇒ (4), note that h := NF

(
spoly(gi, gj) | G

) ∈ I and, hence, ei-
ther h = 0 or LM(h) ∈ L(G) by (3), a contradiction to property (i) of NF.
The fact that G generates I follows immediately from (3). (4)⇒ (5) is trivial.

Finally, the implication (5)⇒ (1) is the important Buchberger criterion
which allows the checking and construction of standard bases in finitely
many steps. Our proof uses syzygies and is, therefore, postponed to the next
chapter.

Example 1.7.4. Let > be the ordering dp on Mon(x, y), NF=NFBuchber-

ger and G = {x2 + y, xy + x}. Then we obtain as initialization
S = {x2 + y, xy + x}
P = {(x2 + y, xy + x)}.

The while–loop gives, in the first turn,
P = ∅
h = NF(−x2 + y2 | S) = y2 + y
P = {(y2+ y, x2+ y), (y2+ y, xy + x)}
S = {x2+ y, xy + x, y2+ y}.

In the second turn
P = {(y2+ y, xy + x)}
h = NF(−x2y + y3 | S) = 0.

In the third turn
P = ∅
h = NF(0 | S) = 0.

The algorithm terminates and S = {x2 +y, xy+x, y2+y} is a standard basis.

We present now a general normal form algorithm, which works for any mono-
mial ordering. The basic idea is due to Mora [176], but our algorithm is more
general, with a different notion of ecart. It has been implemented in Singu-

lar since 1990, the first publication appeared in [97], [111].
Before turning to the details, let us first analyze Buchberger’s algorithm

in the case of a non–global ordering. We may assume that in K[x, y] we have
x1, . . . , xn < 1, y1, . . . , ym > 1 (m ≥ 0).

Look at the sequence mi = cix
αiyβi , i ≥ 1, of terms constructed in the

algorithm NFBuchberger. If degx(mi) is bounded, then, since > induces
a well–ordering on K[y], the algorithm stops after finitely many steps.

On the other hand, if the degree of mi in x is unbounded, then, for each
fixed factor xαi , there can only be finitely many cofactors yβj and, hence,∑

i≥1mi converges in the 〈x〉–adic topology (cf. Definition 6.1.6), that is,
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∑
i≥1mi ∈ K[y][[x]]. If G = {g1, . . . , gs} we may gather the factors mj of

any gi, obtaining thus in NFBuchberger an expression

h = f −
s∑

i=1

aigi , h, ai ∈ K[y][[x]] ,

which holds in K[y][[x]]. However, this process does not stop.
The standard example is in one variable x, with x < 1, f := x and

G := {g = x− x2}. Using NFBuchberger we obtain

x−
( ∞∑

i=0

xi

)
(x− x2) = 0

in K[[x]], which is true, since
∑∞

i=0 x
i = 1/(1− x) in K[[x]]. However, the

algorithm constructs a power series
∑∞

i=0 x
i having infinitely many terms

and not the finite expression 1/(1− x).
In order to avoid infinite power series, we have to allow a wider class of

elements for the reduction in order to create a standard expression of the
form

uf =
s∑

i=1

aigi + NF(f | G) ,

where u is a unit in R, and u, ai and NF(f | G) are polynomials in the case
when the input data f and G = {g1, . . . , gs} are polynomials. In the previous
example we arrive at an expression

(1 − x)x = x− x2

instead of x = (
∑∞

i=0 x
i)(x− x2).

Definition 1.7.5. For f ∈ K[x] � {0} we define the ecart of f as

ecart(f) := deg f − deg LM(f) .

Note that, for a homogeneous polynomial f , we have ecart(f) = 0.

If w = (w1, . . . , wn) is any tuple of positive real numbers, we can define the
weighted ecart by ecartw(f) := w–deg(f)− w–deg

(
LM(f)

)
. In the following

normal form algorithm NFMora, we may always take ecartw instead of ecart,
the algorithm works as well. It was noted in [94] that, for certain examples,
the algorithm can become much faster for a good choice of w.

Another description of ecart(f) turns out to be quite useful. Let fh de-
note the homogenization of f with respect to a new variable t (such that
all monomials of f are of the same degree, cf. Exercise 1.7.4). Define on
Mon(t, x1, . . . , xn) an ordering >h by tpxα >h t

qxβ if p+ |α| > q + |β| or if
p+ |α| = q + |β| and xα > xβ . Equivalently, >h is given by the matrix
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⎛

⎜⎜⎝

1 1 . . . 1
0.
.
. A
0

⎞

⎟⎟⎠

where A is a matrix defining the ordering on K[x]. This defines a well–
ordering on Mon(t, x).

For f ∈ K[x] we have

LM>h
(fh) = tecart(f) LM>(f) ,

in particular, ecart(f) = degt LM>h
(fh).

Algorithm 1.7.6 (NFMora(f | G)).

Let > be any monomial ordering.

Input: f ∈ K[x], G a finite list in K[x]
Output: h ∈ K[x] a polynomial weak normal form of f with respect to G.

• h := f ;
• T := G;
• while(h �= 0 and Th := {g ∈ T | LM(g) | LM(h)} �= ∅)

choose g ∈ Th with ecart(g) minimal;
if (ecart(g) > ecart(h))
T := T ∪ {h};

h := spoly(h, g);
• return h;

Example 1.7.7. Let > be the ordering ds on Mon(x, y, z), f = x2 + y2 + z3 +
x4 + y5, G = {x, y}. Then NFMora (f | G) = z3+ x4+ y5.

If the input is homogeneous, then the ecart is always 0 and NFMora is
equal to NFBuchberger. If > is a well–ordering, then LM(g) | LM(h) im-
plies that LM(g) ≤ LM(h), hence, even if h is added to T during the algo-
rithm, it cannot be used in further reductions. Thus, NFMora is the same
as NFBuchberger, but with a special selection strategy for the elements
from G.

Proof of Algorithm 1.7.6. Termination is most easily seen by using homog-
enization: start with h := fh and T := Gh = {gh | g ∈ G}. The while loop
looks as follows (see Exercise 1.7.9):

• while (h �= 0 and Th := {g ∈ T | LM(g) divides tα LM(h) for some α} �= ∅)
choose g ∈ Th with α ≥ 0 minimal;
if (α > 0)
T := T ∪ {h};

h := spoly(tαh, g);
h := (h|t=1)h;

• return h|t=1;
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Since R is Noetherian, there exists some positive integer N such that L(Tν)
becomes stable for ν ≥ N , where Tν denotes the set T after the ν–th turn
of the while loop. The next h, therefore, satisfies LM(h) ∈ L(TN) = L(T ),
whence, LM(g) divides LM(h) for some g ∈ T and α = 0. That is, Tν itself
becomes stable for ν ≥ N and the algorithm continues with fixed T . Then it
terminates, since > is a well–ordering on K[t, x].

To see correctness, consider the ν–th turn in the while loop of Algo-
rithm 1.7.6. There we create (with h0 := f) hν := spoly(hν−1, g

′
ν) for some

g′ν ∈ Tν−1 such that LM(g′ν) | LM(hν−1). Hence, there exists some term
mν ∈ K[x], LT(mνg

′
ν) = LT(hν−1), such that

hν = hν−1 −mνg
′
ν , LM(hν−1) = LM(mνg

′
ν) > LM(hν) ,

Now for g′ν we have two possibilities:

(1) g′ν = gi ∈ G = {g1, . . . , gs} for some i, or
(2) g′ν ∈ T �G ⊂ {h0, h1, . . . , hν−2}.
Suppose, by induction, that in the first ν − 1 steps (ν ≥ 1) we have con-
structed standard representations

ujf =
s∑

i=1

a
(j)
i gi + hj , uj ∈ S>, a

(j)
i ∈ K[x] ,

0 ≤ j ≤ ν − 1, starting with u0 := 1, a(0)
i := 0.

Consider this standard representation for j = ν − 1. In case (1), we replace
hν−1 on the right–hand side by hν +mνgi, hence, obtaining

uνf =
s∑

i=1

a
(ν)
i gi + hν

with uν := uν−1 and some a(ν)
i ∈ K[x].

In case (2), we have to substitute hν−1 by

hν +mνhj = hν −mν

(
s∑

i=1

a
(j)
i gi − ujf

)

with j < ν − 1. Hence, we obtain an expression

(uν−1 −mνuj)f =
s∑

i=1

a
(ν)
i gi + hν , a

(ν)
i ∈ K[x] .

Since LM(mν) · LM(hj) = LM(mνhj) = LM(hν−1) < LM(hj), we obtain that
LM(mν) < 1 and, hence, uν = uν−1 −mνuj ∈ S>.
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It is clear that, with a little extra storage, the algorithm does also return
u ∈ S>. Moreover, with quite a bit of bookkeeping one obtains the ai.

Now, the standard basis algorithm for arbitrary monomial orderings for-
mally looks as follows:

Algorithm 1.7.8 (StandardBasis(G)).

Let > be any monomial ordering, R = K[x]>.

Input: G = {g1, . . . , gs} ⊂ K[x]
Output: S = {h1, . . . , ht} ⊂ K[x] such that S is a standard basis of the ideal

〈G〉R ⊂ R.

• S := Standard(G,NFMora);
• return S;

The following corollary shows that the property of being a standard basis
depends only on the ordering of finitely many monomials. This property is
used in our study of flatness and standard bases (Section 7.5).

Corollary 1.7.9 (finite determinacy of standard bases). Let I ⊂ K[x]
be an ideal and G ⊂ K[x] be a standard basis of I with respect to an arbitrary
monomial ordering >. Then there exists a finite set F ⊂ Mon(x) with the
following properties:

Let >1 be any monomial ordering on Mon(x) coinciding with > on F ,
then

(1) LM>(g) = LM>1(g) for all g ∈ G,
(2) G is a standard basis of I with respect to >1.

Proof. We apply Theorem 1.7.3 with NF = NFMora.
Let G = {g1, . . . , gs}, and let F be the set of all monomials occurring in all

polynomials during the reduction process of spoly(gi, gj) to 0 in NFMora.
Then NF

(
spoly(gi, gj) | G

)
= 0 also with respect to>1, and the result follows,

using Theorem 1.7.3 (4).

SINGULAR Example 1.7.10 (standard bases).
The same generators for an ideal give different standard bases with respect
to different orderings:

ring A = 0,(x,y),dp; //global ordering: degrevlex
ideal I = x10+x9y2,y8-x2y7;
ideal J = std(I);
J;
//-> J[1]=x2y7-y8 J[2]=x9y2+x10 J[3]=x12y+xy11
//-> J[4]=x13-xy12 J[5]=y14+xy12 J[6]=xy13+y12

ring A1 = 0,(x,y),lp; //global ordering: lex
ideal I = fetch(A,I);
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ideal J = std(I);
J;
//-> J[1]=y15-y12 J[2]=xy12+y14 J[3]=x2y7-y8 J[4]=x10+x9y2

ring B = 0,(x,y),ds; //local ordering: local degrevlex
ideal I = fetch(A,I);
ideal J = std(I);
J;
//-> J[1]=y8-x2y7 J[2]=x10+x9y2

ring B1 = 0,(x,y),ls; //local ordering: negative lex
ideal I = fetch(A,I);
ideal J = std(I);
J;
//-> J[1]=y8-x2y7 J[2]=x9y2+x10 J[3]=x13

intmat O[3][3]=1,1,1,0,-1,-1,0,0,-1;
ring C = 0,(t,x,y),M(O); //global ordering: matrix O
ideal I = homog(imap(A,I),t); //gives a standard basis for

//local degrevlex
ideal J = std(I); //cf. Exercise 1.7.5

J = subst(J,t,1);
J;
//-> J[1]=-x2y7+y8 J[2]=x9y2+x10 J[3]=x12y7+x9y10

//already J[1],J[2] is a
//standard basis

We finish this section with the so–called highest corner, a notion which is com-
putationally extremely useful for 0–dimensional ideals in local rings. More-
over, the highest corner is tightly connected with the determinacy of an iso-
lated hypersurface singularity (cf. A.9).

Definition 1.7.11. Let > be a monomial ordering on Mon(x1, . . . , xn) and
let I ⊂ K[x1, . . . , xn]> be an ideal. A monomial m ∈Mon(x1, . . . , xn) is
called the highest corner of I (with respect to >), denoted by HC(I), if

(1) m �∈ L(I);
(2) m′ ∈Mon(x1, . . . , xn), m′ < m =⇒ m′ ∈ L(I).

Note that for a global ordering the highest corner is 1 if I is a proper ideal
(and does not exist if 1 ∈ I). Since, by definition HC(I) = HC

(
L(I)

)
, it can

be computed combinatorially from a standard basis of I.
Singular has a built–in function highcorner which returns, for a

given set of generators f1, . . . , fk of I, the highest corner of the ideal
〈LM(f1), . . . ,LM(fk)〉, respectively 0, if the highest corner does not exist.
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SINGULAR Example 1.7.12 (highest corner).

ring A = 0,(x,y),ds;
ideal I = y4+x5,x3y3;
highcorner(I);
//-> // ** I is not a standard basis
//-> 0 //no highest corner for <y4,x3y3>

std(I);
//-> _[1]=y4+x5 _[2]=x3y3 _[3]=x8
highcorner(std(I));
//-> x7y2

The highest corner of I is x7y2, as can be seen from Figure 1.2.

�

�

•
8

x

•4

y

L(〈y4+ x5, x3y3〉)

•
�

Fig. 1.2. L(〈y4+ x5, x3y3〉) is generated by the monomials y4, x3y3, x8

(marked by a •). The highest corner is x7y2 (marked by a �).

Lemma 1.7.13. Let > be a monomial ordering on Mon(x1, . . . , xn) and
I ⊂ K[x1, . . . , xn]> be an ideal. Let m be a monomial such that m′ < m im-
plies m′ ∈ L(I). Let f ∈ K[x1, . . . , xn] such that LM(f) < m. Then f ∈ I.
Proof. Let r = NFMora (f | G), G a standard basis for I. If r �= 0, then
LM(r) < LM(f) < m and, therefore, LM(r) ∈ I which is a contradiction to
the properties of the normal form.

Lemma 1.7.14. Let > be a monomial ordering on Mon(x1, . . . , xn) and
denote by z1, . . . , zr the variables < 1 from {x1, . . . , xn} and by y1, . . . , ys
the variables > 1 (0 ≤ r, s, r + s = n). Assume that the restriction of > to
Mon(z1, . . . , zr) is a weighted degree ordering. The following are equivalent
for an ideal I ⊂ K[x1, . . . , xn]>:

(1) HC(I) exists,
(2) 〈z1, . . . , zr〉N ⊂ L(I) for some N ≥ 0,
(3) 〈z1, . . . , zr〉M ⊂ I for some M ≥ 0.

Moreover, HC(I) ∈ Mon(z1, . . . , zr) if it exists.
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Proof. To see that (1) implies (2), let m := HC(I). If m = 1, then 1 �∈ I
and z1, . . . , zr ∈ L(I) by definition of the highest corner. If m �= 1 and if
we write m = xim

′ for some monomial m′ then xi < 1 (otherwise, m′ < m,
which would imply m′ ∈ L(I), hence, m ∈ L(I), a contradiction), and it fol-
lows that m ∈ Mon(z1, . . . , zr). Since > is a weighted degree ordering on
Mon(z1, . . . , zr), the definition of the highest corner implies (2).

Conversely, if 〈z1, . . . , zr〉N ⊂ L(I) then there are only finitely many
monomials in Mon(z1, . . . , zr) which are not in L(I). This finite set has a
minimum m. If m′ = zαyβ < m then zα < m which implies zα ∈ L(I) and,
hence, m′ ∈ L(I).

The implication (3)⇒ (2) being trivial, it remains only to show that (2)
implies (3). Let M ≥ N . Since zMi ∈ L(I), we have zMi + hi ∈ I for some hi
with LM(hi) = zαyβ < zMi , in particular, zα < zMi . Let m := HC(I), which
exists by the equivalence of (2) and (1) proven before, and enlarge M , if
necessary, such that zMi ≤ m. Then zα < m implies zα ∈ L(I) and, hence,
LM(hi) ∈ L(I). Now we apply Lemma 1.7.13 and obtain hi ∈ I. Therefore,
zMi ∈ I for i = 1, . . . , r, and (3) follows.

Remark 1.7.15. As a direct consequence, for a local weighted degree ordering,
we have

HC(I) exists ⇐⇒ dimK(K[x1, . . . , xn]>/I) <∞
⇐⇒ dimK

(
K[x1, . . . , xn]/L(I)

)
<∞ .

Indeed, we show in Section 7.5 that, for any monomial ordering,

dimK(K[x1, . . . , xn]>/I) = dimK

(
K[x1, . . . , xn]/L(I)

)
.

(see also Corollary 5.3.14).

Remark 1.7.16. The implications (2)⇔ (3)⇒ (1) in Lemma 1.7.14 hold with-
out any assumption on the ordering >. This is a consequence of Lemma
1.2.11.

The implication (1)⇒ (2) is wrong in general: let > be the negative lexi-
cographical ordering ls and I = 〈xy, x2〉, then HC(I) = x.

Lemma 1.7.17. Let > be a weighted degree ordering on Mon(x1, . . . , xn).
Moreover, let f1, . . . , fk be a set of generators of the ideal I ⊂ K[x1, . . . , xn]>
such that J := 〈LM(f1), . . . ,LM(fk)〉 has a highest corner m := HC(J), and
let f ∈ K[x1, . . . , xn]>. Then the following holds:

(1) HC(I) exists, and, moreover, HC(I) ≥ HC(J) and HC(I) = HC(J) if
f1, . . . , fk is a standard basis of I.

(2) If LM(f) < HC(J) then f ∈ I.
(3) For a fixed monomial m′ < HC(J) set M = {i | LM(fi) ≤ m′} and define

f̂i :=

{
fi, if i ∈M
fi + ai ·m′, if i �∈M
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where ai ∈ K is arbitrary. Then I = 〈f̂1, . . . , f̂k〉.
Proof. (1) Since J ⊂ L(I) and J = L(I) if f1, . . . , fk is a standard basis, the
claim follows from Lemma 1.7.14.

(2) LM(f) < m implies LM(f) ∈ L(J) ⊂ L(I). The assertion is a conse-
quence of Lemma 1.7.13.

(3) Since m′ < m, m′ ∈ I by (2) and, therefore, I = 〈f̂1, . . . , f̂k,m′〉. We
have to show m′ ∈ Î = 〈f̂1, . . . , f̂k〉. Since LM(fi) = LM(f̂i) for all i, we can
apply (2) to Î instead of I with the same J and m and, therefore, m′ ∈ Î.
The lemma shows that we can delete from fi all terms a ·m′, a ∈ K, with
m′ < min{m,LM(fi)}, still keeping a set of generators of I. This is used in
Singular during standard basis computations in local orderings to keep the
polynomials sparse and to have early termination if, in the reduction process,
the leading monomial becomes smaller than the highest corner.

Exercises

1.7.1. Prove the Product Criterion: let f, g ∈ K[x1, . . . , xn] be polynomials
such that lcm

(
LM(f),LM(g)

)
= LM(f) · LM(g), then

NF
(
spoly(f, g) | {f, g}) = 0 .

(Hint: It is sufficient to prove the statement for NF =NFMora. Assume that
LC(f) = LC(g) = 1 and claim that spoly(f, g) = − tail(g)f + tail(f)g. More-
over, assume that, after some steps in NFMora, u · spoly(f, g) (u a unit) is
reduced to hf + kg. If LT(hf) + LT(kg) = 0 then LT(h) = m · LM(g) and
LT(k) = −mLM(f) for a suitable term m, and (u−m) spoly(f, g) is reduced
to tail(h)f + tail(k)g. If LT(hf) + LT(kg) �= 0 then assume LM(hf + kg) =
LM(hf), and hf + kg reduces to tail(h)f + kg.)

1.7.2. Let I := 〈x3y2+ x4, x2y3+ y4〉 ⊂ K[x, y] (resp. I := 〈x3+ y2, y4+ x〉).
Compute (without using Singular) a standard basis of I with respect to the
degree lexicographical ordering (respectively lexicographical ordering).

1.7.3. Which of the following orderings are elimination orderings: lp, ls,
(lp(n),ls(m)), (ls(n),lp(m)), (a(1,...,1,0,...0),dp)?
Compute a standard basis of the ideal 〈x− t2, y − t3, z − t4〉 for all those
orderings.

1.7.4. For an arbitrary polynomial g ∈ K[x1, . . . , xn] of degree d, let

gh(x0, x1, . . . , xn) := xd0g

(
x1

x0
, . . . ,

xn
x0

)
∈ K[x0, . . . , xn]

be the homogenization of g (with respect to x0). For an ideal I ⊂ K[x1, . . . , xn]
let Ih := 〈fh | f ∈ I〉 ⊂ K[x0, . . . , xn].
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Let > be a global degree ordering, and let {f1, . . . , fm} be a Gröbner basis
of I. Prove that

Ih = 〈fh1 , . . . , fhm〉 .
1.7.5. For w = (w1, . . . , wn) ∈ Z

n, wi �= 0 for i = 1, . . . , n, and a polynomial
g ∈ K[x1, . . . , xn] with w–deg(g) = d, let

gh(x0, x1, . . . , xn) := xd0g

(
x1

xw1
0

, . . . ,
xn
xwn

0

)
∈ K[x0, . . . , xn]

be the (weighted) homogenization of g (with respect to x0). For an ideal
I ⊂ K[x1, . . . , xn] let Ih := 〈fh | f ∈ I〉 ⊂ K[x0, . . . , xn].

Let > be a weighted degree ordering with weight vector w, and let
{f1, . . . , fm} be a Gröbner basis of I. Prove that

IhK[x, t]>h
= 〈fh1 , . . . , fhm〉K[x, t]>h

,

where >h denotes the monomial ordering on Mon(x0, . . . , xn) defined by the
matrix ⎛

⎜⎜⎝

1 w1 . . . wm

0.
.
. A
0

⎞

⎟⎟⎠

with A ∈ GL(n,R) a matrix defining > on Mon(x1, . . . , xn).

1.7.6. Let A ∈ GL(n,Q) be a matrix defining, on Mon(x1, . . . , xn), the or-
dering > and let I = 〈f1, . . . , fm〉 ⊂ K[x1, . . . , xn] be an ideal. Consider the
ordering >h on Mon(t, x1, . . . , xn) defined by the matrix

⎛

⎜⎜⎝

1 1 . . . 1
0.
.
. A
0

⎞

⎟⎟⎠

(cf. the remark after Definition 1.7.5) and let {G1, . . . , Gs} be a homogeneous
standard basis of 〈fh1 , . . . , fhm〉, fhi , the homogenization of fi with respect to
t. Prove that {G1|t=1, . . . , Gs|t=1} is a standard basis for I.

1.7.7. Let I = 〈f1, . . . , fm〉 ⊂ K[x1, . . . , xn] be an ideal, and consider on
Mon(t, x1, . . . , xn) the ordering dp (respectively Dp). Let {G1, . . . , Gs} be a
standard basis of 〈fh1 , . . . , fhm〉, fhi , the homogenization of fi with respect to t.
Prove that {G1|t=1, . . . , Gs|t=1} is a standard basis for I with respect to the
ordering ls on Mon(xn, xn−1, . . . , x1) (respectively Ds on Mon(x1, . . . , xn)).

1.7.8. Let I = 〈f1, . . . , fm〉 ⊂ K[x1, . . . , xn] be an ideal, and consider on
Mon(x1, . . . , xn, t) the ordering dp. Let {G1, . . . , Gs} be a standard basis
of 〈fh1 , . . . , fhm〉, fhi the homogenization of fi with respect to t. Prove that
{G1|t=1, . . . , Gs|t=1} is a standard basis for I with respect to the ordering dp
on Mon(x1, . . . , xn).

1.7.9. Prove that the while loops in Algorithm 1.7.6 and at the beginning of
its proof give the same result.
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1.7.10. Check (by hand) whether the following polynomials f are contained
in the respective ideals I:

(1) f = xy3− z2+ y5− z3, I = 〈−x3+ y, x2y − z〉 in Q[x, y, z],
(2) f = x3z − 2y2, I = 〈yz − y, xy + 2z2, y − z〉 in Q[x, y, z],
(3) f and I as in (2) but in Q[x, y, z]〈x,y,z〉.

1.7.11. Verify your computation in 1.7.10 by using Singular.

1.7.12. Compute a standard basis of

(1) 〈x3, x2y − y3〉 with respect to ls and lp.
(2) 〈x3+ xy, x2y − y3〉 with respect to ds and dp.

1.7.13. Determine all solutions in C
2 of the system of polynomial equations

xy − x− 2y + 2 = 0 , x2 + xy − 2x = 0 .

(Hint: compute first a lexicographical Gröbner basis of the two polynomials.)

1.7.14. Use Singular to determine all points in C
3 lying on the variety V

given by:

(1) V = V (xz − y, xy + 2z2, y − z),
(2) V = V (x2 + y2 + z2 − 1, y2 − z, x2 + y2).

1.7.15. Consider f(x, y) := x2 − y3 − 3
2y

2.

(1) Compute all critical points of f (that is, points where ∂f/∂x and ∂f/∂y
vanish).

(2) Which of the critical points are local minima, maxima, saddle points?
(3) Do the same for g(x, y) = f(x, y) · (y − 1).

1.7.16. Let K be a field, let m ⊂ K[x1, . . . , xn] be a maximal ideal, and let
L := K[x1, . . . , xn]/m. Moreover, let I = 〈f1, . . . , fm〉 ⊂ L[y1, . . . , ys] be an
ideal, and let J := 〈F1, . . . , Fm〉 ⊂ K[x1, . . . , xn, y1, . . . , ys] be generated by
representatives Fi of the fi, i = 1, . . . ,m.

Finally, let {H1, . . . , Ht} be a standard basis of J with respect to a block
ordering >= (>1, >2) on Mon(y1, . . . , ys, x1, . . . , xn) with >1, >2 global.

(1) Prove that {H1 mod m, . . . , Ht mod m} is a standard basis of I with
respect to >1.

(2) Write a Singular procedure to compute a minimal standard basis in
L[y1, . . . , ys] (where K is one of the base fields of Singular) such that
the leading coefficients are 1.

1.7.17. Let I ⊂ K[x1, . . . , xn] be an ideal and > a monomial ordering. Then
there exists a weight vector w = (w1, . . . , wn) ∈ Z

n, with wi > 0 if xi > 1
and wi < 0 if xi < 1, such that the weighted degree lexicographical ordering
defined by w and the given ordering > yield the same leading ideal L(I).
(Hint: use Lemma 1.2.11.)
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1.7.18. (1) Let I ⊂ K[x1, . . . , xn]> be an ideal, and let > denote the nega-
tive lexicographical ordering ls. Moreover, let xα, α = (α1, . . . , αn) de-
note the highest corner of I. Show that, for i = 1, . . . , n,

αi = max
{
p
∣∣ xα1

1 · . . . · xαi−1
i−1 x

p
i �∈ L(I)

}
.

(2) Compute the highest corner of I = 〈x2+ x2y, y3+ xy3, z3 − xz2〉 with re-
spect to the orderings ls and ds.
(This can be done by hand; you may check your results by using the
Singular function highcorner.)

1.7.19. Let K be a field, x one variable and > the well–ordering on K[x].

(1) Prove that the standard basis algorithm is the Euclidean algorithm.
(2) Use Singular to compute for f = (x3+ 5)2(x− 2)(x2+ x+ 2)4 and

g = (x3+ 5)(x2− 3)(x2+ x+ 2) the gcd(f, g). Try std(ideal(f,g)) and
gcd(f,g).

1.7.20. Let K be a field, x = (x1, . . . , xn) and > the lexicographical ordering
on K[x].

(1) Prove that the standard basis algorithm is the Gaussian elimination al-
gorithm if it is applied to linear polynomials.

(2) Use Singular to solve the following linear system of equations:

22x + 77y + z = 3
x + y + z = 77
x − y − z = −11 .

With option(redSB) the complete reduction of the standard basis can
be forced. Try both possibilities.

1.7.21. Prove that the equivalence of (2) and (3) in Lemma 1.7.14 holds for
any monomial ordering.

1.7.22. Let > be an arbitrary monomial ordering on Mon(x1, . . . , xn), and
let I ⊂ K[x] be an ideal. Let G ⊂ K[x] be a standard basis of I with respect
to >. Assume, moreover that dimK(K[x]/L(I)) <∞. Prove that there exists
a standard basis G′ ⊃ G such that RedNFBuchberger(− | G′) terminates.
(Hint: Denote by z = (z1, . . . , zr) the variables < 1. Use Exercise 1.7.21 to
choose M such that 〈z〉M ⊂ I. Enlarge G by adding all monomials in z of
degree M .)

1.7.23. Let > be an arbitrary monomial ordering on Mon(x1, . . . , xn), and
let I ⊂ K[x]> be an ideal. Denote by z = (z1, . . . , zr) the variables < 1, and
assume that 〈z〉m ⊂ I for some positive integer m. Prove that the canonical
injection K[x]/(I ∩K[x]) ↪→ K[x]>/I is an isomorphism.

1.7.24. Use Remark 1.6.14 and Exercise 1.6.9 for writing a Singular pro-
cedure which computes standard bases over a polynomial ring K[t1, . . . , ts],
K a field.
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1.8 Operations on Ideals and Their Computation

The methods developed so far already allow some interesting applications to
basic ideal operations.

In general, we assume we have given a finite set of ideals, each is given by
a finite set of polynomial generators. We want to either affirmatively answer
a specific question about the ideals or to compute a specific operation on
these ideals, that is, compute a finite set of generators for the result of the
operation.

1.8.1 Ideal Membership

Let K[x] = K[x1, . . . , xn] be the polynomial ring over a field K, >0 an ar-
bitrary monomial ordering and R = K[x]>0 the ring associated to K[x] and
>0. Recall that K[x] ⊂ R ⊂ K[x]〈x〉, and that R = K[x]〈x〉 if and only if >0

is local (cf. Section 1.5).
Let NF denote a weak normal form and redNF a reduced normal form (cf.

Section 1.6). We do not need any further assumptions about NF, respectively
redNF, however, we may think of NFBuchberger (1.6.10), respectively
redNFBuchberger (1.6.11), if >0 is global, and NFMora (1.7.6) in the
general case. These are also the normal forms implemented in Singular.

Problem: Given f, f1, . . . , fk ∈ K[x], and let I = 〈f1, . . . , fk〉R. We wish to
decide whether f ∈ I, or not.
Solution: We choose any monomial ordering > such that K[x]> = R and
compute a standard basis G = {g1, . . . , gs} of I with respect to >. If NF is
any weak normal form, then f ∈ I if and only if NF(f | G) = 0. Correctness
follows from Lemma 1.6.7.

Since the result is independent of the chosen NF, we should use, for reasons
of efficiency, a non–reduced normal form. If >0 is global, we usually choose
dp and, if >0 is local, then ls or ds are preferred.

SINGULAR Example 1.8.1 (ideal membership).
(1) Check inclusion of a polynomial in an ideal

ring A = 0,(x,y),dp;
ideal I = x10+x9y2,y8-x2y7;
ideal J = std(I);
poly f = x2y7+y14;
reduce(f,J,1); //3rd parameter 1 avoids tail reduction
//-> -xy12+x2y7 //f is not in I

f = xy13+y12;
reduce(f,J,1);
//-> 0 //f is in I
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(2) Check inclusion and equality of ideals.

ideal K = f,x2y7+y14;
reduce(K,J,1); //normal form for each generator of K

//-> _[1]=0 _[2]=-xy12+x2y7 //K is not in I

K=f,y14+xy12;
size(reduce(K,J,1)); //result is 0 iff K is in I

//-> 0

Now assume that f ∈ I = 〈f1, . . . , fk〉R. Then there exist u ∈ K[x] ∩R∗,
a1, . . . , ak ∈ K[x] such that

uf = a1f1 + · · ·+ akfk. (*)

If {f1, . . . , fk} is a standard basis of I, then, in principle, the normal form
algorithm NFMora provides u and the ai. However, it is also possible to
express f as a linear combination of arbitrary given generators f1, . . . , fk, by
using the lift or division command. How this can be done is explained in
Chapter 2, Section 2.8.1.

If the ordering is global, then we can choose u = 1 in the above expression
(*). This is illustrated in the following example.

SINGULAR Example 1.8.2 (linear combination of ideal members).
We exemplify the Singular commands lift and division:

ring A = 0,(x,y),dp;
ideal I = x10+x9y2,y8-x2y7;
poly f = xy13+y12;
matrix M=lift(I,f); //f=M[1,1]*I[1]+...+M[r,1]*I[r]
M;
//-> M[1,1]=y7
//-> M[2,1]=x7y2+x8+x5y3+x6y+x3y4+x4y2+xy5+x2y3+y4

Hence, f can be expressed as a linear combination of I[1] and I[2] using M :

f-M[1,1]*I[1]-M[2,1]*I[2]; //test
//-> 0

In a local ring we can, in general, only express uf as a polynomial linear
combination of the generators of I if f ∈ I:

ring R = 0,(x,y,z),ds;
poly f = yx2+yx;
ideal I = x-x2,y+x;
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list L = division(f,I); //division with remainder
L;
//-> [1]: [2]: [3]:
//-> _[1,1]=y-y2 _[1]=0 _[1,1]=1+y
//-> _[2,1]=2xy

matrix(f)*L[3] - matrix(I)*L[1] - matrix(L[2]); //test
//-> _[1,1]=0

Hence (1 + y)f = (x− x2)(y − y2) + (y + x)(2xy), the remainder being 0.

1.8.2 Intersection with Subrings (Elimination of variables)

This is one of the most important applications of Gröbner bases. The problem
may be formulated as follows (we restrict ourselves for the moment to the
case of the polynomial ring):

Problem: Given f1, . . . , fk ∈ K[x] = K[x1, . . . , xn], I = 〈f1, . . . , fk〉K[x], we
should like to find generators of the ideal

I ′ = I ∩K[xs+1, . . . , xn], s < n .

Elements of the ideal I ′ are said to be obtained from f1, . . . , fk by eliminating
x1, . . . , xs.

In order to treat this problem, we need a global elimination ordering for
x1, . . . , xs. We can use the lexicographical ordering lp which is an elimination
ordering (Definition 1.5.4) for each s, but lp is, in almost all cases, the most
expensive choice. A good choice is, usually, (dp(s),dp(n-s)), the product
ordering of two degrevlex orderings. But there is another way to construct
an elimination ordering which is often quite fast.

Let > be an arbitrary ordering and let a1, . . . , as be positive integers.
Define >a by

xα >a x
β :⇐⇒ a1α1 + · · ·+ asαs > a1β1 + · · ·+ asβs

or a1α1 + · · ·+ asαs = a1β1 + · · ·+ asβs and xα > xβ .

Then >a is an elimination ordering and a = (a1, . . . , as) is called an extra
weight vector .

If > is an arbitrary elimination ordering for x1, . . . , xs, then

K[x1, . . . , xn]> = (K[xs+1, . . . , xn]>′)[x1, . . . , xs] ,

since the units in K[x]> do not involve x1, . . . , xs (we denote, by >′, the
ordering on Mon(xs+1, . . . , xn) induced by >). Hence, f ∈ K[xs+1, . . . , xn]>′

for any f ∈ K[x1, . . . , xn]> such that LM(f) ∈ K[xs+1, . . . , xn].

The following lemma is the basis for solving the elimination problem.
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Lemma 1.8.3. Let > be an elimination ordering for x1, . . . , xs on the set
of monomials Mon(x1, . . . , xn), and let I ⊂ K[x1, . . . , xn]> be an ideal. If
S = {g1, . . . , gk} is a standard basis of I, then

S′ := {g ∈ S | LM(g) ∈ K[xs+1, . . . , xn]}
is a standard basis of I ′ := I ∩K[xs+1, . . . , xn]>′ . In particular, S′ generates
the ideal I ′.

Proof. Given f ∈ I ′ ⊂ I there exists gi ∈ S such that LM(gi) divides LM(f),
since S is a standard basis of I. Since f ∈ K[xs+1, . . . , xn]>, we have
LM(f) ∈ K[xs+1, . . . , xn] and, hence, gi ∈ S′ by the above remark. Finally,
since S′ ⊂ I ′, S′ is a standard basis of I ′.

The general elimination problem can be posed, for any ring associated to a
monomial ordering, as follows. Recall that the ordering on the variable to be
eliminated must be global.

Problem: Given polynomials f1, . . . , fk ∈ K[x1, . . . , xn], let I := 〈f1, . . . , fk〉R
with R := (K[xs+1, . . . , xn]>)[x1, . . . , xs] for some monomial ordering > on
Mon(xs+1, . . . , xn). Find generators for the ideal I ′ := I ∩K[xs+1, . . . , xn]>.

Solution: Choose an elimination ordering for x1, . . . , xs on Mon(x1, . . . , xn),
which induces the given ordering > on Mon(xs+1, . . . , xn), and compute a
standard basis S = {g1, . . . , gk} of I. By Lemma 1.8.3, those gi, for which
LM(gi) does not involve x1, . . . , xs, generate I ′ (even more, they are a stan-
dard basis of I ′).

A good choice of an ordering on Mon(x1, . . . , xn) may be (dp(s),>),
but instead of > we may choose any ordering >′ on Mon(xs+1, . . . , xn) such
that K[xs+1, . . . , xn]>′ = K[xs+1, . . . , xn]>. For any global ordering > on
Mon(xs+1, . . . , xn), we have, thus, a solution to the elimination problem in
the polynomial ring, as stated at the beginning of this section.

SINGULAR Example 1.8.4 (elimination of variables).

ring A =0,(t,x,y,z),dp;
ideal I=t2+x2+y2+z2,t2+2x2-xy-z2,t+y3-z3;

eliminate(I,t);
//-> _[1]=x2-xy-y2-2z2 _[2]=y6-2y3z3+z6+2x2-xy-z2

Alternatively choose a product ordering:

ring A1=0,(t,x,y,z),(dp(1),dp(3));
ideal I=imap(A,I);
ideal J=std(I);
J;
//-> J[1]=x2-xy-y2-2z2 J[2]=y6-2y3z3+z6+2x2-xy-z2
//-> J[3]=t+y3-z3
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We can also choose the extra weight vector a = (1, 0, 0, 0) to obtain an elim-
ination ordering:

ring A2=0,(t,x,y,z),(a(1),dp);
ideal I=imap(A,I);
ideal J=std(I);
J;
//-> J[1]=x2-xy-y2-2z2 J[2]=y6-2y3z3+z6+2x2-xy-z2
//-> J[3]=t+y3-z3

By Lemma 1.8.3, the elements of J which do not involve t (here J[1] and
J[2]), are a standard basis of I ∩K[x, y, z].

1.8.3 Zariski Closure of the Image

Here we study the geometric counterpart of elimination. The reader who is
not familiar with the geometrical background should read Section A.1 first.
In this section we assume K to be algebraically closed.

Suppose ϕ : K[x] = K[x1, . . . , xn]→ K[t] = K[t1, . . . , tm] is a ring map
given by f1, . . . , fn ∈ K[t] such that ϕ(xi) = fi. Let I = 〈g1, . . . , gk〉 ⊂ K[t]
and J = 〈h1, . . . , hl〉 ⊂ K[x] be ideals such that ϕ(J) ⊂ I. Then ϕ induces a
ring map ϕ̄ : K[x]/J → K[t]/I and, hence, we obtain a commutative diagram
of morphism of affine schemes (cf. Section A.1)

X := V (I)
f=ϕ̄#

��
� �

��

V (J)
� �

��

=: Y

A
m ϕ#

�� A
n .

We cannot compute the image f(X), since it is, in general, not closed. How-
ever, we can compute the (Zariski) closure f(X).

Problem: The problem is to find polynomials p1, . . . , pr ∈ K[x] such that

f(X) = V (p1, . . . , pr) ⊂ A
n .

Solution: Define the ideal

N = 〈g1(t), . . . , gk(t), x1− f1(t), . . . , xn− fn(t)〉K[t,x]

and eliminate t1, . . . , tm fromN , that is, compute generators p1, . . . , pr ∈ K[x]
of N ∩K[x]. Then V (p1, . . . , pr) = f(X).

Hence, we can proceed as in Section 1.8.2. We choose a global ordering
which is an elimination ordering for t1, . . . , tm on Mon(t1, . . . , tm, x1, . . . , xn),
compute a Gröbner basis G of N and select those elements p1, . . . , pr from
G which do not depend on t. Correctness follows from Lemma A.3.10.
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Since K is algebraically closed (with f = (f1, . . . , fn) : Km → Kn), Lemma
A.2.18 implies

f(X) = {x ∈ Kn | ∃ t ∈ Km such that f(t) = x} .

The following example shows that the question whether f(X) is closed or not
may depend on the field.

Example 1.8.5. Consider the ring map ϕ : K[x]→ K[x, y]/〈x2+ y2− 1〉 given
by ϕ(x) := x, and the induced morphism

X := V (〈x2 + y2 − 1〉) f=ϕ̄#
��

� �

��

V (〈0〉)

A
2 ϕ#

�� A
1 .

It is easy to see that, if K is algebraically closed, then f is surjective, and
hence, f(X) is closed. However, if K = R, then f(X) is a segment but the
Zariski closure of the segment is the whole line.

Now we treat the problem of computing the closure of the image of a map
between spectra of local rings. More generally, let >1, respectively >2, be
monomial orderings on Mon(x1, . . . , xn), respectively Mon(t1, . . . , tm), and
let ϕ : K[x]>1 → K[t]>2 be a ring map defined by ϕ(xi) = fi(t) ∈ K[t] (cf.
Lemma 1.5.8).

Let I ⊂ K[t] and J ⊂ K[x] be ideals as above, satisfying ϕ(J) ⊂ I, and

ϕ̄ : K[x]>1/J → K[t]>2/I

the induced map.

Problem: We want to compute equations for f(X) ⊂ Y for the map

f = ϕ̄# : X = Spec(K[t]>2/I) −→ Y = Spec(K[x]>1/J) .

We claim that the following algorithm solves the problem:

Solution: Choose any ordering > on Mon(t1, . . . , tm, x1, . . . , xn) which is an
elimination ordering for t1, . . . , tm and satisfies K[x]>′ ⊂ K[x]>1 where >′ is
the ordering on Mon(x1, . . . , xn) induced by >.9 Compute a standard basis
G of the ideal

N := 〈I, J, x1− f1(t), . . . , xn− fn(t)〉
as above with respect to this ordering. Select those elements p1, . . . , pr from
G which do not depend on t. Then f(X) = V (〈p1, . . . , pr〉K[x]>1

).

9 We could choose, for example, > to be
(
dp(m),dp(n)

)
or > to be

(
dp(m), >1

)
.
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The only problem in seeing correctness results from the fact that we only
assume K[x]>′ ⊂ K[x]>1 but no other relation between > and >1, >2.

The graph construction from Appendix A.2, applied to the localized rings,
shows that f(X) is the zero–set of the ideal

N · (K[t]>2 ⊗K K[x]>1) ∩K[x]>1 .

Now the above algorithm computes polynomial generators of the intersection
(N ·K[t, x]>) ∩K[x]>′ . We haveK[t, x]> = K[t]⊗K[x]>′ , K[x]>′ ⊂ K[x]>1

and an inclusion of rings

K[t, x] ⊂ R1 := K[t, x]> ⊂ R2 := K[t]>2 ⊗K[x]>1 ⊂ R3 := K[t, x](>2,>1) ,

where (>2, >1) is the product ordering on Mon(t1, . . . , tm, x1, . . . , xn).
Moreover, by Lemma 1.4.8 (1), we have (N · R3) ∩K[t, x] = N , hence,

(N · Ri) ∩K[t, x] = N for i = 1, 2 and, therefore,

(N · R1) ∩K[x] = N ∩K[x] = (N ·R2) ∩K[x] .

Again, by Lemma 1.4.8 (1), (N ·R2) ∩K[x]>1 = (N ·R2 ∩K[x]) ·K[x]>1

and (N ·R1) ∩K[x]>′ = (N ·R1 ∩K[x]) ·K[x]>′ . Altogether, we have

(N ·R2) ∩K[x]>1 =
(
(N ·R1

) ∩K[x]) ·K[x]>1

=
(
(N ·R1) ∩K[x]>′

) ·K[x]>1 ,

where the left–hand side defines f(X) and generators for the right–hand side
are computed.

Thus, we have many choices for orderings on Mon(x1, . . . , xn) for computing
f(X) ⊂ Y . In particular, we can always choose a global ordering.

SINGULAR Example 1.8.6 (Zariski closure of the image).
Compute an implicit equation for the surface defined parametrically by the
map f : A

2 → A
3, (u, v) �→ (uv, uv2, u2).

ring A =0,(u,v,x,y,z),dp;
ideal I=x-uv,y-uv2,z-u2;
ideal J=eliminate(I,uv);
J;
//-> J[1]=x4-y2z //defines the closure of f(X)

Note that the image does not contain the y–axis, however, the closure of the
image contains the y–axis. This surface is called the Whitney umbrella.
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Fig. 1.3. Whitney Umbrella.

1.8.4 Solvability of Polynomial Equations

Problem: Given f1, . . . , fk ∈ K[x1, . . . , xn], we want to assure whether the
system of polynomial equations

f1(x) = · · · = fk(x) = 0

has a solution in K
n
, where K is the algebraic closure of K.

Let I = 〈f1, . . . , fk〉K[x], then the question is whether the algebraic set
V (I) ⊂ K

n
is empty or not.

Solution: By Hilbert’s Nullstellensatz, V (I) = ∅ if and only if 1 ∈ I. We
compute a Gröbner basis G of I with respect to any global ordering on
Mon(x1, . . . , xn) and normalize it (that is, divide every g ∈ G by LC(g)).
Since 1 ∈ I if and only if 1 ∈ L(I), we have V (I) = ∅ if and only if 1 is an
element of a normalized Gröbner basis of I. Of course, we can avoid normal-
izing, which is expensive in rings with parameters. Since 1 ∈ I if and only
if G contains a non–zero constant polynomial, we have only to look for an
element of degree 0 in G.

1.8.5 Solving Polynomial Equations

A fundamental task with countless applications is to solve a system of poly-
nomial equations, f1(x) = 0, . . . , fk(x) = 0, fi ∈ K[x] = K[x1, . . . , xn]. How-
ever, what is actually meant by “solving” very much depends on the context.
For instance, it could mean to determine one (respectively some, respectively
all) points of the solution set V (f1, . . . , fk), either considered as a subset of
Kn or of K

n
, where K is the algebraic closure of K (for notations cf. Section

A.1).
Here, we consider only the case where the ideal I = 〈f1, . . . , fk〉K[x] is 0–

dimensional, that is, where f1 = · · · = fk = 0 has only finitely many solutions
in K

n
.



1.8 Operations on Ideals and Their Computation 75

From an algebraic point of view, a primary decomposition I =
⋂r
i=1Qi

of I with Pi =
√
Qi ⊂ K[x1, . . . , xn] a maximal ideal, could be considered

as a solution (cf. Chapter 4). At least, it provides a decomposition V (I) =
V (P1) ∪ · · · ∪ V (Pr) and if p = (p1, . . . , pn) ∈ Kn is a solution, then Pj =
〈x1− p1, . . . , xn− pn〉 for some j and we can, indeed, recover the coordinates
of p from a primary decomposition of I. Moreover, for solutions p ∈ Kn

which
are not in Kn the primary decomposition provides irreducible polynomials
defining a field extension K̃ ofK such that p has coordinates in K̃ (cf. Chapter
4).

Besides the fact that primary decomposition is very expensive, the answer
would be unsatisfactory from a practical point of view. Indeed, if K = R

or C, most people would probably interpret solving as finding approximate
numerical coordinates of one (respectively some, respectively all) point(s) of
V (I). And this means that, at some point, we need a numerical root finder.

Numerical solving of equations (even transcendental or (partial) differen-
tial equations) is a highly developed discipline in mathematics which is very
successful in applications to real life problems. However, there are inherent
problems which often make it difficult, or even impossible, either to find a
solution or to ensure that a detected solution is (approximately) correct.
Particular problems are, for example, to find all solutions or to guarantee
stability and convergence of algorithms in the presence of singularities. In
this context symbolic methods can be useful in preparing the system by find-
ing another set of generators for I (hence, having the same solutions) which
is better suited for numerical computations.

Here we describe only how lexicographical Gröbner bases can be used to
reduce the problem of multivariate solving to univariate solving.

Problem: Given f1, . . . , fk ∈ K[x1, . . . , xn], K = R or C, which we assume
to have only finitely many solutions p1, . . . , pr ∈ C

n. We wish to find coordi-
nates of all pi in decimal format up to a given number of digits. We are also
interested in locating multiple solutions.
Solution: Compute a lexicographical Gröbner basis G = {g1, . . . , gs} of I for
x1 > x2 > · · · > xn. Then we have (cf. Exercise 1.8.6) s ≥ n and, after
renumbering G, there are elements g1, . . . , gn ∈ G such that

g1 = g1(xn), LM(g1) = xnn
n ,

g2 = g2(xn−1, xn), LM(g2) = x
nn−1
n−1 ,

...
gn = gn(x1, . . . , xn), LM(gn) = xn1

1 .

Now use any numerical univariate solver (for example Laguerre’s method)
to find all complex solutions of g1(xn) = 0 up to the required number of
digits. Substitute these in g2 and for each substitution solve g2 in xn−1, as
before. Continue in this way up to gn. Thus, we computed all coordinates of
all solutions of g1 = · · · = gn = 0. Finally, we have to discard those solutions
for which one of the remaining polynomials gn+1, . . . , gs does not vanish.
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We should like to mention that this is not the best possible method. In par-
ticular, the last step, that is, discarding non–solutions, may lead to numerical
problems. A better method is to use triangular sets , either in the spirit of
Lazard [148] or Möller [170] (cf. [102] for experimental results and a com-
parison to resultant based methods). Triangular sets are implemented in the
Singular library triang.lib.

SINGULAR Example 1.8.7 (solving equations).

ring A=0,(x,y,z),lp;
ideal I=x2+y+z-1,

x+y2+z-1,
x+y+z2-1;

ideal J=groebner(I); //the lexicographical Groebner basis
J;
//-> J[1]=z6-4z4+4z3-z2 J[2]=2yz2+z4-z2
//-> J[3]=y2-y-z2+z J[4]=x+y+z2-1

We use the multivariate solver based on triangular sets, due to Möller and
Hillebrand [170], [123], and the univariate Laguerre–solver.

LIB"solve.lib";
list s1=solve(I,6);
//-> // name of new current ring: AC
s1;
//-> [1]: [2]: [3]: [4]: [5]:
//-> [1]: [1]: [1]: [1]: [1]:
//-> 0.414214 0 -2.414214 1 0
//-> [2]: [2]: [2]: [2]: [2]:
//-> 0.414214 0 -2.414214 0 1
//-> [3]: [3]: [3]: [3]: [3]:
//-> 0.414214 1 -2.414214 0 0

If we want to compute the zeros with multiplicities then we use 1 as a third
parameter for the solve command:

setring A;
list s2=solve(I,6,1);
s2;
//-> [1]: [2]:
//-> [1]: [1]:
//-> [1]: [1]:
//-> [1]: [1]:
//-> -2.414214 0
//-> [2]: [2]:
//-> -2.414214 1
//-> [3]: [3]:
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//-> -2.414214 0
//-> [2]: [2]:
//-> [1]: [1]:
//-> 0.414214 1
//-> [2]: [2]:
//-> 0.414214 0
//-> [3]: [3]:
//-> 0.414214 0
//-> [2]: [3]:
//-> 1 [1]:
//-> 0
//-> [2]:
//-> 0
//-> [3]:
//-> 1
//-> [2]:
//-> 2

The output has to be interpreted as follows: there are two zeros of multiplicity
1 and three zeros ((0, 1, 0), (1, 0, 0), (0, 0, 1)) of multiplicity 2.

Note that a possible way to check whether a system of polynomial equa-
tions f1 = · · · = fk = 0 has finitely many solutions in K, is to compute a
Gröbner basis G of I = 〈f1, . . . , fk〉 with respect to any ordering (usually dp
is the fastest). Then V (I) is finite if and only if dim(G)=0 or, equivalently,
lead(G) contains xni

i for i = 1, . . . , n and some ni (and then the number of
solutions is ≤ n1 · . . . · nn). The number of solutions, counting multiplicities,
in K

n
is equal to vdim(G)= dimK K[x]/I (cf. Exercises 1.8.6 to 1.8.8).

1.8.6 Radical Membership

Problem: Let f1, . . . , fk ∈ K[x]>, > a monomial ordering on Mon(x1, . . . , xn)
and I = 〈f1, . . . , fk〉K[x]> . Given some f ∈ K[x]> we want to decide whether
f ∈ √I. The following lemma, which is sometimes called Rabinowich’s trick,
is the basis for solving this problem. 10

Lemma 1.8.8. Let A be a ring, I ⊂ A an ideal and f ∈ A. Then

f ∈
√
I ⇐⇒ 1 ∈ Ĩ := 〈I, 1− tf〉A[t]

where t is an additional new variable.

Proof. If fm ∈ I then tmfm ∈ Ĩ and, hence,

1 = tmfm + (1 − tmfm) = tmfm + (1 − tf)(1 + tf + · · ·+ tm−1fm−1) ∈ Ĩ .
10 We can even compute the full radical

√
I as is shown in Section 4.5, but this is

a much harder computation.
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Conversely, let 1 ∈ Ĩ. Without loss of generality, we may assume that f is
not nilpotent since, otherwise, f is clearly in

√
I.

By assumption, there are f1, . . . , fk ∈ I and ai(t) =
∑di

j=0 aijt
j ∈ A[t],

i = 0, . . . , k such that

1 =
k∑

i=1

ai(t)fi + a0(t)(1 − tf) .

Since f is not nilpotent we can replace t by 1/f and obtain

1 =
∑

i

ai

(
1
f

)
fi =

∑

i,j

aijf
−jfi

in the localization Af , see Section 1.4. Multiplying with fm, for m sufficiently
large, we obtain fm =

∑
i,j(aijf

m−j)fi ∈ I (even in A, not only in Af ).

Solution: By Lemma 1.8.8, we have f ∈ √I if and only if

1 ∈ J := 〈f1, . . . , fk, 1− tf〉(K[x]>)[t] ,

where t is a new variable.
To solve the problem, we choose on Mon(t, x1, . . . , xn) an elimination

ordering for t inducing >′ on Mon(x1, . . . , xn) such that K[x]>′ = K[x]>
(for example, take (lp(1),>)) and compute a standard basis G of J . Then
f ∈ √I if and only if G contains an element g with LM(g) = 1.

SINGULAR Example 1.8.9 (radical membership).

ring A =0,(x,y,z),dp;
ideal I=x5,xy3,y7,z3+xyz;
poly f =x+y+z;

ring B =0,(t,x,y,z),dp; //need t for radical test
ideal I=imap(A,I);
poly f =imap(A,f);
I=I,1-t*f;
std(I);
//-> _[1]=1 //f is in the radical

LIB"primdec.lib"; //just to see, we compute the radical
setring A;
radical(I);
//-> _[1]=z _[2]=y _[3]=x
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1.8.7 Intersection of Ideals

Problem: Given f1, . . . , fk, h1, . . . , hr ∈ K[x] and > a monomial ordering. Let
I1 = 〈f1, . . . , fk〉K[x]> and I2 = 〈h1, . . . , hr〉K[x]>. We wish to find genera-
tors for I1 ∩ I2.
Consider the ideal J := 〈tf1, . . . , tfk, (1− t)h1, . . . , (1− t)hr〉(K[x]>)[t].

Lemma 1.8.10. With the above notations, I1 ∩ I2 = J ∩K[x]>.

Proof. Let f ∈ J ∩K[x]>, then

f(x) = t ·
k∑

i=1

ai(t, x)fi(x) + (1− t)
r∑

j=1

bj(t, x)hj(x) .

Since the polynomial f is independent of t, we have f =
∑k

i=1 ai(1, x)fi ∈ I1
and f =

∑r
j=1 bj(0, x)hj ∈ I2, hence f ∈ I1 ∩ I2. Conversely, if f ∈ I1 ∩ I2,

then f = tf + (1 − t)f ∈ J ∩K[x]>.

Solution: We choose an elimination ordering for t on Mon(t, x1, . . . , xn) in-
ducing >′ on Mon(x1, . . . , xn) such that K[x]>′ = K[x]> (for example, take
(lp(1),>)). Then we compute a standard basis of J and get generators for
J ∩K[x]> as in Section 1.8.2

A different solution, using syzygies, is described in Chapter 2, Section 2.8.3.

SINGULAR Example 1.8.11 (intersection of ideals).

ring A=0,(x,y,z),dp;
ideal I1=x,y;
ideal I2=y2,z;
intersect(I1,I2); //the built-in SINGULAR command
//-> _[1]=y2 _[2]=yz _[3]=xz

ring B=0,(t,x,y,z),dp; //the way described above
ideal I1=imap(A,I1);
ideal I2=imap(A,I2);
ideal J=t*I1+(1-t)*I2;
eliminate(J,t);
//-> _[1]=yz _[2]=xz _[3]=y2

1.8.8 Quotient of Ideals

Problem: Let I1 and I2 ⊂ K[x]> be as in Section 1.8.7. We want to compute

I1 : I2 = {g ∈ K[x]> | gI2 ⊂ I1} .
Since, obviously, I1 : 〈h1, . . . , hr〉 =

⋂r
i=1(I1 : 〈hi〉), we can compute I1 : 〈hi〉

for each i and then apply Singular Example 1.8.11. The next lemma shows
a way to compute I1 : 〈hi〉.
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Lemma 1.8.12. Let I ⊂ K[x]> be an ideal, and let h ∈ K[x]>, h �= 0. More-
over, let I ∩ 〈h〉 = 〈g1 · h, . . . , gs · h〉. Then I : 〈h〉 = 〈g1, . . . , gs〉K[x]> .

Proof. Any set of generators of I ∩ 〈h〉 is of the form {g1h, . . . , gsh}. There-
fore, h〈g1, . . . , gs〉 ⊂ I, hence 〈g1, . . . , gs〉 ⊂ I : 〈h〉. Conversely, if g ∈ I : 〈h〉,
then hg ∈ I ∩ 〈h〉 and hg = h ·∑i aigi for some ai. Since K[x]> has no zero-
divisors and h �= 0, we have g =

∑
i aigi which proves the claim.

Solution 1 : We can compute I1 : I2 by computing, for i = 1, . . . , r, I1 ∩ 〈hi〉
according to Section 1.8.7, divide the generators by hi getting I1 : 〈hi〉 and
compute the intersection

⋂
i(I1 : 〈hi〉), according to Section 1.8.7.

Instead of computing
⋂
i(I1 : 〈hi〉), we can define

h := h1 + t1h2 + · · ·+ tr−1hr ∈ K[t1, . . . , tr−1, x1, . . . , xn]

and obtain
I1 : I2 =

(
I1(K[x]>)[t] : 〈h〉

)
∩K[x]> .

This holds, since g(x) ∈ I1 : 〈h〉 if and only if

g(x)
(
h1(x) + t1h2(x) + · · ·+ tr−1hr(x)

)
=

k∑

i=1

ai(x, t)fi(x)

for some ai ∈ (K[x]>)[t], which is equivalent to g(x)hj(x) ∈ 〈f1, . . . , fk〉K[x]>

for all j (set ti := 0 for all i, and then tj := 1 and ti = 0 for i �= j).

Solution 2 : Define h as above. We can compute I1 : 〈h〉 by Lemma 1.8.12
and then I1 : I2 by eliminating t1, . . . , tr−1 from I1 : 〈h〉 according to Section
1.8.2.

The same procedure works with h := h1 + th2 + t2h3 + · · · + tr−1hr ∈
(K[x]>)[t] with just one new variable t (Exercise 1.8.2).

SINGULAR Example 1.8.13 (quotient of ideals).

ring A=0,(x,y,z),dp;
ideal I1=x,y;
ideal I2=y2,z;
quotient(I1,I2); //the built-in SINGULAR command
//-> _[1]=y _[2]=x

Now let us proceed as described in Lemma 1.8.12:

ideal J1=intersect(I1,ideal(I2[1]));
ideal J2=intersect(I1,ideal(I2[2]));
J1;
//-> J1[1]=y2

J1/I2[1]=1 implies I1:I2[1]=A.
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J2;
//-> J2[1]=yz J2[2]=xz

J2/I2[2]=<x,y> implies I1:I2[2]=<x,y> and all together we obtain
I1:I2=<x,y>:

ideal K1=J1[1]/I2[1];
ideal K2=J2[1]/I2[2],J2[2]/I2[2];
intersect(K1,K2);
//-> _[1]=y _[2]=x

1.8.9 Saturation

Let I1, I2 ⊂ K[x]> be as in Section 1.8.7. We consider the quotient of I1 by
powers of I2

I1 = I1 : I0
2 ⊂ I1 : I1

2 ⊂ I1 : I2
2 ⊂ I1 : I3

2 ⊂ . . . ⊂ K[x]> .

Since K[x]> is Noetherian, there exists an s such that I1 : Is2 = I1 : Is+i2 for
all i ≥ 0. Such an s satisfies

I1 : I∞2 :=
⋃
i≥0

I1 : Ii2 = I1 : Is2 ,

and I1 : Is2 is called the saturation of I1 with respect to I2.
The minimal such s is called the saturation exponent . If I1 is radical, then

the saturation exponent is 1.

Problem: Given ideals I1, I2 ⊂ K[x]>, we want to compute generators for
I1 : I∞2 and the saturation exponent.
Solution: Set I(0) = I1 and compute successively I(j+1) = I(j) : I2, j ≥ 0, by
any of the methods of Section 1.8.8. In each step check whether I(j+1) ⊂ I(j),
by using Section 1.8.1. If s is the first j when this happens, then I(s) = I1 : I∞2
and s is the saturation exponent.

Correctness follows from I(j) = I1 : Ij2 , which is a consequence of Lemma
1.8.14 (1). The above method is usually much faster than computing I1 : Ij2 ,
since Ij2 can become quite large.

To provide a geometric interpretation of ideal–quotient and saturation,
we state the following:

Lemma 1.8.14. Let A be a ring and I1, I2, I3 ideals in A.

(1) a) (I1 ∩ I2) : I3 = (I1 : I3) ∩ (I2 : I3), in particular
I1 : I3 = (I1 ∩ I2) : I3 if I3 ⊂ I2,

b) (I1 : I2) : I3 = I1 : (I2 · I3).
(2) If I1 is prime and I2 �⊂ I1, then I1 : Ij2 = I1 for j ≥ 1.
(3) If I1 =

⋂r
i=1 Ji with Ji prime, then I1 : I∞2 = I1 : I2 =

⋂
I2 �⊂Ji

Ji.
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Proof. (1) is an easy exercise.
(2) I1 ⊂ I1 : Ij2 is clear. Let gIj2 ∈ I1. Since I2 �⊂ I1 and I1 is radical,

Ij2 �⊂ I1 and we can find an h ∈ Ij2 such that h �∈ I1 and gh ∈ I1. Since I1 is
prime, we have g ∈ I1.

(3) follows from (1) and (2) since Is2 �⊂ Ji if and only if I2 �⊂ Ji:
(

r⋂
j=1

Ji

)
: Is2 =

(
⋂

Is
2 �⊂Ji

(Ji : Is2)

)
∩
(

⋂
Is
2⊂Ji

Ji : Is2

)
=

⋂
Is
2 �⊂Ji

Ji .

We shall see in Chapter 3 that in a Noetherian ring each radical ideal I1
has a prime decomposition I1 =

⋂r
i=1 Ji with Ji prime. For the geometric

interpretation of the ideal quotient and the saturation, we use the notations
of Appendix A.2, respectively A.3. We have

V (I1) =
r⋃
i=1

V (Ji) .

Moreover, we have I2 ⊂ Ji if and only if V (Ji) is a closed subscheme of V (I2).
Hence, the variety defined by I1 : I2 is

V (I1 : I2) =
⋃

V (Ji) �⊂V (I2)

V (Ji) .

In other words, if I1 is a radical ideal, then V (I1 : I2) is the Zariski closure
of V (I1) � V (I2).

Note that V (〈0〉 : I) = supp(I) := {P ∈ Spec(A) | P ⊃ AnnA(I)}, due to
Lemma 2.1.41 below. More generally, for finitely generated ideals I1, I2,

V (I1 : I2) = supp
(
(I2 + I1)/I1

) ⊂ Spec(A/I1) .

Here is another example, where we do not know a priori whether we are deal-
ing with a radical ideal or not: given an ideal I ⊂ K[x1, . . . , xn] and some
point a = (a1, . . . , an) ∈ V (I) such that V ′ := V (I) � {a} ⊂ A

n is Zariski
closed. We wish to know equations for V ′, that is, some ideal I ′ such that
V ′ = V (I ′). At the moment, we only know that there exist such ideal I ′

and an ideal J ⊂ K[x] satisfying I = I ′ ∩ J and V (J) = {a}, but we neither
know I ′ nor J . Now, since V (J) = {a}, some power of the maximal ideal
ma = 〈x1 − a1, . . . , xn − an〉 is contained in J (see Lemma A.2.3). Now, since
I ′ �⊂ ma, it is not difficult to show that I ′ : ma = I ′, using the existence of
a primary decomposition (Theorem 4.1.4) and Exercise 4.1.3. Hence, again
using Exercise 4.1.3, we can conclude that I : m∞

a = I ′ : m∞
a = I ′, that is,

V (I) � {a} = V (I : m∞
a ) .

In general, however, a geometric interpretation of I1 : I2 is more difficult and
requires a careful study of the primary decompositions of I1 and I2. I1 : I2,
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or even I1 : I∞2 , may not kill a whole component of V (I1), it may just reduce
part of the structure. For example, if I1 = 〈xy2, y3〉, I2 = 〈x, y〉, then

I1 : I2 = I1 : I∞2 = 〈xy2, y3〉 : 〈x, y〉 = 〈y2〉 ,

hence, V (I1 : I2) is set-theoretically the same as V (I1) (namely, the x–axis),
just with a slightly reduced structure (indicated in Figure 1.4 by the small
arrow pointing in y–direction).

V (I1) V (I1 : I2)

Fig. 1.4. Symbolic pictures of V (〈xy2, y3〉) and V (〈xy2, y3〉 : 〈x, y〉).

Saturation is an important tool in computational projective geometry, cf.
Appendix A.5, in particular, Lemma A.5.2 and the subsequent discussion.

SINGULAR Example 1.8.15 (saturation).

ring A =0,(x,y,z),dp;
ideal I1=x5z3,xyz,yz4;
ideal I2=z;
LIB"elim.lib";
sat(I1,I2); //the SINGULAR procedure
//-> [1]: //the result
//-> _[1]=y
//-> _[2]=x5
//-> [2]:
//-> 4 //the saturation exponent

ideal J=quotient(I1,I2); //the way described above
int k;
while(size(reduce(J,std(I1)))!=0)
{

k++;
I1=J;
J=quotient(I1,I2);

}
J;
//-> J[1]=y J[2]=x5
k;
//-> 4 //we needed to take the quotient 4 times
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1.8.10 Kernel of a Ring Map

Let ϕ : R1 := (K[x]>1)/I → (K[y]>2)/J =: R2 be a ring map defined by
polynomials ϕ(xi) = fi ∈ K[y] = K[y1, . . . , ym] for i = 1, . . . , n (and assume
that the monomial orderings satisfy 1 >2 LM(fi) if 1 >1 xi, cf. Lemma 1.5.8).

Define J0 := J ∩K[y], and I0 := I ∩K[x]. Then ϕ is induced by

ϕ̃ : K[x]/I0 → K[y]/J0 , xi �→ fi ,

and we have a commutative diagram

K[x]/I0
ϕ̃ ��

� �

��

K[y]/J0
� �

��
R1

ϕ �� R2 .

Problem: Let I, J and ϕ be as above. Compute generators for Ker(ϕ).

Solution: Assume that J0 = 〈g1, . . . , gs〉K[y] and I0 = 〈h1, . . . , ht〉K[x].11

Set H := 〈h1, . . . , ht, g1, . . . , gs, x1− f1, . . . , xn− fn〉 ⊂ K[x, y], and compute
H ′ := H ∩K[x] by eliminating y1, . . . , ym from H (cf. Section 1.8.2). Then
H ′ generates Ker(ϕ) by the following lemma.

Lemma 1.8.16. With the above notations, Ker(ϕ) = Ker(ϕ̃)R1 and

Ker(ϕ̃) =
(
I0 + 〈g1, . . . , gs, x1 − f1, . . . , xn − fn〉K[x,y] ∩K[x]

)
mod I0 .

In particular, if >1 is global, then Ker(ϕ) = Ker(ϕ̃).

Proof. Obviously Ker(ϕ̃)R1 ⊂ Ker(ϕ). On the other hand, let h ∈ Ker(ϕ),
where h = (h1/h2) + I for some h1 ∈ K[x], h2 ∈ S>1 , then h1 + I0 ∈ Ker(ϕ̃).
We conclude that Ker(ϕ) = Ker(ϕ̃)R1.

Now let h ∈ K[x] satisfy ϕ̃(h+ I0) = 0, in other words, there exist poly-
nomials a1, . . . , as ∈ K[y] such that

h(f1, . . . , fn) +
s∑

j=1

ajgj = 0 .

Applying Taylor’s formula to the polynomial h(x), we obtain

11 Let > be any monomial ordering on K[x], let f1, . . . , fm ∈ K[x], and let
I be the ideal generated by f1, . . . , fm in K[x]>. Then, for global order-
ings we have 〈f1, . . . , fm〉K[x] = I0 but, if > is non–global, the inclusion
〈f1, . . . , fm〉K[x] ⊂ I0 := I ∩ K[x] may be strict. To compute I0 in this case, one
may proceed as follows: compute a primary decomposition Q1 ∩ . . . ∩ Qs of
〈f1, . . . , fm〉K[x] (see Chapter 4). Assume that QiK[x]> � K[x]> iff 1 ≤ i ≤ t.
Then I0 = Q1 ∩ . . . ∩ Qt.
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h(x) = h(f1, . . . , fn) +
n∑

i=1

∂h

∂xi
(f1, . . . , fn) ·

(
xi − fi

)
+ . . . .

This implies that, for suitable bi ∈ K[x, y],

h(x) +
n∑

i=1

bi(x, y) ·
(
xi − fi(y)

)
+

s∑

j=1

aj(y)gj(y) = 0 .

This implies that h ∈ 〈g1, . . . , gs, x1 − f1(y), . . . , xn − fn(y)〉K[x,y] ∩K[x].
Conversely, let h ∈ I0+〈g1, . . . , gs, x1−f1(y), . . . , xn−fn(y)〉K[x,y]∩K[x],

h = h1 +
s∑

i=1

aigi +
n∑

i=1

bi(xi − fi), h1 ∈ I0 .

Substituting xi by fi we obtain

h(f1, . . . , fn) = h1(f1, . . . , fn) +
s∑

i=1

ai(f1, . . . , fn, y)gi .

But h1(f1, . . . , fn) ∈ J0 and g1, . . . , gs ∈ J0, hence, h(f1, . . . , fn) ∈ J0, which
proves the claim.

Remark 1.8.17. Given a ring map ϕ̃ : A → B, and J ⊂ B an ideal, then
ϕ̃ induces a ring map ϕ : A → B/J and Ker(ϕ) = ϕ̃−1(J). Hence, the
same method for computing the kernel can be used to compute preimages of
ideals. Since Ker(ϕ) = ϕ−1(0), to compute kernels or preimages is equivalent.
Singular has the built–in command preimage.

SINGULAR Example 1.8.18 (kernel of a ring map).

ring A=0,(x,y,z),dp;
ring B=0,(a,b),dp;
map phi=A,a2,ab,b2;
ideal zero; //compute the preimage of 0
setring A;
preimage(B,phi,zero); //the built-in SINGULAR command
//-> _[1]=y2-xz

ring C=0,(x,y,z,a,b), dp; //the method described above
ideal H=x-a2, y-ab, z-b2;
eliminate(H,ab);
//-> _[1]=y2-xz
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1.8.11 Algebraic Dependence and Subalgebra Membership

Recall that a sequence of polynomials f1, . . . , fk ∈ K[x1, . . . , xn] is called al-
gebraically dependent if there exists a polynomial g ∈ K[y1, . . . , yk] � {0}
satisfying g(f1, . . . , fk) = 0. This is equivalent to Ker(ϕ) �= 0, where
ϕ : K[y1, . . . , yk] → K[x1, . . . , xn] is defined by ϕ(yi) = fi. Ker(ϕ) can be
computed according to Section 1.8.10, and any g ∈ Ker(ϕ) � {0} defines an
algebraic relation between the f1, . . . , fk. In particular, f1, . . . , fk are alge-
braically independent if and only if Ker(ϕ) = 0 and this problem was solved
in Section 1.8.10.

Related, but slightly different is the subalgebra–membership problem.

Problem: Given f ∈ K[x1, . . . , xn], we may ask whether f is an element of
the subalgebra K[f1, . . . , fk] ⊂ K[x1, . . . , xn] = K[x].
Solution 1: Define ψ : K[y0, . . . , yk] → K[x], y0 �→ f , yi �→ fi, compute
Ker(ψ) according to Section 1.8.10 and check whether Ker(ψ) contains an
element of the form y0 − g(y1, . . . , yk). That is, we define an elimination
ordering for x1, . . . , xn on Mon(x1, . . . , xn, y0, . . . , yk) with y0 greater than
y1, . . . , yk (for example, (dp(n), dp(1), dp(k))) and compute a standard
basis G of 〈y0 − f, y1 − f1, . . . yk − fk〉. Then G contains an element with
leading monomial y0 if and only if f ∈ K[f1, . . . , fk].
Solution 2: Compute a standard basis of 〈y1−f1, . . . , yk−fk〉 for an elimina-
tion ordering for x1, . . . , xn on Mon(x1, . . . , xn, y1, . . . , yk) and check whether
the normal form of f with respect to this standard basis does not involve
any xi. This is the case if and only if f ∈ K[f1, . . . , fk] and the normal form
expresses f as a polynomial in f1, . . . , fk.

We omit the proofs for these statements (cf. Exercise 1.8.10).
Note that f ∈ K[f1, . . . , fk] implies a relation h(f, f1, . . . , fk) = 0 with

h(y0, y1, . . . , yk) = y0 − g(y1, . . . , yn), hence f, f1, . . . , fk are algebraically de-
pendent (the converse does not need to be true).

Note further that the map ϕ : K[y1, . . . , yk] → K[x1, . . . , xn], yi → fi(x)
is surjective if and only if xi ∈ K[f1, . . . , fk] for all i. Hence, Solution 1 or
Solution 2 can be used to check whether a given ring map is surjective.

SINGULAR Example 1.8.19 (algebraic dependence).

ring A=0,(x,y),dp;
poly f=x4-y4;
poly f1=x2+y2;
poly f2=x2-y2;
LIB"algebra.lib";
algDependent(ideal(f,f1,f2))[1];//a SINGULAR procedure
//-> 1

ring B=0,(u,v,w),dp; //the method described above
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setring A;
ideal zero;
map phi=B,f,f1,f2;
setring B;
preimage(A,phi,zero); //the kernel of phi
//-> _[1]=vw-u //f=f1*f2 and hence f,f1,f2

//are algebraically dependent

SINGULAR Example 1.8.20 (subalgebra membership).

ring A=0,(x,y),dp;
poly f,f1,f2=x4-y4,x2+y2,x2-y2;
LIB"algebra.lib";
inSubring(f,ideal(f1,f2));//a SINGULAR procedure
//-> [1]:
//-> 1 //means f is contained in K[f1,f2]
//-> [2]:
//-> y(1)*y(2)-y(0) //means f1*f2-f=0

Another Singular procedure which also tests subalgebra membership is
algebra_containment.

Now let us proceed as explained in the text:

ring B = 0,(x,y,u,v,w),(dp(2),dp(1),dp(2)); //solution 1
ideal H=u-imap(A,f),v-imap(A,f1),w-imap(A,f2);
std(H);
//-> _[1]=u-vw _[2]=2y2-v+w _[3]=x2-y2-w

Since u appears as a leading monomial, f ∈ K[f1, f2]. Moreover, the existence
of u− vw in H implies f = f1f2.

ring C=0,(x,y,v,w),(dp(2),dp(2)); //solution 2
ideal H=v-imap(A,f1), w-imap(A,f2);
poly f=imap(A,f);
reduce(f,std(H));
//-> vw //again we find f=f1*f2

Exercises

1.8.1. Let I1, I2 be two ideals in K[x]> with I2 = 〈h1, . . . , hr〉, hi ∈ K[x].
Define h := h1 + th2 + t2h3 + · · ·+ tr−1hr ∈ K[x, t]. Prove that

I1 : I2 = (I1 : h) ∩K[x]> .

1.8.2. Let I := 〈x2+ 2y2− 3, x2+ xy + y2− 3〉 ⊂ Q[x, y]. Compute the inter-
sections I ∩Q[x] and I ∩Q[y].



88 1. Rings, Ideals and Standard Bases

1.8.3. Let ϕ : Q
2 → Q

4 be the map defined by (s, t) �→ (s4, s3t, st3, t4). Com-
pute the Zariski closure of the image, ϕ(Q2), and decide whether ϕ(Q2) co-
incides with its closure or not.

1.8.4. Compute all complex solutions of the system

x2 + 2y2 − 2 = 0

x2 + xy + y2 − 2 = 0 .

1.8.5. Check whether the polynomial x2+ 5x is in the radical of the ideal
I = 〈x2+ y3, y7+ x3y5〉K[x,y], respectively of the ideal IK[x, y]〈x,y〉.

1.8.6. Let > be any monomial ordering on Mon(x1, . . . , xn), let I ⊂ K[x]>
be an ideal, and let G be a standard basis of I with respect to >. Show that
the following are equivalent:

(1) dimK(K[x]>/I) <∞,
(2) for each i = 1, . . . , n there exists an ni ≥ 0 such that xni

i is a leading
monomial of an element of G.

(Hint: Use Exercise 1.7.22)

1.8.7. Let K[x] be the polynomial ring in one variable, and let f ∈ K[x] de-
compose into linear factors, f = (x− a1)n1 · . . . · (x− ar)nr for pairwise dif-
ferent ai∈K. Show that SK[x]/〈f〉∼=K[x]/〈x−a1〉n1⊕ · · · ⊕K[x]/〈x−ar〉nr

and conclude that dimK K[x]/〈f〉 = n1 + · · ·+ nr.

1.8.8. Let I = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn] be an ideal. Use a lexicographical
Gröbner basis of I to show that dimK(K[x]/I) <∞ if and only if the system
of equations f1 = . . . = fk = 0 has only finitely many solutions in K

n
, where

K denotes the algebraic closure of K.
(Hint: use induction on n, the previous exercises and Appendix A.)

1.8.9. Prove statement (1) of Lemma 1.8.14.

1.8.10. Prove that Solutions 1 and 2 to the subalgebra–membership problem
in Section 1.8.11 are correct.

1.8.11. Use Singular to check whether the line defined by x+ y = 3 (re-
spectively x+ y = 500) and the circle defined by x2+ y2 = 2 intersect.

1.8.12. Compute the kernel of the ring map Q[x, y, z]→ Q[t]/〈t12〉 defined
by x �→ t5, y �→ t7+ t8, z �→ t11.

1.8.13. Show that the ring Q[s4, s3t, st3, t4] is isomorphic to

Q[x1, x2, x3, x4]/I

with I = 〈x2x3 − x1x4, x
3
3 − x2x

2
4, x

3
2 − x2

1x3, x1x
2
3 − x2

2x4〉.
1.8.14. Create a homogeneous polynomial p of degree 3 in three variables
with random coefficients and use the lift command to express p as a linear
combination of the partial derivatives of p.
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1.9 Non–Commutative G–Algebras

Singular contains a kernel extension (sometimes called Plural), provid-
ing Gröbner bases algorithms and implementations of Gröbner bases for ide-
als and modules in non–commutative G-algebras and, more generally, GR–
algebras with respect to global monomial orderings. In this section we give a
short introduction to the basic definitions and some of the non–commutative
features of Singular. For simplicity we restrict ourselves mainly to ideals,
the case of modules being an immediate generalization.

In non–commutative algebras we have three kinds of ideals, namely left,
right and two–sided ideals12. Given a finite set F = {f1, . . . , fk} from an
algebra A, we denote by A〈F 〉 = {∑k

i=1 aifi|ai ∈ A} the left ideal, by 〈F 〉A =
{∑k

i=1 fiai|ai ∈ A} the right ideal and by A〈F 〉A = {∑i,j aifjbi|ai, bi ∈ A} a
two–sided ideal13, generated by F . The same notation will be used for monoid
ideals in the commutative monoid N

n.
Let Tn = K〈x1, . . . , xn〉 be the free associative K–algebra, generated by

{x1, . . . , xn} over K. A K–basis of T consists of words xα1
i1
xα2
i2
. . . xαm

im
, where

1 ≤ i1, i2, . . . , im ≤ n with m ≥ 0 and αi ≥ 0. The elements of the form
xα1
i1
xα2
i2
. . . xαm

im
, with ordered indices 1 ≤ i1 < i2 < . . . < im ≤ n, are often

called standard words and form a subset of the set of all words. The subvector
space of Tn generated by the standard words is called vectorspace of standard
polynomials.

Every finitely presented associative K–algebra A is isomorphic to Tn/I
for some n and some two–sided ideal I ⊂ Tn. If I is given by a finite set of
two–sided generators I1, . . . , Ik14 we say that A is generated by {x1, . . . , xn}
subject to the relations {I1, . . . , Ik}. We use the notation A = K〈x1, . . . , xn |
I1 = 0, . . . , Ik = 0〉.

A K–algebra A is said to have a Poincaré–Birkhoff–Witt (shortly, PBW )
basis , if the set of standard words {xα1

1 xα2
2 . . . xαn

n | αk ≥ 0} is a K-basis
of A. It is clear, that the commutative polynomial ring K[x1, . . . , xn] has a
PBW basis and that the free associative K–algebra K〈x1, . . . , xn〉 does not
have one. However, many important non–commutative algebras have a PBW
basis.

Definition 1.9.1. Let cij ∈ K \ {0} and dij ∈ Tn, 1 ≤ i < j ≤ n, be
standard polynomials. Consider the algebra

A = K〈x1, . . . , xn | xjxi = cij · xixj + dij , 1 ≤ i < j ≤ n〉.
12 I ⊂ A is called a left–sided (resp. right–sided resp. two–sided) ideal if I is a

subset which is closed under addition and under multiplication by elements from
A from the left (resp. from the right, resp. from both sides).

13 Here is a difference to the commutative case. In the sum different terms ai, fjbi

with the same fj are necessary.
14 This means that I is the set of linear combinations of the form

∑
i,j aiIjbi with

ai, bi ∈ Tn.
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A is called a G–algebra, if the following two conditions hold:

(1) there exists a monomial well–ordering < on N
n such that15

∀i < j LM(dij) < xixj .

(2) For all 1 ≤ i < j < k ≤ n, the polynomial

cikcjk · dijxk − xkdij + cjk · xjdik − cij · dikxj + djkxi − cijcik · xidjk
reduces to 0 with respect to the relations of A.

The matrices (cij) and (dij) are called structural matrices .

G–algebras, first introduced under this name by J. Apel in [3], were stud-
ied in [178]. They are also called algebras of solvable type [132], [135], [154]
and PBW algebras [38].

Proposition 1.9.2. Let A be a G–algebra. Then

(1) A has a PBW basis {xα1
1 xα2

2 . . . xαn
n | αi ≥ 0},

(2) A is left and right Noetherian,
(3) A is an integral domain.

The proof of this proposition and a list of further important properties of
G–algebras can be found e.g. in [152],[153].

Examples of G–algebras include:

• Weyl algebras [51] and their various generalizations [154],
• quasi–commutative polynomial rings (for example, the quantum plane
yx = q · xy and the anti–commutative rings with relations xjxi = −xixj),

• universal enveloping algebras of finite dimensional Lie algebras [60],
• some iterated Ore extensions [132],
• many quantum groups [38] and nonstandard quantum deformations,
• many important operator algebras [44], [154], et cetera,

(cf. the Singular libraries ncalg.lib, nctools.lib and qmatrix.lib).

In the following example we set up several algebras with Singular. Ac-
cording to Definition 1.9.1, we have to define two (strictly upper triangu-
lar) n × n matrices c and d. The initialization command ncalgebra(C,D),
executed in a commutative ring, turns the ring into a non–commutative G–
algebra or returns an error message. An error message is returned, if the
condition LM(dij) < xixj , for all 1 ≤ i < j ≤ n, is not satisfied by the
ordering in the given commutative ring.
15 The notion of leading monomial, LM(f), for a standard polynomial f is defined

as in the commutative case (cf. Definition 1.9.5).
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SINGULAR Example 1.9.3 (enveloping algebra). Consider the uni-
versal enveloping algebra U(sl2) over the field K of characteristic 0. It is
defined as K〈e, f, h | fe = ef − h, he = eh + 2e, hf = fh − 2f〉. Thus,
c12 = c13 = c23 = 1 and d12 = −h, d13 = 2e, d23 = −2f . The explicit
definition of U(sl2) in Singular is as follows:

ring r = 0,(e,f,h),dp;
matrix C[3][3];
C[1,2] = 1; C[1,3] = 1; C[2,3] = 1;
matrix D[3][3];
D[1,2] = -h;
D[1,3] = 2e;
D[2,3] = -2f;
ncalgebra(C,D);

Since the nonzero entries of the matrix C are all equal, we can execute
ncalgebra(1,D); and obtain the same result.

Examining the properties of the ring r, we see that in addition to the data
usually displayed for commutative polynomial rings, the non–commutative
relations between variables are also displayed.

r;
//-> characteristic : 0
//-> number of vars : 3
//-> block 1 : ordering dp
//-> : names e f h
//-> block 2 : ordering C
//-> noncommutative relations:
//-> fe=ef-h
//-> he=eh+2e
//-> hf=fh-2f

The non–commutative multiplication between polynomials is carried out,
as soon as the symbol * is used.

fe; // "commutative" syntax, not correct
//-> ef
f*e; // correct non-commutative syntax
//-> ef-h

SINGULAR Example 1.9.4 (quantum deformation of U(so3)). Con-
sider the algebra U ′

q(so3), which is a non–standard (quantum) deformation of
the algebra U(so3). The quantum parameter q is invertible. It is considered
to be either a free parameter (that is, we work over the transcendental field
extension K(q)) or a primitive root of unity (then we work over the simple
algebraic field extension K[q]/μ(q), where μ(q) is the corresponding minimal
polynomial). Computation in both cases is possible in Singular.
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The algebra U ′
q(so3) is defined as

K〈x, y, z | yx = q · xy −√qz, zx =
1
q
· xz +

1√
q
y, zy = q · yz −√qx〉.

Hence, we have c12 = q, c13 = 1
q , c23 = q and d12 = −√qz, d13 = 1√

q y,
d23 = −√qx.

Let us consider q as a free parameter and, moreover, set Q :=
√
q.

ring s = (0,Q),(x,y,z),dp;
matrix C[3][3];
C[1,2] = Q2;
C[1,3] = 1/Q2;
C[2,3] = Q2;
matrix D[3][3];
D[1,2] = -Q*z;
D[1,3] = 1/Q*y;
D[2,3] = -Q*x;
ncalgebra(C,D);

We obtain the following relations in the non–commutative ring s:

//-> noncommutative relations:
//-> yx=(Q2)*xy+(-Q)*z
//-> zx=1/(Q2)*xz+1/(Q)*y
//-> zy=(Q2)*yz+(-Q)*x

Many important algebras are predefined in numerous procedures of the
libraries ncalg.lib, nctools.lib and qmatrix.lib, distributed with Sin-

gular.
In the library ncalg.lib, there are procedures defining the universal

enveloping algebras U(sln), U(gln), U(som), U(spm), U(g2), U(f4), U(e6),
U(e7), U(e8). Moreover, there are procedures for the quantized enveloping al-
gebras Uq(sl2), Uq(sl3) and the non–standard quantum deformation U ′

q(so3).
Weyl, Heisenberg, exterior algebras, as well as finite dimensional algebras

(given via multiplication table between generators) are implemented in the
library nctools.lib. The ring of quantum matrices Oq(Mn) can be set with
the procedure quantMat from qmatrix.lib. This procedure can be used for
defining the algebras Oq(GLn) and Oq(SLn) as factor algebras of Oq(Mn).

Having defined some interesting non–commutative algebras we start with
describing Gröbner bases for left ideals.

Let A = K〈x1, . . . , xn | xjxi = cijxixj + dij , 1 ≤ i < j ≤ n〉 be a
G–algebra over a field K. Since A has a PBW basis, we call an element
xα = xα1

1 xα2
2 . . . xαn

n of this basis, i.e. a standard word, a monomial in A,
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and denote the set of monomials from A by Mon(A). Note that, although A
is a quotient algebra of Tn the set Mon(A) coincides with Monn defined in
Definition 1.1.3. A term in A is an element of A of the form cxα with c ∈ K
and xα a monomial.

Definition 1.9.5. Let A be a G–algebra in n variables.

(1) A total ordering < on Mon(A) is called a a (global) monomial ordering on
A, if it is a global monomial ordering on Monn in the sense of Definition
1.2.2, that is, if the following conditions hold:
• < is a well–ordering,
• ∀α, β, γ ∈ N

n such that xα < xβ , we have xα+γ < xβ+γ .
(2) Since Mon(A) is a K–basis of A, any f ∈ A\{0} can be written uniquely

as f = cαx
α+ g with cα ∈ K \ {0}, xα a monomial, and xβ < xα for any

nonzero term cβx
β of g. We define

LM(f) = xα ∈Mon(A), the leading monomial of f ,
LC(f) = cα ∈ K \ {0}, the leading coefficient of f ,
LE(f) = α ∈ N

n, the leading exponent of f .

(3) We say that xα divides the monomial xβ , if αi ≤ βi ∀i = 1 . . . n and
denote it by xα|xβ .

Example 1.9.6. Consider two exponent vectors α = (1, 1) and β = (1, 2)
from N

2. Let A be a G–algebra in the variables x = {x1, x2} = {y, ∂}, and let
m1 = xα = y∂ and m2 = xβ = y∂2, hence m1 | m2. However, the left division
of m2 by m1 gives various answers in different algebras. For example, in the
commutative polynomial ring R = K[y, ∂], we have m2 = ∂m1, whereas in
the first quantized Weyl algebra Aq = K(q)〈y, ∂ | ∂y = q2x∂ + 1〉, we obtain
m2 = q−2 · ∂ ·m1 − q−2∂.

Definition 1.9.7. Let S be any subset of a G–algebra A.

• We define L(S) ⊆ N
n to be the monoid ideal (with respect to addition) in

N
n, generated by the leading exponents of the elements of S, that is

L(S) = Nn〈α | ∃s ∈ S LE(s) = α〉.

We call L(S) a monoid ideal of leading exponents. By Dixon’s Lemma
(Lemma 1.2.6), L(S) is finitely generated, i.e. there exist α1, . . ., αm ∈ N

n,
such that L(S) = Nn〈α1, . . . , αm〉.

• The span of leading monomials of S is defined to be the K–vector space
spanned by the set {xα | α ∈ L(S)} ⊆ Mon(A). We denote it by L(S) :=
K〈{xα | α ∈ L(S)}〉 ⊆ A.

Definition 1.9.8. Let < be a monomial ordering on the G–algebra A, I ⊂ A
a left ideal and G ⊂ I a finite subset. G is called a left Gröbner basis of I if
for any f ∈ I \ {0} there exists g ∈ G satisfying LM(g) | LM(f).
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Remark 1.9.9. In commutative rings, one usually defines Gröbner basis via
leading ideals (cf. Definition 1.6.1). In general, it is impossible to adapt this
definition in the context of G–algebras. One of the reasons is that for S ⊂ A,
L(S) is just a K–vector subspace of A and is not, in general, an ideal.

Let us define L′(S) = A〈{LM(f) | f ∈ S}〉 to be the left leading ideal of
a finite set S. Recall, that for a commutative algebra A, a finite set S is a
Gröbner basis of an ideal I, if S ⊂ I and L′(S) = L′(A〈S〉) = L′(I).

Consider the Weyl algebra A = K〈x, ∂|∂x = x∂ + 1〉, the set S = {x∂ +
1, x} and I = A〈S〉. I is a proper left ideal and {x} is a reduced left Gröbner
basis of I. Hence, theK–vector spaces L(I) and L({x}) are equal, but L′(I) =
A〈{x∂, x}〉 = A �= L′({x}) = A〈x〉.
Proposition 1.9.10. Let < be a monomial ordering on the G–algebra A,
I ⊂ A a left ideal and G ⊂ I a finite subset. Then the following conditions
are equivalent:

• G is a left Gröbner basis of I,
• L(G) = L(I) as K–vector spaces,
• L(G) = L(I) as monoid ideals in N

n.

Let us now introduce the notion of a normal form or divison with remain-
der in the non–commutative setting.

Definition 1.9.11. Denote by G the set of all finite ordered subsets of the
G–algebra A. A map NF : A× G → A, (f,G) �→ NF(f |G), is called a (left)
normal form on A if:

(1) For all f ∈ A, G ∈ G
(i) NF(0 | G) = 0,
(ii) NF(f | G) �= 0 ⇒ LM

(
NF(f | G)

) �∈ L(G),
(iii) f −NF(f | G) ∈ A〈G〉.

(2) Let G = {g1, . . . , gs} ∈ G and f ∈ A. Then

f −NF(f | G) =
s∑

i=1

aigi, ai ∈ A, s ≥ 0,

is either 0 or LM(Σs
i=1aigi) ≥ LM(aigi) for all i such that aigi �= 0. We

say that f −NF(f |G) (or, by abuse of notation, f) has a (left) standard
representation with respect to G.

Lemma 1.9.12. Let I ⊂ A be a left ideal, G ⊂ I a left Gröbner basis of I
and NF(· | G) a left normal form on A with respect to G.

(1) For any f ∈ A, we have f ∈ I ⇐⇒ NF(f | G) = 0.
(2) If J ⊂ A is a left ideal with I ⊂ J , then L(I) = L(J) implies I = J . In

particular, G generates I as a left ideal.
(3) If NF(· | G) is a reduced left normal form, then it is unique.
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Definition 1.9.13. Let f, g ∈ A \ {0} with LM(f) = xα and LM(g) = xβ .
Set γ := lcm(α, β) and define the (left) s–polynomial of f and g to be

LeftSpoly(f, g) := xγ−αf − LC(xγ−αf)
LC(xγ−βg)

xγ−βg.

Remark 1.9.14.

(1) It is easy to see that LM(LeftSpoly(f, g)) < LM(f · g) holds. If LM(g) |
LM(f), say LM(g) = xβ and LM(f) = xα, then the s–polynomial is
especially simple:

LeftSpoly(f, g) = f − LC(f)
LC(xα−βg)

xα−βg,

and LM
(
LeftSpoly(f, g)

)
< LM(f) holds.

(2) Let A be a G–algebra, where all the relations are of the form {xjxi =
xixj+dij}. Then, there is an easier formula for the s–polynomial, namely

LeftSpoly(f, g) := xγ−αf − LC(f)
LC(g)

xγ−βg,

which looks exactly like the formula in the Definition 1.6.9.

As before, we assume that A is a G–algebra and < is a fixed global
monomial ordering on A.

Algorithm 1.9.15. LeftNF(f | G)

Input: f ∈ A, G ∈ G;
Output: h ∈ A, a left normal form of f with respect to G.

• h := f ;
• while ((h �= 0) and (Gh := {g ∈ G : LM(g) | LM(h)} �= ∅))

choose any g ∈ Gh;
h := LeftSpoly(h, g);

• return h;

Algorithm 1.9.16. LeftGröbnerBasis(G)

Input: G ∈ G;
Output: S ∈ G, a left Gröbner basis of the left submodule I = A〈G〉 ⊂ A.

• S := G;
• P := {(f, g) | f, g ∈ S} ⊂ S × S;
• while ( P �= ∅ )

choose (f, g) ∈ P ;
P := P \ {(f, g)};
h := LeftNF

(
LeftSpoly(f, g) | S);
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if ( h �= 0 )
P := P ∪ {(h, f) | f ∈ S};
S := S ∪ {h};

return S;

As one can see, with the chosen setup, we are able to keep the form of the
algorithms exactly as in the commutative case. However, since we use left s–
polynomials, left normal forms, and compute left Gröbner bases respectively,
the proofs are somewhat different.

Theorem 1.9.17 (Left Buchberger’s Criterion). Let I ⊂ A be a left
ideal and G = {g1, . . . , gs}, gi ∈ I. Let LeftNF(· | G) be a left normal form
on A with respect to G. Then the following are equivalent:

(1) G is a left Gröbner basis of I,
(2) LeftNF(f | G) = 0 for all f ∈ I,
(3) each f ∈ I has a left standard representation with respect to G,
(4) LeftNF

(
LeftSpoly(gi, gj)|G

)
= 0 for 1 ≤ i, j ≤ s.

The practical computation of Gröbner bases in non–commutative alge-
bras can be extremely time and space consuming already for small exam-
ples, much more than in the commutative case. It is therefore important to
know which criteria for discarding useless pairs continue to hold. We point
out, that the generalization of the chain criterion (Lemma 2.5.10) holds in
the LeftGröbnerBasis algorithm over G–algebras with no restrictions,
whereas the product criterion (Exercise 1.7.1) does not hold in general. How-
ever, for some cases it is possible to use a weaker statement.

Lemma 1.9.18 (Generalized Product Criterion). Let A be a G–algebra,
such that ∀1 ≤ i < j ≤ n, cij = 1. That is, the relations of A are of the form
{xjxi = xixj + dij}.

Let f, g ∈ A. Suppose that LM(f) and LM(g) have no common factor,
then LeftNF(LeftSpoly(f, g)|{f, g}) = fg − gf .

Example 1.9.19. Let A = U(sl2) over the field Q , that is A = Q〈e, f, h |
fe = ef − h, he = eh + 2e, hf = fh − 2f〉. Let I ⊂ A be the left ideal
generated by {e2, f}. We compute a left Gröbner basis of I with respect to
the dp ordering.

Let p1 := e2, p2 := f , then S = {p1, p2} and P = {(p1, p2)}. Since p1, p2

do not have common factors, we apply the generalized product criterion and
obtain

• spoly(p1, p2) → e2f − fe2 = 2eh+ 2e. It is not reducible by the elements
of S, so p3 := eh+ e, S := {p1, p2, p3} and P := {(p1, p3), (p2, p3)}.

• spoly(p1, p3) = hp1 − ep3 = 3e2 = 3p1, hence NF(spoly(p1, p3) | S) = 0.
• spoly(p2, p3) → p3p2 − p2p3 = 2ef − h2 − h =: g. NF(g | S) =
g − 2ep2 = −(h2 + h), so p4 := h2 + h, S := {p1, p2, p3, p4} and
P := {(p1, p4), (p2, p4), (p3, p4)}.
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• spoly(p1, p4) → p1p4 − p4p1 = −8e2h − 20e2 =: g, then NF(g | S) =
g + 8ep3 + 12p1 = 0.

• spoly(p2, p4) = p2p4 − p4p2 = 4fh− 2f =: g, then NF(g | S) = g − 4hp2 −
6p2 = 0.

• spoly(p3, p4) = hp3 − ep4 = 2(eh+ e) = 2p3, so NF(spoly(p3, p4) | S) = 0.
S = {p1, p2, p3, p4} and P = ∅.
Hence, after reordering the elements in an ascending way, we conclude

that S = {f, h2 + h, eh+ h, e2} is a left Gröbner basis of I.

SINGULAR Example 1.9.20 (Left Gröbner basis). Let us compute
the above example with Singular. The command std computes a left
Gröbner basis of its argument of type ideal or module.

LIB "ncalg.lib";
// load the library with the definition of U((sl_2)
def A = makeUsl(2); // set up U(sl_2)
setring A;
option(redSB);
option(redTail); // we wish to compute reduced bases
ideal I = e2,f;
ideal LI = std(I); LI;
//-> LI[1]=f
//-> LI[2]=h2+h
//-> LI[3]=eh+e
//-> LI[4]=e2

Above, we have sketched the left Gröbner basis theory. By replacing every
left–sided with a right–sided action in the statements and proofs, one obtains
a right Gröbner basis theory. However, it is not necessary to rewrite the
algorithms, since we can compute with right ideals by using left Gröbner
bases in opposite algebras.

Let A be an associative algebra over K. The opposite algebra Aopp is
defined by taking the underlying vector-space of A and introducing a new
”opposite” multiplication on it, by setting f ∗ g := g · f . Then, Aopp is an
associative K–algebra, and (Aopp)opp = A.

Lemma 1.9.21. Let A be a G–algebra, then Aopp is a G–algebra too.

There is one–to–one correspondence between left (right) ideals of A and
right (left) ideals of Aopp. Thus, in order to compute a right Gröbner basis of
a left ideal I in A, we have to create the opposite algebra Aopp of A, compute
the right ideal Iopp corresponding to I. Then, we compute a left Gröbner
basis of Iopp and “oppose” the result back to A. This can be achieved by the
following procedure:
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proc rightStd(ideal I)
{

def A = basering;
def Aopp = opposite(A);
setring Aopp;
ideal Iopp = oppose(A,I);
ideal Jopp = std(Iopp);
setring A;
ideal J = oppose(Aopp,Jopp);
return(J);

}

The same principle applies to computation of right normal forms, right
syzygies etc. The corresponding procedures rightStd, rightNF, rightSyz,
rightModulo are implemented in the library nctools.lib.

SINGULAR Example 1.9.22 (Right Gröbner basis).

LIB "ncalg.lib";
def A = makeUsl(2);
setring A;
option(redSB);
option(redTail); // we wish to compute reduced bases
ideal I = e2,f;
ideal LI = std(I);
print(matrix(LI)); // a compact form of an ideal
//-> f,h2+h,eh+e,e2
ideal RI = rightStd(I);
print(matrix(RI));
//-> f,h2-h,eh+e,e2

As we can see, in this case the left and right bases differ only by one
generator.

A two–sided Gröbner basis of an ideal I is a finite set of generators F =
{f1, . . . , fs}, such that F is a left and a right Gröbner basis of I. In particular,
if F is a two–sided Gröbner basis of I, we have A〈F 〉 = 〈F 〉A = A〈F 〉A = I.

We use a special algorithm for computing two–sided Gröbner bases which
is described in detail in [152] and which is behind the command twostd. Let
us continue with the example before.

SINGULAR Example 1.9.23 (Two–sided Gröbner basis).

ideal I = e2,f;
ideal LI = std(I);
print(matrix(LI)); // a compact form of an ideal
//-> f,h2+h,eh+e,e2
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ideal TI = twostd(I);
print(matrix(TI));
//-> h,f,e

Two–sided Gröbner bases are essential for computations ain factor–
algebras. Let A be a G–algebra and T ⊂ A be a nonzero two–sided ideal,
then there is a factor–algebra A/T which we call a GR–algebra. The data
type qring in the non–commutative case corresponds to GR–algebras. The
ideal T must be given as a two–sided Gröbner basis.

SINGULAR Example 1.9.24 (Computations in factor algebras).

LIB "ncalg.lib";
def A = makeUsl2();
setring A;
ideal T = 4*e*f+h^2-2*h; // central element in U(sl_2)
T = twostd(T);
T;
//-> T[1]=4ef+h2-2h
qring Q = twostd(T);
ideal I = e2,f;
ideal LI = std(I);
LI;
//-> LI[1]=h
//-> LI[2]=f
//-> LI[3]=e

As we can see, the left Gröbner basis of {e2, f} is very different, if we pass
from U(sl2) to the factor algebra U(sl2)/〈4ef + h2 − 2h〉.

Many of the Singular functions are available both for G–algebras and
for GR–algebras. Among them are the functions for computing left syzygy
modules (syz), left transformation matrices between bases (lift), left free
resolutions (nres, mres) and many others.

1.9.1 Centralizers and Centers

In many applications we need natural subalgebras of a non–commutative G–
algebra A, like the centralizer of a finite set S ⊂ A, defined to be CA(S) :=
{f ∈ A | fs = sf ∀s ∈ S}, and the center of A, Z(A) := CA(A) =
{f ∈ A | fa = af ∀a ∈ A}. As one can easily see, K ⊆ Z(A) ⊂ CA(S)
for any finite subset S of A. The computation of centers and centralizers is
implemented in the library central.lib (cf. [172]). For a general G–algebra
we do not have any information on the number of generators of the center and
of their degree. Hence, both procedures centralizer and center need extra
arguments. Namely, one sets an upper bound for the degree and, optionally, a
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bound for the number of elements to be computed. Note, that although both
procedures return data of the type ideal, the data consists of generators of
a subalgebra.

SINGULAR Example 1.9.25 (Center and centralizer).

LIB "ncalg.lib";
LIB "central.lib";
def A0 = makeUsl2(); // U(sl_2) over the rationals
setring A0;
// compute the centralizer of f^2 up to degree 6
ideal C = centralizer(f^2,6); C;
// -> C[1]=f
// -> C[2]=4ef+h2-2h
ideal Z = center(5); Z;
// -> Z[1]=4ef+h2-2h
def A5 = makeUsl2(5); // U(sl_2) over Z/5Z
setring A5;
ideal Z = center(5); Z;
// -> Z[1]=ef-h2+2h
// -> Z[2]=h5-h
// -> Z[3]=f5
// -> Z[4]=e5

As we can see, the centralizers depend heavily on the ground field K of a
given G–algebra. Let us demonstrate the computations for GR–algebras. We
continue with the example above. Since the element 4ef + h2 − 2h is central
in U(sl2) for any K, it generates a principal two–sided ideal.

// we are in the algebra A5
ideal T = twostd(4ef+h2-2h); T;
// -> T[1]=ef-h2+2h
qring Q = T;
// compute the centralizer of f^2 up to degree 6
ideal C = centralizer(f^2,6); C;
// -> C[1]=f
// -> C[2]=eh3-2eh2-eh+2e
// -> C[3]=h5-h
// -> C[4]=e5
// -> C[5]=e4h2-2e4h

1.9.2 Left Ideal Membership

In order to test whether a given polynomial lies in the given left ideal, we
have to compute, according to Lemma 1.9.12, a left Gröbner basis of the ideal
and then the left normal form of the polynomial with respect to the latter
basis.
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This method is also used for “canonizing” representatives of polynomials
in factor algebras. Let us continue with Example 1.9.25.

The procedure bracket(a, b) returns ab − ba. Let us check, that C[2]
and C[5] lie in the centralizer of f2 in the algebra U(sl2)/〈4ef+h2−2h〉. For
this, we use the left ideal membership approach by invoking NF(b,std(0))
or, alternatively, reduce(b,std(0)) for a polynomial b.

Recall, that, in a factor ring std(0) stands for the two–sided Gröbner
basis of the ideal defining the factor ring, which has been constructed as
qring Q in the Singular example 1.9.25.

poly b = bracket(C[2],f^2); b;
// -> -2ef2h2+2fh4-ef2h-fh3-2ef2+2fh2+fh+f
NF(b,std(0));
// -> 0
b = bracket(C[5],f^2); b;
// -> 2e4f2h-2e3fh3-e4f2-2e2h4-2e3fh-e2h3-2e2h2-e2h
reduce(b,std(0));
// -> 0

1.9.3 Intersection with Subalgebras (Elimination of Variables)

Let A be a G–algebra generated by {x1, . . . , xn} with structural matrices (cij)
and (dij). For a fixed r, 1 ≤ r < n, consider the subalgebra Ar, generated by
the {xr+1, . . . , xn}. We say, that Ar is an essential subalgebra (or admissible
for elimination), if ∀ i, j such that r + 1 ≤ i < j ≤ n, the polynomials dij
involve only the variables xr+1, . . . , xn.

Example 1.9.26 (Essential and non–essential subalgebras). Consider A =
U(sl2) (see Singular Example 1.9.3). {f, h} generate an essential subal-
gebra (recall the relations he = eh + 2e and hf = fh − 2f). However, the
subalgebra generated by {e, f} is not essential, since fe = ef − h and hence,
h is the third generator of this subalgebra. That is, the set {e, f, h} gener-
ates the same algebra over K as the set {e, f}, namely the whole A. As a
consequence, we cannot ”eliminate” h from any ideal of A, since this would
require the intersection with the subalgebra generated by {e, f}, which is A,
and hence this would not change anything.

The notion of elimination of variables in the context of non–commutative
algebras means the intersection of an ideal with an essential subalgebra.

Recall, that an ordering <r for x1, . . . , xn (cf. Definition 1.5.4) is said to
have the elimination property for x1, . . . , xr, if, for any f ∈ A, LM(f) ∈ Ar
implies f ∈ Ar; it is then called an elimination ordering .

The following lemma is the constructive generalization of Lemma 1.8.3 to
the class of G–algebras.
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Lemma 1.9.27. Let A be a G–algebra, generated by {x1, . . . , xn} and I ⊂ A
an ideal. Suppose, that the following conditions are satisfied for a fixed r,
1 ≤ r < n:

• the set {xr+1, . . . , xn} generates an essential subalgebra Ar,
• there exists an admissible elimination ordering 16 <r for x1, . . . , xr.

Then, if S is a left (resp. right) Gröbner basis of I with respect to <r,
S ∩Ar is a left (resp. right) Gröbner basis of I ∩Ar.

Note, that both conditions in Lemma 1.9.27 are automatically satisfied in
a commutative polynomial ring as well as in a free associative algebra.

The Singular command eliminate works along the lines of Lemma
1.9.27. At first it checks whether B is essential and, if it is the case, the check
of the admissibility of the elimination ordering is performed. If one of these
conditions is not satisfied, the corresponding error message is returned.

SINGULAR Example 1.9.28 (Intersection with essential subalge-
bras).

LIB "ncalg.lib";
def U = makeUsl2(); // U(sl_2) over the rationals
setring U;
ring A = 0,(a),dp;
def UA = U + A;
setring UA;

The algebra UA corresponds to U(sl2)⊗KK[a], in particular, a commutes
with e, f and h in UA.

poly p = 4*e*f+h^2-2*h - a;
// p is a central element of UA
ideal I = e^3, f^3, h^3-4*h, p;
// intersect I with the ring K[a]
ideal J = eliminate(I,e*f*h);
J;
//-> J[1]=a3-32a2+192a

Hence, U(sl2)⊗KK[a]〈4ef + h2− 2h− a〉 ∩K[a] = 〈a(a− 8)(a− 24)〉. From
Example 1.9.26 we know, that {e, f} does not generate an essential subalge-
bra. Let us see what happens if we try to intersect it with this subalgebra
(i.e. “eliminate” h).

eliminate(I,h);
//-> ? no elimination possible: subalgebra is not admissible
//-> ? error occurred in line 13: ‘eliminate(I,h);’

16 that is, satisfying the ordering condition in Definition 1.9.1 and having the elim-
ination property for x1, . . . , xr.
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Since a commutes with e, f and h we can eliminate a, that is intersect I
with the subalgebra U(sl2) ⊂ U(sl2) ⊗K K[a]. Moreover, we can intersect I
with the subalgebra K[h] ⊂ U(sl2) ⊗K K[a], being achieved by eliminating
e, f and a.

eliminate(I,e*f*a);
//-> _[1]=h3-4h

SINGULAR Example 1.9.29 (No elimination ordering exists). Let
A = K〈p, q | qp = pq+q2〉 be a G–algebra for a fixed ordering<. In particular
q2 < pq and hence q < p holds. An elimination ordering for q requires that
q > p holds, which is a contradiction to the ordering condition for the G–
algebra A.

ring s = 0,(p,q),dp;
ncalgebra(1,q^2); // setting the relation qp = pq + q^2
ideal I = p+q, p2+q2;
eliminate(I,q);
//-> Bad ordering at 1,2
//-> ? no elimination possible: ordering condition violated
//-> ? error occurred in STDIN line 4: ‘eliminate(I,q);’

The first line of the error message says, that the ordering condition is
violated for the relation between the 1st and 2nd variable. However, we can
intersect the ideal with the subalgebra K[q].

eliminate(I,p);
//-> _[1]=q2

1.9.4 Kernel of a Left Module Homomorphism

Let A be a GR–algebra. Consider a left A–module homomorphism

φ : Am/U −→ An/V ei �−→ Φi, Φ ∈Mat(n×m,A),

where U ⊂ Am and V ⊂ An. The kernel of a homomorphism φ can be
computed with the procedure modulo (compare Singular Example 2.1.26).

SINGULAR Example 1.9.30 (Kernel of module homomorphism).
Let A = U(sl2)/I, where the two–sided ideal I is generated by

{e2, f2, h2 − 1}. Let us study the endomorphisms τ : A→ A.

LIB "ncalg.lib";
def A0 = makeUsl2(); setring A0;
option(redSB); option(redTail);
ideal I = e2,f2,h2-1;
I = twostd(I);
print(matrix(I)); // ideal in a compact form
//-> h2-1,fh-f,eh+e,f2,2ef-h-1,e2
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From the two–sided Gröbner basis of I, we can read off that A is 4–
dimensional over K with basis {1, e, f, h}.

qring A = I; // we move to a GR--algebra A
ideal Ke = modulo(e,0);
Ke = std(Ke+std(0)); // normalize Ke w.r.t. the factor ideal
Ke;
//-> Ke[1]=h-1 // the kernel of e
//-> Ke[2]=e
ideal Kh = modulo(h-1,0);
Kh = std(Kh+std(0));
Kh; // the kernel of h-1
//-> Kh[1]=h+1
//-> Kh[2]=f

Computing with more endomorphisms, we get the following information
on their kernels.
For non–zero k ∈ K, ker(τ : 1 �→ e+ k) = ker(τ : 1 �→ f + k) = 0.
For k2 �= 1, ker(τ : 1 �→ h+ k) = 0.
ker(τ : 1 �→ e) = ker(τ : 1 �→ h+ 1) = A〈e, h− 1〉.
ker(τ : 1 �→ f) = ker(τ : 1 �→ h− 1) = A〈f, h+ 1〉.

1.9.5 Left Syzygy Modules

Let A be an associative algebra and An the canonical free module of rank
n over A. A left (resp. right) syzygy of elements f1, . . . , fm from An is an
m–tuple (a1, . . . , am), ai ∈ A such that

∑m
i=1 aifi = 0 (resp.

∑m
i=1 fiai = 0).

It can be shown, that the set of all left (resp. right) syzygies forms a left
(resp. right) A–module.

We can view the elements fi ∈ An as columns of a matrix F ∈ Mat(n×
m,A). It is convenient to view a single left syzygy, which is an element of
Am, as a column in a matrix. If the left syzygy module is generated by s
elements, it can be represented by a matrix S ∈ Mat(m × s,A) and then
ST ·FT = 0 holds where ST and FT denote the transposed matrices. Similar
remarks apply to right syzygies.

The command syz computes the first (left) syzygy module of a given set
of elements. The higher syzygy modules are defined as successive syzygies of
syzygies etc.

SINGULAR Example 1.9.31 (Syzygies).
Consider the algebra U ′

q(so3) (Example 1.9.30), specializing the quantum
parameter Q at the primitive 6th root of unity. The corresponding minimal
polynomial for the algebraic field extension is Q2 −Q+ 1.

LIB "ncalg.lib";
def R = makeQso3(3);
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setring R;
option(redSB); option(redTail); // for reduced output
ideal K = x+y+z,y+z,z;
module S = syz(K); // the (left) syzygy module of K
print(S);
//-> (Q-1), (-Q+1)*z, (Q-1)*y,
//-> (Q)*z+(-Q+1),(Q-1)*z+(Q),(Q)*x+(-Q+1)*y,
//-> y+(-Q)*z, x+(-Q), (-Q)*x-1

The columns of the above matrix generate the (left) syzygy module of K.
Let us check the property (ST · FT = 0) of a syzygy matrix from above.

ideal tst = ideal(transpose(S)*transpose(K));
print(matrix(tst));
//-> 0,0,0

It is easy to see, that the (left) Gröbner basis of the ideal K is {x, y, z}.
Let us compute the first syzygy module of this set of generators.

K = x,y,z;
S = syz(K);
print(S);
//-> (Q-1),0, 0,
//-> (Q)*z,-z2-1, (Q)*yz+(-Q)*x,
//-> y, (-Q)*yz+(Q)*x,y2+1

There are quadratic terms in the generators. It is important to mention,
that the command syz does not return a left Gröbner basis of the first syzygy
module. However, one can force it to return a Gröbner basis by setting the
option returnSB as follows

option(returnSB);
S = syz(K);
print(S);
//-> (Q-1),(-Q+1)*y,-z,
//-> (Q)*z,(-Q)*x, (-Q+1),
//-> y, 1, (-Q)*x

The latter generators of the syzygy module are linear.

1.9.6 Left Free Resolutions

Computing syzygy modules of a module M iteratively, we get a free left
resolution (cf. Definition 2.4.10) of M . If M is a finitely presented A–module,
where A is a G–algebra in n variables, we know that this process stops at
most after n steps.
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The commands nres and mres compute free left resolutions and the com-
mand minres minimizes a given resolution also in the non–commutative set-
ting.

SINGULAR Example 1.9.32 (Resolution with nres and minres). In
the algebra A = U(sl2) we consider the ideal I, generated by {e2, f}. Its left
Gröbner basis has been computed in example 1.9.19 and Singular example
1.9.20. Now we want to compute a left free resolution of the latter set of
generators.

LIB "ncalg.lib";
def A = makeUsl2(); setring A;
option(redSB); option(redTail);
ideal I = e2,f;
ideal J = groebner(I);
resolution F = nres(J,0);
F;
//-> 1 4 4 1
//-> A <-- A <-- A <-- A
//-> 0 1 2 3
//-> resolution not minimized yet
print(matrix(F[1])); // F[1] is the left map
//-> f,h2+h,eh+e,e2
print(matrix(F[2])); // F[2] is the middle map
//-> 0, h2+5h+6,eh+3e,e2,
//-> 0, -f, -1, 0,
//-> e, 0, -f, -2,
//-> -h+3,0, 0, -f
print(matrix(F[3])); // F[3] is the right map
//-> f2,
//-> -e,
//-> ef,
//-> -fh+f

With the help of minres, we can minimize a given resolution.

resolution MF = minres(F);
print(matrix(MF[1]));
//-> f,e2
print(matrix(MF[2]));
//-> e3, e2f2-6efh-6ef+6h2+18h+12,
//-> -ef-2h+6,-f3
print(matrix(MF[3]));
//-> f2,
//-> -e

Applying mres produces the same result as the two commands nres and
minres together.
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1.9.7 Betti Numbers in Graded GR–algebras

A graded G–algebra in n variables is characterized by the following property:
∀ 1 ≤ i < j ≤ n the polynomials xixj + dij are weighted homogeneous. A
graded GR–algebra is a factor algebra of a G–algebra modulo a two–sided
ideal T , whose two–sided Gröbner basis consists of weighted homogeneous
polynomials.

The Betti numbers (see Definition 2.4.10) of graded objects in graded
GR–algebras can be computed with the procedure betti.

SINGULAR Example 1.9.33 (Betti numbers).

ring r = 0,(x,d,q),dp;
matrix D[3][3];
D[1,2]=q^2;
ncalgebra(1,D);
ideal I = x,d,q;
option(redSB); option(redTail);
resolution R = mres(I,0);
R;
//-> 1 3 3 1
//-> r <-- r <-- r <-- r
//-> 0 1 2 3
print(betti(R),"betti");
//-> 0 1 2 3
//-> ------------------------------
//-> 0: 1 3 3 1
//-> ------------------------------
//-> total: 1 3 3 1

1.9.8 Gel’fand–Kirillov Dimension

The standard Singular command dim computes the Krull dimension of
a module or an ideal. In the non–commutative case, the Gel’fand–Kirillov
dimension GKdim [180] plays a similar important role as the Krull dimension
in the commutative case. Note, that for an ideal I in the polynomial ring
K[x] = K[x1, . . . , xn], the Krull dimension dim(I) and the Gel’fand–Kirillov
dimension GKdim(I) of K[x]/I coincide.

The algorithm for computing the Gel’fand–Kirillov (or, shortly, GK)
dimension [38, 154] uses Gröbner bases. It is implemented in the library
gkdim.lib.

SINGULAR Example 1.9.34 (Gel’fand–Kirillov Dimension).
In this example we compute the Gel’fand–Kirillov dimensions of some

modules which appeared in the examples 1.9.3, 1.9.22, 1.9.28, and 1.9.30
before.
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LIB "gkdim.lib";
LIB "ncalg.lib";
def A = makeUsl(2); // set up U(sl_2)
setring A;
ideal I = e2,f;
ideal LI = std(I);
GKdim(LI);
//-> 0
ideal TI = twostd(I);
GKdim(TI);
//-> 0
ideal Z = 4*e*f + h^2 - 4*h;
Z = std(Z);
GKdim(Z);
//-> 2
ring B = 0,(a),dp;
def C = A + B;
setring C;
ideal I = e^3, f^3, h^3-4*h, 4*e*f+h^2-2*h - a;
I = std(I);
GKdim(I);
//-> 0
ideal J = eliminate(I,e*f*h);
GKdim(J);
//-> 3
setring A;
resolution F = nres(LI,0); // we computed it before
GKdim(F[1]); // this is LI itself
//-> 0
GKdim(F[2]);
//-> 3
GKdim(F[3]);
//-> 3



2. Modules

Module theory may, perhaps, best be characterized as linear algebra over a
ring. While classical commutative algebra was basically ideal theory, modules
are in the centre of modern commutative algebra as a unifying approach.
Formally, the notion of a module over a ring is the analogue of the notion
of a vector space over a field, in the sense that a module is defined by the
same axioms, except that we allow ring elements as scalars and not just
field elements. Just as vector spaces appear naturally as the solution sets
of systems of linear equations over a field, modules appear as solution sets
of such systems over a ring. However, contrary to vector spaces, not every
module has a basis and this makes linear algebra over a ring much richer
than linear algebra over a field.

This chapter contains the basic definitions and constructions in connec-
tion with modules with some emphasis on syzygies and free resolutions. Mod-
ules over special rings, such as graded rings and principal ideal domains, are
treated in a special section.

Again, every construction is accompanied by concrete computational
examples.

2.1 Modules, Submodules and Homomorphisms

This section contains the most elementary definitions and properties of mod-
ules. As far as the theory is completely analogous to that of vector spaces,
we leave the verification of such results as exercises, with a few exceptions,
in order to give some examples on how to proceed.

Definition 2.1.1. Let A be a ring. A set M , together with two operations
+ : M ×M → M (addition) and · : A ×M → M (scalar multiplication) is
called A–module if

(1) (M,+) is an abelian group.
(2) (a+ b) ·m = a ·m+ b ·m

a · (m+ n) = a ·m+ a · n
(ab) ·m = a · (b ·m)

1 ·m = m
for all a, b ∈ A and m,n ∈M .
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Example 2.1.2.

(1) Let A be a ring, then A is an A–module with the ring operation.
(2) If A = K is a field, then A–modules are just K–vector spaces.
(3) Every abelian group is a Z–module with scalar multiplication

n · x := x+ · · ·+ x︸ ︷︷ ︸
n times

.

(4) Let I ⊂ A be an ideal, then I and A/I are A–modules with the obvious
addition and scalar multiplication.

(5) Let A be a ring and An = {(x1, . . . , xn) | xi ∈ A} the n–fold Cartesian
product of A, then An is, in a canonical way, an A–module (with the
component–wise addition and scalar multiplication).

(6) Let K be a field and A = K[x] the polynomial ring in one variable x. An
A–module M can be considered as a K–vector space M together with a
linear map ϕ : M →M defined by ϕ(m) := x ·m for all m ∈M . On the
other hand, given a K–vector space M and a linear map ϕ : M → M ,
then we can giveM the structure of a K[x]–module defining x·m := ϕ(m)
for all m ∈M .

(7) Let ϕ : A→ B be a ring map, and set a · b := ϕ(a) · b for a ∈ A and b ∈ B.
This defines an A–module structure on B. The ring B together with this
structure is called an A–algebra.

Definition 2.1.3.

(1) Let M,N be A–modules. A map ϕ : M → N is called A–module homo-
morphism (or simply homomorphism) if, for all a ∈ A and m,n ∈M ,
a) ϕ(am) = aϕ(m),
b) ϕ(m+ n) = ϕ(m) + ϕ(n).

We also say that ϕ is A–linear or just linear . If N = M , then ϕ is called
an endomorphism.

(2) The set of all A–module homomorphisms from M to N is denoted by
HomA(M,N).

(3) A bijective A–module homomorphism is called isomorphism (the inverse
is automatically a homomorphism, Exercise 2.1.12).

(4) M is called isomorphic to N , denoted by M ∼= N , if there exists an
isomorphism M → N .

(5) If ϕ : A→B and ψ : A→ C are two ring maps then a ring map α : B→C
is called an A–algebra map or a homomorphism of A–algebras if it is an
A–module homomorphism, that is, if α ◦ ϕ = ψ.

Lemma 2.1.4. Define two operations on HomA(M,N) by

(ϕ+ ψ)(m) := ϕ(m) + ψ(m) ,
(aϕ)(m) := a · ϕ(m) .

Then HomA(M,N) is an A–module.
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The proof is left as Exercise 2.1.1. The module

M∗ := HomA(M,A)

is called the dual module of M .

Lemma 2.1.5. Let M,N,L be A–modules and ϕ : M → N be an A–module
homomorphism. Define φ : HomA(N,L) → HomA(M,L) by φ(λ) := λ ◦ ϕ
and ψ : HomA(L,M) → HomA(L,N) by ψ(λ) := ϕ ◦ λ. Then φ and ψ are
A–module homomorphisms.

Proof. This is just a formal verification of the definition. To give an example,
we show that φ is an A–module homomorphism. The proof for ψ is similar
and left to the reader.

Let λ, μ ∈ HomA(N,L), a ∈ A and m ∈M arbitrary. Then
(
φ(aλ)

)
(m) =

(
(aλ) ◦ ϕ)(m) = (aλ)

(
ϕ(m)

)
= a · λ(ϕ(m)

)

=
(
a · (λ ◦ ϕ)

)
(m) =

(
aφ(λ)

)
(m) ,

(
φ(λ+ μ)

)
(m) =

(
(λ+ μ) ◦ ϕ)(m) = (λ+ μ)

(
ϕ(m)

)
= λ

(
ϕ(m)

)
+ μ

(
ϕ(m)

)

= (λ ◦ ϕ)(m) + (μ ◦ ϕ)(m) =
(
φ(λ) + φ(μ)

)
(m) .

Since m is arbitrary, we have φ(aλ) = a · φ(λ) and φ(λ + μ) = φ(λ) + φ(μ).

Let us first consider a homomorphism ϕ : An → Am. If {e1, . . . , en} denotes
the canonical basis of An (that is, ei = (0, . . . , 1, . . . , 0), 1 at place i), then any
x ∈ An is a unique linear combination x = x1e1 + · · ·+ xnen, xi ∈ A. Hence,
ϕ(ei) has a unique representation as

ϕ(ei) =
n∑

j=1

Mjiej , i = 1, . . . , n .

By linearity of ϕ we obtain, if we write x as a column vector,

ϕ(x) =

⎛

⎜⎝
M11 . . . M1n

...
...

Mm1 . . . Mmn

⎞

⎟⎠ ·

⎛

⎜⎝
x1

...
xn

⎞

⎟⎠ = M · x

where M = (Mij) is an m × n–matrix with entries in A. That is, ϕ is given
by a matrix M ∈Mat(m× n,A) and any such M defines a homomorphism
An → Am. We identify these homomorphisms with matrices. This is all as for
vector spaces over a field. In particular, the addition and scalar multiplication
of homomorphisms correspond to addition and scalar multiplication of ma-
trices. The composition of linear maps corresponds to matrix multiplication.
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SINGULAR Example 2.1.6 (matrix operations). A matrix in Sin-

gular is a matrix with polynomial entries, hence they can be defined only
when a basering is active. This applies also to matrices with numbers as en-
tries (compare Singular Examples 1.1.8 and 1.1.9). A matrix is filled with
entries from left to right, row by row, spaces are allowed.

ring A = 0,(x,y,z),dp;
matrix M[2][3] = 1, x+y, z2, //2x3 matrix

x, 0, xyz;
matrix N[3][3] = 1,2,3,4,5,6,7,8,9; //3x3 matrix

M; //lists all entries of M
//-> M[1,1] = 1
//-> M[1,2]=x+y
//-> M[1,3]=z2
//-> M[2,1]=x
//-> M[2,2]=0
//-> M[2,3]=xyz

print(N); //displays N as usual
//-> 1,2,3, //if the entries are small
//-> 4,5,6,
//-> 7,8,9

print(M+M); //addition of matrices
//-> 2, 2x+2y,2z2,
//-> 2x,0, 2xyz

print(x*N);
//-> x, 2x,3x, //scalar multiplication
//-> 4x,5x,6x,
//-> 7x,8x,9x

print(M*N); //multiplication of matrices
//-> 7z2+4x+4y+1,8z2+5x+5y+2,9z2+6x+6y+3,
//-> 7xyz+x, 8xyz+2x, 9xyz+3x

M[2,3]; //access to single entry
//-> xyz
M[2,3]=37; //change single entry
print(M);
//-> 1,x+y,z2,
//-> x,0, 37

Further matrix operations are contained in the library matrix.lib. There is
a procedure pmat in inout.lib which formats matrices similarly to print,
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but allows additional parameters, for example to show only the first terms of
each entry for big matrices.

LIB "matrix.lib"; LIB "inout.lib";

print(power(N,3)); //exponentiation of matrices
//-> 468, 576, 684,
//-> 1062,1305,1548
//-> 1656,2034,2412

pmat(power((x+y+z)*N,3),15);//show first 15 terms of entries
//-> 468x3+1404x2y+1 576x3+1728x2y+1 684x3+2052x2y+2
//-> 1062x3+3186x2y+ 1305x3+3915x2y+ 1548x3+4644x2y+
//-> 1656x3+4968x2y+ 2034x3+6102x2y+ 2412x3+7236x2y+

matrix K = concat(M,N); //concatenation
print(K);
//-> 1,x+y,z2,1,2,3,
//-> x,0, 37,4,5,6,
//-> 0,0, 0, 7,8,9

ideal(M); //converts matrix to ideal
//-> _[1]=1 //same as ‘flatten’ from matrix.lib
//-> _[2]=x+y
//-> _[3]=z2
//-> _[4]=x
//-> _[5]=0
//-> _[6]=37

print(unitmat(5)); //5x5 unit matrix
//-> 1,0,0,0,0,
//-> 0,1,0,0,0,
//-> 0,0,1,0,0,
//-> 0,0,0,1,0,
//-> 0,0,0,0,1,

Besides matrices, there are integer matrices which do not need a ring. These
are mainly used for bookkeeping or storing integer results. The operations
are the same as for matrices.

intmat I[2][3]=1,2,3,4,5,6;
I;
//-> 1,2,3,
//-> 4,5,6

We construct now the matrices corresponding to the linear maps of Lemma
2.1.5.



114 2. Modules

SINGULAR Example 2.1.7 (maps induced by Hom).
Let ϕ : An → Am be the linear map defined by the m× n–matrix M = (Mij)
with entries in A, ϕ(x) = M · x. We want to compute the induced map

ϕ∗ : Hom(Am, As) → Hom(An, As) .

To do so, we identify Hom(An, As) = Asn and Hom(Am, As) = Ams, using
Exercise 2.1.14.

Let {e1, . . . , en}, {f1, . . . , fm}, {h1, . . . , hs} denote the canonical bases
of An, Am, As, respectively. Then ϕ(ei) =

∑m
j=1Mjifj . Moreover, if {σij},

{κij} are the bases of Hom(Am, As), respectively Hom(An, As), defined by
σij(f	) = δj	hi,1 respectively κij(e	) = δj	hi, then

ϕ∗(σij)(ek) = σij ◦ ϕ(ek) = σij

(
m∑
	=1

M	kf	

)
=

m∑
	=1

M	kδj	hi

= Mjkhi =
n∑
	=1

Mj	δ	khi =
n∑
	=1

Mj	κi	(ek) .

This implies ϕ∗(σab) =
∑n

c=1Mbcκac. To obtain the sn× sm–matrix R defin-
ing ϕ∗, we order the basis elements σij and κij as follows

{σ11, σ12, . . . , σ1m, σ21 , σ22, . . . . . . , σs1, σs2, . . . , σsm} ,
{κ11, κ12, . . . , κ1n, κ21, κ22, . . . . . . , κs1, κs2, . . . , κsn} ,

and set, for a, d = 1, . . . , s, b = 1, . . . ,m, c = 1, . . . , n,

i := (d− 1)n+ c, j := (a− 1)m+ b .

Then

Rij =

{
0, d �= a,

Mbc d = a .

We program this in a short procedure: given a matrix M , defining a homo-
morphism An → Am, and an integer s, the procedure kontraHom returns a
matrix defining R : Hom(Am, As)→ Hom(An, As).

proc kontraHom(matrix M,int s)
{

int n,m=ncols(M),nrows(M);
int a,b,c;
matrix R[s*n][s*m];
for(b=1;b<=m;b++)
{

for(a=1;a<=s;a++)
{

1 Here δj� is the Kronecker symbol (δj� = 0 if j �= � and δjj = 1).
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for(c=1;c<=n;c++)
{

R[(a-1)*n+c,(a-1)*m+b]=M[b,c];
}

}
}
return(R);

}

Let us try an example.

ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,

4,5,6,
7,8,9;

print(kontraHom(M,2));
//-> 1,4,7,0,0,0,
//-> 2,5,8,0,0,0,
//-> 3,6,9,0,0,0,
//-> 0,0,0,1,4,7,
//-> 0,0,0,2,5,8,
//-> 0,0,0,3,6,9

This procedure is contained as kontrahom in homolog.lib. Note that for
s = 1, the dual map, that is, the transposed matrix, is computed.

Similarly, we can compute the map

ϕ∗ : Hom(As, An) → Hom(As, Am).

If {σij} and {κij} are defined as before as bases of Hom(As, An), respectively
Hom(As, Am), then one checks that ϕ∗(σab) =

∑m
c=1Mcaκcb.

We obtain the following procedure: given M : An → Am and s, kohom
returns R : Hom(As, An)→ Hom(As, Am).

proc kohom(matrix M,int s)
{

int n,m=ncols(M),nrows(M);
int a,b,c;
matrix R[s*m][s*n];
for(b=1;b<=s;b++)
{

for(a=1;a<=m;a++)
{

for(c=1;c<=n;c++)
{

R[(a-1)*s+b,(c-1)*s+b]=M[a,c];
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}
}

}
return(R);

}

As an example use the matrix defined above.

print(kohom(M,2));
//-> 1,0,2,0,3,0,
//-> 0,1,0,2,0,3,
//-> 4,0,5,0,6,0,
//-> 0,4,0,5,0,6,
//-> 7,0,8,0,9,0,
//-> 0,7,0,8,0,9

This procedure is contained as kohom in homolog.lib.

Definition 2.1.8. Let M be an A–module. A non–empty subset N ⊂M is
called a submodule of M if, for all m,n ∈ N and a ∈ A,

(1) m+ n ∈ N ,
(2) a ·m ∈ N .

Note that every submodule of an A–module is itself an A–module.

Remark 2.1.9. Every element of An is represented as

x = x1e1 + · · ·+ xnen =

⎛

⎜⎝
x1

...
xn

⎞

⎟⎠ , xi ∈ A ,

that is, as a linear combination in terms of the canonical basis or as a (column,
respectively row) vector. Both representations are used in Singular. An
element of An is called a vector .

SINGULAR Example 2.1.10 (submodules of An). We shall explain
how to declare submodules of An in Singular, where A is any ring of Sin-

gular. In the same way as ideals I ⊂ A are given by elements of A as gen-
erators, submodules are given by vectors in An as generators. The canonical
basis elements ei of An are denoted by gen(i) in Singular.

ring A=0,(x,y,z),dp;
module M=[xy-1,z2+3,xyz],[y4,x3,z2];
M;
//-> M[1]=xyz*gen(3)+xy*gen(1)+z2*gen(2)+3*gen(2)-gen(1)
//-> M[2]=y4*gen(1)+x3*gen(2)+z2*gen(3)
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M is the submodule of Q[x, y, z]3 generated by the two (column) vectors
(xy − 1, z2 + 3, xyz) and (y4, x3, z2). The output is given as linear combina-
tion of the canonical basis. Singular understands both formats as input.

ideal I=x2+y2+z2;
qring Q=std(I); //create quotient ring mod I
module M=fetch(A,M); //map M from A to Q

Here we consider M as a submodule in (Q[x, y, z]/〈x2 + y2 + z2〉)3.
Definition 2.1.11. Let ϕ : M → N be an A–module homomorphism. The
kernel of ϕ, Ker(ϕ) is defined by Ker(ϕ) := {m ∈M | ϕ(m) = 0}. The image
of ϕ, Im(ϕ), is defined by Im(ϕ) := {ϕ(m) | m ∈M}.
Lemma 2.1.12. Ker(ϕ) and Im(ϕ) are submodules of M , respectively N .

The easy proof is left as Exercise 2.1.6.

SINGULAR Example 2.1.13 (kernel and image of a module homo-
morphism).

ring A=0,(x,y,z),(c,dp);
matrix M[2][3]=x,xy,z,x2,xyz,yz;
print(M);
//->x, xy, z,
//->x2,xyz,yz

To compute the kernel of a module homomorphism means to solve a system
of linear equations over a ring. The syz command, which is based on Gröbner
basis computations is, hence, a generalization of Gaussian elimination from
fields to rings (see Section 2.5).

module Ker=syz(M);
Ker;
//-> Ker[1]=[y2z-yz2,xz-yz,-x2y+xyz]

For the image, there is nothing to compute. The column vectors ofM generate
the image.

module Im=M[1],M[2],M[3];
Im;
//-> Im[1]=[x,x2]
//-> Im[2]=[xy,xyz]
//-> Im[3]=[z,yz]
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Definition 2.1.14.

(1) Let M be an A–module and N ⊂ M be a submodule. We define the
quotient module or factor module M/N by

M/N := {m+N | m ∈M} .
That is, M/N is the set of equivalence classes of elements of M , where
m,n ∈M are equivalent if m− n ∈ N . An equivalence class is denoted
by m+N or by [m]. Each element in the class m+N is called a repre-
sentative of the class.

(2) Let ϕ : M → N be an A–module homomorphism, then

Coker(ϕ) := N/ Im(ϕ)

is called the cokernel of ϕ.

Lemma 2.1.15. With the canonical operations, by choosing representatives,

(m+N) + (n+N) := (m+ n) +N , a · (m+N) := am+N

the set M/N is an A–module. N , the equivalence class of 0 ∈ M is the 0–
element in M/N . The map π : M →M/N , π(m) := m+N is a surjective
A–module homomorphism.

The proof is left as Exercise 2.1.7. We just show that the addition is well–
defined (independent of the chosen representatives). If (m′ +N) and (n′ +N)
are other representatives, then m−m′, n− n′ ∈ N .

Hence, (m+ n)− (m′ + n′) = (m−m′) + (n− n′) ∈ N , which shows that
(m+ n) +N = (m′ + n′) +N .

Proposition 2.1.16. Let ϕ : M → N be an A–module homomorphism, then

Im(ϕ) ∼= M/Ker(ϕ) .

Proof. Define a map λ : M/Ker(ϕ) → Im(ϕ) by λ(m+ Ker
(
ϕ)
)

:= ϕ(m). It
is easy to see that λ is well–defined, that is, does not depend on the choice of
the representative m. λ is surjective by definition. To see that λ is injective,
let λ

(
m+ Ker(ϕ)

)
= 0. That is, ϕ(m) = 0, and, hence, m ∈ Ker(ϕ). But

then m+ Ker(ϕ) = Ker(ϕ) which is the 0–element in M/Ker(ϕ). One can
also easily check that λ is an A–module homomorphism.

Corollary 2.1.17. Let L ⊃M ⊃ N be A–modules, then

(L/N)/(M/N) ∼= L/M .

Proof. The inclusion N ⊂M induces a homomorphism π : L/N → L/M of
A–modules. Obviously, π is surjective and Ker(π) = M/N . Therefore, the
corollary is a consequence of Proposition 2.1.16.
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Definition 2.1.18.

(1) Let M be an A–module and Mi ⊂ M be submodules, i ∈ I. We define
the sum of the Mi by

∑

i∈I
Mi :=

{
∑

i∈I
mi

∣∣∣∣∣ mi ∈Mi, mi �= 0 only for finitely many i

}
.

(2) Let J ⊂ A be an ideal and M an A–module. We define JM by

JM :=

{
∑

i∈I
aimi

∣∣∣∣∣ I finite, ai ∈ J, mi ∈M
}
.

(3) An A–module M is called finitely generated if M =
∑n
i=1 A ·mi for suit-

ablem1, . . . ,mn ∈M . We then writeM = 〈m1, . . . ,mn〉, andm1, . . . ,mn

are called generators of M . A module generated by one element is called
a cyclic module.

(4) Let M be an A–module. The torsion submodule Tors(M) is defined by

Tors(M) := {m ∈M | ∃ a non–zerodivisor a ∈ A with am = 0} .
A module M is called torsion free if Tors(M) = 0. M itself is called a
torsion module if Tors(M) = M .

(5) Let N,P ⊂M be submodules, then the quotient N : P is defined by

N : P := N :A P := {a ∈ A | aP ⊂ N} .
In particular, the annihilator of P is

Ann(P ) := AnnA(P ) := 〈0〉 : P = {a ∈ A | aP = 0} .
Note that the module quotient is a generalization of the ideal quotient.

(6) There is still another quotient. Let I ⊂ A be an ideal, then the quotient
of P by I in M is

P :M I := {m ∈M | I ·m ⊂ P} .
(7) Let Mi, i ∈ I, be A–modules. The direct sum

⊕
i∈IMi is defined by

⊕

i∈I
Mi = {(mi)i∈I | mi ∈Mi, mi �= 0 for only finitely many i} .

The direct product
∏
i∈IMi is defined by
∏

i∈I
Mi = {(mi)i∈I | mi ∈Mi} .

Note that for a finite index set I = {1, . . . , n} the direct sum and the
direct product coincide and are denoted as

M1 ⊕ · · · ⊕Mn .
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(8) Let M be an A–module. M is called free if M ∼= ⊕
i∈I A. The cardinality

of the index set I is called the rank of M . A subset S ⊂ M is called a
basis of M if every m ∈ M can be written in a unique way as a finite
linear combination m = a1m1 + · · ·+ anmn with mi ∈ S and ai ∈ A, for
some n (depending on m).
If A is a field the modules are vector spaces and every module is free. In
general, this is not true. The Z–module Z/〈2〉 is not free. More generally,
a module M with Tors(M) �= 0 cannot be free (Exercise 2.1.9).

Lemma 2.1.19. The sum of submodules of an A–module, the product of an
ideal with an A–module, the direct sum and the direct product of A–modules
are again A–modules. The module quotient of two submodules of an A–module
is an ideal in A. The quotient of a submodule by an ideal is a submodule of
M . The torsion module Tors(M) is a submodule of M .

The proof is left as Exercise 2.1.8.

SINGULAR Example 2.1.20 (sum, intersection, module quotient).
The sum of two modules is generated by the union of the generators, the “+”
lets Singular simplify the union by deleting 0’s and identical generators.

ring A=0,(x,y,z),(c,dp);//the ordering (c,..) has the effect
module M=[xy,xz],[x,x]; //that the vectors are internally
module N=[y2,z2],[x,x]; //represented component-wise.
M+N;
//-> _[1]=[xy,xz] //the output is, as the internal
//-> _[2]=[y2,z2] //representation, component-wise
//-> _[3]=[x,x]

intersect and quotient require standard basis computations.

intersect(M,N); //intersection, see Section 2.8.3
//-> _[1]=[x,x]
//-> _[2]=[xy2,xz2]

quotient(M,N); //M:N, see Section 2.8.4
//-> _[1]=x

quotient(N,M);
//-> _[1]=y+z

qring Q=std(x5); //quotient ring Q[x,y,z]/<x5>
module M=fetch(A,M); //map M from A to Q
module Null; //creates zero-module
M;
//-> M[1]=[xy,xz]
//-> M[2]=[x,x]
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Null; //the zero-module
//-> Null[1]=0

quotient(Null,M); //the annihilator of M
//-> _[1]=x4

Proposition 2.1.21. Let M be an A-module and N1, N2 ⊂M submodules,
then (N1 +N2)/N1

∼= N2/N1 ∩N2.

Proof. The inclusion N2 ⊂ N1 +N2 induces an A-module homomorphism
π : N2 → (N1 +N2)/N1. Obviously π is surjective and Ker(π) = N1 ∩N2.
Now we can use Proposition 2.1.16.

Lemma 2.1.22. Let M be an A–module. M is finitely generated if and only
if M ∼= An/L for a suitable n ∈ N and a suitable submodule L ⊂ An. Equiv-
alently, there exists a surjective homomorphism ϕ : An � M .

Proof. Assume that M = 〈x1, . . . , xn〉 and consider the A–module homomor-
phism ϕ : An → M defined by ϕ(a1, . . . , an) =

∑n
i=1 aixi. ϕ is surjective

because x1, . . . , xn generate M . Let L := Ker(ϕ) then Proposition 2.1.16
implies that M ∼= An/L.

Now assume M ∼= An/L for some submodule L ⊂ An. Let {e1, . . . , en} be
a basis of An, then the preimages of x1 := e1 + L, . . . ,xn := en + L generate
M .

Let M be a finitely generated A–module and M ∼= An/L for some submodule
L ⊂ An. If L is also finitely generated, then L ∼= Am/N for a suitable sub-
module N ⊂ Am and we have homomorphisms Am � Am/N ∼= L ⊂ An �
An/L ∼= M . Therefore, M is isomorphic to the cokernel of a homomorphism
ϕ : Am → An, the composition An → Am/N ∼= L ⊂ An. Fixing bases in Am

and An, ϕ is given by an n×m–matrix, which we also denote by ϕ.

Definition 2.1.23. Let M be an A–module. M is called of finite presen-
tation if there exists an n ×m–matrix ϕ such that M is isomorphic to the
cokernel of the map Am

ϕ−→ An. ϕ is called a presentation matrix of M . We
write Am

ϕ−→ An →M → 0 to denote a presentation of M .

Constructive module theory is concerned with modules of finite presentation,
that is, with modules which can be given as the cokernel of some matrix. All
operations with modules are then represented by operations with the corre-
sponding presentation matrices. We shall see below (Proposition 2.1.29) that
every finitely generated module over a Noetherian ring is finitely presented.
As polynomial rings and localizations thereof are Noetherian (Lemma 1.4.8),
every finitely generated module over these rings is of finite presentation.

We shall see how we can actually compute with finitely generated modules
over the rings K[x1, . . . , xn]> (for any monomial ordering >, cf. Chapter 1),
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or, more generally, over quotient rings A of those. To start with, we must
know how to represent a module within Singular. Since any finitely gener-
ated module over K[x]> has a presentation matrix with polynomial entries,
and, as we know how to define polynomial matrices, we can define arbitrary
finitely generated A–modules in Singular by giving a polynomial presenta-
tion matrix. In fact, for arbitrary modules, there is no other way, we have to
know a presentation matrix.

However, submodules of An (which is a special class, since they are, for
example, torsion free, see Exercise 2.1.8) can be given just by a set of gener-
ators, that is, by m vectors of An. Given the generators, we can compute the
presentation matrix by using the syz command, which is based on Gröbner
bases (Section 2.5). Giving m vectors in An is, up to numbering, the same
as giving an n × m–matrix over A. Since we can only give ordered lists of
generators, this is indeed the same.

Thus, defining a matrix or a module in Singular can be interpreted in
two ways: either as the presentation matrix of the factor module of An or as
the submodule of An generated by the columns of the matrix.

SINGULAR Example 2.1.24 (submodules, presentation of a mod-
ule).
Singular distinguishes between modules and matrices. For matrices see Ex-
ample 2.1.6. A module is always given by generators, either with brackets,
or as a linear combination of the canonical generators gen(1),. . .,gen(n) of
An, where only the non–zero coefficients have to be given. The last (sparse)
representation is internally used. Matrices, however, are represented inter-
nally non–sparse, therefore, it is recommended to use modules instead of
matrices for large input.

Singular assumes a module to be a submodule of An if, for some gen-
erator, gen(n) has a non–zero coefficient, and if, for each generator, the
coefficients of gen(i) are zero for i > n.

ring A = 0,(x,y,z),dp;
module N = [xy,0,yz],[0,xz,z2]; //submodule of A^3,
N; //2 generators
//-> N[1]=xy*gen(1)+yz*gen(3) //output in sparse format
//-> N[2]=xz*gen(2)+z2*gen(3)

LIB "inout.lib"; //library for formatting output
show(N); //shows the generators as vectors
//-> // module, 2 generator(s)
//-> [xy,0,yz]
//-> [0,xz,z2]

print(N); //the corresponding matrix
//-> xy,0,
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//-> 0,xz,
//-> yz,z2

Modules may be added and multiplied with a polynomial or an ideal. Not
that addition of modules means, as for ideals, the sum of modules, which is
quite different from the sum of matrices.

show(N+x*N);
//-> [xy,0,yz]
//-> [0,xz,z2]
//-> [x2y,0,xyz]
//-> [0,x2z,xz2]

There are type conversions from matrix to module, and from module to
matrix: module(matrix) creates a module with generators the columns of
the matrix, matrix(module) creates a matrix with columns the generators
of the module. module(matrix(module)) restores the original module and
matrix(module(matrix)) restores the original matrix.

module M = [xy,yz],[xz,z2]; //submodule of A^2
matrix MM = M; //automatic type conversion,
MM; // same as matrix MM=matrix(M);
//-> MM[1,1]=xy
//-> MM[1,2]=xz
//-> MM[2,1]=yz
//-> MM[2,2]=z2

The operations on modules are operations as submodules. However, as ex-
plained above, M (or, better, matrix(M)) can be considered as the presentation
matrix

A2

( xy xz
yz z2

)

−−−−−−→ A2

of the module A2/M .
On the other hand, if M is considered as a submodule of A2, then we can

compute a presentation as

module K = syz(M); //computes the kernel of M
show(K);
//-> K[1]=[-z,y]

This means that A

( −z
y

)

−−−−→ A2 →M → 0 is a presentation of M .

Lemma 2.1.25. Let M,N be two A–modules with presentations

Am
ϕ−→ An

π−→M → 0 and Ar
ψ−→ As

κ−→ N → 0 .
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(1) Let λ : M → N be an A–module homomorphism, then there exist A–
module homomorphisms α : Am → Ar and β : An → As such that the fol-
lowing diagram commutes:

Am
ϕ

��

α

��

An
π ��

β

��

M

λ

��

�� 0

Ar
ψ

�� As
κ �� N �� 0

(2.1)

that is, β ◦ ϕ = ψ ◦ α and λ ◦ π = κ ◦ β.
(2) Let β : An → As be an A–module homomorphism such that β

(
Im(ϕ)

) ⊂
Im(ψ). Then there exist A–module homomorphisms α : Am → Ar and
λ : M → N such that the corresponding diagram (as in (2.1)) commutes.

Proof. (1) Let {e1, . . . , en} be a basis of An and choose xi ∈ As such that
κ(xi) = λ ◦ π(ei), i = 1, . . . , n. We define β (

∑n
i=1 aiei) =

∑n
i=1 aixi.

Obviously, β is an A–module homomorphism and λ ◦ π = κ ◦ β. Let
{f1, . . . , fm} be a basis of Am. Then κ ◦ β ◦ ϕ(fi) = λ ◦ π ◦ ϕ(fi) = 0.
Therefore, there exist yi ∈ Ar such that ψ(yi) = β ◦ ϕ(fi). We define
α (

∑n
i=1 bifi) =

∑n
i=1 biyi. Again α is an A–module homomorphism and

ψ ◦ α = β ◦ ϕ.
(2) Define λ(m) = κ ◦ β(f), for some f ∈ An with π(f) = m. This defini-

tion does not depend on the choice of f , because Ker(π) = Im(ϕ) and
β
(
Im(ϕ)

) ⊂ Im(ψ) = Ker(κ). Obviously, λ is an A–module homomor-
phism satisfying λ ◦ π = κ ◦ β. We can define α as in (1).

SINGULAR Example 2.1.26 (computation of Hom).
With the notations of Lemma 2.1.25 we obtain the following commutative
diagram:

Hom(M,N) �� Hom(An, N)
ϕ∗

N �� Hom(Am, N)

Hom(An, As)

��

ϕ∗
�� Hom(Am, As)

��

Hom(An, Ar)

j

��

�� Hom(Am, Ar) ,

i

��

the maps being defined as in Lemma 2.1.5. In particular, ϕ∗
N (σ) = σ ◦ ϕ,

ϕ∗(σ) = σ ◦ ϕ, i(σ) = ψ ◦ σ, and j(σ) = ψ ◦ σ. Lemma 2.1.25 and Proposition
2.4.3 below imply that

Hom(M,N) = Ker(ϕ∗
N ) ∼= ϕ∗−1

(
Im(i)

)/
Im(j) .
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Using the Singular built–in command modulo, which is explained below, we
have (identifying, as before, Hom(An, As) = Asn and Hom(Am, As) = Ams)

D := ϕ∗−1
(
Im(i)

)
= Ker

(
Ans

ϕ∗−−→ Ams/ Im(i)
)

= modulo (ϕ∗, i) ,

which is given by a ns× k–matrix with entries in A, and we can compute
Hom(M,N) as

ϕ∗−1
(
Im(i)

)
/ Im(j) = Ak

/
Ker

(
Ak

D−→ Ans/ Im(j)
)

= Ak
/
modulo (D, j) .

Finally, we obtain the following procedure with F = ϕ∗, B = i, C = j.

proc Hom(matrix M, matrix N)
{

matrix F = kontraHom(M,nrows(N));
matrix B = kohom(N,ncols(M));
matrix C = kohom(N,nrows(M));
matrix D = modulo(F,B);
matrix E = modulo(D,C);
return(E);

}

Here is an example.

ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,

4,5,6,
7,8,9;

matrix N[2][2]=x,y,
z,0;

print(Hom(M,N)); //a 6x6 matrix
//-> 0,0,0,0,y,x,
//-> 0,0,0,0,0,z,
//-> 1,0,0,0,0,0,
//-> 0,1,0,0,0,0,
//-> 0,0,1,0,0,0,
//-> 0,0,0,1,0,0

We explain the modulo command: let the matrices M ∈Mat(m× n,A), re-
spectively N ∈Mat(m× s,A), represent linear maps

An
M �� Am

As .

N

��
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Then modulo(M,N) = Ker
(
An

M−→ Am/ Im(N)
)
, where M is the map in-

duced by M ; more precisely, modulo(M,N) returns a set of vectors in An

which generate Ker(M) 2. Hence, matrix(modulo(M,N)) is a presentation
matrix for the quotient (Im(M) + Im(N))/ Im(N). The computation is ex-
plained in Singular Example 2.8.9.

Definition 2.1.27. Let M be an A–module. Then M is called Noetherian
if every submodule N ⊂M is finitely generated.

Note that, in particular, a ring A is a Noetherian A–module if and only if it
is a Noetherian ring (cf. Definition 1.3.4).

Lemma 2.1.28.

(1) Submodules and quotient modules of Noetherian modules are Noetherian.
(2) Let N ⊂ M be A–modules, then M is Noetherian if and only if N and

M/N are Noetherian.
(3) Let M be an A–module, then the following properties are equivalent:

a) M is Noetherian.
b) Every ascending chain of submodules

M1 ⊂M2 ⊂ . . . ⊂Mk ⊂ . . .

becomes stationary.
c) Every non–empty set of submodules of M has a maximal element

(with regard to inclusion).

The proof is left as Exercise 2.1.9 (compare Proposition 1.3.6).
The following proposition relates Noetherian and finitely generated mod-

ules.

Proposition 2.1.29. Let A be a Noetherian ring and M be a finitely gener-
ated A–module, then M is a Noetherian A–module.

Proof. Using Lemma 2.1.22 and Lemma 2.1.28 we may assume that M =
An and prove the statement using induction on n. For n = 1 the statement
follows by assumption. Let n ≥ 2 and consider the projection π : An → An−1,
(a1, . . . , an) �→ (a1, . . . , an−1). Clearly, Ker(π) = {(0, . . . , 0, a) | a ∈ A} ∼= A,
and An−1 = An/Ker(π). Hence, the result follows from Lemma 2.1.28 (2)
and the induction hypothesis.

Lemma 2.1.30 (Nakayama). Let A be a ring and I ⊂ A an ideal which
is contained in the Jacobson radical of A. Let M be a finitely generated A–
module and N ⊂M a submodule such that M = IM +N . Then M = N . In
particular, if M = IM , then M = 0.
2 Using automatic type conversion, we can apply the modulo–command to modules

as well as to matrices.
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Proof. By passing to the quotient module it is enough to prove the lemma in
the case N = 〈0〉. Assume M �= 〈0〉 and let m1, . . . ,mn be a minimal system
of generators of M . Since mn ∈M = IM , we can choose a1, . . . , an ∈ I such
that mn =

∑n
i=1 aimi. This implies (1− an)mn =

∑n−1
i=1 aimi.

By Exercise 1.4.4, (1− an) is a unit in A, and, therefore, m1, . . . ,mn−1

generate M , which is a contradiction to the minimality of the chosen system
of generators.

Corollary 2.1.31. Let (A,m) be a local ring and M a finitely generated A–
module. Let m1, . . . ,mn ∈M such that their classes form a system of gener-
ators for the A/m–vector space M/mM . Then m1, . . . ,mn generate M .

Proof. LetN :=
∑

iAmi and consider the canonical mapN →M →M/mM .
This map is surjective, which implies N + mM = M . Thus, the corollary is
a consequence of Lemma 2.1.30.

Remark 2.1.32. With the assumptions of Corollary 2.1.31, {m1, . . . ,mn} is
a minimal system of generators of M if and only if their classes form a basis
of M/mM , and then n is the dimension of the A/m–vector space M/mM .

Definition 2.1.33. Let (A,m) be a local ring and M an A–module. A pre-
sentation Am

ϕ−→ An →M → 0 of M is called a minimal presentation if
n = dimA/m(M/mM).

Note that n = dimA/m(M/mM) if and only if ϕ(Am) ⊂ mAn, that is, the
entries of the presentation matrix are in m (Exercise 2.1.17).

How can we make a presentation ϕ of a module M minimal if it is not?
If an entry ϕij of ϕ is a unit, we can perform elementary row and column
operations to produce a matrix ϕ̃ which has, except at position (i, j), only
zeros in row i and column j. Elementary row, respectively column, operations
mean that we multiply ϕ from the left, respectively right, with an invertible
matrix. Hence Coker(ϕ) ∼= Coker(ϕ̃), that is, ϕ̃ is a presentation matrix of a
module isomorphic to M . But from ϕ̃ we can delete the ith row and the jth
column without changing the cokernel.

Doing this, successively, with every entry which is a unit, we obtain a
minimal presentation of (a module isomorphic to) M .

Note that this is nothing else but a Gauß reduction with a pivot element
being a unit. If A is a field, then every element �= 0 is a unit and we can carry
out a complete Gauß reduction. The Singular command prune produces a
minimal presentation matrix.

SINGULAR Example 2.1.34 (minimal presentations, prune).

ring A=0,(x,y,z),ds; //local ring with max. ideal <x,y,z>
module M=[0,xy-1,xy+1],[y,xz,xz];
print(M);
//-> 0, y,
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//-> -1+xy,xz, //we have units in the first column
//-> 1+xy, xz

print(prune(M));
//-> -y+xy2,
//-> -2xz

Let A = Q[x, y, z]〈x,y,z〉 and N = A3/M , where M denotes the submodule of
A3 generated by the vectors (0, xy − 1, xy + 1), (y, xz, xz). Then

A2

(
0 y

xy−1 xz
xy+1 xz

)

−−−−−−−−→ A3 −→ N −→ 0

is a presentation. We computed, using the command prune, a minimal pre-
sentation of N :

A

(
y−xy2

2xz

)

−−−−−−→ A2 −→ N −→ 0 .

ring B=0,(x,y,z),dp; //non-local ring
module M=[0,xy-1,xy+1],[y,xz,xz]; //no units as entries
print(prune(M));
//-> 0, y,
//-> xy-1,xz,
//-> xy+1,xz

M=[0,1,xy+1],[y,xz,xz];
print(M);
//-> 0, y,
//-> 1, xz,
//-> xy+1,xz

print(prune(M));
//-> y,
//-> -x2yz

Corollary 2.1.35 (Krull’s intersection theorem). Let A be a Noethe-
rian ring, I ⊂ A an ideal contained in the Jacobson radical and M a finitely
generated A–module. Then

⋂
k∈N

IkM = 〈0〉.
Proof. Let N :=

⋂
k I

kM . N is a finitely generated A-module, since it is a
submodule of the finitely generated module M over the Noetherian ring A.
By Nakayama’s Lemma it is sufficient to show that IN = N . Let

M := {L ⊂M submodule | L ∩N = IN} .
Since A is Noetherian, the set M has a maximal element which we call
L. It remains to prove that IkM ⊂ L for some k, because this implies



2.1 Modules, Submodules and Homomorphisms 129

N = IkM ∩N ⊂ L ∩N = IN . Since I is finitely generated, it suffices to
prove that for any x ∈ I there is some positive integer a such that xaM ⊂ L.
Let x ∈ I and consider the chain of ideals L :M 〈x〉 ⊂ L :M 〈x2〉 ⊂ · · · . This
chain stabilizes because A is Noetherian.

Choose a with L :M 〈xa〉 = L :M 〈xa+1〉. We claim that xaM ⊂ L. By the
maximality of L it is enough to prove that (L + xaM) ∩N ⊂ IN (note that,
obviously, IN ⊂ (L+ xaM) ∩N). Let m ∈ (L+ xaM) ∩N , m = n+ xas,
with n ∈ L, s ∈M . Now xm− xn = xa+1s ∈ IN + L = L, which implies
s ∈ L :M 〈xa+1〉 = L :M 〈xa〉. Therefore, xas ∈ L and, consequently, m ∈ L.
This implies m ∈ L ∩N = IN .

Definition 2.1.36. Let A be a ring, S ⊂ A be a multiplicatively closed
subset and M be an A–module.

(1) We define the localization of M with respect to S, S−1M , as follows:

S−1M :=
{
m

s

∣∣∣∣m ∈M, s ∈ S
}

where m/s denotes the equivalence class of (m, s) ∈M × S with respect
to the following equivalence relation:

(m, s) ∼ (m′, s′) :⇐⇒ ∃ s′′ ∈ S, such that s′′(s′m− sm′) = 0 .

Moreover, on S−1M we define an addition and multiplication with ring
elements by the same formulæ as for the quotient field (see before Def-
inition 1.4.4). We shall also use the notation MS instead of S−1M . If
S = {1, f, f2, . . .} then we write Mf instead of S−1M . If S = A � P , P
a prime ideal, we write MP instead of S−1M .

(2) Let ϕ : M → N be an A–module homomorphism, then we define the
induced S−1A–module homomorphism,

ϕS : MS −→ NS ,
m

s
�−→ ϕ(m)

s
.

Note that the latter is, indeed, a well–defined S−1A–module homomor-
phism (Exercise 2.1.19).

Proposition 2.1.37. Let A be a ring, S ⊂ A be a multiplicatively closed
subset, M,N be A–modules and ϕ : M → N be an A–module homomorphism.
Then

(1) Ker(ϕS) = Ker(ϕ)S .
(2) Im(ϕS) = Im(ϕ)S .
(3) Coker(ϕS) = Coker(ϕ)S .

In particular, localization with respect to S is an exact functor . That is,
if 0 → M ′ → M → M ′′ → 0 is an exact sequence of A–modules, then 0 →
M ′
S → MS → M ′′

S → 0 is an exact sequence of AS–modules (cf. Definition
2.4.1).
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Proof. (1) follows, since ϕS(m/s) = 0 if and only if there exists some s′ ∈ S
such that s′ϕ(m) = 0, that is, s′m ∈ Ker(ϕ). (2) is clear by definition of ϕS .
Finally, using Exercise 2.1.20, we have

Coker(ϕS) = NS/ Im(ϕS) = NS/ Im(ϕ)S =
(
N/ Im(ϕ)

)
S
,

which implies (3).

Proposition 2.1.38. Let A be a ring, M be an A–module. The following
conditions are equivalent:

(1) M = 〈0〉.
(2) MP = 〈0〉 for all prime ideals P .
(3) Mm = 〈0〉 for all maximal ideals in m.

Proof. The only non–trivial part is to prove (3)⇒ (1). Let m ∈M and as-
sume Ann(m) ⊂ m for some maximal ideal m. Then m/1 �= 0 in Mm contra-
dicting the assumption Mm = 〈0〉. This implies that the annihilator of every
element m ∈M is A, that is, M = 〈0〉, since 1 ∈ A.

Corollary 2.1.39. Let A be ring, M,N A–modules, and ϕ : M → N an A–
module homomorphism. Then ϕ is injective (respectively surjective) if and
only if ϕm is injective (respectively surjective) for all maximal ideals m.3

Proof. The corollary is an immediate consequence of Proposition 2.1.37 and
Proposition 2.1.38.

Definition 2.1.40. Let A be a ring and M an A–module. The support of
M , supp(M), is defined by

supp(M) := {P ⊂ A prime ideal |MP �= 〈0〉} .

Lemma 2.1.41. Let A be a ring and M a finitely generated A–module. Then
supp(M) = {P ⊂ A prime ideal | P ⊃ Ann(M)} =: V

(
Ann(M)

)
.

Proof. Assume that Ann(M) �⊂ P , then there exists some s ∈ Ann(M) satis-
fying s �∈ P . Let m ∈M , then sm = 0. This implies m/1 = sm/s = 0 in MP

and, therefore, MP = 〈0〉.
On the other hand, if MP = 〈0〉, then AP = Ann(MP ) =

(
Ann(M)

)
P

(Exercise 2.1.24) implies that Ann(M) �⊂ P .

For flatness properties of S−1M see Exercise 7.3.1.
3 This means that injectivity (respectively surjectivity) is a local property.
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Exercises

2.1.1. Prove Lemma 2.1.4.

2.1.2. Let ϕ : M → N be a bijective module homomorphism. Show that ϕ−1

is a homomorphism.

2.1.3. Let A be a ring and M an A–module. Prove that HomA(A,M) ∼= M
and give an example which shows that, in general, HomA(M,A) �∼= M .

2.1.4. Prove that isomorphisms between A–modules define an equivalence
relation on the set of all A–modules.

2.1.5. Complete the proof of Lemma 2.1.5.

2.1.6. Prove Lemma 2.1.12.

2.1.7. Prove Lemma 2.1.15.

2.1.8. Prove Lemma 2.1.19.

2.1.9. Prove Lemma 2.1.28.

2.1.10. Let A be a ring, M an A–module and I ⊂ A an ideal. Prove that
M/IM has a canonical A/I–module structure.

2.1.11. Let A be a ring and ϕ : An → As an isomorphism of free A–modules.
Prove that n = s.

2.1.12. Let A be a ring and M an A–module. Prove that M is, in a natural
way, an A/Ann(M)–module.

2.1.13. Let A be a ring and M an A–module. Prove that Tors(M) is a
submodule of M .

2.1.14. Let A be a ring, and let M =
⊕n

i=1Mi, N be A–modules. Prove that
HomA(M,N) ∼= ⊕n

i=1 HomA(Mi, N), HomA(N,M) ∼= ⊕n
i=1 HomA(N,Mi).

In particular, Hom(An, Am) ∼= Am·n.

2.1.15. Let K be a field and M a K[x]–module which is finite dimensional
as K–vector space. Prove that M is a torsion module.

2.1.16. Let A be an integral domain and I ⊂ A be an ideal. Prove that I is
a free A–module if and only if I can be generated by one element.

2.1.17. Let (A,m) be a local ring and M an A–module with presentation
Am

ϕ−→ An → M → 0. Prove that this presentation is minimal if and only if
ϕ(Am) ⊂ mAn.

2.1.18. Let (A,m) be a local ring and Am ∼= As⊕N for a suitable A–module
N . Prove that N ∼= Am−s.

2.1.19. Prove (with the notations of Definition 2.1.36) that S−1M is an
S−1A–module. Prove that ϕS is well–defined and an S−1A–module
homomorphism.
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2.1.20. Let A be a ring, S ⊂ A be a multiplicatively closed subset and M,N
be A–modules with N ⊂M . Prove that (M/N)S ∼= MS/NS .

2.1.21. Prove that a module homomorphism is injective if and only if its
kernel is zero.

2.1.22. Let A be a ring and P1, . . . , Pm prime ideals. Let 〈0〉 �= M be a
finitely generated A–module such that MPj �= 〈0〉 for all j. Prove that there
exists x ∈M such that x �∈ PjMPj for all j.

2.1.23. Let A be a ring, M an A–module and N,L submodules of M . Prove
that N = L if and only if NP = LP for all prime ideals P .

2.1.24. Let A be a ring, S ⊂ A be a multiplicatively closed subset and M a
finitely generated A–module. Prove that Ann(S−1M) = S−1 Ann(M).

2.1.25. Compute the kernel and image of the following homomorphism:
A3 M−→ A2 with A = Q[x, y, z] and M =

( xy xz yz
x−1 y−1 z−1

)
.

2.1.26. Compute a minimal presentation of the A–module M with M =
A3/

〈(
1

xy−1
xz

)
,
(

0
yz−1
xy

)〉
and A = Q[x, y, z]〈x,y,z〉.

2.1.27. Compute the support of the module of Exercise 2.1.26.

2.2 Graded Rings and Modules

Definition 2.2.1. A graded ring A is a ring together with a direct sum
decomposition A =

⊕
ν≥0 Aν , where the Aν are abelian groups satisfying

AνAμ ⊂ Aν+μ for all ν, μ ≥ 0.
A graded K–algebra, K a field, is a K–algebra which is a graded ring such

that Aν is a K–vector space for all ν ≥ 0, and A0 = K.
The Aν are called homogeneous components and the elements of Aν are

called homogeneous elements of degree ν.

Remark 2.2.2. Let A =
⊕

ν≥0 Aν be a graded ring, then A0 is a subring of
A. This follows since 1 · 1 = 1, hence 1 ∈ A0. For a K–algebra A, this implies
already K ⊂ A0, but to be a graded K–algebra we require even K = A0.

Example 2.2.3.

(1) Let K be a field and A = K[x1, . . . , xn]. Moreover, let w = (w1, . . . , wn)
be a vector of positive integers, and let Ad be the K–vector space gen-
erated by all monomials xα with w–deg(xα) = d. Then A =

⊕
ν≥0Aν is

a graded K–algebra. Namely, A0 = K, and for each i we have xi ∈ Awi .
The elements of Ad are called quasihomogeneous or weighted homoge-
neous polynomials of (weighted) degree d with respect to the weights
w1, . . . , wn. If w1 = · · · = wn = 1 we obtain the usual notion of homoge-
neous polynomials.
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(2) Let A be any ring, then A0 := A and Aν := 0 for ν > 0 defines a (trivial)
structure of a graded ring for A.

(3) Let A be a Noetherian K–algebra, I ⊂ A be an ideal, then

GrI(A) :=
⊕

ν≥0

Iν/Iν+1

is a graded K–algebra in a natural way. If (A,m) is a local ring, then
all homogeneous components of Grm(A) =

⊕
ν≥0 mν/mν+1 are finite di-

mensional vector spaces over A/m.

Definition 2.2.4. Let A =
⊕

ν≥0Aν be a graded ring. An A–module M ,
together with a direct sum decompositionM =

⊕
μ∈Z

Mμ into abelian groups
is called a graded A–module if AνMμ ⊂Mν+μ for all ν ≥ 0, μ ∈ Z.

The elements fromMν are called homogeneous of degree ν. Ifm =
∑
νmν ,

mν ∈Mν then mν is called the homogeneous part of degree ν of m.

Example 2.2.5. Let A =
⊕

ν≥0Aν be a graded K–algebra and consider the
free module Am =

⊕m
i=1Aei, ei = (0, . . . , 1, . . . , 0) with 1 at the i–th place.

Let ν1, . . . , νm ∈ Z, define deg(ei) := νi, and let Mν be the A0–module gener-
ated by all fei with f ∈ Aν−νi , then Am =

⊕
ν∈Z

Mν is a graded A–module.

Definition 2.2.6. Let M =
⊕

ν∈Z
Mν be a graded A–module and define

M(d) :=
⊕

ν∈Z
M(d)ν with M(d)ν := Mν+d. Then M(d) is a graded A–

module, especially A(d) is a graded A–module. M(d) is called the d–th twist
or the d–th shift of M .

Lemma 2.2.7. Let M =
⊕

ν∈Z
Mν be a graded A–module and N ⊂ M a

submodule. The following conditions are equivalent:

(1) N is graded with the induced grading, that is, N =
⊕

ν∈Z
(Mν ∩N).

(2) N is generated by homogeneous elements.
(3) Let m =

∑
mν , mν ∈Mν . Then m ∈ N if and only if mν ∈ N for all ν.

The proof is easy and left as Exercise 2.2.1.

Definition 2.2.8. A submodule N ⊂ M , satisfying the equivalent condi-
tions of Lemma 2.2.7, is called a graded (or homogeneous) submodule. A
graded submodule of a graded ring is called a graded ideal or homogeneous
ideal .

Remark 2.2.9. Let A =
⊕

ν≥0Aν be a graded ring, and let I ⊂ A be a ho-
mogeneous ideal. Then the quotient A/I has an induced structure as graded
ring: A/I =

⊕
ν≥0(Aν + I)/I ∼= ⊕

ν≥0Aν/(I ∩Aν).
Definition 2.2.10. Let A =

⊕
ν≥0Aν be a graded ring and M =

⊕
ν∈Z

Mν ,
N =

⊕
ν∈Z

Nν be graded A–modules. A homomorphism ϕ : M → N is called
homogeneous (or graded) of degree d if ϕ(Mν) ⊂ Nν+d for all ν. If ϕ is ho-
mogeneous of degree zero we call ϕ just homogeneous.
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Example 2.2.11. Let M be a graded A–module and f ∈ Ad then the mul-
tiplication with f defines a graded homomorphism M → M of degree d. It
also defines a graded homomorphism M →M(d) of degree 0.

Lemma 2.2.12. Let A be a graded ring and M,N be graded A–modules.
Let ϕ : M → N be a homogeneous A–module homomorphism, then Ker(ϕ),
Coker(ϕ) and Im(ϕ) are graded A–modules with the induced grading.

Proof. Let M =
⊕

i∈Z
Mi and N =

⊕
i∈Z

Ni, and define Ki := Ker(ϕ) ∩Mi.
Then, clearly,

⊕
i∈Z

Ki ⊂ Ker(ϕ). Moreover, let m =
∑k
i=1mi, mi ∈Mi and

assume that ϕ(m) = 0. Then ϕ(m) =
∑

i ϕ(mi) = 0, with ϕ(mi) ∈ Ni. This
implies ϕ(mi) = 0, that is, mi ∈ Ki and, therefore, Ker(ϕ) =

⊕
i∈Z

Ki.
The other statements can be proved similarly.

Example 2.2.13. Let A be a graded ring, M =
⊕

ν∈Z
Mν a graded A–module

andN ⊂M a homogeneous submodule. LetNν := N ∩Mν, then the quotient
M/N has an induced structure as graded A–module:

M/N =
⊕

ν∈Z

(Mν +N)/N ∼=
⊕

ν∈Z

Mν/Nν .

Lemma 2.2.14. Let A =
⊕

ν≥0 Aν be a Noetherian graded K–algebra and
M =

⊕
ν∈Z

Mν be a finitely generated A–module. Then

(1) there exist m ∈ Z such that Mν = 〈0〉 for ν < m;
(2) dimKMν <∞ for all ν.

Proof. (1) is obvious because M is finitely generated and a graded A–module.
To prove (2) it is enough to prove that Mν is a finitely generated A0–module
for all ν.

By assumption M is finitely generated and we may choose finitely many
homogeneous elements m1, . . . ,mk to generate M . Assume that mi ∈ Mei

for i = 1, . . . , k, then
∑
iAn−ei ·mi = Mn (with the convention Aν = 0 for

ν < 0). This implies that Mn is a finitely generated A0–module because the
Aν are finitely generated A0–modules.

SINGULAR Example 2.2.15 (graded rings and modules).
We give examples here on how to work with graded rings and modules.

First we consider the ideal 〈y3 − z2, x3 − z〉 in A = Q[x, y, z]. This ideal is
homogeneous if we consider Q[x, y, z] as a graded ring with weights w1 = 1,
w2 = 2, w3 = 3. Note that it is not homogeneous in Q[x, y, z] with the usual
graduation.

ring A=0,(x,y,z),dp;
ideal I=y3-z2,x3-z;
qhweight(I);
//-> 1,2,3
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The Singular command homog(I) checks whether I is homogeneous with
respect to the weights given to the variables of the basering (if no weights
are assigned explicitly, all weights are assumed to be 1).

homog(I);
//-> 0

ring B=0,(x,y,z),wp(1,2,3);
ideal I=fetch(A,I);
homog(I);
//-> 1

Next we consider B = Q[x, y, z] as a graded ring with weights w1 = 1, w2 = 2,
w3 = 3, and a B–module M =

〈(
y3−z2
x3−z

)
,
(
x3

1

)〉
. Then M is a homogeneous

submodule of B2 if we consider B2 as graded B–module with deg
(
(1, 0)

)
= 0

and deg
(
(0, 1)

)
= 3. This can be seen as follows:

module M=[y3-z2,x3-z],[x3,1];
homog(M);
//-> 1

M is homogeneous. Singular defines internally a corresponding attribute.

attrib(M,"isHomog"); //asks for attributed weights
//-> 0,3

The degree of (1,0) is 0 and the degree of (0,1) is 3.
The grading for M being homogeneous is not uniquely determined. We

can also use deg
(
(1, 0)

)
= 4 and degree

(
(0, 1)

)
= 7.

intvec v=4,7;
attrib(M,"isHomog",v); //sets externally an attribute,
attrib(M,"isHomog"); //without changing the module
//-> 4,7

Exercises

2.2.1. Prove Lemma 2.2.7.

2.2.2. Prove the remaining statements of Lemma 2.2.12.

2.2.3. Let A be a graded ring and M a graded A–module. Show that the
annihilator AnnA(M) is a homogeneous ideal.

2.2.4. Let I1, I2 be homogeneous ideals in a graded ring. Show that I1 + I2,
I1 · I2, I1 ∩ I2, I1 : I2 and

√
I1 are homogeneous.



136 2. Modules

2.2.5. Let A be a graded ring. A homogeneous ideal I ⊂ A is prime if and
only if for any two homogeneous elements f, g ∈ A, f · g ∈ I implies f ∈ I or
g ∈ I.
2.2.6. Prove the homogeneous version of Nakayama’s Lemma: let A be a
graded K–algebra and m the ideal generated by the elements of positive
degree. LetM be a finitely generated, gradedA–module andN ⊂M a graded
submodule. If N + mM = M then N = M .

2.2.7. Test whether the following ideals in K[x, y, z] are homogeneous w.r.t.
suitable weights, 〈y5− z2, x3− z, x6− y5〉, 〈y5− z2, x3− z, x7− y5〉.

2.3 Standard Bases for Modules

For our intended applications of standard bases, but also for an elegant proof
of Buchberger’s standard basis criterion, we have to extend the notion of
monomial orderings to the free module K[x]r =

⊕r
i=1K[x]ei, where

ei = (0, . . . , 1, . . . , 0) ∈ K[x]r

denotes the i–th canonical basis vector of K[x]r with 1 at the i–th place. We
call

xαei = (0, . . . , xα, . . . , 0) ∈ K[x]r

a monomial (involving component i).

Definition 2.3.1. Let> be a monomial ordering onK[x]. A (module) mono-
mial ordering or a module ordering on K[x]r is a total ordering >m on the
set of monomials {xαei | α ∈ N

n, i = 1, . . . , r}, which is compatible with the
K[x]–module structure including the ordering >, that is, satisfying

(1) xαei >m xβej =⇒ xα+γei >m xβ+γej,
(2) xα > xβ =⇒ xαei >m xβei ,

for all α, β, γ ∈ N
n, i, j = 1, . . . , r.

Two module orderings are of particular practical interest:

xαei > xβej :⇐⇒ i < j or (i = j and xα > xβ) ,

giving priority to the components, denoted by (c,>), and

xαei > xβej :⇐⇒ xα > xβ or (xα = xβ and i < j) ,

which gives priority to the monomials in K[x], denoted by (>, c).
Note that, by the second condition of Definition 2.3.1, each component of
K[x]r carries the ordering of K[x]. Hence, >m is a well-ordering on K[x]r

if and only if > is a well–ordering on K[x]. We call >m global , respectively
local, respectively mixed , if this holds for > respectively.
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In the case of a well–ordering it makes sense to define a module ordering
without fixing a ring ordering, only requiring (1) (cf. [53]). In the general
case, this could lead to standard bases which do not generate the module
(Exercise 2.3.5).

Now we fix a module ordering >m and denote it also with >. Since any vector
f ∈ K[x]r � {0} can be written uniquely as

f = cxαei + f∗

with c ∈ K � {0} and xαei > xα
∗
ej for any non–zero term c∗xα

∗
ej of f∗ we

can define as before

LM(f) := xαei ,

LC(f) := c ,

LT(f) := cxαei

and call it the leading monomial, leading coefficient and leading term, re-
spectively, of f . tail(f) := f − LT(f) is called the tail of f . Moreover, for
G ⊂ K[x]r we call

L>(G) := L(G) := 〈 LM(g) | g ∈ G� {0} 〉K[x] ⊂ K[x]r

the leading submodule of 〈G〉. In particular, if I ⊂ K[x]r is a submodule, then
L>(I) = L(I) is called the leading module of I.

As from K[x] to K[x]> these definitions carry over naturally from K[x]r

to K[x]r>.
Note that the set of monomials of K[x]r may be identified with N

n×Er ⊂
N
n × N

r = N
n+r, Er = {e1, . . . , er} where ei is considered as an element of

N
r. The natural partial order on N

n+r induces a partial order ≥nat on the
set of monomials, which is given by

xαei ≤nat x
βej :⇐⇒ i = j and xα | xβ ⇐⇒: xαei | xβej

(we say that xβej is divisible by xαei if i = j and xα | xβ). For any set of
monomials G ⊂ K[x]r and any monomial xαei, we have

xαei �∈ 〈G〉K[x] ⇐⇒ xαei is not divisible by any element of G.

Hence, Dickson’s Lemma for N
m (m arbitrary) is equivalent to the statement

that any monomial submodule of K[x]r (r arbitrary) is finitely generated.

Let > be a fixed monomial ordering. Again we write

R := K[x]> = S−1
> K[x]

to denote the localization of K[x] with respect to >. Since Rr ⊂ K[[x]]r, we
can talk about the power series expansion of elements of Rr.
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The theory of standard bases for ideals carries over to modules almost
without any changes. We formulate the relevant definitions and theorems
but omit the proofs, since they are practically identical to the ideal case.

We fix a module ordering on Rr. As for ideals, we define:

Definition 2.3.2.

(1) Let I ⊂ Rr be a submodule. A finite set G ⊂ I is called a standard basis
of I if and only if L(G) = L(I), that is, for any f ∈ I � {0} there exists
a g ∈ G satisfying LM(g) | LM(f).

(2) If the ordering is a well–ordering then a standard basis G is called a
Gröbner basis . In this case R = K[x] and, hence, G ⊂ I ⊂ K[x]r.

(3) A set G ⊂ Rr is called interreduced if 0 �∈ G and if LM(g) �∈ L(G� {g})
for each g ∈ G. An interreduced standard basis is also called minimal .

(4) For f ∈ Rr and G ⊂ Rr we say that f is reduced with respect to G if no
monomial of the power series expansion of f is contained in L(G).

(5) A set G ⊂ Rr is called reduced if 0 �∈ G and if each g ∈ G is reduced
with respect to G � {g}, LC(g) = 1, and if, moreover, tail(g) is reduced
with respect to G. For > a well–ordering, this just means that for each
g ∈ G ⊂ K[x]r, LM(g) does not divide any monomial of any element of
G� {g}.

Definition 2.3.3. Let G denote the set of all finite ordered subsets G ⊂ Rr.

(1) A map
NF : Rr × G → Rr, (f,G) �→ NF(f | G) ,

is called a normal form on Rr if for all f ∈ Rr and G ∈ G, NF(0 | G) = 0,
and
a) NF(f | G) �= 0⇒ LM

(
NF(f | G)

) �∈ L(G),
b) If G = {g1, . . . , gs} then f −NF(f |g) (or f) has a standard represen-

tation with respect to NF(− | G), that is,

f −NF(f | G) =
s∑

i=1

aigi, ai ∈ R , s ≥ 0 ,

satisfying LM(
∑s

i=1 aigi) ≥ LM(aigi) for all i such that aigi �= 0.
NF is called a reduced normal form if, moreover, NF(f | G) is reduced
with respect to G for all G ∈ G.

(2) NF is called a weak normal form if, instead of b), only condition b’)
holds:
b’) for each f ∈ Rr and each G ∈ G there exists a unit u ∈ R such that

uf has a standard representation with respect to NF(− | G).
(3) Similarly to Definition 1.6.5 (2) polynomial weak normal forms are

defined.
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Remark 2.3.4. In the same manner as for ideals, a reduced normal form exists
for global orderings. We just have to apply NF(− | G) not only to f but
successively to tail(f) until it terminates (cf. Algorithm 1.6.11). For non–
global orderings, this procedure may not terminate.

However, for an arbitrary module ordering >, we can always find a weak
normal form NF with the following property which is stronger than 1.a from
Definition 2.3.3: if, for any f ∈ K[x]r and G = {g1, . . . , gs} ∈ G,

NF(f | G) = f1e1 + · · ·+ frer ∈ K[x]r ,

then LM(fiei) �∈ L(G) for all i with fi �= 0.

Proof. We may assume that LM(f1e1) = LM
(
NF(f | G)

) �∈ L(G) and pro-
ceed by induction on r, to show that we can successively reduce

∑r
j=1 fjej

with respect to G to obtain the above property. Let f (2) := f2e2 + · · ·+ frer,
and let G(2) := {g ∈ G | LM(g) �∈ K[x]e1}. We consider the images

f (2) := π(f (2)) , G(2) := π(G(2))

under the canonical projection π :
⊕r

i=1Rei →
⊕r

i=2Rei. Then, by induc-
tion hypothesis, we can assume that there exists a weak normal form

NF
(
f (2) | G(2)

)
= f

(2)
2 e2 + · · ·+ f (2)

r er

such that LM(f (2)
j ej) �∈ L(G(2)) = L(G) ∩⊕r

i=2K[x]ei for j = 2, . . . , r. Let

u(2)f (2) =
r∑

j=2

f
(2)
j ej +

∑

g∈G(2)

a(2)
g g

be a standard representation with respect to G(2) (u(2) a unit in R). Then,
by construction,

u(2)f (2) −
∑

g∈G(2)

a(2)
g g = f

(2)
1 e1 +

r∑

j=2

f
(2)
j ej

for some f (2)
1 such that either LM(f (2)

1 e1) ≤ LM(f (2)) or f (2)
1 = 0. Now, it is

easy to see that

(u(2)f1 + f
(2)
1 )e1 +

r∑

j=2

f
(2)
j ej

is a weak normal form for f with respect to G with the required property.

Lemma 2.3.5. Let I ⊂ Rr be a submodule, G ⊂ I a standard basis of I and
NF(− | G) a weak normal form on Rr with respect to G.

(1) For any f ∈ Rr we have f ∈ I if and only if NF(f | G) = 0.
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(2) If J ⊂ Rr is a submodule with I ⊂ J , then L(I) = L(J) implies I = J .
(3) I = 〈G〉R, that is, G generates I as an R–module.
(4) If NF( | G) is a reduced normal form, then it is unique.

The proof is the same as for ideals. Also the notion of s–polynomial carries
over to modules.

Definition 2.3.6. Let f, g ∈ Rr � {0} with LM(f) = xαei, LM(g) = xβej .
Let

γ := lcm(α, β) :=
(
max(α1, β1), . . . ,max(αn, βn)

)

be the least common multiple of α and β and define the s–polynomial of f
and g to be

spoly(f, g) :=

{
xγ−αf − LC(f)

LC(g) · xγ−βg, if i = j

0, if i �= j .

Definition 2.3.7. For a monomial xαei ∈ K[x]r set

deg xαei := deg xα = α1 + · · ·+ αn .

For f ∈ K[x]r � {0}, let deg f be the maximal degree of all monomials oc-
curring in f . We define the ecart of f as

ecart (f) := deg f − deg LM(f) .

Similarly to Definition 1.7.5 one can define the weighted ecart and interpret
the ecart as degt

(
LM(fh)

)
for the homogenization of f with respect to a new

variable t.
The Algorithms 1.6.10 (NFBuchberger), 1.6.11 (redNFBuchberger)

carry over verbatim to the module case if we replace K[x] by K[x]r. Sim-
ilarly for the Algorithms 1.7.1 (Standard), 1.7.6 (NFMora) and 1.7.8
(StandardBasis). However, for the sake of completeness, we shall formulate
them for modules, omitting the proofs.

Let > be any monomial ordering on Rr and assume that a weak normal form
algorithm NF on Rr is given.

Algorithm 2.3.8 (Standard(G,NF)).

Input: G ∈ G, NF a weak normal form algorithm.
Output: S ∈ G such that S is a standard basis of I = 〈G〉R ⊂ Rr.

• S = G;
• P = {(f, g) | f, g ∈ S, f �= g};
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• while (P �= ∅)
choose (f, g) ∈ P ;
P = P � {(f, g)};
h = NF

(
spoly(f, g) | S);

If (h �= 0)
P = P ∪ {(h, f) | f ∈ S};
S = S ∪ {h};

• return S;

Let > be any monomial ordering on K[x]r, R = K[x]>.

Algorithm 2.3.9 (NFMora(f | G)).

Input: f ∈ K[x]r, G = {g1, . . . , gs} ⊂ K[x]r.

Output: h ∈ K[x]r a weak normal form of f with respect to G, such that there
exists a standard representation uf = h+

∑s
i=1 aigi with ai ∈ K[x],

u ∈ S>.

• h = f ;
• T = G;
• while

(
h �= 0 and Th =

{
g ∈ T | LM(g) divides LM(h)

} �= ∅)
choose g ∈ Th with ecart(g) minimal;
if (ecart(g) > ecart(h))
T = T ∪ {h};

h = spoly(h, g);
• return h;

SINGULAR Example 2.3.10 (normal form).

ring A=0,(x,y,z),(c,dp);
module I=[x,y,1],[xy,z,z2];
vector f=[zx,y2+yz-z,y];
reduce(f,I);
//-> // ** I is no standardbasis
//-> [0,y2-z,y-z]

reduce(f,std(I));
//-> [0,0,z2-z]

We have seen in Singular Example 1.6.13 that the normal form may not be
unique, in particular, if we do not have a standard basis for I.

Let > be any monomial ordering on K[x]r, R = K[x]>.

Algorithm 2.3.11 (StandardBasis(G)).

Input: G = {g1, . . . , gs} ⊂ K[x]r.
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Output: S = {h1, . . . , ht} ⊂ K[x]r such that S is a standard basis of I =
〈G〉R ⊂ Rr.

• S = Standard(G,NFMora);
• return S;

SINGULAR Example 2.3.12 (standard bases).
The example shows the influence of different orderings to standard bases.

ring A=0,(x,y,z),(c,dp);
module I=[x+1,y,1],[xy,z,z2];
std(I);
//-> _[1]=[0,xy2-xz-z,-xz2+xy-z2]
//-> _[2]=[y,y2-z,-z2+y]
//-> _[3]=[x+1,y,1]

ring B=0,(x,y,z),dp;
module I=fetch(A,I);
std(I);
//-> _[1]=x*gen(1)+y*gen(2)+gen(3)+gen(1)
//-> _[2]=y2*gen(2)-z2*gen(3)+y*gen(3)+y*gen(1)-z*gen(2)

ring C=0,(x,y,z),lp;
module I=fetch(A,I);
std(I);
//-> _[1]=y2*gen(2)+y*gen(3)+y*gen(1)-z2*gen(3)-z*gen(2)
//-> _[2]=x*gen(1)+y*gen(2)+gen(3)+gen(1)

ring D=0,(x,y,z),(c,ds);
module I=fetch(A,I);
std(I);
//-> _[1]=[1+x,y,1]
//-> _[2]=[0,z+xz-xy2,-xy+z2+xz2]

ring E=0,(x,y,z),ds;
module I=fetch(A,I);
std(I);
//-> _[1]=gen(3)+gen(1)+x*gen(1)+y*gen(2)
//-> _[2]=z*gen(2)+xy*gen(1)+z2*gen(3)

Similarly to Chapter 1 we also have Buchberger’s criterion.

Theorem 2.3.13. Let I ⊂ Rr be a submodule and G = {g1, . . . , gs} ⊂ I.
Let NF(− | G) be a weak normal form on Rr with respect to G. Then the
following are equivalent:

(1) G is a standard basis of I.



2.3 Standard Bases for Modules 143

(2) NF(f | G) = 0 for all f ∈ I.
(3) Each f ∈ I has a standard representation with respect to NF(− | G).
(4) G generates I and NF

(
spoly(gi, gj) | G

)
= 0 for i, j = 1, . . . , s.

(5) G generates I and NF
(
spoly(gi, gj) | Gij

)
= 0 for some Gij ⊂ G and

i, j = 1, . . . , s.

Proof. The proof of (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) is similar to the proof of
Theorem 1.7.3.

The proof of (5)⇒ (1) will be given in Section 2.5. This proof needs the
equivalence of (1) and (2). We prove now that (2)⇒ (1). Let f ∈ I then (2)
implies NF(f | G) = 0, and there exists a unit u ∈ R∗ such that uf has a stan-
dard representation uf =

∑
i aigi with LM(f) ≥ LM(aigi). Therefore, there

exists some i such that LM(f) = LM(aigi). This implies that LM(gi) | LM(f),
which proves that G is a standard basis of I.

Exercises

2.3.1. Verify that the proofs for Lemma 2.3.5 and that the algorithms carry
over from the ideal case of Chapter 1.

2.3.2. Let R = K[x], and let M = (mij) be an n× n–matrix with entries in
R. Consider the matrix (M,E) obtained by concatenatingM with the n× n–
unit matrix E, and let v1, . . . , vn ∈ R2n be the rows of (M,E). On the free R–
module R2n =

⊕2n
i=1Rei, e1 = (1, 0, . . . , 0), . . . , e2n = (0, . . . , 0, 1), consider

the ordering defined by xαei < xβej if i > j or if i = j and xα < xβ .
Let {w1, . . . , wm} ⊂ R2n be the reduced standard basis of 〈v1, . . . , vn〉,

with LM(w1) > · · · > LM(wm). Prove that M is invertible if and only if
m = n and LM(wi) = ei for i = 1, . . . ,m, and then w1, . . . , wm are the rows
of (E,M−1).

2.3.3. Let I ⊂ K[x]r be a submodule, x = (x1, . . . , xn), and let > be a global
module ordering on K[x]r. Prove that

K[x]r ∼= I ⊕
⎛

⎝
⊕

m �∈L[I]

K ·m
⎞

⎠ .

2.3.4. Compute the normal form of
( x+y
y−1

)
w.r.t. the module M ⊂ K[x, y]2

generated by the vectors
(
x2

xy

)
,
( x
y2
)
, and the ordering (c,dp).

2.3.5. Let K be a field and R = K[x] the polynomial ring in one variable.
Consider on K[x]2 the following ordering:

xαei > xβej :⇐⇒ i > j or (i = j = 1 and α < β)
or (i = j = 2 and α > β) .
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Prove that {(1+x)e1, e2} is a standard basis of K[x]2 (w.r.t. >), but it does
not generate K[x]2 (as K[x]-module).

The following exercises (2.3.6) – (2.3.12) are related to the behaviour of stan-
dard bases under specialization. Let, in these exercises, R be an integral
domain, R[x] = R[x1, . . . , xn], and let > be a fixed monomial ordering on
Mon(x1, . . . , xn). The set S> = {f ∈ R[x] | LT(F ) = 1} is multiplicatively
closed and the localization of R[x] with respect to S> is

R[x]> = S−1
> R[x] =

{
f

g

∣∣∣∣ f, g ∈ R[x], LT(g) = 1
}
.

If > is global, then R[x]> = R[x] and if > is local then R[x]> = R[x]〈x1,...,xn〉,
the localization of R[x] with respect to the prime ideal 〈x1, . . . , xn〉 (check
this).

2.3.6. Let G denote the set of finite ordered sets G ⊂ R[x]r>, where > is a
fixed module ordering on the set of monomials {xαei}. Call a function

NF : R[x]r> × G → R[x]r>, (f, g) �→ NF(f | G) ,

a pseudo normal form on R[x]r>, if the following holds:

(1) NF(f | G) �= 0 ⇒ LM
(
NF(f | G)

)
is not divisible by LM(g) for all g ∈ G.

(2) For all f ∈ R[x]r> and G = {g1, . . . , gs} ∈ G there exists a u ∈ R[x]>
with LT(u) a product of leading coefficients of elements of G such that
uf has a standard representation with respect to NF(− | G), that is,

uf = NF(f | G) +
s∑

i=1

aigi, ai ∈ R[x]> ,

such that LM(r) ≥ LM(aigi) for all i with aigi �= 0.

NF is called polynomial if, for f ∈ R[x]r, G ⊂ R[x]r, then u, ai ∈ R[x]. De-
fine, in this situation, the s–polynomial of f, g ∈ R[x]> � {0}, LT(f) = axαei,
LT(g) = bxβej, as

spoly (f, g) =

{
bxγ−αf − axγ−βg if i = j ,

0 if i �= j ,

where γ = lcm(α, β).
Show the following: if we use this definition of s–polynomial, the algo-

rithms NFBuchberger (for global orderings), respectively NFMora (for
arbitrary orderings) from Chapter 1, Section 1.6, respectively Chapter 2, Sec-
tion 2.3, define a pseudo normal form on R[x]r> (where the element u itself
from (2) is a product of leading coefficients of elements of G for NFBuch-

berger). We call NFBuchberger, respectively NFMora, with the above
s–polynomial normal forms without division .
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2.3.7. Show the following generalization of Buchberger’s criterion.
Let I ⊂ R[x]r> be a R[x]>–submodule, NF a pseudo normal form on R[x]r>
and G = {g1, . . . , g0} ⊂ I satisfying

(1) G generates I as R[x]>–module;
(2) NF

(
spoly(gi, gj) | G

)
= 0 for all 1 ≤ i < j ≤ s.

Then, for any maximal ideal m ⊂ R such that LC(gi) �∈ m for all i, the set
{g1, . . . , gs} is a standard basis of I · (R/m)[x]>. Here gi denotes the residue
class of gi in (R/m)[x].
(Hint: compare the proof of Theorem 2.5.9.)

We call G a pseudo standard basis of I if it satisfies the above conditions (1)
and (2). Show that Algorithm 2.3.8, Standard(G,NF), returns a pseudo
standard basis if NF is a pseudo normal form. (Note that a pseudo standard
basis is not a standard basis over a ring, as defined in Remark 1.6.14.)

2.3.8. Let K be a field, R = K[t] = K[t1, . . . , tp], K[t, x] = R[x1, . . . , xn] and
{g1, . . . , gs} ⊂ K[t, x]r a pseudo standard basis of the submodule I ⊂ K[t, x]r>.
Set hi = LC(gi) ∈ K[t] and h = h1 · . . . · hs. Then, for any t0 with h(t0) �= 0,
show that {g1(t0, x), . . . , gs(t0, x)} is a standard basis of (I|t=t0)K[x]>.

2.3.9. Let {g1, . . . , gs} ⊂ Z[x]r = Z[x1, . . . , xn]r be a pseudo standard basis
of the submodule I ⊂ Z[x]r>. Set mi = LC(gi) ∈ Z and m = m1 · . . . · ms.
Then, for any prime number p such that p � m, {g1, . . . , gs} is a standard
basis of I · Z/pZ[x]>.

2.3.10. Consider f := x3+ y3+ z4+ ax2yz + bxy2z, where a and b are pa-
rameters. Let d := dimK K[x, y, z]/〈fx, fy, fz〉, where K is the field Q or Fp,
p a prime. Hence, d = d(a, b, p) depends on (a, b) ∈ K2 and the characteristic
p (p = 0 if K = Q). Show

(1) d(a, b, p) <∞ if and only if p �∈ {2, 3}.
(2) For p �∈ {2, 3}, we have

d(a, b, p) = 24 if a �= 0 and b �= 0 and a3 �= b3

d(0, b, p) = 21 if b �= 0
d(a, 0, p) = 21 if a �= 0
d(a, a, p) = 15 if a �= 0
d(0, 0, p) = 12 .

(Hint: use the previous exercises.)
Note that Singular avoids divisions in standard basis computations if the
options intStrategy and contentSB are set.

2.3.11. Let M = M(a, b) ⊂ Q
2 be the submodule generated by the vectors

[ax2, (a+ 3b)x3y + z4], [(a− 2b)3y3+ xyz, by3], [5az4, (a+ b)z2] with a, b pa-
rameters. Compute a comprehensive Gröbner basis of M , that is, a system of
generators which is a Gröbner basis of M(a, b) for all a, b ∈ Q for the ordering
(c,ds).
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(Hint: start with a Gröbner basis in the ring R=(0,a,b),(x,y,z),(c,ds)
and then distinguish cases, as in Exercise 2.3.10, and take the union of all
Gröbner bases.)

2.3.12. Show that the system of equations

x3 + yz + y + z = 0 x+ y = 1
y4 + xz + x+ z = 0 x+ z = 1
z5 + xy + x+ y = 0 y + z = 1

has no solution in F
3

p for all prime numbers p, where Fp is the algebraic
closure of Fp.

2.4 Exact Sequences and Free Resolutions

Definition 2.4.1. A sequence of A–modules and homomorphisms

· · · →Mk+1
ϕk+1−−−→Mk

ϕk−−→Mk−1 → · · ·
is called a complex if Ker(ϕk) ⊃ Im(ϕk+1). It is called exact at Mk if

Ker(ϕk) = Im(ϕk+1) .

It is called exact if it is exact at all Mk. An exact sequence

0 −→M ′ ϕ−→M
ψ−→M ′′ −→ 0

is called a short exact sequence.

Example 2.4.2.

(1) 0 →M
ϕ−→ N is exact if and only if ϕ is injective.

(2) M
ϕ−→ N → 0 is exact if and only if ϕ is surjective.

(3) 0 →M
ϕ−→ N → 0 is exact if and only if ϕ is an isomorphism.

(4) 0 → M1
ϕ−→ M2

ψ−→ M3 → 0 is a short exact sequence if and only if ϕ is
injective, ψ is surjective and ψ induces an isomorphismM2/ Im(ϕ) ∼= M3.

(5) 0 → M1
ϕ−→ M1 ⊕M2

ψ−→ M2 → 0 with ϕ(x) = (x, 0), ψ(x, y) = y is
exact.

Proposition 2.4.3. Let M ′,M,M ′′ be A–modules.

(1) Let M ′ ϕ−→M
ψ−→M ′′ → 0 be a complex. The complex is exact if and only

if, for all A–modules N , the sequence

0 → Hom(M ′′, N)
ψ∗
−−→ Hom(M,N)

ϕ∗
−−→ Hom(M ′, N)

is exact. Here ψ∗(λ) := λ ◦ ψ and ϕ∗(σ) := σ ◦ ϕ.
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(2) Let 0→M ′ ϕ−→M
ψ−→M ′′ be a complex. The complex is exact if and only

if, for all A–modules N ,

0 → Hom(N,M ′)
ϕ∗−−→ Hom(N,M)

ψ∗−−→ Hom(N,M ′′)

is exact. Here ϕ∗(λ) = ϕ ◦ λ and ψ∗(σ) = ψ ◦ σ.
Proof. We prove (1). The proof of (2) is similar and left as Exercise 2.4.4.

Assume that M ′ ϕ−→M
ψ−→M ′′ → 0 is exact and consider the sequence

0 → Hom(M ′′, N)
ψ∗
−−→ Hom(M,N)

ϕ∗
−−→ Hom(M ′, N) ,

which is a complex, since ϕ∗ ◦ ψ∗ = (ψ ◦ ϕ)∗. We have to show that it is,
indeed, exact: let ψ∗(λ) = λ ◦ ψ = 0, then, since ψ is surjective, λ = 0. Hence,
ψ∗ is injective. Let σ ∈ Hom(M,N) with ϕ∗(σ) = σ ◦ ϕ = 0,

N

M ′ ϕ
�� M

σ

��

ψ
�� M ′′

σ̄

���
�

�
�

�� 0 ,

and define σ̄ : M ′′ → N by σ̄(m′′) = σ(m) for some m ∈M with ψ(m) = m′′.
σ̄ is well–defined because Ker(ψ) = Im(ϕ) and σ ◦ϕ = 0. We have ψ∗(σ̄) = σ
and, hence, Im(ψ∗) ⊃ Ker(ϕ∗).

Assume now that 0 → Hom(M ′′, N)
ψ∗
−−→ Hom(M,N)

ϕ∗
−−→ Hom(M ′, N) is

exact for all A–modules N , that is,

• ψ∗ is injective;
• Im(ψ∗) = Ker(ϕ∗).

To prove that ψ is surjective, we consider N := M ′′/ Im(ψ) and the canonical
map π : M ′′→ N . Then ψ∗(π) = π ◦ ψ = 0. Because ψ∗ is injective we obtain
π = 0 and, therefore, N = 0, that is, ψ is surjective.

To prove that Ker(ψ) = Im(ϕ) we choose N = M/ Im(ϕ) and π : M → N
the canonical morphism. Then ϕ∗(π) = π ◦ ϕ = 0. Hence, π ∈ Im(ψ∗), that
is, π = ψ∗(σ) = σ ◦ ψ for a suitable σ : M ′′ → N , as shown in the diagram

M ′ ϕ
�� M

π

��

ψ
�� M ′′

σ
���

�
�

�
�

�� 0

M/ Im(ϕ) .

This implies that Im(ϕ) ⊃ Ker(ψ), the inverse inclusion being satisfied by
assumption.
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Remark 2.4.4. Let

0 →Mn
ϕn−−→Mn−1

ϕn−1−−−→ · · · →M2
ϕ2−→M1

ϕ1−→M0 → 0

be a sequence of A–modules. The sequence is exact if and only if Im(ϕ1) = M0,
Ker(ϕn) = 0 and Ker(ϕi) = Im(ϕi+1) for i = 1, . . . , n− 1. If the sequence is
exact, this defines short exact sequences

0 → Ker(ϕ1) →M1
ϕ1−→ Im(ϕ1)→ 0

0 → Ker(ϕ2) →M2
ϕ2−→ Im(ϕ2)→ 0

...
...

0 → Ker(ϕn) →Mn
ϕn−−→ Im(ϕn)→ 0 .

Conversely, if short exact sequences

0 → K1 →M1 →M0 → 0
0 → K2 →M2 → K1 → 0
...

...
0 → 0→Mn → Kn−1 → 0

are given, then they obviously lead to a long exact sequence

0→Mn →Mn−1 → · · · →M1 →M0 → 0 .

Definition 2.4.5. Let A be a ring and C be a class of A–modules. A map
λ : C → Z is called additive function if λ(M) = λ(M ′) + λ(M ′′) for every
short exact sequence 0→M ′ →M →M ′′ → 0 with M ′,M,M ′′ ∈ C.
Example 2.4.6.

(1) Let K be a field and C be the class of all finite dimensional K–vector
spaces. Then λ : C → Z defined by λ(V ) = dimK(V ) is additive.

(2) Let C be the class of finitely generated abelian groups, that is, finitely
generated Z–modules. It will be proved in Section 2.6 that every finitely
generated Z–module M decomposes as M = F ⊕ Tors(M), with F a free
module. Defining λ(M) = rank(F ) we obtain an additive map λ : C → Z.

Proposition 2.4.7. Let C be a class of A–modules which contains all sub-
modules and factor modules of each of its elements and let λ : C → Z be
additive. If

0 →Mn
ϕn−−→Mn−1

ϕn−1−−−→ · · · →M1
ϕ−1−−−→M0 → 0

is an exact sequence with M0, . . . ,Mn ∈ C, then
∑n

i=0(−1)iλ(Mi) = 0.
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Proof. We consider the short exact sequences

0 −→ Ker(ϕi) −→Mi −→ Im(ϕi) −→ 0 , i = 1, . . . , n .

The additivity of λ implies

λ(M1) = λ
(
Ker(ϕ1)

)
+ λ(M0) ,

λ(M2) = λ
(
Ker(ϕ2)

)
+ λ

(
Ker(ϕ1)

)
,

...

λ(Mn) = λ
(
Ker(ϕn)

)
+ λ

(
Ker(ϕn−1)

)
.

Taking the alternating sum, we obtain
n∑

i=1

(−1)i−1λ(Mi) = λ(M0) + (−1)n−1λ
(
Ker(ϕn)

)
.

But Ker(ϕn) = 0 and λ being additive implies that λ
(
Ker(ϕn)

)
= 0.

Lemma 2.4.8 (Snake Lemma). Let 0→M1
ϕ1−→M2

ϕ2−→M3 → 0 and

0→ N1
ψ1−−→ N2

ψ2−−→ N3 → 0 be short exact sequences of A–modules. More-
over, let λi : Mi → Ni, i = 1, 2, 3, be module homomorphisms such that the
induced diagram commutes, that is, λ3 ◦ ϕ2 = ψ2 ◦ λ2 and λ2 ◦ ϕ1 = ψ1 ◦ λ1.
Then there is an exact sequence

0→ Ker(λ1) → Ker(λ2)→ Ker(λ3)
→ Coker(λ1) → Coker(λ2)→ Coker(λ3)→ 0 .

Proof. The sequences 0 → Ker(λi)
νi−→ Mi

λi−→ Ni
πi−→ Coker(λi) → 0 are

exact and lead to the following diagram:

0

��

0

��

0

��

0 �� Ker(λ1)
ϕ′

1 ��

ν1

��

Ker(λ2)

ν2

��

ϕ′
2 �� Ker(λ3)

ν3

��

0 �� M1
ϕ1 ��

λ1

��

M2

λ2

��

ϕ2 �� M3

λ3

��

�� 0

0 �� N1
ψ1 ��

π1

��

N2

π2

��

ψ2 �� N3

π3

��

�� 0

Coker(λ1)
ψ′

1 ��

��

Coker(λ2)

��

ψ′
2 �� Coker(λ3)

��

�� 0

0 0 0 .
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It is not difficult to see that the canonically defined ϕ′
i (restriction of the ϕi)

and ψ′
i make the diagram commutative, that is,

π3 ◦ ψ2 = ψ′
2 ◦ π2, π2 ◦ ψ1 = ψ′

1 ◦ π1, ϕ2 ◦ ν2 = ν3 ◦ ϕ′
2 ,

ν2 ◦ ϕ′
1 = ϕ1 ◦ ν1, λ3 ◦ ϕ2 = ψ2 ◦ λ2 and λ2 ◦ ϕ1 = ψ1 ◦ λ1 .

We have to prove that the first and the last row are exact. This is left as an
exercise.

The important part of the proof is to define the connecting homo-
morphism d : Ker(λ3) → Coker(λ1) and prove that Ker(d) = Im(ϕ′

2) and
Im(d) = Ker(ψ′

1).
Let x ∈ Ker(λ3) and choose y ∈M2 with ϕ2(y) = x. 4 Then

0 = λ3(x) = λ3 ◦ ϕ2(y) = ψ2 ◦ λ2(y) .

The exactness of the third row of the diagram implies that there exists a
unique z ∈ N1 with ψ1(z) = λ2(y). We define d(x) := π1(z).

We have to prove that this definition is independent of the choice of y.
Let z ∈ N1 with ψ1(z) = λ2(y) and ϕ2(y) = x. Then ϕ2(y − y) = 0 implies
that y − y = ϕ1(u) for a suitable u ∈M1. Therefore,

ψ1(z − z) = λ2(y − y) = λ2 ◦ ϕ1(u) = ψ1 ◦ λ1(u) .

But ψ1 is injective, hence z = z + λ1(u). It follows that π1(z) = π1(z). This
proves that d is well–defined.

It is not difficult to see that d is, indeed, a module homomorphism. We
shall prove now that Ker(d) = Im(ϕ′

2).
Let x ∈ Ker(d). This implies, by definition of d, that there exist z ∈ N1

and y ∈M2 such that ψ1(z) = λ2(y), ϕ2(y) = x and π1(z) = 0. Let u ∈M1

such that z = λ1(u). Then λ2(y) = ψ1(z) = ψ1 ◦ λ1(u) = λ2 ◦ ϕ1(u), whence,
y − ϕ1(u) ∈ Ker(λ2). But ϕ′

2

(
y−ϕ1(u)

)
= ϕ2

(
y−ϕ1(u)

)
= ϕ2(y) = x. It fol-

lows that Ker(d) ⊂ Im(ϕ′
2).

On the other hand, let x ∈ Im(ϕ′
2). Then x = ϕ2(y), y ∈ Ker(λ2) implies

ψ1(0) = 0 = λ2(y), that is, d(x) = 0 by definition of d. Thus we have shown
the equality Ker(d) = Im(ϕ′

2).
To prove that Im(d) = Ker(ψ′

1) let x ∈ Im(d), that is, x = π1(z) such that
there exists a y ∈M2 with λ2(y) = ψ1(z). But

0 = π2 ◦ λ2(y) = π2 ◦ ψ1(z) = ψ′
1 ◦ π1(z) = ψ′

1(z)

and, therefore, Im(d) ⊂ Ker(ψ′
1). Now let z ∈ Ker(ψ′

1) and choose a preimage
z ∈ N1, π(z) = z. Then 0 = ψ′

1(z) = ψ′
1 ◦ π1(z) = π2 ◦ ψ1(z). Therefore, there

exists some y ∈M2 with λ2(y) = ψ1(z). Then z = d
(
ϕ2(y)

)
, which proves

that Ker(ψ′
1) ⊂ Im(d).

4 Since ν3 is the canonical inclusion, we simplify the notations by identifying ν3(x)
and x.
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Proposition 2.4.9. Let

· · · →Mk+1
ϕk+1−−−→Mk

ϕk−−→Mk−1 → . . .

be an exact sequence of A–modules and x ∈ A a non–zerodivisor for all Mk,
then the induced sequence

· · · →Mk+1/xMk+1 →Mk/xMk →Mk−1/xMk−1 → . . .

is exact.

Proof. Because of Remark 2.4.4 it is enough to prove the proposition for short
exact sequences. Consider an exact sequence

0 →M1
ϕ1−→M2

ϕ2−→M3 → 0

then the multiplication by x induces injective maps Mi → Mi, i = 1, 2, 3.
Using the Snake Lemma (Lemma 2.4.8) we obtain that the induced sequence

0 →M1/xM1 →M2/xM2 →M3/xM3 → 0

is exact.

Definition 2.4.10. Let A be a ring and M a finitely generated A–module.
A free resolution of M is an exact sequence 5

. . . −→ Fk+1
ϕk+1−−−→ Fk −→ . . . −→ F1

ϕ1−→ F0
ϕ0−→M → 0

with finitely generated free A–modules Fi for i ≥ 0. We say that a free reso-
lution has (finite) length n if Fk = 0 for all k > n and n is minimal with this
property.

If (A,m) is a local ring, then a free resolution as above is called minimal
if ϕk(Fk) ⊂ mFk−1 for k ≥ 1, and then bk(M) := rank(Fk), k ≥ 0, is called
the k–th Betti number of M .

The following theorem shows that the Betti numbers of M are, indeed, well–
defined.

Theorem 2.4.11. Let (A,m) be a local Noetherian ring and M be a finitely
generated A–module, then M has a minimal free resolution. The rank of Fk
in a minimal free resolution is independent of the resolution. If M has a
minimal resolution of finite length n,
5 Frequently the complex of free A-modules

F• : . . . −→ Fk+1

ϕk+1−−−→ Fk −→ . . . −→ F1
ϕ1−−→ F0 −→ 0

is called a free resolution of M .
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0 → Fn → Fn−1 → · · · → F0 →M → 0

and if
0 → Gm → Gm−1 → · · · → G0 →M → 0

is any free resolution, then m ≥ n.

Proof. Let m1, . . . ,ms0 be a minimal set of generators of M and consider the
surjective map ϕ0 : F0 := As0 →M defined by ϕ0(a1, . . . , as0) =

∑s0
i=1 aimi.

Because of Nakayama’s Lemma, m1, . . . ,ms0 induces a basis of the vector
space M/mM . Hence, ϕ0 induces an isomorphism ϕ0 : F0/mF0

∼= M/mM .
Let K1 be the kernel of ϕ0. Then K1 ⊂ mF0. K1 is a submodule of a finitely
generated module over a Noetherian ring, hence finitely generated. As be-
fore, we can find a surjective map F1 := As1 → K1, where s1 is the minimal
number of generators of K1.

Let ϕ1 : F1 → F0 be defined by the composition F1 → K1 ↪→ F0. As
K1 ⊂ mF0, it follows that ϕ1(F1) ⊂ mF0. Up to now, we have constructed
the exact sequence F1

ϕ1−→ F0
ϕ0−→M → 0.

Continuing like this we obtain a minimal free resolution for M . To show
the invariance of the Betti numbers, we consider two minimal resolutions of
M :

· · · ϕn+1−−−→ Fk → . . .
ϕ1−→ F0

ϕ0−→M → 0

· · · ψn+1−−−→ Gk → . . .
ψ1−−→ G0

ψ0−−→M → 0 .

We have F0/mF0
∼= M/mM ∼= G0/mG0 and, therefore, rank(F0) = rank(G0).

Let {f1, . . . , fs0}, respectively {g1, . . . , gs0}, be bases of F0, respectively
G0. As {ψ0(gi)} generate M , we have ϕ0(fi) =

∑
j hij · ψ0(gj) for some

hij ∈ A. The matrix (hij) defines a map h1 : F0 → G0. The induced map
h1 : F0/mF0 → G0/mG0 is an isomorphism. In particular, we derive that
det(hij) �= 0 mod m. This implies that det(hij) is a unit in A and h1 is an
isomorphism. Especially, h1 induces an isomorphism Ker(ϕ0)

∼−→ Ker(ψ0).
As ϕ1 and ψ1, considered as matrices, have entries in m, and since we
have surjections F1 → Ker(ϕ0) and G1 → Ker(ψ0), it follows, as before, that
rank(F1) = rank(G1). Now we can continue like this and obtain the invari-
ance of the Betti numbers.

To prove the last statement, let

0 → Fn → Fn−1 → · · · → F0 →M → 0

be a minimal free resolution with Fn �= 〈0〉 and

0 → Gm → Gm−1 → · · · → G0 →M → 0

be any free resolution. We have to prove that m ≥ n. This can be proved in
a similar way to the previous step. With the same idea, one can prove that
there are injections hi : Fi → Gi for all i ≤ n.
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SINGULAR Example 2.4.12 (resolution and Betti numbers).
Singular has several commands, based on different algorithms, to compute
free resolutions, see also Section 2.5. mres computes, for modules over local
rings and for homogeneous modules over graded rings (cf. Definition 2.4.13),
a minimal free resolution. More precisely, let A = matrix(I), then mres(I,k)
computes a free resolution of Coker(A) = F0/I

6

. . .→ F2
ϕ2−→ F1

ϕ1−→ F0 → F0/I → 0 ,

where the columns of the matrix ϕ1 are a minimal set of generators of I if the
basering is local or if I is homogeneous. If k is not zero then the computation
stops after k steps and returns a list of modules Mi = module(ϕi), i = 1 . . . k.
mres(I,0) stops computation after, at most, n+ 2 steps, where n is the
number of variables of the basering. Note that the latter suffices to compute
all non-zero modules of a minimal free resolution if the basering is not a
quotient ring (cf. Theorem 2.5.15).

In some cases it is faster to use the Singular commands res (or sres,
or lres) and then to apply minres to minimize the computed resolution.

ring A=0,(x,y),(c,ds);
ideal I=x,y;
resolution Re=mres(I,0);

Typing Re; displays a pictorial description of the computed resolution, where
the exponents are the ranks of the free modules and the lower index i cor-
responds to the index of the respective free module Fi in the resolution of
M = A/I (see Definition 2.4.10).

Re;
//-> 1 2 1
//-> A <-- A <-- A
//->
//-> 0 1 2

The corresponding list of matrices ϕi is displayed when typing print(Re);.
More precisely, Re[i] = Im(ϕi), hence the columns of ϕi are given by the
generators of Re[i].

print(Re);
//-> [1]:
//-> _[1]=x
//-> _[2]=y
//-> [2]:
//-> _[1]=[y,-x]

6 To obtain a minimal free resolution of F0/I , use mres(prune(I),0).
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This is an example of the resolution of Q = A/〈x, y〉, as A = Q[x, y]〈x,y〉–
module:

0→ Q[x, y]〈x,y〉

(
y

−x
)

−−−−→ Q[x, y]2〈x,y〉
(x,y)−−−→ Q[x, y]〈x,y〉 → Q → 0 .

We can see that the Betti numbers bk(A/〈x, y〉) are 1, 2 and 1. Let us compute
them with Singular:

betti(Re); //intmat of Betti numbers
//-> 1,2,1

Now we consider an example of a cyclic infinite minimal resolution of the mod-
ule M = R2/

〈(
x
0

)
,
(
0
y

)〉
over the local ring R = A/〈xy〉 with A = Q[x, y]〈x,y〉.

qring R=std(xy);
module M=[x,0],[0,y];
resolution Re=mres(M,4); //mres(M,k) stops at F_k
Re;
//-> 2 2 2 2 2
//-> R <-- R <-- R <-- R <-- R
//->
//-> 0 1 2 3 4

Let us have a look at the matrices in the computed resolution:

print(Re);
//-> [1]:
//-> _[1]=[x]
//-> _[2]=[0,y]
//-> [2]:
//-> _[1]=[y]
//-> _[2]=[0,x]
//-> [3]:
//-> _[1]=[x]
//-> _[2]=[0,y]
//-> [4]:
//-> _[1]=[y]
//-> _[2]=[0,x]

Definition 2.4.13. Let K be a field, A be a graded K–algebra and M a
graded A–module: a homogeneous free resolution of M is a resolution

· · · → Fk+1
ϕk+1−−−→ Fk → . . .

ϕ1−→ F0 →M → 0

such that the Fk are finitely generated free A–modules,

Fk =
⊕

j∈Z

A(−j)bj−k,k ,
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and the ϕk are homogeneous maps (of degree 0). Such a resolution is called
minimal , if ϕk(Fk) ⊂ mFk−1, where m is the ideal generated by all elements
of positive degree. Then the numbers bj,k =: bj,k(M) are called graded Betti
numbers of M and bk(M) :=

∑
j bj,k(M) is called the k–th Betti number of

M .

The following theorem shows that the graded Betti numbers of M are well–
defined.

Theorem 2.4.14. Let K be a field, A be a graded K–algebra and M be a
finitely generated graded A–module. Then M has a minimal free resolution.
The numbers bj,k and, in particular, the rank of Fk, in a minimal free reso-
lution are independent of the resolution.

The proof is similar to the proof of Theorem 2.4.11 and left as Exercise 2.4.3.

SINGULAR Example 2.4.15 (homogeneous resolution and graded
Betti numbers).
We compute a minimal resolution of a homogeneous module M = A/I, with
A = Q[w, x, y, z] and I = 〈xyz, wz, x+ y〉, and compute its graded Betti num-
bers.

ring A = 0,(w,x,y,z),(c,dp);
ideal I = xyz, wz, x+y;
resolution Re = mres(I,0);
Re;
//-> 1 3 3 1
//-> A <-- A <-- A <-- A
//->
//-> 0 1 2 3

print(Re); //display the matrices in the resolution
//-> [1]:
//-> _[1]=x+y
//-> _[2]=wz
//-> _[3]=y2z
//-> [2]:
//-> _[1]=[0,y2,-w]
//-> _[2]=[wz,-x-y]
//-> _[3]=[y2z,0,-x-y]
//-> [3]:
//-> _[1]=[x+y,y2,-w]
//-> [4]:
//-> _[1]=0
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To show the correct format of the matrices, we use print(matrix(Re[i])):

print(matrix(Re[2]));
//-> 0, wz, y2z,
//-> y2,-x-y,0,
//-> -w,0, -x-y

We compute the matrix of graded Betti numbers
(
bj,k(A/I)

)
: 7

betti(Re);
//-> 1,1,0,0,
//-> 0,1,1,0,
//-> 0,1,2,1

The print command allows attributes, like "betti", to format the output:

print(betti(Re),"betti"); //display graded Betti numbers
//-> 0 1 2 3
//-> ------------------------------
//-> 0: 1 1 - -
//-> 1: - 1 1 -
//-> 2: - 1 2 1
//-> ------------------------------
//-> total: 1 3 3 1

Hence, we have computed the following (minimal) homogeneous free resolu-
tion (written as displayed by Re;):

0 ←− A/I ←− A(0)
(x+y,wz,xyz)←−−−−−−−−−

A(−1)
⊕

A(−2)
⊕

A(−3)

⎛

⎝
0 wz y2z

y2 −x−y 0
−w 0 −x−y

⎞

⎠

←−−−−−−−−−−−−−−

A(−4)
⊕

A(−3)
⊕

A(−4)
( x+y
yz
−w

)

←−−−−− A(−5)←− 0 .

Exercises

2.4.1. Let M,N be A–modules and 0 →M
ϕ−→ N

ψ−→ As → 0 be an exact
sequence, then this sequence splits, that is, there exists an isomorphism
λ : M ⊕As → N such that the diagram

0 �� M
ϕ

�� N
ψ

�� As �� 0

0 �� M
i

�� M ⊕As
λ

��

π
�� As �� 0

is commutative (λ ◦ i = ϕ, ψ ◦ λ = π).
7 Note that bj,k(I) = bj−1,k+1(A/I) for all k ≥ 0.
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2.4.2. Let A = Q[x, y]〈x,y〉/〈xy〉. Compute the Betti numbers of the A–mod-
ule M =

〈(
x2

y

)
,
( x
y

)〉
.

2.4.3. Prove Theorem 2.4.14.
(Hint: Use the fact that kernel and image of a homogeneous map are graded
with the induced grading and choose in every step a minimal system of gen-
erators using Nakayama’s Lemma (Exercise 2.2.6)).

2.4.4. Prove (2) of Proposition 2.4.3.

2.4.5. With the notations of the Snake Lemma (Lemma 2.4.8) prove that

(1) 0 → Ker(λ1)→ Ker(λ2) → Ker(λ3) ,
(2) Coker(λ1)→ Coker(λ2)→ Coker(λ3) → 0 ,

are exact sequences.

2.4.6. Let A be a ring and S ⊂ A a multiplicatively closed subset. Let
M ′ →M →M ′′ be an exact sequence of A–modules. Prove that the induced
sequence M ′

S →MS →M ′′
S of S−1A–modules is exact.

2.4.7. Let A be a ring and · · · →Mi+1 →Mi →Mi−1 → · · · be a complex
of A–modules. Prove that the complex is exact if and only if the induced com-
plexes · · · → (Mi+1)P → (Mi)P → (Mi−1)P → · · · of AP –modules are exact
for all prime ideals P ⊂ A.

2.4.8. Compute a minimal free resolution of Q as Q[x1, . . . , xn]–module for
small n by using Singular. Do you see a pattern, at least for the Betti
numbers ?
(Hint: if you do not succeed, you may have a look at Sections 2.5 and 7.6.)

2.4.9. Let A = Q[x, y, z]〈x,y,z〉/〈x3+ y3+ z3〉. Use Singular to compute sev-
eral steps of a minimal free resolution of 〈x, y, z〉 as A–module, until you see
a periodicity. Prove that the resolution is infinite.

2.5 Computing Resolutions and the Syzygy Theorem

Let K be a field and > a monomial ordering on K[x]r. Again R denotes the
localization of K[x] with respect to S>.

We shall give a method, using standard bases, to compute syzygies and,
more generally, free resolutions of finitely generated R–modules. Syzygies
and free resolutions are very important objects and basic ingredients for
many constructions in homological algebra and algebraic geometry. On the
other hand, the use of syzygies gives a very elegant way to prove Buchberger’s
criterion for standard bases. Moreover, a close inspection of the syzygies of the
generators of an ideal allows detection of useless pairs during the computation
of a standard basis.
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In the following definition R can be an arbitrary ring.

Definition 2.5.1. A syzygy or relation between k elements f1, . . . , fk of an
R–module M is a k–tuple (g1, . . . , gk) ∈ Rk satisfying

k∑

i=1

gifi = 0 .

The set of all syzygies between f1, . . . , fk is a submodule of Rk. Indeed, it is
the kernel of the ring homomorphism

ϕ : F1 :=
k⊕

i=1

Rεi −→M , εi �−→ fi ,

where {ε1, . . . , εk} denotes the canonical basis of Rk. ϕ surjects onto the
R–module I := 〈f1, . . . , fk〉R and

syz(I) := syz(f1, . . . , fk) := Ker(ϕ)

is called the module of syzygies of I with respect to the generators f1, . . . , fk. 8

Remark 2.5.2. If R is a local (respectively graded) ring and {f1, . . . , fk},
{g1, . . . , gk} are minimal sets of (homogeneous) generators of I then

syz(f1, . . . , fk) ∼= syz(g1, . . . , gk) ,

hence, syz(I) is well–defined up to (graded) isomorphism (cf. Exercises 2.5.7
and 2.5.8). More generally, setting syz0(I) := I, the modules

syzk(I) := syz
(
syzk−1(I)

)
,

k ≥ 1, are well–defined up to (graded) isomorphisms. We call syzk(I) the k–th
syzygy module of I. 9

Note that the k–th Betti number bk(I) is the minimal number of genera-
tors for the k–th syzygy module syzk(I). Moreover, in the homogeneous case,
the graded Betti number bj,k(I) is the minimal number of generators of the
k–th syzygy module syzk(I) in degree j + k.

8 In general, the notion syz(I) is a little misleading, because it depends on the
chosen system of generators of I . But it can be proved (cf. Exercise 2.5.6) that
for I = 〈f1, . . . , fk〉 = 〈g1, . . . , gs〉,

syz(f1, . . . , fk) ⊕ Rs ∼= syz(g1, . . . , gs) ⊕ Rk .

For this reason, we keep using the notation syz(I) as long as we are not interested
in a special system of generators.

9 We also write syzR(I), respectively syzR
k (I), if we want to emphasize the baser-

ing R.
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The following lemma provides a method to compute syzygies for submodules
of Rr, R = K[x]>, x = (x1, . . . , xn).

Lemma 2.5.3. Let I = 〈f1, . . . , fk〉R ⊂ Rr =
⊕r

i=1 Rei, with e1, . . . , er the
canonical basis of Rr. Consider the canonical embedding

Rr ⊂ Rr+k =
r+k⊕

i=1

Rei

and the canonical projection π : Rr+k → Rk. Let G = {g1, . . . , gs} be a stan-
dard basis of F = 〈f1 + er+1, . . . , fk + er+k〉R with respect to an elimination
ordering for e1, . . . , er (for example, the ordering (c,<): xαei < xβej if j < i

or j = i and xα < xβ). Suppose that {g1, . . . , g	} = G ∩⊕r+k
i=r+1Rei, then

syz(I) = 〈π(g1), . . . , π(g	)〉 .

Proof. G ∩⊕r+k
i=r+1Rei is a standard basis of F ∩⊕r+k

i=r+1Rei (see Lemma
2.8.2, below). On the other hand, π

(
F ∩⊕r+k

i=r+1Rei
)

= syz(I). Namely,
let h ∈ F ∩⊕r+k

i=r+1Rei, that is, h =
∑r+k
ν=r+1 hνeν =

∑k
j=1 bj(fj + er+j) for

suitable bj ∈ R. This implies that
∑k

j=1 bjfj = 0 and bj = hr+j .

Conversely, if h = (h1, . . . , hk) ∈ syz(I), that is, if
∑k
ν=1 hνfν = 0, then∑k

ν=1 hν(fν + er+ν) ∈ F ∩
⊕r+k

i=r+1Rei.

Algorithm 2.5.4 (syz(f1, . . . , fk)).

Let > be any monomial ordering on Mon(x1, . . . , xn) and R = K[x]>.

Input: f1, . . . , fk ∈ K[x]r.
Output: S = {s1, . . . , s	} ⊂ K[x]k such that 〈S〉 = syz(f1, . . . , fk) ⊂ Rk.

• F := {f1 + er+1, . . . , fk + er+k}, where e1, . . . , er+k denote the canonical
generators of Rr+k = Rr ⊕Rk such that f1, . . . , fk ∈ Rr =

⊕r
i=1 Rei;

• compute a standard basis G of 〈F 〉 ⊂ Rr+k with respect to (c,>);
• G0 := G ∩⊕r+k

i=r+1Rei = {g1, . . . , g	}, with gi =
∑k

j=1 aijer+j, i = 1, . . . , �;
• si := (ai1, . . . aik), i = 1, . . . , �;
• return S = {s1, . . . , s	}.
SINGULAR Example 2.5.5 (syzygies).
We apply first the built–in command syz, while, in the second example, we
proceed as in Lemma 2.5.3 (resp. Algorithm 2.5.4). The latter method gives
more flexibility in choosing a faster ordering for specific examples.

ring R=0,(x,y,z),(c,dp);
ideal I=xy,yz,xz;
module M=syz(I); //the module of syzygies of xy,yz,xz
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M;
//-> M[1]=[0,x,-y]
//-> M[2]=[z,0,-y]

module T=[xy,1,0,0],[yz,0,1,0],[xz,0,0,1];
module N=std(T);
N; //the first two elements give the syzygies
//-> N[1]=[0,0,x,-y]
//-> N[2]=[0,z,0,-y]
//-> N[3]=[yz,0,1]
//-> N[4]=[xz,0,0,1]
//-> N[5]=[xy,1]

Remark 2.5.6. Let R be a ring, I = 〈f1, . . . , fs〉 ⊂ R an ideal, and

M = 〈m1, . . . ,mk〉 ⊂ (R/I)r

a submodule. Then M is an R– as well as an R/I–module, and we denote
by syz

(
M
)

:= syzR(m1, . . . ,mk) and syzR/I
(
M
)

:= syzR/I
(
m1, . . . ,mk

)
the

respective modules of syzygies. They can be computed as follows: let e1, . . . , er
be the canonical basis of Rr, and let m1, . . . ,mk ∈ Rr be representatives of
m1, . . . ,mk. Moreover, let

M := 〈m1, . . . ,mk, f1e1, . . . , f1er, . . . , fse1, . . . , fser〉 ⊂ Rr

and syz(M) = {s1, . . . , s	}, where si = (si1, . . . , siN ), N = k + rs. Then

syz
(
M
)

= 〈s1, . . . , s	〉 ⊂ Rk ,

where si = (si1, . . . , sik), i = 1, . . . , �. Now syzR/I
(
M
)

is the image of syz
(
M
)

when projecting modulo I.

Successively computing syzygies of syzygies, we obtain an algorithm to com-
pute free resolutions up to any given length.

Algorithm 2.5.7 (Resolution(I,m)).

Let > be any monomial ordering on Mon(x1, . . . , xn) and R = K[x]>.

Input: f1, . . . , fk ∈ K[x]r, I = 〈f1, . . . , fk〉 ⊂ Rr, and m a positive integer.
Output: A list of matrices A1, . . . , Am with Ai ∈ Mat(ri−1× ri,K[x]), i =

1, . . . ,m, such that

. . . −→ Rrm
Am−−→ Rrm−1 −→ . . . −→ Rr1

A1−−→ Rr −→ Rr/I −→ 0

is a free resolution of Rr/I.

• i := 1;
• A1 := matrix(f1, . . . , fk) ∈Mat(r × k,K[x]);
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• while (i < m)
i := i+ 1;
Ai := syz(Ai−1);

• return A1, . . . , Am.

With the notation of Definition 2.5.1, we shall now define a monomial order-
ing on F1, the free R–module containing syz(I), I = 〈f1, . . . , fk〉 ⊂ Rr =: F0,
fi �= 0 for all i, which behaves perfectly well with respect to standard bases
of syzygies. This ordering was first introduced and used by Schreyer [204].

We define the Schreyer ordering as follows

xαεi >1 x
βεj :⇐⇒LM(xαfi) > LM(xβfj) or

LM(xαfi) = LM(xβfj) and i > j.

The left–hand side >1 is the new ordering on F1 and the right–hand side >
is the given ordering on F0. The same ordering on R is induced by > and >1.
Note that the Schreyer ordering depends on f1, . . . , fk.

Now we are going to prove Buchberger’s criterion, which states that
G = {f1, . . . , fk} is a standard basis of I = 〈f1, . . . , fk〉, if, for all i < j,
NF

(
spoly(fi, fj) | Gij

)
= 0 for suitable Gij ⊂ G. We give a proof by using

syzygies, which works for arbitrary monomial orderings and which is differ-
ent from Schreyer’s (cf. [204], [205]) original proof (cf. also [66]), although the
basic ideas are due to Schreyer. Our proof gives, at the same time, a proof of
Schreyer’s result that the syzygies derived from a standard representation of
spoly(fi, fj) form a standard basis of syz(I) for the Schreyer ordering.

We introduce some notations. For each i �= j such that fi and fj have their
leading terms in the same component, say LM(fi) = xαieν , LM(fj) = xαjeν ,
we define the monomial

mji := xγ−αi ∈ K[x] ,

where γ = lcm(αi, αj). If ci = LC(fi) and cj = LC(fj) then

mjifi − ci
cj
mijfj = spoly(fi, fj) .

Assume that we have a standard representation

mjifi − ci
cj
mijfj =

k∑

ν=1

a(ij)
ν fν , a(ij)

ν ∈ R .

For i < j such that LM(fi) and LM(fj) involve the same component, define

sij := mjiεi − ci
cj
mijεj −

∑

ν

a(ij)
ν εν .

Then sij ∈ syz(I) and it is easy to see that
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Lemma 2.5.8. With the notations introduced above, LM(sij) = mjiεi.

Proof. Since LM(mijfj) = LM(mjifi) and i < j, the definition of >1 gives
mjiεi > mijεj. From the defining property of a standard representation we
obtain

LM(a(ij)
ν fν) ≤ LM

(
mjifi − ci

cj
mijfj

)
< LM(mjifi)

and, hence, the claim.

Theorem 2.5.9. Let G = {f1, . . . , fk} be a set of generators of I ⊂ Rr. Let

M :=
{
(i, j)

∣∣ 1 ≤ i < j ≤ k , LM(fi),LM(fj) involve the same component
}
,

and let J ⊂M . Assume that

• NF
(
spoly(fi, fj)

∣∣ Gij
)

= 0 for some Gij ⊂ G and (i, j) ∈ J .
• 〈 {mjiεi | (i, j) ∈ J}

〉
=

〈 {mjiεi | (i, j) ∈M}
〉

for i = 1, . . . , r .

Then the following statements hold:

(1) G is a standard basis of I (Buchberger’s criterion).
(2) S := {sij | (i, j) ∈ J} is a standard basis of syz(I) with respect to the

Schreyer ordering. In particular, S generates syz(I).

Proof. We give a proof of (1) and (2) at the same time (recall the notations
of Definition 2.5.1).

Take any f ∈ I and a preimage g ∈ F1 of f ,

g =
k∑

i=1

aiεi, f = ϕ(g) =
k∑

i=1

aifi .

This is possible as G generates I. In case (1), we assume f �= 0, in case (2)
f = 0.

Consider a standard representation of ug, u a unit,

ug = h+
∑

(i,j)∈J
aijsij , aij ∈ R ,

where h =
∑
j hjεj ∈ F1 is a normal form of g with respect to S for some

weak normal form on F1 (we need only know that it exists). We can assume,
if h �= 0,

h = h1ε1 + · · ·+ hkεk

and LM(hνεν) �∈ 〈LM(sij) |(i,j)∈J 〉 = 〈mjiεi |(i,j)∈J 〉 by Lemma 2.5.8 and Re-
mark 2.3.4 for all ν such that hν �= 0. This shows

mjν � LM(hν)
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for all ν, j such that fj and fν have the leading term in the same component.
Since ug − h ∈ 〈S〉 ⊂ syz(I), we obtain

uf = ϕ(ug) = ϕ(h) =
∑

j

hjfj .

Assume that for some j �= ν, LM(hjfj) = LM(hνfν) and let LM(fν) = xανek,
LM(fj) = xαjek. Then LM(hνfν) is divisible by xανek and by xαjek, hence,

lcm(xαν , xαj ) | LM(hνfν) = LM(hν)xαν ek .

But mjν = lcm(xαν , xαj )/xαν . This contradicts mjν � LM(hν).
In case (1) we obtain LM(f) = LM(hνfν) ∈ L(G) for some ν and, hence,

G is a standard basis by definition. In case (2) it shows that h �= 0 leads to a
contradiction and S is a standard basis by Theorem 2.3.13, (2) ⇒ (1), which
was already proved.

Lemma 2.5.10 (Chain Criterion). With the notations of Theorem 2.5.9
assume that (i, j) ∈M and (j, �) ∈M . Let LM(fi) = xαieν , LM(fj) = xαjeν
and LM(f	) = xα�eν . If xαj divides lcm(xαi , xα�) then m	iεi ∈ 〈mjiεi〉. In
particular, if si	, sij ∈ S then S \ {si	} is already a standard basis of syz(I).

Proof. xαj | lcm(xαi , xα�) implies that lcm(xαi , xαj ) | lcm(xαi , xα�). Divid-
ing by xαi we obtain that mji divides m	i.

Remark 2.5.11. The chain criterion can be used to refine the Standard Basis
Algorithm 2.3.8. If (fi, fj), (fi, f	) and (fj , f	) are in the pair set P and (with
the notations of the lemma) xαj | lcm(xαi , xα�) then we can delete (fi, f	)
from P . For a generalization of the criterion cf. [168]. Note that the Product
Criterion (Exercise 1.7.1) is only applicable for modules with all module
components 0 except one.

We want to illustrate this with the following example.

Example 2.5.12. Let I = 〈u5− v5, v5−x5, x5− y5, y5− z5, u4v+ v4x+x4y+
y4z + z4u〉 ⊂ Q[u, v, x, y, z]. The reduced standard basis of this ideal with
respect to the ordering dp has 149 elements.

Using Buchberger’s criterion (Theorem 2.3.13), we see that during the
computation of the standard basis

(
149
2

)
= 11026 pairs have to be considered.

In the implementation of Buchberger’s algorithm in Singular, the chain
criterion is applied 10288 times and the product criterion 166 times. There-
fore, instead of reducing 11026 s–polynomials, we only need to consider 572
(about 5 %) of them. This shows that these criteria have an enormous influ-
ence on the performance of Buchberger’s algorithm.

We shall now see, as an application, that Hilbert’s syzygy theorem holds for
the rings R = K[x]>, stating that each finitely generated R–module has a
free resolution of length at most n, the number of variables.
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Lemma 2.5.13. Let G = {g1, . . . , gs} be a minimal standard basis of the
submodule I ⊂ Rr =

⊕r
i=1Rei such that LM(gi) ∈ {e1, . . . , er} for all i. Let

J denote the set of indices j such that ej �∈ {LM(g1), . . . ,LM(gs)}. Then

I =
s⊕

i=1

Rgi, Rr/I ∼=
⊕

j∈J
Rej .

Proof. The set G′ := G ∪ {ej | j ∈ J} is R–linearly independent, since the
leading terms are. This shows that both sums above are direct.

Let f ∈ Rr and consider a weak normal form h of f with respect to G′.
Assuming h �= 0, we would have LM(h) �∈ 〈e1, . . . , er〉, a contradiction. Hence,
h = 0, that is, f ∈ I + 〈{ej | j ∈ J}〉.
Lemma 2.5.14. Let G = {g1, . . . , gs} be a standard basis of I ⊂ Rr, or-
dered in such a way that the following holds: if i < j and LM(gi) = xαieν ,
LM(gj) = xαjeν for some ν, then αi ≥ αj lexicographically. Let sij denote the
syzygies defined above. Suppose that LM(g1), . . . ,LM(gs) do not depend on
the variables x1, . . . , xk. Then the LM(sij), taken with respect to the Schreyer
ordering, do not depend on x1, . . . , xk+1.

Proof. Given sij , then i < j and LM(gi) and LM(gj) involve the same com-
ponent, say eν . By assumption, LM(gi) = xαieν , LM(gj) = xαjeν satisfy
αi = (0, . . . , αi,k+1, . . . ) and αj = (0, . . . , αj,k+1, . . . ) with αi,k+1 ≥ αj,k+1.
Therefore, LM(sij) = mjiεi, mji = xlcm(αi,αj)−αi , does not depend on xk+1.

Applying the lemma successively to the higher syzygy modules, we obtain

Theorem 2.5.15 (Hilbert’s Syzygy Theorem). Let > be any monomial
ordering on K[x] = K[x1, . . . , xn], and let R = K[x]> be the associated ring.
Then any finitely generated R–module M has a free resolution

0 → Fm → Fm−1 → · · · → F0 →M → 0

of length m ≤ n, where the Fi are free R–modules.

Proof. Since R is Noetherian, M has a presentation

0→ I → F0 →M → 0 ,

with F0 =
⊕r0

i=1Rei, and I being finitely generated. Let G = {g1, . . . , gs}
be a standard basis of I and assume that the LM(gi) do not depend on the
variables x1, . . . , xk, k ≥ 0. By Theorem 2.5.9, the syzygies sij =: s(1)ij are
a standard basis of syz(I) and, by Lemma 2.5.14, we may assume that the
LM(s(1)ij ) do not depend on x1, . . . , xk+1. Hence, we obtain an exact sequence

0 → Ker(ϕ1) = syz(I) → F1
ϕ1−→ F0 →M → 0
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F1 =
⊕s

i=1 Rεi, ϕ1(εi) = gi, with syz(I) satisfying analogous properties as I.
We can, therefore, construct by induction an exact sequence

0 → Ker(ϕn−k) → Fn−k
ϕn−k−−−→ Fn−k−1 → . . .

ϕ2−→ F1 → F0 →M → 0

with Fi free of rank ri and Ker(ϕn−k) given by a standard basis {s(n−k)ij }
such that none of the variables appears in LM(s(n−k)ij ). By Lemma 2.5.13,
the quotient Fn−k/Ker(ϕn−k) is a free R–module, and replacing Fn−k by
Fn−k/Ker(ϕn−k) we obtain the desired free resolution.

Algorithm 2.5.16 (SResolution).

Let > be any monomial ordering on Mon(x1, . . . , xr), R = K[x]>.

Input: >m any module ordering on Rr, ∅ �= G = {g1, . . . , gk} ⊂ K[x]r an
interreduced standard basis of I = 〈G〉 ⊂ Rr w.r.t. >m.

Output: A list of matrices A1, . . . , Am with Ai ∈ Mat(ri−1× ri,K[x]), i =
1, . . . ,m, such that m ≤ n and

0 −→ Rrm
Am−−→ Rrm−1 −→ . . . −→ Rr1

A1−−→ Rr −→ Rr/I −→ 0

is a free resolution.

• Renumber the elements g1, . . . , gk of G such that the following holds: if
i < j and LM(gi) = xαieν , LM(gj) = xαjeν for some ν, then αi >lp αj .

• Set A1 = (g1, . . . , gk) ∈ Mat(r × k,K[x]).
• With the notations of Theorem 2.5.9, choose a subset J ⊂M such that〈 {mjiεi | (i, j) ∈ J}

〉 ⊃ {mjiεi | (i, j) ∈M} for i = 1, . . . , r.
• For (i, j) ∈ J compute a standard representation

uij · spoly(gi, gj) =
k∑

ν=1

a(ij)
ν gν ,

uij ∈ K[x] ∩R∗, a(ij)
ν ∈ K[x], and set10

sij := uijmjiεi − ci
cj
uijmijεj −

k∑

ν=1

a(ij)
ν εν .

• Set S := InterReduction({sij | (i, j) ∈ J}).
• If, for each s ∈ S, LM(s) ∈ {ε1, . . . , εk} (where the leading monomial is

taken w.r.t. the Schreyer ordering >1)
then

set J ′ :=
{
1 ≤ j ≤ k

∣∣ εj �∈ {LM(s) | s ∈ S}} ,

10 Recall ci = LC(gi) and mji = xγ−αi with γ = lcm(αi, αj) and LM(gi) = xαieν ,
LM(gj) = xαj eν .
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delete in the matrix A1 all columns with index j �∈ J ′ ,
return(A1) ,

else
list L = A1, SResolution(>1, S),
return(L).

Note that the free resolution computed by SResolution(>m, G) is, in gen-
eral, not minimal (in the local, respectively homogeneous case). But, it can be
minimized afterwards, following the procedure described on page 127 (apply-
ing Gaussian elimination and deleting rows and columns of the corresponding
matrices), with the only difference that each column operation on the matrix
Ai has to be succeeded by a certain row operation on Ai+1 (and vice versa,
cf. Exercise 2.5.4).

Example 2.5.17. Let R := K[x, y, z] with degree reverse lexicographical or-
dering >dp, let >m= (c,>dp), and consider

G := {yz + z2, y2 + xz, xy + z2, z3, xz2, x2z}
(which is an interreduced standard basis of I := 〈G〉 ⊂ R). After renumber-
ing the elements of G such that LM(g1) >lp LM(g2) >lp · · · >lp LM(g6), we
obtain

A1 := (x2z︸︷︷︸
g1

, xy + z2

︸ ︷︷ ︸
g2

, xz2
︸︷︷︸
g3

, y2 + xz︸ ︷︷ ︸
g4

, yz + z2

︸ ︷︷ ︸
g5

, z3
︸︷︷︸
g6

) ∈ Mat(1× 6,K[x, y, z]) .

The respective monomials mjiεi, 1 ≤ i < j ≤ 6, are given in the following
table:

i\j 2 3 4 5 6
1 yε1 zε1 y2ε1 yε1 z2ε1
2 −− z2ε2 yε2 zε2 z3ε2
3 −− −− y2ε3 yε3 zε3
4 −− −− −− zε4 z3ε4
5 −− −− −− −− z2ε5

Hence, we may choose

J :=
{
(1, 2), (1, 3), (2, 4), (2, 5), (3, 5), (3, 6), (4, 5), (5, 6)

}

and compute

s1,2 = yε1 − xzε2 + xε6 ,
s1,3 = zε1 − xε3 ,
s2,4 = yε2 − xε4 + ε1 − zε5 + ε6 ,
s2,5 = zε2 − xε5 + ε3 − ε6 ,
s3,5 = yε3 − xzε5 + xε6 ,
s3,6 = zε3 − xε6 ,
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s4,5 = zε4 − yε5 − ε3 + zε5 − ε6 ,
s5,6 = z2ε5 − yε6 − zε6 .

The set S := {s1,2, s1,3, s2,4, s2,5, s3,5, s3,6, s4,5, s5,6} is an interreduced stan-
dard basis for syz(I) (w.r.t. the Schreyer ordering >1), and we are left with
computing SResolution(>1, S). By accident, the elements of S are already
ordered as needed, and we set

A2 :=

⎛

⎜⎜⎜⎜⎜⎜⎝

y z 1 0 0 0 0 0
−xz 0 y z 0 0 0 0

0 −x 0 1 y z −1 0
0 0 −x 0 0 0 z 0
0 0 −z −x −xz 0 −y + z z2

x 0 1 −1 x −x −1 −y − z

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We see that the set M of pairs (i, j), 1 ≤ i < j ≤ 8, such that the leading
monomials of the i–th and j–th element of S involve the same components
consists of precisely 3 elements: M =

{
(1, 2), (3, 4), (5, 6)

}
. We compute

s
(1)
1,2 = zε1 − yε2 + xzε4 − xε5 − xε6 ,

s
(1)
3,4 = zε3 − yε4 − ε2 + ε5 + xε7 + ε8 ,

s
(1)
5,6 = zε5 − yε6 + xε8 ,

Again, S(1) :=
{
s
(1)
1,2, s

(1)
3,4, s

(1)
5,6

}
is an interreduced standard basis for syz(〈S〉).

Since the leading monomials of the elements of S(1) (w.r.t. the Schreyer or-
dering >2) involve different components, SResolution(>2, S

(1)) returns

A3 :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z 0 0
−y −1 0
0 z 0
xz −y 0
−x 1 z
−x 0 −y
0 x x
0 1 x

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Finally, we have computed the free resolution

0 −→ R3 A3−−→ R8 A2−−→ R6 A1−−→ R −→ R/I −→ 0 .

Note that I is a homogeneous ideal, hence R/I has the structure of a graded
K-algebra. Now we can easily derive the Betti numbers of R/I from the
computed (non–minimal) free resolution (without computing the minimal
resolution). To do so, we consider the matrices A1, A2, A3 mod m = 〈x, y, z〉,
apply Gaussian elimination in K = R/m as indicated above (for minimizing
the resolution), and delete the respective rows and columns (cf. also Exercise
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2.5.4). We obtain that b3(R/I) = 2, b2(R/I) = 4, b1(R/I) = 3, b0(R/I) = 1,
that is, the minimal resolutions of R/I look as follows

0 −→ R2 −→ R4 −→ R3 −→ R −→ R/I −→ 0 .

The implemented algorithm sres in Singular is a modification of SRes-

olution. For efficiency reasons the generators (with leading monomials in
the same components) are not ordered lexicographically but with respect to
>dp. Hence, sres does not necessarily compute a free resolution of finite
length, but stops the computation after n+ 1 steps (n being the number of
variables of the basering). Anyhow, we can obtain the Betti numbers (using
the built–in command betti), respectively minimize the obtained resolution
(using minres).

SINGULAR Example 2.5.18 (Schreyer resolution).

ring R=0,(x,y,z),(c,dp);
ideal I=yz+z2,y2+xz,xy+z2,z3,xz2,x2z;

First compute a minimal free resolution of R/I:

resolution Re=mres(I,0);
Re;
//-> 1 3 4 2
//-> R <-- R <-- R <-- R
//->
//-> 0 1 2 3

Display the matrices in the resolution:

print(Re);
//-> [1]:
//-> _[1]=yz+z2
//-> _[2]=y2+xz
//-> _[3]=xy+z2
//-> [2]:
//-> _[1]=[0,xy+z2,-y2-xz]
//-> _[2]=[y2+xz,-yz-z2]
//-> _[3]=[xy+z2,0,-yz-z2]
//-> _[4]=[x2-yz,-xz+z2,-xz+yz]
//-> [3]:
//-> _[1]=[0,x-z,x-y,-y-z]
//-> _[2]=[z,z,-x,y]

Now apply the modification of Schreyer’s algorithm to compute a free reso-
lution for R/I and display the matrices:



2.5 Computing Resolutions and the Syzygy Theorem 169

resolution Se=sres(I,0);
Se;
//-> 1 6 8 3
//-> R <-- R <-- R <-- R
//->
//-> 0 1 2 3
//-> resolution not minimized yet

print(Se);
//-> [1]:
//-> _[1]=x2z
//-> _[2]=xz2
//-> _[3]=z3
//-> _[4]=xy+z2
//-> _[5]=y2+xz
//-> _[6]=yz+z2
//-> [2]:
//-> _[1]=[z,-x]
//-> _[2]=[y,0,x,-xz]
//-> _[3]=[0,z,-x]
//-> _[4]=[0,y,z,-z2]
//-> _[5]=[0,0,y+z,0,0,-z2]
//-> _[6]=[1,0,1,y,-x,-z]
//-> _[7]=[0,1,-1,z,0,-x]
//-> _[8]=[0,-1,-1,0,z,-y+z]
//-> [3]:
//-> _[1]=[y,-z,0,x]
//-> _[2]=[0,0,y+z,-z,x,0,-z2]
//-> _[3]=[-1,0,-1,1,-1,z,-y+z,x]

Finally, let us minimize the computed resolution:

print(minres(Se));
//-> [1]:
//-> _[1]=xy+z2
//-> _[2]=y2+xz
//-> _[3]=yz+z2
//-> [2]:
//-> _[1]=[-2y2-xz-yz,2xy+xz-yz,-x2+y2+xz+yz]
//-> _[2]=[-xz-z2,-xz+z2,x2+xy-yz+z2]
//-> _[3]=[-yz-z2,yz+z2,xy-y2-xz+z2]
//-> _[4]=[yz+z2,yz+z2,-xy-y2-xz-z2]
//-> [3]:
//-> _[1]=[-z,-y,x+y,-y]
//-> _[2]=[0,y+z,-z,x]
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Exercises

2.5.1. Find a standard basis with respect to the lexicographical ordering and
a standard basis of the syzygies for I = 〈x2, y2, xy+ yz〉. Compare Schreyer’s
method and the method of Lemma 2.5.3.

2.5.2. Let I ⊂ K[x1, . . . , xn] be a homogeneous ideal. Give an algorithm to
compute a minimal resolution of K[x1, . . . , xn]/I, modifying the algorithm
Resolution.

2.5.3. Compute a minimal resolution for I = 〈x2, y2, xy + yz〉 ⊂ K[x, y, z].

2.5.4. Give an algorithm to obtain a minimal resolution in the case of local
rings from Schreyer’s resolution.

2.5.5. Prove Schanuel’s Lemma: Let R be a Noetherian ring andM a finitely
generated R–module. Moreover, assume that the following sequences are ex-
act:

0 −→ K1 −→ Rn1 π1−→M −→ 0 ,

0 −→ K2 −→ Rn2 π2−→M −→ 0 .

Then K1 ⊕Rn2 ∼= K2 ⊕Rn1 .
(Hint: Prove that both of them are isomorphic to Ker(Rn1⊕Rn2 π1+π2−−−−→M).)

2.5.6. Let R be a Noetherian ring and M = 〈f1, . . . , fk〉 = 〈g1, . . . , gs〉 ⊂ Rr.
Prove that syz(f1, . . . , fk)⊕Rs ∼= syz(g1, . . . , gs)⊕Rk.
2.5.7. Let R be a local Noetherian ring, let M be a finitely generated R-
module, and let {f1, . . . , fk}, {g1, . . . , gk} be two minimal sets of genera-
tors. Prove that syz(f1, . . . , fk) ∼= syz(g1, . . . , gk), and conclude that the k–th
syzygy module syzk(M) is well–defined up to isomorphism.

2.5.8. Let R be a local Noetherian graded K–algebra, K a field, and let M
be a finitely generated graded R-module. Show that, for a system of homo-
geneous generators {f1, . . . , fk} of M , the module of syzygies syz(f1, . . . , fk)
is a homogeneous submodule of Rk.

Moreover, show that for two minimal systems of homogeneous generators
{f1, . . . , fk}, {g1, . . . , gk} of M , the modules of syzygies are isomorphic as
graded R–modules.

Conclude that the k–th syzygy module syzk(M) is well–defined up to
graded isomorphism and that the Betti numbers of M depend only on the
graded isomorphism class of M .

2.5.9. Let f, g ∈ K[x]. Prove that gcd(f, g) and lcm(f, g) can be computed
using the syzygies of f and g. Write a Singular procedure to compute the
gcd and lcm.
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2.6 Modules over Principal Ideal Domains

In this section we shall study the structure of finitely generated modules over
principal ideal domains. It will be proved that they can be decomposed in
a unique way into a direct sum of cyclic modules with special properties.
Examples are given for the case of a univariate polynomial ring over a field.
We show how this decomposition can be computed by using standard bases
(actually, we need only interreduction).

Theorem 2.6.1. Let R be a principal ideal domain and M a finitely gener-
ated R–module, then M is a direct sum of cyclic modules.

Proof. Let Rm → Rn →M → 0 be a presentation of M given by the ma-
trix A = (aij) with respect to the bases B = {e1, . . . , en}, B′ = {f1, . . . , fm}
of Rn, Rm, respectively. If A is the zero–matrix, then M ∼= Rn, and we are
done. Otherwise, we may assume that a11 �= 0. We shall show that, for a
suitable choice of the bases, the presentation matrix has diagonal form, that
is, aij = 0 if i �= j. For some k > 1 with ak1 �= 0, let h be a generator of the
ideal 〈a11, ak1〉, and let a, b, c, d ∈ R be such that h = aa11 + bak1, a11 = ch,
ak1 = dh (we choose a := 1, b := 0, c := 1 if 〈a11〉 = 〈a11, ak1〉). Now we
change the basis B to B̄ = {ce1 + dek, e2, . . . , ek−1,−be1 + aek, ek+1, . . . , en}.
B̄ is a basis because det

(
c −b
d a

)
= 1. Let Ā = (āij) be the presentation ma-

trix with respect to this basis, then ā11 = h and āk1 = 0, while āi1 = ai1
for i �= 1, k. Note that the first row of A and A are equal if and only if
〈a11〉 = 〈a11, ak1〉. Doing this with every k > 1, we may assume that ak1 = 0
for k = 2, . . . , n.

Now, applying the same procedure to the transposed matrix tA (which
corresponds to base changes in B′), we obtain a matrix tA1,

A1 =

⎛

⎜⎜⎜⎜⎝

a
(1)
11 0 . . . 0
a
(1)
21 a

(1)
22 . . . a

(1)
2m

...
...

a
(1)
n1 a

(1)
n2 . . . a

(1)
nm

⎞

⎟⎟⎟⎟⎠
,

with the property: 〈a11〉 ⊂ 〈a(1)
11 〉 and a(1)

21 = · · · = a
(1)
n1 = 0, if 〈a11〉 = 〈a(1)

11 〉.
Repeating this procedure, if 〈a11〉 � 〈a(1)

11 〉, we obtain matrices A2, . . . , A	

such that 〈a11〉 ⊂ 〈a(1)
11 〉 ⊂ · · · ⊂ 〈a(	)

11 〉. The ring R is Noetherian and, there-
fore, we find an � such that 〈a(	)

11 〉 = 〈a(	+1)
11 〉. This implies that, in the matrix

A	+1, a
(	+1)
1j = 0 for all j and a

(	+1)
j1 = 0 for all j. After this step, we may

assume that, for the matrix A, with respect to the bases B and B′, a11 �= 0,
a1j = 0 and aj1 = 0 for all j > 1.

Now we use induction to prove that, for suitable changes of {e2, . . . , en}
and {f2, . . . , fm}, the presentation matrix A has diagonal form, that is,
aij = 0 for i �= j. Let Mi be the submodule of M generated by the image
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of the i–th basis element. Then M =
⊕n

i=1Mi and Mi
∼= R/〈aii〉 if i ≤ m,

respectively Mi
∼= R if i > m.

From the proof of Theorem 2.6.1 we deduce the following algorithm to com-
pute a diagonal form of a presentation matrix of a module over the polynomial
ring K[x], K a field.

Algorithm 2.6.2 (diagonalForm).

Input: A matrix A with entries in K[x].
Output: A matrix D in diagonal form such that D = BAC for invertible

matrices B,C with entries in K[x].

• if A has no non–zero entry, return A;
• exchange rows and columns to obtain a11 �= 0;
• while there exist i > 1 such that a1i �= 0 or ai1 �= 0

A := RowNF(A);
A := transpose (RowNF(transpose(A)));

• let A =
(
a11 0
0 A′

)
, then return

(
a11 0
0 diagonalForm(A′)

)
.

We use the following procedure RowNF(A) to obtain zeros in the first column
of the matrix, except at the place (1, 1). Let A = (aij) be an n×m–matrix
with entries in K[x] and assume that a11 �= 0.

Input: A = (aij) an n×m–matrix with entries in K[x], a11 �= 0.
Output: RowNF(A), an n×m–matrix, such that RowNF(A) = C · A for

a suitable invertible matrix C, and the first column is of the form
t(h, 0, . . . , 0) with h | a11.

• For i = 2, . . . , n
compute h := gcd(a11, ai1);
choose a, b, c, d ∈ K[x], such that h = aa11 + bai1, a11 = ch, ai1 = dh

(if a11 divides ai1 then choose a := 1, b := 0, c := 1);
change A by multiplying the first row with a and add to it the b–th

multiple of the i–th row;
change A by subtracting from the i–th row the d–th multiple of the

(new) first row;
• return A.

SINGULAR Example 2.6.3 (diagonal form).
In this example we shall use the Singular command interred to diagonalize
a matrix. This command replaces the procedure RowNF in Algorithm 2.6.2.
In the ring K[x] (with the two possible orderings dp and ds) consider, on
K[x]n =

⊕n
i=1K[x]ei, the ordering >= (C,dp), respectively (C,ds). Recall

that xαei < xβej if i < j, or if i = j, xα <dp xβ (respectively xα <ds xβ).
The command interred applied to a matrix interreduces the columns

of the matrix considered as elements of K[x]n (which is, in the case of one
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variable, the same as to compute a standard basis). The result is an upper
triangular matrix (the columns are ordered with respect to their leading
terms, the first column with the smallest leading term).

proc diagonalForm(matrix M)
{

int n=nrows(M);
int m=ncols(M);
matrix N,K;
matrix L[n][m];
while(N!=M)
{

N=M;
M=L;
K=transpose(interred(transpose(interred(N))));
M[1..nrows(K),1..ncols(K)]=K;

}
return(N);

}

Here are two examples:

option(redSB);
ring R=0,(x),(C,dp);

matrix M[2][3]=(x2+1)^2,0, 0,
0, x3-x-1,0;

matrix N1[2][2]=1, 1,
2,-2;

matrix N2[3][3]=1,2, 3,
4,5, 6,
7,8,-1;

M=N1*M*N2;
print(M);
//->x4+4x3+2x2-4x-3, 2x4+5x3+4x2-5x-3, 3x4+6x3+6x2-6x-3,
//->2x4-8x3+4x2+8x+10,4x4-10x3+8x2+10x+14,6x4-12x3+12x2+12x+18

Let us diagonalize M :

diagonalForm(M);
//-> _[1,1]=x7+x5-x4-x3-2x2-x-1
//-> _[1,2]=0
//-> _[1,3]=0
//-> _[2,1]=0
//-> _[2,2]=1
//-> _[2,3]=0
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The second example:

matrix M0[5][5]=1, 1,0, 0,0,
3,-1,0, 0,0,
0, 0,1, 1,0,
0, 0,3,-1,0,
0, 0,0, 0,2;

matrix N[5][5]=1, 1, -1, 1,-1,
2, 2, 1, 1, 0,
-1, 2, 2, 1, 1,
-2, 1, 1, -1, 0,
1, 2, -2, 1, 1;

Now we want to compute M = N−1M0N − xE5
11 and its normal form:

M=lift(N,freemodule(nrows(N)))*M0*N-x*freemodule(5);
print(M);
//-> -x+29/50,-71/50, -143/50,1/25, -71/50,
//-> 16/25, -x+66/25,3/25, 58/25, 16/25,
//-> -24/25, -24/25, -x+8/25,-12/25, -24/25,
//-> -12/25, -12/25, 29/25, -x-56/25,-12/25,
//-> -13/10, -13/10, -19/10, -7/5, -x+7/10

print(diagonalForm(M));
//-> x2-4,0, 0, 0,0,
//-> 0, x-2,0, 0,0,
//-> 0, 0, x2-4,0,0,
//-> 0, 0, 0, 1,0,
//-> 0, 0, 0, 0,1

Corollary 2.6.4. Let R be a principal ideal domain and M a finitely gener-
ated R–module. If M is torsion free, then M is free.

In the following we further analyze the structure of modules over a principal
ideal domain in order to obtain a unique decomposition.

Proposition 2.6.5. Let R be a principal ideal domain and M a finitely
generated R–module, then M = F ⊕ Tors(M), F a free submodule of M . If
M ∼= Rn ⊕ T , T a torsion module, then Rn ∼= F and T ∼= Tors(M).

Proof. M/Tors(M) is torsion free and, therefore, because of Corollary 2.6.4,
free. Let x1, . . . , xs ∈ M be representatives of a basis of M/Tors(M), then
F := 〈x1, . . . , xs〉 is a free module and F ∩ Tors(M) = 〈0〉. This implies that
M = F ⊕ Tors(M).

To prove the second part, note that Tors(Rn ⊕ T ) = T and T is mapped
via the isomorphism M ∼= Rn ⊕ T to Tors(M).
11 Here En denotes the n × n unit matrix.
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Proposition 2.6.6. Let R be a principal ideal domain and M a finitely gen-
erated torsion R–module. Let 〈f〉 = Ann(M) and f = pc11 · . . . · pcn

n , with pi
prime and 〈pi, pj〉 = R for i �= j.12 Let Tpi(M) := {x ∈M | pci

i x = 0}. Then

M =
n⊕

i=1

Tpi(M) .

Proof. Let x ∈ Tpi(M) ∩∑
j �=i Tpj (M). Then pci

i x = 0 and

pc11 · . . . · pci−1
i−1 · pci+1

i+1 · . . . · pcn
n x = 0 .

But 〈pci

i , p
c1
1 · . . . · pci−1

i−1 · pci+1
i+1 · . . . · pcn

n 〉 = R, because 〈pi, pj〉 = R for i �= j
and pi is prime for all i (Exercise 2.6.7). This implies that x = 0, that is,
Tpi(M) ∩∑j �=i Tpj (M) = 〈0〉.

Let x ∈M , and choose a, b ∈ R such that apcn
n + bpc11 · . . . · pcn−1

n−1 = 1. We
write x = x′ + xn with x′ := apcn

n x and xn := bpc11 · . . . · pcn−1
n−1 x, and obtain

xn ∈ Tpn(M) and pc11 · . . . · pcn−1
n−1 x

′ = 0. Using induction, we can continue to
decompose x′ and obtain x = x1 + · · ·+ xn ∈

∑n
i=1 Tpi(M).

Proposition 2.6.7. Let R be a principal ideal domain, M a torsion R–
module and Ann(M) = 〈pc〉, p prime. Then M =

⊕s
i=1 Ci with cyclic R–

modules Ci such that Ann(Ci) = 〈pni〉, n1 ≥ · · · ≥ ns. The numbers n1, . . . , ns
are uniquely determined by M .

Proof. Set Mi := {x ∈M | pix = 0}, which are submodules of M satisfy-
ing Mi ⊃Mi−1, i = 1, . . . , c. The factor modules Mi/Mi−1 are annihilated
by p, hence, R/〈p〉–vector spaces. Let m1 := dimR/〈p〉Mc/Mc−1 and choose
x1, . . . , xm1 ∈M representing a basis of Mc/Mc−1. Then px1, . . . , pxm1 are
linearly independent, considered as elements in Mc−1/Mc−2: assume that∑m1

i=1 hipxi ∈Mc−2 for some h1, . . . , hm1 ∈ R, then pc−2 ·∑m1
i=1 hipxi = 0.

Therefore, pc−1 ·∑m1
i=1 hixi = 0, that is,

∑m1
i=1 hixi ∈Mc−1, which implies

h1 = · · · = hm1 = 0, due to the choice of x1, . . . , xm1 .
Now, choose elements xm1+1, . . . , xm2 ∈Mc−1 such that px1, . . . , pxm1 ,

xm1+1, . . . , xm2 represent a basis of Mc−1/Mc−2 (m1 = m2 is possible).
Continuing like this, we obtain a sequence x1, . . . , xmc ∈M such that, for
ν = 0, . . . , c− 1, the set

{pνx1, . . . , p
νxm1 , p

ν−1xm1+1, . . . , p
ν−1xm2 , . . . , xmν+1, . . . , xmν+1}

induces an R/〈p〉–basis of Mc−ν/Mc−ν−1 (with the convention m0 = 0).
For i = 1, . . . ,mc, define Ci := 〈xi〉 and ni by Ann(Ci) = 〈pni〉. Obviously,∑mc

i=1 Ci = M , and we have to show Ci ∩
∑

j �=i Cj = 〈0〉: if
∑mc

i=1 hixi = 0
for some hi ∈ R then

∑m1
i=1 hip

c−1xi = 0 and, therefore, p divides hi for

12 Such a decomposition always exists and is uniquely determined up to permuta-
tions and multiplication with units. This is proved in the Exercises 1.3.4, 1.3.5
and later in Chapter 4.
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i = 1, . . . ,m1. This implies pc−2
(∑m1

i=1(hi/p) · pxi +
∑m2

i=m1+1 hixi
)

= 0 and,
therefore, p divides hi/p for i = 1, . . . ,m1 and hi for i = m1 + 1, . . . ,m2. Con-
tinuing like this we obtain that pc−ν divides hi for i = mν + 1, . . . ,mν+1

and ν = 0, . . . , c− 1. This implies hixi = 0 for all i, and we conclude that
Ci ∩

∑
j �=i Cj = 〈0〉.

It remains to prove that n1, . . . , ns are uniquely determined byM . By con-
struction of the xi and definition of ni we have nmk+1 = . . . = nmk+1 = c− k,
k = 0, . . . , c− 1. Therefore, m1, . . . ,mc and n1, . . . , ns determine each other.
Butm1, . . . ,mc are give by the equations

∑k
i=1mi = dimR/〈p〉Mc−k+1/Mc−k,

k = 1, . . . , c.

Summarizing the results obtained, we have the following theorem:

Theorem 2.6.8. Let R be a principal ideal domain and M a finitely gen-
erated R–module, then M is a direct sum of cyclic modules, M =

⊕s
i=1 Ci.

The cyclic modules Ci are free or Ann(Ci) = 〈pni

i 〉, pi prime. The number of
the free cyclic modules, the prime ideals 〈pi〉 and the numbers ni are uniquely
determined by M .

pn1
1 , . . . , pns

s ∈ R are called the elementary divisors of M , respectively of the
torsion submodule Tors(M).

Corollary 2.6.9. Let R be a principal ideal domain and M be a finitely gen-
erated R–module, then M is a direct sum of cyclic modules, M =

⊕r
i=1Di

such that Ann(D1) ⊂ Ann(D2) ⊂ · · · ⊂ Ann(Ds). The ideals Ann(Di) are
uniquely determined.

Proof. We use Theorem 2.6.8 and write

M = C1 ⊕ · · · ⊕ Ct ⊕ C1,1 · · · ⊕ C1,n1 ⊕ · · · ⊕ Cr,1 ⊕ · · · ⊕ Cr,nr

such that C1, . . . , Ct are free and Ann(Cij) = 〈pmi,j

i 〉 and mi,1 ≤ · · · ≤ mi,ni ,
pi prime. Let Di := Ci for i = 1, . . . , t. Define Dt+1 :=

⊕r
i=1 Ci,ni then

〈0〉 = Ann(D1) = · · · = Ann(Dt) ⊂ Ann(Dt+1) = 〈pm1,n1
1 · . . . · pmr,nr

r 〉 .

We continue in this manner, defining Dt+k =
⊕r

i=1 Ci,ni−k with the conven-
tion Ci,ni−k = 〈0〉 if ni − k ≤ 0. Then

Ann(Dt+k) =
〈
pm1,n1−k+1
1 · . . . · pmr ,nr−k+1

r

〉
,

with the convention mi,ni−k+1 = 0 if ni− k+1 ≤ 0. It remains to prove that
the Di are cyclic. This will be done in the following lemma.

Lemma 2.6.10. Let R be a ring and f, g ∈ R such that 〈f, g〉 = R, then
R/〈f〉 ⊕R/〈g〉 ∼= R/〈f · g〉.
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Proof. Consider the map π : R→ R/〈f〉 ⊕R/〈g〉 defined by

π(h) = (h mod 〈f〉, h mod 〈g〉) .

This map is surjective: Let a, b ∈ R such that af + bg = 1. If

(hmod 〈f〉, k mod 〈g〉) ∈ R/〈f〉 ⊕ R/〈g〉

then h− k = a(h− k)f + b(h− k)g, that is,

h− a(k − h)f = k + b(h− k)g =: c

and π(c) = (h mod 〈f〉, k mod 〈g〉).
Let h ∈ Ker(π) = 〈f〉 ∩ 〈g〉, that is, h = h1f = h2g for some h1, h2 ∈ R.

But, by the above, h2 = ah2f + bh2g = (ah2 + bh1)f , which implies h ∈ 〈fg〉.
Finally, we obtain Ker(π) = 〈fg〉, therefore, R/〈f · g〉 ∼= R/〈f〉 ⊕R/〈g〉.
SINGULAR Example 2.6.11 (cyclic decomposition).
To obtain the complete decomposition as in Theorem 2.6.8, we have to diag-
onalize the presentation matrix of a given module and factorize the diagonal
elements.

option(redSB);
ring R=0,(x),(C,dp);

matrix M0[5][5]=1, 1,0,0,0,
-2,-1,0,0,0,
0, 0,2,1,0,
0, 0,0,2,0,
0, 0,0,0,3;

matrix N[5][5]=1, 1, -1, 1,-1,
2, 2, 1, 1, 0,
-1, 2, 2, 1, 1,
-2, 1, 1, -1, 0,
1, 2, -2, 1, 1;

Now we compute the matrix M = N−1M0N − xE5:

matrix M=lift(N,freemodule(nrows(N)))*M0*N-x*freemodule(5);
print(M);
//-> -x-9/10,-183/50, -59/50, -43/25, 29/50,
//-> -6/5, -x+18/25,-11/25, -19/25, 16/25,
//-> -11/5, -52/25, -x+54/25,-34/25, 1/25,
//-> 12/5, 99/25, 52/25, -x+83/25,-12/25,
//-> -1/2, 1/10, -17/10, 1/5, -x+17/10

N=diagonalForm(M);
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print(N);
//-> x5-7x4+17x3-19x2+16x-12,0,0,0,0,
//-> 0, 1,0,0,0,
//-> 0, 0,1,0,0,
//-> 0, 0,0,1,0,
//-> 0, 0,0,0,1

This shows that the module defined by the presentation matrix M is isomor-
phic to Q[x]/〈x5− 7x4+ 17x3− 19x2− 16x− 12〉.

factorize(N[1,1]);
//->[1]:
//-> _[1]=1
//-> _[2]=x-3
//-> _[3]=x2+1
//-> _[4]=x-2
//->[2]:
//-> 1,1,1,2

This shows that the decomposition of the module defined by the presentation
matrix M is Q[x]/〈x−3〉 ⊕Q[x]/〈x2+ 1〉 ⊕Q[x]/〈x−2〉.
Let us be given a finite presentation for a module N ,

K[x]m M−→ K[x]n π−→ N −→ 0 ,

with presentation matrix M (with respect to the canonical basis). Algorithm
2.6.2 transforms M into a diagonal matrix, but it does not return the trans-
formation matrices. The following procedure computes invertible matrices B
and C with entries in K[x] such that MB = CD with D a matrix in diagonal
form. Instead of M we consider the matrix

(
0 Em
En M

)
∈ GL(n+m,K[x]) ,

(En denoting the n× n unit matrix), and perform on this matrix appropriate
row and column operations to obtain

(
0 B
F D

)
∈ GL(n+m,K[x]) ,

with D an n×m–matrix in diagonal form. Then, by construction, we obtain
that M ·B = C ·D with C := F−1.

If f1, . . . , fn are the columns of C and if the matrix D has the entries
p1, . . . , pk ∈ K[x], k = min{n,m}, on the diagonal, then N =

⊕n
i=1〈π(fi)〉

and 〈π(fi)〉 ∼= K[x]/〈pi〉, for i ≤ k, respectively 〈π(fi)〉 ∼= K[x], for i > k.
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proc extendedDiagonalForm(matrix M)
{

int n=nrows(M);
int m=ncols(M);
intvec v=1..n;
intvec w=n+1..n+m;
intvec u=1..m;
intvec x=m+1..n+m;
matrix E=unitmat(n);
matrix B=unitmat(m);
matrix N=M; //to keep M for the test
matrix D,K;

while(D!=N)
{

D=N;
K=transpose(interred(transpose(concat(E,D))));
E=submat(K,v,v);
N=submat(K,v,w);
K=interred(transpose(concat(transpose(B),transpose(N))));
K=simplify(K,1); //here we normalize
B=submat(K,u,u);
N=submat(K,x,u);

}
matrix C=inverse(E);
if(M*B!=C*D){ERROR("something went wrong");} //test
list Re=B,C,D;
return(Re);

}

Let us apply the procedure to an example:

LIB"matrix.lib";
LIB"linalg.lib";
matrix M1[2][2]=x2+1, 0,

0 ,x-1;
matrix N1[2][2]=1, 1,

1, 2;
matrix N2[2][2]=0,-1,

1, 1;
M=N1*M1*N2;
print(M);
//-> x-1, -x2+x-2,
//-> 2x-2,-x2+2x-3

list L=extendedDiagonalForm(M);
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print(L[1]);
//-> 1, 0,
//-> 1/2x2-1/2,1/2

print(L[2]);
//-> -1/2x, -1/2x2+1/2x-1,
//-> -1/2x+1/2,-1/2x2+x-3/2

print(L[3]);
//-> x3-x2+x-1,0,
//-> 0, 1

Proposition 2.6.12. Let V be a finite dimensional K–vector space, and let
ϕ : V → V be an endomorphism. Then V can be considered as K[x]–module
via ϕ, setting xv := ϕ(v) for v ∈ V . Let M be the matrix corresponding to
ϕ with respect to a fixed basis {b1, . . . , bn}, and define π : K[x]n → V by
π(ei) := bi, where {e1, . . . , en} is the canonical basis of K[x]n. Then

K[x]n M−xE−−−−→ K[x]n π−→ V −→ 0 ,

is a presentation of the K[x]–module V . 13

Remark 2.6.13. Any finitely generated torsion K[x]–module N can be ob-
tained in the way described in Proposition 2.6.12: let 〈f〉 = Ann(N), then
K[x]/〈f〉 is a finite dimensional K–vector space and N is a finitely generated
K[x]/〈f〉–module. This implies that N is a finite dimensional K–vector space
and multiplication by x defines the above endomorphism ϕ : N → N .

Proof of Proposition 2.6.12. By definition of the K[x]–module structure, we
have π ◦ (M − xE) = 0. Diagonalizing the matrix M − xE as in Theorem
2.6.1 does not change its determinant. In particular, the product of the diag-
onal elements of the diagonal form ofM − xE is the characteristic polynomial
of M , which has degree n. This implies that

dimK K[x]n/ Im(M − xE) = n = dim(V )

and, therefore, V ∼= K[x]n/ Im(M − xE).

Remark 2.6.14. Let M be an n× n–matrix with entries in K and consider,
as in Proposition 2.6.12, Kn via M as K[x]–module. Let B,C ∈ GL(n,K[x])
be invertible matrices such that

C−1 · (M − xE) · B = D =
(
d1 0

. . .
0 dn

)
∈Mat(n× n, K[x])

13 Note that det(M − xE) is the characteristic polynomial of M , E being the unit
matrix.
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is the diagonal form corresponding to M − xE (as computed by extended-
DiagonalForm(M-xE)). Let f1, . . . , fn be the columns of C = (cij), that is, a
basis of K[x]n with fi =

∑n
j=1 cijej, {e1, . . . , en} being the canonical basis

of K[x]n. We use this notation also for the canonical basis of Kn.
Setting vi :=

∑n
j=1 cij(M) · ej ∈ Kn (that is, replacing x by M in fi), we

obtain that 〈vi〉K[x]
∼= K[x]/〈di〉, and Kn =

⊕n
i=1〈vi〉K[x] is a decomposition

of Kn as K[x]–module into a direct sum of cyclic modules 14. Finally, we can
factorize the di and split the submodules 〈vi〉 into direct sums, using Lemma
2.6.10. If di =

∏
j d

ρji

ji is a decomposition into irreducible polynomials, then
〈vi〉 =

⊕
j Vij , where

Vij :=
{
w ∈ 〈vi〉

∣∣ dρji

ji w = 0
}

=
〈∏

k �=j
dρki

ki · vi
〉
∼= K[x]/〈dρji

ji 〉 .

The Vij ⊂ Kn are invariant subspaces for the endomorphism M : Kn → Kn,
that is, M · Vij ⊂ Vij . Moreover,

det(M − xE) = det(C) · det(B)−1 ·
n∏

i=1

di = det(C) · det(B)−1 ·
∏

i,j

d
ρji

ji ,

that is, the characteristic polynomial of M is (up to multiplication by a non–
zero constant) equal to

∏
i,j d

ρji

ji .
This leads to a procedure for computing a decomposition of M into block

matrices as shown in the example below.
If the characteristic polynomial splits into linear factors (for instance, if

the field K is algebraically closed), we obtain the decomposition correspond-
ing to the Jordan normal form of M . In the general case, a better decompo-
sition is given by the rational normal form, treated in Exercise 2.6.3.

SINGULAR Example 2.6.15 (Jordan normal form).
We start with a matrix M whose characteristic polynomial does not split
into linear factors, but which is already in the form described in Remark
2.6.14. We conjugate M by some invertible matrix N and, finally, compute
the original form (up to normalization), according to the procedure described
in Remark 2.6.14. The same method leads to the Jordan normal form of a
matrix if its characteristic polynomial splits into linear factors.

ring R=0,(x),(C,dp);
matrix M[5][5]=1, 1,0,0,0,

-2,-1,0,0,0,
0, 0,2,1,0,
0, 0,0,2,0,
0, 0,0,0,2;

14 Note that some of the vi may be zero.
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matrix N[5][5]=1,2, 2, 2,-1 , //an invertible
1,1, 2, 1, 1, //matrix over Q
-1,1, 2,-1, 2,
-1,1, 1,-1, 2,
1,2,-1, 2, 1;

M=lift(N,freemodule(nrows(N)))*M*N; //inverse(N)*M*N
print(M);
//-> -3/2,-21,-53/2,-8, -14,
//-> 5/4, -6, -35/4,-1/2,-13/2,
//-> -1, 1, 3, -1, 2,
//-> 3/4, 18, 87/4, 13/2,27/2,
//-> -3/2,2, 3/2, -1, 4

We want to compute the normal form of M according to Remark 2.6.14:

matrix A = M-x*freemodule(5); //the matrix M-xE
LIB"linalg.lib";
option(redSB);
list L = extendedDiagonalForm(A); //A*L[1]=L[2]*L[3]

print(L[2]); //the new basis
//-> 0, 0, -53/3250,-8/24375, -14/24375
//-> 0, -1/650,-7/1300,-1/48750, -1/3750
//-> 168/1625, 1/325,-1/1625x+3/1625,-1/24375, 2/24375
//-> -3451/24375,-1/390,87/6500,-1/24375x+1/3750, 9/16250
//-> -2798/24375,-2/975,3/3250,-1/24375,-1/24375x+4/24375

print(L[3]); //the diagonal form
//-> x4-4x3+5x2-4x+4,0, 0,0,0, //of M-xE
//-> 0, x-2,0,0,0,
//-> 0, 0, 1,0,0,
//-> 0, 0, 0,1,0,
//-> 0, 0, 0,0,1

At this level we know that the vector space Q
5 considered as Q[x]–module,

where x acts via the matrix M , is isomorphic to

Q[x]/〈x4− 4x3+ 5x2− 4x+ 4〉 ⊕Q =: V1 ⊕ V2 ,

where V1 and V2 are invariant subspaces.

matrix V1[5][4]=concat(L[1][1],M*L[1][1],M*M*L[1][1],
M*M*M*L[1][1]);

matrix V2[5][1]=L[1][2]; //the 2 invariant
//subspaces

list F=factorize(L[2][1,1]);
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F;
//-> [1]:
//-> _[1]=1
//-> _[2]=x2+1
//-> _[3]=x-2
//-> [2]:
//-> 1,1,2

The first diagonal element of L[3] does not split into linear factors over Q.
We need a procedure to compute the matrix p(B), where p ∈ Q[x] is a

polynomial and B a matrix.

proc polyOfEndo(matrix B,poly p)
{

int i;
int d=nrows(B);
matrix A=coeffs(p,var(1));
matrix E[d][d]=freemodule(d);
matrix C[d][d]=A[1,1]*E;
for(i=2;i<=nrows(A);i++)
{

E=E*B;
C=C+A[i,1]*E;

}
return(C);

}

Now we are able to compute bases for the invariant subspaces V1, V2. Since
V2 is already one–dimensional, we need only to consider V1.

matrix S=polyOfEndo(M,F[1][3]^2); //the decomposition of V1
matrix V11=std(S*V1);
print(V11);
//-> -4,1,
//-> -1,-1,
//-> 0, 0,
//-> 3, 0,
//-> 0, 1

S=polyOfEndo(M,F[1][2]);
matrix V12=std(S*V1);
print(V12);
//-> -9776,13195,
//-> -7107,14214,
//-> 4888, -17258,
//-> 7107, 0,
//-> 0, 7107
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We test whether we obtained bases, that is, whether V11 ⊕ V12 ⊕ V2 = Q
5,

and whether the subspaces V11 and V12 are invariant.

matrix B=concat(V11,V12,V2);
det(B); //we obtained a basis
//-> -28428
reduce(M*V11,std(V11)); //subspaces are invariant
//-> _[1]=0
//-> _[2]=0
reduce(M*V12,std(V12));
//-> _[1]=0
//-> _[2]=0
reduce(M*V2,std(V2));
//-> _[1]=0

Compute the matrix with respect to the new bases, given by the invariant
subspaces.

matrix C=lift(B,M*B); //the matrix M with respect to
print(C); //the basis B
//-> -1/2,-5/4,0, 0, 0,
//-> 1, 1/2, 0, 0, 0,
//-> 0, 0, 11501/4738,-18225/9476,0,
//-> 0, 0, 225/2369, 7451/4738, 0,
//-> 0, 0, 0, 0, 2

We compute special bases to obtain the normal form.

matrix v[5][1]=V12[1]; //special basis for normal form
B=concat(V11,M*v-2*v,v,V2);
C=lift(B,M*B); //the matrix M with respect to
print(C); //the basis B
//-> -1/2,-5/4,0,0,0,
//-> 1, 1/2, 0,0,0,
//-> 0, 0, 2,1,0,
//-> 0, 0, 0,2,0,
//-> 0, 0, 0,0,2

Hence, we obtain, up to normalization, the original matrix M we started
with.

Exercises

2.6.1. Prove that Corollary 2.6.9 implies Theorem 2.6.8.

2.6.2. Write a Singular procedure to compute the Jordan normal form of
an endomorphism under the assumptions that the characteristic polynomial
splits into linear factors over the ground field.
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2.6.3. Write a Singular procedure to compute the rational normal form
of an endomorphism, that is, a block in the matrix corresponding to a cyclic
submodule has the shape

⎛

⎜⎝

0 0 ... 0 −a0
1 0 ... 0 −a1
0 1 ... 0 −a2...

...
0 0 ... 1 −an−1

⎞

⎟⎠ ,

where xn + an−1x
n−1 + · · ·+ a0 is the characteristic polynomial.

(Hint: compute V =
⊕

i〈vi〉K[x], a decomposition of the K–vector space V
into a direct sum of cyclic K[x]–modules as in Singular Example 2.6.15.
Then consider in 〈vi〉K[x] the K–basis vi, xvi, x2vi, . . ..)

2.6.4. Write a Singular procedure using Algorithm 2.6.2 to diagonalize the
presentation matrix for modules over the ring K[x], respectively K[x]〈x〉.

2.6.5. Let A be a principal ideal domain and K its quotient field. Prove that
K is not a free A–module and that K/A is not a direct sum of cyclic modules.

2.6.6. Let A = K[x] be the polynomial ring in one variable, a1, . . . , ar ∈ A,
and M := A/〈a1〉 ⊕ · · · ⊕A/〈ar〉. Give an algorithm to compute the decom-
position of M as in Corollary 2.6.9.

2.6.7. Let R be a principal ideal domain and p1, . . . , pn ∈ R prime elements
such that 〈pi, pj〉 = R for i �= j. Prove that 〈pci

i , p
c1
1 ·. . .·pci−1

i−1 p
ci+1
i+1 ·. . .·pcn

n 〉 = R
for c1, . . . , cn ∈ N.

2.6.8. Use Singular to compute the Jordan normal form of
(

3 −1 2
1 1 2
2 −2 2

)
.

2.7 Tensor Product

Let A be a ring, and let M,N , and P be A–modules. Let B(M,N ;P ) be the
A–module of bilinear maps M ×N → P . In this section we want to construct
a module M ⊗A N , the tensor product of M and N , together with a bilin-
ear map M ×N →M ⊗A N , (m,n) �→ m⊗ n, such that this map induces a
canonical isomorphism

B(M,N ;P ) ∼= HomA(M ⊗A N,P )

of A–modules, and study its properties. The tensor product reduces the the-
ory of bilinear maps to linear maps, for the price that the modules become
more complicated.
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Let σ : M ×N → P be a bilinear map, that is, for all a ∈ A, m,m′ ∈M ,
n, n′ ∈ N ,

(B1) σ(am, n) = σ(m, an) = aσ(m,n) ,
(B2) σ(m+m′, n) = σ(m,n) + σ(m′, n) ,
(B3) σ(m,n+ n′) = σ(m,n) + σ(m,n′) .

To obtain the isomorphism above, the elements of type m⊗ n of the module
to construct have to satisfy the following properties:

(T1) (am)⊗ n = m⊗ (an) = a(m⊗ n) ,
(T2) (m+m′)⊗ n = m⊗ n+m′ ⊗ n ,
(T3) m⊗ (n+ n′) = m⊗ n+m⊗ n′ ,

for all a ∈ A, m,m′ ∈M , n, n′ ∈ N . The properties (T1) – (T3) imply the
bilinearity of the map (m,n) �→ m⊗ n.

To obtain a “minimal” module with this property, the following is neces-
sary: M ⊗A N is generated by {m⊗ n | m ∈M, n ∈ N} and

(T4) all relations between the generators {m⊗ n} are generated
by relations of type (T1), (T2) and (T3).

This motivates the following definition:

Definition 2.7.1. Let T be the free A–module generated by the pairs (m,n),
m ∈M , n ∈ N , and let U be the submodule of T generated by the elements

(am, n)− a(m,n) ,
(m, an)− a(m,n) ,
(m+m′, n)− (m,n)− (m′, n) ,
(m,n+ n′)− (m,n)− (m,n′) ,

with a ∈ A, m,m′ ∈M and n, n′ ∈ N .
Then we define the tensor product M ⊗A N of M and N to be the A–

module T/U , and denote by m⊗ n the equivalence class of (m,n) in T/U .

Proposition 2.7.2. There are canonical isomorphisms of A–modules

(1) B(M,N ;P ) ∼= HomA(M ⊗A N,P ),
(2) B(M,N ;P ) ∼= HomA

(
M,HomA(N,P )

)
.

Proof. To prove (1), let ϕ : M ⊗A N → P be a homomorphism. Then the
properties (T1), (T2) and (T3) imply that φ(ϕ)(m,n) := ϕ(m⊗ n) defines a
bilinear map φ(ϕ) : M ×N → P . Thus, we obtain a map

φ : HomA(M ⊗A N,P ) −→ B(M,N ;P ), ϕ �−→ φ(ϕ) ,

which is obviously A–linear.
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If φ(ϕ) = 0 then ϕ(m⊗ n) = 0 for all m ∈M , n ∈ N . Because M ⊗A N
is generated by the elements of the form m⊗ n, this implies that ϕ = 0.

To see that φ is surjective, let σ : M ×N → P be a bilinear map. Then
we can define a linear map ϕ : M ⊗A N → P by setting ϕ(m⊗ n) := σ(m,n).
This map is well–defined and linear by the properties (B1), (B2), (B3) of σ.
Obviously, φ(ϕ) = σ and, therefore, φ is an isomorphism.

To prove (2), let ϕ : M → HomA(N,P ) be a homomorphism and define
ψ(ϕ)(m,n) := ϕ(m)(n). Thus,

ψ : HomA

(
M,HomA(N,P )

) −→ B(M,N ;P )

is a map which is obviously A–linear.
If ψ(ϕ) = 0 then ϕ(m)(n) = 0 for all m ∈M , n ∈ N . This implies that

ϕ(m) is the zero map for all m and, therefore, ϕ = 0. Now let σ : M ×N → P
be a bilinear map, then we can define a linear map ϕ : M → HomA(N,P ) by
setting ϕ(m)(n) := σ(m,n) and obtain ψ(ϕ) = σ. This implies that ψ is an
isomorphism.

The following properties of the tensor product are easy to prove and, there-
fore, left as an exercise (Exercise 2.7.1).

Proposition 2.7.3. Let M,M ′, N,N ′, and P be A–modules, let S ⊂ A be
a multiplicatively closed subset, and let ϕ : M →M ′ and ψ : N → N ′ be A–
module homomorphisms. Then we have the following isomorphisms of A–
modules, respectively S−1A–modules,

(1) M ⊗A N ∼= N ⊗AM ,
(2) (M ⊗A N)⊗A P ∼= M ⊗A (N ⊗A P ) ,
(3) A⊗AM ∼= M ,
(4) (M ⊕N)⊗A P ∼= (M ⊗A P )⊕ (N ⊗A P ) ,
(5) S−1(M ⊗A N) ∼= S−1M ⊗S−1A S

−1N ,

Moreover,

(6) (ϕ ⊗ ψ)(m⊗ n) := ϕ(m) ⊗ ψ(n) defines a homomorphism

ϕ⊗ ψ : M ⊗A N →M ′ ⊗A N ′ .

Example 2.7.4.

(1) Ar ⊗A As ∼= Ars, and if {e1, . . . , er}, respectively {f1, . . . , fr}, is a basis
for Ar, respectivelyAs, then {ei ⊗ fj | i = 1, . . . , r, j = 1, . . . , s} is a basis
for Ar ⊗A As.

(2) Let ϕ : Ar → As and ψ : Ap → Aq be linear maps, defined by the ma-
trices M = (mij)i,j (with respect to the bases {e1, . . . , er} of Ar and
{f1, . . . , fs} of As), respectively N = (nij)i,j (with respect to the bases
{g1, . . . , gp} of Ap and {h1, . . . , hq} of Aq). Then ϕ ⊗ ψ has the matrix
(mcandb)a,b;c,d (with respect to the bases {e1 ⊗ g1, e1 ⊗ g2, . . . , er ⊗ gp}
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of Ar ⊗A Ap and {f1 ⊗ h1, f1 ⊗ h2, . . . , fs ⊗ hq} of As ⊗A Aq). More pre-
cisely, if

ϕ(ea) =
s∑

c=1

mcafc , ψ(gb) =
q∑

d=1

ndbhd

then

(ϕ⊗ ψ)(ea ⊗ gb) =
s∑

c=1

q∑

d=1

mcandb · fc ⊗ hd .

If i = (c− 1)q + d and j = (a− 1)p+ b then the element in the i–th row
and j–th column of the matrix of ϕ⊗ ψ is mcandb.

SINGULAR Example 2.7.5 (tensor product of maps).
Let M,N be matrices defining maps ϕ : Ar → As, respectively ψ : Ap → Aq.
The matrix of ϕ⊗ ψ can be computed as follows:

proc tensorMaps(matrix M, matrix N)
{

int r=ncols(M);
int s=nrows(M);
int p=ncols(N);
int q=nrows(N);
int a,b,c,d;
matrix R[s*q][r*p];
for(b=1;b<=p;b++)
{

for(d=1;d<=q;d++)
{

for(a=1;a<=r;a++)
{

for(c=1;c<=s;c++)
{

R[(c-1)*q+d,(a-1)*p+b]=M[c,a]*N[d,b];
}

}
}

}
return(R);

}

Let us try an example.

ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,4,5,6,7,8,9;
matrix N[2][2]=x,y,0,z;
print(M);
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//-> 1,2,3,
//-> 4,5,6,
//-> 7,8,9
print(N);
//-> x,y,
//-> 0,z

print(tensorMaps(M,N));
//-> x, y,2x,2y,3x,3y,
//-> 0, z, 0,2z, 0,3z,
//-> 4x,4y,5x,5y,6x,6y,
//-> 0,4z, 0,5z, 0,6z,
//-> 7x,7y,8x,8y,9x,9y,
//-> 0,7z, 0,8z, 0,9z

The next theorem gives a very important property of the tensor product.

Theorem 2.7.6. Let M i−→ N
π−→ P → 0 be an exact sequence of A–modules,

and L an A–module, then

M ⊗A L i⊗1L−−−→ N ⊗A L π⊗1L−−−−→ P ⊗A L→ 0

is exact (the tensor product is right exact).

Proof. We know from Section 2.4 that it is enough to prove that

0→ HomA(P ⊗A L, S)→ HomA(N ⊗A L, S)→ HomA(M ⊗A L, S)

is exact for all A–modules S.
Using both isomorphisms of Proposition 2.7.2, we see that this is equiva-

lent to the exactness of

0→ HomA

(
P,HomA(L, S)

)→ HomA

(
N,HomA(L, S)

)

→ HomA

(
M,HomA(L, S)

)
.

This is the left exactness of Hom already proved in Section 2.4.

Example 2.7.7. Let A = Z and consider the exact sequence 0 → Z
i−→ Z

π−→
Z/〈2〉 → 0, i(x) = 2x, then

Z⊗Z Z/〈2〉 i⊗1−−→ Z⊗Z Z/〈2〉 π⊗1−−−→ Z/〈2〉 → 0

is exact but i⊗ 1 is not injective.
Namely, (i⊗1)

(
a⊗ (b+ 〈2〉)) = 2a⊗ (b+ 〈2〉) = a⊗〈2〉 = 0. That is, i⊗1

is, in fact, the zero map.
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Corollary 2.7.8. Let Ar
ϕ−→ As

π−→ M → 0 and Ap
ψ−→ Aq

λ−→ N → 0 be
presentations of the A–modules M and N , then

Asp+rq = (As ⊗A Ap)⊕ (Ar ⊗A Aq) σ−→ Asq = As ⊗A Aq π⊗λ−−−→M ⊗A N → 0

is a presentation of the tensor product M ⊗A N , where σ is the composition
of the addition Asq ⊕Asq +−→ Asq and (1As ⊗ ϕ)⊕ (ϕ⊗ 1As).

Proof. Consider the following commutative diagram:

0 0 0

Ar ⊗A N

��

ϕ⊗1
�� As ⊗A N

��

π⊗1
�� M ⊗A N

��

�� 0

Ar ⊗A Aq
1⊗λ

��

ϕ⊗1
�� As ⊗A Aq

1⊗λ
��

π⊗1
��

π⊗λ
		�����������

M ⊗A Aq
1⊗λ

��

�� 0

Ar ⊗A Ap
1⊗ψ

��

ϕ⊗1
�� As ⊗A Ap

1⊗ψ
��

π⊗1
�� M ⊗A Ap

1⊗ψ
��

�� 0 .

Because of Theorem 2.7.6 the rows and columns are exact. An easy diagram
chase shows that π⊗λ is surjective and Ker(π⊗λ) = Im(1⊗ψ)+Im(ϕ⊗1).

SINGULAR Example 2.7.9 (tensor product of modules).
Let ϕ and ψ be matrices describing presentations of the modules M , re-
spectively N . We give a procedure for computing the presentation matrix of
M ⊗A N as described in Corollary 2.7.8.

LIB"matrix.lib";

proc tensorMod(matrix Phi, matrix Psi)
{

int s=nrows(Phi);
int q=nrows(Psi);
matrix A=tensorMaps(unitmat(s),Psi); //I_s tensor Psi
matrix B=tensorMaps(Phi,unitmat(q)); //Phi tensor I_q
matrix R=concat(A,B); //sum of A and B
return(R);

}

We consider an example:

ring A=0,(x,y,z),dp;
matrix M[3][3]=1,2,3,4,5,6,7,8,9;
matrix N[2][2]=x,y,0,z;



2.7 Tensor Product 191

print(M);
//-> 1,2,3,
//-> 4,5,6,
//-> 7,8,9

print(N);
//-> x,y,
//-> 0,z

print(tensorMod(M,N));
//-> x,y,0,0,0,0,1,0,2,0,3,0,
//-> 0,z,0,0,0,0,0,1,0,2,0,3,
//-> 0,0,x,y,0,0,4,0,5,0,6,0,
//-> 0,0,0,z,0,0,0,4,0,5,0,6,
//-> 0,0,0,0,x,y,7,0,8,0,9,0,
//-> 0,0,0,0,0,z,0,7,0,8,0,9

For further applications we need a criterion for
∑
imi ⊗ ni to be zero.

Proposition 2.7.10. Let M and N be A–modules, mi ∈M for i ∈ I, and
N = 〈ni | i ∈ I〉. Then

∑
i∈I mi ⊗ ni = 015 if and only if there exist aij ∈ A

and m̄j ∈M , for i ∈ I and j ∈ J , such that
∑

j∈J aijm̄j = mi for all i ∈ I,
and

∑
i∈I aijni = 0 for all j ∈ J .

Proof. Suppose
∑
j∈J aijm̄j = mi and

∑
i∈I aijni = 0, then

∑

i∈I
mi ⊗ ni =

∑

i∈I

(∑

j∈J
aijm̄j

)
⊗ ni =

∑

j∈J

(
m̄j ⊗

∑

i∈I
aijni

)
= 0 .

To prove the other direction, we consider first the special case that N is free
and {ni}i∈I is a basis of N . Using Proposition 2.7.3 (3), (4), we obtain that∑

i∈I mi ⊗ ni �→
∑

i∈I mi induces an isomorphism M ⊗A N ∼= ⊕
i∈IM . This

implies that
∑
i∈I mi ⊗ ni = 0 if and only if mi = 0 for all i ∈ I.

Now let N be arbitrary, and let F1
λ−→ F0

π−→ N → 0 be a presentation of
N such that there is a basis {ei}i∈I of F0 with π(ei) = ni for all i ∈ I. Using
Theorem 2.7.6, we obtain that the induced sequence

M ⊗A F1
1⊗λ−−−→M ⊗A F0

1⊗π−−−→M ⊗A N → 0

is exact, too. In these terms our assumption reads (1⊗ π)
(∑

i∈I mi ⊗ ei
)

= 0,
which implies

∑
i∈I mi ⊗ ei =

∑
j∈J m̄j ⊗ fj for suitable m̄j ∈M , fj ∈ Im(λ)

(using the exactness of the induced sequence). Let fj =:
∑

i∈I aijei, j ∈ J ,
then

∑
i∈I mi ⊗ ei −

∑
i∈I

(∑
j∈J aijm̄j

)⊗ ei = 0. This is the situation of
our special case and, therefore, mi =

∑
j∈J aijm̄j for all i ∈ I. On the other

hand, fj ∈ Im(λ) = Ker(π) and, therefore,
∑

i∈I aijni = 0.

15 Of course, there are only finitely many indices i ∈ I with mi �= 0 in such a sum.
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Now we turn to the tensor product of algebras.

Proposition 2.7.11. Let B,C be A–algebras, then B⊗A C is an A–algebra
having the following universal property: for any commutative diagram

D C
β





B

α

��

A
j





i

��

of A–algebras, there exists a unique A–algebra homomorphism λ : B⊗AC →
D such that the diagram

D

B ⊗A C
λ

�����������

C
ψ





β

����������������������

B

α

																
ϕ

��

A ,
j





i

��

with ψ : c �→ 1⊗ c and ϕ : b �→ b⊗ 1, commutes.

Proof. It is easy to see that B⊗AC together with the multiplication defined
by (b⊗ c)(b′ ⊗ c′) := (bb′)⊗ (cc′) is an A–algebra and ϕ and ψ are A–algebra
homomorphisms such that ϕ ◦ j = ψ ◦ i.

To prove the second part of the proposition we set λ(b ⊗ c) := α(b)β(c). If
λ is well–defined, then it is obviously an A–algebra homomorphism, making
the diagram commutative, and it is uniquely determined. That is, we have
to prove that

∑
	∈L b	 ⊗ c	 = 0 implies

∑
	∈L α(b	)β(c	) = 0. Let {xi}i∈I be

a set of generators of C as an A–module, and let c	 =
∑
i∈I c	ixi for some

c	i ∈ A. Then

0 =
∑

	∈L
b	 ⊗ c	 =

∑

i∈I

(
∑

	∈L
c	ib	

)
⊗ xi .

Using Proposition 2.7.10, we obtain some b̄j ∈ B and aij ∈ A, j ∈ J , such
that

∑
j∈J aij b̄j =

∑
	∈L c	ib	 and

∑
i∈I aijxi = 0 for all j. Now

∑

	∈L
α(b	)β(c	) =

∑

	∈L
α(b	)β

(
∑

i∈I
c	ixi

)
=
∑

i∈I
α

(
∑

	∈L
c	ib	

)
β(xi)

=
∑

i∈I
α

(
∑

j∈J
aij b̄j

)
β(xi) =

∑

j∈J
α(b̄j)β

(
∑

i∈I
aijxi

)
= 0 .
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Corollary 2.7.12. Let A,B,C be as in Proposition 2.7.11 and T be an A–
algebra having the universal property described in 2.7.11, then there exists a
unique isomorphism T ∼= B ⊗A C.

Proof. We leave the proof as Exercise 2.7.3.

Corollary 2.7.13. Let B = A[x1, . . . , xn]/I and C = A[y1, . . . , ym]/J , then
B ⊗A C = A[x1, . . . , xn, y1, . . . , ym]/〈I, J〉.
Proof. We use Corollary 2.7.12. Let

D C
β





B

α

��

A

��





be a commutative diagram of A–algebras. We define a ring map

λ : A[x1, . . . , xn, y1, . . . , ym]/〈I, J〉 −→ D

by setting λ(xi + 〈I, J〉) := α(xi + I) and λ(yi + 〈I, J〉) := β(yi + J). If λ is
well–defined then it obviously has the minimal property required for the
tensor product. To prove that this is the case, let F ∈ 〈I, J〉, that is, we can
write F =

∑
iGigi +

∑
jHjhj for suitable gi ∈ I, hj ∈ J , Gi ∈ A[y1, . . . , ym],

Hj ∈ A[x1, . . . , xn]. Then λ(F ) =
∑
i β(Gi)α(gi) +

∑
j α(Hj)β(hj). But we

have α(gi) = 0, β(hj) = 0, which implies that λ(F ) = 0.

SINGULAR Example 2.7.14 (tensor product of rings).
In the following, we apply Corollary 2.7.12 to compute the tensor product of
rings: let A := Q[a, b, c]/〈ab− c2〉, B := Q[x, y, z, a, b, c]/〈x2, y, ab− c2〉 and
C := Q[u, v, a, b, c]/〈uv, ab− c2〉, and let A→ B, A→ C be the canonical
maps.

ring A1=0,(a,b,c),dp;
ideal P=ab-c2;
qring A=std(P); // A=A1/P
poly p=abc;

ring B1=0,(x,y,z,a,b,c),dp;
ideal I=x2,y,ab-c2;
qring B=std(I); // B=B1/I
map ib=A,a,b,c; // the canonical map A-->B

ring C1=0,(u,v,a,b,c),lp;
ideal J=uv,ab-c2;
qring C=std(J); // C=C1/J
map ic=A,a,b,c; // the canonical map A-->C



194 2. Modules

We compute the tensor product T = B ⊗A C, together with the maps B → T
and C → T :

ring T1=0,(x,y,z,u,v,a,b,c),dp; // B1 tensor C1 over A1
ideal K=imap(C1,J)+imap(B1,I);
qring T=std(K); // B tensor C over A
map jb=B,x,y,z,a,b,c; // the canonical map B-->T
map jc=C,u,v,a,b,c; // the canonical map C-->T

Finally, we check that the tensor product diagram commutes:

map psi=jc(ic);
map phi=jb(ib);
psi(p);
//-> abc
phi(p);
//-> abc

Exercises

2.7.1. Prove Proposition 2.7.3.

2.7.2. Let A be a ring, B an A–algebra, and M an A–module. Prove that
M ⊗A B has a canonical B–module structure.

2.7.3. Prove Corollary 2.7.12.

2.7.4. Prove that Z/〈a〉 ⊗Z Z/〈b〉 = 0 if a, b are coprime.

2.7.5. Let A be a ring, I ⊂ A an ideal, and M an A–module. Prove that
M/IM ∼= (A/I)⊗AM .

2.7.6. Let A be a local ring and M,N finitely generated A–modules. Prove
that M ⊗A N = 0 implies M = 0 or N = 0.

2.7.7. Let 0 → M → N → P → 0 be an exact sequence of A–modules and
F a free A–module. Prove that

0 →M ⊗A F → N ⊗A F → P ⊗A F → 0

is exact. (Hint: study the proof of Corollary 2.7.8.)

2.7.8. Let . . . → Fi → Fi−1 → . . . → F0 → 0 be an exact sequence of
A–modules and F a free A–module. Prove that

. . .→ Fi ⊗A F → Fi−1 ⊗A F → . . .→ F0 ⊗A F → 0

is exact.
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2.7.9. Let A be a ring, let a ∈ A, and let M be an A–module. Prove that
〈a〉 ⊗AM = {a⊗m | m ∈M}.
2.7.10. Write a Singular procedure to compute, for two ideals I, J ⊂
K[x] = K[x1, . . . , xn], the dimension of K[x]/I ⊗K[x] K[x]/J .

2.7.11. Write a Singular procedure to compute Ker(J ⊗AM →M), for
A = K[x1, . . . , xn]/I, J ⊂ A an ideal and M a finitely generated A–module.
Compute this kernel for J = 〈x, y〉, M = A/J and I = 〈x2 + y3〉 ⊂ Q[x, y].

2.7.12. Let x = (x1, . . . , xn) and y = (y1, . . . , ym), let >1 be a global mono-
mial ordering on Mon(x) and >2 be an arbitrary monomial ordering on
Mon(y). Moreover, let >= (>1, >2) be the corresponding product ordering
on Mon(x, y). Show that there is an isomorphism of K–algebras

K[x, y]>
∼=−→ K[y]>2 ⊗K K[x] .

Show by an example that K[x, y]> �∼= K[y]>2 ⊗K K[x]>1 if >1 is local.

2.8 Operations on Modules and Their Computation

Throughout the following, let K be a field, > a monomial ordering on K[x],
x = (x1, . . . , xn), and R = K[x]>. Moreover, let >m be any module ordering
on K[x]r.

2.8.1 Module Membership Problem

The module membership problem can be formulated as follows:

Problem: Given polynomial vectors f, f1, . . . , fk ∈ K[x]r, decide whether
f ∈ I := 〈f1, . . . , fk〉 ⊂ Rr or not.

Solution: Compute a standard basis G = {g1, . . . , gs} of I with respect to >m
and choose any weak normal form NF on Rr. Then

f ∈ I ⇐⇒ NF(f | G) = 0 .

This is proved in Lemma 2.3.5.

Additional Problem: If f ∈ I = 〈f1, . . . , fr〉 ⊂ Rr then express f as a linear
combination uf =

∑k
i=1 gifi with u, gi ∈ K[x], u a unit in R.

If {f1, . . . , fk} is a standard basis then we could compute a standard repre-
sentation for f by applying NFMora. For an arbitrary set of generators this
is not possible, and we have to use a more tricky
Solution: Compute a standard basis G of syz(f, f1, . . . , fk) ⊂ Rk+1 w.r.t. the
ordering (c,>). Now choose any vector h = (u,−g1, . . . ,−gk) ∈ G whose first
component u satisfies LM(u) = 1. Then uf =

∑k
i=1 gifi.
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Proof. By definition, h = (u,−g1, . . . ,−gk) ∈ syz(f, f1, . . . , fk) if and only if
uf =

∑k
i=1 gifi. Moreover, for the chosen ordering (c,>), LM(h) = LM(u)ε1.

Hence, f ∈ I implies that we find a vector in G whose first component is a
unit in R.

The built–in commands in Singular for this computation are lift(I,f)
(which returns g1, . . . , gk), respectively division(f,I) (which returns, ad-
ditionally, the unit u).

SINGULAR Example 2.8.1 (module membership).

ring R=0,(x,y,z),(c,dp);
module M=[-z,-y,x+y,x],[yz+z2,yz+z2,-xy-y2-xz-z2];
vector v=[-xz-z2,-xz+z2,x2+xy-yz+z2];
reduce(v,std(M));
//-> [0,xy-xz+yz+z2,-xz-2yz+z2,-x2-xz] //v is not in M

v=M[1]-x5*M[2];
v;
//-> [-x5yz-x5z2-z,-x5yz-x5z2-y,x6y+x5y2+x6z+x5z2+x+y,x]
reduce(v,std(M));
//-> 0 //v is in M

Now we want to express v in terms of generators of M .

syz(v+M);
//-> _[1]=[1,-1,x5]

This shows that v = M [1]− x5M [2]. By the built–in command lift, we ob-
tain

lift(M,v);
//-> _[1,1]=1
//-> _[2,1]=-x5

In the local case one should use the built–in command division (cf. Singu-

lar Example 1.8.2).

ring S=0,(x,y),(c,ds);
vector v=[x2,xy];
module M=[x+x3+y2,y3+y],[y,-x2+y2];
list L=division(v,M);
L;
//-> [1]:
//-> _[1,1]=x
//-> _[2,1]=-xy
//-> [2]:
//-> _[1]=0
//-> [3]:
//-> _[1,1]=1+x2
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From the output, we read that (1 + x2) · v = x ·M [1]− xy ·M [2]. The second
entry of the list L is the remainder, which is 0.

2.8.2 Intersection with Free Submodules (Elimination of Module
Components)

Let Rr =
⊕r

i=1 Rei, where {e1, . . . , er} denotes the canonical basis of Rr.

Problem: Given f1, . . . , fk ∈ K[x]r, I = 〈f1, . . . , fk〉 ⊂ Rr, find a (polyno-
mial) system of generators for the submodule

I ′ := I ∩
r⊕

i=s+1

Rei .

Elements of the submodule I ′ are said to be obtained from f1, . . . , fk by
eliminating e1, . . . , es.

The following lemma is the basis for solving the elimination problem.

Lemma 2.8.2. Let > be any monomial ordering on Mon(x1, . . . , xn) and
R = K[x]>. Moreover, let I ⊂ Rr =

⊕r
i=1Rei be a submodule and S a stan-

dard basis of I w.r.t. the module ordering >m= (c,>) defined by

xαei < xβej :⇐⇒ j < i or ( j = i and xα < xβ ) .

Then, for any s = 0, . . . , r − 1, S′ := S ∩⊕r
i=s+1 Rei is a standard basis of

I ′ = I ∩⊕r
i=s+1 Rei w.r.t. (c,>). In particular, S′ generates I ′.

Proof. Let h ∈ I ′, then we have to prove that there exists f ∈ S′ such that
LM(f) | LM(h).

Because S is a standard basis of I there exists f ∈ S such that LM(f)
divides LM(h). In particular, LM(f) ∈⊕r

i=s+1K[x]ei. Now, by definition of
the ordering, we obtain f ∈⊕r

i=s+1 Rei, in particular, f ∈ S′.

Hence, we obtain

Solution: Compute a standard basis G = {g1, . . . , gs} of I w.r.t. (c,>). Then

G′ :=

{
g ∈ G

∣∣∣∣∣ LM(g) ∈
r⊕

i=s+1

K[x]ei

}

is a standard basis for I ′.
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SINGULAR Example 2.8.3 (elimination of module components).

ring R=0,(x,y,z),(c,dp);
module T=[xy,1,0,0],[yz,0,1,0],[xz,0,0,1];
module N=std(T);
N;
//-> N[1]=[0,0,x,-y]
//-> N[2]=[0,z,0,-y]
//-> N[3]=[yz,0,1]
//-> N[4]=[xz,0,0,1]
//-> N[5]=[xy,1]

From the output, we read

N ∩
4⊕

i=2

Rei =
〈( 0

z
0

−y

)
,

( 0
0
x

−y

)〉
, N ∩

4⊕

i=3

Rei =
〈( 0

0
x

−y

)〉
.

2.8.3 Intersection of Submodules

Problem: Given f1, . . . , fk, h1, . . . , hs ∈ K[x]r, let I1 = 〈f1, . . . , fk〉Rr and
I2 = 〈h1, . . . , hs〉Rr. We want to compute a (polynomial) system of gener-
ators for the intersection I1 ∩ I2.
One solution would be to generalize the procedure described in Section 1.8.7
(cf. Exercise 2.8.3). Here we describe an alternative procedure, based on syzy-
gies.

Lemma 2.8.4. With the above assumptions, let g ∈ K[x]r. Moreover, let
c1, . . . , cr+k+s ∈ K[x]2r be the columns of the 2r × (r+k+s)–matrix

⎛

⎜⎜⎜⎜⎜⎝

1 0. . . f1 . . . fk 0 . . . 0
0 1
1 0. . . 0 . . . 0 h1 . . . hs
0 1

⎞

⎟⎟⎟⎟⎟⎠
.

Then g ∈ I1 ∩ I2 ⊂ Rr if and only if g appears as the first r components of
some g′ ∈ syz(c1, . . . , cr+k+s) ⊂ Rr+k+s.

The proof is easy and left as Exercise 2.8.2.

Solution: Let c1, . . . , cr+k+s ∈ K[x]2r be as in Lemma 2.8.4 and compute
a generating set M = {p1, . . . , p	} of syz(c1, . . . , cr+k+s). The projections of
p1, . . . , p	 to their first r components generate I1 ∩ I2.
The corresponding Singular command is intersect(I1, I2).
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SINGULAR Example 2.8.5 (intersection of submodules).

ring R=0,(x,y),(c,dp);
module I1=[x,y],[y,1];
module I2=[0,y-1],[x,1],[y,x];

intersect(I1,I2);
//-> _[1]=[y2-y,y-1]
//-> _[2]=[xy+y,x+1]
//-> _[3]=[x,y]

When using the procedure described before, we obtain a different set of gen-
erators:

vector c1=[1,0,1,0];
vector c2=[0,1,0,1];
vector c3=[x,y,0,0];
vector c4=[y,1,0,0];
vector c5=[0,0,0,y-1];
vector c6=[0,0,x,1];
vector c7=[0,0,y,x];
module M=c1,c2,c3,c4,c5,c6,c7;
syz(M);
//-> _[1]=[y,-y2+x+1,y,-x-1,y+1,0,-1]
//-> _[2]=[x,y,-1,0,-1,-1]
//-> _[3]=[y2-y,y-1,0,-y+1,x-1,0,-y+1]

From the output, we read that I1 ∩ I2 is generated by the following vectors:

vector r1=[y,-y2+x+1];
vector r2=[x,y];
vector r3=[y2-y,y-1];

Both computations give the same module, for instance,

r1+y*r2;
//-> [xy+y,x+1]

2.8.4 Quotients of Submodules

Problem: Let I1 and I2 ⊂ Rr be as in Section 2.8.3. Find a (polynomial)
system of generators for the quotient

I1 :R I2 =
{
g ∈ R ∣∣ gI2 ⊂ I1

}
.

Note that I1 :R I2 = AnnR
(
(I1 + I2)/I1

)
, in particular, if I1 ⊂ I2, then we

have I1 :R I2 = AnnR(I2/I1).
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We proceed as in the ideal case (cf. Section 1.8.8):

Solution 1: Compute generating sets Gi of I1 ∩ 〈hi〉, i = 1, . . . , s, according to
Section 2.8.3, “divide” the generators by the vector hi, getting the generating
set G′

i = {g ∈ R | ghi ∈ Gi} for I1 :R 〈hi〉. Finally, compute the intersection⋂
i(I1 :R 〈hi〉), again according to 2.8.3.

Note that there is a trick which can be used to “divide” by the vector hi:
let Gi = {v1, . . . , v	} and compute a generating system {w1, . . . , wm} for
syz(v1, . . . , v	, hi). Then the last (= (�+ 1)–th) components of w1, . . . , wm
generate the R–module I1 :R 〈hi〉.
Solution 2: Define h := h1 + t1h2 + . . .+ ts−1hs ∈K[t1, . . . , ts−1, x1, . . . , xn]r,
and compute a generating system for (I1 ·R[t]) :R[t] 〈h〉R[t], as before. Finally,
eliminate t1, . . . , ts−1 from (I1 · R[t]) :R[t] 〈h〉R[t] (cf. Section 1.8.2).

Let us consider the same problem for modules which are given by a presen-
tation matrix.

Problem: Let A = R/I for some ideal I ⊂ R, and let ϕ : M1 →M2 be an A–
module homomorphism, given by matrices B,B1, B2 with entries in R, such
that the induced diagram

Ar
B1 �� Ap ��

B

��

M1

ϕ

��

�� 0

As
B2 �� Aq �� M2

�� 0

is commutative with exact rows. Compute generators for the ideal

ϕ(M1) :A M2 = AnnA
(
M2/ϕ(M1)

)
.

Solution: Let b1, . . . , bp ∈ Rq and g1, . . . , gs ∈ Rq represent the columns of B
and B2, respectively, and let {e1, . . . , eq} denote the canonical basis of Rq.
Then

ϕ(M1) :A M2 =
(
(BAp + Im(B2))

/
Im(B2)

)
:A

(
Aq

/
Im(B2)

)

= AnnA
(
Aq

/
(BAp + Im(B2))

)

= 〈g1, . . . , gs, b1, . . . , bp〉 :A 〈e1, . . . , eq〉
= π

(〈g1, . . . , gs, b1, . . . , bp〉+ I · Rq):R 〈e1, . . . , eq〉 ,

where π : R→ A = R/I denotes the canonical projection. Hence, we can ap-
ply again the method from above.

The built–in command in Singular for this computation is quotient(I1, I2),
which also works over quotient rings of R.
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SINGULAR Example 2.8.6 (quotient of submodules).

ring R=0,(x,y,z),(c,dp);
module I=[xy,xz],[yz,xy];
module J=[y,z],[z,y];
ideal K=quotient(I,J);
K;
//-> K[1]=x2y2-xyz2
reduce(K*J,std(I)); //test if KJ is contained in I
//-> _[1]=0
//-> _[2]=0

Since R has no zerodivisors, AnnR(J) = 〈0〉 :R J = 〈0〉, but the annihilator
AnnA(J) over the quotient ring A = R/(I :R J) is not trivial:

qring A=std(K);
module Null;
module J=[xy,xyz-x2y2],[xy2,y2x];
ideal ann=quotient(Null,J); //annihilator of J
ann;
//-> ann[1]=xy-z2

Now let M1,M2 ⊂ A3 be given by presentation matrices B1 ∈Mat(3 × 2, A),
respectively, B2 ∈Mat(3× 4, A), and let ϕ : M1 →M2 be given by a matrix
B ∈Mat(3 × 3, A). We compute ϕ(M1) :A M2 = AnnA(M2/ϕ(M1)).

module B1 = [x2,xy,y2],[xy,xz,yz]; //presentation of M1
module B = [x,zx,zy],[y,zy,xy],[x+y,zx+zy,zy+xy];
module B2 = B[1],B[2],B1[1],B1[2]; //presentation of M2

reduce(B*B1,std(B2)); //test if im(B*B1) contained in im(B2)
//-> _[1]=0
//-> _[2]=0

quotient(B2+B,freemodule(3)); //the annihilator
//-> _[1]=x3y-xy2z

2.8.5 Radical and Zerodivisors of Modules

Let A = R/I for some ideal I ⊂ R and let M,N be two A–modules with
N ⊂M . Define the radical of N in M as the ideal

radM (N) := M
√
N :=

{
g ∈ A ∣∣ gqM ⊂ N for some q > 0

}
.

Problem: Solve the radical membership problem for modules, that is, decide
whether f ∈ A is contained in M

√
N , or not. 16

16 Cf. Exercises 4.1.13 – 4.1.15 to see how M
√

N is related to a primary decomposi-
tion of M .
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Solution: By Exercise 2.8.6, M
√
N =

√
AnnA(M/N). Hence, we can compute

generators for AnnA(M/N) = N :A M ⊂ A as in Section 2.8.4, and then we
are reduced to solving the radical membership problem for ideals which was
solved in Section 1.8.6. 17

A slightly different problem is the zerodivisor test:

Problem: Decide whether a given f ∈ A is a zerodivisor ofM , that is, whether
there exists some m ∈M � {0} such that f ·m = 0.

Solution: The element f defines an endomorphism ϕf : M →M , m �→ f ·m ,
which is induced by f ·Er : Ar → Ar, with Er the r × r unit matrix. It follows
that f is a zerodivisor of M if and only if Ker(ϕf ) �= 0. The computation of
Ker(ϕf ) is explained in Section 2.8.7.

Note that Ker(ϕf ) is a special case of the quotient of a module by an ideal

Ker(ϕf ) = 〈0〉 :M 〈f〉 = {m ∈M | f ·m = 0} .
Hence, f is a zerodivisor of M = Aq/N if and only if N :Aq 〈f〉 �= 0.

SINGULAR Example 2.8.7 (radical, zerodivisors of modules).
We check first whether a polynomial f is in the radical of N in A3, with
A = Q[x, y, z]/〈xy(xy − z2)〉.

ring R = 0,(x,y,z),(c,dp);
ideal I = x2y2-xyz2;
qring A = std(I);
poly f = xy*(y-z)*(y-1);
module N = [x,xz,y2],[y,yz,z2],[x2,xy,y2],[xy,xz,yz];
ideal ann= quotient(N,freemodule(3)); //annihilator of

// Coker(N)
ring Rt = 0,(t,x,y,z),dp;
ideal I = imap(R,I);
ideal ann= imap(A,ann),I;
poly f = imap(A,f);
ideal J = ann,1-t*f;
eliminate(J,t);
//-> _[1]=1

Hence, f is contained in A3√
N , that is, some power of f maps A3 to N . In

particular, f should be a zerodivisor of A3/N . Let us check this:

setring A;
size(quotient(N,f));
//-> 9

Hence, N :A3 〈f〉 �= 0 and f is a zerodivisor of A3/N .
17 If M, N ⊂ Ar are given by generating systems m1, . . . , mp ∈ Rr, n1, . . . , nq ∈ Rr,

then
√

N :A M =
√

(〈n1, . . . , nq〉 + I Rr) :R 〈m1, . . . , mp〉 mod I .
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2.8.6 Annihilator and Support

Let I = 〈f1, . . . , fk〉 ⊂ R be an ideal, and M an A = R/I–module. By Lemma
2.1.41, the support of M is the zero–set of the annihilator ideal of M ,

supp(M) = V
(
AnnA(M)

)
,

where AnnA(M) = {g ∈ A | gM = 0} = 〈0〉 :A M .

Problem: Compute a system of generators of some ideal J ⊂ A satisfying

supp(M) = V (J) = {P ⊂ A prime ideal | P ⊃ J}

There are two cases of interest:

(I) M ⊂ Ar is given by a system of generators m1, . . . ,ms ∈ Rr,
(II) M has the presentation Ap

B−→ Aq →M → 0, given in form of a matrix
B ∈Mat(q × p,R).

Note that AnnR(M) = 0 for M ⊂ Rr, since R = K[x]> has no zerodivisors.
Hence, the first case is only interesting if I �= 0.

Solution 1: We compute a system of generators for J = AnnA(M).

In Case (I), this can be done by computing a system of generators for 〈0〉 :A M
as described in Section 2.8.4, with A = R/I as basering. The latter means to
compute a system of generators for the quotient (I ·Rr) :R 〈m1, . . . ,mr〉,
with R as basering and with I ·Rr = 〈fiej | 1 ≤ i ≤ k, 1 ≤ j ≤ r〉, 18 and
then to project modulo I.

In Case (II), we have M ∼= Aq/ Im(B) where Im(B) ⊂ Aq is the submod-
ule generated by the columns of B. Hence, AnnA(M) = Im(B) :A Aq, and the
generators of Im(B) :A Aq computed as in Section 2.8.4 with A as basering,
generate AnnA(M).

We shall see in Section 7.2 on Fitting ideals, that the 0–th Fitting ideal
F0(M) satisfies also supp(M) = V

(
F0(M)

)
(cf. Exercise 7.2.5). This leads to

the following

Solution 2: We compute a system of generators for J = F0(M).

In Case (I), this can be done by computing a system of generators {b1, . . . , bp}
of the module of syzygies syzA(m1, . . . ,ms) ⊂ Aq, cf. Remark 2.5.6. The bi
are the columns of a matrix B, defining a presentation Ap B−→ Aq →M → 0.
Then the q–minors of B generate F0(M), cf. Definition 7.2.4.

In Case (II), it is clear that the q–minors of the presentation matrix B
generate F0(M).

18 Here {e1, . . . , er} denotes the canonical basis of Rr.
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SINGULAR Example 2.8.8 (annihilator and Fitting ideal).
We compute the annihilator and the Fitting ideal of a module M = Coker(B)
given by a presentation matrix B over the quotient ring A = R/I, where
R = Q[x, y, z, u] and I = 〈x2y2− xyz2〉.

ring R = 0,(x,y,z,u),dp;
ideal I = x2y2-xyz2;
qring A = std(I);
module B = [x,xz,y2],[y,yz,z2],[x2,xy,y2];
ideal ann= quotient(B,freemodule(3));
ideal fit= minor(B,3);
ann; //annihilator of Coker(B)
//-> ann[1]=x3z3-xy2z3+xy4-x2yz2
//-> ann[2]=x4yz2-xy2z4+xy4z-x2yz3
//-> ann[3]=x5z2-x2yz4+xy4-x2yz2

fit; //Fitting ideal of Coker(B)
//-> fit[1]=-x2y3z+x3z3+xy4-x2yz2

We now check that fit ⊂ ann �⊂ fit, but ann2 ⊂ fit, by counting the num-
ber of non–zero generators after reduction.

size(reduce(fit,std(ann)));
//-> 0
size(reduce(ann,std(fit)));
//-> 2
size(reduce(ann*ann,std(fit)));
//-> 0

2.8.7 Kernel of a Module Homomorphism

Let A = R/I for some ideal I ⊂ R, let U ⊂ An, V = 〈v1, . . . , vs〉 ⊂ Am be
submodules, and let ϕ : An/U → Am/V be an A–module homomorphism
defined by the matrix B = (b1, . . . , bn), bi ∈ Am.

Problem: Compute a system of generators in An =
⊕n

i=1 Aei for Ker(ϕ).

Note that f =
∑n
i=1 fiei ∈ Ker(ϕ) if and only if there exist y1, . . . , ys ∈ A

such that
∑n

i=1 fibi =
∑s

j=1 yjvj , in particular, (f1, . . . , fn,−y1, . . . ,−ys) is
a syzygy of b1, . . . , bn, v1, . . . , vs. Hence, we obtain the following

Solution: Compute a system of generators {h1, . . . , h	} for the module of
syzygies syz(b1, . . . , bn, v1, . . . , vs) ⊂ An+s (cf. Remark 2.5.6). Let h′i ∈ An be
the vector obtained from hi when omitting the last s components, i = 1, . . . , �.
Then {h′1, . . . , h′	} is a generating system for Ker(ϕ).
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SINGULAR Example 2.8.9 (kernel of a module homomorphism).

ring R=0,(x,y,z),(c,dp);
ideal I=x2y2-xyz2;
qring A=std(I); // quotient ring A=R/I
module V=[x2,xy,y2],[xy,xz,yz];
matrix B[3][2]=x,y,zx,zy,y2,z2;
module N=B[1],B[2],V[1],V[2];
module Re=syz(N); // syzygy module of N
module Ker;
int i;
for(i=1;i<=size(Re);i++){Ker=Ker+Re[i][1..2];}
Ker; // kernel of B
//-> Ker[1]=[xy2-yz2]
//-> Ker[2]=[y3z-x2z2-xyz2+y2z2-xz3+yz3,xy3-x2yz]
//-> Ker[3]=[x2yz-xz3]
//-> Ker[4]=[x3z+x2z2-xyz2-y2z2+xz3-yz3,x3y-xy2z]
//-> Ker[5]=[x3y-x2z2]

reduce(B*Ker,std(V)); // test
//-> _[1]=0
//-> _[2]=0
//-> _[3]=0
//-> _[4]=0
//-> _[5]=0

We can use the built–in command modulo (cf. Singular Example 2.1.26).

modulo(B,V);

gives the same result as Ker; .

2.8.8 Solving Systems of Linear Equations

Let I = 〈f1, . . . , fk〉 ⊂ R be an ideal, with fi ∈ K[x] polynomials, and let
S = R/I. Moreover, let

a11Z1 + . . .+ a1mZm = b1
...

...
...

ar1Z1 + . . .+ armZm = br

be a system of linear equations, with aij , bi ∈ K[x] and indeterminates Zj .
We can write the above system as a matrix equation AZ = b, where

A =
( a11 ... a1m...

...
ar1 ... arm

)
, Z =

( Z1...
Zm

)
, b =

( b1...
br

)
.
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A is called the coefficient matrix of the system and the concatenated matrix
(A | b) is called the extended coefficient matrix .

Problems:

(1) Check whether the system AZ = b is solvable over S, and if so, then find
a solution. That is, we are looking for a vector z ∈ Sm such that the
equation Az = b holds in Sr. The set of all such solutions z is denoted
by SolS(AZ = b).

(2) Consider the homogeneous system AZ = 0. The set of solutions is the
kernel of the linear map A : Sm → Sr and, hence, a submodule of Sm.
The problem is to find a set of generators of SolS(AZ = 0). Note that if
z ∈ SolS(AZ = b) is a “special” solution of the inhomogeneous system,
then z + SolS(AZ = 0) := {z + w | w ∈ SolS(AZ = 0)} is the set of all
solutions for AZ = b.

Solution 1: We assume that the aij and bj are elements of a field F . 19 We
create the ideal

E =

〈
m∑

j=1

a1jZj − b1 , . . . ,
m∑

j=1

arjZj − br
〉

in F [Z1, . . . , Zm] and compute a reduced standard basis G of E with respect
to a global monomial ordering. The system AZ = b is solvable over F if and
only if G �= {1} and then the solutions can be read from G.

In case F = K(x1, . . . , xn), the xi are considered as parameters and if
AZ = b is not solvable over F this means that there is no vector z(x) of
rational functions, satisfying AZ = b. Hence A(x) · z(x) = b(x) has no solu-
tion for general x. Nevertheless, there may exist solutions for special x which
satisfy some constraints. What we can do now is to create a ring with the
xi as variables, and then a standard basis of the ideal E in this ring, even-
tually, computes equations in the xi such that A(x) · Z = b(x) is solvable for
all x = (x1, . . . , xn) ∈ Sn satisfying these equations (see Singular Example
2.8.10 below).

Solution 2: We consider now the general case.

(1) AZ = b is solvable over S if and only if b is in the image of the mod-
ule homomorphism A : Sm → Sr. Hence, we have to check whether b
is contained in the submodule Im(A) ⊂ Sr, generated by the columns
a1, . . . , am of A. If the latter is given, then we have to find z1, . . . , zm ∈ S,
such that b =

∑m
i=1 ziai. However, this problem was already solved in

Section 2.8.1.
19 For instance, consider aij , bj as elements of the quotient field K(x1, . . . , xn).
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(2) Finding generators for SolS(AZ = 0) means nothing else but finding gen-
erators for Ker(A : Sm → Sr), and this problem was solved in Section
2.8.7.

Note that solving overK[x]/I means that the solution z(p) satisfies the linear
equation A(p) · z(p) = b(p) for p in the zero–set of f1, . . . , fk (solving with
polynomial constraints).20

SINGULAR Example 2.8.10 (solving linear equations).
Consider the system of linear equations in x, y, z, u,

3x + y + z − u = a
13x + 8y + 6z − 7u = b
14x + 10y + 6z − 7u = c
7x + 4y + 3z − 3u = d

(∗)

where a, b, c, d are parameters. Moreover, we also consider the system (∗∗),
which has the additional equation

x + y + z − u = 0 .

We want to solve these systems by expressing x, y, z, u as functions of the
parameters a, b, c, d if possible, respectively find conditions for the parameters
such that the system is solvable.

Following Solution 1, we can express the systems (∗) and (∗∗) as ideals E
and EE in a ring with a, b, c, d as parameters:

ring R = (0,a,b,c,d),(x,y,z,u),(c,dp);
ideal E = 3x + y + z - u - a,

13x + 8y + 6z - 7u - b,
14x + 10y + 6z - 7u - c,
7x + 4y + 3z - 3u - d;

ideal EE = E, x + y + z - u;

Computing a reduced standard basis performs a complete Gaussian elimina-
tion, showing that there is a unique solution to the system (∗):
20 Hilbert’s Nullstellensatz 3.5.2 implies that, for a radical ideal I , to solve the

system AZ = b over K[x]/I means nothing else but to look for polynomial vectors
z = (z1, . . . , zm) ∈ K[x]m such that A(p) · z(p) = b(p), for all p ∈ VK(I). Here

VK(I) :=
{
p = (p1, . . . , pn) ∈ Kn

∣∣ f1(p) = . . . = fk(p) = 0
}

denotes the zero–set of I over the algebraic closure K of K.
The same remark applies for solving over K[x]〈x〉/I , except that we are looking

for solutions in some Zariski open neighbourhood of 0, subject to the constraints
f1 = . . . = fk = 0 (cf. Appendix A.2).
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option(redSB);
simplify(std(E),1); //compute reduced SB
//-> _[1]=u+(6/5a+4/5b+1/5c-12/5d)
//-> _[2]=z+(16/5a-1/5b+6/5c-17/5d)
//-> _[3]=y+(3/5a+2/5b-2/5c-1/5d)
//-> _[4]=x+(-6/5a+1/5b-1/5c+2/5d)

We read the solution of (∗):
x = 1

5 ·
(
6a− b+ c− 2d

)
,

y = 1
5 ·

(−3a− 2b+ 2c+ d
)
,

z = 1
5 ·

(−16a+ b− 6c+ 17d
)
,

u = 1
5 ·

(−6a− 4b− c+ 12d
)
.

Doing the same for EE gives 1:

std(EE);
//-> _[1]=1

This means that the system (∗∗) has no solution over the field Q(a, b, c, d),
or, in other words, (∗∗) has no complex solutions for fixed general values of
a, b, c, d. This is clear, since the extra equation for (∗∗), x+ y + z = u gives a
linear condition in a, b, c, d for the solutions of (∗). Since general values of the
parameters do not satisfy this equation, (∗∗) has no solution over the field of
rational functions in a, b, c, d.

If we want to find conditions for a, b, c, d under which (∗∗) has a solution
and then to solve it, we have to pass to a ring with a, b, c, d as variables. Since
we have to solve for x, y, z, u, these variables have to come first.

ring R1 = 0,(x,y,z,u,a,b,c,d),(c,dp);

Now we compute a reduced standard basis (up to normalization) for the ideal
generated by the rows of the system (∗∗).

ideal EE = imap(R,EE);
std(EE);
//-> _[1]=7a-2b+2c-4d
//-> _[2]=7u+8b-c-12d
//-> _[3]=7z+5b+2c-11d
//-> _[4]=7y+4b-4c+d
//-> _[5]=7x-b+c-2d

The first polynomial gives 7a− 2b+ 2c− 4d = 0, which must be satisfied
by the parameters to have a solution for (∗∗). The remaining polynomials
then give the solutions for x, y, z, u in terms of b, c, d (a has already been
substituted).

Another method is to work directly on the (extended) coefficient matrix.
The standard basis algorithm applied to a matrix operates on the module
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generated by the columns of the matrix. Hence, in order to solve the linear
system, we have to transpose the matrix and to make sure that the module
ordering gives priority to the columns (for example, (c,dp)).

First we have to write two procedures which return the coefficient matrix,
respectively the extended coefficient matrix, of an ideal, describing the system
of linear equations as above.

LIB "matrix.lib";
proc coeffMat (ideal i)
{

int ii;
int n = nvars(basering);
int m = ncols(i);
matrix C[m][n];
for ( ii=1; ii<=n; ii++)
{

C[1..m,ii] = i/var(ii);
}
return(C);

}

proc coeffMatExt(ideal i)
{

matrix C = coeffMat(i);
C = concat(C,transpose(jet(i,0)));
return(C);

}

Now we consider again the above example, and, of course, obtain the same
answers as before:

setring R;
matrix CE = coeffMatExt(EE);
matrix C = coeffMat(E);

setring R1;
matrix CE = imap(R,CE);
std(transpose(CE));
//-> _[1]=[0,0,0,0,7a-2b+2c-4d]
//-> _[2]=[0,0,0,7,8b-c-12d]
//-> _[3]=[0,0,7,0,5b+2c-11d]
//-> _[4]=[0,7,0,0,4b-4c+d]
//-> _[5]=[7,0,0,0,-b+c-2d]

Finally let us proceed as in Solution 2 with the above system (∗∗), already
knowing that 7a− 2b+ 2c− 4d = 0 is the condition for solvability. Hence, we
can work over the corresponding quotient ring.
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ring R2 = 0,(x,y,z,u,a,b,c,d),(c,dp);
ideal p = 7a-2b+2c-4d;
qring qR= std(p);
matrix C = imap(R,C);
matrix CE= imap(R,CE);
matrix b[5][1]=CE[1..5,5]; //the r.h.s. of (**)
lift(C,b);
//-> __[1,1]=-1/7b+1/7c-2/7d
//-> __[2,1]=4/7b-4/7c+1/7d
//-> __[3,1]=5/7b+2/7c-11/7d
//-> __[4,1]=8/7b-1/7c-12/7d

Exercises

2.8.1. Let > be any monomial ordering on Mon(x1, . . . , xn) and R = K[x]>,
x = (x1, . . . , xn). Moreover, let I ⊂ J ⊂ Rr be submodules and f ∈ Rr/I.
Find a procedure to decide whether f ∈ J/I or not.

2.8.2. Prove Lemma 2.8.4.

2.8.3. Let > be any monomial ordering on Mon(x1, . . . , xn) and R = K[x]>.
Show that the procedure of Section 1.8.7 can be generalized to a procedure
computing the intersection I ∩ J of two submodules I, J ⊂ Rr.

2.8.4. Use the modulo command to write a Singular procedure to compute
the quotient of two modules.

2.8.5. Let R = Q[x, y, z]/〈x2+ y2+ z2〉, M = R3/〈(x, xy, xz)〉, and let N =
R2/〈(1, y)〉. Moreover, let ϕ = ϕA : M → N be the R-module homomorphism
given by the matrix

A =
(
x2+ 1 y z
yz 1 −y

)
.

(1) Compute Ker(ϕ).
(2) Test whether (x2, y2) ∈ Im(ϕ), or not.
(3) Compute Im(ϕ) ∩ {

f ∈ N ∣∣ f ≡ (h, 0) mod 〈(x, 1)〉 for some h ∈ R}.
(4) Compute AnnR

(
Im(ϕ)

)
.

2.8.6. Let A be a ring, M an A–module and N ⊂M a submodule. Then
M
√
N :=

{
g ∈ A ∣∣ gqM ⊂ N for some q > 0

}
,

is called the radical of N in M . Prove the following statements:

(1) M
√
N =

√
Ann(M/N) =

√
N :A M .

(2) M
√
N = A if and only if M = N .

(3) M
√
N ∩N ′ = M

√
N ∩ M

√
N ′, for each submodule N ′ ⊂M .

(4) M
√
N +N ′ = M

√
N + M

√
N ′, for each submodule N ′ ⊂M .
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Integral extension of a ring means adjoining roots of monic polynomials over
the ring. This is an important tool for studying affine rings, and it is used
in many places, for example, in dimension theory, ring normalization and
primary decomposition. Integral extensions are closely related to finite maps
which, geometrically, can be thought of as projections with finite fibres plus
some algebraic conditions. We shall give a constructive introduction with
explicit algorithms to these subjects.

3.1 Finite and Integral Extensions

This section contains the basic algebraic theory of finite and algebraic exten-
sions and their relationship. Moreover, important criteria for integral depen-
dence (Proposition 3.1.3) and finiteness (Proposition 3.1.5) are proven.

Definition 3.1.1. Let A ⊂ B be rings.

(1) b ∈ B is called integral over A if there is a monic polynomial f ∈ A[x]
satisfying f(b) = 0, that is, b satisfies a relation of degree p,

bp + a1b
p−1 + · · ·+ ap = 0, ai ∈ A ,

for some p > 0.
(2) B is called integral over A or an integral extension of A if every b ∈ B is

integral over A.
(3) B is called a finite extension of A if B is a finitely generated A–module.
(4) If ϕ : A→ B is a ring map then ϕ is called an integral, respectively finite,

extension if this holds for the subring ϕ(A) ⊂ B.

If there is no doubt about ϕ, we say also, in this situation, that B is integral,
respectively finite, over A. Often we omit ϕ in the notation, for example we
write IM instead of ϕ(I)M if I ⊂ A is an ideal and M a B–module.
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Proposition 3.1.2. Let A,B be rings.

(1) If ϕ : A→ B is a finite extension, then it is integral. More generally, if
I ⊂ A is an ideal and M a finitely generated B–module then any b ∈ B
with bM ⊂ IM satisfies a relation

bp + a1b
p−1 + · · ·+ ap = 0 , ai ∈ Ii ⊂ A .

(2) If B is a finitely generated A–algebra of the form B = A[b1, . . . , bn] with
bi ∈ B integral over A then B is finite over A.

Proof. (1) Replacing A by the image of A, we may assume that A ⊂ B. Any
b ∈ B defines an endomorphism of the finitely generated A–module B. The
characteristic polynomial of this endomorphism defines an integral relation
for b, by the Cayley–Hamilton Theorem (this is sometimes called the “deter-
minantal trick”).

In concrete terms, let b1, . . . , bk be a system of generators for B as A–
module, then b · bi =

∑k
j=1 aijbj , 1 ≤ i ≤ k, for suitable aij ∈ A. This implies

(
b ·Ek − (aij)

)
⎛

⎜⎝
b1
...
bk

⎞

⎟⎠ = 0 ,

therefore, by Cramer’s rule, det
(
b ·Ek − (aij)

) · bi = 0 for i = 1, . . . , k.1 But,
since 1 =

∑
i eibi ∈ B for suitable e1, . . . , ek, we obtain det

(
bEk − (aij)

)
= 0,

which is the required integral relation for b.
In the general case, let b1, . . . , bk be a system of generators of M as A–

module. Then we can choose the aij from I and it follows that the coefficient
of bk−i in det(bEk −

(
aij)

)
is a sum of i× i–minors of (aij) and, therefore,

contained in Ii.
(2) We proceed by induction on n. If b1 satisfies an integral relation of degree
p, then bp1 and hence, any power bq1, q ≥ p, can be expressed as an A–linear
combination of b01, . . . , b

p−1
1 . That is, the A–module B = A[b1] is generated

by b01, . . . , b
p−1
1 , in particular, it is finite over A.

For n > 1 we may assume, by induction, that A[b1, . . . , bn−1] is finite over
A. Since taking finite extension is clearly transitive, (A[b1, . . . bn−1])[bn] is
finite over A.

Let K be a field, I ⊂ K[x] := K[x1, . . . , xn] an ideal and f1, . . . , fk ∈ K[x].
The residue classes f̄i = fi mod I generate a subring

A := K[f̄1, . . . , f̄k] ⊂ B := K[x]/I .

We want to check whether a given b ∈ K[x] is integral over K[f1, . . . , fk] mod
I, that is, whether b̄ is integral over A.
1 Here En denotes the n × n unit matrix.
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The following two results are the basis for an algorithm to check for
integral dependence respectively finiteness.

Proposition 3.1.3 (Criterion for integral dependence).
Let b, f1, . . . , fk ∈ K[x], I = 〈g1, . . . , gs〉 ⊂ K[x] an ideal and t, y1, . . . , yk new
variables. Consider the ideal

M = 〈t− b, y1−f1, . . . , yk−fk, g1, . . . , gs〉 ⊂ K[x1, . . . , xn, t, y1, . . . , yk] .

Let > be an ordering on K[x, t, y] with x� t� y,2 and let G be a standard
basis of M with respect to this ordering.

Then b is integral over K[f ] = K[f1, . . . , fk] mod I if and only if G con-
tains an element g with leading monomial LM(g) = tp for some p > 0. More-
over, any such g defines an integral relation for b over K[f ] mod I.

Proof. If LM(g) = tp then g must have the form

g(t, y) = a0t
p + a1(y)tp−1 + · · ·+ ap(y) ∈ K[t, y], a0 ∈ K � {0} .

We may assume that a0 = 1. Since g ∈M we have g(b, f) ∈ I. Thus, g defines
an integral relation for b over K[f ] mod I.

Conversely, if b is integral, then there exists a g ∈ K[t, y] as above. By
Taylor’s formula, g(t, y) = g(b, f) + b0 · (t− b) +

∑k
i=1 bi · (yi − fi) for some

bi ∈ K[t, y], i = 0, . . . , k. Hence, g ∈M and, therefore, tp = LM(g) ∈ L(M).
Since G is a standard basis, tp is divisible by the leading monomial of some
element of G which implies the result.

SINGULAR Example 3.1.4 (integral elements).
Let K = Q, the field of rational numbers, I = 〈x2

1 − x3
2〉 ⊂ A = K[x1, . . . , x4],

let f1 = x2
3 − 1 and f2 = x2

1x2. We want to check whether the elements b = x3

(respectively x4) are integral over K[f1, f2] mod I.

ring A = 0,(x(1..4),t,y(1..2)),lp;
//For complicated examples the ordering (dp(n),dp(1),dp(k))
//is preferable.

ideal I =x(1)^2-x(2)^3;
poly f1,f2=x(3)^2-1,x(1)^2*x(2);
poly b =x(3);
ideal M =t-b,y(1)-f1,y(2)-f2,I;

groebner(M);
//-> _[1]=t^2-y(1)-1 _[2]=x(3)-t
//-> _[3]=x(2)^4-y(2) _[4]=x(1)^2-x(2)^3

2 Recall that x � y refers to a block ordering where terms in x = (x1, . . . , xn) are
always greater than terms in y = (y1, . . . , yk).
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b =x(4);
M =t-b,y(1)-f1,y(2)-f2,I;

groebner(M);
//-> _[1]=x(4)-t _[2]=x(3)^2-y(1)-1
//-> _[3]=x(2)^4-y(2) _[4]=x(1)^2-x(2)^3

We see that in the first case t2 is one of the leading monomials of the standard
basis of M and, therefore, x3 is integral over K[f̄1, f̄2] with integral relation
x2

3 − f̄1 − 1. In the second case we see that x4 is not integral over K[f̄1, f̄2].

Proposition 3.1.5 (Criterion for finiteness). Let K be a field, and
let x = (x1, . . . , xn), y = (y1, . . . , ym) be two sets of variables. Moreover, let
I ⊂ K[x], J = 〈h1, . . . , hs〉 ⊂ K[y] be ideals and ϕ : K[x]/I → K[y]/J a mor-
phism, defined by ϕ(xi) := fi. Set

M := 〈x1−f1, . . . , xn−fn, h1, . . . , hs〉 ⊂ K[x, y] ,

and let > be a block ordering on K[x, y] such that > is the lexicographical
ordering for y, y1 > · · · > ym, and y � x. Let G = {g1, . . . , gt} be a standard
basis of M with respect to this ordering.

Then ϕ is finite if and only if for each j ∈ {1, . . . ,m} there exists some
g ∈ G such that LM(g) = y

νj

j for some νj > 0.

Proof. If gsj = y
νj

j +
∑νj−1

ν=0 ajν(x, yj+1, . . . , ym) · yνj ∈M then

gsj

∣∣
x=f

:= gsj

(
f1(y), . . . , fn(y), yj+1, . . . , ym

) ∈ J

for j = 1, . . . ,m. Therefore, ym mod J is integral over K[x]/I. Using induc-
tion and the transitivity of integrality, we obtain that yj mod J is integral
over K[x]/I, hence K[y]/J is finite over K[x]/I by Proposition 3.1.2 (2).

Conversely, the finiteness of ϕ guarantees, again by 3.1.2, an integral rela-
tion yνj

j +
∑νj−1

ν=0 ajν
(
f1(y), . . . , fn(y)

) · yνj ∈ J for suitable ajν ∈ K[x]. Using
Taylor’s formula, as in the proof of Proposition 3.1.3, we obtain

y
νj

j +
νj−1∑

ν=0

ajν(x1, . . . , xn) · yνj ∈M ,

and, therefore, its leading monomial, yνj

j , is an element of L(M).

SINGULAR Example 3.1.6 (finite maps).
Let ϕ : K[a, b, c]→ K[x, y, z]/〈xy〉 be given by a �→ (xy)3+ x2+ z, b �→ y2− 1,
c �→ z3. To check whether ϕ is finite we have to compute a standard basis of
the ideal
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M := 〈a− (xy)3− x2− z, b− y2+ 1, c− z3, xy〉 ⊂ K[a, b, c, x, y, z]

with respect to a block ordering x� y � z � a, b, c. We choose the lexico-
graphical ordering x > y > z > a > b > c.

ring A =0,(x,y,z,a,b,c),lp;
ideal M =a-(xy)^3-x2-z,b-y2+1,c-z3,xy;
ideal SM=std(M);
lead(SM); //get leading terms of SM
//-> -[1]=a3b _[2]=zb _[3]=z3
//-> _[4]=ya3 _[5]=yz _[6]=y2
//-> _[7]=xb _[8]=xy _[9]=x2
kill A;

We see that the map is finite because z3, y2, x2 appear as leading terms in the
standard basis. We could also have used the built–in procedure mapIsFinite,
which checks for finiteness (cf. below).

Remark 3.1.7. Usually the above method is not the fastest. In most cases
it appears to be faster, first to eliminate the xi from M (notations from
Proposition 3.1.5) and then to compute a standard basis of M ∩K[t, y] for
an ordering with t� yi, see also Exercise 3.1.3.

Remark 3.1.8. For a finite map ϕ : A→ B and M ⊂ A a maximal ideal,
B/MB is a finite dimensional (A/M)–vector space. This implies that the
fibres of closed points of the induced map φ : MaxB → MaxA (cf. Appendix
A) are finite sets. To be specific, let A = K[x]/I and B = K[y]/J (K an
algebraically closed field), and let

A
m ⊃ V (J)

φ−→ V (I) ⊂ A
n

be the induced map. If M = 〈x1 − p1, . . . , xn − pn〉 ⊂ K[x] is the maxi-
mal ideal of the point p = (p1, . . . , pn) ∈ V (I) then MB = (J +N)/J with
N := 〈ϕ(x1)− p1, . . . , ϕ(xn)− pn〉 ⊂ K[y]. V (J +N) = φ−1(p) is the fibre of
φ over p, which is a finite set, since dimK

(
K[y]/(J +N)

)
<∞.

The converse, however, is not true, not even for local rings (cf. Exercise
3.1.7). But, if ϕ : A→ B is a map between local analytic K–algebras, then
ϕ is finite if and only if dimK B/ϕ(mA)B <∞ (cf. Corollary 6.2.14).

We illustrate a finite and a non–finite map of varieties by a picture (cf. Figure
3.1), which is created by the following Singular session:

ring B = 0,(x,y,z),dp;
ideal I = x-zy;
LIB"surf.lib";
plot(I); // cf. Fig. 3.1
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Fig. 3.1. The “blown up” (x, y)–plane.

We see that the projection φ1 to the (x, y)–plane cannot be finite, since the
preimage of 0 is a line. However, all fibres of the projection φ2 to the (y, z)–
plane consist of just one point, φ−1

2 (b, c) = (bc, b, c). Indeed, we can check
that φ2 is finite by using mapIsFinite from the library algebra.lib:

LIB"algebra.lib";
ring A = 0,(u,v),dp;
setring B;
map phi1 = A,x,y; //projection to (x,y)-plane
mapIsFinite(phi1,A,I);
// -> 0
map phi2 = A,y,z; //projection to (y,z)-plane
mapIsFinite(phi2,A,I);
// -> 1

Lemma 3.1.9. Let ϕ : A→ B be a ring map.

(1) If P ⊂ B is a prime ideal, then ϕ−1(P ) ⊂ A is a prime ideal.
(2) If ϕ is an integral extension, and if ϕ(x) is a unit in B, then ϕ(x) is a

unit in the ring ϕ(A), too.
(3) Let ϕ be an integral extension, B an integral domain. Then B is a field

if and only if A/Ker(ϕ) is a field.
(4) If ϕ is an integral extension and M ⊂ B a maximal ideal, then ϕ−1(M)

is a maximal ideal in A.

For a ring map ϕ : A→ B and an ideal I ⊂ B the ideal ϕ−1(I) ⊂ A is called
the contraction of I; for A ⊂ B the contraction of I is I ∩A.

Proof. (1) is obvious. To prove (2) let ϕ(x) · y = 1 for some y ∈ B. Since B
is integral over A, we can choose a0, . . . , an−1 ∈ A such that

yn + ϕ(an−1)yn−1 + · · ·+ ϕ(a0) = 0 .

Multiplication with ϕ(x)n−1 gives

y = ynϕ(x)n−1 = −ϕ(an−1 + an−2x+ · · ·+ a0x
n−1) ∈ ϕ(A) .
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(3) is a consequence of (2). For the if–direction, choose an integral relation
as in (2) of minimal degree and use that B is integral.

Finally, (4) is a consequence of (3) because A/ϕ−1(M) ⊂ B/M is again
an integral extension.

Proposition 3.1.10 (lying over, going up). Let ϕ : A→ B be an integral
extension.

(1) If P ⊂ A is a prime ideal, then there is a prime ideal Q ⊂ B such that
ϕ−1(Q) = P ( lying over–property) .

(2) Let P ⊂ P ′ ⊂ A and Q ⊂ B be prime ideals, with ϕ−1(Q) = P . Then
there exists a prime ideal Q′ ⊂ B such that Q ⊂ Q′ and ϕ−1(Q′) = P ′

( going up–property).

Proof. Let S = A� P and consider ϕP : S−1A = AP → S−1B := ϕ(S)−1B.
AP is a local ring and, therefore, for any maximal ideal M ⊂ ϕ(S)−1B we
have ϕ−1

P (M) = PAP (Lemma 3.1.9 (4), Exercise 3.1.2 (3)).
Now P = ϕ−1

A (M) ∩A = ϕ−1(M ∩B) and Q = M ∩B is prime (Lemma
3.1.9 (1), Exercise 3.1.2 (2)). This proves (1).

To prove (2) consider the integral extension A/P =: Ā ⊂ B/Q =: B̄. We
apply (1) to this extension and the prime ideal P̄ ′ ⊂ Ā to obtain a prime ideal
Q̄′ ⊂ B̄ such that Q̄′ ∩ Ā = P̄ ′. We set Q′ := {q ∈ B | q̄ ∈ Q̄′}. Then Q′ ⊂ B
is a prime ideal which has the required properties.

Remark 3.1.11. The meaning of “lying over” and “going up” is best explained
geometrically. Let ϕ# : SpecB → SpecA denote the induced map (cf. A.3).
Then lying over just means that ϕ# is surjective, that is, over each point of
SpecA lies a point of SpecB.

Going up means that for any point P ′ ∈ V (P ) and any Q ∈ (ϕ#)−1(P )
there exists a point Q′ ∈ V (Q) such that ϕ#(Q′) = P ′, that is, the induced
map ϕ# : V (P )→ V (Q) is surjective, and we can “go up” from V (Q) to
V (P ).

Exercises

3.1.1. Let A ⊂ B be rings. Show that C := {b ∈ B | b is integral over A}, is
a subring of B.
(Hint: consider A[b1, b2] to show that b1−b2, b1b2 ∈ C.)

3.1.2. Check the following properties of integral dependence. Let A ⊂ B ⊂ C
be rings.

(1) (Transitivity) If B is integral over A and C integral over B, then C is
integral over A.

(2) (Compatibility with passing to quotient rings) If I ⊂ B is an ideal and
B integral over A, then B/I is integral over A/(I ∩A).
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(3) (Compatibility with localization) If S is a multiplicatively closed set in
A and B is integral over A, then S−1B is integral over S−1A.

(4) Let A ⊂ B be integral, N ⊂ B a maximal ideal and M = N ∩ A.
Is BN integral over AM? Study the case A = K[x2− 1], B = K[x] and
N = 〈x− 1〉.

3.1.3. Prove that the method for checking finiteness proposed in Remark
3.1.7 is correct. Implement both methods (that of the Proposition and of the
Remark) and compare their performance.

3.1.4. (1) Let f = x3− y6, g = x5+ y3 ∈ K[x, y]. Show that K[x, y] is finite
over K[f, g] (hence, F = (f, g) : A

2 → A
2 is a finite morphism of vari-

eties).
(2) To find the integral relations for x and y in (1) is already difficult without

a computer. Compute the first three terms of an integral relation of x
over K[f, g] in Example (1) by hand.

(3) Use Singular to find the integral relations for x and y in (2).

3.1.5. Let ϕ : A→ B be an integral extension, and let ψ : A→ K be a ho-
momorphism to an algebraically closed field K. Prove that there exists an
extension λ : B → K such that λ ◦ ϕ = ψ.

3.1.6. Let A ⊂ Bi be integral extensions of rings, i = 1, . . . , s. Prove that
A ⊂⊕s

i=1 Bi is integral.

3.1.7. Let ϕ : A→ B be a ring map of Noetherian rings and ϕ# : Spec(B) →
Spec(A) the induced map.

(1) Prove that for ϕ finite, ϕ# has finite fibres, that is, (ϕ∗)−1(P ) is a finite
set for each prime ideal P ⊂ A.

(2) Show that the converse of (1) is not true in general, not even if A and
B are local (consider the hyperbola and A = K[x]〈x〉 where x is one
variable).

3.1.8. Let K be a field and f = y2 + 2y − x2 ∈ K[x, y]. Prove that

(1) the canonical map K[x]→ K[x, y]/〈f〉 is injective and finite,
(2) the induced map between local rings K[x]〈x〉 → K[x, y]〈x,y〉/〈f〉 is injec-

tive but not finite.
(Hint: R = K[x]〈x〉[y]/〈f〉 is a semi–local ring with maximal ideals 〈x, y〉
and 〈x, y+2〉. Show that R ⊂ Ry+2 is not finite, that is, 1

y+2 is not inte-
gral over R.)

3.2 The Integral Closure

We explain the notion of integral closure by an example. Assume we have
a parametrization of an affine plane curve which is given by a polynomial
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map A
1→ A

2, t �→ (
x(t), y(t)

)
such that t is contained in the quotient field

K
(
x(t), y(t)

)
of A = K[x(t), y(t)]. Let A ⊂ B = K[t] denote the correspond-

ing ring map, then t is integral over A and A[t] = B. We shall see that K[t]
is integrally closed in the quotient field Q(A) = Q(K[t]) = K(t), and the
“smallest ring” with this property containing A (Exercise 3.6.5). For exam-
ple, K[t2, t3] ⊂ K[t] corresponds to the parametrization of the cuspidal cubic
(cf. Figure 3.2).

t �→ (t2, t3)

Fig. 3.2. The parametrization of the cuspidal cubic.

For arbitrary reduced affine curves with coordinate ring A = K[x]/I the
normalization of A, that is, the integral closure of A in Q(A), is the affine ring
of a “desingularization” of the curve. For higher dimensional varieties, the
normalization of the coordinate ring will not necessarily be a desingulariza-
tion, but an improvement of the singularities, for example, the codimension
of the singular locus will be ≥ 2. Here we shall treat only some algebraic
properties of the normalization.

More generally, we shall study the process associating to a ring extension
A ⊂ B the smallest subring Ã ⊂ B containing all elements of B which are
integral over A.

Definition 3.2.1. Let A ⊂ B be a ring extension and I ⊂ A be an ideal
(the case I = A is not excluded). An element b ∈ B which satisfies a relation

bn + a1b
n−1 + · · ·+ an = 0 , ai ∈ I

is called integral over I. We denote by

C(I,B) = {b ∈ B | b integral over I}

the (weak) integral closure of I in B. If, moreover, ai ∈ Ii, we say that b is
strongly integral over I and call

Cs(I,B) = {b ∈ B | b strongly integral over I}

the strong integral closure of I in B.

Proposition 3.2.2. Let A be Noetherian, A ⊂ B a ring extension and I ⊂ A
an ideal. Moreover, let S ⊂ A be multiplicatively closed. Then
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(1) C(A,B) is a subring of B containing A and C(I,B) is a C(A,B)–ideal.
(2) S−1C(A,B) = C(S−1A,S−1B).
(3) IC(A,B) ⊂ Cs(I,B) ⊂ C(I,B) =

√
IC(A,B).

Proof. (1) Let x, y ∈ B be integral over A, then A[x, y] ⊃ A is finite and,
therefore, A[x+ y] and A[xy] are finite A–modules (A is Noetherian). This
implies that x+ y and x · y are integral over A by Proposition 3.1.2. The
second statement follows from the expression of C(I,B) in (3).

(2) Let b
s ∈ S−1B be integral over S−1A with a relation

(
b

s

)n
+
an−1

sn−1

(
b

s

)n−1

+ . . .+
a0

s0
= 0 , si ∈ S, ai ∈ A .

Let t :=
∏
i si and multiply the above equation with (ts)n. We obtain that

bt ∈B is integral overA, that is, bt ∈ C(A,B) and, therefore, b ∈ S−1C(A,B).
The other inclusion is obvious.

(3) Let x ∈ IC(A,B), then Proposition 3.1.2, applied to A ⊂ C(A,B)
implies x ∈ Cs(I,B), hence IC(A,B) ⊂ Cs(I,B). If x ∈√

IC(A,B), then
xn ∈ IC(A,B) for some n, hence xn ∈ Cs(I,B) which implies obviously
x ∈ C(I,B). Conversely, let x ∈ C(I,B) and xn + an−1x

n−1 + · · ·+ a0 = 0,
ai ∈ I. Then x ∈ C(A,B) and, therefore, xn = −∑n−1

ν=0 aνx
ν ∈ IC(A,B).

This implies that C(I,B) ⊂√
IC(A,B).

The proposition shows that the C(A,B)–ideal C(I,B) can be computed if
C(A,B) is computable, since the radical is computable as we shall see in
Section 4.3. This is the case if B = Q(A) is the total ring of fractions of A
(see Example 3.2.3).

The strong integral closure Cs(I,B) is mainly of interest for B = A. In
this case we have I ⊂ Cs(I, A) ⊂ C(I, A) =

√
I. In particular, if I =

√
I then

I = Cs(I, A). We shall see in Exercise 3.6.4 that Cs(I, A) is an ideal.

SINGULAR Example 3.2.3 (integral closure of an ideal).
We considerA = Q[x, y, z]/〈zy2− zx3− x6〉 and I = 〈y〉. We want to compute
C
(
I,Q(A)

)
, the integral closure of I in the quotient field of A. Using Propo-

sition 3.2.2 we have to compute
√
IR, R the integral closure of A in Q(A). We

use the Singular procedure normal from normal.lib to compute the inte-
gral closure as R = Q[T1, T2, T3, T4]/norid. Using the map normap:A→ R,
we can compute

√
IR.

LIB"normal.lib";
ring A =0,(x,y,z),wp(2,3,6);
ideal I =y;
ideal J =zy2-zx3-x6;
list nor=normal(J); //compute the normalization
def R =nor[1];
setring R;
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norid;
//-> norid[1]=T(2)*T(3)-T(1)*T(4)
//-> norid[2]=T(1)^5+T(1)^2*T(3)-T(2)*T(4)
//-> norid[3]=T(1)^4*T(3)+T(1)*T(3)^2-T(4)^2

normap;
//-> normap[1]=T(1) normap[2]=T(2) normap[3]=T(3)

map phi=A,normap;
ideal I=phi(I)+norid;

std(I);
//-> _[1]=T(2) _[2]=T(1)*T(4) _[3]=T(1)^5+T(1)^2*T(3)
//-> _[4]=T(1)^4*T(3)+T(1)*T(3)^2-T(4)^2 _[5]=T(4)^3

radical(I);
//-> _[1]=T(2) _[2]=T(4) _[3]=T(1)^4+T(1)*T(3)

kill A;

Hence, C
(
I,Q(A)

)
is generated by T2, T4 and T 4

1 +T1T3 in the integral closure
R = Q[T1, T2, T3, T4]/norid.

Definition 3.2.4. Let A be a reduced ring. The integral closure A of A is
the integral closure of A in the total ring of fractions Q(A), that is,

A = C
(
A,Q(A)

)
.

A is also called the normalization ofA. A is called integrally closed , or normal ,
if A = A.

Proposition 3.2.5. Let A be a Noetherian ring, the following conditions are
equivalent:

(1) A is normal;
(2) AP is normal for all prime ideals P ⊂ A;
(3) AM is normal for all maximal ideals M ⊂ A.

Proof. By Proposition 3.2.2, (1) implies (2). That (2) implies (3) is obvious.
In order to prove that (3) implies (1), let C := C

(
A,Q(A)

)
. By assumption

and Proposition 3.2.2, we have AM = CM for all maximal ideals M ⊂ A.
Assume C � A, and let c ∈ C �A. Define I := {s ∈ A | cs ∈ A} which is

a proper ideal in A. There exists a maximal ideal M ⊂ A such that I ⊂M .
But AM = CM and, therefore, there exists an s ∈ A�M such that sc ∈ A.
This is a contradiction to the definition of I and the choice of M .

Example 3.2.6. Let K be a field, then the polynomial ring K[x1, . . . , xn] is
normal.
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Proof. This is proved by induction on n. Let n = 1 and f, g ∈ K[x1] such
that gcd(f, g) = 1. Consider an integral relation for f/g,

(
f

g

)m
+ am−1

(
f

g

)m−1

+ · · ·+ a0 = 0 , ai ∈ K[x1] .

This implies g | fm which contradicts gcd(f, g) = 1. For the induction step
we use the following lemma.

Lemma 3.2.7. Let A be Noetherian and A ⊂ B be integrally closed, then
A[x] ⊂ B[x] is integrally closed.

Assume that Lemma 3.2.7 is proved. We obtain from the induction hypothesis
thatK[x1, . . . , xn−1] ⊂ K(x1, . . . , xn−1) is integrally closed and, therefore, by
the lemma,K[x1, . . . , xn] ⊂ K(x1, . . . , xn−1)[xn] is integrally closed. The case
n = 1 shows that K(x1, . . . , xn−1)[xn] ⊂ K(x1, . . . , xn) is integrally closed.
The result follows from transitivity (Exercise 3.1.2).

Proof of Lemma 3.2.7. Let f ∈ B[x] be integral over A[x]. We use induction
over n := deg(f) to prove that f ∈ A[x]. First of all, M := A[x][f ] is a finitely
generated A[x]–module. Let M0 ⊂ B be the A–module generated by all co-
efficients of the powers of x of all elements of M , considered as elements of
B[x]. M0 is a finitely generated A–module (generated by the coefficients of
1, f, . . . , fm−1 if fm +

∑m−1
ν=0 aνf

ν = 0, aν ∈ A[x]).
If f =

∑n
ν=0 bνx

ν , bn �= 0, then A[bn] ⊂M0 is a finite A–module. This
implies that bn is integral over A, therefore bn ∈ A. Now g := f − bnxn is
integral over A[x]. If n = 1 this implies that b0 is integral and, by assump-
tion, b0 ∈ A. In this case, we obtain f ∈ A[x]. If n > 1 then g ∈ A[x] by the
induction hypothesis and, again, f ∈ A[x].

Example 3.2.8. A := K[x, y]/〈x4+ 6x2y − y3〉 ∼= K[−t3+ 6t, t4− 6t2] is not
normal. Namely, −t = y/x ∈ Q(A) �A, but (y/x)3 − 6 (y/x)− x = 0 is an
integral relation for t.

An important example for normalization is the parametrization of an affine
curveC, A

1� t �→ (
x1(t), . . . , xn(t)

) ∈ C ⊂ A
n, such thatK

(
x1(t), . . . , xn(t)

)

= K(t). Then K[x1(t), . . . , xn(t)] ↪→ K[t] is the normalization (cf. Exercise
3.6.5). Given the parametrization, we obtain generators for an ideal I satisfy-
ing V (I) = C by eliminating t from x1 − x1(t), . . . , xn − xn(t). This process
is called implicitization, the inverse process to parametrization (which is not
always possible). Let us look at an example:

LIB"surf.lib";
ring A=0,(t,x,y),dp;
ideal J=t3-6t+x,-t4+6t2+y;
ideal I=eliminate(J,t); //implicitization
I;
//-> I[1]=x4+6x2y-y3
plot(I);
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Fig. 3.3. The parametrization of a deformed E6–singularity.

The picture produced by the plot(I) (cf. Figure 3.3) shows the normalization
(parametrization) t �→ (−t3+ 6t, t4− 6t2) of a deformed E6–singularity.

Theorem 3.2.9 (going down). Let A ⊂ B be a ring extension of Noethe-
rian integral domains, A normal and B integral over A. Let Q ⊂ B be a
prime ideal, P = Q ∩A and P ′ ⊂ P a prime ideal in A. Then there exists a
prime ideal Q′ ⊂ Q in B such that Q′ ∩A = P ′.

Lemma 3.2.10. With the hypothesis of the theorem, let x ∈ B be integral
over the ideal I ⊂ A and f = tn +

∑n−1
ν=0 aνt

ν ∈ Q(A)[t], be the minimal poly-
nomial of x. Then aν ∈

√
I for ν = 0, . . . , n− 1.

Proof. Let L be the splitting field of f and x1 := x, x2, . . . , xn ∈ L be the
roots of f . Then all the xi are integral over I because f divides the polynomial
which defines the integral relation of x over I.

The elementary symmetric polynomials in x1, . . . , xn are the coefficients
of f and, therefore, the coefficients are integral over I, that is, in C

(
I,Q(A)

)
.

But A is integrally closed, hence equal to C
(
A,Q(A)

)
and, therefore, by

Proposition 3.2.2 these coefficients are in
√
I.

Proof of Theorem 3.2.9. It is sufficient to prove that P ′BQ ∩A = P ′. Namely,
let S′ = A� P ′, then P ′S′−1BQ is a proper ideal, since P ′S′−1BQ = S′−1BQ
would imply s′ ∈ P ′BQ for some s′ ∈ S′, which contradicts P ′BQ ∩A = P ′.
Let M ⊃ P ′S′−1BQ be a maximal ideal of S′−1BQ then P ′ = M ∩A, be-
cause P ′

� M ∩A would imply s′ ∈M for some s′ ∈ S′, and M would be
the whole ring. Defining Q′ = M ∩B, then Q′ ⊂ Q and Q′ ∩A = P ′.

We have to show the inclusion P ′BQ ∩A ⊂ P ′. Let x ∈ P ′BQ ∩A then
x = y/s, for some s ∈ B �Q and y ∈ P ′B ⊂ √P ′B = C(P ′, B). This implies
that y is integral over P ′ and, using Lemma 3.2.10, that the coefficients aν
of the (monic) minimal polynomial f = tn +

∑n−1
ν=0 aνt

ν of y over Q(A) are
already in P ′. Then f(y) = 0 implies

(y
x

)n
+
an−1

x

(y
x

)n−1

+ · · ·+ a0

xn
= 0 .

The polynomial g := tn +
∑n−1
ν=0(aν/xn−ν) · tν is a polynomial in Q(A)[t],

because x ∈ A by assumption. Since y/x = s, we have g(s) = 0.
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But then g is the minimal polynomial of s, since otherwise f would not be
the minimal polynomial of y. This implies, using Lemma 3.2.10 with I = A,
that aν/xn−ν ∈ A for ν = 0, . . . , n− 1.

Now (aν/xn−ν) · xn−ν = aν ∈ P ′. If x /∈ P ′ then we obtain aν/xn−ν ∈ P ′

for all ν, which implies sn ∈ P ′B ⊂ PB ⊂ Q. This is a contradiction to the
choice of s and, hence, proves x ∈ P ′.

Example 3.2.11. Let A := K[y, z] ⊂ B := K[x, y, z]/(〈x, y〉 ∩ 〈x+ z〉). Then
the extension A ⊂ B is integral and A is normal, but the going down theorem
fails for Q = 〈x, y〉 and P ′ = 〈0〉, because B is not an integral domain (see
Figure 3.4).

Spec(B)

Spec(A)

Fig. 3.4. The projection induced by K[y, z] ↪→ K[x, y, z]/(〈x, y〉 ∩ 〈x + z〉) .

Exercises

3.2.1. Let A be a unique factorization domain (that is, A is a domain and
every non–unit of A can be written as a product of irreducible elements so
that the factors are up to multiplication with units uniquely determined).
Prove that A is a normal ring.

3.2.2. Prove that principal ideal domains are normal.
(Hint: Use Exercise 3.2.1.)

3.2.3. Let K be a field.

(1) Prove that K[x, y, z]/〈z2− xy〉 is normal.
(2) Prove that K[x, y]/〈xy〉 is not normal.

3.2.4. Use Singular to test the examples of Exercise 3.2.3.
(Hint: Type ? normal.lib;.)

3.2.5. Check Example 3.2.11.

3.2.6. Let A ⊂ B be integral and C = C(A,B). Prove that C is integrally
closed in B.
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3.2.7. Let A ⊂ B be integral and B �A be multiplicatively closed in B.
Prove that A is integrally closed in B.

3.2.8. Let A ⊂ B be integral domains and C = C(A,B). Let f, g ∈ B[x] be
monic polynomials such that f · g ∈ C[x]. Prove that f, g ∈ C[x].

3.2.9. Let A =
⊕∞

i=0 Ai be a Noetherian graded ring, d ≥ 1 an integer, and
let A(d) =

⊕∞
i=0Aid. Prove that A is integral over A(d).

3.2.10. Prove that a normal local ring is an integral domain.

3.3 Dimension

In this section we shall use chains of prime ideals to define the dimension
of a ring. This is one possibility to define the dimension. It is called the
Krull dimension. We shall show that the dimension of the polynomial ring
K[x1, . . . , xn] in the variables x1, . . . , xn over a field K equals n, given by the
chain 〈0〉 ⊂ 〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xn〉.
Definition 3.3.1. Let A be a ring

(1) Let C(A) denote the set of all chains of prime ideals in A, that is,

C(A) :=
{
℘ = (P0 � · · · � Pm � A)

∣∣ Pi prime ideal
}
.

(2) If ℘ = (P0 � · · · � Pm � A) ∈ C(A) then length(℘) := m.
(3) The dimension of A is defined as dim(A) = sup{length(℘) | ℘ ∈ C(A)}.
(4) For P ⊂ A a prime ideal, let

C(A,P ) =
{
℘ = (P0 � · · · � Pm) ∈ C(A)

∣∣ Pm = P
}

denote the set of prime ideal chains ending in P . We define the height of
P as ht(P ) = sup{length(℘) | ℘ ∈ C(A,P )}.

(5) For an arbitrary ideal I ⊂ A, ht(I) = inf{ht(P ) | P ⊃ I prime} is called
the height of I and dim(I) := dim(A/I) is called the dimension of I.

Example 3.3.2.

(1) We shall see in Section 3.5 that in the polynomial ring K[x1, . . . , xn] over
a field K all maximal chains of prime ideals have the same length n. Here
a chain of prime ideals is called maximal if it cannot be refined.

(2) Let A = K[x](x)[y] then (0) ⊂ (xy − 1) and (0) ⊂ (x) ⊂ (x, y) are two
maximal chains of different length.

(3) Let A = K[x, y, z]/〈xz, yz〉, then dim(A) = 2. Let P = 〈x, y, z − 1〉, then
dim(AP ) = 1 (cf. Figure 3.5 on page 227).

Corollary 3.3.3. Let A ⊂ B be an integral extension, then Q �→ Q ∩A de-
fines a surjection C(B) → C(A) preserving the length of chains, in particular,
dim(A) = dim(B).
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Proof. Using Proposition 3.1.10 we see that the map is surjective. We have
to prove that the length is also preserved. Let Q � Q′ be prime ideals in B,
assume Q ∩A = Q′ ∩A = P .

Now AP ⊂ BP is an integral extension, and AP is local with maximal ideal
PAP . Moreover, QBP ⊂ Q′BP are prime ideals in BP , with the property
QBP ∩AP = Q′BP ∩AP = PAP . Because of Lemma 3.1.9 (3), QBP and
Q′BP are maximal and, therefore, QBP = Q′BP . This implies Q = Q′.

Definition 3.3.4. Let A be a ring and I ⊂ A an ideal. A prime ideal P with
I ⊂ P is called minimal associated prime ideal of I, if, for any prime ideal
Q ⊂ A with I ⊂ Q ⊂ P we have Q = P . The set of minimal associated prime
ideals of I is denoted by minAss(I).

Proposition 3.3.5. Let A be a Noetherian ring and I ⊂ A be an ideal. Then
minAss(I) = {P1, . . . , Pn} is finite and

√
I = P1 ∩ · · · ∩ Pn .

In particular,
√
I is the intersection of all prime ideals containing I. 3

Proof. Obviously we have minAss(I) = minAss(
√
I) and, therefore, we may

assume that I =
√
I.

If I is prime, the statement is trivial. Hence, we assume that there exist
a, b �∈ I with ab ∈ I. We show that

√
I : 〈a〉 = I : 〈a〉 = I : 〈a2〉 � I. Namely,

f ∈√
I : 〈a〉 implies fρ ∈ I : 〈a〉 for a suitable ρ. Therefore, afρ ∈ I and

(af)ρ ∈ I, which implies af ∈ √I = I, that is, f ∈ I : 〈a〉. On the other hand,
f ∈ I : 〈a2〉 implies a2f ∈ I and (af)2 ∈ I, that is, af ∈ √I = I and, there-
fore, f ∈ I : 〈a〉. Finally, b ∈ I : 〈a〉 but b �∈ I. Now, because of Lemma 3.3.6
below, we obtain I = (I : 〈a〉) ∩ 〈I, a〉. In particular, we obtain

I =
√
I =

√
(I : 〈a〉) ∩

√
〈I, a〉 = (I : 〈a〉) ∩

√
〈I, a〉 .

If I : 〈a〉 or
√〈I, a〉 are not prime, we can continue with these ideals as we

did with I. This process has to stop because A is Noetherian and, finally, we
obtain I =

⋂n
i=1 Pi with Pi prime. We may assume that Pi �⊂ Pj for i �= j by

deleting unnecessary primes. In this case we have minAss(I) = {P1, . . . , Pn}.
For, if P ⊃ I is a prime ideal, then P ⊃ ⋂n

i=1 Pi, and, therefore, there exist
j such that P ⊃ Pj by Lemma 1.3.12. This proves the proposition.

Lemma 3.3.6. (Splitting tool) Let A be a ring, I ⊂ A an ideal, and let
I : 〈a〉 = I : 〈a2〉 for some a ∈ A. Then I = (I : 〈a〉) ∩ 〈I, a〉.
Proof. Let f ∈ (I : 〈a〉) ∩ 〈I, a〉, and let f = g + xa for some g ∈ I. Then
af = ag + xa2 ∈ I and, therefore, xa2 ∈ I. That is, x ∈ I : 〈a2〉 = I : 〈a〉,
which implies xa ∈ I and, consequently, f ∈ I.
3 The latter statement is also true for not necessarily Noetherian rings, see also

Exercise 3.3.1.
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Example 3.3.7.

(1) Let I = 〈wx,wy,wz, vx, vy, vz, ux, uy, uz, y3− x2〉 ⊂K[v, w, x, y, z]. Then
I = 〈x, y, z〉 ∩ 〈u, v, w, x2− y3〉, minAss(I) = {〈x, y, z〉, 〈u, v, w, x2− y3〉}.

(2) Let I = 〈x2, xy〉 ⊂ K[x, y] then I = 〈x〉 ∩ 〈x2, y〉, √I = 〈x〉 and, hence,
minAss(I) = {〈x〉}.

The minimal associated primes can be computed (with two different algo-
rithms) using the Singular library primdec.lib:

SINGULAR Example 3.3.8 (minimal associated primes).

ring A=0,(u,v,w,x,y,z),dp;
ideal I=wx,wy,wz,vx,vy,vz,ux,uy,uz,y3-x2;
LIB"primdec.lib";
minAssGTZ(I);
//-> [1]: [2]:
//-> _[1]=z _[1]=-y3+x2
//-> _[2]=y _[2]=w
//-> _[3]=x _[3]=v
//-> _[4]=u
ring B=0,(x,y,z),dp;
ideal I=zx,zy;
minAssChar(I);
//-> [1]: [2]:
//-> _[1]=y _[1]=z
//-> _[2]=x

Fig. 3.5. The variety V (xz, yz).

The minimal associated primes of 〈zx, zy〉 are 〈z〉 and 〈x, y〉 which correspond
to two components of dimension 2, respectively 1, that is, to the plane, re-
spectively the line, in Figure 3.5.
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The following lemma is easy to prove and left as an exercise.

Lemma 3.3.9. Let A be a ring and Ared := A/
√〈0〉 the reduction of A,

then
dim(A) = dim(Ared) = max

P∈minAss(〈0〉)
{dim(A/P )} .

Remark 3.3.10. It is possible for a Noetherian integral domain to have in-
finite dimension: let K be a field and let A = k[x1, x2, . . . ] be a polynomial
ring in countably many indeterminates. Let (νj)j≥1 be a strictly increasing se-
quence of positive integers such that (νj+1 − νj)j≥1 is also strictly increasing.
Let Pi := 〈xνi+1 , . . . , xνi+1〉 and S = A�

⋃
i Pi. Then S−1A is a Noetherian

integral domain (using Exercise 3.3.3). But ht(S−1Pi) = νi+1 − νi implies
dim(S−1A) = ∞.

Remark 3.3.11. Notice that the ring in the previous remark is not local. We
shall see in Chapter 5 that local Noetherian rings have finite dimension. In
particular, this implies (using localization) that in a Noetherian ring the
height of an ideal is always finite.

Remark 3.3.12. For graded rings, we shall obtain in Chapter 5 another de-
scription of the dimension as the degree of the Hilbert polynomial. This will
be the basis to compute the dimension due to the fact that for an ideal
I ⊂ K[x1, . . . , xn]

dim(K[x1, . . . , xn]/I) = dim(K[x1, . . . , xn]/L(I)) ,

where L(I) is the leading ideal of I (cf. Corollary 5.3.14).

Thus, after a Gröbner basis computation, the computation of the dimension
is reduced to a pure combinatorial problem.

SINGULAR Example 3.3.13 (computation of the dimension).
Let I be the ideal of Example 3.3.7 (1). We want to compute the dimension:

ring A=0,(u,v,w,x,y,z),dp;
ideal I=wx,wy,wz,vx,vy,vz,ux,uy,uz,y3-x2;
I=std(I);
dim(I);
//-> 3

The next lemmas prepare applications of the Noether normalization theorem
(see Section 3.4).

Lemma 3.3.14. Let A be a ring such that for each prime ideal P ⊂ A there
exists a normal Noetherian integral domain C ⊂ A with C ⊂ A/P being finite.
Then the following holds:

If A ⊂ B is a finite ring extension then the map C(B)→ C(A) induced by
the contraction P �→ P ∩A maps maximal chains to maximal chains.



3.3 Dimension 229

Proof. Let 〈0〉 = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn be a maximal chain of prime ide-
als in B and consider 〈0〉 = Q0 ∩A ⊂ Q1 ∩A ⊂ · · · ⊂ Qn ∩A. We have to
prove that this chain is maximal. Assume Q ⊂ Q′ ⊂ B are two prime ide-
als and there exists a prime ideal P ⊂ A such that Q ∩A � P � Q′ ∩A.
We choose for Q ∩A an integrally closed, Noetherian integral domain A′

such that A′ ⊂ A/(Q ∩A) is finite. Note that the ideals 〈0〉, P/(Q ∩A) ∩A′,
Q′/(Q ∩A) ∩A′ are pairwise different as A′ ⊂ A/(Q ∩A) is finite (Corol-
lary 3.3.3). Moreover, B/Q is also finite over A′, and we can apply the
going down theorem to find a prime ideal P̄ ′ �= 〈0〉 in B/Q, P̄ ′ ⊂ Q′/Q
such that P̄ ′ ∩A′ = P ∩A′. Therefore, P̄ ′

� Q′/Q. This implies the exis-
tence of a prime ideal P ′, Q � P ′

� Q′ and proves the lemma, because the
case Q′ ∩A � P , can be handled similarly.

Remark 3.3.15. It is a consequence of the Noether normalization theorem
(cf. Section 3.4) that all rings of finite type over a field K have the property
required in the assumption of the lemma.

Lemma 3.3.16. Let A,B satisfy the assumptions of the going down theorem
(Theorem 3.2.9). If Q ⊂ B is a prime ideal then ht(Q) = ht(Q ∩A).

Proof. Due to Corollary 3.3.3, the map C(B) → C(A) induced by P �→ P ∩A
induces a map C(B,Q)→ C(A,Q ∩A), preserving the length of prime ideal
chains. To see that this map is surjective, let Q ∩A = Ps � Ps−1 � · · · � P0

be a chain of prime ideals in A. Starting with Ps−1, and using s times the
going down theorem, we obtain a chain Q = Qs � Qs−1 � · · · � Q0 of prime
ideals in B. This proves the lemma.

Exercises

3.3.1. Let A be a ring and I � A a proper ideal. Prove that
√
I is the

intersection of all prime ideals containing I.
(Hint: reduce the statement to the case I = 〈0〉 and consider, for f ∈ A not
nilpotent, the set of all ideals not containing any power of f . Show that this
set contains a prime ideal by using Zorn’s lemma.)

3.3.2. Prove Lemma 3.3.9.

3.3.3. Let A be a ring such that

(1) for each maximal ideal M of A, the localization AM is Noetherian;
(2) for each x �= 0 in A the set of maximal ideals of A which contain x is

finite.

Prove that A is Noetherian.
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3.3.4. Check the statement of Example 3.3.2 (2), (3). Moreover, draw the
zero–set in R

3 of the ideal

I := 〈x · (x2+ y2+ z2− 1), y · (x2+ y2+ z2− 1)〉 ⊂ R[x, y, z]

to see the phenomena occurring in (3).

3.3.5. Use Singular to compute

(1) the minimal associated primes of the ideal

I = 〈t−b−d, x+y+z+ t−a−c−d, xz+yz+xt+zt−ac−ad−cd,
xzt−acd〉 ⊂ Q[a, b, c, d, t, x, y, z] ,

(2) the intersection of the minimal associated primes, and
(3) the radical of I,

and verify the statement of Proposition 3.3.5.

3.3.6. Let P ⊂ K[x1, . . . , xs] be a homogeneous prime ideal of height r. Prove
that there exists a chain P0 � P1 � · · · � Pr = P of homogeneous prime ide-
als.

3.3.7. Prove that a principal ideal domain has dimension at most 1.

3.3.8. Let A be a Noetherian ring. Prove that dim(A[x]) = dim(A) + 1.

3.3.9. Let A be a Noetherian ring. Use the previous Exercise 3.3.8 to prove
that dim(A[x, x−1]) = dim(A) + 1.

3.3.10. Let A be a Noetherian ring, and let P ∈ minAss(〈0〉). Prove that
AP = Q(A)PQ(A).

3.3.11. Let K be a field and A = K[x, y]〈x,y〉/〈x2, xy〉. Prove that A is equal
to its total ring of fractions, A = Q(A), and dim(A) = 1.

3.3.12. Show thatA := Q[x, y, z]/〈xy, xz, yz, (x−y)(x+1), z3〉 has dimension
0. Compute the Q–vector space dimension of A and compare it to the Q–
vector space dimension of the localization of A in 〈x, y, z〉.
3.3.13. Let K be a field and A = K[x, y]. Prove that Lemma 3.3.14 does not
hold for B = K[x, y, z]/〈xz, z2− yz〉.

3.4 Noether Normalization

Let K be a field, A = K[x1, . . . , xn] be the polynomial ring and I ⊂ A an
ideal.

Noether normalization is a basic tool in the theory of affine K–algebras,
that is, algebras of type A/I. It is the basis for many applications of the
theorems of the previous chapters, because it provides us with a polynomial
ring K[xs+1, . . . , xn] ⊂ A/I such that the extension is finite.
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Theorem 3.4.1 (Noether normalization). Let K be a field, and let
I ⊂ K[x1, . . . , xn] be an ideal. Then there exist an integer s ≤ n and an iso-
morphism

ϕ : K[x1, . . . , xn]→ A := K[y1, . . . , yn] ,

such that:

(1) the canonical map K[ys+1, . . . , yn]→ A/ϕ(I), yi �→ yi mod ϕ(I) is injec-
tive and finite.

(2) Moreover, ϕ can be chosen such that, for j = 1, . . . , s, there exist polyno-
mials

gj = y
ej

j +
ej−1∑

k=0

ξj,k(yj+1, . . . , yn) · ykj ∈ ϕ(I)

satisfying ej ≥ deg(ξj,k) + k for k = 0, . . . , ej − 1.
(3) If I is homogeneous then the gj can be chosen to be homogeneous, too. If

I is a prime ideal, the gj can be chosen to be irreducible.
(4) If K is perfect and if I is prime, then the morphism ϕ can be chosen

such that, additionally, Q
(
A/ϕ(I)

) ⊃ Q(K[ys+1, . . . , yn]) is a separable
field extension and, moreover, if K is infinite then

Q
(
A/ϕ(I)

)
= Q(K[ys+1, . . . , yn])[ys]/〈gs〉 .

(5) If K is infinite then ϕ can be chosen to be linear, ϕ(xi) =
∑
jmijyj with

M = (mij) ∈ GL(n,K).

Definition 3.4.2. Let I ⊂ A = K[y1, . . . , yn] be an ideal. A finite and injec-
tive map K[ys+1, . . . , yn]→ A/I is called a Noether normalization of A/I.
If, moreover, I contains g1, . . . , gs as in Theorem 3.4.1 (2), then it is called a
general Noether normalization.

Example 3.4.3. K[x] ⊂ K[x, y]/〈x3− y2〉 is a Noether normalization, but not
a general Noether normalization, while K[y] ⊂ K[x, y]/〈x3− y2〉 is a general
Noether normalization.

Proof of Theorem 3.4.1. We prove the theorem for infinite fields, while the
proof for finite fields is left as Exercise 3.4.1. The case I = 〈0〉 being trivial,
we can suppose I �= 〈0〉. We proceed by induction on n. Let n = 1, and let
I = 〈f〉, f a polynomial of degree d. ThenK[x1]/I = K + x1K + · · ·+ xd−1

1 K
is a finite dimensional K–vector space, and the theorem holds with s = 1.

Assume now that the theorem is proved for n− 1 ≥ 1, and let f ∈ I be
a polynomial of degree d ≥ 1. If I is homogeneous we choose f to be ho-
mogeneous. Let f =

∑d
ν=0 fν be the decomposition of f into homogeneous

parts fν of degree ν. To keep notations short in the following construction
of the morphism ϕ, we identify the xi (resp. the yj) with their images in
K[y1, . . . , yn] (resp. in K[z2, . . . , zn]). Let M1 = (mij) ∈ GL(n,K),
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M1 ·
( y1

...
yn

)
=

(
x1

...
xn

)
.

Then we obtain

fd(x1, . . . , xn) = fd

⎛

⎝
n∑

j=1

m1jyj , . . . ,

n∑

j=1

mnjyj

⎞

⎠

= fd
(
m11, . . . ,mn1

) · yd1 + lower terms in y1 .

Now the condition for M1 becomes fd(m11, . . . ,mn1) �= 0, which can be sat-
isfied as K is infinite. Then, obviously, K[y2, . . . , yn] → A/〈f〉 is injective
and finite by Proposition 3.1.2, since y1 satisfies an integral relation, and
g̃1 := f(M1y) has, after normalizing, the property required in (2).

Note that K[y2, . . . , yn]/(I ∩K[y2, . . . , yn])→ A/I is injective and still
finite (we write I instead of ϕ(I)). If I ∩K[y2, . . . , yn] = 〈0〉 then there is
nothing to show.

Otherwise, let I0 := I ∩K[y2, . . . , yn]. By the induction hypothesis there
is some matrix M0 ∈ GL(n− 1,K) such that, for

M0 ·
(
z2
...
zn

)
=

( y2

...
yn

)

and some s ≤ n, the map K[zs+1, . . . , zn]→ K[y2, . . . , yn]/I0 is injective and
finite. Moreover, for j = 2, . . . , s there exist polynomials

gj = z
ej

j +
ej−1∑

k=0

ξj,k(zj+1, . . . , zn) · zkj ∈ I

such that ej ≥ deg(ξj,k) + k for k = 0, . . . , ej − 1. Again, the gj can be chosen
to be homogeneous if I is homogeneous.

This implies that K[zs+1, . . . , zn]→ A/I is injective and finite. The the-
orem is proved for

M = M1 ·

⎛
⎜⎜⎜⎝

1 0 . . . 0
0
.
.
. M0
0

⎞
⎟⎟⎟⎠

and g1 := g̃1 (y1,M0z), g2, . . . , gs ∈ K[y1, z2, . . . , zn].
If I is prime and if a gj splits into irreducible factors then already one of

the factors must be in I. We take this factor which has the desired shape.
The proof of (4) in the case of characteristic zero is left as Exercise 3.4.4.

For the general case, we refer to [66, 159]. (5) was already proved in (1).

Remark 3.4.4. The proof of Theorem 3.4.1 shows that

(1) the theorem holds for M arbitrarily chosen in
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• some open dense subset U ⊂ GL(n,K), respectively
• some open dense subset U ′ in the set of all lower triangular matrices

with entries 1 on the diagonal;
(2) the theorem holds also for finite fields if the characteristic is large;
(3) for a finite field of small characteristic the theorem also holds, when

replacing the linear coordinate change M · y = x by a coordinate change
of type xi = yi + hi(y), deg(hi) ≥ 2, see Exercises 3.4.1 and 3.4.2.

The general Noether normalization is necessary in the theory of Hilbert func-
tions, as we shall see in Chapter 5.

Analyzing the proof we obtain the following algorithm to compute a Noether
normalization, which is correct and works well for characteristic 0 and large
characteristic:

Algorithm 3.4.5 (NoetherNormalization(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: A set of variables {xs+1, . . . , xn} and a map ϕ : K[x]→ K[x] such

that K[xs+1, . . . , xn] ⊂ K[x]/ϕ(I) is a Noether normalization.

• perform a random lower triangular linear coordinate change

ϕ(x) =
(

1 0. . .∗ 1

)
·
( x1...
xn

)
;

• compute a reduced standard basis {f1, . . . , fr} of ϕ(I) with respect to the
lexicographical ordering with x1 > · · · > xn, and order the fi such that
LM(fr) > · · · > LM(f1);

• choose s maximal such that {f1, . . . , fr} ∩K[xs+1, . . . , xn] = ∅;
• for each i = 1, . . . , s, test whether {f1, . . . , fr} contains polynomials with

leading monomial xρi

i for some ρi;
• if the test is true for all i then return ϕ and xs+1, . . . , xn (note that in this

case K[xs+1, . . . , xn] ⊂ K[x1, . . . , xn]/ϕ(I) is finite);
• return NoetherNormalization(I).

Let us try an example:

SINGULAR Example 3.4.6 (Noether normalization).

LIB"random.lib";
ring R=0,(x,y,z),lp;
ideal I=xy,xz;
dim(std(I));
//-> 2
ideal M=ideal(sparsetriag(3,3,0,100)

*transpose(maxideal(1)));
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M;
//-> M[1]=x M[2]=65x+y M[3]=85x+82y+z

map phi=R,M;
ideal J=phi(I); //the random coordinate change
J;
//-> J[1]=65x2+xy J[2]=85x2+82xy+xz

//dim(I)=2 implies R/J <--Q[y,z] is a Noether normalization

The algorithm in the Singular programming language can be found in Sec-
tion 3.7 at the end of this chapter.

Exercises

3.4.1. (Noether normalization over finite fields).
Let K be a finite field, and let f ∈ K[x1, . . . , xn] \K. Prove that there ex-
ist y2, . . . , yn ∈ K[x1, . . . , xn] such that K[y2, . . . , yn] ⊂ K[x1, . . . , xn]/〈f〉 is
finite. For any sufficiently large e one can choose yi = xi − xei

1 .
If f is homogeneous then y2, . . . , yn can be chosen to be homogeneous.

3.4.2. Use Exercise 3.4.1 to prove the Noether normalization theorem 3.4.1
in the case of a finite field, replacing the linear coordinate change M · y = x
by a coordinate change of the form xi = yi + hi(y1, . . . , yi−1), i = 1, . . . , n,
h1 = 0.

3.4.3. Write a Singular procedure to compute a Noether normalization
over finite fields.

3.4.4. With the notations and assumptions of Theorem 3.4.1 prove that if
I is a prime ideal and the characteristic of K is zero, then gs can be chosen
such that Q(A/I) = Q(K[ys+1, . . . , yn])[ys]/〈gs〉.
3.4.5. Compute a general Noether normalization for the ideal

I = 〈x3+ xy − z, y3− t+ z, x2y + xy2− u〉 ⊂ Q[x, y, z, t, u].

Prove that I is a prime ideal. Check this using Singular. Check whether
your Noether normalization has the properties of Exercise 3.4.4.

3.4.6. (Noether normalization for local rings).
Let K be a field. Then f ∈ K[x1, . . . , xn]〈x1,...,xn〉 is called a Weierstraß poly-
nomial of degree s with respect to xn if f = xsn + as−1x

s−1
n + · · ·+ a0, with

ai ∈ 〈x1, . . . , xn−1〉 ·K[x1, . . . , xn−1]〈x1,...,xn−1〉. Prove that

K[x1, . . . , xn−1]〈x1,...,xn−1〉 ⊂ K[x1, . . . , xn]〈x1,...,xn〉/〈g〉
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is finite and injective for g ∈ K[x1, . . . , xn]〈x1,...,xn〉 if and only if u · g is a
Weierstraß polynomial of degree ≥ 1 with respect to xn for a suitable unit u.
(Hint: prove that the extension above is finite if and only if the localization
S−1K[x1, . . . , xn]/〈g〉 w.r.t. S := {g ∈ K[x1, . . . , xn−1] | g(0) �= 0} is a local
ring.)

3.4.7. Let f = x4+ y4+ x3+ y3+ x2+ y2+ x+ y ∈ K[x, y]. Prove that there
exists no linear automorphism ϕ : K[x, y]〈x,y〉 → K[x, y]〈x,y〉 such that ϕ(f)
is a product of a unit and a Weierstraß polynomial (cf. Exercise 3.4.6). This
proves that, in general, Noether normalization as in Theorem 3.4.1 does not
hold for localizations of polynomial rings.
(Hint: use the fact that the polynomial ring is a unique factorization domain
and that f is irreducible to prove that ϕ(f) = ug, u a unit, g a Weierstraß
polynomial, implies that ϕ(f) is already a Weierstraß polynomial.)

3.4.8. Formulate and prove Theorem 3.4.1 for ideals generated by homoge-
neous polynomials in K[x1, . . . , xn]〈x1,...,xn〉.

3.5 Applications

In this section we shall use the Noether normalization to develop the dimen-
sion theory for the polynomial ring K[x1, . . . , xn] and, more generally, affine
algebrasK[x1, . . . , xn]/I. We shall prove Hilbert’s Nullstellensatz and give an
algorithm to compute the dimension of an affine algebra. Finally, we prove
that the normalization of an affine algebra R, being an integral domain, is
finite over R and, therefore, again an affine algebra.

Theorem 3.5.1. Let K be a field and A = K[x], x = {x1, . . . , xn}. Then

(1) dim(A) = n, moreover, all maximal chains in C(A) have length n.
(2) If f ∈ A, deg(f) ≥ 1, then dim

(
A/〈f〉) = n− 1 (Krull’s principal ideal

theorem).
(3) If P ⊂ A is a prime ideal then ht(P ) + dim(A/P ) = dim(A) = n.
(4) If P ⊂ A is a prime ideal then dim(A/P ) = trdegK Q(A/P ), the tran-

scendence degree of the field extension K ⊂ Q(A/P ). Moreover, all max-
imal chains in C(A/P ) have the length dim(A/P ).

(5) If M ⊂ A is a maximal ideal, then A/M ⊃ K is finite (Hilbert’s Nullstel-
lensatz)4.

(6) Let I ⊂ A be an ideal and u ⊂ x be a subset such that I ∩K[u] = 0, then
dim(A/I) ≥ #u. Furthermore, there exists some u ⊂ x with I ∩K[u] = 0
and dim(A/I) = #u.5

4 This is a weak form of Hilbert’s Nullstellensatz. For K algebraically closed we
obtain A/M = K, hence, the maximal ideals are of type 〈x1 − a1, . . . , xn − an〉.

5 Note that u is allowed to be empty, that is, #u = 0.
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(7) Let I � A be an ideal, and let S be a standard basis of I with respect to
any global ordering > on Mon(x1, . . . , xn). Then dim(I) = 0 if and only
if L(I) contains suitable powers of each variable xi, i = 1, . . . , n. This is
the case if and only if S contains, for each variable xi, an element whose
leading monomial is xai

i for some ai.

Proof. We use induction on n, the case n = 0 being trivial. To prove (1), let
〈0〉 = P0 � · · · � Pm � A be a maximal chain in C(A). Choose an irreducible
f ∈ P1 and coordinates y1, . . . , yn−1 (Theorem 3.4.1 and Exercise 3.4.2) such
that K[x1, . . . , xn]/〈f〉 ⊃ K[y1, . . . , yn−1] is finite. Then, clearly, the chain

〈0〉 = P1/〈f〉 � P1/〈f〉 � · · · � Pm/〈f〉

is maximal, too. Using Lemma 3.3.14 and the Noether normalization theorem,
this chain induces a maximal chain in K[y1, . . . , yn−1] which, due to the
induction hypothesis, has length n− 1.

(3), (2) are immediate consequences of (1), respectively its proof. To prove
(4), we may assume, again, that A/P ⊃ K[y1, . . . , ys] is finite. Then Corollary
3.3.3 implies dim(A/P ) = dim(K[y1, . . . , ys]), which equals s due to (1). On
the other hand, trdegK Q(A/P ) = trdegK Q(K[y1, . . . , ys]) = s.

Moreover, each maximal chain P̄m � · · · � P̄0 = 〈0〉 of primes in A/P lifts
to a maximal chain Pm � · · · � P0 = P � · · · � 〈0〉 of prime ideals in A.

(5) is a consequence of Theorem 3.4.1 and the fact that M is maximal: if
K[y1, . . . , ys] ⊂ A/M is finite, then, because A/M is a field and by Lemma
3.1.9, K[y1, . . . , ys] is also a field, hence, s = 0.

(6) Let u ⊂ x be a subset such that I ∩K[u] = 〈0〉. In particular, we have√
I ∩K[u] = 〈0〉, hence,

⋂
P∈minAss(I)(P ∩K[u]) = 〈0〉 (Proposition 3.3.5).

This implies P ∩K[u] = 〈0〉 for some P ∈ minAss(I) (Lemma 1.3.12) and,
therefore, K(u) ⊂ Q(K[x]/P ). We obtain

dim(K[x]/I) ≥ dim(K[x]/P ) = trdegK Q(K[x]/P ) ≥ #u .

Now let P ∈ minAss(I) with d = dim(K[x]/I) = dim(K[x]/P ). Then, due to
(4), we may choose xi1 , . . . , xid being algebraically independent modulo P .
Then P ∩K[u] = 〈0〉 for u := {xi1 , . . . , xid} and, therefore, I ∩K[u] = 〈0〉.

(7) We use (6) to see that I ∩K[xi] �= 〈0〉 for all i because I is zero–
dimensional. Let f ∈ I ∩K[xi], f �= 0, then LM(f) = xai

i for a suitable ai > 0
(f is not constant and > is a well–ordering). By definition of a standard basis
there exist g ∈ S and LM(g) | LM(f). This proves the “only if”–direction.

For the “if”–direction, we show that under our assumption on S, K[x]/I
is, indeed, a finite dimensional K–vector space. Let p ∈ K[x] be any polyno-
mial, and consider NF(p | S), the reduced normal form of p with respect to
S. Then, clearly NF(p | S) =

∑
β cβx

β , where cβ �= 0 implies βi < ai for all i.
In particular, the images of the monomials xβ with βi < ai for all i generate
K[x]/I as K–vector space.
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Theorem 3.5.2 (Hilbert’s Nullstellensatz). Assume that K = K is an
algebraically closed field. Let I ⊂ K[x] = K[x1, . . . , xn] be an ideal, and let

V (I) =
{
x ∈ Kn

∣∣ f(x) = 0 for all f ∈ I} .

If, for some g ∈ K[x], g(x) = 0 for all x ∈ V (I) then g ∈ √I.
Proof. We consider the ideal J := IK[x, t] + 〈1 − tg〉 in the polynomial ring
K[x, t] = K[x1, . . . , xn, t].

If J = K[x, t] then there exist g1, . . . , gs ∈ I and h, h1, . . . , hs ∈ K[x, t]
such that 1 =

∑s
i=1 gihi + h(1− tg). Setting t := 1

g ∈ K[x]g, this implies

1 =
s∑

i=1

gi · hi
(
x,

1
g

)
∈ K[x]g .

Clearing denominators, we obtain gρ =
∑

i gih
′
i for some ρ > 0, h′i ∈ K[x],

and, therefore, g ∈ √I.
Now assume that J � K[x, t]. We choose a maximal ideal M ⊂ K[x, t]

such that J ⊂M . Using Theorem 3.5.1 (5) we know (since K is algebraically
closed) that K[x, t]/M ∼= K, and, hence, M = 〈x1− a1, . . . , xn− an, t− a〉,
for some ai, a ∈ K. Now J ⊂M implies (a1, . . . , an, a) ∈ V

(
J
)
.

If (a1, . . . , an) ∈ V (I) then g(a1, . . . , an) = 0. Hence, 1− tg ∈ J does not
vanish at (a1, . . . , an), contradicting the assumption (a1, . . . , an, a) ∈ V

(
J
)
.

If (a1, . . . , an) /∈ V
(
I
)

then there is some h ∈ I such that h(a1, . . . , an) �= 0,
in particular (as h does not depend on t) h(a1, . . . , an, a) �= 0 and, therefore,
(a1, . . . , an, a) /∈ V (J), again contradicting our assumption.

Definition 3.5.3. Let I ⊂ K[x1, . . . , xn] be an ideal. Then a subset

u ⊂ x = {x1, . . . , xn}

is called an independent set (with respect to I) if I ∩K[u] = 0. An indepen-
dent set u ⊂ x (with respect to I) is called maximal if dim(K[x]/I) = #u.

Example 3.5.4. Let I = 〈xz, yz〉 ⊂ K[x, y, z], then {x, y} ⊂ {x, y, z} is a max-
imal independent set. Notice that {z} ⊂ {x, y, z} is independent and non–
extendable (that is, cannot be enlarged) but it is not a maximal independent
set.

Note that all maximal (resp. all non–extendable) independent sets of the lead-
ing ideal L(I) are computed by the Singular commands indepSet(std(I))
(respectively by indepSet(std(I),1)). Thus, using these commands, we ob-
tain independent sets of I but maybe not all. Exercises 3.5.1 and 3.5.2 show
how to compute independent sets.
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SINGULAR Example 3.5.5 (independent set).

ring R=0,(x,y,z),dp;
ideal I=yz,xz;
indepSet(std(I));
//-> 1,1,0

This means, {x, y} is a maximal independent set for I.

indepSet(std(I),1);
//-> [1]: [2]:

1,1,0 0,0,1

This means, the only independent sets which cannot be enlarged are {x, y}
and {z}.
The geometrical meaning of u ⊂ x being an independent set for I is that the
projection of V (I) to the affine space of the variables in u is surjective, since
V (I ∩K[u]) = V (〈0〉) is the whole affine space.

ring A = 0,(x,y,t),dp;
ideal I = y2-x3-3t2x2;
indepSet(std(I),1);
//-> [1]: [2]:

1,1,0 0,1,1

Hence, {x, y} and {y, t} are the only non–extendable independent sets for
the leading ideal L(I) = 〈t2x2〉 . However, the ideal I itself has, additionally,
{x, t} as a non–extendable independent set. The difference is seen in the
pictures in Figure 3.6, which are generated by the following Singular session:

LIB"surf.lib";
plot(lead(I),"clip=cube;");
plot(I,"rot_x=1.4; rot_y=3.0; rot_z=1.44;"); //see Fig. 3.6

The first surface is V
(
L(I)

)
and the second V (I). The projection of V

(
L(I)

)

to the {x, t}–plane is not dominant, but the projection of V (I) is.

Next we want to compute the dimension of monomial ideals.

Definition 3.5.6. Let I = 〈m1, . . . ,ms〉 ⊂ K[x] = K[x1, . . . , xn] be a mono-
mial ideal (with mi ∈ Mon(x1, . . . , xn) for i = 1, . . . , s). Then we define an
integer d(I,K[x]) by the recursive formula: d(〈0〉,K[x]) := n and

d(I,K[x]) := max
{
d
(
I
∣∣
xi=0

,K[x� xi]
) ∣∣∣ xi divides m1

}
,

where x� xi = (x1, . . . , xi−1, xi+1, . . . , xn).
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Fig. 3.6. The zero–sets of t2x2, respectively y2− x3− 3t2x2.

Example 3.5.7. Let I = 〈xz, yz〉 ⊂ K[x, y, z] then

d(I,K[x, y, z]) = max
{
d(〈yz〉,K[y, z])︸ ︷︷ ︸

=1

, d(〈0〉,K[x, y])︸ ︷︷ ︸
= 2

}
= 2.

Proposition 3.5.8. Let I = 〈m1, . . . ,ms〉 ⊂ K[x] be a monomial ideal, then

dim(K[x]/I) = d(I,K[x]) .

Proof. Let P ⊃ I be a prime ideal, then for all i one factor of mi has to
be in P . In particular, for every P ∈ minAss(I) there exists some ρ, such
that xρ ∈ P divides m1. In particular, we have I|xρ=0 ⊂ P |xρ=0 ⊂ K[x� xρ].
Using the induction hypothesis we may assume that

d
(
I
∣∣
xρ=0

,K[x� xρ]
)

= dim
(
K[x� xρ]

/(
I
∣∣
xρ=0

))

≥ dim
(
K[x� xρ]

/(
P
∣∣
xρ=0

))
= dim

(
K[x]/P

)
.

This implies that d(I,K[x]) ≥ maxP∈minAss(I) dim(K[x]/P ) = dim(K[x]/I).
Let us assume that d(I,K[x]) > dim(K[x]/I). Then there would exist some
i such that xi divides m1 and

dim
(
K[x]/I

)
< d

(
I
∣∣
xi=0

,K[x� xi]
)

= dim
(
K[x� xi]

/(
I
∣∣
xi=0

))
,

the latter equality being implied by the induction hypothesis. But

dim
(
K[x� xi]

/(
I
∣∣
xi=0

))
= dim

(
K[x]/〈I, xi〉

) ≤ dim
(
K[x]/I

)
,

whence a contradiction.



240 3. Noether Normalization and Applications

SINGULAR Example 3.5.9 (computation of d(I,K[x])).
We give a procedure to compute the function d(I,K[x]) of Definition 3.5.6:

proc d(ideal I)
{

int n=nvars(basering);
int j,b,a;
I=simplify(I,2); //cancels zeros in the generators of I
if(size(I)==0) {return(n);} //size counts generators

//not equal to 0
for(j=1;j<=n;j++)
{
if(I[1]/var(j)!=0)
{

a=d(subst(I,var(j),0))-1;
//we need -1 here because we stay in the basering
if(a>b) {b=a;}

}
}
return(b);

}

Let us test the procedure:

ring R=0,(x,y,z),dp;
ideal I=yz,xz;

d(I);
//-> 2
dim(std(I));
//-> 2

We shall prove later that for any ideal I ⊂ K[x],

dim(K[x]/I) = dim
(
K[x]/L(I)

)
.

Hence, dim(K[x]/I) = d
(
L(I),K[x]

)
is very easy to compute once we know

generators for L(I), which are the leading terms of a standard basis of I.

Now we prove the finiteness of the normalization.

Theorem 3.5.10 (E. Noether). Let P ⊂ K[x1, . . . , xn] be a prime ideal,
and let A = K[x1, . . . , xn]/P , then the normalization A ⊃ A is a finite A–
module.

Remark 3.5.11. In general, that is, for an arbitrary Noetherian integral do-
main, Theorem 3.5.10 is incorrect, as discovered by Nagata [183, Ex. 5,
p. 207]. The polynomial ringK[x1, . . . , xn] and, more generally, each affine al-
gebra R = K[x1, . . . , xn]/I satisfy the following stronger6 condition: for each
6 Strictly speaking, this is only a stronger condition if K has characteristic p > 0.
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prime ideal P ⊂ R and for each finite extension field L of Q(R/P ), the in-
tegral closure of R/P in L is a finite R/P–module. A Noetherian ring with
this property is called universally Japanese (in honour of Nagata).

To prove Theorem 3.5.10 we need an additional lemma. We shall give a proof
for the case that K is a perfect field (for example, char(K) = 0, or K is finite,
orK is algebraically closed, cf. Exercise 1.1.6). For a proof in the general case,
see [66, Corollary 13.15].

Lemma 3.5.12. Let A be a normal Noetherian integral domain, L ⊃ Q(A) a
finite separable field extension and B the integral closure of A in L. Let α ∈ B
be a primitive element of the field extension, F the minimal polynomial of α
and Δ the discriminant of F .7 Then B ⊂ 1

ΔA[α]. In particular, B is a finite
A–module.

Proof of Theorem 3.5.10. We use the Noether normalization theorem and
choose y1, . . . , ys such that K[y1, . . . , ys] ↪→ K[x1, . . . , xn]/P is finite. We ob-
tain a commutative diagram

K[x1, . . . , xn]/P
��

��

� �

��







K[y1, . . . , ys]� �finite



��

��

A � �

���������

Q(K[x1, . . . , xn]/P ) Q(K[y1, . . . , ys]) .� �finite



Notice that A is also the integral closure of K[y1, . . . , ys] in the quotient field
Q(K[x1, . . . , xn]/P ), which is a finite separable extension of Q(K[y1, . . . , ys]).
Since K[y1, . . . , ys] is a normal Noetherian integral domain, we obtain the
assumption of Lemma 3.5.12, which proves the theorem.

Proof of Lemma 3.5.12. Let L0 be the splitting field of F , and let α = α1,
α2, . . . , αn ∈ L0 be the roots of F . Further, let B0 be the integral closure of
A in L0. Then α1, . . . , αn ∈ B0 (since F is monic), and we have the following
diagram

A ⊂ B ⊂ B0

∩ ∩ ∩
Q(A) ⊂ L ⊂ L0,

where L0 ⊃ Q(A) is Galois. We consider the matrix

7 The discriminant of a univariate polynomial F ∈ K[x] is defined to be the resul-
tant of F and its derivative F ′. If α1, . . . , αn are the roots of F in the algebraic
closure K of K then the discriminant equals

∏
i�=j(αi − αj), see, e.g., [162].
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M :=

⎛

⎜⎝
1 α1 . . . α

n−1
1

...
...

...
1 αn . . . αn−1

n

⎞

⎟⎠ ∈Mat(n× n,B0) .

For d := det(M) = ±∏
i<j(αi − αj) �= 0 we have d2 ∈ Q(A), because d2 is

the discriminant of F .
Let Gal

(
L0 | Q(A)

)
= {σ1, . . . , σn} with σi(α1) = αi. Let b ∈ B, then

there exist ci ∈ Q(A) such that b =
∑n−1

i=0 ciα
i
1. We obtain

M ·

⎛

⎜⎝
c0
...

cn−1

⎞

⎟⎠ =

⎛

⎜⎝

∑
iciα

i
1

...∑
iciα

i
n

⎞

⎟⎠ =

⎛

⎜⎝
σ1(b)

...
σn(b)

⎞

⎟⎠ ∈ Bn0

and, consequently,

dM−1M ·

⎛

⎜⎝
c0
...

cn−1

⎞

⎟⎠ =

⎛

⎜⎝
dc0
...

dcn−1

⎞

⎟⎠ ∈ Bn0 ,

which yields B ⊂ (1/d2) ·∑n−1
i=0 Aα

i, because d2ci ∈ B0 ∩Q(A) = A. This
implies, in particular, that B is a finite A–module.

Lemma 3.5.13. Let A and B be rings of finite type over a field K. Assume
A ⊂ B is finite, and let P ⊂ A be a prime ideal. Moreover, let PB ⊂ Q be a
prime ideal with dimB/Q = dimB/PB, then Q ∩A = P .

Proof. We may assume P = 〈0〉 and use Corollary 3.3.3.

Note that the assumption dimB/Q = dimB/PB is important as the fol-
lowing example shows: B := K[x, y, z]/〈x2, y〉 ∩ 〈x+ z〉2 ⊂ A := K[y, z] and
P = 〈0〉.
Remark 3.5.14. Lemma 3.5.13 is a basis for computing the prime ideals oc-
curring in the going up, lying over and going down theorems:

• If P ⊂ A is prime, compute the minimal associated primes of PB and
choose one with the correct dimension to obtain the required prime ideal
of the lying over theorem.

• For the going up theorem we do the same: for given Q ⊂ B, P = Q ∩A and
P ⊂ P ′ we choose a Q′ ∈ minAss(P ′B) such that dimB/Q′ = dimB/P ′B
and Q ⊂ Q′.

• For the going down theorem we choose for given Q ⊂ B, P = Q ∩A
and P ′ ⊂ P a Q′ ∈ minAss(P ′B) such that dimB/Q′ = dimB/P ′B and
Q′ ⊂ Q.
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SINGULAR Example 3.5.15 (lying over theorem).
Let A = Q[x, y], P = 〈x〉 and B = Q[x, y, z]/〈z2− xz − 1〉. We want to find
a prime ideal Q ⊃ PB such that Q ∩A = P .

LIB"primdec.lib";
ring B=0,(x,y,z),dp;
ideal PB=x,z2-xz-1;
list pr=minAssGTZ(PB);
pr;
[1]: [2]:

_[1]=z-1 _[1]=z+1
_[2]=x _[2]=x

Both prime ideals 〈z − 1, x〉, 〈z + 1, x〉 in B give as intersection with A the
ideal P .

Exercises

3.5.1. Let I ⊂ K[x1, . . . , xn] be an ideal and > an ordering of the set of
monomials Mon(x1, . . . , xn). Let u ⊂ x = {x1, . . . , xn} be an independent set
for L(I). Prove that u is an independent set for I. Use Remark 3.3.12 to see
that a maximal independent set for L(I) is also a maximal independent set
for I.

3.5.2. Modify the procedure of Example 3.5.9 to compute a maximal inde-
pendent set for I.

3.5.3. Use similar methods as in Example 3.5.15 to test the going down theo-
rem in the following case: A = Q[x, y], B = Q[x, y, z]/〈z2− xy〉, Q = 〈x, y, z〉,
P = 〈x, y〉, P ′ = 〈y2− x3〉.
3.5.4. LetK be a field, and let P ⊂ K[x1, . . . , xn] be a prime ideal. Moreover,
let u ⊂ x = {x1, . . . , xn} be a maximal independent set for P . Prove that
K[x]P = K(u)[x� u]PK(u)[x�u].

3.5.5. Let K be a field, and let P ⊂ K[x1, . . . , xn] be a prime ideal. More-
over, let u ⊂ x = {x1, . . . , xn} be a maximal independent set for P . Prove
that K(u)[x� u]/PK(u)[x� u] = Q(K[x1, . . . , xn]/P ). Note that, because
of Singular Example 1.3.13 (4), we can use Singular to compute in this
field. Use Exercise 3.4.4 to prove that, after a generic linear coordinate change
ϕ (in case thatK is of characteristic 0) for a suitable xi ∈ x� u and f ∈ ϕ(P ),
Q
(
K[x1, . . . , xn]/(P )

)
= K(u)[xi]/〈f〉.

3.5.6. Let A be a normal integral domain, K its quotient field, and L ⊃ K be
a field extension. Let x ∈ L be integral over A and f ∈ K[t] be the minimal
polynomial of x. Then f ∈ A[t].
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3.6 An Algorithm to Compute the Normalization

At the end of this chapter we give a criterion for normality which is the basis
for an algorithm to compute the normalization and the non–normal locus for
affine K–algebras.

In this section let A be a reduced Noetherian ring and A its normalization,
that is, the integral closure of A in Q(A), the total ring of fractions of A. A is
normal if and only if A = A. The idea to compute A is to enlarge the ring A
by an endomorphism ring A′ = HomA(J, J) for a suitable ideal J such that
A′ ⊂ A. Repeating the procedure with A′ instead of A, we continue until the
normality criterion allows us to stop.

Lemma 3.6.1. Let A be a reduced Noetherian ring and J ⊂ A an ideal con-
taining a non–zerodivisor x of A. Then there are natural inclusions of rings

A ⊂ HomA(J, J) ∼= 1
x
· (xJ : J) ⊂ A .

Proof. For a ∈ A, let ma : J → J denote the multiplication with a. If ma = 0,
then ma(x) = ax = 0 and, hence, a = 0, since x is a non–zerodivisor. Thus,
a �→ ma defines an inclusion A ⊂ HomA(J, J).

It is easy to see that for ϕ ∈ HomA(J, J) the element ϕ(x)/x ∈ Q(A) is
independent of x: for any a ∈ J we have x · ϕ(a) = ϕ(xa) = a · ϕ(x) , since ϕ
is A–linear.

Hence, ϕ �→ ϕ(x)/x defines an inclusion HomA(J, J) ⊂ Q(A) mapping
x ·HomA(J, J) into xJ : J = {b ∈ A | bJ ⊂ xJ}. The latter map is also sur-
jective, since any b ∈ xJ : J defines, via multiplication with b/x, an element
ϕ ∈ HomA(J, J) with ϕ(x) = b. Since x is a non–zerodivisor, we obtain the
isomorphism HomA(J, J) ∼= (1/x) · (xJ : J).

It follows from Proposition 3.1.2 that any b ∈ xJ : J satisfies an integral
relation bp + a1b

p−1 + · · ·+ a0 = 0 with ai ∈ 〈xi〉. Hence, b/x is integral over
A, showing (1/x) · (xJ : J) ⊂ A.

By Proposition 3.2.5, A is normal if and only if AP is normal for each prime
ideal P ⊂ A.

Definition 3.6.2. The non–normal locus of A is defined as

N(A) = {P ∈ SpecA | AP is not normal} .
Lemma 3.6.3. Let A be finitely generated over A, and let C = AnnA(A/A) =
{a ∈ A | aA ⊂ A} be the conductor of A in A. Then

N(A) = V (C) = {P ∈ SpecA | P ⊃ C} .
In particular, N(A) is closed8 in SpecA.
8 In general, if A is not finite over A, the proof of Lemma 3.6.3 shows that⋃

h∈A V (Ch) ⊂ N(A) ⊂ V (C). If A is finite over A, generated by h1, . . . , hs, then⋃
h∈A V (Ch) =

⋃s
i=1 V (Chi) = V (C).
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Proof. If P ∈ N(A) then AP �= AP , hence, CP = AnnAP (AP /AP ) � AP and,
therefore, P ⊃ C. To show the converse inclusion, note that C =

⋂
h∈ACh,

where Ch := {a ∈ A | ah ∈ A}. Thus, we only need to show V (Ch) ⊂ N(A) :
let P �∈ N(A), then AP = AP and, hence, h = p/q for suitable p, q ∈ A, q �∈ P .
This implies qh ∈ A, that is, q ∈ Ch. Therefore, Ch �⊂ P and P �∈ V (Ch).

Lemma 3.6.4. Let J ⊂ A be an ideal containing a non–zerodivisor of A.

(1) There are natural inclusions of A–modules

HomA(J, J) ⊂ HomA(J,A) ∩A ⊂ HomA(J,
√
J) .

(2) If N(A) ⊂ V (J) then JdA ⊂ A for some d.

Proof. (1) The embedding of HomA(J,A) in Q(A) is given by ϕ �→ ϕ(x)/x,
where x is a non–zerodivisor of J (cf. proof of Lemma 3.6.1). With this
identification we obtain

HomA(J,A) = A :Q(A) J = {h ∈ Q(A) | hJ ⊂ A}

and HomA(J, J), respectively HomA(J,
√
J), is identified with those h ∈ Q(A)

such that hJ ⊂ J , respectively hJ ⊂ √J . Then the first inclusion follows from
Lemma 3.6.1.

For the second inclusion let h ∈ A satisfy hJ ⊂ A. Consider an integral
relation hn + a1h

n−1 + · · ·+ an = 0 with ai ∈ A. Let g ∈ J and multiply the
above equation with gn. Then

(hg)n + ga1(hg)n−1 + · · ·+ gnan = 0 .

Since g ∈ J , hg ∈ A and, therefore, (hg)n ∈ J and hg ∈ √J . This shows the
second inclusion.

(2) By assumption, and by Lemma 3.6.3, we have V (C) ⊂ V (J) and,
hence, J ⊂ √C by Theorem A.3.4, that is, Jd ⊂ C for some d which implies
the claim.

The following criterion for normality is due to Grauert and Remmert [99].

Proposition 3.6.5 (Criterion for normality). Let A be a Noetherian
reduced ring and J ⊂ A an ideal satisfying

(1) J contains a non–zerodivisor of A,
(2) J is a radical ideal,
(3) N(A) ⊂ V (J).

Then A is normal if and only if A = HomA(J, J).
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Proof. If A = A then HomA(J, J) = A, by Lemma 3.6.1. To see the converse,
we choose d ≥ 0 minimal such that JdA ⊂ A (Lemma 3.6.4 (2)). If d > 0
then there exists some a ∈ Jd−1 and h ∈ A such that ah �∈ A. But ah ∈ A
and ah · J ⊂ hJd ⊂ A, that is, ah ∈ HomA(J,A) ∩A, which is equal to
HomA(J, J) by Lemma 3.6.4, since J =

√
J . By assumption HomA(J, J) = A

and, hence, ah ∈ A, which is a contradiction. We conclude that d = 0 and
A = A.

Remark 3.6.6.

(1) An ideal J , as in Proposition 3.6.5, is called a test ideal for normality.
It is not difficult to see that the conductor ideal C is a test ideal. But C
cannot be computed as long as we do not know A. We shall see that the
ideal of the singular locus is, indeed, a test ideal which can be computed.

(2) Let J ⊂ A be a test ideal, and let x ∈ J be any non–zero element. Then
N(A) ⊂ V (x). If x is a non–zerodivisor of A then

√〈x〉 is a test ideal
which is smaller than J and, hence, preferable for computations. Since
HomA(〈x〉, 〈x〉) = A, it also follows that A is normal if 〈x〉 =

√〈x〉.
If x is a zerodivisor, then A cannot be normal (Exercise 3.6.7), and we
consider the annihilator of x, AnnA(x) = 〈0〉 : 〈x〉. By Exercise 3.6.8, we
obtain that A ⊂ A/〈x〉 ⊕A/AnnA(x) is a finite extension, and we can
continue with the rings A/〈x〉 and A/AnnA(x).

In case that A is not normal, A � HomA(J, J) =: A′, and we can continue
with A′ instead of A. To do this, we need to present A′ as an A–algebra of
finite type.

The following lemma describes the A–algebra structure of HomA(J, J):

Lemma 3.6.7. Let A be a reduced Noetherian ring, let J ⊂ A be an ideal
and x ∈ J a non–zerodivisor. Then

(1) A = HomA(J, J) if and only if xJ : J = 〈x〉.
Moreover, let {u0 = x, u1, . . . , us} be a system of generators for the A–module
xJ : J . Then we can write

(2) ui · uj =
s∑

k=0

xξijk uk with suitable ξijk ∈ A, 1 ≤ i ≤ j ≤ s.

Let (η(k)
0 , . . . , η

(k)
s ) ∈ As+1, k = 1, . . . ,m, generate syz(u0, . . . , us), and let

I ⊂ A[t1, . . . , ts] be the ideal

I :=

〈{
titj −

s∑

k=0

ξijk tk

∣∣∣∣∣ 1 ≤ i ≤ j ≤ s

}
,

{
s∑

ν=0

η(k)
ν tν

∣∣∣∣∣ 1 ≤ k ≤ m

}〉
,

where t0 := 1. Then
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(3) ti �→ ui/x, i = 1, . . . , s, defines an isomorphism

A[t1, . . . , ts]/I
∼=−→ HomA(J, J) ∼= 1

x
· (xJ : J) .

Proof. (1) follows immediately from Lemma 3.6.1.
To prove (2), note that HomA(J, J) = (1/x) · (xJ : J) is a ring, which is

generated as A–module by u0/x, . . . , us/x. Therefore, there exist ξijk ∈ A such
that (ui/x) · (uj/x) =

∑s
k=0 ξ

ij
k · (uk/x).

(3) Obviously, I ⊂ Ker(φ), where φ : A[t1, . . . , ts]→ (1/x) · (xJ : J) is
the ring map defined by ti �→ ui/x, i = 1, . . . , s. On the other hand, let
h ∈ Ker(φ). Then, using the relations titj −

∑s
k=0 ξ

ij
k tk, 1 ≤ i ≤ j ≤ s, we

can write h ≡ h0 +
∑s
i=1 hiti mod I, for some h0, h1, . . . , hs ∈ A.

Now φ(h) = 0 implies h0 +
∑s

i=1 hi · (ui/x) = 0, hence, (h0, . . . , hs) is a
syzygy of u0 = x, u1, . . . , us and, therefore, h ∈ I.
Example 3.6.8. Let A := K[x, y]/〈x2− y3〉 and J := 〈x, y〉 ⊂ A. Then x ∈ J
is a non–zerodivisor in A with xJ : J = x〈x, y〉 : 〈x, y〉 = 〈x, y2〉, therefore,
HomA(J, J) = 〈1, y2/x〉 (using Lemma 3.6.1). Setting u0 := x, u1 := y2, we
obtain u2

1 = y4 = x2y, that is, ξ110 = y. Hence, we obtain an isomorphism

A[t]/〈t2− y, xt− y2, yt− x〉 ∼=−→ HomA(J, J) .

of A–algebras. Note that A[t]/〈t2− y, xt− y2, yt− x〉  K[t].

Now, using Proposition 3.6.5 and Lemma 3.6.7 we obtain an algorithm to
compute the integral closure. We describe the algorithm for the case that
A = K[x1, . . . , xn]/I is an integral domain over a field K of characteristic 0,
that is, especially I is prime. Let I = 〈f1, . . . , fm〉 and r = dim(A). In order
to apply Proposition 3.6.5, we need to find an ideal J such that V (J) contains
the non–normal locus. We shall see later (cf. Chapter 5) that we can use the
Jacobian ideal of I, that is, J = I + the ideal generated by the (n−r)–minors
of the Jacobian matrix

(
∂fi

∂xj

)
.

Now we are prepared to give the normalization algorithm. We restrict our-
selves to the case of affine integral domains A = K[x1, . . . , xn]/I.

Algorithm 3.6.9 (normalization(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] a prime ideal, x = (x1, . . . , xn).
Output: A polynomial ring K[t], t = (t1, . . . , tN ), a prime ideal P ⊂ K[t] and

π : K[x]→ K[t] such that the induced map π : K[x]/I → K[t]/P is
the normalization of K[x]/I.

• if I = 〈0〉 then return (K[x], 〈0〉, idK[x]);
• compute r := dim(I);
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• if we know that the singular locus of I is V (x1, . . . , xn)9

J := 〈x1, . . . , xn〉;
else

compute J := the ideal of the (n− r)–minors of the Jacobian matrix I;
• J := radical(I + J);
• choose a ∈ J � {0};
• if aJ : J = 〈a〉 return (K[x], I, idK[x]);
• compute a generating system u0 = a, u1, . . . , us for aJ : J ;
• compute a generating system

{
(η(1)

0 , . . . , η
(1)
s ), . . . , (η(m)

0 , . . . , η
(m)
s )

}
for the

module of syzygies syz(u0, . . . , us) ⊂ (K[x]/I)s+1;
• compute ξijk such that ui · uj =

∑s
k=0 a · ξijk uk, i, j = 1, . . . s;

• change ring to K[x1, . . . , xn, t1, . . . , ts], and set (with t0 := 1)
I1 :=

〈{titj −
∑s

k=0 ξ
ij
k tk}1≤i≤j≤s , {

∑s
ν=0 η

(k)
ν tν}1≤k≤m

〉
+ IK[x, t];

• return normalization(I1).

Note that I1 is again a prime ideal, since

K[x1, . . . , xn, t1, . . . , ts]/I1 ∼= HomA(J, J) ⊂ Q(A)

is an integral domain.
Correctness of the algorithm follows from Proposition 3.6.5, and termi-

nation follows from Theorem 3.5.10. An implementation in the programming
language of Singular can be found in Section 3.7.

SINGULAR Example 3.6.10 (normalization).
Let us illustrate the normalization with Whitney’s umbrella

ring A = 0,(x,y,z),dp;
ideal I = y2-zx2;
LIB "surf.lib";
plot(I,"rot_x=1.45;rot_y=1.36;rot_z=4.5;");

list nor = normal (I);
def R = nor[1]; setring R;
norid;
//-> norid[1]=0
normap;
//-> normap[1]=T(1) normap[2]=T(1)*T(2) normap[3]=T(2)^2

Hence, the normalization of A/I isK[T1, T2] with normalization map x �→ T1,
y �→ −T 2

2 , z �→ −T1T2.

Proposition 3.6.5 and Lemma 3.6.7 also give us the possibility to compute
the non–normal locus:
9 This is useful information because, in this case, we can avoid computing the

minors of the Jacobian matrix and the radical (which can be expensive). The
property of being an isolated singularity is kept during the normalization loops.
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(t1, t2) �→ (t1, t1t2, t22)

Fig. 3.7. The normalization of Whitney’s umbrella.

Corollary 3.6.11. Let A and J be as in Proposition 3.6.5, then the ideal
AnnA

(
HomA(J, J)/A

) ⊂ A defines the non–normal locus. Moreover,

AnnA
(
HomA(J, J)/A

)
= 〈x〉 : (xJ : J)

for any non–zerodivisor x ∈ J .

We can take the first part of the normalization algorithm to compute the
non–normal locus:

Algorithm 3.6.12 (non–normalLocus(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] a prime ideal, x = (x1, . . . , xn).
Output: An ideal NN ⊂ K[x], defining the non–normal locus in V (I).

• If I = 〈0〉 then return (K[x]);
• compute r = dim(I);
• compute J the ideal of the (n− r)–minors of the Jacobian matrix of I;
• J = radical (I + J);
• choose a ∈ J � {0};
• return

(〈a〉 : (aJ : J)
)
.

We can test this procedure in Singular:

SINGULAR Example 3.6.13 (non–normal locus).
We compute the non–normal locus of A := K[x, y, z]/〈zy2− zx3− x6〉.

LIB"primdec.lib";
ring A = 0,(x,y,z),dp;
ideal I = zy2-zx3-x6;
ideal sing = I+jacob(I);
ideal J = radical(sing);
qring R = std(I);
ideal J = fetch(A,J);
ideal a = J[1];
ideal re = quotient(a,quotient(a*J,J));
re;
//-> re[1]=y
//-> re[2]=x
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From the output, we read that the non–normal locus is the z–axis (the zero–
set of 〈x, y〉).

Exercises

3.6.1. Compute the normalization of Q[x, y, z]/〈z(y3− x5) + x10〉.
3.6.2. Let A ⊂ B be rings with A Noetherian. Use Lemma 3.2.7 to show
C(A,B)[x] = C(A[x], B[x]). Conclude that A[x] = A[x]; in particular, if A is
normal then A[x] is normal.

3.6.3. Prove that the normalization of a graded integral domain is graded.

3.6.4. Let A be a Noetherian ring, I ⊂ A an ideal, and

A[tI] := A+ tI + t2I2 + . . . ⊂ A[t]

the Rees–Algebra of I. Show that

C(A[tI], A[t]) =
∞⊕

ν=0

Cs(Iν , A) · tν .

In particular, Cs(I, A) is an ideal.
Prove this along the following lines:

• If f =
∑k

i=0 fit
i is integral over A[tI] then each summand fit

i is integral
over A[tI], too.

• If C(A[tI]), A[t]) =
⊕∞

ν=0 Iνt
ν then Iν = Cs(Iν , A).

The ring R = A[tI] is also called the blow–up algebra of I. The arguments
above show that the normalization of R is

R = A+ t · I + t2 · I2 + . . .

where Iν is the strong integral closure of Iν in A.

3.6.5. Let x1(t), . . . , xn(t) ∈ K[t] such that A = K[x1(t), . . . , xn(t)] ⊂ K[t] is
finite and K

(
x1(t), . . . , xn(t)

)
= K(t). Prove that K[t] is the normalization

of A.
(Hint: prove that there exists an N such that tNK[t] ⊂ A, and use this to
prove that t is integral over A.)

3.6.6. For n ∈ Z≥0 compute the normalization of Z[
√
n].

3.6.7. Let A be a reduced Noetherian ring, and let x ∈ A a zerodivisor such
that N(A) ⊂ V (x). Prove that A is not normal.

3.6.8. Let A be a reduced Noetherian ring, and let x ∈ A be a zerodivisor,
I = 〈0〉 : 〈x〉. Prove that A ⊂ A/〈x〉 ⊕A/I is a finite extension.
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3.6.9 (Vasconcelos). Let K ⊂ L be a field extension and consider the ring
A := K[x, y] + 〈x, y〉nL[x, y]. Prove that the normalization of A is L[x, y].
(Hint: prove that Ax = L[x, y]x, Ay = L[x, y]y and, therefore, the maximal
ideal M = 〈x, y〉K[x, y] + 〈x, y〉nL[x, y] defines the non–normal locus. Then
prove that HomA(M,M) = K[x, y] + 〈x, y〉n−1L[x, y].)

3.7 Procedures

The following procedures are in the same style as the Singular procedures
in the distributed libraries. Hence, they may be used as a pattern for the
reader’s own procedures. They are fully working procedures, however, all
specialties which are incorporated in the distributed libraries are missing,
and, therefore, the performance cannot be expected to be very good.

3.7.1. We start with the Noether normalization using finitenessTest as a
sub–procedure. The procedure in the distributed libraries is noetherNormal.

proc NoetherNormal(ideal id)

"USAGE: NoetherNormal(id); id ideal
RETURN: two ideals i1,i2, where i2 is given by a subset of

the variables and i1 defines a map:
map phi=basering,i1 such that
k[i2] --> k[var(1),...,var(n)]/phi(id)
is a Noether normalization

"
{

def r=basering;
int n=nvars(r);

//----- change to lexicographical ordering ------------
//a procedure from ring.lib changing the order to lp
//creating a new basering s
changeord("s","lp");

//----- make a random coordinate change ----------------
//creating lower triangular random generators for the
//maximal ideal a procedure form random.lib
ideal m=
ideal(sparsetriag(n,n,0,100)*transpose(maxideal(1)));

map phi=r,m;
ideal i=std(phi(id));

//---------- check finiteness ---------------------------
//from theoretical point of view Noether normalization
//should be o.k. but we need a test whether the



252 3. Noether Normalization and Applications

//coordinate change was random enough
list l=finitenessTest(i);

setring r;
list l=imap(s,l);

if(l[1]==1)
{

//the good case, coordinate change was random enough
return(list(fetch(s,m),l[2]));

}
kill s;
//-------- the bad case, try again ---------------------
return(NoetherNormal(i));

}

Example 3.7.1.

LIB"ring.lib";
LIB"random.lib";
ring R=0,(x,y,z),dp;
ideal I = xy,xz;
NoetherNormal(I);
//-> [1]: [2]:

_[1]=x _[1]=0
_[2]=14x+y _[2]=y
_[3]=64x+100y+z _[3]=z

3.7.2. The following procedure uses Proposition 3.1.5 for testing finiteness.
Since the input is assumed to be a reduced lexicographical standard basis,
this test is a simple inspection of the leading exponents.

proc finitenessTest(ideal I)

"USAGE: finitenessTest(ideal I)
RETURN: A list l, l[1] is 1 or 0 and l[2] is an ideal gener-

ated by a subset of the variables. l[1]=1 if the map
basering/I <-- K[l[2]] is finite and 0 else.

NOTE: It is assumed that I is a reduced standard basis
with respect to the lexicographical ordering lp,
sorted w.r.t. increasing leading terms.

"
{

intvec w=leadexp(I[1]);
int j,t;
int s=1;
ideal k;
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// --------- check leading exponents ---------------------
//compute s such that lead(I[1]) depends only on
//var(s),...,var(n) by inspection of the leading exponents
while (w[s]==0) {s++;}
for (j=1; j<= size(I); j++)
{
w=leadexp(I[j]);
if (size(ideal(w))==1) {t++;}

}
//--------------check finiteness -------------------------
//t is the number of elements of the standard basis which
//have pure powers in the variables var(1),...,var(s) as
//leading term. The map is finite iff s=t.
if(s!=t) {return(list(0,k));}
for (j=s+1; j<= nvars(basering);j++)
{
k[j]=var(j);

}
return (list(1,k));

}

Example 3.7.2.

ring R=0,(x,y,z),lp;
ideal I = y2+z3,x3+xyz;
finitenessTest(I);
//-> [1]: [2]:
//-> 1 _[1]=0
//-> _[2]=0
//-> _[3]=z

3.7.3. We provide a procedure for computing the normalization in the most
simple case of a prime ideal. The general procedure in the distributed libraries
is called normal.

proc normalization(ideal i)

"USAGE: list L=normalization(i); i prime ideal
RETURN: a list L of one ring L[1]=R; R contains the ideal

norid such that R/norid is the normalization of
basering/i.

NOTE: to use the ring type def S=L[1];setring S;norid;
"
{

def BAS=basering;
list result;
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ideal rf;
int ds = -1;
int isIso;

if (typeof(attrib(i,"isIsolatedSingularity"))=="int")
{
if(attrib(i,"isIsolatedSingularity")==1){isIso=1;}

}

if(size(i)!=0)
{
list SM=mstd(i);
i=SM[2];
ideal SBi=SM[1];

int n=nvars(BAS);
int d=dim(SBi);

//------------------- the singular locus ---------------
if(isIso)
{

list singM=maxideal(1), maxideal(1);
ds=0;

}
else
{

ideal sing=minor(jacob(i),n-d)+i;
list singM=mstd(sing);
ds=dim(singM[1]);

}
if(ds!=-1)
{

//----------------- computation of the radical ---------

if (isIso)
{

ideal J=maxideal(1);
}
else
{

ideal J=radical(singM[2]);
}

//------------------ go to quotient ring ---------------
qring R=SBi;
ideal J=fetch(BAS,J);
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ideal i=fetch(BAS,i);
poly p=J[1];

//-------- computation of p*Hom(J,J) as R-ideal---------
ideal f=quotient(p*J,J);
ideal rf = interred(reduce(f,std(p)));

// represents p*Hom(J,J)/p*R = Hom(J,J)/R
}

}
//-------- Test: Hom(J,J) == R ?, if yes, go home ------
if ( size(rf) == 0 )
{

execute("ring newR="+charstr(basering)+",
("+varstr(basering)+"),("+ordstr(basering)+");");

ideal norid=fetch(BAS,i);
export norid;
result=newR;
setring BAS;
return(result);

}
//------------------- Case: Hom(J,J)!= R ------------------
// create new ring and map form old ring, the ring
// newR/SBi+syzf will be isomorphic to Hom(J,J) as R-module

f=p,rf;
//generates pJ:J mod(p), i.e. p*Hom(J,J)/p*R as R-module
int q=size(f);
module syzf=syz(f);

ring newR1 = char(R),(X(1..nvars(R)),T(1..q)),dp;
map psi1 = BAS,maxideal(1);
ideal SBi = psi1(SBi);
attrib(SBi,"isSB",1);

qring newRq = SBi;
map psi = R,ideal(X(1..nvars(R)));
ideal i = psi(i);
ideal f = psi(f);
module syzf = psi(syzf);

//------- computation of Hom(J,J) as ring ----------------
// determine kernel of:
// R[T1,...,Tq] -> J:J >-> R[1/p]=R[t]/(t*p-1),
// Ti -> fi/p -> t*fi (p=f1=f[1]), to get ring structure.
// This is of course the same as the kernel of
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// R[T1,...,Tq] -> pJ:J >-> R, Ti -> fi.
// It is a fact, that the kernel is generated by the linear
// and the quadratic relations

ideal pf=f[1]*f;
matrix T=matrix(ideal(T(1..q)),1,q);
ideal Lin = ideal(T*syzf); //the linear relations

int ii,jj;
matrix A;
ideal Q;

for (ii=2; ii<=q; ii++ )
{

for ( jj=2; jj<=ii; jj++ )
{

A = lift(pf,f[ii]*f[jj]);
Q = Q, ideal(T(jj)*T(ii) - T*A);
//the quadratic relations

}
}
Q = Lin+Q;
Q = subst(Q,T(1),1);
Q = interred(reduce(Q,std(0)));

ring newR = char(R),(X(1..nvars(R)),T(2..q)),dp;
ideal k=imap(newRq,Q)+imap(newRq,i);
if(isIso)
{
attrib(k,"isIsolatedSingularity",1);

}
result=normalization(k);
setring BAS;
return(result);

}

Example 3.7.3.

LIB"primdec.lib";
ring R=0, (x,y,z),dp;
ideal I=zy2-zx3-x6;
list nor=normalization(I);
def S=nor[1];
setring S;
norid;
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//-> norid[1]=X(2)*X(3)-X(1)*T(2)
//-> norid[2]=X(1)^4*X(3)+X(1)*X(3)^2-T(2)^2
//-> norid[3]=X(1)^5+X(1)^2*X(3)-X(2)*T(2)

Remark 3.7.4. The procedure normal from normal.lib does also compute
the normalization map which is omitted in the above procedure; normal
works also for arbitrary radical ideals which are not necessarily prime.

In the above procedure, we use a feature of Singular, namely to attach
attributes to an object, which is extremely useful since it allows the use of
mathematical knowledge. For instance, if the ideal I has an isolated singular-
ity at the origin and no other singularities, the radical of the singular locus
is known to be the maximal ideal and need not be computed. Moreover, this
property is preserved during the normalization loop.10

Attributes can be defined and used freely. For instance, to check whether
I defines a complete intersection can be done without extra cost, since a
standard basis of I, together with a minimal generating set in the homoge-
neous case, will be computed anyway. Since a complete intersection (more
generally, a Cohen–Macaulay ideal) with singular locus of codimension ≥ 2
is automatically normal, such an attribute, checked and set during the nor-
malization loop, can speed up the algorithm considerably. The distributed
libraries make use of several such attributes.

10 In the above situation, we may attach the attribute isIsolatedSingularity:
attrib(I,"isIsolatedSingularity",1); then, after asking for the attribute,
we obtain the following answer: attrib(I,"isIsolatedSingularity"); //-> 1.
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4.1 The Theory of Primary Decomposition

It is well–known that every integer is a product of prime numbers, for instance
10 = 2 · 5. This equation can also be written as an equality of ideals, 〈10〉 =
〈2〉 ∩ 〈5〉 in the ring Z. The aim of this section is to generalize this fact to
ideals in arbitrary Noetherian rings.

Ideals generated by prime elements are prime ideals. Therefore, 〈10〉 is
the intersection of finitely many prime ideals. In Proposition 3.3.5 this is
generalized to radical ideals: in a Noetherian ring every radical ideal I, that
is, I =

√
I, is the intersection of finitely many prime ideals. However, what

can we expect if the ideal is not radical? For example, 20 = 22 · 5, respectively
〈20〉 = 〈2〉2 ∩ 〈5〉; in the ring of integers Z every ideal is the intersection of
finitely many ideals which are powers of prime ideals. This is, for arbitrary
Noetherian rings, no longer true. A generalization of the powers of prime
ideals are the so–called primary ideals. We shall prove in this section that,
in a Noetherian ring, every ideal is the intersection of finitely many primary
ideals.

Definition 4.1.1. Let A be a Noetherian ring, and let I � A be an ideal.

(1) The set of associated primes of I, denoted by Ass(I), is defined as

Ass(I) =
{
P ⊂ A

∣∣ P prime, P = I : 〈b〉 for some b ∈ A} .

Elements of Ass(〈0〉) are also called associated primes of A.
(2) Let P,Q ∈ Ass(I) and Q � P , then P is called an embedded prime ideal

of I. We define Ass(I, P ) := {Q | Q ∈ Ass(I), Q ⊂ P}.
(3) I is called equidimensional or pure dimensional if all associated primes

of I have the same dimension.
(4) I is a primary ideal if, for any a, b ∈ A, ab ∈ I and a �∈ I imply b ∈ √I.

Let P be a prime ideal, then a primary ideal I is called P–primary if
P =

√
I.

(5) A primary decomposition of I, that is, a decomposition I = Q1∩· · ·∩Qs
with Qi primary ideals, is called irredundant if no Qi can be omitted in
the decomposition and if

√
Qi �=

√
Qj for all i �= j.
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Example 4.1.2.

(1) Let A be a ring, and let I ⊂ A be an ideal such that
√
I is a maximal

ideal, then I is primary (cf. Exercise 4.1.4).
(2) Let A = K[x, y] and I = 〈x2, xy〉 = 〈x〉 ∩ 〈x, y〉2 = 〈x〉 ∩ 〈x2, y〉. Then

〈x〉, 〈x, y〉2, 〈x2, y〉 are primary ideals, and Ass(I) = {〈x〉, 〈x, y〉}. In par-
ticular, 〈x, y〉 is an embedded prime of I with Ass(I, 〈x, y〉) = {〈x〉, 〈x, y〉},
while Ass(I, 〈x〉) = {〈x〉}. Note that both decompositions are irredundant
primary decompositions of I, which shows that an irredundant primary
decomposition might be not unique.

(3) minAss(I) ⊂ Ass(I) and minAss(I) = Ass(I) if and only if I has no em-
bedded primes (Exercise 4.1.5), showing that minAss(I) is the set of
minimal elements (with respect to inclusion) of Ass(I).

The following lemma collects the properties of primary ideals needed for the
primary decomposition.

Lemma 4.1.3. Let A be a Noetherian ring and Q ⊂ A a P–primary ideal.

(1) The radical of a primary ideal is a prime ideal.
(2) Let Q′ be a P–primary ideal, then Q ∩Q′ is a P–primary ideal.
(3) Let b ∈ A, b �∈ Q, then Q : 〈b〉 is P–primary. b ∈ P if and only if

Q � Q : 〈b〉.
(4) Let P ′ ⊃ Q be a prime ideal, then QAP ′ ∩A = Q.
(5) There exists d ∈ A such that P = Q : 〈d〉. Especially, P ∈ Ass(Q).

Proof. (1) and (2) are left as exercises. To prove (3), let b ∈ A, b �∈ Q. If b �∈ P ,
then Q : 〈b〉 = Q because ab ∈ Q, a �∈ Q implies b ∈ P by definition of a pri-
mary ideal. If b ∈ P then bn ∈ Q for a suitable n. We may assume n ≥ 2 and
bn−1 �∈ Q. Then bn−1∈ Q : 〈b〉 and, therefore, Q � Q : 〈b〉. Let xy ∈ Q : 〈b〉
and x �∈ Q : 〈b〉. This implies bxy ∈ Q and bx �∈ Q. By definition of a primary
ideal, we obtain yn ∈ Q for a suitable n. This implies that Q : 〈b〉 is a pri-
mary ideal. Finally,

√
Q : 〈b〉 ⊃ √Q = P . Let x ∈√

Q : 〈b〉, that is, bxn ∈ Q
for some n but b �∈ Q and, therefore, xn ∈ P . Now P is prime and we obtain
x ∈ P which proves

√
Q : 〈b〉 = P .

To prove (4), let x ∈ QAP ′ ∩A. This means that sx ∈ Q for a suitable
s �∈ P ′. If x �∈ Q, then, by definition of a primary ideal, s ∈ √Q ⊂ P ′ in con-
tradiction to the choice of s. We obtain QAP ′ ∩A ⊂ Q. The other inclusion
is trivial.

To prove (5), we consider first the case Q = P . In this case, we can use
d = 1 and are finished. If Q � P we choose g1 ∈ P �Q and obtain, using (3),
that Q : 〈g1〉 � Q is P–primary and

√
Q : 〈g1〉 = P . Again, if Q : 〈g1〉 � P

we can choose g2 ∈ P � (Q : 〈g1〉) such that (Q : 〈g1〉) : 〈g2〉 � Q : 〈g1〉. Now
(Q : 〈g1〉) : 〈g2〉 = Q : 〈g1g2〉 (Exercise 4.1.2), and continuing in this way we
obtain an increasing chain of ideals Q � Q : 〈g1〉 � Q : 〈g1g2〉 � . . . . The ring
A is Noetherian and, therefore, this chain has to stop, that is, we find n and
g1, . . . , gn ∈ P such that Q : 〈g1 · · · gn〉 = P .
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Theorem 4.1.4. Let A be a Noetherian ring and I � A be an ideal, then
there exists an irredundant decomposition I = Q1 ∩ · · · ∩Qr of I as intersec-
tion of primary ideals Q1, . . . , Qr.

Proof. Because of Lemma 4.1.3 (2) it is enough to prove that every ideal is
the intersection of finitely many primary ideals. Suppose this is not true,
and let M be the set of ideals which are not an intersection of finitely
many primary ideals. The ring A is Noetherian and, by Proposition 1.3.6,
M has a maximal element with respect to the inclusion. Let I ∈M be max-
imal. Since I is not primary, there exist a, b ∈ A, a �∈ I, bn �∈ I for all n and
ab ∈ I. Now consider the chain I : 〈b〉 ⊂ I : 〈b2〉 ⊂ · · · . As A is Noetherian,
there exists an n with I : 〈bn〉 = I : 〈bn+1〉 = · · · . Using Lemma 3.3.6, we
obtain I = (I : 〈bn〉) ∩ 〈I, bn〉. Since bn �∈ I we have I � 〈I, bn〉. Since a �∈ I
and abn ∈ I we have I � I : 〈bn〉. As I is maximal in M, I : 〈bn〉 and 〈I, bn〉
are not in M. This implies that both ideals are intersections of finitely many
primary ideals and, therefore, I is an intersection of finitely many primary
ideals, too, in contradiction to the assumption.

Theorem 4.1.5. Let A be a ring and I ⊂ A be an ideal with irredundant
primary decomposition I = Q1 ∩ · · · ∩Qr. Then r = #Ass(I),

Ass(I) = {
√
Q1, . . . ,

√
Qr} ,

and if {√Qi1 , . . . ,
√
Qis} = Ass(I, P ) for P ∈ Ass(I) then Qi1∩ · · · ∩Qis is

independent of the decomposition.

Proof. Let I = Q1 ∩ · · · ∩Qr be an irredundant primary decomposition. If
P ∈ Ass(I), P = I : 〈b〉 for a suitable b, then P = (Q1 : 〈b〉) ∩ · · · ∩ (Qr : 〈b〉)
(Exercise 4.1.3). In particular,

⋂r
i=1(Qi : 〈b〉) ⊂ P , hence, Qj : 〈b〉 ⊂ P for a

suitable j (Lemma 1.3.12). On the other hand, since P = I : 〈b〉 ⊂ Qj : 〈b〉, we
obtain P = Qj : 〈b〉. Now Qj : 〈b〉 ⊂√

Qj (Lemma 4.1.3 (3)), which implies
P =

√
Qj . This proves that {√Q1, . . . ,

√
Qr } ⊃ Ass(I).

It remains to prove that
√
Qi = I : 〈bi〉 for a suitable bi. But this is a con-

sequence of Lemma 4.1.3 (5): let J = Q1 ∩ · · · ∩Qi−1 ∩Qi+1 ∩ · · · ∩Qr, then
J �⊂ Qi, since the decomposition is irredundant. We can choose d ∈ J \Qi
and obtain, using Exercise 4.1.3, I : 〈d〉 = Qi : 〈d〉. By Lemma 4.1.3 (3), (5),
respectively Exercise 4.1.2,

√
Qi =

√
Qi : 〈d〉 = (Qi : 〈d〉) : 〈g〉 = I : 〈dg〉 for

a suitable g. We obtain Ass(I) = {√Q1, . . . ,
√
Qr}.

Now let Ass(I, P ) = {√Qi1 , . . . ,
√
Qis}, then Lemma 4.1.3 (4) gives that

QiνAP ∩A = Qiν . If j �∈ {i1, . . . , is} then Qj �⊂ P , therefore, QjAP = AP .
This implies that IAP ∩A =

⋂r
j=1(QjAP ∩A) = Qi1 ∩ · · · ∩Qis is indepen-

dent of the decomposition, since Ass(I, P ) is.

Example 4.1.6.

(1) If I = 〈f〉 ⊂ K[x1, . . . , xn] is a principal ideal and f = fn1
1 · · · fns

s is the
factorization of f into irreducible factors, then
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I = 〈fn1
1 〉 ∩ · · · ∩ 〈fnr

r 〉

is the primary decomposition, and the 〈fi〉 are the associated prime ideals
which are all minimal.

(2) Let I = 〈xy, xz, yz〉 = 〈x, y〉∩〈x, z〉∩〈y, z〉 ⊂ K[x, y, z]. Then the zero–set
V (I) (cf. A.1) is the union of the coordinate axes (cf. Figure 4.1).

Fig. 4.1. The zero–set of 〈xy, xz, yz〉.

(3) Let I = 〈(y2− xz) · (z2− x2y), (y2− xz) · z〉 ⊂ K[x, y, z]. Then we obtain
the irredundant primary decomposition I = 〈y2− xz〉 ∩ 〈x2, z〉 ∩ 〈y, z2〉,
Ass(I) = {〈y2− xz〉, 〈x, z〉, 〈y, z〉} and minAss(I) = {〈y2− xz〉, 〈x, z〉}.
〈y, z〉 is an embedded prime with Ass(I, 〈y, z〉) = {〈y2− xz〉, 〈y, z〉}. The
zero–set of I (cf. A.1) is displayed in Figure 4.2.

Fig. 4.2. The zero–set of I = 〈y2− xz〉 ∩ 〈x2, z〉 ∩ 〈y, z2〉.
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Remark 4.1.7.

(1) Primary decomposition does not hold, in general, in non–Noetherian
rings, even if we allow infinite intersections.

(2) There exists a concept of primary decomposition for finitely gener-
ated modules over Noetherian rings (Exercise 4.1.13). Primary decom-
position of modules has been implemented in the Singular library
mprimdec.lib.

Exercises

For these exercises let A be a Noetherian ring, K a field and I, J ideals in A.

4.1.1. Prove that
√
I is prime if I is primary.

4.1.2. Prove that, for a, b ∈ A, (I : 〈a〉) : 〈b〉 = I : 〈ab〉.
4.1.3. Prove that, for any b ∈ A, (I ∩ J) : 〈b〉 = (I : 〈b〉) ∩ (J : 〈b〉).
4.1.4. Prove that I is primary if

√
I is a maximal ideal.

4.1.5. Prove that minAss(I) ⊂ Ass(I) with equality if and only if I has no
embedded primes.

4.1.6. Let P ⊂ A be a prime ideal, and let Q1, Q2 ⊂ A be P–primary. Prove
that Q1 ∩Q2 is a P–primary ideal.

4.1.7. Let f1, f2 ∈ A such that f = f1 · f2 ∈ I and 〈f1, f2〉 = A. Prove that
I = 〈I, f1〉 ∩ 〈I, f2〉.
4.1.8. Let I ⊂ K[x1, . . . , xn] be a homogeneous ideal (that is, generated by
homogeneous polynomials). Prove that the ideals in Ass(I) are homogeneous.

4.1.9. Let w = (w1, . . . , wn) ∈ Z
n, wi �= 0 for all i, and let I ⊂ K[x1, . . . , xn]

be an ideal. Moreover, let Ih ⊂ K[x1, . . . , xn, t] be the ideal generated by the
weighted homogenizations of the elements of I with respect to t (see Exercise
1.7.5). Prove the following statements:

(1) Ih is primary (prime) if and only if I is primary (prime).
(2) Let I = Q1 ∩ . . . ∩Qr be an irredundant primary decomposition, then

Ih = Qh1 ∩ . . . ∩Qhr is an irredundant primary decomposition, too.

(Hint: to show (1), first prove the analogue of Exercise 2.2.5 for primary
instead of prime ideals. For (2), prove that (I1 ∩ I2)h = Ih1 ∩ Ih2 .)

4.1.10. Let Ass(〈0〉) = {P1, . . . , Ps}. Prove that
⋃s
i=1 Pi is the set of zerodi-

visors of A.

4.1.11. Let I = Q1 ∩ · · · ∩Qm be an irredundant primary decomposition,
and let J := Q2 ∩ · · · ∩Qm. Prove that dim

(
A
/
(Q1 + J)

)
< dim(A/J).
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4.1.12. Use Singular to show the following equality of ideals in K[x, y, z]:

〈y2− xz〉 ∩ 〈x2, z〉 ∩ 〈y, z2〉 =
〈
(y2− xz)(z2− x2y), (y2− xz) · z〉 .

4.1.13. Let M be a finitely generated A–module and N ⊂M a submodule.
Then N is called primary in M if N �= M and for every zerodivisor x of M/N
there exists ρ such that xρ ∈ Ann(M/N). Prove the following statements:

(1) If N ⊂ M is primary then N : M is a primary ideal (
√
N : M is called

the associated prime to N).
(2) N has an irredundant primary decomposition and the associated primes

are uniquely determined.
(3) If P is an associated prime of N , then P = N : 〈m〉 for some m ∈M .
(4) Let P1, . . . , Ps be the set of associated primes of N , then the zerodivisors

of M/N are
⋃s
i=1 Pi.

(Hint: recall that
√
N : M =

√
Ann(M/N) = M

√
N , see Exercise 2.8.6.)

4.1.14. Let M be a finitely generated A–module. Let Ass(M) be the set of
associated prime ideals to 〈0〉 ⊂M in the sense of Exercise 4.1.13, that is,

Ass(M) :=
{
P ⊂ A prime

∣∣ P = Ann(m), m ∈M � {0}} .
Let M := {Ann(m) | 0 �= m ∈M}. Prove that the maximal elements in M
are associated prime ideals.

4.1.15. Let A be a Noetherian ring and M �= 〈0〉 a finitely generated A–
module. Prove that there exists a chain M = M0 ⊃M1 ⊃ · · · ⊃Mn = 〈0〉
of submodules of M such that Mi/Mi+1

∼= A/Pi for a suitable prime ideal
Pi ⊂ A, i = 0, . . . , n− 1.
(Hint: choose an associated prime P1 ∈ Ass(M), and let P1 = Ann(m1). If
M = 〈m1〉 then M ∼= A/P1, otherwise continue with M/〈m1〉.)

4.2 Zero–dimensional Primary Decomposition

In this section we shall give an algorithm to compute a primary decomposition
for zero–dimensional ideals in a polynomial ring over a field of characteris-
tic 0. This algorithm was published by Gianni, Trager, and Zacharias ([90]).
Let K be a field of characteristic 0. In the case of one variable x, any ideal
I ⊂ K[x] is a principal ideal and the primary decomposition is given by the
factorization of a generator of I: let I = 〈f〉, f = fn1

1 . . . fnr
r with fi irre-

ducible and 〈fi, fj〉 = K[x] for i �= j, then I = 〈f1〉n1 ∩ · · · ∩ 〈fr〉nr is the
primary decomposition of I. In the case of n variables, the univariate poly-
nomial factorization is also an essential ingredient. We shall see that, after a
generic coordinate change, the factorization of a polynomial in one variable
leads to a primary decomposition. By definition, all associated prime ideals
of a zero–dimensional ideal are maximal. We need the concept for an ideal in
general position.
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Definition 4.2.1.

(1) A maximal ideal M ⊂ K[x1, . . . , xn] is called in general position with
respect to the lexicographical ordering with x1 > · · · > xn, if there exist
g1, . . . , gn ∈ K[xn] with M = 〈x1 +g1(xn), . . . , xn−1 +gn−1(xn), gn(xn)〉.

(2) A zero–dimensional ideal I ⊂ K[x1, . . . , xn] is called in general position
with respect to the lexicographical ordering with x1 > · · · > xn, if all
associated primes P1, . . . , Pk are in general position and if Pi ∩K[xn] �=
Pj ∩K[xn] for i �= j.

Proposition 4.2.2. Let K be a field of characteristic 0, and let I ⊂ K[x],
x = (x1, . . . , xn), be a zero–dimensional ideal. Then there exists a non–empty,
Zariski open subset U ⊂ Kn−1 such that for all a = (a1, . . . , an−1) ∈ U , the
coordinate change ϕa : K[x]→ K[x] defined by ϕa(xi) = xi if i < n, and

ϕa(xn) = xn +
n−1∑

i=1

aixi

has the property that ϕa(I) is in general position with respect to the lexico-
graphical ordering defined by x1 > · · · > xn.

Proof. We consider first the case that I ⊂ K[x1, . . . , xn] is a maximal ideal.
The fieldK[x1, . . . , xn]/I is a finite extension ofK (Theorem 3.5.1), and there
exists a dense, Zariski open subset U ⊂ Kn−1 such that for a ∈ U the element
z = xn +

∑n−1
i=1 aixi is a primitive element for the field extension (Primitive

Element Theorem, cf. [238], here it is necessary that K is a perfect, infinite
field).

Since ϕa+b = ϕb ◦ ϕa, we may assume that 0 ∈ U , that is,

K[x1, . . . , xn]/I ∼= K[xn]/〈fn(xn)〉

for some irreducible polynomial fn(xn). Via this isomorphism xi mod I cor-
responds to some fi(xn) mod 〈fn(xn)〉 and we obtain

〈x1 − f1(xn), . . . , xn−1 − fn−1(xn), fn(xn)〉 = I .

The set of these generators is obviously a Gröbner basis with the required
properties.

Now let I be an arbitrary zero–dimensional ideal and let P1, . . . , Ps be the
associated primes of I, then ϕa(Pj) are in general position with respect to the
lexicographical ordering x1 > · · · > xn for almost all a ∈ Kn−1. It remains
to prove that ϕa(Pi) ∩ K[xn] �= ϕa(Pj) ∩ K[xn] for i �= j and almost all a.
We may assume that the Pi’s are already in general position with respect
to the lexicographical ordering x1 > · · · > xn. We study the behaviour of
a maximal ideal P = 〈x1 − g1(xn), . . . , xn−1 − gn−1(xn), gn(xn)〉 under the
automorphism ϕa.
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If ϕa(P ) is again in general position with respect to the lexicographical
ordering x1 > · · · > xn, then ϕa(P )∩K[xn] = 〈h(a)〉 for a monic polynomial
h(a) of degree

r := dimK K[xn]/〈h(a)〉 = dimK K[x]/ϕa(P ) = dimK K[x]/P = deg(gn) .

To compute h(a), we consider the algebraic closureK ofK. Let α1, . . . , αr ∈ K
be the roots of gn(xn). Because of Exercise 4.2.1 (b), gn(xn) is squarefree in
K[xn]. Then gn(xn) = c(xn − α1) · . . . · (xn − αr), c ∈ K and, because of Ex-
ercise 4.1.7,

PK[x] =
r⋂

i=1

〈x1 − g1(αi), . . . , xn−1 − gn−1(αi), xn − αi〉 .

Now

ϕa
(〈x1 − g1(αi), . . . , xn−1 − gn−1(αi), xn − αi〉

)

=
〈
x1 − g1(αi), . . . , xn−1 − gn−1(αi), xn − αi +

n−1∑

ν=1

aνgν(αi)
〉
.

This implies that ϕa(PK[x]) ∩K[xn] ⊃ 〈
∏r
i=1

(
xn − αi +

∑n−1
ν=1 aνgν(αi)

)〉.
Since 〈h(a)〉 = ϕa(P ) ∩K[xn] = ϕa(PK[x]) ∩K[xn] (Exercise 4.2.1 (a)),

and since h(a), as well as
∏r
i=1

(
xn − αi +

∑n−1
ν=1 aνgν(αi)

)
, are monic poly-

nomials in K[xn]1 of degree r, it follows that

h(a) =
r∏

i=1

(
xn − αi +

n−1∑

ν=1

aνgν(αi)

)
.

Now let ϕa(P1) ∩K[xn] = 〈h(a)
1 〉, . . . , ϕa(Ps) ∩K[xn] = 〈h(a)

s 〉 with monic
polynomials h(a)

i ∈ K[xn], and assume that the prime ideals ϕa(Pi) are in
general position with respect to the lexicographical ordering x1 > · · · > xn.
The condition ϕa(Pi) ∩K[xn] = ϕa(Pj) ∩K[xn], that is, h(a)

i = h
(a)
j leads,

because of Pi �= Pj , to a non–trivial polynomial system of equations for a.
This implies that for almost all a, ϕa(Pi) ∩K[xn] �= ϕa(Pj) ∩K[xn] if i �= j.

Proposition 4.2.3. Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal. Let
〈g〉 = I ∩K[xn], g = gν11 . . . gνs

s , gi monic and prime and gi �= gj for i �= j.
Then
1 ∏r

i=1

(
xn − αi +

∑n−1
ν=1 aνgν(αi)

) ∈ K[xn] is a consequence of Galois theory,
since the product is invariant under the action of the Galois group (the
K–automorphisms of K(α1, . . . , αr) are given by permutations of the roots
α1, . . . , αr).
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(1) I =
⋂s
i=1〈I, gνi

i 〉.
If I is in general position with respect to the lexicographical ordering with
x1 > · · · > xn, then

(2) 〈I, gνi

i 〉 is a primary ideal for all i.

Proof. To prove (1) note that, obviously, I ⊂ ⋂s
i=1〈I, gνi

i 〉. To prove the other
inclusion let g(i) := g/gνi

i for i = 1, . . . , s. Then the univariate polynomials
g(1), . . . , g(s) ∈ K[xn] have the greatest common divisor 1. Hence, we can find
a1, . . . , as ∈ K[xn] with

∑s
i=1 aig

(i) = 1. Now let f ∈ ⋂s
i=1〈I, gνi

i 〉, in particu-
lar, there exist fi ∈ I, ξi ∈ K[x] such that f = fi + ξig

νi

i , i = 1, . . . , s. Hence,

f =
s∑

i=1

aig
(i)(fi + ξig

νi

i ) =
s∑

i=1

(aig(i)fi + aiξig) ∈ I ,

which proves (1).
(2) First note that 〈I, gνi

i 〉 � K[x] and Ass(〈I, gνi

i 〉) ⊂ Ass(I). This can be
seen as follows: if we could write 1 = f + agνi

i for some f ∈ I, a ∈ K[x], then
g/gνi

i ∈ 〈f, g〉 ⊂ I, contradicting the assumption I ∩K[xn] = 〈g〉. Moreover,
I ⊂ 〈I, gνi

i 〉 and the uniqueness of associated primes implies that each asso-
ciated prime of 〈I, gνi

i 〉 has to contain some associated prime of I. But, since
I is zero–dimensional, its associated primes are maximal ideals.

Now, let P1, . . . , P	 be the associated primes of I and let Pi ∩K[xn] = 〈pi〉.
Then, by assumption, the polynomials p1, . . . , p	 are pairwise coprime and,
therefore,

⋂	
i=1(Pi ∩K[xn]) =

⋂	
i=1〈pi〉 =

〈∏	
i=1 pi

〉
. On the other hand, we

have
⋂	
i=1(Pi ∩K[xn]) =

(⋂	
i=1 Pi

) ∩K[xn] =
√
I ∩K[xn]. Hence, the as-

sumption I ∩K[xn] = 〈g〉 implies that
∏	
i=1 pi divides g and g divides a

power of
∏	
i=1 pi. The latter implies � = s, and we may assume gi = pi for

i = 1, . . . , s. It follows that Pi is the unique associated prime of I containing
gνi

i , and, by the above, we can conclude that Ass(〈I, gνi

i 〉) = {Pi}. Hence,
〈I, gνi

i 〉 is a primary ideal.

Proposition 4.2.3 shows how to obtain a primary decomposition of a zero–
dimensional ideal in general position by using the factorization of g. In the
algorithm for the zero–dimensional decomposition we try to put I in general
position via a map ϕa, a ∈ Kn−1 chosen randomly. But we cannot be sure,
in practice, that for a random choice of a made by the computer, ϕa(I) is in
general position. We need a test to decide whether 〈I, gνi

i 〉 is primary and in
general position. Using Definition 4.2.1 we obtain the following criterion:

Criterion 4.2.4. Let I ⊂ K[x1, . . . , xn] be a proper ideal. Then the following
conditions are equivalent:

(1) I is zero–dimensional, primary and in general position with respect to
the lexicographical ordering with x1 > · · · > xn.
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(2) There exist g1, . . . , gn ∈ K[xn] and positive integers ν1, . . . , νn such that
a) I ∩K[xn] = 〈gνn

n 〉, gn irreducible;
b) for each j < n, I contains the element

(
xj + gj

)νj .
(3) Let S be a reduced Gröbner basis of I with respect to the lexicographi-

cal ordering with x1 > . . . > xn. Then there exist g1, . . . , gn ∈ K[xn] and
positive integers ν1, . . . , νn such that
a) gνn

n ∈ S and gn is irreducible;
b) (xj + gj)νj is congruent to an element in S ∩K[xj , . . . , xn] modulo
〈gn, xn−1 + gn−1, . . . , xj+1 + gj+1〉 ⊂ K[x] for j = 1, . . . , n− 1.

Proof. To prove (3)⇒ (2), let M :=
√
I. Then gn ∈M , and, inductively, we

obtain xj + gj ∈M for all j. This implies

M = 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 ,

because gn is irreducible and, therefore, 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 ⊂ K[x]
is a maximal ideal. Finally, M =

√
I implies now a) and b) in (2).

(2)⇒ (1) is clear because M = 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 ⊂
√
I is a

maximal ideal and, by definition, in general position with respect to the
lexicographical ordering with x1 > · · · > xn.

To prove (1)⇒ (3), let M :=
√
I. Since I is in general position and pri-

mary, M = 〈x1 + g1, . . . , xn−1 + gn−1, gn〉 with gn ∈ K[xn] irreducible and
g1, . . . , gn−1 ∈ K[xn]. We may assume that gn is monic. Now, let S be a
reduced Gröbner basis of I (in particular, all elements are supposed to be
monic, too). Then, due to the elimination property of >lp, S ∩K[xn] = {g}
generates I ∩K[xn], which is a primary ideal with

√
I ∩K[xn] = 〈gn〉. This

implies g = gνn
n for a suitable νn.

Now let j ∈ {1, . . . , n− 1}. Since I is zero-dimensional and S is a reduced
Gröbner basis of I, there exists a unique h ∈ S such that LM(h) is a power of
xj , LM(h) = xmj (Theorem 3.5.1 (7)). Note that the latter implies, in particu-
lar, that h ∈ K[xj , . . . , xn] (again due to the elimination property of >lp). We
set M ′ := M ∩K[xj+1, . . . , xn] , K ′ := K[xj+1, . . . , xn]

/
M ′ ∼= K[xn]

/〈gn〉,
and consider the canonical projection

Φ : K[x1, . . . , xn] = (K[xj+1, . . . , xn])[x1, . . . , xj ] −→ K ′[x1, . . . , xj ] .

Step 1. We show Φ(S ∩K[xj , . . . , xn]) = {Φ(h), 0}. Since S ∩K[xj , . . . , xn] is
a standard basis (w.r.t. >lp) of I ∩K[xj , . . . , xn], this implies

I ∩K[xj , . . . , xn] ≡ 〈h〉K[xj ,...,xn] mod M ′ ·K[xj, . . . , xn] .

Let K[x′] := K[xj+1, . . . , xn] and consider

L :=

〈
fs ∈ K[x′]

∣∣∣∣∣ ∃ f0, . . . , fs−1 ∈ K[x′], s < m, such that
s∑

i=0

fix
i
j ∈ I

〉
.
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Then, clearly, I ∩K[x′] ⊂ L � K[x′]. Since I ∩K[x′] is primary and zero-
dimensional,

√
I ∩K[x′] is the unique associated prime of I ∩K[x′] (Theo-

rem 4.1.5) and a maximal ideal in K[x′]. Hence, L ⊂√
I ∩K[x′] � K[x′].

Now, let f ∈ S ∩K[xj , . . . , xn] ⊂ I, f �= h. We write f =
∑s
i=0 fix

i
j , with

fi ∈ K[x′]. Since S is reduced and LM(h) = xmj , we have s < m, hence
fs ∈ L. Moreover, f ′ := xm−s

j f − fsh ∈ I, and, writing f ′ =
∑m−1
i=0 f ′

ix
i
j , we

obtain f ′
m−1 ∈ L and f ′

i ≡ fi+s−m mod L, i = m− s, . . . ,m− 1. Therefore,
fs−1 ∈ L, and proceeding inductively we obtain fi ∈ L, i = 0, . . . , s.

The above implies now that fi ∈
√
I ∩K[x′] = M ′ for i = 0, . . . , s. Thus,

Φ(f) = 0.

Step 2. On the other hand,
√
Φ(I) = Φ

(√
I + Ker(Φ)

)
= Φ(M). It follows

that
√
Φ(I) ∩K ′[xj ] = 〈xj + gj〉K′[xj], where gj := gj mod M ′, and we con-

clude that Φ(I ∩K[xj , . . . , xn]) ∩K ′[xj ] = Φ(I) ∩K ′[xj ] =
〈
(xj + gj)

	
〉
K′[xj ]

for a positive integer �. Together with the result of Step 1, this implies that
h ≡ (xj + gj)	 mod M ′ ·K[xj, . . . , xn], in particular, � = m =: νj .

Criterion 4.2.4 is the basis of the following algorithm to test whether a zero–
dimensional ideal is primary and in general position.

Algorithm 4.2.5 (primaryTest(I)).

Input: A zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: 〈0〉 if I is either not primary or not in general position, or

√
I if I is

primary and in general position.

• compute a reduced Gröbner basis S of I with respect to the lexicographical
ordering with x1 > · · · > xn;

• factorize g ∈ S, the element with smallest leading monomial;
• if (g = gνn

n with gn irreducible)
prim := 〈gn〉

else
return 〈0〉.

• i := n;
while (i > 1)

i := i− 1;
choose f ∈ S with LM(f) = xmi ;
b := the coefficient of xm−1

i in f considered as polynomial in xi;
q := xi + b/m;
if (qm ≡ f mod prim)

prim := prim + 〈q〉;
else

return 〈0〉;
• return prim.
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SINGULAR Example 4.2.6 (primary test).

option(redSB);
ring R=0,(x,y),lp;
ideal I=y4-4y3-10y2+28y+49,x3-6x2y+3x2+12xy2-12xy+3x-8y3
+13y2-8y-6;
//the generators are a Groebner basis

We want to check whether the ideal I is primary and in general position.

factorize(I[1]); //to test if Criterion 4.2.4 (3) a) holds
//-> [1]:
//-> _[1]=1
//-> _[2]=y2-2y-7
//-> [2]:
//-> 1,2 //I[1] is the square of an irreducible element
ideal prim=std(y2-2y-7);
poly q=3x-6y+3;
poly f2=I[2];
reduce(q^3-27*f2,prim);

//-> 0

The ideal is primary and in general position and 〈y2 − 2y− 7, x− 2y+ 1〉 is
the associated prime ideal.

Now we are ready to give the procedure for the zero–dimensional decompo-
sition. We describe first the main steps:

Algorithm 4.2.7 (zeroDecomp(I)).

Input: a zero-dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that

− I = Q1 ∩ · · · ∩Qr is a primary decomposition of I, and
− Pi =

√
Qi, i = 1, . . . , r.

• result := ∅;
• choose a random a ∈ Kn−1, and apply the coordinate change I ′ := ϕa(I)

(cf. Proposition 4.2.2);
• compute a Gröbner basis G of I ′ with respect to the lexicographical order-

ing with x1 > · · · > xn, and let g ∈ G be the element with smallest leading
monomial.

• factorize g = gν11 · . . . · gνs
s ∈ K[xn];

• for i = 1 to s do
set Q′

i := 〈I ′, gνi

i 〉 and Qi := 〈I, ϕ−1
a (gi)νi〉;

set P ′
i := primaryTest(Q′

i);
if P ′

i �= 〈0〉
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set Pi := ϕ−1
a (P ′

i );
result := result ∪{(Qi, Pi)};

else
result := result ∪ zeroDecomp (Qi);

• return result.

In the programming language of Singular the procedure can be found in
Section 4.6.

SINGULAR Example 4.2.8 (zero–dim primary decomposition).
We give an example for a zero-dimensional primary decomposition.

option(redSB);
ring R=0,(x,y),lp;
ideal I=(y2-1)^2,x2-(y+1)^3;

The ideal I is not in general position with respect to lp, since the minimal
associated prime 〈x2 − 8, y − 1〉 is not.

map phi=R,x,x+y; //we choose a generic coordinate change
map psi=R,x,-x+y; //and the inverse map
I=std(phi(I));
I;
//-> I[1]=y7-y6-19y5-13y4+99y3+221y2+175y+49
//-> I[2]=112xy+112x-27y6+64y5+431y4-264y3-2277y2-2520y-847
//-> I[3]=56x2+65y6-159y5-1014y4+662y3+5505y2+6153y+2100
factorize(I[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y2-2y-7
//-> _[3]=y+1
//-> [2]:
//-> 1,2,3

ideal Q1=std(I,(y2-2y-7)^2); //the candidates for the
//primary ideals

ideal Q2=std(I,(y+1)^3); //in general position
Q1; Q2;

//-> Q1[1]=y4-4y3-10y2+28y+49 Q2[1]=y3+3y2+3y+1
//-> Q1[2]=56x+y3-9y2+63y-7 Q2[2]=2xy+2x+y2+2y+1

Q2[3]=x2

factorize(Q1[1]); //primary and general position test
//for Q1

//-> [1]:
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//-> _[1]=1
//-> _[2]=y2-2y-7
//-> [2]:
//-> 1,2

factorize(Q2[1]); //primary and general position test
//for Q2

//-> [1]:
//-> _[1]=1
//-> _[2]=y+1
//-> [2]:
//-> 1,3

Both ideals are primary and in general position.

Q1=std(psi(Q1)); //the inverse coordinate change
Q2=std(psi(Q2)); //the result
Q1; Q2;

//-> Q1[1]=y2-2y+1 Q2[1]=y2+2y+1
//-> Q1[2]=x2-12y+4 Q2[2]=x2

We obtain that I is the intersection of the primary ideals Q1 and Q2 with
associated prime ideals 〈y − 1, x2− 8〉 and 〈y + 1, x〉.

Exercises

4.2.1. Let K be a field of characteristic 0, K the algebraic closure of K and
I ⊂ K[x] an ideal. Prove that

(1) IK[x] ∩K[x] = I;
(2) if f ∈ K[x] is squarefree, then f ∈ K[x] is squarefree.

Condition (1) says that K[x] is a flat K[x]–module (cf. Chapter 7).

4.2.2. Let I ⊂ K[x] = K[x1, . . . , xn] be a zero–dimensional, and J ⊂ K[x] a
homogeneous ideal with I ⊂ J ⊂ √I. Prove that

√
I = 〈x1, . . . , xn〉.

4.2.3. Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal, and let f ∈ K[xn]
be irreducible such that I ∩K[xn] = 〈f〉. Let dimK K[x1, . . . , xn]/I = deg(f).
Prove that I is a prime ideal in general position with respect to the lexico-
graphical ordering with x1 > · · · > xn.

4.2.4. Compute a primary decomposition of 〈x2+ 1, y2+ 1〉 ⊂ Q[x, y], by fol-
lowing Algorithm 4.2.7 (without using Singular).

4.2.5. Let K be a field of characteristic 0 and M ⊂ K[x1, . . . , xn] a maximal
ideal. Prove that K[x1, . . . , xn]M ∼= K[x1, . . . , xn]〈x1,...,xn−1,f〉 for a suitable
f ∈ K[xn].
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4.2.6. Give an example for a zero–dimensional ideal in F2[x, y] which is not
in general position with respect to the lexicographical ordering with x > y.

4.3 Higher Dimensional Primary Decomposition

In this section we show how to reduce the primary decomposition of an arbi-
trary ideal in K[x] to the zero–dimensional case. We use the following idea:

Let K be a field and I ⊂ K[x] an ideal. Let u ⊂ x = {x1, . . . , xn} be a
maximal independent set with respect to the ideal I (cf. Definition 3.5.3) then
∅ ⊂ x� u is a maximal independent set with respect to IK(u)[x� u] and,
therefore, IK(u)[x� u] ⊂ K(u)[x� u] is a zero–dimensional ideal (Theorem
3.5.1 (6)). Now, let Q1 ∩ · · · ∩Qs = IK(u)[x� u] be an irredundant primary
decomposition (which we can compute as we are in the zero–dimensional
case), then also IK(u)[x� u] ∩K[x] = (Q1 ∩K[x]) ∩ · · · ∩ (Qs ∩K[x]) is an
irredundant primary decomposition. It turns out that IK(u)[x� u] ∩K[x]
is equal to the saturation I : 〈h∞〉 =

⋃
m>0 I : 〈hm〉 for some h ∈ K[u] which

can be read from an appropriate Gröbner basis of IK(u)[x� u]. Assume
that I : 〈h∞〉 = I : 〈hm〉 for a suitable m (the ring is Noetherian). Then,
using Lemma 3.3.6, we have I = (I : 〈hm〉) ∩ 〈I, hm〉. Because we computed
already the primary decomposition for I : 〈hm〉 (an equidimensional ideal of
dimension dim(I)) we can use induction, that is, apply the procedure again
to 〈I, hm〉.

This approach terminates because either dim(〈I, hm〉) < dim(I) or the
number of maximal independent sets with respect to 〈I, hm〉 is smaller than
the number of maximal independent sets with respect to I (since u is not an
independent set with respect to 〈I, hm〉). The basis of this reduction proce-
dure to the zero–dimensional case is the following proposition:

Proposition 4.3.1. Let I ⊂ K[x] be an ideal and u ⊂ x = {x1, . . . , xn} be
a maximal independent set of variables with respect to I.

(1) IK(u)[x� u] ⊂ K(u)[x� u] is a zero–dimensional ideal.
(2) Let S = {g1, . . . , gs} ⊂ I ⊂ K[x] be a Gröbner basis of IK(u)[x� u], and

let h := lcm
(
LC(g1), . . . ,LC(gs)

) ∈ K[u], then

IK(u)[x� u] ∩K[x] = I : 〈h∞〉 ,
and this ideal is equidimensional of dimension dim(I).

(3) Let IK(u)[x� u] = Q1 ∩ · · · ∩Qs be an irredundant primary decomposi-
tion, then also IK(u)[x� u] ∩K[x] = (Q1 ∩K[x]) ∩ · · · ∩ (Qs ∩K[x]) is
an irredundant primary decomposition.

Proof. (1) is obvious by definition of u and Theorem 3.5.1 (6).
(2) Obviously, I : 〈h∞〉 ⊂ IK(u)[x� u]. To prove the inverse inclusion, let

f ∈ IK(u)[x� u] ∩K[x]. S being a Gröbner basis, we obtain NF(f | S) = 0,
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where NF denotes the Buchberger normal form in K(u)[x� u]. But the Buch-
berger normal form algorithm requires only to divide by the leading coeffi-
cients LC(gi) of the gi, i = 1, . . . , s. Hence, we obtain a standard representa-
tion f =

∑s
i=1 ξigi with ξi ∈ K[x]h. Therefore, hNf ∈ K[x] for some N . This

proves IK(u)[x� u] ∩K[x] ⊂ I : 〈h∞〉.
To show that I : 〈h∞〉 ⊂ K[x] is an equidimensional ideal, suppose that

I = Q1 ∩ · · · ∩Qr is a primary decomposition of I with Qi ∩K[u] = 〈0〉 for
i = 1, . . . , s and Qi ∩K[u] �= 〈0〉 for i = s+ 1, . . . , r. Then IK(u)[x � u] =⋂s
i=1QiK(u)[x�u] is a primary decomposition (Exercise 4.3.3). Since u is an

independent set w.r.t. the ideals
√
QiK(u)[x� u], i = 1, . . . , s, it follows that

all associated primes of IK(u)[x� u] have at least dimension dim(I) = #u
(cf. Theorem 3.5.1 (6)).

(3) Obviously Qi ∩K[x] is primary and
√
Qi ∩K[x] �= √

Qj ∩K[x] for
i �= j. Namely, f ∈ √Qi implies fm ∈ Qi for a suitable m. It follows that
hfm ∈ Qi ∩K[x] for a suitable h ∈ K[u], in particular, (hf)m ∈ Qi ∩K[x].
This implies hf ∈√

Qi ∩K[x]. Assuming
√
Qi ∩K[x] =

√
Qj ∩K[x], we

would obtain (hf)	 ∈ Qj ∩K[x] for a suitable �, that is, f ∈√
Qj . This,

together with the same reasoning applied to (j, i) in place of (i, j), would
give

√
Qi =

√
Qj, contradicting the irredundance assumption. Similarly, we

obtain a contradiction if we assume that Qi ∩K[x] can be omitted in the
decomposition.

Now we are prepared to give the algorithms. We start with a “universal”
algorithm to compute all the ingredients we need for the reduction to the
zero–dimensional case, as described above. We need this procedure for the
primary decomposition and also for the computation of the equidimensional
decomposition and the radical.

Algorithm 4.3.2 (reductionToZero(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: A list (u,G, h), where

− u ⊂ x is a maximal independent set with respect to I,
− G = {g1, . . . , gs} ⊂ I is a Gröbner basis of IK(u)[x� u],
− h ∈ K[u] such that IK(u)[x� u] ∩K[x] = I : 〈h〉 = I : 〈h∞〉.

• compute a maximal independent set u ⊂ x with respect to I; 2

• compute a Gröbner basis G = {g1, . . . , gs} of I with respect to the lexico-
graphical ordering with x� u > u;

• h :=
∏s
i=1 LC(gi) ∈ K[u], where the gi are considered as polynomials in

x� u with coefficients in K(u);
• compute m such that 〈g1, . . . , gs〉 : 〈hm〉 = 〈g1, . . . , gs〉 : 〈hm+1〉; 3

• return u, {g1, . . . , gs}, hm.

2 For the computation of a maximal independent set, cf. Exercises 3.5.1 and 3.5.2.
3 For the computation of the saturation exponent m, cf. Section 1.8.9.
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Note that G is, indeed, a Gröbner basis of IK(u)[x� u] (with respect to
the induced lexicographical ordering), since, for each f ∈ IK(u)[x� u], we
obtain LM(f) ∈ L(I) ·K(u).

SINGULAR Example 4.3.3 (reduction to zero–dimensional case).

option(redSB);
ring R=0,(x,y),lp;
ideal a1=x; //preparation of the example
ideal a2=y2+2y+1,x-1;
ideal a3=y2-2y+1,x-1;
ideal I=intersect(a1,a2,a3);
I;
//-> I[1]=xy4-2xy2+x
//-> I[2]=x2-x

ideal G=std(I);
indepSet(G);
//-> 0,1 //the independent set is u={y}

ring S=(0,y),(x),lp; //the ring K(u)[x\u]
ideal G=imap(R,G);
G;
//-> G[1]=(y4-2y2+1)*x
//-> G[2]=x2-x

This ideal in K(y)[x] is obviously the prime ideal generated by x.

setring R;
poly h=y4-2y2+1; //the lcm of the leading coefficients

ideal I1=quotient(I,h);
I1;
//-> I1[1]=x

Therefore, we obtain I : 〈h〉 = I : 〈h∞〉 = G ∩K[x, y] = 〈x〉, as predicted by
Proposition 4.3.1 (2).

Combining everything so far, we obtain the following algorithm to compute
a higher dimensional primary decomposition:

Algorithm 4.3.4 (decomp(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: a set of pairs (Qi, Pi) of ideals in K[x], i = 1, . . . , r, such that

− I = Q1 ∩ · · · ∩Qr is a primary decomposition of I, and
− Pi =

√
(Qi), i = 1, . . . , r.
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• (u,G, h) := reductionToZero (I);
• change ring to K(u)[x� u] and compute

qprimary := zeroDecomp (〈G〉K(u)[x�u]);
• change ring to K[x] and compute

primary := {(Q′ ∩K[x], P ′ ∩K[x]) | (Q′, P ′) ∈ qprimary};
• primary := primary ∪ decomp (〈I, h〉);
• return primary.

The intersection Q′ ∩K[x] may be computed by saturation: let Q′ be given
by a Gröbner basis {g′1, . . . , g′m} ⊂ K[x], and let g′ :=

∏m
i=1 LC(g′i) ∈ K[u],

then Q′ ∩K[x] = 〈g′1, . . . , g′m〉 : 〈g′∞〉 ⊂ K[x] (Exercise 4.3.4).

The procedure in the Singular programming language can be found in Sec-
tion 4.6.4

SINGULAR Example 4.3.5 (primary decomposition).
Use the results of Example 4.3.3.

ideal I2=std(I+ideal(h));
//we compute now the decomposition of I2
indepSet(I2);
//-> 0,0 // we are in the zero-dimensional case now

list fac=factorize(I2[1]);
fac;
//-> [1]:
//-> _[1]=1
//-> _[2]=y+1
//-> _[3]=y-1
//-> [2]:
//-> 1,2,2

ideal J1=std(I2,(y+1)^2); // the two candidates
ideal J2=std(I2,(y-1)^2); // for primary ideals

J1; J2;
//-> J1[1]=y2+2y+1 J2[1]=y2-2y+1
//-> J1[2]=x2-x J2[2]=x2-x

J1 and J2 are not in general position with respect to lp. We choose a generic
coordinate change.

map phi=R,x,x+y; // coordinate change
map psi=R,x,-x+y; // and the inverse map

4 Note that the algorithm described above computes a primary decomposition
which is not necessarily irredundant. Check this using Example 4.1.6 (3).
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ideal K1=std(phi(J1));
ideal K2=std(phi(J2));
factorize(K1[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y+2
//-> _[3]=y+1
//-> [2]:
//-> 1,2,2

ideal K11=std(K1,(y+1)^2); // the new candidates
// for primary ideals

ideal K12=std(K1,(y+2)^2); // coming from K1
factorize(K2[1]);
//-> [1]:
//-> _[1]=1
//-> _[2]=y
//-> _[3]=y-1
//-> [2]:
//-> 1,2,2

ideal K21=std(K2,(y-1)^2); // the new candidates
// for primary ideals

ideal K22=std(K2,y2); // coming from K2
K11=std(psi(K11)); // the inverse coordinate

// transformation
K12=std(psi(K12));
K21=std(psi(K21));
K22=std(psi(K22));

K11; K12; K21; K22; // the result
//-> K11[1]=y2+2y+1 K12[1]=y2+2y+1
//-> K11[2]=x K12[2]=x-1

//-> K21[1]=y2-2y+1 K22[1]=y2-2y+1
//-> K21[2]=x K22[2]=x-1

K11, . . . ,K22 are now primary and in general position with respect to lp.
K11 and K21 are redundant, because they contain I1. We obtain a1 = I1,
a2 = K12, a3 = K22 for the primary decomposition of I, as it should be, from
the definition of I in Example 4.3.3.
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Exercises

4.3.1. Compute the primary decomposition of the ideals 〈xy, xz〉 and 〈x2, xy〉
in Q[x, y] using the algorithm decomp.

4.3.2. Let I ⊂ K[x1, . . . , xn] be an ideal, and let u ⊂ x = {x1, . . . , xn} be
an independent set with respect to I. Prove that IK(u)[x� u] is primary
(respectively prime) if I is primary (respectively prime).

4.3.3. Let I ⊂ K[x1, . . . , xn] be an ideal, and let I = Q1 ∩ · · · ∩Qr be an
irredundant primary decomposition. Moreover, let u ⊂ x = {x1, . . . , xn} be
an independent set with respect to I. Assume that Qi ∩K[u] = 〈0〉 for
i = 1, . . . , s and Qi ∩K[u] �= 〈0〉 for i = s+ 1, . . . , r.

Prove that IK(u)[x� u] =
⋂s
i=1QiK(u)[x� u] is an irredundant primary

decomposition.

4.3.4. Let u ⊂ x = {x1, . . . , xn} be a subset, J ⊂ K(u)[x� u] an ideal, and
let {g1, . . . , gs} ⊂ K[x1, . . . , xn] be a Gröbner basis of J with respect to any
global monomial ordering on K(u)[x� u]. Let h̃ ∈ K[u] be the least common
multiple of the leading coefficients of the gi and h the squarefree part of h̃.
Prove that J ∩K[x] = 〈g1, . . . , gs〉 : 〈h∞〉.
4.3.5. Follow Examples 4.3.3 and 4.3.5 to compute an irredundant primary
decomposition of the intersection of the Clebsch cubic (Figure A.1) and the
Cayley cubic (Figure A.2).

4.4 The Equidimensional Part of an Ideal

In this section we shall compute the equidimensional part of an ideal and an
equidimensional decomposition.

Definition 4.4.1. Let A be a Noetherian ring, let I ⊂ A be an ideal,
and let I = Q1 ∩ · · · ∩Qs be an irredundant primary decomposition. The
equidimensional part E(I) is the intersection of all primary ideals Qi with
dim(Qi) = dim(I).5 The ideal I (respectively the ring A/I) is called equidi-
mensional or pure dimensional if E(I) = I. In particular, the ring A is called
equidimensional if E(〈0〉) = 〈0〉.
Example 4.4.2.

(1) Let I = 〈x2, xy〉 = 〈x〉 ∩ 〈x, y〉2 ⊂ K[x, y], K any field. Then E(I) = 〈x〉.
(2) Let A = K[x, y, z] and I = 〈xy, xz〉 = 〈x〉 ∩ 〈y, z〉 then E(I) = 〈x〉. The

zero–set of I is shown in Figure 4.3, the plane being the zero–set of the
equidimensional part.

5 Note that because of Theorem 4.1.5 the definition is independent of the choice
of the irredundant primary decomposition.
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Fig. 4.3. The zero–set of 〈xy, xz〉 ⊂ K[x, y, z].

Using Proposition 4.3.1 (2) we obtain the following algorithm to compute the
equidimensional part of an ideal:

Algorithm 4.4.3 (equidimensional(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: E(I) ⊂ K[x], the equidimensional part of I.

• set (u,G, h) := reductionToZero (I);
• if (dim(〈I, h〉) < dim(I))

return (〈G〉 : 〈h〉);
else

return
(
(〈G〉 : 〈h〉)∩ equidimensional (〈I, h〉)).

SINGULAR Example 4.4.4 (equidimensional part).
We compute E(I) for I = 〈xy4− 2xy2 + x, x2− x〉 ⊂ K[x, y] (cf. Singular

Example 4.3.3). As seen above, reductionToZero(I) returns u = {y},
G = {xy4− 2xy2 + x, x2− x} and h = y4− 2y2+ 1. Using the results of Ex-
ample 4.3.3, we compute the dimension of 〈I, h〉:

dim(std(I+ideal(h)));
//-> 0

Since dim(I) = #u = 1 and dim(〈I, h〉) = 0 as computed, we can stop here.
The equidimensional part is I1 = 〈x〉.
A little more advanced algorithm, returning the equidimensional part E(I)
and an ideal J ⊂ K[x] with I = E(I) ∩ J , written in the Singular program-
ming language, can be found in Section 4.6.

We should just like to mention another method to compute the equidi-
mensional part of an ideal (cf. [67]). Let A = K[x1, . . . , xn], K a field, and
I ⊂ A be an ideal. Then
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E(I) = Ann
(
Extn−dA (A/I,A)

)
, d = dim(A/I)

(for the definition of Ext see Chapter 7).

Definition 4.4.5. Let A be a Noetherian ring, and let I ⊂ A be an ideal
without embedded prime ideals. Moreover, let I =

⋂s
i=1Qi be an irredun-

dant primary decomposition. For ν ≤ d = dim(I) we define the ν–th equidi-
mensional part Eν(I) to be the intersection of all Qi with dim(Qi) = ν.6

Example 4.4.6. Let I = 〈xy, xz〉 = 〈x〉 ∩ 〈y, z〉 ⊂ K[x, y, z], then E2(I) = 〈x〉
and E1(I) = 〈y, z〉.
Lemma 4.4.7. Let A be a Noetherian ring and I ⊂ A be an ideal without
embedded prime ideals. Let I =

⋂s
i=1Qi be an irredundant primary decompo-

sition such that E(I) =
⋂k
i=1Qi. Then

I : E(I) =
s⋂

i=k+1

Qi .

In particular, I = E(I) ∩ (
I : E(I)

)
.

Proof. I : E(I) =
⋂s
i=1

(
Qi : E(I)

)
=
⋂s
i=k+1

(
Qi : E(I)

)
. Now E(I) �⊂ √Qi

for i = k + 1, . . . , s, because the primary decomposition is irredundant and all
associated primes are minimal by assumption. This implies Qi : E(I) = Qi,
since otherwise E(I) ⊂ Qi : 〈f〉 for some f �∈ Qi and, by Lemma 4.1.3 (3),
E(I) ⊂√

Qi : 〈f〉 =
√
Qi.

Remark 4.4.8. Let A be a Noetherian ring, let I ⊂ A be an ideal, and let
I =

⋂s
i=1Qi be an irredundant primary decomposition with E(I) =

⋂k
i=1Qi.

Then I : E(I) =
⋂s
i=k+1 Q̃i for some primary ideals Q̃i with Qi ⊂ Q̃i ⊂

√
Qi,

but I = E(I) ∩ (
I : E(I)

)
need not be true. Just consider the following ex-

ample: I = 〈x2, xy〉 = 〈x〉 ∩ 〈x2, y〉, E(I) = 〈x〉 and I : E(I) = 〈x, y〉.
The following algorithm, based on Lemma 4.4.7, computes, for a given ideal
I without embedded primes, all equidimensional parts.7

Algorithm 4.4.9 (equidimensionalDecomp(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: A list of ideals I1, . . . , In ⊂ K[x] such that I1 = E(I), I2 = E(I : I1),

. . . , In = E(In−2 : In−1), and
√
I =

⋂n
j=1

√
Ij . If I is radical then

the Ij are radical, too. for all j.
6 The Eν(I) are well-defined, because, under the above assumptions, the primary

decomposition is uniquely determined (Theorem 4.1.5).
7 If we apply the algorithm to an arbitrary ideal then we obtain a set of equidi-

mensional ideals such that the intersection of their radicals is the radical of the
given ideal. In case of 〈x2, xy〉 we obtain 〈x〉, 〈x, y〉.
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• E := equidimensional (I);
• return {E}∪ equidimensionalDecomp (I : E).

SINGULAR Example 4.4.10 (equidimensional decomposition).
We use the results of Singular Example 4.3.3:

ideal I2=quotient(I,I1);
I2;
//-> I2[1]=y4-2y2+1
//-> I2[2]=x-1

I2 = E(I2), because I2 is zero–dimensional (Singular Example 4.4.4). There-
fore, we obtain E1(I) = I1 = 〈x〉 and E0(I) = I2 = 〈y4− 2y2 + 1, x− 1〉 as
the equidimensional components of I.

Exercises

4.4.1. Write a Singular procedure to compute the equidimensional decom-
position using Procedure 4.8.6.

4.4.2. Use the algorithm equidimensional to compute the equidimensional
part of 〈xy, xz〉 ⊂ K[x, y, z].

4.4.3. Let I ⊂ K[x1, . . . , xn] be an ideal and assume that K[x1, . . . , xr] ⊂
K[x1, . . . , xn]/I is a Noether normalization. Prove that I is equidimen-
sional if and only if every non–zero f ∈ K[x1, . . . , xr] is a non–zerodivisor
in K[x1, . . . , xn]/I.

4.4.4. Use Exercise 4.4.3 to check whether 〈x2+ xy, xz〉 is equidimensional.

4.4.5. Follow the Singular Examples of this section to compute an equidi-
mensional decomposition of the ideal

〈x3+ x2y + x2z − x2− xz − yz − z2+ z, x2xz + x2y − yz2− yz,
x2y2− x2y − y2z + yz〉 ,

and verify it by using the procedure equidimensional.

4.5 The Radical

In this section we describe the algorithm of Krick and Logar (cf. [139]) to
compute the radical of an ideal. Similarly to the algorithm for primary de-
composition, using maximal independent sets, the computation of the radical
is reduced to the zero–dimensional case.



282 4. Primary Decomposition and Related Topics

Proposition 4.5.1. Let I ⊂ K[x1, . . . , xn] be a zero–dimensional ideal and
I ∩K[xi] = 〈fi〉 for i = 1, . . . , n. Moreover, let gi be the squarefree part of fi,
then

√
I = I + 〈g1, . . . , gn〉.

Proof. Obviously, I ⊂ I + 〈g1, . . . , gn〉 ⊂
√
I. Hence, it remains to show that

ak ∈ I implies that a ∈ I + 〈g1, . . . , gn〉. Let K be the algebraic closure of
K. Using Exercise 4.2.1 we see that each gi is the product of different linear
factors of K[xi]. Due to Exercise 4.1.7, these linear factors of the gi induce
a splitting of the ideal (I + 〈g1, . . . , gn〉)K[x] into an intersection of maximal
ideals. Hence, (I + 〈g1, . . . , gn〉)K[x] is radical (Exercise 4.5.7). Now consider
a ∈ K[x] with ak ∈ I + 〈g1, . . . , gn〉. Using Exercise 4.2.1 again, we obtain
a ∈ (I + 〈g1, . . . , gn〉)K[x] ∩K[x] = I + 〈g1, . . . , gn〉.
This leads to the following algorithm:

Algorithm 4.5.2 (zeroradical(I)).

Input: a zero–dimensional ideal I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output:

√
I ⊂ K[x], the radical of I.

• for i = 1, . . . , n, compute fi ∈ K[xi] such that I ∩K[xi] = 〈fi〉;
• return I + 〈squarefree (f1), . . . , squarefree (fn)〉.
To reduce the computation of the radical for an arbitrary ideal to the zero–
dimensional case we proceed as in Section 4.3. Let u ⊂ x be a maximal inde-
pendent set for the ideal I ⊂ K[x], x = (x1, . . . , xn), and let h ∈ K[u] satisfy

IK(u)[x� u] ∩K[x] = I : 〈h〉 = I : 〈h∞〉

(cf. Proposition 4.3.1 (2)). Then I = (I : 〈h〉) ∩ 〈I, h〉 (Lemma 3.3.6), which
implies that

√
I =

√
I : 〈h〉 ∩√〈I, h〉 (Exercise 4.5.7). Now IK(u)[x� u] is

a zero–dimensional ideal (Theorem 3.5.1 (6)), hence, we may compute its
radical by applying zeroradical. Clearly,

√
IK(u)[x� u] ∩K[x] =

√
IK(u)[x� u] ∩K[x] =

√
I : 〈h〉 ,

and it remains to compute the radical of the ideal 〈I, h〉 ⊂ K[x]. This in-
ductive approach terminates similarly to the corresponding approach for the
primary decomposition.

We obtain the following algorithm for computing the radical of an arbitrary
ideal:

Algorithm 4.5.3 (radical(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output:

√
I ⊂ K[x], the radical of I.

• (u,G, h) := reductionToZero (I);
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• change ring to K(u)[x� u] and compute J := zeroradical (〈G〉);
• compute a Gröbner basis {g1, . . . , g	} ⊂ K[x] of J ;
• set p :=

∏	
i=1 LC(gi) ∈ K[u];

• change ring to K[x] and compute J ∩K[x] = 〈g1, . . . , g	〉 : 〈p∞〉;
• return (J ∩K[x]) ∩ radical (〈I, h〉).
SINGULAR Example 4.5.4 (radical).
Use the results of Example 4.3.3.

ideal rad=I1;
ideal I2=std(I+ideal(h));
dim(I2);
//-> 0 //we are in the zero-dimensional case now

ideal u=finduni(I2); //finds univariate polynomials
//in each variable in I2

u;
//-> u[1]=x2-x
//-> u[2]=y4-2y2+1

I2=I2,x2-1,y2-1; //the squarefree parts of
//u[1],u[2] are added to I2

rad=intersect(rad,I2);
rad;
//-> rad[1]=xy2-x
//-> rad[2]=x2-x

From the output, we read
√
I = 〈xy2− x, x2− x〉.

Exercises

4.5.1. Let K be a field of characteristic 0, K its algebraic closure and P ⊂
K[x1, . . . , xn] a maximal ideal. Prove that PK[x1, . . . , xn] is a radical ideal.

4.5.2. Let K be a field of characteristic 0, let K be its algebraic closure,
and let I ⊂ K[x1, . . . , xn] be a zero–dimensional radical ideal. Prove that
dimK K[x1, . . . , xn]/I is equal to the number of associated prime ideals of
IK[x1, . . . , xn]. This means, geometrically, that the number of points of the
zero–set V (I) ⊂ Kn is equal to the dimension of the factor ring.



284 4. Primary Decomposition and Related Topics

4.5.3. Let A be a ring, I ⊂ A an ideal. Prove that

(1)
√〈I, fg〉 =

√〈I, f〉 ∩√〈I, g〉,
(2)

√
I =

√
IAf ∩A ∩

√〈I, f〉.
4.5.4 (Factorizing Gröbner basis algorithm). The idea of the factorizing
Gröbner basis algorithm is to factorize, during Algorithm 1.7.1, a new poly-
nomial when it occurs and then split the computations. A simple version is
described in the following algorithm (we use the notations of Chapter 1).

Algorithm (Facstd(G,NF)).
Let > be a well–ordering.

Input: G ∈ G, NF an algorithm returning a weak normal form.
Output: S1, . . . , Sr ∈ G such that

√〈S1〉 ∩ · · · ∩
√〈Sr〉 =

√〈G〉 and Si is a
standard basis of 〈Si〉.

• S := G;
• if there exist non–constant polynomials g1, g2 with g1g2 ∈ S

return Facstd(S ∪ {g1},NF) ∪ Facstd(S ∪ {g2},NF);
• P := {(f, g) | f, g ∈ S, f �= g}, the pair–set;
• while (P �= ∅)

choose (f, g) ∈ P ;
P := P � {(f, g)};
h := NF(spoly(f, g) | S);
if (h �= 0)

if (h = h1h2 with non–constant polynomials h1, h2)
return Facstd(S ∪ {h1},NF)∪ Facstd(S ∪ {h2},NF);

P := P ∪ {(h, f) | f ∈ S};
S := S ∪ {h};

• return S.

Prove that the output of Facstd has the required properties. Moreover, use
the command facstd of Singular to compute a decomposition of the ideal
I of Example 4.3.3.

Note that Facstd can be used for the computation of the radical.

4.5.5. Let I1 be primary and I2 �⊂
√
I1. Prove that

√
I1 : Ii2 =

√
I1 for i ≥ 1.

4.5.6. Let I be a radical ideal. Prove that, for every h �∈ I, the ideal quotient
I : 〈h〉 is a radical ideal.

4.5.7. Prove that
√
I ∩ J =

√
I ∩√J .

4.5.8. (Shape Lemma) Let K be a field of characteristic 0, and let I ⊂
K[x], x = (x1, . . . , xn), be a zero–dimensional radical ideal. Prove that for al-
most all changes of coordinates I = 〈x1+g1(xn), . . . , xn−1+gn−1(xn), gn(xn)〉
for suitable g1, . . . , gn ∈ K[xn].
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4.6 Characteristic Sets

In this chapter we introduce characteristic sets and develop another method
to compute the minimal associated primes of an ideal. The concept of char-
acteristic sets goes back to Ritt and Wu (cf. [195], [236]).

Let R be an integral domain and f, g ∈ R[x], the univariate polynomial
ring over R. For f =

∑m
ν=0 fνx

ν of degree deg(f) = m with fm �= 0 we
call fm =: In(f, x) the initial form of f (with respect to x). Here and in the
following discussion we mention x explicitly since in our application, R[x]
will be a polynomial ring in several variables x1, . . . , xn where x will be one
of the variables xi.

Proposition 4.6.1. For f ∈ R[x] � {0} and g ∈ R[x] there exist uniquely
determined q, r ∈ R[x] with the following properties:

(1) In(f, x)α · g = qf + r, α = max{0, deg(g)− deg(f) + 1},
(2) r = 0 or deg(r) < deg(f).

Definition 4.6.2. The element q =: pquot(g | f, x), is called the pseudo
quotient of g with respect to f (and the variable x) and r =: prem(g | f, x)
the pseudo remainder of g with respect to f .

Proof. We use induction on α. If α = 0 then deg(g) < deg(f) = m and (1)
holds with q = 0 and r = g.

Let α ≥ 1 and g =
s∑

ν=0
gνx

ν , gs �= 0, then s ≥ m and

fs−m+1
m g − fs−mm gsfx

s−m = fs−mm

s−1∑

ν=0

(fmgν − gsfν−s+m)xν

(here we use the convention fν = 0 if ν < 0).
Now, using the induction hypothesis, we obtain

fs−mm

s−1∑

ν=0

(fmgν − gsfν−s+m)xν = q′f + r

and r = 0 or deg(r) < m.
Then for q = q′ + fs−mm gsx

s−m we have

fs−m+1
m g = qf + r.

To see uniqueness assume qf + r = q′f + r′ which implies (q − q′)f = r′ − r.
If r′− r �= 0 then deg(r′ − r) < m = deg(f). But this is impossible since R is
an integral domain. Hence, r = r′ and q = q′ since R[x] is an integral domain
too.
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Now we extend this concept to several variables:
LetK be a field and x1, . . . , xn be variables8. Let f1, . . . , fr∈K[x1, . . . , xn]

be given with the property that for 1 ≤ i1 < i2 < · · · < ir ≤ n, fk ∈
K[x1, . . . , xik ] � K[x1, . . . , xik−1] does not depend on the variables > xik
but xik really appears in fk for k = 1, . . . , r. The variable xik is called the
principal variable of fk. We additionally allow that f1 ∈ K with the principal
variable x1.

For g ∈ K[x1, . . . , xn] define a sequence of pseudo–remainders (with re-
spect to 1 ≤ i1 < i2 < · · · < ir ≤ n and f1, . . . , fr as above) inductively as
follows:

Rr := g and for 0 ≤ k < r,

Rk := prem(Rk+1|fk+1, xik+1),

to be understood in the polynomial ring (K[x1, . . . , x̂ik+1 , . . . , xn])[xik+1 ]
9.

Applying 4.6.1 successively we get In(fr, xir )αrRr = qrfr +Rr−1,
In(fr−1, xir−1)αr−1Rr−1 = qr−1fr−1+Rr−2 and so on. Substituting, we finally
obtain

Lemma 4.6.3. With the notations above we have:

(1) In(f1, xi1)α1 · . . . · In(fr, xir )αrg =
r∑

ν=1
pquot(Rν |fν , xiν )fν +R0,

αk = max{0, degxik
(Rk)− degxik

(fk) + 1},
(2) R0 = 0 or degxik

(R0) < degxik
(fk).

Definition 4.6.4. Keeping the above notations we define for given f1, . . . , fr:

(1) In(fν) := In(fν , xiν ) the initial form of fν (w.r.t. the principal variable).
(2) R0 =:prem(g|{f1, . . . , fr}), the pseudo remainder of g (w.r.t.{f1, . . . , fr}).
(3) If g = prem(g|{f1, . . . , fr}) we say that g is reduced with respect to

{f1, . . . , fr}.
(4) {f1, . . . , fr} is called an ascending set10 if fi is reduced with respect to

{f1, . . . , fi−1} for i = 2, . . . , r.

(5) Let tν :=

{
degxik

(fk) if ν = ik for some k

∞ else
then type({f1, . . . , fr}) := (t1, . . . , tn) is called the type of {f1, . . . , fr}.

(6) The type of fν is the type of {fν}.
Hence, if xν is a principal variable of some fk then tν = degxν

(fk), oth-
erwise tν = ∞.
8 In this chapter we fix an ordering of the variables such that x1 < x2 < . . . < xn.

The definitions and constructions will depend on this ordering.
9 ̂ means that the variable below ̂ is omitted

10 We consider ascending sets (and later characteristic sets) as ordered sets but
keep the notation {f1, . . . , fr}.



4.6 Characteristic Sets 287

Example 4.6.5. Let f1 = (x1 + 1)2, f2 = (x1 + 1)x2
2 + x1, g = (x2

2 + 1)2f1,
and h = f2(f2 + 2). Then we have

(1) {f1, f2} is an ascending set of type (2, 2),
(2) 0 = prem(g|{f1, f2}),
(3) 0 = prem(h|{f1, f2}),
(4) 1 = g − h, that is, prem(g − h|{f1, f2}) = 1.

To see this just check that (x1 + 1)3 = prem(g | f2, x2).
The example shows that prem(− | {f1, f2}) is not additive, hence not a

good notion in general. Especially the set
{
h| prem(h|{f1, f2)} = 0

}
is not

an ideal. In good cases, however, this set is a (prime) ideal and an important
object as we shall see below (cf. Proposition 4.6.16 and 4.6.18).

The aim now is to prove the following proposition:

Proposition 4.6.6. Let K be a field and let I = 〈h1, . . . , hs〉 � K[x1, . . . , xn]
be an ideal. There exists an ascending set T = {g1, . . . , gr} with the following
properties:

(1) gi ∈ I, i = 1, . . . , r.
(2) prem(hj |T ) = 0, j = 1, . . . , s.

To prove the proposition we need the possibility to compare ascending
sets.

Definition 4.6.7. Let T = {f1, . . . , fr}, T ′ = {g1, . . . , gs} be ascending sets.
We define T < T ′ if type(T ) < type(T ′) with respect to the lexicographical
ordering.

Example 4.6.8. Let f1 = (x1 + 1)2, f2 = (x1 + 1)x2
2 + x1 then type(f1) =

(1,∞), type(f2) = (∞, 2), type({x1, f2}) = (1, 2), type({f1, f2}) = (2, 2),
type(x3

1) = (3,∞). Hence, {x1, f2} < {f1, f2} < {x3
1}.

Lemma 4.6.9. Let T = {f1, . . . , fr} be an ascending set in K[x1, . . . , xn]
and assume g �= 0 is reduced with respect to T . Then T ∪ {g} contains an
ascending subset T ′ such that T ′ < T .

Proof. Since g is reduced with respect to T we have, for each i, either {g} <
{fi} or {fi} < {g}.
If {g} < {f1} then T ′ := {g} < T .
If {fr} < {g} then T ′ := {f1, . . . , fr, g} < T .
If {fi} < {g} < {fi+1} then T ′ := {f1, . . . , fi, g} < T .

Lemma 4.6.10. Let M be a set of ascending subsets of K[x1, . . . , xn], then
M has a minimal element ( M is partially well–ordered with respect to <).

Proof. Let τ = {type(T )|T ∈ M} ⊂ (N∪{∞})n. The lexicographical ordering
is a well–ordering and, therefore, τ has a minimal element. By definition, the
corresponding element in M is minimal.



288 4. Primary Decomposition and Related Topics

Proof of Proposition 4.6.6. Let F (0) := {h1, . . . , hs} and T (0) be minimal
among the ascending sets contained in F (0) and let R(0) = F (0)

� T (0).
Assume T (i−1), F (i−1) and R(i−1) are already defined. If R(i−1) �= ∅ and

P :=
{
prem(g|T (i−1))|g ∈ R(i−1)

}
�= {0}

then let T (i) be a minimal ascending set in F (i) := F (i−1) ∪ P . In this case
we have (Lemma 4.6.9) that T (i) < T (i−1) and we define R(i) := F (i)

� T (i).
If R(i) = ∅ or P = {0} we are done with T = T (i) because F (0) ⊆ F (i).

Moreover, due to Lemma 4.6.10 this case occurs after finitely many steps.

Definition 4.6.11. Let F = {f1, . . . , fs} be a subset of K[x1, . . . , xn] and
let I = 〈f1, . . . , fs〉. An ascending set T with the properties (1) and (2) of
Proposition 4.6.6 is called a characteristic set for F .

The proof of Proposition 4.6.6 provides the following algorithm to com-
pute a characteristic set for F :

Algorithm 4.6.12 (Characteristic(F )).

Input: F = {f1, . . . , fs}
Output: a characteristic set for F

• Rest = F ; G = F ;

• While Rest �= ∅
Result = minAscending(G)
If Result = {f} with f ∈ K

Rest = ∅
else

Rest = {prem(g|Result) �= 0 | g ∈ G� Result}
G = G∪Rest

• return Result

Note that the proof of Proposition 4.6.1 provides an algorithm to compute
the pseudo remainder (and the pseudo quotient). Moreover, we used in Al-
gorithm 4.6.12 the algorithm minAscending(G):

Algorithm 4.6.13 (minAscending(G)).

Input: G = {g1, . . . , gs}
Output: a minimal ascending subset of G

• Result = ∅; Rest = G;
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• While Rest �= ∅
Choose f ∈ Rest of minimal type
Result = Result ∪ {f}
If f ∈ K

Rest = ∅
else

Rest = {g ∈ Rest |g reduced with respect to f}
• return Result

Example 4.6.14. Let F = {f1, f2, f3} with f1 = x1x4 + x3 − x1x2, f2 =
x3x4 − 2x2

2 − x1x2 − 1, f3 = (x1 + 1)x2
4 − x2(x1 + 1)x4 + x1x2 + 3x2.

We follow Algorithms 4.6.12 and 4.6.13 to compute a characteristic set
for F . We start with Rest = F and G = F :

(1) Result = minAscending (G) = {f1}
Rest =

{
prem(f2|{f1}) =: f4, prem(f3|{f1}) =: f5

}

f4 = −x2
3 + x1x2x3 − 2x1x

2
2 − x2

1x2 − x1

f5 = (x1 + 1)x2
3 − x1(x1 + 1)x2x3 + x3

1x2 + 3x2
1x2

G = G ∪ Rest = {f1, . . . , f5}.
(2) Result = minAscending (G) = {f4, f1}

Rest =
{
prem(f3|{f4, f1}) =: f6, prem(f5|{f4, f1}) =: f7

}

f6 = −2x1(x1 + 1)x2
2 + 2x2

1x2 − x2
1 − x1

f7 = f6
G = G ∪ Rest = {f1, . . . , f7}.

(3) Result = minAscending (G) = {f6, f1}
Rest =

{
prem(f4|{f6, f1} =: f8

}
.

f8 = 2x1(x1 + 1)x2
3 − 2x2

1(x1 + 1)x2x3 + 2x3
1(x1 + 3)x2

G = G∪ Rest = {f1, . . . , f8}.
(4) Result = minAscending (G) = {f6, f8, f1}

Rest = ∅.
We obtain T = {f6, f8, f1} as characteristic set for F .

Remark 4.6.15. Different choices in the above algorithms give different char-
acteristic sets. We illustrate this with two examples. In step (2) we could have
chosen {f5, f1} as minimal ascending set. This would result in {f6, f5, f1} as
characteristic set for F .

In step (1) we could have chosen {f2} as minimal ascending set. This
would give {f̄6, f̄5, f2} as minimal ascending set with
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f̄5 = (−2x1x
3
2 + 2x1x

2
2 − x1x2 − 2x3

2 − x2)x3

+2x2
1x

3
2 − 2x2

1x
2
2 + x2

1x2 + 4x1x
4
2 − 2x1x

3
2 + 4x1x

2
2 − x1x2 + x1+

4x4
2 + 4x2

2 + 1

f̄6 = (−16x2
1 − 32x1 − 16)x8

2

+(−16x3
1 + 16x1)x7

2

+(−4x4
1 + 24x3

1 − 20x2
1 − 64x1 − 32)x6

2

+(8x4
1 − 32x3

1 + 24x1)x5
2

+(−8x4
1 + 24x3

1 − 12x2
1 − 48x1 − 24)x4

2

+(4x4
1 − 16x3

1 + 12x1)x3
2

+(−x4
1 + 6x3

1 − 5x2
1 − 16x1 − 8)x2

2

+(−2x3
1 + 2x1)x2

+(−x2
1 − 2x1 − 1).

The following proposition shows that, in general, a characteristic set G of
a set of generators of an ideal does not generate the ideal. The difference is,
however, controlled by products of initial forms of G.

Proposition 4.6.16. Let I = 〈f1, . . . , fr〉 ⊆ K[x1, . . . , xn] be an ideal and
G = {g1, . . . , gs} a characteristic set for {f1, . . . , fr}. Let J := 〈G〉 and
S := {In(g1)α1 ·. . .·In(gs)αs | α1, . . . , αs ∈ N}. Let H be the ideal generated by
all polynomials h with prem(h|G) = 0. Then we have the following inclusion
of ideals:

J ⊆ I ⊆ H ⊆ J : S.

Proof. We have J ⊆ I ⊆ H by definition of G being a characteristic set
for {f1, . . . , fr}. Now let h be a polynomial with prem(h|G) = 0. Then, by
Lemma 4.6.3, there exist g ∈ S such that gh ∈ J , that is, h ∈ J : S. This
implies H ⊆ J : S.

Let us now explain how characteristic sets are related to primary decom-
position.

Definition 4.6.17. Let F = {f1, . . . , fr} ⊂ K[x1, . . . , xn] be an ascending
set and assume that fν ∈ K[x1, . . . , xiν ]�K[x1, . . . , xiν−1] for all ν, 1 ≤ i1 <
· · · < ir ≤ n. Define inductively

K1 := K(x1, . . . , xi1−1) and
Kν = (Kν−1[xiν−1 ]/〈fν−1〉)(xiν−1+1, . . . , xiν−1)
for ν = 2, . . . , r.

F is called an irreducible ascending set if each fν is irreducible in Kν [xiν ].
Note that Kν is a field if fν−1 is irreducible. Hence, if F is an irreducible

ascending set then all rings Kν , ν = 1, . . . , r are field extensions of K.

Proposition 4.6.18. Let F = {f1, . . . , fr} ⊂ K[x1, . . . , xn] be an irreducible
ascending set, then the set

P = {g ∈ K[x1, . . . , xn] | prem(g|F ) = 0}
is a prime ideal.
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More precisely, let 1 ≤ i1 < · · · < ir ≤ n, fν ∈ K[x1, . . . , xiν ] �

K[x1, . . . , xiν−1] for ν = 1, . . . , r, and L := {1, . . . , n}� {i1, . . . , ir}. Then F
generates a maximal ideal in K({xν}ν∈L) [xi1 , . . . , xir ] and

P = (〈F 〉K({xν}ν∈L)[xi1 , . . . , xir ]) ∩K[x1, . . . , xn].

We call P the prime ideal associated to the irreducible ascending set F .

Proof. After a suitable coordinate change we may assume that (i1, . . . , ir) =
(n−r+1, . . . , n) and hence that fi ∈ K[x1, . . . , xn−r+i]�K[x1, . . . , xn−r+i−1].
With the notations of Proposition 4.6.16 we have

J := 〈F 〉 ⊆ H = 〈P 〉 ⊆ J : S.

Now, by definition of an irreducible ascending set, we have that

Kν [xn−r+ν ]/〈fν〉 = K(x1, . . . , xn−r)[xn−r+1, . . . , xn−r+ν ]/〈f1, . . . , fν〉

and hence K(x1, . . . , xn−r)[xn−r+1, . . . , xn]/J is a field.
Therefore, JK(x1, . . . , xn−r)[xn−r+1, . . . , xn] is a maximal ideal.

Let I := K[x1, . . . , xn] ∩ JK(x1, . . . , xn−r)[xn−r+1, . . . , xn], then, by
Lemma 4.6.3, P ⊆ I. We claim that prem(g|F ) = 0 for all g ∈ I, that
is, I ⊆ P . Let g ∈ I and choose a ∈ K[x1, . . . , xn−r] such that ag ∈ J .
Now a · prem(g|F ) = prem(Ag|F ) and, since F generates J , we may assume
that g ∈ J and g = prem(g|F ). We have to prove that g = 0. Assume
g �= 0 then g ∈ K[x1, . . . , xs] � K[x1, . . . , xs−1] for some s > n − r because
J ∩K[x1, . . . , xn−r] = 0.

On the other hand, since g is reduced, g satisfies the inequalities 0 <
degxs

(g) < degxs
(fs+r−n). But this is impossible, because g is in the ideal

generated by fs+r−n which is irreducible in the ring
(
K(x1, . . . , xn−r)[xn−r+1, . . . , xs−1]/〈f1, . . . , fs+r−n−1〉

)
[xs].

We proved I = P and, therefore, P is a prime ideal.

Remark : The condition that F is irreducible is used to prove that P is an
ideal which is wrong in general (cf. Example 4.6.5).

Let us now show the converse of Proposition 4.6.18

Proposition 4.6.19. Let F = {f1, . . . , fr} ⊂ K[x1, . . . , xn] be an ascending
set. If P = {g ∈ K[x1, . . . , xn] | prem(g|F ) = 0} is a prime ideal then F is
irreducible.

Proof. Assume that F is not irreducible and assume as in the proof of Propo-
sition 4.6.18 that fi ∈ K[x1, . . . , xn−r+i]� [x1, . . . , xn−r+i−1]. Choose i mini-
mal such that {f1, . . . , fi} is not reducible and assume fi = ḡ ·h̄ in Ki[xn−r+i]
with degxn−r+i

(ḡ) > 0, degxn−r+i
(h̄) > 0, where
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Ki := K(x1, . . . , xn−r)[xn−r+1, . . . , xn−r+i−1]/〈f1, . . . , fi−1〉.
This implies that afi − g · h =

∑i−1
ν=1 gνfν for suitable a ∈ K[x1, . . . , xn−r ],

g, h, gν ∈ K[x1, . . . , xn−r+i], degxn−r+i
(g) > 0 and degxn−r+i

(h) > 0 and
degxn−r+i

(g) + degxn−r+i
(h) = degxn−r+i

(fi).
Now g · h ∈ P by Proposition 4.6.16 and P is a prime ideal by assump-

tion. Therefore, we may assume that g ∈ P . This implies 0 = prem(g|F ) =
prem(g|{f1, . . . , fi}) = prem(g|{f1, . . . , fi−1}) because of degxn−r+i

(g) <
degxn−r+i

(fi). Hence, In(f1)α1 · . . . · In(fi−1)αi−1g ∈ 〈f1, . . . , fi−1〉 and, there-
fore, g is zero in Ki[xn−r+i] which implies fi is zero in Ki[xn−r+i] and this
gives a contradiction.

Let I = 〈f1, . . . , fr〉 be an ideal and
√
I = P1 ∩ · · · ∩ Ps, Pi the minimal

associated primes of I. We want to give an algorithm to compute irreducible
ascending sets G(1), . . . , G(s) such that Pi = {h | prem(h | G(i)) = 0}.

The algorithm is based on the following lemma.

Lemma 4.6.20. Let I = 〈f1, . . . , fr〉 be an ideal and G = {g1, . . . , gs} be a
characteristic set for {f1, . . . , fr}. Suppose that G is irreducible and let P be
the prime ideal associated to G, then

√
I = P ∩

√
〈F1〉 ∩ · · · ∩

√
〈Fs〉

with Fi = {f1, . . . , fr, In(gi)}.
Proof. The lemma is a special consequence of Proposition 4.6.16 and left as
an exercise (cf. proof of Proposition 3.3.5).

Lemma 4.6.21. Let F = {f1, . . . , fr} be an ascending set. Assume that
{f1, . . . , fk−1} is irreducible and F is not. With the notations of Proposition
4.6.18 there exist a, b ∈ K[{xν}ν∈L], irreducible polynomials h1, . . . , hs ∈
K[x1, . . . , xik ] �K[x1, . . . , xik−1] and ρ1, . . . , ρs, α1, . . . , αk−1 ∈ N such that

(1) afk = bhρ11 · . . . · hρs
s in Kk[xik ],

(2) In(f1)α1 · . . . · In(fk−1)αk−1bahρ11 · . . . · hρs
s ∈ 〈F 〉.

Here Kk = K({xν}ν∈L) [xi1 , . . . , xik−1 ]/〈f1, . . . , fk−1〉
Proof. Let fk = h̄ρ11 · . . . · h̄ρs

s be the factorisation of fk in Kk[xik ] into irre-
ducible factors. Then we can write h̄i = bihi

ai
, hi ∈ K[x1, . . . , xn] irreducible,

bi, ai ∈ K[{xν}ν∈L]. For a = aρ11 · . . . · aρs
s and b = bρ11 · . . . · bρs

s we obtain
afk = bhρ11 ·. . .·hρs

s inKk[xik ] and hence (1). Let g := afk−bhρ11 ·. . .·hρs
s . Since

the class of g in Kk[xik ], and hence in Kk is zero, g ∈ 〈f1, . . . , fk−1〉. Then
prem(g|{f1, . . . , fk−1}) = 0 by Proposition 4.6.18 because {f1, . . . , fk−1} is
irreducible. This implies (2).

If we combine now Exercise 4.5.3 Lemma 4.6.20 and Lemma 4.6.21 we
obtain an algorithm to compute irreducible ascending sets for the associated
prime ideals of an ideal:
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(1) We try to find an element in I which factors as f · g and apply Exercise
4.5.3 in order to reduce the problem to the consideration of 〈I, f〉 and
〈I, g〉 separately. Indeed, we try to factor the generators of I.

(2) If I = 〈g1, . . . , gm〉 with g1, . . . , gm irreducible, we compute an ascending
set T = {f1, . . . , fr} for {g1, . . . , gm}.

(3) If T = {f1} and f1 ∈ K then I = 〈1〉.
(4) If T is irreducible we obtain an associated prime P of I, where P =

{h| prem(h|T ) = 0}, and use Lemma 4.6.20 for a decomposition
√
I = P ∩ Rest

and continue with Rest.
(5) If T is not irreducible, we use Lemma 4.6.21 to obtain b, h1, . . . , hs such

that
In(f1) · . . . · In(fk−1) · b · h1 · . . . · hs ∈

√
I.

Then we use Exercise 4.5.3 to obtain
√
I =

√
〈I, In(f1)〉∩· · ·∩

√
〈I, In(fk−1)∩

√
〈I, b〉∩

√
〈I, h1〉∩· · ·∩

√
〈I, hs〉

and continue with the 〈I, In(fj)〉, 〈I, b〉 and 〈I, hj〉. If we know the factors
of b we may split 〈I, b〉 again.

Altogether we obtain the following algorithm which computes irreducible
ascending sets of a given set of generators of I such that the associated prime
ideals (Proposition 4.6.18) are the minimal prime ideals of I.

Algorithm 4.6.22 (Irrascending(F )).

Input: a set of polynomials F ⊆ K[x1, . . . , xn]
Output: a set of irreducible ascending sets of the minimal prime ideals of 〈F 〉
• Result = ∅; Rest = {F};
• While Rest �= ∅

Choose X ∈ Rest;
Rest = Rest �{X};
T = Characteristic(X);
If T = {f} with f ∈ K

If Rest = ∅ and Result = ∅
return

{{1}}
else

If T is irreducible
If Result �= ∅ and prem(S | T ) �= 0 for all S ∈ Result

Result = Result ∪{T }
Rest = Rest ∪( ⋃

f∈I,deg
(
In(f)

)
>0

{
T ∪X ∪ {In(f)}})

else
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choose f1, . . . , fk−1 ∈ T , b, h1, . . . , hs as in Lemma 4.6.21
Rest = Rest ∪( s∪

j=1

{
T ∪X ∪ {hj}

}) ∪ {
T ∪X ∪ {b}}

∪( ⋃

j=1,...,k−1,deg
(
In(fj)

)
>0

{
T ∪X ∪ {In(fj)}

})

Rest = Clear (Result)
• return Result.

We used the following procedure:

Algorithm 4.6.23 (Clear(R)).

Input: R, a set of polynomials
Output: S, a subset of the input R with the following properties:

(1) X,Y ∈ S implies prem(X |Y ) �= 0,
(2) given X ∈ R there exists Y ∈ S such that prem(X |Y ) = 0

• S = R
• t = 0;
• while t = 0;

If exist X,Y ∈ S such that prem(X |Y ) = 0
S = S �{X};
else

t = 1;
• return S

One possibility to refine the algorithm is to use a splitting with the fol-
lowing procedure before the computation of the ascending sets.

Algorithm 4.6.24 (Split(X)).

Input: X , a set of polynomials
Output: Result={W1, . . . ,Wk} , Wi set of irreducible polynomials such that

∩
i

√〈Wi〉 =
√〈X〉

• Rest = {X}; Result = ∅;
• While Rest�= ∅

Choose X ∈ Rest;
Rest = Rest � X ;
If all elements of X are irreducible

Result = Result ∪ {X};
else

Choose f = g · h ∈ X , g, h nontrivial factors of f ;
X = X � {f};
Rest = Rest ∪{X ∪ {g}, X ∪ {h}};

• return Result
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Example 4.6.25. Let F = {f1, f2, f3} be the set of polynomials of Example
4.6.14 and let I = 〈F 〉. Let us compute a primary decomposition of

√
I.

The initialisation of the algorithm gives
(0) Result = ∅, Rest = {F}.
(1) X = F , Rest = ∅.

As a result of Example 4.6.14 we obtain
T = Characteristic (X) = {f6, f8, f1}.
T is not irreducible:
f8 = 2x1(x1 + 1)(x3 − 2x1x2 + x1)(x3 + x1x2 − x1)− 2x2

1f6

and we obtain

h1 = x3 − 2x1x2 + x1

h2 = x3 + x1x2 − x1

b = 2x1(x1 + 1)
Rest = {Y1, Y2, Y3, Y4}
Y1 = F ∪ T ∪ {h1}
Y2 = F ∪ T ∪ {h2}
Y3 = F ∪ T ∪ {b}
Y4 = F ∪ T ∪ {In(f6)}

(2) X = Y1, Rest = {Y2, Y3, Y4}
T = Characteristic(X) = {f6, h1, f̄1}
f̄1 = x1x4 + x1x2 − x1

T is irreducible
Result = Result ∪ {T } =

{{f6, h1, f̄1}
}

Rest = Rest ∪ {Y5, Y6} (In(h1) = 1)
Y5 = Y1 ∪ T ∪ {−2x1(x1 + 1)} (

In(f6) = −2x1(x1 + 1)
)

Y6 = Y1 ∪ T ∪ {x1}
(
In(f̄1) = x1

)

(3) X = Y2, Rest = {Y3, . . . , Y6}
T = Characteristic(X) = {f6, h2, f̄2}
f̄2 = x1x4 − x1x2 + x1

T is irreducible
prem({f6, h1, f̄1}|T ) �= 0
Result = Result ∪ {T } =

{{f6, h1, f̄1}, {f6, h2, f̄2}
}

Rest = Rest ∪ {Y7, Y8}
Y7 = Y2 ∪ T ∪ {−2x1(x1 + 1)}
Y8 = Y2 ∪ T ∪ {x1}

Now we continue as before, leaving the details to the reader. If we
end with an irreducible ascending set T in the algorithm, we always have
prem({f6, h1, f̄1}|T ) = 0 or prem({f6, h2, f̄2}|T ) = 0.

No further ascending set is added to the result. We obtain as a result two
irreducible ascending sets

T1 := {f6, h1, f̄1}, T2 := {f6, h2, f̄2} ,
and as associated prime ideals
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P1 = 〈T1〉K(x1)[x2, x3, x4] ∩K[x1, x2, x3, x4]

= 〈−2(x1 + 1)x2
2 + 2x1x2 − x1 − 1, x3 − 2x1x2 + x1, x4 + x2 − 1〉 ,

P2 = 〈T2〉K(x1)[x2, x3, x4] ∩K[x1, x2, x3, x4]

= 〈−2(x1 + 1)x2
2 + 2x1x21− x1 − 1, x3 + x1x2 − x1, x4 − x2 + 1〉.

Finally, we have
√
I = P1 ∩ P2.

SINGULAR Example 4.6.26 (irreducible ascending set).
We compute Example 4.6.25 by using the command char series. This

command computes the irreducible ascending sets associated to the gene-
rators of a given ideal using some (internally chosen) heuristic ordering of
the variables. In this example internally the ordering x1 > x2 > x3 > x4 is
chosen.

ring R=0,x(4..1),dp;
ideal I=-x(1)*x(2)+x(1)*x(4)+x(3),

-x(1)*x(2)-2*x(2)^2+x(3)*x(4)-1,
-x(1)*x(2)*x(4)+x(1)*x(4)^2+x(1)*x(2)-x(2)*x(4)
+x(4)^2+3*x(2);

matrix M=char_series(I);
ring S=(0,x(4)),x(1..3),dp;//to see the result with re-
matrix M=imap(R,M); //spect to the choosen ordering
M;
//-> M[1,1]=(-2*x(4)^2+2*x(4)-1)*x(3)+(4*x(4)^3-10*x(4)^2

+10*x(4)-3)
//-> M[1,2]=x(2)+(x(4)-1)
//-> M[1,3]=(2*x(4)^2-2*x(4)+1)*x(1)+(2*x(4)^2-4*x(4)+3)
//-> M[2,1]=(-2*x(4)^2-2)*x(3)+(x(4)^3+x(4)^2+x(4)-3)
//-> M[2,2]=2*x(2)+(-x(4)-1)
//-> M[2,3]=(x(4)^2+1)*x(1)+(x(4)^2+2*x(4)+3)

So far, we developed characteristic sets for a given set of polynomials.
This is sufficient for practical computations and for implementations. In the
remaining part of this section we take an invariant point of view by consider-
ing the corresponding concept for ideals without a specific set of generators.
This is mainly of theoretical interest.

Definition 4.6.27. Let I ⊆ K[x1, . . . , xn] be an ideal and G ⊆ I an as-
cending set. G is called a characteristic set of I if prem(h|G) = 0 for all
h ∈ I.
Example 4.6.28. Let G be an irreducible ascending set. Then the set
P = {h| prem(h|G) = 0} is a (prime) ideal and G is a characteristic set of P .
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Example 4.6.29. Let I = 〈x2
1, x1x2, x

2
2〉 ⊆ K[x1, x2] then I is zero-dimensional

and F = {x2
1, x1x2} is a characteristic set of I. It is not difficult to

see that even 〈x2
1, x2〉 ⊆ {h| prem(h|F ) = 0}. On the other hand, also

prem(x2
2 + 1|F ) = 0. This implies that {h| prem(h|F ) = 0} is not an ideal.

Below, we show that characteristic sets of an ideal I can be computed
with the help of Gröbner basis. The examples below show that this is not
completely obvious: a lexicographical Gröbner basis needs not be a charac-
teristic set of I and even if we apply the algorithm Characteristic to a
lexicographical Gröbner basis, we need not get a characteristic set of I.

Example 4.6.30. Let P = 〈f1, f2〉 ⊆ K[x1, x2, x3, x4], f1 = x2x
2
3 + x1, f2 =

x2
4 + x3

3, then P is a prime ideal and {f1, f2} is a reduced Gröbner basis of
P with respect to the lexicographical ordering x1 < · · · < x4 but not an
ascending set because prem(f2|{f1}) = x2

2x
2
4 − x1x2 =: g2. However, {f1, g2}

is a characteristic set of P and 〈f1, g2〉 : x1x2 = P .

Example 4.6.31. Let I = 〈x1x
3
2, x

3
2x3〉 ⊆ K[x1, x2, x3]. Then {x1x

3
2, x

3
2x3} is

a reduced Gröbner basis with respect to the lexicographical ordering and
prem(x3

2x3|{x1x
3
2}) = 0. We get that {x1x

3
2} is a characteristic set of I but

{h| prem(h|{x1x
3
2} = 0} = 〈x3

2〉 is strictly bigger than I.

Example 4.6.32. Let I = 〈x2
1, x1x

2
2, x

5
2, x

3
3−x3

2〉 ⊆ K[x1, x2, x3] then I is zero-
dimensional and F := {x2

1, x1x
2
2, x

5
2, x

3
3 − x3

2} is a reduced Gröbner basis of I
with respect to the lexicographical ordering. The algorithm Characteristic

gives Characteristic (F ) = {x2
1, x1x

2
2} because prem(x5

2|{x2
1, x1x

2
2}) = 0

and prem(x3
3 − x3

2 | {x2
1, x1x

2
2}) = 0. This means that T := {x2

1, x1x
2
2} is

a characteristic set for F . But x1x
3
3 ∈ I and prem(x1x

3
3|T ) = x1x

3
3. This

implies that I � {h| prem(h|T ) = 0} even though we started with a reduced
Gröbner basis. Notice that {x2

1, x1x
2
2, x1x

3
3} is a characteristic set of I.

Proposition 4.6.33. Let I ⊆ K[x1, . . . , xn] be an ideal and G ⊆ I an as-
cending set. Then G is a characteristic set of I if and only if G is a minimal
ascending set of I (w.r.t. the ordering of Definition 4.6.7).

Proof. Suppose G is a minimal ascending set of I, that is, if G′ ⊆ I is
ascending then G′ < G is not possible. Let h ∈ I and h = prem(h|G). If
h �= 0, then, using Lemma 4.6.9, G ∪ {h} contains is an ascending subset G′

and G′ < G. This is a contradiction and hence G is a characteristic set of I.
Now assume that G is the a characteristic set of I and that G′ < G with

G′ ⊂ I is an ascending set. Let g′ ∈ G′ be responsible for G′ < G, that is, if
G = {g1, . . . , gs} then one of the following conditions is satisfied:

(1) {g1, . . . , gs, g′} ⊆ G′,
(2) {g′} < {g1},
(3) {g1, . . . , gi−1, g

′} ⊆ G′ and {g′} < {gi}.
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This implies that g′ is reduced with respect to G in all cases. Therefore,
g′ = prem(g′|G) �= 0 which is a contradiction to g′ ∈ I and G being a
characteristic set of I.

At the end of this chapter we shall give the idea of an algorithm to com-
pute a characteristic set for an ideal. It will not be used later on.

First of all we treat the zero–dimensional case.

Proposition 4.6.34. Let I ⊆ K[x1, . . . , xn] be a zero–dimensional ideal and
T = {g1, . . . , gs} a characteristic set of I. Then s = n, gi ∈ K[x1, . . . , xi] �

K[x1, . . . , xi−1] and degxi
(gi) ≤ degxi

(hi) where 〈hi〉 = I ∩K[xi].

Proof. Assume s < n, then there exist j < n such that gj ∈ K[x1, . . . , xj ] �

K[x1, . . . , xj−1] and, if j < s, gj+1 �∈ K[x1, . . . , xj+1].
But I ∩ K[xj+1] = 〈hj+1〉 �= 0 and, therefore, {g1, . . . , gj , hj+1, . . . , hn}

is an ascending set of smaller type than T , which is a contradiction to
the minimality of T by Proposition 4.6.33. Obviously, H := {h1, . . . , hn}
is an ascending set. If degxj

(gj) > degxj
(hj) for some j then we have

{g1, . . . , gj−1, hj , . . . , hn} < T which is again a contradiction to the mini-
mality of T .

Remark 4.6.35. With the notations of Proposition 4.6.34 the hi can be com-
puted from some given Gröbner basis (with respect to any given ordering) of
I using linear algebra. Therefore, especially their degrees can be computed.
This gives us an estimate for the degrees of the polynomials in a characteristic
set.

We obtain the following algorithm:

Algorithm 4.6.36 (ZeroCharsets (F )).

Input: A set F of polynomials such that 〈F 〉 is zero–dimensional
Output: A characteristic set T for 〈F 〉
• Choose a (global) monomial ordering and compute a Gröbner basis G of
〈F 〉;

• d = dim(〈G〉);
• i = 0;
• while i < n; i = i+ 1;

M = {1, xi, . . . , xdi };
hi = minRel(M,G); (computes 〈hi〉 = 〈F 〉 ∩K[xi])
di = deg(hi);

• T = {h1};
• I = {(α1, α2, 0, . . . , 0) | α1 < d1, α2 ≤ d2)}; i = 1;
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• while i < n
i = i+ 1;
M = {xα|α ∈ I};
f = minRel(M,G);
d = degxi

(f)
T = T ∪ {f}
I = I � {(β1, . . . , βi, 0, . . . , 0) ∈ I | βi ≥ d}
I = I ∪ {(α1, . . . , αi+1, 0 . . . , 0) | (α1, . . . , αi, 0, . . . , 0) ∈ I, αi+1 ≤ di}

• return T

In the algorithm above we used the algorithm minRel:

Algorithm 4.6.37 (minRel (M,G)).

Input: M = {m1, . . . ,ms} a set of monomials, ordered with respect to the
lexicographical ordering x1 < · · · < xn, G a Gröbner basis with
respect to a given ordering such that dim(〈G〉) = 0.

Output: 0 if M is linearly independent modulo 〈G〉 or a polynomial

h =
k∑
i=1

cimi, ck = 1, k ≤ s minimal such that h ∈ 〈G〉.

• i = 0;
• d = dimK K[x1, . . . , xn]/〈G〉
• while i < s

i = i+ 1;

f = NF(mi|G) =
d∑
j=1

cjix
αj

A = (cab)a≤d,b≤i

If A

( y1

...
yi

)
= 0 has a solution (y1, . . . , yi−1, 1)

return mi +
i−1∑
j=1

yjmj

• return 0

If the ideal I is not zero–dimensional we can reduce the computation of
a characteristic set to the zero–dimensional case using the following lemma:

Lemma 4.6.38. Let I ⊆ K[x1, . . . , xn] be an ideal, u ⊆ {x1, . . . , xn} a max-
imal independent set of variables for I.

Let T = {h1, . . . , hs} ⊆ K[x] be a characteristic set for IK(u)[x � u]
and assume that IK(u)[x � u] ∩ K[x] = I : h for h ∈ K[u]. Then T ′ =
{hh1, . . . , hhs} is a characteristic set for I.

Proof. Let f ∈ I then prem(f |T ) = 0. This implies prem(f |T ′) = 0. On the
other hand, by definition of h, we have T ′ ⊆ I. This proves the lemma.
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Example 4.6.39. Let F = {f1, f2, f3} be as in Example 4.6.14. Then u = {x1}
is a maximal independent set of variables for 〈F 〉.

In K(x1)[x2, x3, x4] we obtain

ZeroCharsets(F ) =
{
− 1
x1
f6,−(x1 + 1)f4 + f6, f1

}

(with the notations of Example 4.6.14).
Since − 1

x1
f6 ∈ 〈F 〉 we obtain {− 1

x1
f6,−(x1 + 1)f4 + f6, f1} as characte-

ristic set for 〈F 〉.

Exercises

4.6.1. Compute Example 4.6.25 with respect to the ordering x1 > x2 > x3 >
x4 and compare the result with 4.6.26.

4.6.2. Let > be the lexicographical ordering with x1 < . . . < xn and
f1, . . . , fn ∈ K[x1, . . . , xn]. Assume that LM(fi) = xmi

i for i = 1, . . . , n (such
a set of polynomials is called a triangular set and will be studied in the next
chapter). Prove that {f1, . . . , fn} is a Gröbner basis. Assume furthermore
that NF(fi | {f1, . . . , fi−1}) = fi and prove that {f1, . . . , fn} is a characte-
ristic set for I = 〈f1, . . . , fn〉.
4.6.3. Prove that {x2

1 + 1, x1x2 + 1} is the characteristic set of a prime ideal
in Q [x1, x2]. Note that it is not a Gröbner basis with respect to any well–
ordering, especially it is not a triangular set (cf. Exercise 4.6.2).

4.6.4. With the notations of Proposition 4.6.18 assume that F is a Gröbner
basis of 〈F 〉K({xν}ν∈L)[xi1 , . . . , xir ]. Prove that P = 〈F 〉 : h∞ where h =∏r
ν=1 In(fν).

4.6.5. Prove Lemma 4.6.20.

4.7 Triangular Sets

In this chapter we introduce another method, triangular sets, in order to
show how to decompose a zero–dimensional ideal in K[x1, . . . , xn] into so–
called triangular ideals, ideals generated by a lexicographical Gröbner basis
of n elements. This is a basic tool for symbolic pre-processing to solve zero–
dimensional systems of polynomial equations.

In this chapter we fix the lexicographical ordering lp.

Definition 4.7.1. A set of polynomials F = {f1, . . . , fn} ⊂ K[x1, . . . , xn] is
called a triangular set if for each i

(1) fi ∈ K[xn−i+1, . . . , xn],



4.7 Triangular Sets 301

(2) LM(fi) = xmi

n−i+1, for some mi > 0.

Hence, f1 depends only on xn, f2 on xn−1, xn and so on, until fn which
depends on all variables.

A list of triangular sets F1, . . . , Fs is called a triangular decomposition of
the zero–dimensional ideal I if

√
I =

√
〈F1〉 ∩ . . . ∩

√
〈Fs〉.

Remark 4.7.2. If F is a triangular set then Exercise 1.7.1 implies that F is a
Gröbner basis of 〈F 〉.
Proposition 4.7.3. Let M ⊂ K[x1, . . . , xn] be a maximal ideal and G =
{g1, . . . , gr} a minimal Gröbner basis of M such that LM(g1) < . . . < LM(gr).
Then G is a triangular set, in particular r = n.

Proof. We use induction on the number of variables, the case n = 1 being
trivial. Since M ∩K[x2, . . . , xn] is maximal we may assume by Lemma 1.8.3
that G ∩ K[x2, . . . , xn] = {g1, . . . , gn−1} is a triangular set. In particular
r ≥ n, since M is a maximal ideal. Consider the ideal M induced by M
in (K[x2, . . . , xn]/M ∩ K[x2, . . . , xn])[x1]. M is generated by the elements
induced by gn, . . . , gr. Because LM(g1) < . . . < LM(gr) and since G is a
minimal lexicographical Gröbner basis we have

degx1
(gn) ≤ . . . ≤ degx1

(gr).

M is a principal ideal as K[x2, . . . , xn]/M ∩K[x2, . . . , xn] is a field. Using
Euclid’s algorithm we deduce that gn induces a generator of M , i.e. M =
〈g1, . . . , gn〉.

We have still to prove that r = n.
Assume r > n. M being 0–dimensional and LM(gr) maximal with respect

to lp implies that LM(gr) = xm1 for some integer m ≥ 1. By assumption we
have 1 ≤ degx1

(gn) < m. Let k ≥ n be defined by degx1
(gn) = . . . =

degx1
(gk) < degx1

(gk+1). We claim that G′ = {g1, . . . , gk} is a Gröbner basis
of M . Since G is a Gröbner basis we have NF(spoly(gi, gj) | G) = 0 for
i, j ≤ k. But

degx1
(spoly(gi, gj)) ≤ degx1

(gn) for all i, j ≤ k

implies that LM(spoly(gi, gj)) < LM(gl) if i, j ≤ k and l > k. This shows that
in the reduction process to compute the normal form of the s–polynomials the
elements gk+1, . . . , gr are not used. Therefore NF(spoly(gi, gj) | G′) = 0 for
i, j ≤ k, i.e. G′ is a Gröbner basis of M . This implies LM(gk) = xs1 for some
s because M is zero–dimensional. However, this contradicts the minimality
of G. We proved r = n and therefore the proposition.

Since a zero–dimensional prime ideal is maximal, we can apply Proposi-
tion 4.7.3 to a primary decomposition of

√
I and get the following existence

of a triangular decomposition of I.
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Corollary 4.7.4. If I is a zero–dimensional ideal then there exist triangular
sets F1, . . . , Fs such that

(1)
√
I =

√〈F1〉 ∩ . . . ∩
√〈Fs〉

(2) 〈Fi〉+ 〈Fj〉 = K[x1, . . . , xn] for i �= j.

Using a primary decomposition is not satisfactory for practical compu-
tation. Our aim is to find triangular decompositions of a zero–dimensional
ideal with less effort than the computation of the minimal associated primes.
The following lemma is the basis for the algorithm by Möller (see [122], [169])
which avoids this computation.

Lemma 4.7.5. Let G = {g1, . . . , gr} be a reduced (lexicographical) Gröbner
basis for the zero–dimensional ideal I ⊂ K[x1, . . . , xn] and assume LM(g1) <
. . . < LM(gr).

Let gi =
ni∑
j=0

h
(i)
j xj1, h

(i)
j ∈ K[x2, . . . , xn], h(i)

ni �= 0 and F =
{
h

(1)
n1 , . . . , h

(r−1)
nr−1

}
.

Then the following holds:
(1) F is a Gröbner basis for 〈g1, . . . , gr−1〉 : gr and
(2)

√〈F, gr〉 =
√〈F,G〉.

Proof. First we claim that {g1, . . . , gr−1} is a Gröbner basis of 〈g1, . . . , gr−1〉.
We have NF(spoly(gi, gj) | G) = 0 using Buchberger’s criterion (Theorem
2.5.9). But if i, j ≤ r−1 then gr is not used in the reduction of the spoly(gi, gj)
because LM(gr) = xm1 for some m ∈ N and LM(spoly(gi, gj)) < xm1 .
This implies NF(spoly(gi, gj |G � {gr}) = 0 for i, j ≤ r − 1 and therefore
{g1, . . . , gr−1} is a Gröbner basis again by Buchberger’s criterion. If we set
h(gi, gr) := h

(i)
ni · gr − xm−ni

1 · gi then NF(h(gi, gr)|G) = 0 and, as before, gr
is not used in the reduction, i.e. NF(h(gi, gr)|G� {gr}) = 0.

This implies that h(gi, gr) ∈ 〈g1, . . . , gr−1〉 and, by definition of h(gi, gr),
that h(i)

ni · gr ∈ 〈g1, . . . , gr−1〉. This implies that h(i)
ni ∈ 〈g1, . . . , gr−1〉 : gr, i.e.

F ⊆ 〈g1, . . . , gr−1〉 : gr.
Conversely, let f ∈ 〈g1, . . . , gr−1〉 : gr, i.e. fgr ∈ 〈g1, . . . , gr−1〉. There

exists an i such that LM(gi) | LM(fgr) = LM(f) · xm1 . However, this implies
LM(h(i)

ni ) | LM(f) because LM(gi) = LM(h(i)
ni )xni

1 and ni < m and therefore
F is a Gröbner basis of 〈g1, . . . , gr−1〉 : gr.

The proof of (2) is left as Exercise 4.7.3. This proves the lemma.

Example 4.7.6. Let I = 〈z2 − 2, y2 + 2y − 1, (y + z + 1)x+ yz + z + 2,
x2 + x+ y − 1〉 ⊂ Q[x, y, z]. Then I = P1 ∩ P2 ∩ P3 with the prime ideals

P1 = 〈z2 − 2, y − z + 1, x+ z〉,
P2 = 〈z2 − 2, y + z + 1, x− z〉,
P3 = 〈z2 − 2, y + z + 1, x+ z + 1〉,

which are generated by triangular sets.
There is another triangular decomposition of I, namely
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I = 〈I, y + z + 1〉 ∩ (I : (y + z + 1)),

with
〈I, y + z + 1〉 = 〈z2 − 2, y + z + 1, x2 + x+ y − 1〉
I : (y + z + 1) = 〈z2 − 1, y − z + 1, x+ z〉.

SINGULAR Example 4.7.7 (triangular decomposition).
We consider again Example 4.7.6 and compute the minimal associated

primes, a triangular decomposition by using the command triangMH, and by
applying the method of Lemma 4.7.5.

LIB"primdec.lib";
ring R=0,(x,y,z),lp;
ideal I=z2-2, y2+2y-1, (y+z+1)*x+yz+z+2, x2+x+y-1;
minAssGTZ(I);

//-> [1]: [2]: [3]:
//-> _[1]=z2-2 _[1]=z2-2 _[1]=z2-2
//-> _[2]=x+z _[2]=x-z _[2]=x2+x+y-1
//-> _[3]=x2+x+y-1 _[3]=x2+x+y-1 _[3]=x+z+1

option(redSB); //a reduced lex Groebner basis is needed
I=std(I); //as input for triangMH (algorithm
triangMH(I,2); //of Moeller, Hillebrand)

//-> [1]: [2]:
//-> _[1]=z2-2 _[1]=z2-2
//-> _[2]=y+z+1 _[2]=y-z+1
//-> _[3]=x2+x-z-2 _[3]=x+z

std(quotient(I,y+z+1)); //the second triangular set

//-> _[1]=z2-2
//-> _[2]=y-z+1
//-> _[3]=x+z

std(I,y+z+1); //the first triangular set
//(recall the meaning of std(I, f))

//-> _[1]=z2-2
//-> _[2]=y+z+1
//-> _[3]=x2+x-z-2

We will now describe an algorithm to compute a triangular decomposition
of a zero–dimensional ideal I

√
I =

√
〈F1〉 ∩ . . . ∩

√
〈Fs〉
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with triangular sets Fi satisfying

〈Fi〉+ 〈Fj〉 = K[x1 . . . xn] for i �= j.

The algorithm is based on Lemma 4.7.5 and Exercise 4.7.1. We use the
notations of Lemma 4.7.5. By applying first Exercise 4.7.1 and then 4.7.5 we
obtain the following (defining additionally h(r)

nr = 1):
√
I =

r−1∩
i=0

√
〈G, h(1)

n1 , . . . , h
(i)
ni 〉 : h(i+1)∞

ni+1

=
√〈gr, F 〉

⋂ (
r−2⋂
i=0

√
〈G, h(1)

n1 , . . . , h
(i)
ni 〉 : h(i+1)∞

ni+1

)

Now
√〈gr, F 〉 is nicely prepared for induction since F ⊆ K[x2, . . . , xn]

and LM(gr) = xm1 for some m ∈ N. This implies that a triangular set T ′ ⊂
K[x2, . . . , xn], 〈F 〉 ⊆

√〈T ′〉, leads to a triangular set T = T ′ ∪ {gr},
√
I ⊆√〈gr, F 〉 ⊆

√〈T 〉. Therefore the decomposition above gives the possibility to
compute a triangular decomposition inductively. This leads to the following
recursive algorithm.

Algorithm 4.7.8 (TriangDecomp (I)).

Input: a zero-dimensional ideal I := 〈f1, . . . , fm〉
Output: A list of triangular sets F1, . . . , Fs such that

√
I =

s⋂
i=1

√〈Fi〉 and

〈Fi〉+ 〈Fj〉 = K[x1, . . . , xn] for i �= j

• Compute G = {g1, . . . , gr} a reduced Gröbner basis for 〈f1, . . . , fm〉 with
respect to >lp such that LM(g1) < . . . < LM(gr).

• Compute G′ = {h1, . . . , hr−1} ⊂ K[x2, . . . , xn], with hi the leading coeffi-
cient of gi considered as polynomial in x1.

• L′ =TriangDecomp(〈G′〉)
• L = {T ′ ∪ {gr} | T ′ ∈ L′}
• i = 0
• while (i < r − 1)

i = i+ 1
If hi �∈ G
L = L∪TriangDecomp(〈G〉 : h∞i )
G = G ∪ {hi}

• return L

Exercises

4.7.1. Let I be an ideal in a Noetherian ring R and a1, . . . ar ∈ R, ar = 1.

Prove that
√
I =

r−1⋂
s=0

√〈I, a1, . . . , as〉 : a∞s+1.

Hint: Use Lemma 3.3.6 and Exercise 4.5.7.
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4.7.2. Compute a triangular decomposition for Example 4.7.6 considered as
an ideal in Q[z, y, x] (permutation of variables) and compare it with the result
from Example 4.7.6.

4.7.3. Prove (2) of Lemma 4.7.5.

4.7.4. Consider the following system of equations over Q(a)[x, y, z]:

ax2 + 2y + a+ 1 = 0
y2z + xy = 0
ayz2 + z − a2 + 1 = 0

Use the procedure triangL of the library triang.lib to compute the solu-
tions depending on the parameter a (you may assume that a is generic).

4.7.5. Use the procedure solve of the library solve.lib to compute the
solutions of the system of equations of 4.7.4 numerically for several specified
parameters a (including a = 1).

4.7.6. Substitute in 4.7.4 special values for a (including a = 1) and recom-
pute the triangular set. Substitute the same values for a in the result of the
computation in Exercise 4.7.4 and compare the results.

4.8 Procedures

We collect the main procedures of this section as fully functioning Singular

procedures. However, since they are in no way optimized, one cannot expect
them to be very fast. Each procedure has a small example to test it. This
section demonstrates that it is not too difficult to implement a full primary
decomposition, the equidimensional part and the radical.

4.8.1. We begin with a procedure to test whether a zero–dimensional ideal
is primary and in general position.

proc primaryTest (ideal i, poly p)

"USAGE: primaryTest(i,p); i standard basis with respect to
lp, p irreducible polynomial in K[var(n)],
p^a=i[1] for some a;

ASSUME: i is a zero-dimensional ideal.
RETURN: an ideal, the radical of i if i is primary and in

general position with respect to lp,
the zero ideal else.

"
{

int m,e;
int n=nvars(basering);
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poly t;
ideal prm=p;

for(m=2;m<=size(i);m++)
{
if(size(ideal(leadexp(i[m])))==1)
{

n--;
//----------------i[m] has a power of var(n) as leading term

attrib(prm,"isSB",1);
//--- ?? i[m]=(c*var(n)+h)^e modulo prm for h
// in K[var(n+1),...], c in K ??

e=deg(lead(i[m]));
t=leadcoef(i[m])*e*var(n)+(i[m]-lead(i[m]))
/var(n)^(e-1);
i[m]=poly(e)^e*leadcoef(i[m])^(e-1)*i[m];

//---if not (0) is returned, else c*var(n)+h is added to prm
if (reduce(i[m]-t^e,prm,1) !=0)
{
return(ideal(0));

}
prm = prm,cleardenom(simplify(t,1));

}
}
return(prm);

}

ring s=(0,x),(d,e,f,g),lp;
ideal i=g^5,(x*f-g)^3,5*e-g^2,x*d^3;
primaryTest(i,g);

4.8.2. The next procedure computes the primary decomposition of a zero–
dimensional ideal.

proc zeroDecomp (ideal i)

"USAGE: zeroDecomp(i); i zero-dimensional ideal
RETURN: list l of lists of two ideals such that the

intersection(l[j][1], j=1..)=i, the l[i][1] are
primary and the l[i][2] their radicals

NOTE: algorithm of Gianni/Trager/Zacharias
"
{

def BAS = basering;
//----the ordering is changed to the lexicographical one

changeord("R","lp");
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ideal i=fetch(BAS,i);
int n=nvars(R);
int k;
list result,rest;
ideal primary,prim;
option(redSB);

//------the random coordinate change and its inverse
ideal m=maxideal(1);
m[n]=0;
poly p=(random(100,1,n)*transpose(m))[1,1]+var(n);
m[n]=p;
map phi=R,m;
m[n]=2*var(n)-p;
map invphi=R,m;
ideal j=groebner(phi(i));

//-------------factorization of the first element in i
list fac=factorize(j[1],2);

//-------------computation of the primaries and primes
for(k=1;k<=size(fac[1]);k++)

p=fac[1][k]^fac[2][k];
primary=groebner(j+p);
prim=primaryTest(primary,fac[1][k]);

//---test whether all ideals were primary and in general
// position

if(prim==0)
{

rest[size(rest)+1]=i+invphi(p);
}
else
{

result[size(result)+1]=
list(std(i+invphi(p)),std(invphi(prim)));

}
}

//-------treat the bad cases collected in the rest again
for(k=1;k<=size(rest);k++)
{
result=result+zeroDecomp(rest[k]);

}
option(noredSB);
setring BAS;
list result=imap(R,result);
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kill R;
return(result);

}

ring r = 32003,(x,y,z),dp;
poly p = z2+1;
poly q = z4+2;
ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4;
list pr = zeroDecomp(i);
pr;

4.8.3. Procedure to define for an independent set u ⊂ x the ringK(u)[x� u].

proc prepareQuotientring(ideal i)

"USAGE: prepareQuotientring(i); i standard basis
RETURN: a list l of two strings:

l[1] to define K[x\u,u ], u a maximal independent
set for i
l[2] to define K(u)[x\u ], u a maximal independent
set for i
both rings with lexicographical ordering

"
{

string va,pa;
//v describes the independent set u: var(j) is in
//u iff v[j]!=0

intvec v=indepSet(i);
int k;

for(k=1;k<=size(v);k++)
{
if(v[k]!=0)
{
pa=pa+"var("+string(k)+"),";

}
else
{
va=va+"var("+string(k)+"),";

}
}

pa=pa[1..size(pa)-1];
va=va[1..size(va)-1];

string newring="
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ring nring=("+charstr(basering)+"),("+va+","+pa+"),lp;";
string quotring="
ring quring=("+charstr(basering)+","+pa+"),("+va+"),lp;";
return(newring,quotring);

}

ring s=(0,x),(a,b,c,d,e,f,g),dp;
ideal i=x*b*c,d^2,f-g;
i=std(i);
def Q=basering;
list l= prepareQuotientring(i);
l;
execute (l[1]);
basering;
execute (l[2]);
basering;
setring Q;

4.8.4. A procedure to collect the leading coefficients of a standard basis of
an ideal in K(u)[x� u]. They are needed to compute IK(u)[x� u] ∩K[x]
via saturation.

proc prepareSat(ideal i)

{
int k;
poly p=leadcoef(i[1]);
for(k=2;k<=size(i);k++)
{
p=p*leadcoef(i[k]);

}
return(p);

}

4.8.5. Using the above procedures, we can now present our procedure to
compute a primary decomposition of an ideal.

proc decomp (ideal i)

"USAGE: decomp(i); i ideal
RETURN: list l of lists of two ideals such that the

intersection(l[j][1], j=1..)=i, the l[i][1] are
primary and the l[i][2] their radicals

NOTE: algorithm of Gianni/Trager/Zacharias
"
{

if(i==0)
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{
return(list(i,i));

}
def BAS = basering;
ideal j;
int n=nvars(BAS);
int k;

ideal SBi=std(i);
int d=dim(SBi);

//---the trivial case and the zero-dimensional case
if ((d==0)||(d==-1))
{

return(zeroDecomp(i));
}

//---prepare the quotient ring with respect to a maximal
// independent set

list quotring=prepareQuotientring(SBi);
execute (quotring[1]);

//---used to compute a standard basis of i*quring
// which is in i

ideal i=std(imap(BAS,i));
//---pass to the quotient ring with respect to a maximal
// independent set

execute (quotring[2]);
ideal i=imap(nring,i);
kill nring;

//---computation of the zero-dimensional decomposition
list ra=zeroDecomp(i);

//---preparation for saturation
list p;
for(k=1;k<=size(ra);k++)
{
p[k]=list(prepareSat(ra[k][1]),prepareSat(ra[k][2]));

}
poly q=prepareSat(i);

//---back to the original ring
setring BAS;
list p=imap(quring,p);
list ra=imap(quring,ra);
poly q=imap(quring,q);
kill quring;

//---compute the intersection of ra with BAS
for(k=1;k<=size(ra);k++)
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{
ra[k]=list(sat(ra[k][1],p[k][1])[1],

sat(ra[k][2],p[k][2])[1]);
}
q=q^sat(i,q)[2];

//---i=intersection((i:q),(i,q)) and ra is the primary
// decomposition of i:q

if(deg(q)>0)
{
ra=ra+decomp(i+q);

}
return(ra);

}

ring r = 0,(x,y,z),dp;
ideal i = intersect(ideal(x,y,z)^3,ideal(x-y-z)^2,

ideal(x-y,x-z)^2);
list pr = decomp(i);
pr;

4.8.6. We pass to the computation of the equidimensional part of an ideal.

proc equidimensional (ideal i)

"USAGE: equidimensional(i); i ideal
RETURN: list l of two ideals such that intersection(l[1],

l[2])=i if there are no embedded primes
l[1] is equidimensional and dim(l[1])>dim(l[2])

"
{

def BAS = basering;

ideal SBi=std(i);
int d=dim(SBi);
int n=nvars(BAS);
int k;
list result;

//----the trivial cases
if ((d==-1)||(n==d)||(n==1)||(d==0))
{

result=i,ideal(1);
return(result);

}
//----prepare the quotient ring with respect to a maximal
// independent set
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list quotring=prepareQuotientring(SBi);
execute (quotring[1]);

//----we use this ring to compute a standard basis of
// i*quring which is in i

ideal eq=std(imap(BAS,i));
//----pass to the quotient ring with respect to a maximal
// independent set

execute (quotring[2]);
ideal eq=imap(nring,eq);
kill nring;

//----preparation for saturation
poly p=prepareSat(eq);

//----back to the original ring
setring BAS;
poly p=imap(quring,p);
ideal eq=imap(quring,eq);
kill quring;

//----compute the intersection of eq with BAS
eq=sat(eq,p)[1];
SBi=std(quotient(i,eq));

if(d>dim(SBi))
{
result=eq,SBi;
return(result);

}
result=equidimensional(i);
result=intersect(result[1],eq),result[2];
return(result);

}

ring r = 0,(x,y,z),dp;
ideal i = intersect(ideal(x,y,z)^3,ideal(x-y-z)^2,

ideal(x-y,x-z)^2);
list pr = equidimensional(i); pr;
dim(std(pr[1]));
dim(std(pr[2]));
option(redSB);
std(i);
std(intersect(pr[1],pr[2]));

4.8.7. Compute the squarefree part of a univariate polynomial f over a field
of characteristic 0, depending on the i–th variable.
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proc squarefree (poly f, int i)

{
poly h=gcd(f,diff(f,var(i)));
poly g=lift(h,f)[1][1];
return(g);

}

4.8.8. Finally, a procedure to compute the radical of an ideal.

proc radical(ideal i)

"USAGE: radical(i); i ideal
RETURN: ideal = the radical of i
NOTE: algorithm of Krick/Logar
"
{

def BAS = basering;
ideal j;
int n=nvars(BAS);
int k;

option(redSB);
ideal SBi=std(i);
option(noredSB);
int d=dim(SBi);

//-----the trivial cases
if ((d==-1)||(n==d)||(n==1))
{

return(ideal(squarefree(SBi[1],1)));
}

//-----the zero-dimensional case
if (d==0)
{

j=finduni(SBi);
for(k=1;k<=size(j);k++)
{

i=i,squarefree(cleardenom(j[k]),k);
}
return(std(i));

}
//-----prepare the quotientring with respect to a maximal
// independent set

list quotring=prepareQuotientring(SBi);
execute (quotring[1]);

//-----we use this ring to compute a standardbasis of
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// i*quring which is in i
ideal i=std(imap(BAS,i));

//-----pass to the quotientring with respect to a maximal
// independent set

execute( quotring[2]);
ideal i=imap(nring,i);
kill nring;

//-----computation of the zerodimensional radical
ideal ra=radical(i);

//-----preparation for saturation
poly p=prepareSat(ra);
poly q=prepareSat(i);

//-----back to the original ring
setring BAS;
poly p=imap(quring,p);
poly q=imap(quring,q);
ideal ra=imap(quring,ra);
kill quring;

//-----compute the intersection of ra with BAS
ra=sat(ra,p)[1];

//----now we have radical(i)=intersection(ra,radical((i,q)))
return(intersect(ra,radical(i+q)));

}

ring r = 0,(x,y,z),dp;
ideal i =
intersect(ideal(x,y,z)^3,ideal(x-y-z)^2,ideal(x-y,x-z)^2);
ideal pr= radical(i);
pr;

The algorithms and, hence, the procedures work in characteristic 0. However,
by our experience, the procedures in the library primdec.lib, distributed
with Singular, do also work for prime fields of finite characteristic provided
that it is not too small. In fact, the procedures, although designed for charac-
teristic 0, give a correct result for finite prime field whenever they terminate.



5. Hilbert Function and Dimension

5.1 The Hilbert Function and the Hilbert Polynomial

The Hilbert function of a graded module associates to an integer n the di-
mension of the n–th graded part of the given module. For sufficiently large n,
the values of this function are given by a polynomial, the Hilbert polynomial.
To show this, we use the Hilbert–Poincaré series, a formal power series in t
with coefficients being the values of the Hilbert function. This power series
turns out to be a rational function.

Let K be a field.

Definition 5.1.1. Let A =
⊕

ν≥0Aν be a Noetherian gradedK–algebra (cf.
Definition 2.2.1), and let M =

⊕
ν∈Z

Mν be a finitely generated graded A–
module. The Hilbert function HM : Z → Z of M is defined by

HM (n) := dimK(Mn) ,

and the Hilbert–Poincaré series HPM of M is defined by

HPM (t) :=
∑

ν∈Z

HM (ν) · tν ∈ Z[[t]][t−1] .

By definition, HM (and, hence, HPM ) depend only on the graded structure
of M . Hence, if ϕ : B → A is a graded K–algebra map, then it does not
matter whether we consider M as A–module or as B–module. In particular,
since A/AnnA(M) is a graded A–algebra (cf. Exercise 2.2.3), we may always
consider M as A/AnnA(M)–module when computing the Hilbert function
(or Hilbert–Poincaré series).

Using the results of Section 2.2, we obtain the first elementary properties
of HM and HPM (note that dimK(Mn) <∞ by Lemma 2.2.14):

Lemma 5.1.2. Let A =
⊕

ν≥0Aν be a Noetherian graded K–algebra, and
let M be a finitely generated graded A–module.

(1) Let N ⊂M be a graded submodule, then

HM (n) = HN (n) +HM/N (n)

for all n, in particular, HPM (t) = HPN (t) + HPM/N (t).
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(2) Let d be an integer, then

HM(d)(n) = HM (n+ d)

for all n, in particular, HPM(d)(t) = t−d HPM (t).
(3) Let d be a non–negative integer, let f ∈ Ad, and let ϕ : M(−d)→M be

defined by ϕ(m) := f ·m, then Ker(ϕ) and Coker(ϕ) are graded A/〈f〉–
modules with the induced gradings and

HM (n)−HM (n− d) = HCoker(ϕ)(n)−HKer(ϕ)(n− d) ,
in particular, HPM (t)− td HPM (t) = HPCoker(ϕ)(t)− tdHPKer(ϕ)(t).

Proof. (1) holds, because Nν = N ∩Mν and (M/N)ν = Mν/Nν . (2) is an
immediate consequence of the definition of M(d), and (3) is a consequence
of (1) and (2).

Theorem 5.1.3. Let A =
⊕

ν≥0Aν be a graded K–algebra, and assume that
A is generated, as K–algebra, by x1, . . . , xr ∈ A1. Then, for any finitely gen-
erated (positively) graded A–module M =

⊕
ν≥0Mν ,

HPM (t) =
Q(t)

(1− t)r for some Q(t) ∈ Z[t] .

Proof. We prove the theorem using induction on r. In the case r = 0, M is
a finite dimensional K–vector space, and, therefore, there exists an integer n
such that Mν = 〈0〉 for ν ≥ n. This implies HPM (t) ∈ Z[t].

Assume that r > 0, and consider the map ϕ : M(−1)→M defined by
ϕ(m) := x1 ·m. Using Lemma 5.1.2 (3), we obtain

(1 − t) · HPM (t) = HPCoker(ϕ)(t)− tHPKer(ϕ)(t).

Now both Ker(ϕ) and Coker(ϕ) are gradedA/〈x1〉 ∼= A0[x2, . . . , xr]–modules,
where xi := xi mod 〈x1〉, i = 2, . . . , r. Using the induction hypothesis we
obtain HPCoker(ϕ)(t) = Q1(t)

/
(1− t)r−1 and HPKer(ϕ)(t) = Q2(t)

/
(1 − t)r−1

for some Q1, Q2 ∈ Z[t]. This implies HPM (t) =
(
Q1(t)−Q2(t)

)/
(1− t)r.

With the notations of Theorem 5.1.3, we cancel all common factors in the
numerator and denominator of HPM (t) = Q(t)

/
(1 − t)r, and we obtain

HPM (t) =
G(t)

(1− t)s , 0 ≤ s ≤ r , G(t) =
d∑

ν=0

gνt
ν ∈ Z[t] ,

such that gd �= 0 and G(1) �= 0, that is, s is the pole order of HPM (t) at
t = 1.1

1 We set G(t) := 0, s := 0, if M = 0. In this chapter the zero–polynomial has degree
−1, and we set

(
n
−1

)
:= 0 if n ≥ 0 and

(−1
−1

)
:= 1.
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Definition 5.1.4. Let A =
⊕

ν≥0Aν be a Noetherian graded K–algebra,
and let M =

⊕
ν≥0Mν be a finitely generated (positively) graded A–module.

(1) The polynomial Q(t), respectively G(t), defined above, is called the first
Hilbert series, respectively the second Hilbert series , of M .

(2) Let d be the degree of the second Hilbert series G(t), and let s be the
pole order of the Hilbert–Poincaré series HPM (t) at t = 1, then

PM :=
d∑

ν=0

gν ·
(
s− 1 + n− ν

s− 1

)
∈ Q[n]

is called the Hilbert polynomial of M (with
(
n
k

)
= 0 for k < 0).

Corollary 5.1.5. With the above assumptions, PM is a polynomial in n with
rational coefficients, of degree s− 1, and satisfies PM (n) = HM (n) for n ≥ d.
Moreover, there exist aν ∈ Z such that

PM =
s−1∑

ν=0

aν ·
(
n

ν

)
=

as−1

(s− 1)!
· ns−1 + lower terms in n ,

where as−1 = G(1) > 0.

Proof. The equality 1
/
(1− t)s =

∑∞
ν=0

(
s−1+ν
s−1

) · tν implies

∞∑

ν=0

HM (ν)tν = HPM (t) =

(
d∑

ν=0

gνt
ν

)
·

∞∑

μ=0

(
s− 1 + μ

s− 1

)
tμ .

Therefore, for n ≥ d, we obtain

HM (n) =
d∑

ν=0

gν ·
(
s− 1 + n− ν

s− 1

)
= PM (n) .

It is easy to see that the leading term of PM ∈ Q[n] is
∑d
ν=0 gνn

s−1/(s− 1)!
which equals G(1) · ns−1/(s− 1)!. In particular, we obtain degPM = s− 1.

Finally, we have to prove that PM =
∑s−1

ν=0 aν
(
n
ν

)
for suitable aν ∈ Z and

as−1 > 0. Suppose that we can find such aν ∈ Z. Then

PM =
as−1

(s− 1)!
· ns−1 + lower terms in n .

Now, PM (n) = HM (n) > 0 for n sufficiently large implies as−1 > 0. Finally,
the existence of suitable integer coefficients aν is a consequence of the follow-
ing general lemma.

Lemma 5.1.6. Let f ∈ Q[t] be a polynomial of degree m and n0 ∈ N such
that f(n) ∈ Z for all n ≥ n0. Then f(n) =

∑m
ν=0 aν

(
n
ν

)
for suitable aν ∈ Z.
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Proof. Let g(n) := f(n+ 1)− f(n). Then g is a polynomial of degree m− 1
and g(n) ∈ Z for n ≥ n0. By induction on m we may assume that there exist
bν ∈ Z such that g(n) =

∑m−1
ν=0 bν

(
n
ν

)
. Now consider the function

h(n) := f(n)−
m∑

ν=1

bν−1

(
n

ν

)
.

Then

h(n+ 1)− h(n) = g(n)−
m∑

ν=1

bν−1

((
n+ 1
ν

)
−
(
n

ν

))

= g(n)−
m∑

ν=1

bν−1

(
n

ν − 1

)
= 0 .

It follows that h(n) = h(0) for all n ∈ N, hence f(n) = h(0) +
∑m
ν=1 bν−1

(
n
ν

)
.

This implies f(n) =
∑m
ν=0 aν

(
n
ν

)
with a0 = h(0) and aν = bν−1 for ν ≥ 1.

Exercises

5.1.1. Let A =
⊕

ν≥0Aν be a Noetherian K–algebra with K a field. Assume
dimK A0 <∞, AiAj ⊂ Ai+j and that A is generated by x1, . . . , xr, which
are homogeneous of degrees d1, . . . , dr, respectively. Let M =

⊕
ν≥0Mν be a

finitely generated (positively) graded A–module. Prove that

HPM (t) =
QM (t)∏r

i=1(1− tdi)
,

for some QM (t) ∈ Z[t], which is called the weighted first Hilbert series of M .
This generalizes Theorem 5.1.3 which is the case d1 = · · · = dr = 1.

Note that, in a ring with a weighted monomial ordering, the Singular–
command hilb computes the weighted first Hilbert series.

5.1.2. Let A = K[x, y, z]/〈x3+ y3+ z3〉, considered as a graded K–algebra
with the canonical grading. Compute the Hilbert–Poincaré series and the
Hilbert polynomial of A.

5.1.3. Let A = K[x, y, z]/〈x3+ y4+ z5〉, considered as a graded K–algebra
with the grading defined by deg(x) := 20, deg(y) := 15 and deg(z) := 12.
Use Singular to compute the (weighted) Hilbert-Poincaré series of A.

5.1.4. Let xα, xβ ∈Mon(x1, . . . , xr) be monomials of the same degree. Prove
that HPK[x]/〈xα〉 = HPK[x]/〈xβ〉.
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5.1.5. Let I ⊆ Q[x] be a homogeneous ideal and I0 = I ∩ Z[x], x =
(x1, . . . , xn). Let p be a prime number and Ip = I0Z/p[x].
Prove that H(n)

Q[x]/I ≤ H
(n)
Z/p[x]/Ip

for all n .
Hint: Use the fact that I0∩Z[x]n = {f ∈ I0|f homogeneous of degree n}∪

{0} is a finitely generated free Z–module of rank dimQ(I ∩Q[x]n).

5.1.6. Let A be a graded K–algebra and M and M ′ be finitely generated

graded A–modules with first Hilbert series QM =
d∑
v=0

gvt
v and QM ′ =

d′∑
v=0

g′vt
v.

Assume that gv=g′v for v=1, . . . , k − 1 and gk < g′k. Prove that HM (v)=
HM ′(v) for v = 1, . . . , k − 1 and HM (k) < HM ′(k).

5.1.7. Let H : N → Z be any function and d > 0. Show that the following
are equivalent for sufficiently large n:

(i) H(n) is a polynomial of degree d,
(ii) D(n) := H(n+ 1)− (H(n) is a polynomial of degree d− 1,
(iii) S(n) :=

∑n−1
ν=0 H(ν) is a polynomial of degree d+ 1.

Moreover, if ad

d! is the leading coefficient of H then D resp. S have leading
coefficient ad

(d−1)! resp. ad

(d+1)! .

5.2 Computation of the Hilbert–Poincaré Series

The main result in this section is that, for a homogeneous ideal I and any
monomial ordering, the K–algebras K[x1, . . . , xr]/I and K[x1, . . . , xr]/L(I)
have the same Hilbert polynomial.

Recall that the Hilbert polynomial and the Hilbert–Poincaré series deter-
mine each other (cf. Definition 5.1.4). Hence, it suffices to study and compute
the Hilbert–Poincaré series.

Example 5.2.1. Let K[x] := K[x1, . . . , xr] be the polynomial ring in r inde-
terminates, considered as graded K–algebra (as in Example 2.2.3). Then
HK[x](n) = PK[x](n) =

(
n+r−1
r−1

)
and, therefore,

HPK[x](t) =
∞∑

ν=0

(
r − 1 + ν

r − 1

)
tν =

1
(1− t)r .

Lemma 5.2.2. Let I ⊂ K[x] := K[x1, . . . , xr] be a homogeneous ideal, and
let f ∈ K[x] be a homogeneous polynomial of degree d then

HPK[x]/I(t) = HPK[x]/〈I,f〉(t) + tdHPK[x]/(I:〈f〉)(t) .

Proof. We consider the following exact sequence

0 −→ (
K[x]

/
(I : 〈f〉))(−d) ·f−→ K[x]/I −→ K[x]/〈I, f〉 −→ 0

and use Lemma 5.1.2.
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Example 5.2.3. Let I := 〈xz, yz〉 ⊂ K[x, y, z]. Using Lemma 5.2.2 for f := z
we obtain

HPK[x,y,z]/〈xz,yz〉(t) = HPK[x,y](t) + t · HPK[z](t) =
−t2 + t+ 1

(1 − t)2 ,

and, therefore,

PK[x,y,z]/〈xz,yz〉(n) =
(
n+ 1

1

)
+
(
n

1

)
−
(
n− 1

1

)
= n+ 2 .

Using Example 5.2.1 and Lemma 5.2.2, we obtain the following algorithm to
compute the Hilbert–Poincaré series for a monomial ideal, more precisely, it
computes the polynomial Q(t) ∈ Z[t] (notation of Theorem 5.1.3).

Algorithm 5.2.4 (MonomialHilbertPoincare(I)).

Input: I := 〈m1, . . . ,mk〉 ⊂ K[x], mi monomials in x = (x1, . . . , xr).
Output: A polynomial Q(t) ∈ Z[t] such that Q(t)/(1− t)r is the Hilbert–

Poincaré series of K[x]/I.

• choose S =
{
xα1 , . . . , xαs

} ⊂ {m1, . . . ,mk} to be the minimal set of mono-
mial generators of I;

• if S = {0} then return 1;
• if S = {1} then return 0;
• if all elements of S have degree 1 then return (1− t)s;
• choose 1 ≤ i ≤ s such that deg(xαi) > 1 and 1 ≤ k ≤ r such that xk | xαi ;
• return

(
MonomialHilbertPoincare (〈I, xk〉)
+ t ·MonomialHilbertPoincare (I : 〈xk〉)

)
.

In the following example we present an implementation of this procedure in
the programming language of Singular .

SINGULAR Example 5.2.5 (Hilbert–Poincaré series).
We compute the polynomialQ(t) ∈ Z[t] such thatQ(t)/(1− t)r is the Hilbert–
Poincaré series of Q[x1, . . . , xr]/I for an ideal I given by monomial generators.
For simplicity we compute in the ring Q[t, x1, . . . , xr], where the first vari-
able t is reserved for the polynomial Q(t) ∈ Z[t]. We use the degree reverse
lexicographical ordering dp.

proc MonomialHilbertPoincare(ideal I)
{

I=interred(I); //computes a minimal set of generators
int s=size(I); //of the monomial ideal I

if(I[1]==0){return(1);} //I=<0>
if(I[1]==1){return(0);} //I=<1>
if(deg(I[s])==1){return((1-var(1))^s);}//I is generated by
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//s of the {var(j)}
int j=1;
while(leadexp(I[s])[j]==0){j++;} //I[s]=var(j)*m
return(MonomialHilbertPoincare(I+var(j))

+var(1)*MonomialHilbertPoincare(quotient(I,var(j))));
}

ring A=0,(t,x,y,z),dp;
ideal I=x5y2,x3,y3,xy4,xy7;

MonomialHilbertPoincare(I);
//-> t6-2t3+1

Note that Singular has a command which computes the numerator Q(t)
for the Hilbert–Poincaré series:

intvec v = hilb(std(I),1);
v;
//-> 1,0,0,-2,0,0,1,0

The latter output has to be interpreted as follows: if v = (v0, . . . , vd, 0) then
Q(t) =

∑d
i=0 vit

i. 2

The following theorem is fundamental for the computation of the Hilbert–
Poincaré series for arbitrary graded K–algebras:

Theorem 5.2.6. Let > be any monomial ordering on K[x] := K[x1, . . . , xr],
and let I ⊂ K[x] be a homogeneous ideal. Then

HPK[x]/I(t) = HPK[x]/L(I)(t) ,

where L(I) is the leading ideal of I with respect to >.

Note that the theorem holds for any monomial ordering. However, in a ring
with a weighted monomial ordering, the Singular–command hilb computes
the weighted first Hilbert series of the leading ideal.

Proof. We have to show that HK[x]/I(n) = HK[x]/L(I)(n), or, equivalently,
dimK K[x]n/In = dimK K[x]n/L(I)n for all n.

Let S := {xα /∈ L(I) | deg(xα) = n}. We shall prove that S represents a
K–basis in K[x]n/In and K[x]n/L(I)n. To do so, choose a standard basis G
of I, let f ∈ K[x]n, and let NF denote the Mora normal form (which preserves
homogeneity), then we obtain that both, NF(f | G) and NF

(
f | L(G)

)
, are

elements of K[x]n. Iterating this process by computing the Mora normal form

2 Since Q(t) ∈ Z[t], Singular cannot return Q(t) as a polynomial in the current
basering (which may have a positive characteristic). Therefore, Singular returns
an integer vector.
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of the tail of NF(f | G), respectively NF
(
f | L(G)

)
, hence we can assume that

NF(f | G), NF
(
f | L(G)

) ∈∑
xα∈S K · xα.

Since NF(f | G) = 0 (respectively NF
(
f | L(G)

)
= 0) if and only if f ∈ I

(respectively f ∈ L(I)), the latter implies that S represents a K–basis of
K[x]n/In and K[x]n/L(I)n. This proves the theorem.

Corollary 5.2.7. With the notation of Theorem 5.2.6 we have

dimK(K[x]/I) = dimK

(
K[x]/L(I)

)
.

In Section 7.5, we shall show that this result holds also if I is not homoge-
neous.

Proof. For each graded K[x]–module M , dimK(M) = HPM (1), where M
may be finite dimensional or not.

For any homogeneous ideal I ⊂ K[x] := K[x1, . . . , xr], the following algo-
rithm computes the Hilbert–Poincaré series of K[x]/I:

Algorithm 5.2.8 (HilbertPoincare(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] a homogeneous ideal, x = (x1, . . . , xr).
Output: A polynomial Q(t) ∈ Z[t] such that Q(t)/(1− t)r is the Hilbert–

Poincaré series of K[x]/I.

• compute a standard basis {g1, . . . , gs} of I w.r.t. any monomial ordering;
• return MonomialHilbertPoincare(〈LM(g1), . . . ,LM(gs)〉).
Remark 5.2.9 (Hilbert–driven Buchberger Algorithm). We can use Theorem
5.2.6 to speed up the standard basis algorithm using the Hilbert function (for
more details see [219]). This can be useful if we need to compute a standard
basis with respect to an “expensive” ordering (as for instance lp): We first
compute a standard basis of the ideal I with respect to the ordering dp (which
is often sufficiently fast) and use it to compute the Hilbert function. Then we
start the computation for the “expensive” ordering using the Hilbert function
as a bound in the following way: The pair-set P is ordered by increasing degree
of the s–polynomials of the pairs. Whenever the standard basis algorithm
finds a new polynomial, say of degree d, which is added to the set S (the set
collecting the elements of the standard basis), the Hilbert function is used
to check whether dimK(K[x]/I)d = dimK(K[x]/〈L(S)〉)d. If this condition
holds, the remaining elements of degree d in P are cancelled.

In Singular the command std directly computes a standard basis while
the command groebner uses the Hilbert–driven approach for “expensive”
orderings. If option(prot) is set, each cancellation by the Hilbert function
is shown by printing the letter h on the screen.
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Remark 5.2.10 (Modular Gröbner basis computations.).
It is well known that the computation of standard bases in a polynomial

ring over the rational number Q is much more difficult than in a polynomial
ring over a finite field Fp = Z/p. The reason is the enormous growth of the co-
efficients during the computation even if the result may have relatively small
coefficients. To avoid these problems one can try to compute the standard
bases over Fp for one suitable prime p (resp. several suitable primes) and
use Hensel lifting as proposed in [234] (resp. Chinese remainder theorem) as
proposed in [200] to lift the coefficients to Z. Then Farey fractions (cf. [118],
[134]) can be used to obtain the “correct” coefficients over Q. This approach
has been discussed since a long time (cf. [4],[64],[96],[185],[200],[234]). Here
we follow the approach using Chinese remainder theorem. After the lifting
there are two problems to be solved. It has to be checked whether the lift-
ing of the standard bases to characteristic zero remains a standard basis and
that it generates the ideal we started with. For the case of Gröbner bases (the
monomial ordering is a global, i.e. a well–ordering) and homogeneous ideals
a reasonable solution can be found for instance in the paper of Arnold (cf.
[4]). It turns out that this method can also be used for standard basis with
respect to local orderings. The case of mixed orderings or global orderings
and non–homogeneous ideals is more complicated. With the same methods
as in the homogeneous resp. local case one just obtains a standard basis gen-
erating an ideal containing the ideal we started with. For experiments this is
already interesting, for proofs this is not enough.

In Singular the command modStd of the Library modstd.lib computes
standard basis using the modular methods described above.

Exercises

5.2.1. Write a Singular procedure to compute the Hilbert polynomial of
K[x1, . . . , xr]/I for a given homogeneous ideal I.

5.2.2. State and prove Theorem 5.2.6 for the case of graded modules.

5.2.3. Use Singular to compute the Hilbert–Poincaré series of the rational
quartic curve C ⊂ P

3 defined by the equations

z3− yt2 = 0 , yz − xt = 0 , y3− x2z = 0 , xz2− y2t = 0 .

5.2.4. Use Singular to compute a standard basis for the following ideal
with respect to the ordering lp, using a direct computation by the command
std and a Hilbert-driven approach by groebner:

ring R = 32003,(t,x,y,z,w),lp;
ideal I = 4t2zw+3txz2+6tz3+3zw3,

5t7xyw+5t3x2yz4+3tw9,
6t2yzw+6ty2z2+2xw4+2yw4;
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Compare the two approaches. (Use option(prot) to obtain more information
about the progress of the computations.)

5.2.5. (Hilbert polynomial of a hypersurface) Let f ∈ K[x] = K[x1, . . . , xr ]
be homogeneous of degree d. Prove that

PK[x]/〈f〉(n) =
(
n+ r − 1
r − 1

)
−
(
n− d+ r − 1

r − 1

)

=
d

(r − 2)!
· nr−2 + terms of lower degree .

(Hint: Use Theorem 5.2.6 and Example 5.2.1.)

5.2.6. Let I ⊆ Q[x] be a homogeneous ideal and I0 = I ∩ Z[x], x =
(x1, . . . , xn). Let p be a prime and Ip = I0Z/p[x]. Let g1, . . . , gs ∈ Z[x] and
J = 〈g1, . . . , gs〉Q[x]. Let gi := gi mod pZ[x].

Assume that

(1) {g1, . . . , gs} is a minimal Gröbner basis of J .
(2) {g1, . . . , gs} is a minimal Gröbner basis of Ip.
(3) I ⊆ J .

Prove that I = J .
Hint: Use Exerccise 5.1.5 and Theorem 5.2.6.

5.3 Properties of the Hilbert Polynomial

In this section we prove that, for a graded K–algebra A = K[x1, . . . , xr]/I,
dim(A) − 1 is equal to the degree of the Hilbert polynomial PA. This implies,
in particular, using the main result of the previous section (Theorem 5.2.6),
that

dim(K[x1, . . . , xr]/I) = dim
(
K[x1, . . . , xr]/L(I)

)
.

Definition 5.3.1. Let A =
⊕

ν≥0Aν be a Noetherian graded K–algebra,
and let M =

⊕
ν∈Z

Mν be a finitely generated, (not necessarily positively)
graded A–module. Then we introduce

M (0) :=
⊕

ν≥0

Mν ,

and define the Hilbert polynomial of M to be the Hilbert polynomial of M (0),
that is, PM := PM(0) .

Example 5.3.2. Let A =
⊕

ν≥0Aν be a Noetherian graded K–algebra, then
PA(d)(n) = PA(n+ d) = PA(n)+ terms of lower degree in n.
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Definition 5.3.3. Let A be a Noetherian gradedK–algebra andM a finitely
generated gradedA–module, and let PM =

∑d
ν=0 aνn

ν , ad �= 0, be the Hilbert
polynomial of M . Then we set

d(M) := deg(PM ) = d ,

and we define the degree of M as

deg(M) := d! · ad
if M �= 0, and deg(M) := 0 if M = 0.

Remark 5.3.4. If M is positively graded and HPM (t) = G(t)/(1− t)s with
G(1) �= 0, then d(M) = s− 1 and deg(M) = G(1) (cf. Corollary 5.1.5). In
particular, d(K[x1, . . . , xr]) = r − 1 and deg(K[x1, . . . , xr]) = 1 (cf. Example
5.2.1).

Lemma 5.3.5. Let f ∈ K[x1, . . . , xr] � {0} be a homogeneous polynomial of
degree m, then d(K[x]/〈f〉) = r − 2 and deg(K[x]/〈f〉) = m.

Proof. The statement is an immediate consequence of Exercise 5.2.5.

Proposition 5.3.6. Let A be a Noetherian graded K–algebra, and let M,N
be finitely generated graded A–modules.

(1) If there is a surjective graded morphism ϕ : M → N then d(M) ≥ d(N).
(2) d(M) ≤ d(A).
(3) If there is a homogeneous element m ∈M such that AnnA(〈m〉) = 〈0〉

then d(M) = d(A).
(4) Let x ∈ Ad be a homogeneous non–zerodivisor for M , then

d(M/xM) = d(M)− 1 , deg(M/xM) = d · deg(M) .

Proof. (1) Let ϕ : M → N be a graded and surjective homomorphism of A–
modules. Then, for all n, the restriction to Mn, ϕ|Mn : Mn → Nn is surjective,
too. This implies HM (n) = dimK(Mn) ≥ dimK(Nn) = HN (n).

Hence, PM (n) ≥ PN (n) for all n sufficiently large, which is only possible
if deg(PM ) ≥ deg(PN ), since the leading coefficients are positive.

(2) Since M is finitely generated, we may choose homogeneous generators
m1, . . . ,mk of degree d1, . . . , dk. Now consider the map

ϕ :
k⊕

i=1

A(−di) −→M

defined by ϕ(a1, . . . , ak) =
∑k

i=1 aimi. Obviously, ϕ is graded and surjective.
Using (1) we obtain d

(⊕k
i=1 A(−di)

) ≥ d(M). On the other hand, for n suf-
ficiently large
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P⊕k
i=1 A(−di)

(n) =
k∑

i=1

PA(−di)(n) =
k∑

i=1

PA(n− di)

= k · PA(n) + terms of lower degree in n ,

which implies d
(⊕k

i=1A(−di)
)

= d(A).
(3) Let m ∈Md such that AnnA(〈m〉) = 〈0〉. Then ϕ : A(−d)→M de-

fined by ϕ(a) := am is graded and injective. This implies that, for n suf-
ficiently large, PA(n− d) = PA(−d)(n) ≤ PM (n), which is only possible if
deg(PM ) ≥ deg(PA). Together with (2) this implies d(M) = d(A).

(4) Using the exact sequence 0 →M(−d) x−→M →M/xM → 0 of graded
A–modules, we obtain, by Lemma 5.1.2 (3), (1− td)HPM (t) = HPM/xM (t).
If HPM (t) = G(t)/(1− t)d(M)+1 with G(1) �= 0, then

HPM/xM =
G(t)(1 − td)

(1− t)d(M)(1− t) =
G(t) ·∑d−1

ν=0 t
ν

(1− t)d(M)
.

Then HPM/xM has pole order d(M) at t = 1, hence, d(M/xM) = d(M)− 1
and deg(M/xM) =

(
G(t) ·∑d−1

ν=0 t
ν
)∣∣
t=1

= G(1) · d = deg(M) · d.
Note that Proposition 5.3.6 (4) generalizes Lemma 5.3.5.

Theorem 5.3.7. Let I ⊂ K[x1, . . . , xr] be a homogeneous ideal, then

dim(K[x1, . . . , xr]/I) = d(K[x1, . . . , xr]/I) + 1 .

Proof. Using Noether normalization, K[x1, . . . , xr]/I can be considered as
finitely generated graded K[y1, . . . , ys]–module. The assumptions of Propo-
sition 5.3.6 (3) are satisfied and, therefore,

deg(PK[x1,...,xr]/I) = deg(PK[y1,...,ys]) = s− 1 = dim(K[x1, . . . , xr]/I)− 1 .

For a more general statement see Exercise 5.3.5.

Corollary 5.3.8. Let I ⊂ K[x] = K[x1, . . . , xr] be a homogeneous complete
intersection ideal (that is, I = 〈f1, . . . , fk〉 with fi homogeneous and a non–
zerodivisor in K[x]/〈f1, . . . , fi−1〉, i = 1, . . . , k). Then

dim(K[x]/I) = r − k , deg(K[x]/I) = deg(f1) · . . . · deg(fk) .

Proof. Apply Proposition 5.3.6 (4) and Theorem 5.3.7.

Corollary 5.3.9. Let > be any monomial ordering on K[x] =K[x1, . . . , xr],
and let I ⊂ K[x] be a homogeneous ideal, then

dim(K[x]/I) = dim
(
K[x]/L(I)

)
.
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Proof. We just combine Theorems 5.3.7 and 5.2.6.

Proposition 5.3.10. Let A = K[x1, . . . , xr]/P , P a homogeneous prime
ideal, and let K[x1, . . . , xs] ⊂ A be a Noether normalization such that the
field extension Q(K[x1, . . . , xs]) ⊂ Q(A) is separable. Then

deg(A) =
[
Q(A) : Q(K[x1, . . . , xs])

]
.

Proof. We prove the proposition for the case that K is an infinite field. Us-
ing the Primitive Element Theorem ([238]), we know that the field extension
can be generated by αs+1xs+1 + · · ·+ αrxr mod P for generic αi ∈ K. We
may, therefore, assume that the extension is generated by xs+1 mod P . Let
f ∈ K[x1, . . . , xs+1] ∩ P be a monic (with respect to xs+1) homogeneous ir-
reducible polynomial. It exists, because P is prime and homogeneous and
A ⊃ K[x1, . . . , xs] is finite. By the Gauß lemma (see, e.g., [128], Section 1.4),
f is also irreducible in Q(K[x1, . . . , xs])[xs+1]. Therefore, f is the minimal
polynomial of the field extension. In particular, we have

degxs+1
(f) =

[
Q(A) : Q(K[x1, . . . , xs])

]
.

LetΔ ∈ K[x1, . . . , xs] be the discriminant of f andB := K[x1, . . . , xs+1]/〈f〉.
Since K[x1, . . . , xs] is a Noetherian normal integral domain, K[x1, . . . , xs] ⊂
A an integral extension in Q(B) = Q(A) and Q(K[x1, . . . , xs]) ⊂ Q(B) a sep-
arable field extension, Lemma 3.5.12 implies, in particular, that A ⊂ 1

ΔB.
Now consider the exact sequence 0→ B → A→ A/B → 0 of finitely gener-
ated K[x1, . . . , xs]–modules.

Since A ⊂ 1
ΔB, we obtain ΔA/B = 0. This implies that A/B is already

a K[x1, . . . , xs]/Δ–module and, therefore,

deg(PA/B) = d(A/B) ≤ d(K[x1, . . . , xs])− 1 = s− 2 .

B is a free K[x1, . . . , xs]–module of finite rank, that is, deg(PB) = s− 1.
From the exact sequence we obtain PA − PB = PA/B.

This implies deg(PB) = deg(PA) = s− 1, and the leading coefficients of
PB and PA are the same, namely deg(A) = deg(B). Finally, Lemma 5.3.5
implies that deg(B) = degxs+1

(f).

Lemma 5.3.11. Let K[x] := K[x1, . . . , xr], and let I ⊂ K[x] be a homoge-
neous ideal. Moreover, let I = Q1 ∩ · · · ∩Qm be an irredundant homogeneous
primary decomposition and assume that

dim(K[x]/Q1) = · · · = dim(K[x]/Qs) = dim(K[x]/I)

and dim(K[x]/Qj) < dim(K[x]/I) for j > s. Then

deg(K[x]/I) =
s∑

i=1

deg(K[x]/Qi) .
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Proof. We use induction on m. If J := Q2 ∩ · · · ∩Qm then, because of Exer-
cise 5.3.3, we have an exact sequence

0 −→ K[x]/I −→ K[x]/J ⊕K[x]/Q1 −→ K[x]/(J +Q1) −→ 0 .

This implies PK[x]/I + PK[x]/J+Q1 = PK[x]/J + PK[x]/Q1 . The primary de-
composition being irredundant, we have dim

(
K[x]/(J +Q1)

)
< dim(K[x]/J)

(cf. Exercise 4.1.11), which implies deg
(
PK[x]/(J+Q1)

)
< deg(PK[x]/I).

If s = 1 then, by definition, dim(K[x]/J) < dim(K[x]/I) and, therefore,
deg(PK[x]/J) < deg(PK[x]/I). This implies deg(K[x]/I) = deg(K[x]/Q1). If
s > 1 then we obtain deg(K[x]/I) = deg(K[x]/Q1) + deg(K[x]/J), and we
can use induction to obtain the lemma.

SINGULAR Example 5.3.12 (dimension, degree and Hilbert func-
tion of a homogeneous ideal).
We compute the dimension, degree and Hilbert function of an ideal arising
from a geometrical problem (cf. Appendix A, Singular Exercise A.8.12).
Let ϕ be a morphism given by

P
1 ϕ−→ P

d

(s : t) �−→ (td : td−1s : · · · : sd).
It defines the so-called rational normal curve of degree d in P

d and has the
parametrization x0 = td, x1 = td−1s, . . . , xd = sd. First, we compute the
ideal defining the rational normal curve, by eliminating s and t from the
parametrization (cf. Section 1.8.2):

ring R=0,(s,t,x(0..4)),dp;
ideal I=x(0)-t4,x(1)-t3s,x(2)-t2s2,x(3)-ts3,x(4)-s4;
ideal J=eliminate(I,st);
J;
//-> J[1]=x(3)^2-x(2)*x(4)
//-> J[2]=x(2)*x(3)-x(1)*x(4)
//-> J[3]=x(1)*x(3)-x(0)*x(4)
//-> J[4]=x(2)^2-x(0)*x(4)
//-> J[5]=x(1)*x(2)-x(0)*x(3)
//-> J[6]=x(1)^2-x(0)*x(2)

We now compute the Hilbert–Poincaré series of the ideal J .

ring S=0,(x(0..4)),dp;
ideal J=imap(R,J);
J=std(J);
hilb(J);
//-> 1 t^0
//-> -6 t^2
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//-> 8 t^3
//-> -3 t^4
//->
//-> 1 t^0
//-> 3 t^1
//->
//-> // dimension = 1
//-> // degree = 4

We obtain Q(t) = −3t4+ 8t3− 6t2+ 1 (first Hilbert series) and G(t) = 3t+ 1
(second Hilbert series). The dimension of the projective variety defined by
J is 1 — it is a curve; the degree is 4. Let us check this by computing the
Hilbert polynomial.

LIB"poly.lib";
hilbPoly(J);
//-> 1,4

The Hilbert polynomial is 4t+ 1 which leads to the dimension and degree
we already computed using the Hilbert–Poincaré series. Let us now use the
Singular commands degree and dim for the same computations:

degree(J);
//-> 4
dim(J);
//-> 2

Here we obtain the dimension of the affine variety given by J , that is, the
affine cone over the rational normal curve, which is 2.

Up to this point, we have only considered homogeneous ideals. In the general
case (that is, without assuming homogeneity) studying the Hilbert function
of the homogenization leads to results about the relation between an ideal
and its leading ideal as well.

Lemma 5.3.13. Let I ⊂ K[x] := K[x1, . . . , xr] be an ideal and Ih its ho-
mogenization with respect to t in K[t, x], then

dim(K[x]/I) + 1 = dim(K[t, x]/Ih) .

Proof. We shall prove the lemma for the case that the characteristic of K is
zero. We choose coordinates M · y = x, y = (y1, . . . , yr), for a Noether nor-
malization such that I ∩K[ys+1, . . . , yr] = 0 and, for j = 1, . . . , s, there exist
polynomials

gj = y
ej

j +
ej−1∑

k=0

ξjk(yj+1, . . . , yr) · ykj ∈ I with ej ≥ deg(ξj,k) + k
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(cf. Theorem 3.4.1). Then the homogenizations of gj with respect to t are

ghj = yejj +
ej−1∑

k=0

tej−deg(ξjk)−kξhjk · ykj ∈ Ih

and, therefore, the mapK[t, y1, . . . , yr]/Ih← K[t, ys+1, . . . , yr] is finite. More-
over, Ih ∩K[t, ys+1, . . . , yr] = 〈0〉, because f ∈ Ih implies f |t=1 ∈ I. There-
fore,K[t, y1, . . . , yr]/Ih← K[t, ys+1, . . . , yr] is a Noether normalization, which
implies

dim(K[t, y1, . . . , yr]/Ih) = r − s+ 1 = dim(K[x1, . . . , xr ]/I) + 1 .

Corollary 5.3.14. Let > be a degree ordering on K[x] := K[x1, . . . , xr] (that
is, deg(xα) > deg(xβ) implies xα > xβ) and I ⊂ K[x] any ideal, then

dim(K[x]/I) = dim
(
K[x]/L(I)

)
.

Proof. Let Ih = 〈fh | f ∈ I〉 be the homogenization of I with respect to t in
K[t, x] = K[t, x1, . . . , xr]. We extend > to a monomial ordering >h on K[t, x]
by setting

tα0xα >h t
β0xβ :⇐⇒ α0 + |α| > β0 + |β|

or
(
α0 + |α| = β0 + |β| and xα > xβ

)

(see page 56). Recall that this ordering has the following property:

L(Ih) = L(I) ·K[t, x] = L(I)h .

Now, using Theorem 5.2.6 we obtain

PK[t,x]/Ih = PK[t,x]/L(Ih) = PK[t,x]/L(I)h .

The corollary follows now from Lemma 5.3.13.

Definition 5.3.15. For I ⊂ K[x] := K[x1, . . . , xr ] an ideal we define the
affine Hilbert function as follows: let K[x]≤s = {f ∈ K[x] | deg(f) ≤ s} and
I≤s = I ∩K[x]≤s. Then the affine Hilbert function AHI of I is given by

AHI(n) := dimK

(
K[x]≤n

/
I≤n

)
.

Remark 5.3.16. Let I ⊂ K[x] := K[x1, . . . , xr] be an ideal, and Ih ⊂ K[t, x]
the homogenization of I with respect to t. Then

AHI(n) = HK[t,x]/Ih(n) ,

because ϕ : K[x]≤s −→ K[t, x]s, f �→ tsf (x1/t, . . . , xr/t), the homogeniza-
tion map, defines a K–isomorphism with ϕ(I≤s) = Ihs . Therefore, we obtain
AHI(n) = AHL(I)(n) for any degree ordering.

On the other hand, AHI(n) = PK[t,x]/Ih(n) is, for n sufficiently large,
polynomial in n, of degree dim(K[x]/I).
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Corollary 5.3.17. Let I ⊂ K[x] := K[x1, . . . , xr] be an ideal.

(1) dim(K[x]/I) = 0 if and only if dimK(K[x]/I) <∞.
(2) Let > be a degree ordering, then dimK(K[x]/I) = dimK

(
K[x]/L(I)

)
.

Proof. To prove (1), choose any degree ordering on K[x]. If dim(K[x]/I) = 0
then AHI(n) = dimK(K[x]/I) for large n. Therefore, dimK(K[x]/I) <∞.

On the other hand, assume that dimK(K[x]/I) <∞. Then AHI(n) is
bounded, but, for large n, it is a polynomial of degree equal to the dimension
of K[x]/I. Hence, dim(K[x]/I) = 0.

To prove (2) we may assume that dim(K[x]/I) = 0, because, otherwise,
both dimensions are infinite. This implies that for large n, AHI(n) is a poly-
nomial of degree zero, that is, constant. Hence, for large n,

dimK(K[x]/I) = AHI(n) = AHL(I)(n) = dimK

(
K[x]/L(I)

)
.

Remark 5.3.18. Once we have the notion of flatness, we shall show that Corol-
laries 5.3.9, 5.3.14 and 5.3.17 can be generalized to ideals I ⊂ K[x1, . . . , xn]>,
where > is any monomial ordering (see Section 7.5).

Exercises

5.3.1. Write a Singular procedure to compute the affine Hilbert function.

5.3.2. Let I = 〈x3+ y2+ z〉. Compute the affine Hilbert function AHI .

5.3.3. Let A be a ring and I, J ⊂ A ideals. Prove that the sequence

0 −→ A/(I ∩ J) −→ A/I ⊕A/J −→ A/(I + J) −→ 0

is exact, the first map being given by a mod (I ∩ J) �→ (a mod I, a mod J)
and the second by (a mod I, b mod J) �→ (a− b) mod (I + J).

5.3.4. Let A = K[x1, . . . , x5] and let I be the ideal generated by the 3–minors
of the matrix

M =

⎛

⎝
x0 x1 x2 x3

x1 x2 x3 x4

x2 x3 x4 x5

⎞

⎠ .

Compute the Hilbert–Poincaré series and the Hilbert polynomial of A/I.

5.3.5. Let A be a graded K–algebra and M a (positively) graded, finitely
generated A–module. Show that deg(PM ) = dim(M)−1 (cf. Definition 5.6.4).
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5.4 Filtrations and the Lemma of Artin–Rees

In the next section, we shall study modules over local rings and the filtration
induced by the powers of the maximal ideal. In this section, we provide the
technical prerequisites.

Let A be a Noetherian ring and Q ⊂ A be an ideal.

Definition 5.4.1. A set {Mn}n≥0 of submodules of an A–module M is
called Q–filtration of M if

(1) M = M0 ⊃M1 ⊃M2 ⊃ . . . .
(2) QMn ⊂Mn+1 for all n ≥ 0.

A Q–filtration {Mn}n≥0 of M is called stable if QMn = Mn+1 for all suffi-
ciently large n.

Example 5.4.2. Let M be an A–module and Mn := QnM for n ≥ 0. Then
{Mn}n≥0 is a stable Q–filtration of M .

Lemma 5.4.3. Let {Mn}n≥0 and {Nn}n≥0 be two stable Q–filtrations of M .
Then there exists some non–negative integer n0 such that Mn+n0 ⊂ Nn and
Nn+n0 ⊂Mn for all n ≥ 0.

Proof. We may assume that one of the two filtrations is the one of Example
5.4.2, say Nn := QnM . Now, {Mn}n≥0 being stable implies that there exists
some non–negative integer n0 such that Mn0+n = QnMn0 for all n ≥ 0. On
the other hand, QnMn0 ⊂ QnM = Nn implies Mn0+n ⊂ Nn.

As {Mn}n≥0 is a Q–filtration, we have QMn ⊂Mn+1 for all n ≥ 0, which
implies, in particular, Nn = QnM = QnM0 ⊂Mn. But Nn0+n ⊂ Nn which
proves the claim.

Lemma 5.4.4. Let {Mn}n≥0 be a Q–filtration of M , and let N be a sub-
module of M . Then {N ∩Mn}n≥0 is a Q–filtration of N .

Proof. QMn ⊂Mn+1 implies Q(Mn ∩N) ⊂ QMn ∩QN ⊂Mn+1 ∩N for all
n ≥ 0.

Lemma 5.4.5 (Artin–Rees). Let {Mn}n≥0 be a stable Q–filtration of the
finitely generated A–module M and N ⊂M a submodule, then {Mn ∩N}n≥0

is a stable Q–filtration of N .

To prove the lemma, we need a criterion for stability. Let M be a finitely
generated A–module and {Mn}n≥0 be a Q–filtration of M . Let

A :=
∞⊕

n=0

Qn , M :=
∞⊕

n=0

Mn .
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Lemma 5.4.6 (Criterion for stability). M is a finitely generated A–
module if and only if {Mn}n≥0 is Q–stable.

Proof. Since A is Noetherian and M is finitely generated, if follows that the
submodules Mn, n ≥ 0, are finitely generated. Let

Mn := M0 ⊕ · . . . · ⊕Mn−1 ⊕AMn ,

thenMn is a finitely generated A–module, because
⊕n

ν=0Mν is a finitely gen-
erated A–module. Moreover, Mn ⊂Mn+1 for all n ≥ 0, and

⋃∞
n=0Mn = M .

A is Noetherian, because A = A[f1, . . . , fr] if Q = 〈f1, . . . , fr〉. This im-
plies (finitely generated modules over Noetherian rings being Noetherian)
that M is a finitely generated A–module if and only if there exists a non–
negative integer n0 such that Mn0 = M . This is the case if and only if
Mn0+r = QrMn0 for all r ≥ 0.

Proof of Lemma 5.4.5. Using Lemma 5.4.4 we obtain that {Mn ∩N}n≥0 is
a Q–filtration of N . We know by assumption and Lemma 5.4.6 that M is
a finitely generated A–module. Moreover, N :=

⊕∞
n=0(Mn ∩N) is an A–

submodule of M and, therefore, also finitely generated. Using Lemma 5.4.6
again, we obtain that {Mn ∩N}n≥0 is a stable Q–filtration of N .

Corollary 5.4.7. Let M be a finitely generated A–module and N ⊂M a sub-
module, then there exists a non–negative integer n0 such that, for all n ≥ n0,

(QnM) ∩N = Qn−n0
(
(Qn0M) ∩N)

.

Proof. Apply Lemma 5.4.5 for the filtration given byMn := QnM , n ≥ 0.

Exercises

5.4.1. Consider M := K[x, y]/〈y2+ y + x〉 as A := K[x]–module with the
following Q = 〈x〉–filtration: Mn = 〈x, y〉n. Decide whether this is a stable
Q–filtration.

5.4.2. Let A be a Noetherian ring, M a finitely generated A–module and
N ⊂M a submodule. Let Q ⊂ A be an ideal and {Mn}n≥0 a stable Q–
filtration of M . Prove that there exist stable Q–filtrations {Nn}n≥0 of N and
{M̃n}n≥0 of M/N such that 0 → Nn →Mn → M̃n → 0 is exact.

5.4.3. Give an example for an A–module M , a submodule N ⊂M and an
ideal Q ⊂ A, such that the filtrations {QnN}n≥0 and {QnM ∩N}n≥0 of N
are different.
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5.5 The Hilbert–Samuel Function

The Hilbert–Samuel function is the counterpart to the Hilbert function in
the local case. To a module M over the local ring (A,m) and to an integer n,
it associates the dimension of M/mnM . Similarly to the homogeneous case,
this function is a polynomial for large n, the Hilbert–Samuel polynomial. By
passing to the associated graded module Grm(M) =

⊕∞
ν=0 mνM/mν+1M , the

results from the homogeneous case can be used.
Let A be a local Noetherian ring with maximal ideal m. We assume (just

for simplicity) that K = A/m ⊂ A. Moreover, let Q be an m–primary ideal
and M a finitely generated A–module. Recall that the associated graded ring
to Q ⊂ A is defined as GrQ(A) =

⊕∞
ν=0(Q

ν/Qν+1) (cf. Example 2.2.3).

Lemma 5.5.1. Let {Mn}n≥0 be a stable Q–filtration of M , and let

HS{Mn}n≥0(k) := dimK(M/Mk) .

Moreover, suppose that Q is generated by r elements. Then

(1) HS{Mn}n≥0(k) <∞ for all k ≥ 0;
(2) there exists a polynomial HSP{Mn}n≥0(t) ∈ Q[t] of degree at most r such

that HS{Mn}n≥0(k) = HSP{Mn}n≥0(k) for all sufficiently large k;
(3) the degree of HSP{Mn}n≥0 and its leading coefficient do not depend on

the choice of the stable Q–filtration {Mn}n≥0.

Proof. GrQ(A) =
⊕

ν≥0Q
ν/Qν+1 is a graded K–algebra (Example 2.2.3),

which is generated by r elements of degree 1. Now, let

Gr{Mn}(M) :=
⊕

ν≥0

Mν/Mν+1 .

Since {Mn}n≥0 is a stable Q–filtration, Gr{Mn}(M) is a finitely generated,
graded GrQ(A)–module.

Now, as QMν ⊂Mν+1, the quotients Mν/Mν+1, ν ≥ 0, are annihilated by
Q and, therefore, are finitely generated A/Q–modules. But A/Q is a finite di-
mensional K–vector space (Q is m–primary), hence, dimK(Mν/Mν+1) <∞.
This implies dimK(M/Mn) =

∑n
ν=1 dimK(Mν−1/Mν) <∞, which proves (1).

To prove (2) notice that HGr{Mn}(M)(k) = dimK(Mk/Mk+1). For suffi-
ciently large k, HGr{Mn}(M)(k) = PGr{Mn}(M)(k), and PGr{Mn}(M) is a poly-
nomial of degree at most r − 1 (cf. Theorem 5.1.3 and Corollary 5.1.5). Let

PGr{Mn}(M)(k) =
r−1∑

ν=0

aν

(
k

ν

)
,

then we have
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HS{Mn}n≥0(k + 1)− HS{Mn}n≥0(k) = dimK(M/Mk+1)− dimK(M/Mk)
= dimK(Mk/Mk+1) = HGr{Mn}(M)(k) = PGr{Mn}(M)(k) ,

for sufficiently large k. On the other hand,
r∑

ν=1

aν−1

(
k + 1
ν

)
−

r∑

ν=1

aν−1

(
k

ν

)
=

r−1∑

ν=0

aν

(
k

ν

)

= HS{Mn}n≥0(k + 1)−HS{Mn}n≥0(k) .

Hence HS{Mn}n≥0(k)−
∑r

ν=1 aν−1

(
k
ν

)
is constant if k is sufficiently large.

Let C be this constant and set HSP{Mn}n≥0(k) :=
∑r

ν=1 aν−1

(
k
ν

)
+ C. Then

HS{Mn}n≥0(k) = HSP{Mn}n≥0(k), a polynomial of degree at most r, for suf-
ficiently large k.

To prove (3) let {M ′
n}n≥0 be another stable Q–filtration of M , and

choose, using Lemma 5.4.3, k0 such that Mk+k0 ⊂M ′
k and M ′

k+k0
⊂Mk for

all k ≥ 0. This implies the inequalities HS{Mn}n≥0(k) ≤ HS{M ′
n}n≥0(k + k0)

and HS{M ′
n}n≥0(k) ≤ HS{Mn}n≥0(k + k0) and, therefore,

1 = lim
k→∞

HS{Mn}(k)
HS{M ′

n}(k)
= lim

k→∞
HSP{Mn}(k)
HSP{M ′

n}(k)
,

which proves (3).

Definition 5.5.2. With the notation of Lemma 5.5.1 we define:

(1) HSM,Q := HS{QnM}n≥0 is called the Hilbert–Samuel function of M with
respect to Q;

(2) HSPM,Q := HSP{QnM}n≥0 is called the Hilbert–Samuel polynomial of M
with respect to Q;

(3) let HSPM,Q(k) =
∑d

ν=0 aνk
ν with ad �= 0. Then mult(M,Q) := d! · ad is

called the (Hilbert–Samuel) multiplicity of M with respect to Q;
(4) mult(M) := mult(M,m) is the (Hilbert–Samuel) multiplicity of M .

Remark 5.5.3. Let 0 → N →M →M/N → 0 be an exact sequence of finitely
generated A–modules, and Q an m–primary ideal. Then

0 → N/(QnM ∩N) →M/QnM → (M/N)/Qn(M/N)→ 0

is exact and, hence, HSPM,Q = HSPM/N,Q+ HSP{QnM∩N}. The proof of
Lemma 5.5.1 shows that, indeed,

HSPM,Q = HSPM/N,Q+ HSPN,Q−R ,
where R is a polynomial of degree strictly smaller than that of HSPN,Q. 3

More precisely, degR = dim(Ker(GrQM/GrQN � GrQ(M/N)))−1. More-
over, if R �= 0, then its leading coefficient is positive. We shall see in Propo-
sition 5.6.3 that deg(HSPM,Q) = deg(HSPM,m).
3 Note the difference to the Hilbert polynomial of graded modules where no re-

mainder R appears, cf. Lemma 5.1.2.
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Example 5.5.4. Let A = K[x1, . . . , xr ]〈x1,...,xr〉 then HSPA,m(k) =
(
k+r−1
r

)
.

In particular, mult(A) = 1.

In the proof of Lemma 5.5.1, we actually proved more than just the claim. Us-
ing the notation of Definition 5.5.2, we can summarize the additional results
as a comparison between the Hilbert–Samuel polynomial of M with respect
to Q and the Hilbert polynomial of the graded GrQ(A)–module GrQ(M)
∼= ⊕∞

ν=0(Q
νM/Qν+1M).

Corollary 5.5.5. Let (A,m) be a Noetherian local ring, Q ⊂ A an m-primary
ideal and M a finitely generated A–module.

(1) HSPM,Q(k + 1)−HSPM,Q(k) = PGrQ(M)(k).
(2) If PGrQ(M)(k) =

∑s−1
ν=0 aν

(
k
ν

)
then

HSPM,Q(k) =
s∑

ν=1

aν−1

(
k

ν

)
+ c

with c = dimK(M/Q	M)−∑s
ν=1 aν−1

(
	
ν

)
for any sufficiently large �.

In particular, we obtain mult(M,Q) = deg(GrQ(M)) and

deg(HSPM,Q) = deg(PGrQ(M)) + 1 .

Example 5.5.6. Let I ⊂ K[x] := K[x1, . . . , xr] be a monomial ideal, and let
A = K[x]〈x〉/I. 4 Then, because of K[x]〈x〉/(I + 〈x〉k) ∼= K[x]/(I + 〈x〉k), we
obtain Gr〈x〉(A) = K[x]/I, and Corollary 5.5.5 implies

HSPA,〈x〉(k)−HSPA,〈x〉(0) =
k−1∑

ν=0

PK[x]/I(ν) .

The following proposition enables the use of Example 5.5.6 for the computa-
tion of the Hilbert–Samuel polynomial:

Proposition 5.5.7. Let > be a local degree ordering on K[x] = K[x1, . . . , xr ]
(that is, deg(xα) > deg(xβ) implies xα < xβ). Let I ⊂ 〈x〉 = 〈x1, . . . , xr〉 ⊂
K[x] be an ideal and A = K[x]〈x〉/I, then

HSA,m = HSK[x]〈x〉/L(I),〈x〉 .

In particular, K[x]〈x〉/I and K[x]〈x〉/L(I) have the same multiplicity with
respect to 〈x〉.
4 Throughout this chapter, we denote the ideal generated by I ⊂ K[x] in the lo-

calization K[x]〈x〉 by I , too, in order to keep the notations short.
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Proof. We have to prove that

dimK K[x]〈x〉/(I + 〈x〉k) = dimK K[x]〈x〉/(L(I) + 〈x〉k) .
Clearly, for each k ≥ 0, the set S := {xα /∈ L(I) | deg(xα) < k} represents a
K–basis of K[x]〈x〉/(L(I) + 〈x〉k) ∼= K[x]/(L(I) + 〈x〉k). On the other hand
(using reduction by a standard basis of I), we can write each f ∈ K[x] as

f = g +
∑

xα∈S
cαx

α mod 〈x1, . . . , xr〉k

for some g ∈ I and uniquely determined cα ∈ K. This is possible without mul-
tiplying f by a unit, because we are working modulo 〈x1, . . . , xr〉k. Therefore,
S also represents a K–basis of K[x]/(I + 〈x〉k) ∼= K[x]〈x〉/(I + 〈x〉k), which
proves the proposition.

Definition 5.5.8. For any power series f ∈ K[x]〈x〉 � {0}, x = (x1, . . . , xr),
we can find u ∈ K[x], u(0) �= 0, such that uf =

∑
α aαx

α ∈ K[x]. Then

ord(f) := min
{|α| ∣∣ aα �= 0

}

is called the order of f . Note that ord(f) is well–defined (Exercise 5.5.6).

Corollary 5.5.9. Let f ∈ K[x] � {0}, x = (x1, . . . , xr). Then

mult(K[x]〈x〉/〈f〉) = ord(f) .

Proof. Proposition 5.5.7 implies that, for a local degree ordering, we have
HSPK[x]〈x〉/〈f〉,〈x〉 = HSPK[x]〈x〉/〈LM(f)〉. Using Corollary 5.5.5, we conclude
that mult(K[x]〈x〉/〈LM(f)〉) = deg(K[x]/〈LM(f)〉 = ord(f).

Next we shall describe how to compute Grm(A), the so–called tangent cone
of A.

Definition 5.5.10.

(1) For (A,m) a local ring, the graded ring Grm(A) is called the tangent cone
of A.

(2) For f ∈ K[x]〈x〉 � {0}, x = (x1, . . . , xr), choose u ∈ K[x], u(0) = 1, such
that uf =

∑
α aαx

α ∈ K[x]. Let d := ord(f), and call

In(f) :=
∑

deg(xα)=d

aαx
α

the initial form of f . Note that In(f) is well–defined (Exercise 5.5.6).
(3) Let I ⊂ K[x]〈x〉 be an ideal. The ideal

In(I) := 〈In(f) | f ∈ I � {0}〉 ⊂ K[x]

is called the initial ideal of I.



338 5. Hilbert Function and Dimension

Lemma 5.5.11. Let I ⊂ 〈x〉 ⊂ K[x], x = (x1, . . . , xr), be an ideal, and let
{f1, . . . , fs} be a standard basis of I with respect to a local degree ordering >.
Then In(I) = 〈In(f1), . . . , In(fs)〉.
Proof. Let f ∈ I, then, using the property of being a standard basis (Theorem
1.7.3 (3)), there exist u, g1, . . . , gs ∈ K[x], u ∈ S<, such that uf =

∑s
i=1 gifi

and LM(uf) ≥ LM(gifi) for all i, especially, deg
(
LM(uf)

) ≤ deg
(
LM(gifi)

)
.

Now, let

J := {1 ≤ i ≤ s | deg
(
LM(uf)

)
= deg

(
LM(gifi)

)} .
Then In(f) =

∑
i∈J In(gi) In(fi).

Proposition 5.5.12. Let I ⊂ 〈x〉 ⊂ K[x], x = (x1, . . . , xr), be an ideal, let
A := K[x]〈x〉/I, and let m be the maximal ideal of A. Then

Grm(A) ∼= K[x]/ In(I) .

Proof. Clearly, mν/mν+1 ∼= 〈x〉ν/(〈x〉ν+1 + (I ∩ 〈x〉ν)). Moreover, it is easy
to see that the kernel of the canonical surjection

K[x]ν −→ 〈x〉ν/(〈x〉ν+1 + (I ∩ 〈x〉ν ))

is In(I)ν .

Proposition 5.5.12 and Lemma 5.5.11 are the basis for determining Grm A by
computing the initial ideal of I as the ideal generated by the initial forms of
a standard basis with respect to a local degree ordering.

SINGULAR Example 5.5.13 (initial ideal, Poincaré series, Hilbert
polynomial).
Let I := 〈yz + z2 + x3, y2 + xz + y4〉 ⊂ K[x, y, z].

ring A=0,(x,y,z),ds;
ideal I=yz+z2+x3,y2+xz+y4;
ideal J=std(I);
J;
//-> J[1]=y2+xz+y4 J[2]=yz+z2+x3 J[3]=xz2-yz2-x3y+y4z

int k;
ideal In=jet(J[1],ord(J[1]));
for(k=2;k<=size(J);k++){ In=In,jet(J[k],ord(J[k]));}

In;
//-> In[1]=y2+xz In[2]=yz+z2 In[3]=xz2-yz2

From the output, we read the initial ideal In(I) = In of I and know, there-
fore, the tangent cone K[x, y, z]/ In(I) of A = K[x, y, z]〈x,y,z〉/I. Now let us
compute the Poincaré series and Hilbert polynomial of K[x, y, z]/ In(I):
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intvec v=hilb(J,1);
v;
//-> 1,0,-2,0,1,0

Hence,

HPK[x,y,z]/ In(I)(t) =
t4 − 2t2 + 1

(1− t)3 =
(t+ 1)2

1− t = 1 + 3t+
∞∑

i=1

4ti ,

and, therefore, PK[x,y,z]/ In(I)(n) = 4. This implies HSPA,m(n) = 4 · (n1
)

+ C.
To compute the constant C we compute a value of the Hilbert–Samuel func-
tion, for a sufficiently large n. We have seen that HK[x,y,z]/ In(I)(n) coincides
with PK[x,y,z]/ In(I)(n) for all n ≥ 3 and that the highest monomial in the
standard basis of I is of degree 3 as well. Therefore, we know that the choice
n = 5 is sufficiently large. 5

ideal I1=I+maxideal(5);
vdim(std(I1));
//-> 16

This implies C = dimK(A/m5)− 4 · (51
)

= −4. The Hilbert polynomial shows
that the multiplicity of A is 4. We can check this directly:

mult(J);
//-> 4

Exercises

5.5.1. Let I be the ideal of the 2–minors of the matrix ( x y z
y z w ) inK[x, y, z, w].

Let A = K[x, y, z, w]〈x,y,z,w〉/I. Compute HSPA,〈x,w〉.

5.5.2. Formulate and prove Proposition 5.5.12 for modules. Try examples
with Singular.

5.5.3. Write a Singular procedure to compute the Hilbert–Samuel polyno-
mial of K[x]〈x〉/I for an ideal I ⊂ K[x] using Propositions 5.5.5 and 5.5.7.

5.5.4. Let f ∈ K[x1, . . . , xr] be a polynomial with ord(f) = m. Prove that

HSPK[x]〈x〉/〈f〉(k) =
m∑

ν=1

(
r + k − ν − 1

r − 1

)
.

5 Just checking, whether the difference dimK(A/Q�) −∑s
ν=1 aν−1

(
�
ν

)
is constant,

is not sufficient.
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5.5.5. Let I ⊂ m = 〈x〉 ⊂ K[x1, . . . , xr] be an ideal and A := K[x]/I. The
normal cone is defined to be the graded ring Grm(A). Let > be a degree or-
dering on K[x] (that is, deg(xα) < deg(xβ) implies xα < xβ). For f ∈ K[x],
f =

∑
α aαx

α and d = deg(f) let In(f) =
∑

deg(xα)=d aαx
α be the initial

form of f . Similarly, the initial ideal of I is In(I) = 〈In(f) | f ∈ I � {0}〉.
Prove analogues of Lemma 5.5.11 and Proposition 5.5.12, under these

assumptions.

5.5.6. Show that ord(f) and In(f) for f ∈ K[x]〈x〉 are well–defined, that is,
there exist units u as required and the definition is independent of the choice
of u.

5.5.7. Compute the tangent cone for the local ring A = Q[x, y, z]〈x,y,z〉/I,
where I := 〈x2 + y3 + z4, xy + xz + z3〉.
5.5.8. Compute the normal cone for A = Q[x, y, z]/I, I the ideal in Exercise
5.5.7.

5.5.9. Write a Singular procedure to compute the tangent cone.

5.5.10. Let A be a Noetherian local ring and M a finitely generated A–
module such that AnnA(M) = 〈0〉. Prove that deg(HSPM,m) = deg(HSPA,m).

5.5.11. Let A be a local Noetherian ring, and let I ⊂ A be an ideal. More-
over, let I = Q1 ∩ · · · ∩Qm be an irredundant primary decomposition and as-
sume that dim(A/I) = dim(A/Qi), i = 1, . . . , s, and dim(A/I) > dim(A/Qi),
i = s+ 1, . . . ,m. Prove that mult(A/I) =

∑s
i=1 mult(A/Qi).

(Hint: compare with Lemma 5.3.11.)

5.5.12. Compute the multiplicity of K[x, y, z]〈x,y,z〉/〈z2− z, yz − y〉. Com-
pute the degree of K[x, y, z, t]/〈z2− zt, yz − yt〉.
5.5.13. Formulate and prove the corresponding statements to Exercise 5.1.5
and 5.2.6.

5.6 Characterization of the Dimension of Local Rings

Let A be a Noetherian local ring, m its maximal ideal and assume, as before,
for simplicity that K = A/m ⊂ A.

In this section, we shall prove that the dimension of a local ring is equal to
the degree of the Hilbert–Samuel polynomial and equal to the least number
of generators of an m–primary ideal. In particular, we shall define and study
regular local rings.

Definition 5.6.1. We introduce the following non–negative integers:

• δ(A) := the minimal number of generators of an m–primary ideal of A,
• d(A) := deg(HSPA,m),
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• edim(A) := the embedding dimension of A, defined as minimal number of
generators for m. Hence, edim(A) = dimK(m/m2), by Nakayama’s Lemma.

Theorem 5.6.2. Let (A,m) be a Noetherian local ring, then, with the above
notation, δ(A) = d(A) = dim(A).

We first prove the following proposition:

Proposition 5.6.3. Let (A,m) be a Noetherian local ring, let M be a finitely
generated A–module, and let Q an m–primary ideal. Then

(1) deg(HSPM,Q) = deg(HSPM,m);

Moreover, let x ∈ A be a non–zerodivisor for M , then

(2) deg(HSPM/xM,Q) ≤ deg(HSPM,Q)− 1.

Proof. For (1) we choose s such that m ⊃ Q ⊃ ms. Then mk ⊃ Qk ⊃ msk for
all k implies HSPM,m(k) ≤ HSPM,Q(k) ≤ HSPM,m(sk) for sufficiently large
k. But this is only possible if deg(HSPM,Q) = deg(HSPM,m). To prove (2),
we apply Remark 5.5.3 to the exact sequence

0 −→M
·x−→M −→M/xM −→ 0 ,

and conclude that deg(HSPM/xM,Q) ≤ deg(HSPM,Q)− 1.

Definition 5.6.4. Let R be a ring and M an R–module. The dimension of
M , dim(M), is defined by dim(M) = dim

(
R/Ann(M)

)
.

SINGULAR Example 5.6.5 (dimension of a module).

LIB "primdec.lib";
ring R=0,(x,y,z),ds;
module I=[x2,0,0],[0,xz,0],[0,0,x2+zx3];

Ann(I); //the annihilator of M=R^3/I
//-> _[1]=x2z

dim(std(Ann(I)));
//-> 2

This shows that dim(R3/I) = 2.

Corollary 5.6.6. Let A be a Noetherian local ring and M a finitely generated
A–module. Then dim(M) = deg(HSPM,m).

Proof. The corollary is an immediate consequence of Exercise 5.5.10 and
Theorem 5.6.2.

Proof of Theorem 5.6.2. We shall prove that
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(1) δ(A) ≥ d(A);
(2) d(A) ≥ dim(A);
(3) dim(A) ≥ δ(A).

(1) holds because of Lemma 5.5.1 (2) and Proposition 5.6.3 (1).
To prove (2) we use induction on d = d(A). If d = 0 then dimK A/m

n

is constant for sufficiently large n. This implies mn = mn+1 for sufficiently
large n and, therefore, by Nakayama’s lemma mn = 〈0〉. But then dim(A) = 0
because m is the only prime ideal in A.

Assume d > 0, and let P0 ⊂ · · · ⊂ Ps = m be a maximal chain of prime
ideals in A, s = dim(A). Let Ā := A/P0, then dim(Ā) = s. On the other hand,
the obvious map A/mn � Ā/m̄n, m̄ the maximal ideal of Ā, is surjective and,
therefore, dimK(A/mn) ≥ dimK(Ā/m̄n). This implies d(A) ≥ d(Ā), and we
may assume that A = Ā is an integral domain. If s = 0 then (2) is proved. If
s > 0 then we choose a non–zerodivisor x ∈ P1. Using Proposition 5.6.3 (2),
we obtain d(A/〈x〉) ≤ d(A)− 1.

Using the induction hypothesis, we have d(A/〈x〉) ≥ dim(A/〈x〉). But
x ∈ P1 and hence we have dim(A/〈x〉) ≥ s− 1. Combining these inequali-
ties, we obtain d− 1 ≥ d(A/〈x〉) ≥ dim(A/〈x〉) ≥ s− 1, which implies that
d(A) = d ≥ s = dim(A).

To prove (3) we have to construct an m–primary ideal Q = 〈x1, . . . , xd〉
such that d ≤ dim(A).

Suppose i > 0 and x1, . . . , xi−1 are constructed such that every prime
ideal P containing 〈x1, . . . , xi−1〉 has height ≥ i − 1. Let Pj , 1 ≤ j ≤ s,
be the minimal prime ideals of 〈x1, . . . , xi−1〉 which have height i − 1. If
i− 1 = dim(A) then (3) is proved.

If i− 1 < dim(A) = ht(m) then m �= Pj for j = 1, . . . , s. This implies
m �= ⋃s

j=1 Pj (cf. Lemma 1.3.12, prime avoidance). Thus we can choose
xi ∈ m, xi /∈

⋃s
j=1 Pj . Let P be a prime ideal, 〈x1, . . . , xi〉 ⊂ P . Then P con-

tains a minimal prime ideal Q of 〈x1, . . . , xi−1〉.
If Q = Pj for some j, then we have P � Q (x ∈ P � Pj by the choice

of x) and, therefore, ht(P ) ≥ i. If Q �= Pj for j = 1, . . . , s then ht(Q) ≥ i
and, moreover, ht(P ) ≥ i. We conclude that every prime ideal containing
〈x1, . . . , xi〉 has height at least i.

Using induction, we obtain an ideal 〈x1, . . . , xd〉, d = dim(A) = ht(m),
such that all primes containing 〈x1, . . . , xd〉 have height at least d. This im-
plies that 〈x1, . . . , xd〉 is m–primary and proves (3).

Remark 5.6.7. Notice that the theorem implies that dim(A) <∞ for a
Noetherian local ring, which is not true in the non–local case (cf. Remark
3.3.10).

Theorem 5.6.8 (Krull’s Principal Ideal Theorem). Let A be a Noethe-
rian ring, f ∈ A a non–zerodivisor and P ∈ minAss(〈f〉) then ht(P ) = 1.
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Proof. Let 〈f〉 = Q1 ∩ · · · ∩ Qr be an irredundant primary decomposition.
We may assume that P =

√
Q1. As P ∈ minAss(〈f〉) we have

√
Qi �⊂ P for

i > 1. Especially 〈f〉AP = Q1AP is a PRP –primary ideal. Theorem 5.6.2
implies that dim(AP ) ≤ 1. This implies that ht(P ) ≤ 1. If ht(P ) = 0 then
P ∈ minAss(〈0〉) and, therefore, f is a zerodivisor (Exercise 4.1.10). This is
a contradiction to the assumption and proves the theorem.

Definition 5.6.9. Let d = dim(A), {x1, . . . , xd} is called a system of pa-
rameters of A, if 〈x1, . . . , xd〉 is m–primary. Let {x1, . . . , xd} be a system of
parameters. If 〈x1, . . . , xd〉 = m it is called a regular system of parameters .

Corollary 5.6.10.

(1) dim(A) ≤ edim(A).
(2) If x ∈ m then dim(A/〈x〉) ≥ dim(A) − 1, with equality if x is a non–

zerodivisor .

Proof. Let m = 〈x1, . . . , xs〉 be minimally generated by s elements. Using
Nakayama’s lemma, we obtain s = dimK(m/m2). Theorem 5.6.2 implies
dim(A) = δ(A) ≤ s, which proves (1). To prove (2), we use Proposition
5.6.3 (2) and obtain dim(A/〈x〉) ≤ dim(A) − 1 if x is a non–zerodivisor. On
the other hand, let x1, . . . , xd be elements of m whose images in A/〈x〉 gen-
erate an m/〈x〉–primary ideal. Then 〈x, x1, . . . , xd〉 is m–primary and hence
d+ 1 ≥ dim(A). Using the theorem again, we obtain (2).

Remark 5.6.11. The restriction made at the beginning of this chapter, that
A contains its residue field, is not necessary. It is made just for better under-
standing. In particular, Theorem 5.6.2 holds for any Noetherian local ring.

Using this in full generality, we obtain the following consequences: let
(A,m) be a Noetherian local ring, then

(1) every minimal prime ideal associated to 〈x1, . . . , xr〉 ⊂ m has height ≤ r;
(2) if x ∈ A is neither a zerodivisor nor a unit then every minimal prime

ideal associated to 〈x〉 has height 1 (Krull’s Principal Ideal Theorem).

Next we give a characterization of the embedding dimension, using the Jaco-
bian matrix.

Theorem 5.6.12. Let A = K[x1, . . . , xn]〈x1,...,xn〉/〈f1, . . . , fm〉, then

edim(A) = n− rank
(
∂fi

∂xj
(0)

)
.

Proof. By definition we have edim(A) = dimK(m/m2). Let n = 〈x1, . . . , xn〉 ⊂
K[x1, . . . , xn]〈x1,...,xn〉 then

dimK(m/m2) = dimK(n/n2 + 〈f1, . . . , fm〉)
= dimK(n/n2)− dimK(n2 + 〈f1, . . . , fm〉/n2)

= n− dimK(n2 + 〈f1, . . . , fm〉/n2) .
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The last dimension is equal to the number of linearly independent linear forms
among the f1 mod n2, . . . , fm mod n2. This is equal to rank

(
∂fi

∂xj
(0)

)
.

Definition 5.6.13. A Noetherian local ring A is called a regular local ring if
its dimension and embedding dimension coincide, that is, dim(A) = edim(A).

Corollary 5.6.14 (Jacobian criterion).
Let K be an algebraically closed field, A = K[x1, . . . , xn] /〈f1, . . . , fm〉 and
m ⊂ A a maximal ideal.6 Then Am is regular if and only if

rank
(
∂fi

∂xj
mod m

)
= n− dim(Am) .

SINGULAR Example 5.6.15 (Jacobian criterion, regular system of
parameters, embedding dimension).
We want to study the local ring A = Q[x, y, z]〈xyz〉/I where I is generated
by the two polynomials x+ y2+ z3 and x+ y+ xyz. More precisely, we want
to find out whether A is regular. To this end, we use the Jacobian criterion.

ring R=0,(x,y,z),ds;
ideal I=x+y2+z3,x+y+xyz;
matrix J = jacob(I);

print(J);
//-> 1, 2y, 3z2,
//-> 1+yz,1+xz,xy

print(subst(J,x,0,y,0,z,0));
//-> 1,0,0,
//-> 1,1,0

The rank of the Jacobian matrix at the point (0, 0, 0) is 2. This implies that
edim(A) = 1.

dim(std(I));
//-> 1

Dimension and embedding dimension coincide and, hence, A is regular.

ideal K=std(I+ideal(z));
K;
//-> K[1]=x
//-> K[2]=y
//-> K[3]=z

6 The Jacobian criterion holds more generally for perfect fields and prime ideals
P ⊂ A, as we shall see in the next section.
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This implies that the maximal ideal of A is generated by z, that is, {z} is a
regular system of parameters.

Theorem 5.6.16. Let (A,m) be a Noetherian local ring and d = dimA.
Then the following conditions are equivalent:

(1) Grm(A) = K[t1, . . . , td] is a polynomial ring in d variables.
(2) A is regular of dimension d.
(3) m can be generated by d elements.

Proof. (1) clearly implies (2). That (2) implies (3), immediately follows from
the lemma of Nakayama. To prove that (3) implies (1), let m = 〈x1, . . . , xd〉,
and let ϕ : K[y1, . . . , yd] → Grm(A) = K[x1, . . . , xd] be the surjective mor-
phism of graded rings defined by ϕ(yi) := xi. Assume that Kerϕ �= 〈0〉, and
let f ∈ Kerϕ be homogeneous of degree n. Using Proposition 5.3.6 (4), we
obtain

d(K[y1, . . . , yd]/〈f〉) = d(K[y1, . . . , yd])− 1 = d− 2 .

On the other hand, Grm(A) is a finitely generated graded K[y1, . . . , yd]/〈f〉–
module (via ϕ). This implies, using Proposition 5.3.6 (2) that

d
(
Grm(A)

) ≤ d(K[y1, . . . , yd]/〈f〉) = d− 2 .

But d
(
Grm(A)

)
= d− 1, because of Proposition 5.5.5 (2) and Theorem 5.6.2.

This is a contradiction, and the theorem is proved.

Proposition 5.6.17. Let A be an r–dimensional regular local ring with max-
imal ideal m (containing its residue field) and x1, . . . , xi ∈ m. The following
conditions are equivalent:

(1) {x1, . . . , xi} is a subset of a regular system of parameters of A;
(2) the images in m/m2 of x1, . . . , xi are linearly independent over A/m = K;
(3) A/〈x1, . . . , xi〉 is an (r − i)–dimensional regular local ring.

Proof. (1) implies (2): let {x1, . . . , xr} be a regular system of parameters of A,
then their images generate m/m2 as aK–vector space. Since dimK(m/m2) = r
they must be linearly independent.

(2) implies (3): we choose xi+1, . . . , xr such that the images of x1, . . . , xr
in m/m2 are a K–basis. Nakayama’s Lemma implies that {x1, . . . , xr} is a
regular system of parameters. Now x1 is not a zerodivisor of A because A
is an integral domain (Exercise 5.6.2). Using Corollary 5.6.10 (2) we obtain
dim(A/〈x1〉) = dim(A)− 1. On the other hand, the images of x2, . . . , xr gen-
erate the maximal ideal in A/〈x1〉. This implies that A/〈x1〉 is regular and
x2, . . . , xr mod 〈x1〉 is a regular system of parameters. This implies induc-
tively that A/〈x1, . . . , xi〉 is regular.

To prove (3) implies (1), let m/〈x1, . . . , xi〉 be generated by the images of
y1, . . . , yr−i ∈ m. Then m is generated by x1, . . . , xi, y1, . . . , yr−i.
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Corollary 5.6.18. If x1, . . . , xr is a regular system of parameters in A, then
it is a regular A–sequence, that is, for all 1 ≤ j ≤ r, xj is not a zerodivisor
in A/〈x1, . . . , xj−1〉.
Proof. By Proposition 5.6.17 A/〈x1, . . . , xj−1〉 is regular and, therefore, by
Exercise 5.6.2 an integral domain.

Exercises

5.6.1. Let x = (x1, . . . , xr), and let f ∈ 〈x〉K[x] be an irreducible polynomial.
Prove that A := K[x]〈x〉/〈f〉 is a regular local ring if and only if

〈 ∂f∂x1
, . . . , ∂f∂xr

〉 �⊂ 〈x〉 .
5.6.2. Let A be a ring, and let I ⊂ A be an ideal such that

⋂
n≥0 I

n = 〈0〉.
Suppose that GrI(A) is an integral domain. Then A is an integral domain.
In particular, regular local rings are integral domains.

5.6.3. Let K be a field and A := K[x, y]〈x,y〉/〈y2− x3〉. Then A is an integral
domain, but Grm(A) is not an integral domain.

5.6.4. Let A be a Noetherian ring. Prove that dim(A[x]) = dim(A) + 1.

5.6.5. Let A be a Noetherian local ring with maximal ideal m. For simplicity
we assume K = A/m ⊂ A. Let M be a finitely generated A–module, and let
δ(M) be the smallest value of n such that there exist x1, . . . , xn ∈ m, for which
dimK(M/x1M + · · ·+ xnM) <∞. Generalize Theorem 5.6.2 and prove that
dim(M) = d(M) = δ(M).

5.6.6. Let A and M be as in Exercise 5.6.5.
Prove that dim(M)=dim

(
GrQ(M)

)
for any m–primary ideal Q.

5.6.7. Let A be a regular local ring of dimension 1. Prove that A is a principal
ideal domain.

5.6.8. Write a Singular procedure to compute the embedding dimension.

5.7 Singular Locus

The aim of this section is to describe the singular locus and prove that the
non–normal locus is contained in the singular locus. This means that regular
local rings are normal. The proof of this result is, in general, difficult and uses
the following result of Serre: the localization of a regular local ring in a prime
ideal is again regular. In this section, we shall prove this result for rings of
type K[x1, . . . , xn]P /〈f1, . . . , fm〉, P a prime ideal, using a generalization of
the Jacobian criterion. A proof for the general case is given in Chapter 7.

Another way to prove that regular rings are normal is used in [66] proving
that regular rings are factorial.
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Theorem 5.7.1 (General Jacobian criterion). Let I = 〈f1, . . . , fm〉 ⊂
K[x1, . . . , xn] be an ideal and P an associated prime ideal of I. Moreover,
let Q ⊃ P be a prime ideal such that the quotient field of K[x1, . . . , xn]/Q is
separable over K. Then

rank
(
∂fi

∂xj
mod Q

)
≤ ht(P ) ,

and K[x1, . . . , xn]Q/IQ is a regular local ring if and only if

rank
(
∂fi

∂xj
mod Q

)
= ht(P ) .

Remark 5.7.2. If Q = m is a maximal ideal and K is algebraically closed,
then we obtain the Jacobian criterion proved in the previous section.

Before proving Theorem 5.7.1, we give some consequences:

Theorem 5.7.3. Let A be a regular local ring. Then AQ is regular for every
prime ideal Q ⊂ A.

In the following, we prove Theorem 5.7.3 only for a special case, namely, we
assume that A = K[x1, . . . , xn]M/〈f1, . . . , fm〉, M a prime ideal and K a field
of characteristic 0. A proof for the general case uses homological methods and
is given in Chapter 7, Section 7.9.

Proof of Theorem 5.7.3. Theorem 5.7.1 implies rank
(
∂fi

∂xj
mod M

)
= ht(P ),

P an associated prime of 〈f1, . . . , fm〉 such that P ⊂M . Let Q′ be a prime
ideal in K[x1, . . . , xn] such that P ⊂ Q′ ⊂M and Q′ mod 〈f1, . . . , fm〉 = Q.
Then rank

(
∂fi

∂xj
mod Q′) = ht(P ). This implies, again using Theorem 5.7.1,

that AQ is regular.

Definition 5.7.4. For any ring A, the set

Sing(A) := {P ∈ Spec(A) | AP is not regular}

is called the singular locus of A.

The above theorem implies that for affine rings over a perfect field, the sin-
gular locus is closed and can be computed.

Corollary 5.7.5. Let K be a perfect field, A = K[x1, . . . , xn]/〈f1, . . . , fm〉
be equidimensional and let J ⊂ A be the ideal generated by the

(
n−dim(A)

)
–

minors of the Jacobian matrix
(
∂fi

∂xj

)
. Then

Sing(A) = V (J) = {Q ⊂ A prime | J ⊂ Q} .
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Proof. For the proof, we assume that K is a field of characteristic 0. A prime
ideal Q ⊂ A contains J if and only if rank

(
∂fi

∂xj
mod Q

)
< n− dim(A). Let

P ′ ⊂ K[x1, . . . , xn] be an associated prime ideal of 〈f1, . . . , fm〉, then by as-
sumption ht(P ′) = n− dim(A). Let Q′ ⊂ K[x1, . . . , xn] be a prime ideal such
that Q = Q′ mod 〈f1, . . . , fm〉, and assume P ′ ⊂ Q′. Then Theorem 5.7.1
implies that K[x1, . . . , xn]Q′/〈f1, . . . , fm〉Q′ = AQ is not regular.

We obtain the following algorithm to compute the singular locus of an equidi-
mensional ideal I = 〈f1, . . . , fm〉 ⊂ K[x1, . . . , xn].

Algorithm 5.7.6 (singularLocusEqui(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] an equidimensional ideal, x = (x1, . . . , xn).
Output: An ideal J ⊂ K[x] such that V (J) = Sing(K[x]/I).

• d := dim(I);
• compute J , the ideal generated by the (n− d)–minors of the Jacobian

matrix
(
∂fi

∂xj

)
;

• return(I + J).

The following lemma is the basis for the description of the singular locus in
general.

Lemma 5.7.7. Let A be a Noetherian ring and 〈0〉 = I ∩ I ′, I, I ′ non–zero
ideals. Let P ⊂ A be a prime ideal. Then AP is singular if and only if one of
the following three conditions holds:

(a) AP /IP is singular
(b) AP /I

′
P is singular

(c) P ⊃ I + I ′.

Proof. If P �⊃ I then AP = AP /I
′
P . If P �⊃ I ′ then AP = AP /IP . Moreover,

if P ⊃ I + I ′ then AP is not an integral domain. Using Exercise 5.6.2 this
implies that AP is not regular.

We obtain the following algorithm to compute the singular locus:

Algorithm 5.7.8 (singularLocus(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x], x = (x1, . . . , xn).
Output: An ideal J ⊂ K[x] such that V (J) = Sing(K[x]/I).

• D := equidimensional(I);
• S :=

⋂
J∈D singularLocusEqui(J);

• R :=
⋂
J,J′∈D
J �=J′

(J + J ′);

• return(S ∩R).
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SINGULAR Example 5.7.9 (singular locus).

ring R=0,(u,v,w,x,y,z),dp;
ideal I=wx,wy,wz,vx,vy,vz,ux,uy,uz,y3-x2;
LIB"primdec.lib";
radical(I);
//-> _[1]=wz _[2]=vz _[3]=uz _[4]=wy _[5]=vy
//-> _[6]=uy _[7]=wx _[8]=vx _[9]=ux _[10]=y3-x2

The ideal I is radical.

list l=minAssGTZ(I);
l;
//-> [1]: [2]:
//-> _[1]=z _[1]=-y3+x2
//-> _[2]=y _[2]=w
//-> _[3]=x _[3]=v
//-> _[4]=u

I is the intersection of the two primes l[1], l[2].

ideal J=l[1]+l[2];
std(J);
//-> _[2]=z _[2]=y _[3]=x
//-> _[4]=w _[5]=v _[6]=u

The intersection of the two irreducible components defined by l[1] and l[2]
is the point 0.

ideal sing=l[2]+minor(jacob(l[2]),4);
std(sing);
//-> _[2]=x _[2]=w _[3]=v _[4]=u _[5]=y2

The singular locus of the components defined by l[2] is a line defined by the
ideal sing above which is also the singular locus of V (I).

We try to visualize V (I) by the picture in Figure 5.1, showing a 3–dimen-
sional and a 2–dimensional component, both meeting transversally in A

6.

To prove the general Jacobian criterion, we need some preparations.

Proposition 5.7.10. Let P ⊂ K[x1, . . . , xn] be a prime ideal, then the lo-
calization K[x1, . . . , xn]P is regular.

Proof. We prove the proposition for the case that K is a field of char-
acteristic 0. A proof for the general case will be given in Chapter 7,
Section 7.9. Using Theorem 3.4.1 (respectively Exercise 3.4.4), we may
assume that K[x1, . . . , xk] ⊂ K[x1, . . . , xn]/P is a Noether normalization
such that the field extension Q(K[x1, . . . , xn]/P ) ⊃ Q(K[x1, . . . , xk]) is
generated by the class x̄k+1 := xk+1 mod P , and such that the minimal
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Fig. 5.1. A visualization of V (wx,wy, wz, vx, vy, vz, ux, uy, uz, y3− x2) ⊂ A
6.

polynomial of x̄k+1, g = xsk+1 +
∑s
i=1 gs−i(x1, . . . , xk)xs−ik+1, is in P . Now

ht(P ) = n− dim(P ) = n− k.
Using Theorem 5.6.16, we have to prove that PK[x1, . . . , xn]P is gener-

ated by n− k elements. LetΔ be the discriminant of g (with respect to xk+1).
Δ ∈ K[x1, . . . , xk] and, therefore, Δ �∈ P . Now we can apply Lemma 3.5.12
and obtain K[x1, . . . , xn]/P ⊂ 1

Δ ·K[x1, . . . , xk+1]/〈g〉. Therefore, we can
find elements qk+2, . . . , qn ∈ K[x1, . . . , xk+1] such that Qi := xiΔ− qi ∈ P
for all i ≥ k + 2. But, Δ �∈ P implies that xk+2 − qk+2/Δ, . . . , xn − qn/Δ
are elements of PK[x1, . . . , xn]P . Finally, we conclude that g,Qk+2, . . . , Qn
generate PK[x1, . . . , xn]P .

Proposition 5.7.10 leads to the following definition:

Definition 5.7.11. Let A be a Noetherian ring. A is called a regular ring,
if the localization AP is a regular local ring, for every prime ideal P .

Note that, because of Theorem 5.7.3, this is equivalent to the property that
AP is regular for every maximal ideal P .

Corollary 5.7.12. Let K be a field, and let > be any monomial ordering on
K[x1, . . . , xn], then K[x1, . . . , xn]> is a regular ring.

Proof. Let P ⊂ K[x1, . . . , xn]> be a prime ideal and Q = P ∩K[x1, . . . , xn],
then Q is a prime ideal and K[x1, . . . , xn]Q = (K[x1, . . . , xn]>)P (Exercise
1.4.5). Because of Proposition 5.7.10 we obtain that K[x1, . . . , xn]> is a reg-
ular ring.

Proof of Theorem 5.7.1. We prove the theorem for the case that K is a field
of characteristic 0; the proof of the first part of the statement, that is, of the
inequality, is left to the reader. For the second statement, let us first con-
sider the case I = P = Q. In this case K[x1, . . . , xn]P /PP is a field, hence,
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regular. We have to prove that rank
(
∂fi

∂xj
mod P

)
= ht(P ). As in the proof

of Proposition 5.7.10, we may assume that PK[x1, . . . , xn]P is generated
by g, xk+2Δ− qk+2, . . . , xnΔ− qn, where g, qk+2, . . . , qn ∈ K[x1, . . . , xk+1],
Δ and ∂g

∂xk+1
�∈ P and ht(P ) = n− k.

By Exercise 5.7.1 the rank of the Jacobian matrix is independent of the
choice of the generators of PK[x1, . . . , xn]P . As PK[x1, . . . , xn]P is generated
by n−k elements, it follows that the rank of the Jacobian matrix modulo P is,
at most, n− k. The last n− k columns of the Jacobian matrix corresponding
to g,Δxk+2 − qk+2, . . . , Δxn − qn are

M :=

⎛

⎜⎜⎜⎜⎜⎝

∂g
∂xk+1

0 . . . 0

− ∂qk+2
∂xk+1

Δ 0
...

. . .
− ∂qn

∂xk+1
0 Δ

⎞

⎟⎟⎟⎟⎟⎠
.

The determinant of this matrix is Δn−k−1 · ∂g
∂xk+1

�∈ P . Therefore, we have

rank
(
∂fi

∂xj
mod P

)
= rank (M mod P ) = n− k = ht(P ) .

To prove the general case, assume that K[x1, . . . , xn]Q/IQ is a regular local
ring. Using Exercise 5.6.2, we obtain that it is an integral domain. This
implies that IQ is a prime ideal and, therefore, IQ = PQ. As a consequence,
we may assume that I = P . Let a = ht(P ) and b = ht(Q). Using Exercise
5.7.3, we can find w1, . . . , wa ∈ Q�Q2 generating PQ. Using Proposition
5.6.17, we can extend this sequence to a regular sequence w1, . . . , wb ∈ Q�Q2

generating QK[x1, . . . , xn]Q. From the first part of the proof we obtain that

rank
(
∂wi

∂xj
mod Q

)
= ht(Q) = b ,

which is the maximal possible rank. Deleting the columns corresponding
to wa+1, . . . , wb we obtain rank

(
∂wi

∂xj
mod Q

)
i≤a,j≤n = a = ht(P ), which is

again the maximal possible rank. This implies, using Exercise 5.7.1, that
rank

(
∂fi

∂xj
mod Q

)
= a = ht(P ).

To prove the other direction, assume that rank
(
∂fi

∂xj
mod Q

)
= ht(P ) = a.

We may even assume that rank
(
∂fi

∂xj
mod Q

)
i,j≤a = a. We shall show that

f1, . . . , fa is a subset of a regular system of parameters of K[x1, . . . , xn]Q.
Indeed, if a linear combination satisfies

∑a
i=1 cifi ∈ Q2, then

∑a
i=1 ci

∂fi

∂xj
∈ Q,

and rank
(
∂fi

∂xj
mod Q

)
i,j≤a = a implies ci = 0 for all i.

Using Proposition 5.6.17 we obtain that K[x1, . . . , xn]Q/〈f1, . . . , fa〉 is
a regular local ring. Therefore, 〈f1, . . . , fa〉K[x1, . . . , xn]Q is a prime ideal.
On the other hand, 〈f1, . . . , fa〉Q ⊂ IQ ⊂ PQ and ht(〈f1, . . . , fa〉Q) = ht(PQ).
This implies 〈f1, . . . , fa〉Q = IQ and proves the theorem.
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Now we want to prove that regular local rings are normal. We need a criterion
for checking normality, different from the criterion in Proposition 3.6.5, which
needs an ideal describing the non–normal locus.

Theorem 5.7.13 (Serre). Let A be a reduced Noetherian ring. Then A is
normal, if and only if the following conditions are satisfied:

(R1) AP is a regular local ring for every prime ideal P of height one.
(S2) Let f ∈ A be a non–zerodivisor, then minAss(〈f〉) = Ass(〈f〉).
The above conditions (R1) and (S2) are called Serre’s conditions , see also
Exercise 7.7.5.

Proof. Assume that A is normal, then AP is normal for every prime ideal P
(Proposition 3.2.5). If P has height one, then dim(AP ) = 1. A normal local
ring is an integral domain (Exercise 3.2.10). Assume that AP is not regular
and let m := PAP . Consider the AP –module m∗ = {x ∈ Q(AP ) | xm ⊂ AP }.
We shall see that AP ⊂ m∗ is a strict inclusion. Namely, let a ∈ m, a �= 0 then√〈a〉 = m. We can choose an integer s such that ms ⊂ 〈a〉 and ms−1 �⊂ 〈a〉.
s > 1 because AP is assumed not to be regular. We choose any element
b ∈ ms−1

� 〈a〉. Then b
a �∈ AP but b

am ⊂ AP , that is, b
a ∈ m∗

�AP . Now, by
definition of m∗, we have m ⊂ mm∗ ⊂ AP . If mm∗ = m, then m∗ is an AP [ ba ]–
module, finitely generated as AP –module. This implies that b

a is integral
over AP (Cayley–Hamilton Theorem). But AP is normal and a

b �∈ AP gives
a contradiction. Therefore, we obtain mm∗ = AP . Let t ∈ m � m2 (note that
m = m2 implies m = 〈0〉 by Nakayama’s Lemma), then tm∗ ⊂ AP , tm∗ �⊂ m
because t �∈ m2. This implies tm∗ = AP and, therefore, m = 〈t〉. This is, again,
a contradiction to the assumption and proves that AP is a regular local ring.
Therefore, (R1) holds for normal rings.

To prove (S2) assume that P is an embedded prime ideal for some 〈f〉. By
Definition 4.1.1 we can find b ∈ A such that P = 〈f〉 : 〈b〉. Let m := PAP and
consider, as before, m∗ = {x ∈ Q(AP ) | xm ⊂ AP }. Then b

f ∈ m∗. As before,
we can deduce that mm∗ = AP implies that m = 〈t〉 for a suitable t. This
implies that dim(AP ) ≤ 1. But this is a contradiction to the fact that P is
not a minimal associated prime ideal of 〈f〉. We obtain mm∗ = m. As before,
we see that b

f = a
s , a, s ∈ A, s �∈ P . Then, because AP is an integral domain,

we have PAP = 〈f〉 : 〈b〉 = 〈fa〉 : 〈ba〉 = 〈bs〉 : 〈ba〉 = 〈s〉 : 〈a〉.
But this implies that s ∈ P and is a contradiction to the choice of s. This

proves that 〈f〉 cannot have embedded primes and, therefore, (S2) holds for
normal rings.

To prove the other implication, assume that (R1) and (S2) hold and let
a
b be integral over A. Let 〈b〉 = Q1 ∩ · · · ∩Qs be an irredundant primary de-
composition. By (S2) all Pi :=

√
Qi are minimal associated prime ideals to

〈b〉. By Krull’s principal ideal theorem (Theorem 5.6.8) all the Pi have height
one. By (R1) we know that APi is regular for all i. But then the APi are
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principal ideal domains because dim(APi ) = 1 (Exercise 5.6.7). But princi-
pal ideal domains are normal because they are unique factorization domains
(Exercise 3.2.10). It follows that a

b ∈ APi for all i. Therefore, a ∈ 〈b〉APi for
all i. Using Lemma 4.1.3 (4), we have Qi = A ∩ 〈b〉APi and, therefore, a ∈ Qi
for all i. Hence, a ∈ Q1 ∩ · · · ∩Qs = 〈b〉 and, therefore, a

b ∈ A. This implies
that A is normal.

Theorem 5.7.14. Let A be a regular local ring, then A is normal.

Proof. According to the previous theorem, we have to prove that (R1)
and (S2) are satisfied. (R1) is a consequence of Theorem 5.7.3. (S2) is a
consequence of Corollary 7.7.11 and Example 7.7.2 (which uses Corollary
5.6.18).

Exercises

5.7.1. Let I = 〈f1, . . . , fm〉 ⊂ K[x1, . . . , xn] be an ideal andQ ⊃ I be a prime
ideal. Let g1, . . . , gs ∈ I such that IQ = 〈g1, . . . , gs〉K[x1, . . . , xn]Q. Prove
that rank

(
∂fi

∂xj
mod Q

)
= rank

(
∂gi

∂xj
mod Q

)
.

5.7.2. Let (A,m) be a local ring and P ⊂ m2 be a prime ideal. Prove that
A/P is not regular.

5.7.3. Let (A,m) be a regular local ring and P ⊂ A a prime ideal. Suppose
that A/P is a regular local ring. Prove that P can be generated by a regular
sequence x1, . . . , xr from m � m2.

5.7.4. Compute the dimension of the singular locus of

A := Q[x, y, z]/〈x5+ y11+ xy9+ z4〉 .
5.7.5. Compute the singular locus of

A := Q[x, y, z]/〈x6− x3y2− x3z2+ 2x3z + x3+ y2z2− 2y2z − y2〉 .
5.7.6. Let K be a field and f ∈ K[x] irreducible. Prove (without using
Proposition 5.7.10) that K[x]〈f〉 is regular.

5.7.7. Prove the first statement of Theorem 5.7.1 under the assumption that
K is a field of characteristic zero.
(Hint: Use Propositions 5.6.10 and 5.7.10).

5.7.8. Let K be a field of characteristic 0. Use Exercise 5.7.6 and Exercise
3.5.4 to give a proof of Proposition 5.7.10 without using Lemma 3.5.12.

5.7.9. Prove that a regular ring is normal.

5.7.10. Prove that a Noetherian ring A is regular if and only if AP is regular
for all maximal ideals P .
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5.7.11. Let K be a field and A = K[x1, . . . , xn]/I. Let P ⊂ A be a prime
ideal such that Q(A/P ) is separable over K. Prove that AP is regular if
and only if (ΩA|K)P is free of rank n− dim(AP ). Here ΩA|K , the module of
differentials7 is defined by the exact sequence

I/I2 ϕ−→ An → ΩA|K → 0

with ϕ(f) =
(
∂f
∂x1

, . . . , ∂f
∂xn

)
.

(Hint: use the Jacobian criterion and Theorem 7.2.7.)

7 The module of differentials can be defined in a more general situation. Let A be
a ring and B an A–algebra. Let m : B ⊗A B → B be defined by m(b ⊗ c) = bc
and J = Ker(m). Then ΩB|A = J/J2. For more details see [66] and [160].



6. Complete Local Rings

For certain applications the local ringsK[x]〈x〉, x = (x1, . . . , xn), are not “suf-
ficiently local”. As explained in Appendix A, Sections A.8 and A.9, the latter
rings contain informations about arbitrary small Zariski neighbourhoods of
0 ∈ Kn. Such neighbourhoods turn out to be still quite large, for instance,
if n = 1 then they consist of K minus a finite number of points. If we are
working over the field K = C, respectively K = R, we can use the convergent
power series ring K{x} which contains information about arbitrary small
Euclidean neighbourhoods of 0, and this is what we are usually interested
in. For arbitrary fields, however, we have to consider the formal power series
ring K[[x]] instead.

6.1 Formal Power Series Rings

Let K be a field, x = (x1, . . . , xn) variables, α = (α1, . . . , αn) ∈ N
n. As

before, we write xα = xα1
1 · . . . · xαn

n and deg(xα) = |α| = ∑n
i=1 αi.

Let w = (w1, . . . , wn), wi ∈ Z, wi > 0, be a so-called weight–vector .
We define the weighted degree w–deg(xα) = |α|w =

∑n
i=1 wiαi, especially if

w = (1, . . . , 1) then w–deg(xα) = deg(xα).

Definition 6.1.1.

(1) An expression
∑

α∈Nn aαx
α, aα ∈ K, is called a formal power series . We

also use the notation
∑∞

|α|=0 aαx
α or

∑
aαx

α.
(2) Let f =

∑
α∈Nn aαx

α be a formal power series, then we set

ord(f) := min{|α| | aα �= 0} and w–ord(f) := min{|α|w | aα �= 0}

and call it the order , respectively weighted order , of f .
(3) K[[x]] :=

{∑
α∈Nn aαx

α
∣∣ aα ∈ K, α ∈ N

n
}

denotes the ring of formal
power series, with addition and multiplication given by
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∑

α∈Nn

aαx
α +

∑

α∈Nn

bαx
α :=

∑

α∈Nn

(aα + bα)xα .

∑

α∈Nn

aαx
α ·

∑

α∈Nn

bαx
α :=

∑

γ∈Nn

⎛

⎝
∑

α+β=γ

aαbβ

⎞

⎠xγ .

(4) We also write recursively f =
∑∞
ν=0 bν(x1, . . . , xn−1)xνn =

∑∞
ν=0 bνx

ν
n

with
bν =

∑

α∈N
n

αn=ν

aαx
α1
1 · . . . · xαn−1

n−1 ∈ K[[x1, . . . , xn−1]] ,

for f =
∑
α∈Nn aαx

α ∈ K[[x]].
(5) Let f =

∑
aαx

α ∈ K[[x]] and k ∈ N then the k–jet of f is defined by
jk(f) :=

∑
|α|≤k aαx

α, the sum of terms of order ≤ k.

Lemma 6.1.2. K[[x]] is, with the operations defined in (3), a (commutative)
local ring. The canonical injection K[x]〈x〉 → K[[x]] is a homomorphism of
local rings and induces isomorphisms

K[x]/〈x〉ν ∼= K[x]〈x〉/〈x〉ν ∼= K[[x]]/〈x〉ν .

Proof. It is left to the reader to prove that K[[x]] is a commutative ring and
the canonical injection is a homomorphism of local rings inducing the iso-
morphisms above. To prove that K[[x]] is a local ring, we show that 〈x〉 is
the unique maximal ideal. We have to prove that f =

∑
α aαx

α ∈ K[[x]] with
a0 �= 0 has an inverse in K[[x]]. We use the recursive description of f and ap-
ply induction on n. We may assume f =

∑∞
ν=0 bνx

ν
n, bν ∈ K[[x1, . . . , xn−1]]

and b0 a unit in K[[x1, . . . , xn−1]], that is, there exists c0 ∈ K[[x1, . . . , xn−1]]
such that b0c0 = 1. We want to determine cν ∈ K[[x1, . . . , xn−1]], ν ≥ 1,
such that g :=

∑∞
ν=0 cνx

ν
n satisfies fg = 1. We already have b0c0 = 1 and

we have to choose the cν in such a way that
∑ν

i=0 bicν−i = 0 for all ν > 0.
Assume we have already found c0, . . . , cν−1 with this property. We define
cν := −c0

∑ν
i=1 bicν−i.

In particular, if f ∈ K[x] � 〈x〉, then we can express the inverse 1/f ∈ K[x]〈x〉
as a (unique) power series, that is, we have an injection K[x]〈x〉 ↪→ K[[x]].

SINGULAR Example 6.1.3 (inverse of a power series).
The following procedure computes the inverse of a polynomial p with non–
vanishing constant term (in the current basering, which is assumed to be
equipped with a local ordering) as a power series up to a given order k:

proc invers(poly p, int k)
{

poly q=1/p[1]; //assume that p[1]<>0
poly re=q;
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p=q*(p[1]-jet(p,k));
poly s=p;
while(p!=0)
{

re=re+q*p;
p=jet(p*s,k);

}
return(re);

}

ring R=0,(x,y),ds;
poly p=2+x+y2;
poly q=invers(p,4);
q;
//->1/2-1/4x+1/8x2-1/4y2-1/16x3+1/4xy2+1/32x4-3/16x2y2+1/8y4

jet(p*q,4);
//-> 1

Lemma 6.1.4. Let f, g ∈ K[[x]] then ord(f + g) ≥ min{ord(f), ord(g)} and
ord(fg) = ord(f) + ord(g). A similar statement holds for w–ord.

Proof. The proof is left as an exercise.

Lemma 6.1.5.
⋂∞
ν=1〈x〉ν = 〈0〉.

Proof. f ∈ 〈x〉ν implies ord(f) ≥ ν. If f =
∑

α aαx
α then aα = 0 if |α| < ν.

If f ∈ 〈x〉ν for all ν then aα = 0 for all α and, therefore, f = 0.

Definition 6.1.6.

(1) ConsiderK[[x]] together with the set F := {〈x〉ν | ν ∈ N} as a topological
space, where F is a fundamental system of neighbourhoods of 0. This
topology is called 〈x〉–adic topology.

(2) A sequence {fν} = {fν}ν∈N, fν ∈ K[[x]], is called Cauchy sequence if, for
every k ∈ N, there exists � ∈ N such that

fν − fm ∈ 〈x〉k for all ν,m ≥ � .

(3) A sequence {fν}ν∈N, fν ∈ K[[x]], is called convergent then if there exists a
power series f ∈ K[[x]] such that for every k ∈ N there exists some � ∈ N

satisfying f − fν ∈ 〈x〉k for all ν ≥ �. Then f is uniquely determined, and
we write as usual f =: limν→∞ fν .

(4) If {fν} is a convergent sequence with limit limν→∞ fν = 0, then the se-
quence of partial sums,

{∑m
ν=0 fν

}
ν∈N

, converges1, and we define

1 Do not confuse convergence of the sequence of partial sums in the 〈x〉–adic
topology with the notion of convergent power series if K is either C or R.
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∞∑

ν=0

fν := lim
m→∞

(
m∑

ν=0

fν

)
.

Remark 6.1.7. It follows in the usual way that if {fν}, {gν} are convergent
sequences

lim
ν→∞(fν + gν) = lim

ν→∞ fν + lim
ν→∞ gν , lim

ν→∞(fνgν) = lim
ν→∞ fν · lim

ν→∞ gν ,

and if limν→∞ fν = limν→∞ gν = 0 then

∞∑

ν=0

fν +
∞∑

ν=0

gν =
∞∑

ν=0

(fν + gν) ,

∞∑

ν=0

fν ·
∞∑

ν=0

gν =
∞∑

ν=0

ν∑

i=0

fν−igi .

Theorem 6.1.8. K[[x]] is complete, that is, every Cauchy sequence in K[[x]]
is convergent, and Hausdorff.

Proof. The Hausdorff property is an immediate consequence of Lemma 6.1.5.
Let {fν} be a Cauchy sequence in K[[x]]. We have to prove that fν has a

limit in K[[x]], that is, there exists some power series f ∈ K[[x]], such that,
for all k ∈ N, there exists some � ∈ N satisfying f − fν ∈ 〈x〉k if ν ≥ �.

Let fν =
∑
a
(ν)
α xα, then fν − fμ ∈ 〈x〉k implies a(ν)

α = a
(μ)
α for all α with

|α| < k. Now define f =
∑

α bαx
α as follows. Let α ∈ N

n with |α| = s, and
choose � such that fν − fμ ∈ 〈x〉s+1 if ν, μ ≥ �, then we define bα := a

(	)
α .

Obviously, f = limν→∞ fν .

Definition 6.1.9. Let f, g1, . . . , gn ∈ K[[x]] and assume that ord(gi) ≥ 1 for
all i, then we define the substitution

f(g1, . . . , gn) = lim
m→∞ jm(f)

(
jm(g1), . . . , jm(gn)

)
.

We leave it as an exercise to prove that the sequence used in the definition
is a Cauchy sequence.

Corollary 6.1.10. Let y = (y1, . . . , ym), and let ϕ : K[[x]]→ K[[y]] be a
continuous K–algebra homomorphism with fi := ϕ(xi), i = 1, . . . , n. Then
ϕ(g) = g(f1, . . . , fn) for all g ∈ K[[x]].

Proof. For each m we have ϕ
(
jm(g)

)
= jm(g)(f1, . . . , fn) because ϕ is a K–

algebra homomorphism. Now ϕ being continuous implies ϕ(g) = g(f1, . . . , fn).



6.2 Weierstraß Preparation Theorem 359

Remark 6.1.11.

(1) Any K–algebra homomorphism ϕ : K[[x]]→ K[[y]] is automatically local
(that is, maps the maximal ideal 〈x〉 to 〈y〉). To see this, let f ∈ 〈x〉
and ϕ(f) = g + c with g ∈ 〈y〉, c ∈ K, and assume c �= 0. Clearly, f − c
is a unit in K[[x]], hence ϕ(f − c) = g is a unit, too, contradicting the
assumption.

(2) In particular, any K–algebra homomorphism ϕ : K[[x]]→ K[[y]] is con-
tinuous, and Corollary 6.1.10 shows that ϕ is uniquely determined by
the images fi := ϕ(xi), i = 1, . . . , n, where the fi are power series with
f1, . . . , fn ∈ 〈x〉.
Conversely, any such collection of power series f1, . . . , fn ∈ 〈x〉 defines a
unique (continuous) morphism by setting

ϕ(g) := ϕ

(
∑

α∈Nn

aαx
α

)
=

∑

α∈Nn

aαf
α1
1 · . . . · fαn

n = g(f1, . . . , fn) .

Exercises

6.1.1. Prove Remark 6.1.7.

6.1.2. Prove that the sequence defined in Definition 6.1.9 is a Cauchy se-
quence.

6.1.3. Prove that the procedure of Singular Example 6.1.3 is correct.

6.1.4. Compute the power series expansion of the inverse of 1 + x2+ y2+ z2

in K[x, y, z]〈x,y,z〉 up to order 10.

6.1.5. Show that every formal power series f = 1 +
∑

|α|≥1 aαx
α ∈ K[[x]]

has a square root g ∈ K[[x]] (that is, g2 = f), provided that K is a field of
characteristic �= 2. What about k–th roots for k ≥ 3 ?

6.1.6. Write a Singular procedure computing the square root of f as in
Exercise 6.1.5 up to a given order.

6.2 Weierstraß Preparation Theorem

Definition 6.2.1. f ∈ K[[x]] is called xn–general of order m (or xn–regular
of order m) if

f(0, . . . , 0, xn) = xmn · g(xn), g(0) �= 0 .
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Lemma 6.2.2. Let f ∈ K[[x]] and f =
∑

ν≥m fν with fν homogeneous poly-
nomials of degree ν, fm �= 0. Let (a1, . . . , an−1) ∈ Kn−1, such that

fm(a1, . . . , an−1, 1) �= 0 .

Then f(x1 + a1xn, . . . , xn−1 + an−1xn, xn) is xn–general of order m.

Proof. fm(x1+a1xn, . . . , xn−1+an−1xn, xn) = fm(a1, . . . , an−1, 1)xmn + terms
of lower degree with respect to xn because of Taylor’s formula. On the other
hand, fν(x1 + a1xn, . . . , xn−1 + an−1xn, xn) are homogeneous polynomials
of degree ν. This implies that f(x1 + a1xn, . . . , xn−1 + an−1xn, xn) is xn–
general of order m.

Lemma 6.2.3. Let K be an infinite field and f ∈ K[x] be a homogeneous
polynomial of degree m > 0, then there exist (a1, . . . , an−1) ∈ Kn−1 such that
f(a1, . . . , an−1, 1) �= 0, that is, f is xn–general of some order.

The proof is left as an exercise.

We can test the statement of the lemma in Singular:

SINGULAR Example 6.2.4 (z–general power series).

ring R=0,(x,y,z),ls;
poly p=xyz+x2yz+xy2z;
ideal m=x+random(-5,5)*z,y+random(-5,5)*z,z;
map phi=R,m;
phi(p);
//-> z3+2z4+yz2+3yz3+y2z2+xz2+3xz3+xyz+4xyz2+xy2z+x2z2+x2yz

Remark 6.2.5. If K is finite and fm(a1, . . . , an−1, 1) = 0 (with the notations
of Lemma 6.2.2) for all (a1, . . . , an−1) ∈ Kn−1 then one can use the trans-
formation xi �→ xi + xαi

n , xn �→ xn for suitable α1, . . . , αn−1 to obtain a xn–
general power series f(x1 + xα1

n , . . . , xn−1 + x
αn−1
n , xn).

Theorem 6.2.6 (Weierstraß Division Theorem). Let f ∈ K[[x]] be xn–
general of order m, g ∈ K[[x]], then there exist uniquely determined q ∈ K[[x]]
and r0, . . . , rm−1 ∈ K[[x1, . . . , xn−1]] such that

g = qf + r , with r =
m−1∑

ν=0

rνx
ν
n .

Proof. We define two K[[x1, . . . , xn−1]]–linear maps h, r of K[[x1, . . . , xn]].
Let p =

∑∞
ν=0 aνx

ν
n, aν ∈ K[[x1, . . . , xn−1]], then r(p) =

∑m−1
ν=0 aνx

ν
n and

h(p) =
(
p− r(p))/xmn . This means p = h(p)xmn + r(p).

To prove the theorem we have to find q ∈ K[[x]] such that h(g) = h(qf).
Now qf = qr(f) + qh(f) · xmn and, therefore, we are looking for some q satis-
fying



6.2 Weierstraß Preparation Theorem 361

h(g) = h
(
qr(f) + qh(f)xmn

)
= h

(
qr(f)

)
+ qh(f) .

Let v := qh(f), w = −h(f)−1r(f), (h(f) is a unit because f is xn–general of
order m) and u = h(g), then it is sufficient to find v such that

v = u+ h(w · v) .

Let H(y) := h(wy). Again, by assumption, w ∈ 〈x1, . . . , xn−1〉 ⊂ K[[x]] and,
therefore, H(y) ∈ 〈x1, . . . , xn−1〉i+1 if y ∈ 〈x1, . . . , xn−1〉i. Now we can iter-
ate v = u+H(v) = u+H

(
u+H(v)

)
= u+H(u) +H2(v) and obtain suc-

cessively
v = u+H(u) +H2(u) + · · ·+Hs(u) +Hs+1(v) .

We just saw that Hi(u) ∈ 〈x1, . . . , xn−1〉i and Hs+1(v) ∈ 〈x1, . . . , xn−1〉s+1.
Therefore, v :=

∑∞
i=0H

i(u) converges and satisfies the equation v = u+H(v)
and is, therefore, uniquely determined by this property.

Definition 6.2.7. p = xmn +
∑m−1

ν=0 aνx
ν
n ∈ K[[x1, . . . , xn−1]][xn], a polyno-

mial in xn with coefficients aν ∈ K[[x1, . . . , xn−1]], is called a Weierstraß
polynomial with respect to xn if aν ∈ 〈x1, . . . , xn−1〉 for all ν.

Corollary 6.2.8 (Weierstraß Preparation Theorem). Let f ∈ K[[x]]
be xn–general of order m, then there exists a unit u ∈ K[[x]] and a Weierstraß
polynomial p of degree m with respect to xn such that f = u · p. Here, u and
p are uniquely determined.

Proof. Apply Theorem 6.2.6 to g = xmn and define p = xmn − r, u = q−1.

Corollary 6.2.9. Let f ∈ K[[x]] be xn–general of order m then K[[x]]/〈f〉
is a free K[[x1, . . . , xn−1]]–module of rank m.

Proof. The Weierstraß Division Theorem implies that K[[x]]/〈f〉 is a finitely
generatedK[[x1, . . . , xn−1]]–module, being generated by 1, xn, . . . , xm−1

n . The
uniqueness of the division implies that this is also a basis.

SINGULAR Example 6.2.10 (Weierstraß polynomial).
The following procedure follows the proof of the Weierstraß preparation the-
orem to compute a Weierstraß polynomial up to a given order k for an xn–
general power series f ∈ K[[x]][xn], x = (x1, . . . , xn−1), of order m. The sec-
ond input is the polynomial g = xmn .

proc Weierstrass(poly f,poly g,int k)
{

int i;
int n=nvars(basering);
poly p=f;
for(i=1;i<=n-1;i++)
{
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p=subst(p,var(i),0);
}
if(p==0)
{

"the polynomial is not regular";
return(0);

}
int m=ord(p);
poly hf=f/var(n)^m;
poly rf=f-var(n)^m*hf;
poly invhf=invers(f/var(n)^m,k);
poly w=-invhf*rf;
poly u=g/var(n)^m;
poly v=u;
poly H=jet((w*u)/var(n)^m,k);
while(H!=0)
{

v=v+H;
H=jet((w*H)/var(n)^m,k);

}
poly q=v*invhf;
return(q);

}

ring R=0,(x,y),ds;
poly f=y4+xy+x2y6+x7;
poly g=y4;
poly q=Weierstrass(f,g,10);
poly w=jet(q*f,10); //the Weierstrass polynomial
ring S=(0,x),y,ds;
poly w=imap(R,w);
w;
//-> (x7)+(-x9+x)*y+(-x6)+y2+(-x3)*y3+y4

setring R;
q=Weierstrass(f,g,15);
w=jet(q*f,15); //the Weierstrass polynomial
setring S;
w=imap(R,w);
w;
//-> (-2x15+x7)+(-2x12-2x9+x)*y+(-x9-x6)*y2+(4x11-x3)*y3+y4

See the library weierstr.lib for further procedures in connection with
the Weierstraß preparation theorem.

Corollary 6.2.11. Let K be a field, then K[[x1, . . . , xn]] is Noetherian.
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Proof. We prove the corollary using induction on n. If I ⊂ K[[x1]] is a non–
zero ideal then we choose f ∈ I, f �= 0 such that m = ord(f) is minimal.
Then f = xm1 · u, u a unit. Obviously, I = 〈xm1 〉. Assume K[[x1, . . . , xn−1]] is
Noetherian. Let I ⊂ K[[x1, . . . , xn]] be a non–zero ideal and f ∈ I, f �= 0. We
may assume, using 6.2.2 or 6.2.5 that f is xn–general. By the induction as-
sumption K[[x1, . . . , xn−1]] and, hence, K[[x1, . . . , xn−1]][xn] (Hilbert’s basis
theorem) are Noetherian. Thus, I ∩K[[x1, . . . , xn−1]][xn] is finitely gener-
ated, say by f1, . . . , fm. Now we claim that I = 〈f, f1, . . . , fm〉. Let g ∈ I,
then we use the Weierstraß Division Theorem to write g = qf + r with
r ∈ I ∩K[[x1, . . . , xn−1]][xn], hence, for suitable ξi ∈ K[[x1, . . . , xn−1]][xn]
we have r =

∑m
i=1 ξifi. This proves the claim.

Corollary 6.2.12. Let y = (y1, . . . , ym), and let M be a finitely gener-
ated K[[x, y]]–module. If dimK(M/〈x〉M) <∞ then M is a finitely generated
K[[x]]–module.

Proof. We use induction on m. The difficult part is the case m = 1. Consider
the mapM/〈x〉M →M/〈x〉M defined by multiplication with y1. AsM/〈x〉M
is a finite dimensional K–vector space it follows from the Cayley–Hamilton
theorem that, for suitable ci ∈ K,

f := yq1 + c1y
q−1
1 + · · ·+ cq ∈ Ann(M/〈x〉M) .

This implies that fM ⊂ 〈x〉M . Applying again the Cayley–Hamilton theorem
to the K[[x, y1]]–linear map M →M defined by multiplication with f , we
obtain

g := f r + h1f
r−1 + · · ·+ hr ∈ Ann(M)

for suitable hi ∈ 〈x, y1〉. Therefore, M is a finitely generated K[[x, y1]]/〈g〉–
module.

By construction, g is y1–general. Using Corollary 6.2.9 we obtain that
K[[x, y1]]/〈g〉 is finite over K[[x]]. This implies, indeed, that M is finitely
generated as K[[x]]–module.

Definition 6.2.13. An analytic K–algebra A is a factor ring of a formal
power series ring, A = K[[x1, . . . , xn]]/I.

Corollary 6.2.14. Let A,B be analytic K–algebras and ϕ : A −→ B a mor-
phism of local rings. Then ϕ is finite if and only if dimK B/ϕ(mA)B <∞.

Proof. One implication is trivial; for the second, let dimK B/ϕ(mA)B <∞.
Let A = K[[x]]/I and B = K[[y]]/J, y = (y1, . . . , ym). Then B is a finitely
generated K[[x, y]]–module, where the module structure is defined via ϕ:
let b ∈ B, then xib = ϕ(xi mod I) · b, yib = (yi mod J) · b. Furthermore,
B/〈x〉B = B/ϕ(mA)B. Now the statement is a consequence of Corollary
6.2.12.
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We are now able to test with Singular whether a map is finite. This is
much simpler than for the polynomial case.

SINGULAR Example 6.2.15 (finiteness test).

proc mapIsFinite(R,map phi,ideal I)
{

def S=basering;
setring R;
ideal ma=maxideal(1);
setring S;
ideal ma=phi(ma);
ma=std(ma+I);
if(dim(ma)==0)
{

return(1);
}
return(0);

}

Let us try an example.

ring A=0,(x,y),ds;
ring B=0,(x,y,z),ds;
map phi=A,x,y;
ideal I=z2-x2y;
mapIsFinite(A,phi,I);
//-> 1

Note that we want to compute dim(K[[x]]/IK[[x]]), for some ideal I ⊂ K[x],
but what we actually compute is the dimension dim(K[x]〈x〉/IK[x]〈x〉)). We
shall see soon that both dimensions are equal.

Theorem 6.2.16 (Noether Normalization). Let K be an infinite field,
A = K[[x1, . . . , xn]] and I ⊂ A an ideal. Then there exists an integer s ≤ n
and a matrix M ∈ GL(n,K) such that for

( y1

...
yn

)
= M−1 ·

(
x1

...
xn

)

the canonical map K[[ys+1, . . . , yn]]→ A/I, defined by yi → yi mod I, is in-
jective and finite.

Proof. The proof is similar to the proof of Theorem 3.4.1, therefore, we
just supply the idea. Because of Lemma 6.2.2 we may assume that there
is some xn–general f ∈ I � {0}. Now, Corollary 6.2.9 implies that K[[x]]/〈f〉
is a finitely generated K[[x1, . . . , xn−1]]–module. Therefore, K[[x]]/I is a
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finitely generated K[[x1, . . . , xn−1]]–module. Let I ′ = I ∩K[[x1, . . . , xn−1]].
If I ′ = 〈0〉, we are done. If I ′ �= 〈0〉, we use the induction hypothesis for
I ′ ⊂ K[[x1, . . . , xn−1]].

Theorem 6.2.17 (Implicit Function Theorem). Let K be a field and
F ∈ K[[x1, . . . , xn, y]] such that

F (x1, . . . , xn, 0) ∈ 〈x1, . . . , xn〉 and ∂F
∂y (x1, . . . , xn, 0) �∈ 〈x1, . . . , xn〉 ,

then there exists a unique y(x1, . . . , xn) ∈ 〈x1, . . . , xn〉K[[x1, . . . , xn]] such
that F

(
x1, . . . , xn, y(x1, . . . , xn)

)
= 0.

Proof. The conditions on F imply F (0, . . . , 0, y) = c · y+ higher terms in y,
c �= 0, that is, F is y–general of order 1. The Weierstraß Preparation The-
orem (6.2.8) implies that F = u · (y − y(x1, . . . , xn)

)
, where y(x1, . . . , xn) ∈

K[[x1, . . . , xn]] and u ∈ K[[x1, . . . , xn, y]] a unit.

Theorem 6.2.18 (Inverse Function Theorem). Let K be a field, and
let f1, . . . , fn ∈ K[[x1, . . . , xn]], satisfying f1(0) = · · · = fn(0) = 0. Then the
K–algebra homomorphism

ϕ : K[[x1, . . . , xn]] → K[[x1, . . . , xn]] ,

defined by ϕ(xi) = fi, is an isomorphism if and only if det
(
∂fi

∂xj
(0)

) �= 0.

Proof. Assume that ϕ is an isomorphism, let ψ be its inverse and gi := ψ(xi).
Then we have xi = ψ ◦ ϕ(xi) = ψ(fi) = fi(g1, . . . , gn) for all i which implies

δij =
n∑

k=1

∂fi
∂xk

(ψ)
∂gk
∂xj

.

We obtain (δij) =
(
∂fi

∂xk
(0)

)(
∂gk

∂xj
(0)

)
and, therefore, det

(
∂fi

∂xj
(0)

) �= 0.

Now assume that det
(
∂fi

∂xj
(0)

) �= 0. Then the matrix
(
∂fi

∂xj
(0)

)
is invertible

and we may replace f1, . . . , fn by suitable linear combinations and assume
that

(
∂fi

∂xj
(0)

)
= (δij) is the unit matrix. We construct the inverse ψ of ϕ by

applying the Implicit Function Theorem successively to

F1 := f1(y1, . . . , yn)− x1 , . . . , Fn := fn(y1, . . . , yn)− xn .
In the first step we obtain g ∈ 〈y2, . . . , yn, x1〉 ·K[[y2, . . . , yn, x1]] such that
f1(g, y2, . . . , yn) = x1. Now we consider

F̃2 = f2(g, y2, . . . , yn)− x2 , . . . , F̃n = fn(g, y2, . . . , yn)− xn .

An easy computation shows that, again,
(
∂F̃i

∂yj
(0)

)
= (δij). Hence, we can use

induction and can assume that after applying the Implicit Function Theo-
rem n− 1 times, we would find g2, . . . , gn ∈ 〈x1, . . . , xn〉K[[x1, . . . , xn]] with
F̃i(g2, . . . , gn) = 0 for i = 2, . . . , n.
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Let g1 := g(g2, . . . , gn, x1), and let ψ : K[[x]]→ K[[x]] be the K–algebra
homomorphism defined by ψ(xi) := gi, then

ψ ◦ ϕ(xi) = ψ(fi) = fi(g1, . . . , gn) = xi

for i = 1, . . . , n. It follows that ϕ is injective. On the other hand, the same
consideration as above shows that det

(
∂gi

∂xj
(0)

) �= 0. Hence, we can conclude
that ψ is, indeed, an isomorphism, which completes the proof.

Exercises

6.2.1. Let K be a field and I ⊂ K[[x1, . . . , xn]] an ideal. Prove that there is a
Noether normalization K[[x1, . . . , xr]] ⊂ K[[x1, . . . , xn]]/I with the following
property: for i = r + 1, . . . , n there exist Weierstraß polynomials

pi = xni

i +
ni−1∑

ν=0

pi,ν(x1, . . . , xi−1)xνi ∈ I ,

pi,ν ∈ K[[x1, . . . , xi−1]] and ord(pi,ν) ≥ ni − ν. We call such a Noether nor-
malization a general Noether normalization.

In the case that I is a prime ideal, prove that pr+1 can be chosen such
that Q(K[[x1, . . . , xn]]/I) = Q(K[[x1, . . . , xr ]])[xr+1]/〈pr+1〉.
6.2.2. Prove Remark 6.2.5.

6.2.3. Write a Singular procedure for the Weierstraß division theorem up
to a given order (cf. Singular Example 6.2.10).

6.2.4. Write a Singular procedure to compute the Noether normalization
of an ideal I ⊂ K[[x1, . . . , xn]], I being generated by polynomials.

6.2.5. Prove Newton’s Lemma: there exists ȳ ∈ K[[x1, . . . , xn]] such that
f(ȳ) = 0 and a ≡ ȳ mod

(
∂f
∂y (a)

)
(x1, . . . , xn)c if f ∈ K[[x1, . . . , xn, y]] and

a ∈ K[[x1, . . . , xn]] such that f(a) ≡ 0 mod
(
∂f
∂y (a)

)2(x1, . . . , xn)c.

6.2.6. Prove Hensel’s Lemma: let F ∈ K[[x1, . . . , xn]][y] be a monic poly-
nomial with respect to y and assume that F (0, . . . , 0, y) = g1 · g2 for monic
polynomials g1, g2 such that 〈g1, g2〉 = K[y]. Then there exist monic polyno-
mials G1, G2 ∈ K[[x1, . . . , xn]][y] such that

(1) F = G1G2,
(2) Gi(0, . . . , 0, y) = gi, i = 1, 2.



6.3 Completions 367

6.3 Completions

Let A be a Noetherian local ring with maximal ideal m. Similar to Defi-
nition 6.1.6 we define Cauchy sequences in A with respect to the m–adic
topology.

Definition 6.3.1. A is called a complete local ring, if every Cauchy sequence
in A has a limit in A.

We shall now show another characterization of complete local rings.

Definition 6.3.2. LetM be an A–module and {Mn} be a stable m–filtration
of M , then the module

M̂ :=

{
(m1,m2, . . .) ∈

∞∏

i=1

M/Mi

∣∣∣∣∣ mi ≡ mj mod Mi if j > i

}

is called the completion of M .

Lemma 6.3.3. With the notations of Definition 6.3.2, M̂ is an A–module
and does not depend on the choice of the stable filtration.

Proof. Obviously M̂ is an A–module, but we have to prove that M̂ does not
depend on the filtration. Let

{
M̃n

}
be another stable m–filtration of M , and

choose, using Lemma 5.4.3, k0 such that Mk+k0 ⊂ M̃k and M̃k+k0 ⊂ Mk for
all k.

We have canonical maps

M/Mk+2k0
ϕk−→M/M̃k+k0

Ψk−→M/Mk

for all k and obtain, therefore, maps

M̂{Mn}
ϕ̂−→ M̂{M̃n}

Ψ̂−→ M̂{Mn}

(to distinguish we use here the notation M̂{Mn}, respectively M̂{M̃n}, for the

completion of M with respect to the filtration {Mn}, respectively
{
M̃n

}
).

Let m = (m1, . . .) ∈ M̂{Mn}, then ϕ̂(m) = (n1, . . .) =: n satisfies nk0+k =
ϕk(m2k0+k) and ni = nk0+1 mod M̃i if i ≤ k0. Now Ψ̂(n) = (m̃1, . . .) with the
property m̃k = Ψk(nk0+k). But m̃k = m2k0+k mod Mk = mk and, therefore,
Ψ̂ ◦ ϕ̂ = id. Similarly, we can see that ϕ̂ ◦ Ψ̂ = id.

Example 6.3.4. The completion Â of a Noetherian local ring A is given by

Â =

{
(a1, a2, . . .) ∈

∞∏

i=1

A/mi

∣∣∣∣∣ ai ≡ aj mod mi if j > i

}
.
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Note that Â has a natural ring structure, given by component wise addition
and multiplication,

(a1, a2, . . .) · (a′1, a′2, . . .) := (a1a
′
1, a2a

′
2, . . .) .

Theorem 6.3.5. Let A be a Noetherian local ring. Then Â is a complete
local ring with maximal ideal

m̂ :=
{

(a1, a2, . . .) ∈ Â
∣∣∣ a1 = 0

}
,

and Â/m̂ν ∼= A/mν . The canonical map A→ Â is an isomorphism if and only
if A is complete.

Proof. Any (a1, a2, . . .) ∈ m̂ satisfies, in particular, ai ≡ 0 mod m, that is,
ai ∈ m for all i. Now it is easy to see that

m̂i =
{

(a1, a2, . . .) ∈ Â
∣∣∣ aj = 0 for all j ≤ i

}
.

It follows that the canonical map Â→ A/mi, (a1, a2, . . .) �→ ai induces an
isomorphism Â/m̂i ∼= A/mi. On the other hand, consider the canonical map
ϕ : A→ Â defined by

ϕ(a) := (a mod m, a mod m2, . . .) .

Note that the above consideration shows that ϕ is, indeed, a continuous map.
If A is complete and (a1, a2, . . .) ∈ Â, then {ai} is a Cauchy sequence be-

cause, for j > i, aj − ai ∈ mi. This sequence has a limit a ∈ A which satisfies
ϕ(a) = (a1, a2, . . .). Thus, ϕ is surjective. Because

⋂
i m

i = 〈0〉 we have that
ϕ is always injective.

To prove the other direction it suffices to prove that Â is complete. Let
{an} be a Cauchy sequence in Â, an =

(
a
(n)
1 , a

(n)
2 , . . .

)
. This means that for

all given N there exists i(N) such that an − am ∈ m̂N if n,m ≥ i(N). Now
an − am ∈ m̂N if and only if a(n)

i − a(m)
i ∈ mN for all i. Define

b := (b1, b2, . . .) ∈
∞∏

i=1

A/mi , bn := a(i(n))
n .

Then

(1) bn − a(j)
n ∈ mn if j ≥ i(n);

(2) bm − bn ∈ mn if m ≥ n.

This implies b ∈ Â and b− aj ∈ m̂n for j ≥ i(n).

Corollary 6.3.6. Let A be a Noetherian local ring, and let Â be the comple-
tion. Then the following holds:
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(1) HSÂ,m̂ = HSA,m, especially dim(A) = dim
(
Â
)
, and mult(A) = mult

(
Â
)
;

(2) A is regular if and only if Â is regular.

Proposition 6.3.7. Let A be a Noetherian local ring, and let

0 → N
j−→M

π−→ P → 0

be an exact sequence of finitely generated A–modules, then the induced se-
quence of Â–modules

0 −→ N̂
ĵ−→ M̂

π̂−→ P̂ −→ 0

is exact.

Proof. Artin–Rees’ Lemma 5.4.5 implies that {miM ∩ N} is an m–stable
filtration of N , therefore, N̂ = N̂{miM∩N}. Now, since for all i the sequence

0 −→ N/miM ∩N −→M/miM −→ P/miP −→ 0

is exact, we obtain that the induced sequence

0 −→ N̂
ĵ−→ M̂

π̂−→ P̂

is exact. It remains to prove that π̂ is surjective.
Let p = (p1, p2, . . .) ∈ P̂ . Choosem1,m2 ∈M such that π(m1) + mP = p1

and π(m2) + m2P = p2. Now p1 ≡ p2 mod mP . This implies that there ex-
ist t ∈ mM , n ∈ N such that m1 −m2 = n+ t. Define m2 := m2 + n, then
π(m2) + m2P = p2 and m1 −m2 ∈ mM . Continuing in this way, we define a
sequence m = (m1 + mM,m2 + m2M, . . .) ∈ M̂ with π̂(m) = p.

Corollary 6.3.8. Let A be a Noetherian local ring and M a finitely gener-
ated A–module, then M ⊗A Â ∼= M̂ . Especially, if A is complete, then M is
complete, that is, M = M̂ . In particular, A/I is complete if A is complete.

Proof. Let An → Am → M → 0 be a presentation of M , then Proposition
6.3.7 and Theorem 2.7.6 give a commutative diagram

Ân �� Âm ��
M̂

�� 0

An ⊗A Â

��

�� Am ⊗A Â

��

�� M ⊗A Â

��

�� 0

with exact rows. The vertical arrows are the canonical maps. The two left–
hand arrows are isomorphisms, since completion commutes with direct sums.
This implies that the canonical map M ⊗A Â→ M̂ is an isomorphism.



370 6. Complete Local Rings

Example 6.3.9. Let K be a field, and let I ⊂ K[[x1, . . . , xn]] be an ideal, then
A = K[[x1, . . . , xn]]/I is complete.

We shall see now that, in a sense, the converse is also true.

Theorem 6.3.10 (Cohen). Let A be a Noetherian complete local ring with
maximal ideal m. Suppose that A contains a field and let K := A/m. Then
A ∼= K[[x1, . . . , xn]]/I for some ideal I.

Proof. Here we shall give the proof for the special case that K ⊂ A. Let
m = 〈m1, . . . ,mn〉, and consider the map ϕ : K[x1, . . . , xn]〈x1,...,xn〉 → A de-
fined by ϕ(xi) := mi. Now a Cauchy sequence {aν} in K[x1, . . . , xn]〈x1,...,xn〉
with respect to 〈x1, . . . , xn〉 is mapped to a Cauchy sequence {ϕ(aν)} in A
with respect to m.

Because A is complete, ϕ can be extended to ϕ̂ : K[[x1, . . . , xn]]→ A. Let
a ∈ A, then a = a0 +m, a0 ∈ K, m ∈ m, m =

∑
i cimi. Again we decompose

ci = ci0 + ci1, ci1 ∈ m, ci0 ∈ K. Continuing like that we obtain, for all j,

a =
∑

α1+···+αn≤j
aα1,...,αnm

α1
1 · . . . ·mαn

n + hj , hj ∈ mj+1 .

Because A is complete, the sequence
{∑

|α|≤j aα1,...,αnm
α1
1 · . . .mαn

n

}
j∈N

con-
verges to a and a = ϕ̂

(∑
α aα1,...,αnx

α1
1 · . . . · xαn

n

)
. Hence, ϕ̂ is surjective, and

we set I := Ker ϕ̂.

As an application we want to compute the completion of the local ring
K[x1, . . . , xn]P , P ⊂ K[x1, . . . , xn] a prime ideal. Because of Exercise 3.5.4,

K[x1, . . . , xn]P = K(u)[x� u]PK(u)[x�u] ,

u ⊂ x = {x1, . . . , xn} a maximal independent set. Since PK(u)[x� u] is a
maximal ideal in K(u)[x� u], it is enough to describe the computation of
the completion in the case that P is a maximal ideal. We shall study here the
case P = 〈x1, . . . , xn−1, f〉, f ∈ K[xn] irreducible and separable. IfK is a field
of characteristic 0, we can always find an automorphism ϕ of K[x1, . . . , xn]
mapping a given maximal ideal P to an ideal ϕ(P ) = 〈x1, . . . , xn−1, f〉 with
f ∈ K(xn) irreducible (Proposition 4.2.2).

Theorem 6.3.11. Let K be a field, f ∈ K[xn] an irreducible and separable
polynomial and α a root of f . Then there is a canonical isomorphism

ϕ : K[x1, . . . , xn]̂〈x1,...,xn−1,f〉
∼=−→ K(α)[[y1, . . . , yn]]

defined by ϕ(xi) = yi, i = 1, . . . , n− 1, and ϕ(f) = yn.
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Proof. Let f =
∑m

ν=0 aνx
ν
n and consider

F (T ) :=
m∑

ν=0

aν(T + α)ν − yn ∈ K(α)[[yn]][T ] .

We have F (0) = −yn and F ′(0) = f ′(α) a unit. Using the Implicit Function
Theorem we obtain a unique t(yn) ∈ 〈yn〉 ·K(α)[[yn]] such that F

(
t(yn)

)
= 0.

Now we define ϕ0 : K[x1, . . . , xn]→ K(α)[[y1, . . . , yn]], setting ϕ0(xi) := yi,
i = 1, . . . , n− 1, and ϕ0(xn) := t(yn) + α.

We obtain ϕ0(f) = yn, in particular, ϕ0(〈x1, . . . , xn−1, f〉) ⊂ 〈y1, . . . , yn〉.
If h ∈ K[x1, . . . , xn], h �∈ 〈x1, . . . , xn−1, f〉, then

ah+
n−1∑

i=1

bixi + cf = 1

for suitable a, b1, . . . , bn−1, c ∈ K[x1, . . . , xn] because 〈x1, . . . , xn−1, f〉 is a
maximal ideal. This implies ϕ0(a)ϕ0(h) +

∑n−1
i=1 ϕ0(bi)yi + ϕ0(c)yn = 1 and,

therefore, ϕ0(h) �∈ 〈y1, . . . , yn〉. Hence, ϕ0 extends to a map

ϕ0 : K[x1, . . . , xn]〈x1,...,xn−1,f〉 −→ K(α)[[y1, . . . , yn]] .

Denote by ϕ(k)
0 the induced maps

ϕ
(k)
0 : K[x1, . . . , xn]〈x1,...,xn−1,f〉/〈x1, . . . , xn−1, f〉k

−→ K(α)[[y1, . . . , yn]]/〈y1, . . . , yn〉k .
It remains to prove that ϕ(k)

0 is an isomorphism for all k.
Let h ∈ K[x1, . . . , xn]〈x1,...,xn−1,f〉 such that ϕ0(h) ∈ 〈y1, . . . , yn〉k and

assume h �∈ 〈x1, . . . , xn−1, f〉k. We may assume that h ∈ 〈x1, . . . , xn−1, f〉k−1

and
h =

∑

|α|=k−1

aα1,...,αnx
α1
1 . . . x

αn−1
n−1 f

αn ,

with coefficients aα1,...,αn ∈ K[x1, . . . , xn]〈x1,...,xn−1,f〉 among which there is
(at least one) coefficient aβ1,...,βn �∈ 〈x1, . . . , xn−1, f〉. Then

ϕ0(h) =
∑

|α|=k−1

ϕ0(aα1,...,αn) · yα1
1 . . . yαn

n ,

and ϕ0(aβ1,...,βn) �∈ 〈y1, . . . , yn〉, which contradicts ϕ0(h) ∈ 〈y1, . . . , yn〉k. This
proves the injectivity of ϕ(k)

0 .
To prove the surjectivity of ϕ(k)

0 , it is sufficient to show that there exists
some h ∈ K[x1, . . . , xn]〈x1,...,xn−1,f〉 such that ϕ0(h)− α ∈ 〈y1, . . . , yn〉k. We
know already that ϕ0(xn)− α ∈ 〈yn〉 ·K(α)[[yn]]. Assume we have found h
such that ϕ0

(
h
)− α ∈ 〈yn〉k−1K(α)[[yn]], ϕ0

(
h
)− α = yk−1

n

(
q(α)+ynp(α)

)
,

q(α) ∈ K(α) = K[xn]/〈f〉. Now ϕ0

(
q(xn)

)− q(α) ∈ 〈yn〉K(α)[[yn]] implies
that ϕ0

(
h− fk−1q(xn)

)− α ∈ 〈yn〉kK(α)[[yn]].



372 6. Complete Local Rings

Corollary 6.3.12. Let K be a field, f ∈ K[xn] an irreducible and separable
polynomial and α a root of f . Then there is a canonical isomorphism of the
associated graded rings

ψ : Gr〈x1,...,xn−1,f〉
(
K[x1, . . . , xn]〈x1,...,xn−1,f〉

) ∼=−→ K(α)[y1, . . . , yn] ,

defined by ψ(xi) = yi, i = 1, . . . , n− 1, and ψ(f) = yn. 2

Exercises

6.3.1. Let A be a local ring and M an A–module. Compute the kernel of the
canonical map M → M̂ .

6.3.2. Let A be a Noetherian local ring and i : A→ Â the canonical map.
Prove that i(x) is not a zerodivisor in Â if x is not a zerodivisor in A.

6.3.3. LetK be a field and I ⊂ K[[x1, . . . , xn]] an ideal. LetK[[x1, . . . , xr]] ⊂
A = K[[x1, . . . , xn]]/I be a general Noether normalization (cf. Exercise 6.2.1).
Moreover, let m0 = 〈x1, . . . , xr〉 be the maximal ideal in K[[x1, . . . , xr]], m
the maximal ideal of A. Prove that {mi} is a stable m0–filtration of A.

6.3.4. Use Exercise 6.3.3 to give another proof that K[[x1, . . . , xn]]/I is com-
plete.

6.3.5. Use Exercise 6.3.3 to prove the following: let f ∈ K[[x1, . . . , xn]],
ord(f) = m then mult(K[[x1, . . . , xn]]/〈f〉) = m.

6.3.6. LetK be an infinite field, let P ⊂ K[[x1, . . . , xn]] be a prime ideal, and
let K[[x1, . . . , xr]] ⊂ A = K[[x1, . . . , xn]]/P be a general Noether normaliza-
tion. Prove that mult(A) = [Q(A) : Q(K[[x1, . . . , xr]])]

6.3.7. Compute the dimension and the multiplicity of A = K[[x, y, z]]/I,
I = 〈x2− xy, z3− xyz〉.
6.3.8. Use Theorem 6.3.11 to give another proof of Proposition 5.7.10.

6.3.9. LetK be a field, and let I = 〈f1, . . . , fm〉 be an ideal inK[[x1, . . . , xn]].
Prove (similarly to Theorem 5.6.12) that

edim(K[[x1, . . . , xn]]/I) = n− rank
(
∂fi

∂xj
(0)

)
.

6.3.10. Let K be a field, and I = 〈f1, . . . , fm〉 an ideal in K[[x1, . . . , xn]].
Prove (using Exercise 6.3.9) the Jacobian Criterion: K[[x1, . . . , xn]] is regular
if and only if rank

(
∂fi

∂xj
(0)

)
= n− dim(K[[x1, . . . , xn]]/I).

2 If K is one of the ground fields in Singular, we can compute in K(α)[y1, . . . , yn]
and, hence, in the associated graded ring of the localization of the polynomial
ring K[x1, . . . xn] in a prime ideal.
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6.3.11. Let K be a field, and I = 〈f1, . . . , fm〉 an ideal in K[[x1, . . . , xn]].
Use Theorem 6.2.18 and Exercise 6.3.10 to show that K[[x1, . . . , xn]]/I is
regular of dimension s if and only if K[[x1, . . . , xn]]/I ∼= K[[y1, . . . , ys]].

6.3.12. Let A be a Noetherian local ring. Prove that Ân = Ân.

6.4 Standard Bases

In this section we shall introduce standard bases for ideals in formal power
series rings. The main result is that they can be computed, if the ideal is
generated by polynomials. This is the basis for computations in local analytic
geometry. The theory of standard bases in power series rings goes back to
Hironaka (cf. [123]) and Grauert (cf. [98]).

Let K be a field and x = (x1, . . . , xn). Throughout this section, we fix
a local degree ordering > on Mon(x1, . . . , xn), that is, xα > xβ implies that
w–deg(xα) ≤ w–deg(xβ) for a suitable weight vector w = (w1, . . . , wn) with
wi > 0. Such orderings are compatible with the 〈x〉–adic topology, which
allows us to compare standard bases in K[x]〈x〉 and K[[x]].

A non–zero element f ∈ K[[x]] can be written as
∑∞

ν=0 aνx
α(ν), aν ∈ K,

a0 �= 0 and xα(ν) > xα(ν+1) for all ν.
As in Definition 1.2.2, we define LM(f), LE(f), LT(f), LC(f) and tail(f).

As in Definition 1.6.1, we define a standard basis of an ideal I ⊂ K[[x]].
Standard bases exist in K[[x]] because the leading ideal is finitely generated
(by Corollary 6.2.11). Finally, as in Definition 1.6.2, we define minimal and
completely reduced standard bases.

We shall see in the exercises that completely reduced standard bases exist
and are uniquely determined. To prove the existence of a reduced normal
form, we give the formal version of Grauert’s Division Theorem ([98]), a
generalization of the Weierstraß Division Theorem.

Theorem 6.4.1 (Division Theorem). Let f, f1, . . . , fm ∈ K[[x1, . . . , xn]]
then there exist qj , r ∈ K[[x1, . . . , xn]] such that

f =
m∑

j=1

qjfj + r

and, for all j = 1, . . . ,m,

(1) no monomial of r is divisible by LM(fj);
(2) LM(qjfj) ≤ LM(f).

Proof. We may assume that LC(fi) = 1, i = 1, . . . ,m. Let LM(fi) = xα(i),
i = 1, . . . ,m, and let

Γ := 〈α(1), . . . , α(m)〉 :=
{
α ∈ N

n
∣∣ α− α(i) ∈ N

n for some i
}
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be the semi–module in N
n generated by α(1), . . . , α(m). We define inductively

Γ1 := 〈α(1)〉, . . . , Γi := 〈α(i)〉 ∩ (
Γ � 〈α(1), . . . , α(i− 1)〉) .

Let w =
∑
wαx

α ∈ K[[x]], then we define

r(w) :=
∑

α�∈Γ
wαx

α , qj(w) :=
1

xα(j)

∑

α∈Γj

wαx
α

and obtain

w =
m∑

j=1

qj(w)xα(j) + r(w) . (∗)

Now define a sequence {wi}i∈N by w0 := f ,

wi+1 := wi −
m∑

j=1

qj(wi)fj − r(wi) .

We claim that
∑∞

j=0 wj =: w converges in the 〈x〉–adic topology and that
we obtain the wanted decomposition as f =

∑m
j=1 qj(w)fj + r(w). To see the

convergence note that, due to LT(fj) = xα(j) and (∗), LM(wi+1) < LM(wi)
and, by assumption, the ordering is compatible with the 〈x〉–adic filtration.

Now
∑∞

j=0 wj = w implies r(w) =
∑∞
j=0 r(wj) and qi(w) =

∑∞
j=0 qi(wj).

To prove that f =
∑m

j=1 qj(w)fj + r(w), we write

f =
∞∑

j=0

(wj − wj+1) =
∞∑

j=0

(
wj − wj +

m∑

k=1

qk(wj)fk + r(wj)
)

=
m∑

k=1

( ∞∑

j=0

qk(wj)
)
fk +

∞∑

j=0

r(wj) =
m∑

k=1

qk(w)fk + r(w) .

By construction, no monomial of r(w) is divisible by LM(fj) = xα(j) for all j.
On the other hand, LM

(
qk(w)fk

)
= LM

(∑∞
j=0 qk(wj)fk

) ≤ LM
(
qk(w0)fk

)

because LM(wk+1) < LM(wk) for all k. But w0 = f and, therefore, we obtain
LM

(
qk(w)fk

) ≤ LM(f).

Definition 6.4.2. With the notation of Theorem 6.4.1, we define

NF(f | {f1, . . . , fm}) := r

and obtain in this way a reduced normal form.

The existence of a reduced normal form is the basis to obtain, in the formal
power series ring, all properties of standard bases already proved for K[x]>:

• If S, S′ are two standard bases of the ideal I, then NF(f | S) = NF(f | S′).
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• Buchberger’s criterion (Theorem 1.7.3).
• A reduced standard basis is uniquely determined.

For computations in local analytic geometry, the following theorem is impor-
tant.

Theorem 6.4.3. Let K[x] ⊂ K[[x]] be equipped with compatible local degree
orderings. Let I be an ideal in K[x] and S a standard basis of I, then S is a
standard basis of IK[[x]].

Proof. Let {f1, . . . , fm} be a standard basis of I ⊂ K[x] and

f =
m∑

j=1

hjfj ∈ IK[[x]]

be a non–zero element. We choose c ∈ N such that LM
(
f
) �∈ 〈x〉c and every

monomial in 〈x〉c is smaller than LM
(
f
)
. Then we choose hj ∈ K[x] such

that hj − hj ∈ 〈x〉c. Let f :=
∑m

j=1 hjfj , then f ∈ I and f − f ∈ 〈x〉c.
This implies that LM(f) = LM

(
f
)
, because every monomial in 〈x〉c is

smaller than LM
(
f
)
. But LM(f) ∈ L(I) = 〈LM(f1), . . . ,LM(fm)〉.

Exercises

6.4.1. Prove Theorem 6.4.3 for a local ordering, satisfying the following prop-
erty: given xβ and an infinite decreasing sequence xα(1) > · · · > xα(k) > . . .
there exists j such that xβ > xα(j).

6.4.2. Prove Buchberger’s criterion for ideals in formal power series rings.

6.4.3. Prove that a reduced standard basis of an ideal in a formal power
series ring is uniquely determined.

6.4.4. Let S, S′ be two standard bases of the ideal I ⊂ K[[x]]. Prove that
NF(f | S) = NF(f | S′).

6.4.5. Use Singular to compute a standard basis for the ideal

〈x10+ x9y2, y8− x2y7〉 ⊂ Q[[x, y]]

with respect to the negative weighted degree lexicographical ordering with
weight vector w = (−2,−7).

6.4.6. Let f = xy + z4 and g = xz + y5+ yz2. Use Singular to compute

(1) dimQ Q[[x, y, z]]/〈f, g,M1,M2,M3〉, where M1,M2,M3 are the 2–minors
of the Jacobian matrix of f and g;



376 6. Complete Local Rings

(2) dimQ Q[[x, y, z]]3/M , where M ⊂ Q[[x, y, z]]3 is the submodule generated
by f ·Q[[x, y, z]]3, g ·Q[[x, y, z]]3, and the vectors

(
∂f
∂y ,

∂f
∂z , 0

)
,
(
∂f
∂x , 0,−∂f

∂z

)
,(

0, ∂f∂x ,
∂f
∂y

)
,
(
∂g
∂y ,

∂g
∂z , 0

)
,
(
∂g
∂x , 0,−∂g

∂z

)
,
(
0, ∂g∂x ,

∂g
∂y

)
.

The latter quotient is isomorphic to Ω2
A|Q, where A := Q[[x, y, z]]/〈f, g〉. The

dimension computed in (1) is the so–called Tjurina number of A.3

3 This is one counterexample showing that the exactness of the Poincaré complex of
a complete intersection curve does not imply that the curve is quasihomogeneous.
To see that V (f, g) is not quasihomogeneous, it suffices to compare the Tjurina
and Milnor number, which are different [109]. To see that the Poincaré complex
is exact, it suffices to show that the Milnor number is equal to the difference of
the dimensions of Ω2

A|Q and Ω3
A|Q [190].
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7.1 Tor and Exactness

In Section 2.7, we saw that the tensor product is right exact, but in general
not exact. We shall establish criteria for the exactness in terms of homology.

Let . . . −→ Fi+1
ϕi+1−→ Fi

ϕi−→ . . . F0
ϕ0−→ N −→ 0 be a free resolution of the

A–module N , that is, the sequence is exact and the Fi are free A–modules.
Then, for any A–module M , the induced sequence of A–modules and homo-
morphisms

. . . −→M ⊗A Fi+1
1M⊗ϕi+1−−−−−−→M ⊗A Fi 1M⊗ϕi−−−−−→ . . . −→M ⊗A F0 −→ 0

defines a complex M ⊗A F•.

Definition 7.1.1. We introduce the A–modules TorAi (M,N), which are
called Tor–modules:

(1) TorA0 (M,N) := M ⊗A N ;
(2) TorAi (M,N) := Ker(1M ⊗ ϕi)/ Im(1M ⊗ ϕi+1) for i ≥ 1 .

This definition is independent of the chosen free resolution of N , and, for all
i, TorAi (M,N) ∼= TorAi (N,M), see Exercises 7.1.2 and 7.1.1.

Proposition 7.1.2. Let 0 −→M
i−→ N

π−→ P −→ 0 be an exact sequence
of A–modules and L an A–module. Then, with the canonical induced maps,
the sequence

. . . −→ TorA2 (P,L) −→ TorA1 (M,L) −→ TorA1 (N,L) −→ TorA1 (P,L) −→
−→M ⊗A L −→ N ⊗A L −→ P ⊗A L −→ 0

is exact.

This sequence is called the long exact Tor–sequence.

Proof. Consider a free resolution

. . . −→ Fi+1
ϕi+1−−−→ Fi

ϕi−→ . . . −→ F0
ϕ0−→ L −→ 0 .
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Tensoring the latter with 0 →M → N → P → 0, we obtain the commutative
diagram:

0

��

0

��

0

��
. . . �� M ⊗A Fi+1

1M⊗ϕi+1
��

��

M ⊗A Fi ��

i⊗1Fi

��

. . . �� M ⊗A F0

��

�� M ⊗A L

��

�� 0

. . . �� N ⊗A Fi+1

��

1N⊗ϕi+1
�� N ⊗A Fi

π⊗1Fi

��

�� . . . �� N ⊗A F0

��

�� N ⊗A L

��

�� 0

. . . �� P ⊗A Fi+1

��

1P ⊗ϕi+1
�� P ⊗A Fi

��

�� . . . �� P ⊗A F0

��

�� P ⊗A L

��

�� 0

0 0 0 0 .

The rows of the diagram are complexes and, because of Theorem 2.7.6 and
Exercise 2.7.8, the columns are exact. From the definition of Tor, we obtain
for each i a sequence

TorAi (M,L) −→ TorAi (N,L) −→ TorAi (P,L) ,

which is, indeed, exact, as an easy diagram chase (left as an exercise) shows.
Now the key point is to find maps γi : TorAi+1(P,L)→ TorAi (M,L) such that

TorAi+1(N,L) −→ TorAi+1(P,L)
γi−→ TorAi (M,L) −→ TorAi (N,L)

is exact.
Let x ∈ Ker(1P ⊗ ϕi+1) and choose any preimage y ∈ N ⊗A Fi+1 of x,

that is, (π ⊗ 1Fi+1)(y) = x. Then (π ⊗ 1Fi) ◦ (1N ⊗ ϕi+1)(y) = 0. Therefore,
there exists z ∈M ⊗A Fi such that (1N ⊗ ϕi+1)(y) = (i⊗ 1Fi)(z). Now

(i⊗ 1Fi−1) ◦ (1M ⊗ ϕi)(z) = (1N ⊗ ϕi) ◦ (i⊗ 1Fi)(z)
= (1N ⊗ ϕi) ◦ (1N ⊗ ϕi+1)(y) = 0 .

This implies that z ∈ Ker(1M ⊗ ϕi). We define the map γi by

γi
(
x+ Im(1P ⊗ ϕi+2)

)
:= z + Im(1M ⊗ ϕi+1) .

It is left as an exercise to prove that γi is well–defined, that is, independent
of the choice of x and z, and A–linear.

Finally, we have to prove the exactness of the above sequence. Let
γi
(
x+ Im(1P ⊗ ϕi+2)

)
= 0 that is, z ∈ Im(1M ⊗ ϕi+1). Let w ∈M ⊗A Fi+1

be any preimage of z then

(1N ⊗ ϕi+1) ◦ (i⊗ 1Fi+1)(w) = (i⊗ 1Fi) ◦ (1M ⊗ ϕi+1)(w) = (i⊗ 1Fi)(z)
= (1N ⊗ ϕi+1)(y) .
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This implies that y − (i⊗ 1Fi+1)(w) ∈ Ker(1N ⊗ ϕi+1). On the other hand,
by construction, (π ⊗ 1Fi+1)

(
y − (i⊗ 1Fi+1)(w)

)
= x. So y − (i⊗ 1Fi+1)(w)

represents an element in TorAi+1(N,L) which is mapped to x+ Im(1P ⊗ ϕi+2).
This proves the exactness of the above sequence at TorAi+1(P,L). The proof
of the exactness at TorAi (M,L) is similar.

The following proposition is the basis for computing TorAi (M,N). Let

. . . −→ Fi+1
ϕi+1−→ Fi

ϕi−→ . . .
ϕ1−→ F0

ϕ0−→ N −→ 0

be a free resolution of the A–module N and

G1
ψ−→ G0

π−→M −→ 0

a presentation of the A–module M . Then we obtain the following commuta-
tive diagram:

0 0 0

. . . �� Fi+1 ⊗AM

��

�� Fi ⊗AM

��

�� Fi−1 ⊗AM

��

�� . . .

. . . �� Fi+1 ⊗A G0

��

ϕi+1⊗1G0 �� Fi ⊗A G0

��

ϕi⊗1G0 �� Fi−1 ⊗A G0

��

�� . . .

. . . �� Fi+1 ⊗A G1

��

�� Fi ⊗A G1

1Fi
⊗ψ

��

�� Fi−1 ⊗A G1

1Fi−1⊗ψ
��

�� . . .

Proposition 7.1.3. With the above notations

TorAi (M,N) = (ϕi ⊗ 1G0)
−1 Im(1Fi−1⊗ ψ)

/(
Im(1Fi ⊗ ψ) + Im(ϕi+1⊗ 1G0)

)
.

Proof. The columns, the second and third row of the above diagram are exact
(Theorem 2.7.6 and Exercise 2.7.8). By definition,

TorAi (M,N) = Ker(ϕi ⊗ 1M )/ Im(ϕi+1 ⊗ 1M ) .

Now 1Fi⊗ π maps (ϕi ⊗ 1G0)
−1
(
Im(1Fi−1⊗ ψ)

)
surjectively to Ker(ϕi ⊗ 1M ).

Therefore, we have a surjection

(ϕi ⊗ 1G0)
−1
(
Im(1Fi−1 ⊗ ψ)

) −→ TorAi (M,N) .

Obviously, Im(1Fi ⊗ ψ) + Im(ϕi+1 ⊗ 1G0) is contained in the kernel of this
surjection. An easy diagram chase shows that this is already the kernel.
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Example 7.1.4. Let x ∈ A be a non–zerodivisor and M an A–module. Then

TorA0 (A/〈x〉,M) ∼= M/xM ,

TorA1 (A/〈x〉,M) = {m ∈M | xm = 0} ,
TorAi (A/〈x〉,M) = 0 if i ≥ 2 .

In particular, TorZ

1 (Z/〈2〉,Z/〈2〉) = Z/〈2〉.
Proof. 0 → A

x→ A −→ A/〈x〉 → 0 is a free resolution of A/〈x〉. Tensoring
with M we obtain the complex

M ⊗A F• : . . . −→ 0 −→M
x−→M ,

hence, TorAi (A/〈x〉,M), i ≥ 1, is as above. Moreover, by Exercise 2.7.5 we
obtain TorA0 (A/〈x〉,M) = A/〈x〉 ⊗AM ∼= M/xM .

SINGULAR Example 7.1.5 (computation of Tor).
Using Proposition 7.1.3 we write a procedure Tor to compute TorAi (M,N)
for finitely generated A–modules M and N , presented by the matrices Ps and
Ph. We compute Im := Im(1Fi−1⊗ ψ), f := Im(ϕi⊗ 1G0), Im1 := Im(1Fi⊗ ψ),
Im2 := Im(ϕi+1 ⊗ 1G0), and obtain

TorAi (M,N) = Ker
(
Fi ⊗A G0

ϕi⊗1G0−−−−−→ (Fi−1 ⊗A G0)
/
Im

)/(
Im1 + Im2

)

= modulo(f,Im)/(Im1+ Im2) .

For the applied Singular commands modulo and prune, we refer to the
Singular Examples 2.1.26 and 2.1.34.

proc Tor(int i, matrix Ps, matrix Ph)
{

if(i==0){return(module(tensorMod(Ps,Ph)));}
// the tensor product

list Phi =mres(Ph,i+1); // a resolution of Ph
module Im =tensorMaps(unitmat(nrows(Phi[i])),Ps);
module f =tensorMaps(matrix(Phi[i]),unitmat(nrows(Ps)));
module Im1=tensorMaps(unitmat(ncols(Phi[i])),Ps);
module Im2=tensorMaps(matrix(Phi[i+1]),unitmat(nrows(Ps)));
module ker=modulo(f,Im);
module tor=modulo(ker,Im1+Im2);
tor =prune(tor);
return(tor);

}

As an example, we want to check the formula (cf. Exercise 7.1.7)

TorA1 (A/I,A/J) = (I ∩ J)/(I · J)

for A = Q[x, y], I = 〈x2, y〉, J = 〈x〉.
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ring A=0,(x,y),dp;
matrix Ps[1][2]=x2,y;
matrix Ph[1][1]=x;

Tor(1,Ps,Ph);
//-> _[1]=y*gen(1)
//-> _[2]=x*gen(1)

Hence, TorA1 (A/〈x2, y〉, A/〈x〉) = A/〈x, y〉 ∼= Q. Now, let’s compute the right–
hand side of the above formula:

ideal I1=intersect(ideal(Ps),ideal(Ph));
ideal I2=ideal(Ps)*ideal(Ph);

modulo(I1,I2);
//-> _[1]=gen(1)
//-> _[2]=y*gen(2)
//-> _[3]=x*gen(2)

From the output, we read (I ∩ J)/(I · J) ∼= A2/(Ae1 + 〈x, y〉e2) ∼= A/〈x, y〉.
To obtain, immediately, a minimal embedding of the quotient, one should use
the command prune.

prune(modulo(I1,I2)); // I1/I2 minimally embedded
//-> _[1]=y*gen(1)
//-> _[2]=x*gen(1)

Finally, we compute TorA2 (A/〈x2, y〉, A/〈x〉) and TorA0 (A/〈x2, y〉, A/〈x〉):
Tor(2,Ps,Ph);
//-> _[1]=0

Tor(0,Ps,Ph);
//-> _[1]=x*gen(1)
//-> _[2]=x2*gen(1)
//-> _[3]=y*gen(1)

Hence, TorA2 (A/〈x2, y〉, A/〈x〉) = 0 and TorA0 (A/〈x2, y〉, A/〈x〉) ∼= Q.

Remark 7.1.6. Using Exercise 7.1.8 we can use the previous procedure to
compute TorAi (M,B) with A = K[x1, . . . , xn]/I, M a finitely generated A–
module and B = A[y1, . . . , ym]/J.

Exercises

7.1.1. Prove that TorAi (M,N) ∼= TorAi (N,M).
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7.1.2. Prove that the definition of TorAi (M,N) is independent of the chosen
free resolution of N .

7.1.3. Let . . . −→ Fi+1
ϕi+1−→ Fi

ϕi−→ . . . −→ F0
ϕ0−→ N −→ 0 be a free resolu-

tion of the A–module N , and let M be an A–module. Consider the complex

0 → HomA(N,M)→ HomA(F0,M)→ . . .→ HomA(Fi,M)→ . . . .

Similarly to the Tor–modules define the Ext–modules ,

Ext0A(N,M) = HomA(N,M) ;

ExtiA(N,M) = Ker
(
Hom(ϕi+1 , 1M )

)
/ Im

(
Hom(ϕi, 1M )

)
for i ≥ 1 .

(1) Prove that the definition of ExtiA(N,M) is independent of the chosen free
resolution of N . Show by an example that ExtiA(N,M) �∼= ExtiA(M,N)
in general.

(2) Let 0 → M → N → P → 0 be an exact sequence of A–modules and L
an A–module, then, with the canonical induced maps, the sequence

0 → Hom(P,L)→ Hom(N,L) → Hom(M,L)→ Ext1A(P,L) → . . .

is exact. This sequence is called the long exact Ext–sequence.
(2’) With the assumptions of (2) the sequence

0→ Hom(L,M)→ Hom(L,N)→ Hom(L,P )→ Ext1A(L,M)→ . . .

is exact.
(3) Prove a result similar to Proposition 7.1.3.
(4) Prove that, for i ≥ 1, ExtiA(N,M) = 0 if N is free.
(5) Prove that Ann(N) ⊂ Ann

(
ExtiA(N,M)

)
.

7.1.4. Write a Singular programme to compute Ext (similar to Example
7.1.5).

7.1.5. Let S ⊂ A be a multiplicatively closed set. Prove that

S−1 TorAi (M,N) = TorS
−1A

i (S−1M,S−1N) .

7.1.6. Let M be an A–module and x ∈ A a non–zerodivisor for M and A.
Moreover, let N be an A/〈x〉–module. Prove that

TorA/〈x〉i (N,M/xM) ∼= TorAi (N,M) .

7.1.7. Let I, J ⊂ A be ideals. Prove that TorA1 (A/I,A/J) = (I ∩ J)/(I · J).

7.1.8. Let M be an A–module and B = A[x1, . . . , xn]/J . Prove that

TorAi (M,B) ∼= TorA[x1,...,xn]
i (M ⊗A A[x1, . . . , xn], B) .

7.1.9. Let (A,m) be a local ring, k = A/m the residue field and

. . .→ Fn → . . .→ F0 →M → 0

be a minimal free resolution of M . Prove that dimk TorAi (M,k) = rank(Fi)
for all i; rank(Fi) is called the i–th Betti number of M (see Section 2.4).
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7.2 Fitting Ideals

In this section we develop the theory of Fitting ideals as a tool for checking
locally the freeness of a module. If a finitely generated A–module M is given
by a finite presentation, then the k–th Fitting ideal Fk(M) is the ideal gener-
ated by the (n− k)–minors of the presentation matrix, n being the number
of rows of the matrix. The Fitting ideals do not depend on the presentation
of the module. Moreover, they are compatible with base change. We shall
prove that M is locally free of constant rank r if and only if Fr(M) = A and
Fr−1(M) = 0.

First of all we should like to generalize the notion of rank to arbitrary
modules.

Definition 7.2.1. Let A be a ring and M be a finitely generated A–module.
We say that M has rank r if M ⊗A Q(A) is a free Q(A)–module of rank r,
where Q(A) denotes the total quotient ring of A.

Remark 7.2.2. If A is an integral domain, then Q(A) is a field and, hence,
every finitely generated A–module M has a rank, namely

rank(M) = dimQ(A)M ⊗A Q(A) .

For arbitrary rings A, not every finitely generated A–module needs to have
a rank (cf. Exercise 7.2.4).

Lemma 7.2.3. Let A be a Noetherian ring and M be a finitely generated
A–module. M has rank r if and only if MP is a free AP –module of rank r
for all prime ideals P ∈ Ass(〈0〉).
Proof. Using Exercise 3.3.10 we may assume A = Q(A). If M is free of rank
r then MP is free of rank r for all prime ideals P .

Now assume that MP is free of rank r for all prime ideals P ∈ Ass(〈0〉).
Using Proposition 2.1.38 we may assume that r > 0 and choose x ∈M such
that x �∈ PMP for all P (Exercise 2.1.22). Now x is an element of a minimal
system of generators of MP for all P . Using Nakayama’s Lemma we obtain
that x is an element of a basis of the free module MP for all P . This implies
that (M/xA)P is free of rank r−1 for all P . Using induction we may assume
that M/xA is free of rank r − 1. This implies M ∼= xA ⊕M/xA is free of
rank r (Exercise 2.4.1).

Definition 7.2.4. Let A be a ring andM be an A–module with presentation
Am

ϕ−→ An →M → 0. Assume that ϕ is defined by the matrix S for some
choice of bases in Am and An. For all k let Fk(M) = FAk (M) ⊂ A be the
ideal generated by the (n− k)–minors1 of the matrix S, the k–th Fitting
ideal of M . We use the convention that Fk(M) = 0 if n− k > min{n,m}
and Fk(M) = A if k ≥ n.
1 If S is a matrix with entries in A, then by a k–minor we denote the determinant

of a k × k–submatrix of S.
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In particular, we obtain Fr(M) = 0 if r < 0, F0(M) is generated by the n–
minors of S, and Fn−1(M) is generated by all entries of S.

The following lemma justifies the definition:

Lemma 7.2.5. With the notations of Definition 7.2.4, the following holds:

(1) Fk(M) is independent of the choice of the bases in Am and An;
(2) Fk(M) is independent of the presentation of M ;
(3) let B be an A–algebra, then FBk (M ⊗A B) = FAk (M) ·B.

Property (3) is usually expressed by saying that Fitting ideals are compatible
with base change. Note that this implies that Fitting ideals are compatible
with localization, that is, FAP

k (MP ) =
(
FAk (M)

)
P

for any prime ideal P ⊂ A.

Proof. (1) It is enough to prove that for two matrices S and T with the
property that T is obtained from S by adding the i–th row to the j–th row,
the ideal generated by the r–minors of S is equal to the ideal generated by the
r–minors of T . But this is easy to see, using the additivity of the determinant,
and is, therefore, left as an exercise.

(2) Let Am1
ϕ1−→ An1 →M → 0 and Am2

ϕ2−→ An2 →M → 0 be two pre-
sentations. We have to prove that the ideal generated by the (n1− k)–minors
of ϕ1 is equal to the ideal generated by the (n2− k)–minors of ϕ2. It is
enough to prove this for the localizations in the prime ideals P ⊂ A (Exer-
cise 2.1.23). Therefore, we may assume that (A,m) is local. We first treat the
case that Ker(ϕj) ⊂ mAmj and Im(ϕj) ⊂ mAnj . Let {ei}1≤i≤n1 be a basis
of An1 , and assume that {ei1 , . . . , eik} induces a basis of the A/m–vector
space M/mM , then 〈ei1 , . . . , eik〉+ Im(ϕ1) = An1 (Lemma of Nakayama).
But Im(ϕ1) ⊂ mAn1 implies that 〈ei1 , . . . , eik〉 = An1 , again by the Lemma
of Nakayama. So {ei}1≤i≤n1 induces a basis of M/mM . Choose now elements
{ai}1≤i≤n1 in An2 inducing in M/mM the same elements as {ei}1≤i≤n1 . As
before, we obtain An2 = 〈a1, . . . , an1〉. This implies that n1 = n2 and that
there exists an isomorphism φ making the diagram

An1

φ∼=
��

�� M

An2 �� M

commutative.
Similarly we prove m1 = m2 and the existence of an isomorphism ψ mak-

ing the diagram

Am1

ψ ∼=
��

ϕ1 �� An1

φ∼=
��

�� M �� 0

Am2
ϕ2 �� An2 �� M �� 0
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commutative. Now we use (1) and obtain that the ideal of the (n1− k)–minors
of ϕ1 is equal to the ideal of the (n2− k)–minors of ϕ2. To prove the general
case it is enough to prove that, given a presentation Am1

ϕ1−→ An1→M → 0,
there exists a presentation Am2

ϕ2−→ An2 →M → 0 such that

(1) Ker(ϕ2) ⊂ mAm2 and Im(ϕ2) ⊂ mAn2 ;
(2) the ideal generated by the (n1−k)–minors of ϕ1 is equal to the ideal

generated by the (n2−k)–minors of ϕ2.

It is enough to prove that, for a suitable choice of the bases in An1 and
Am1 , the matrix corresponding to ϕ1 is of type

(
L 0 0
0 Es 0

)
such that the en-

tries of L are in m, and Es is the s–unit matrix. Then define the presenta-
tion Am2

ϕ2−→ An2 →M → 0 by the matrix L. Then, obviously, the (n2−k)–
minors of L generate the same ideal as the (n1−k)–minors of

(
L 0 0
0 Es 0

)
.

If Im(ϕ1) �⊂ mAn1 , then the matrix corresponding to ϕ1 contains a unit.
Using suitable bases, we obtain a matrix of type

(
L′ 0
0 1

)
. If Ker(ϕ1) �⊂ mAm1

we can find a new basis of Am1 such that the matrix is of type (L′′ 0).
Combining both and using induction we obtain the result claimed above.

(3) It is enough to prove the following: let Am
ϕ−→ An →M → 0 be a

presentation of M , then Bm
ϕ⊗1B−−−−→ Bn →M ⊗A B → 0 is a presentation of

M ⊗A B. But this is a consequence of Theorem 2.7.6.

SINGULAR Example 7.2.6 (Fitting ideals).

In this example we give a procedure to compute the Fitting ideals of a module
M .

proc fitting(matrix M, int n)
{

n=nrows(M)-n;
if(n<=0){return(ideal(1));}
if((n>nrows(M))||(n>ncols(M))){return(ideal(0));}
return(std(minor(M,n)));

}

The procedure returns, indeed, a standard basis of Fn(M). This is, of course,
not necessary, but often a standard basis has less elements than the number
of minors of the given size. We consider a concrete example:

ring R=0,x(0..4),dp;
matrix M[2][4]=x(0),x(1),x(2),x(3),x(1),x(2),x(3),x(4);
print(M);
//-> x(0),x(1),x(2),x(3),
//-> x(1),x(2),x(3),x(4)

fitting(M,-1);
//-> _[1]=0



386 7. Homological Algebra

fitting(M,0);
//-> _[1]=x(3)^2-x(2)*x(4) _[2]=x(2)*x(3)-x(1)*x(4)
//-> _[3]=x(1)*x(3)-x(0)*x(4) _[4]=x(2)^2-x(0)*x(4)
//-> _[5]=x(1)*x(2)-x(0)*x(3) _[6]=x(1)^2-x(0)*x(2)

fitting(M,1);
//-> _[1]=x(4) _[2]=x(3) _[3]=x(2) _[4]=x(1) _[5]=x(0)

fitting(M,2);
//-> _[1]=1

Let us proceed to the main result of this section.

Theorem 7.2.7. Let A be a local ring and M be an A–module of finite
presentation. The following conditions are equivalent:

(1) M is a free module of rank r;
(2) Fr(M) = A and Fr−1(M) = 0.

Proof. That (1) implies (2) is a trivial consequence of Definition 7.2.4. To
prove that (2) implies (1), let Fr(M) = A and Fr−1(M) = 0, and choose a
presentation Am → An →M → 0 with presentation matrix S (with respect
to some bases of Am and An). Then either n = r and S is the zero ma-
trix, or n > r, one (n− r)–minor of S is a unit (A is a local ring) and all
(n−r+1)–minors of S vanish. If n = r and S is the zero matrix, then, ob-
viously, M is free of rank r. In the second case, one (n− r)–minor is a unit,
so we can choose new bases of Am and An such that the presentation matrix
is of type

(
En−r 0

0 C

)
, En−r the (n− r)–unit matrix. Because all (n−r+1)–

minors are zero, we obtain, indeed, C = 0. This implies that M is free and
isomorphic to the submodule of An generated by the vectors en−r+1, . . . , en,
(ej = (0, . . . , 1, . . . , 0), with 1 at the j–th place).

Corollary 7.2.8. Let A be a ring and M an A–module of finite presentation.
The following conditions are equivalent:

(1) M is locally free2 of constant rank r;
(2) Fr(M) = A and Fr−1(M) = 0.

Proof. The result is an immediate consequence of Theorem 7.2.7 and Lemma
7.2.5 (3).

Corollary 7.2.9. Let ϕ : Am→ AN be a homomorphism, and let S be a ma-
trix of ϕ with respect to some bases of Am and An. Then ϕ is surjective if
and only if there exists an n–minor of S which is a unit in A.
2 By definition, an A–module M is locally free if the localization MP of M at every

maximal ideal (or, equivalently, at every prime ideal) P ⊂ A is a free AP –module.



7.2 Fitting Ideals 387

Proof. Apply Corollary 7.2.8 to Coker(ϕ).

SINGULAR Example 7.2.10 (test for local freeness).
The following procedure tests whether an A–module M , given by a presen-
tation matrix S ∈ Mat(n×m,A) (A the current basering), is locally free of
constant rank r. The procedure uses that fitting returns a standard basis
for the respective Fitting ideal, and that Singular returns 1 if this standard
basis contains a unit.

proc isLocallyFree(matrix S, int r)
{

ideal F=fitting(S,r);
ideal G=fitting(S,r-1);
if((deg(F[1])==0)&&(size(G)==0)){return(1);}
return(0);

}

The procedure returns 1 if the module M is locally free of rank r, and 0
otherwise. We apply this procedure to A = Q[x, y, z] and the A–module M
given by the presentation

Q[x, y, z]3
(
x−1 y−1 z
y−1 x−2 x

)

−−−−−−−−−→ Q[x, y, z]2 −→M −→ 0 .

ring R=0,(x,y,z),dp;
matrix S[2][3]; //the presentation matrix
S=x-1,y-1,z,y-1,x-2,x;
ideal I=fitting(S,0);

By Exercise 7.2.5, M has also the structure of a Q := Q[x, y, z]/F0(M)–
module. In the following, we change the basering to Q and consider M as a
Q–module:

qring Q=I;
matrix S=fetch(R,S);
isLocallyFree(S,1);
//-> 1

Hence, as Q–module, M is locally free of rank 1. Just to check, let us show
that M �= 0:

isLocallyFree(S,0);
//-> 0

Exercises

7.2.1. Let A be a ring, let M be an A–module of finite presentation, and
assume that M can be generated by n elements. Show that

0 = F−1(M) ⊂ F0(M) ⊂ F1(M) ⊂ F2(M) ⊂ . . . ⊂ Fn(M) = A .
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7.2.2. Let M be a matrix with rows m1, . . . ,mk and N be the matrix with
rows m1, . . . ,mj−1, mj + mi, mj+1, . . . ,mk for i �= j. Prove that the ideal
generated by the r–minors of M is equal to the ideal generated by the r–
minors of N .

7.2.3. Let M , respectively N , be the K[x, y]–modules defined by the pre-
sentation matrix

( x y

0 y2

)
, respectively

( x 0
y y2

)
. Prove that M and N are not

isomorphic but have the same Fitting ideals.

7.2.4. Let A = K[x, y]/〈xy〉 and M = 〈x〉. Prove that M does not have a
rank.

7.2.5. Let A be a ring and M an A–module of finite presentation. Prove that
F0(M) ⊂ Ann(M) and

√
F0(M) =

√
Ann(M). More precisely, if M can be

generated by n elements, then show that (Ann(M))n ⊂ F0(M). Conclude
that supp(M) = V

(
F0(M)

)
(cf. Definition 2.1.40 and Lemma 2.1.41).

7.2.6. Let A be a ring, and let 0→M ′ →M →M ′′ → 0 be an exact se-
quence of A–modules of finite presentation. Show that, for each k, r ≥ 0,

Fk(M ′) · Fr(M ′′) ⊂ Fk+r(M) .

7.2.7. Let A be a ring, and let M,N be A–modules of finite presentation.
Show that, for each k,

Fk(M ⊕N) =
∑

r+s=k

Fr(M) · Fs(N) .

7.2.8. Let A be a ring, and let I1, . . . , Is ⊂ A be ideals. Prove that

F0 (A/I1 ⊕ . . .⊕A/Is) = I1 · . . . · Is .

7.3 Flatness

Definition 7.3.1. Let A be a ring. An A–moduleM is called flat if, for every
injective homomorphism i : N → L, the induced map N ⊗AM → L⊗AM is
again injective. An A–algebra B is called flat if it is flat as A–module.

Example 7.3.2. Free modules are flat (Exercise 2.7.7).

The following theorem gives a characterization of flatness using Tor.

Theorem 7.3.3. Let A be a ring and M an A–module. Then M is flat if
and only if TorA1 (A/I,M) = 0 for all finitely generated ideals I ⊂ A.

Proof. Consider the following exact sequence

0 −→ I −→ A −→ A/I −→ 0 .
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We obtain a long exact sequence using Proposition 7.1.2:

0 = TorA1 (A,M) −→ TorA1 (A/I,M) −→ I ⊗AM −→ A⊗AM = M .

If M is flat then I⊗AM →M is injective and, therefore, TorA1 (A/I,M) = 0.
Now assume TorA1 (A/I,M) = 0 for all finitely generated ideals I ⊂ A.

We have to prove that, for any injection i : N → L, the induced map
N ⊗AM → L⊗AM is injective.

We consider first the case N = I, L = A and I ⊂ A an ideal (but not
necessarily finitely generated). If I ⊗AM →M is not injective, then there
exists

∑r
ν=1 aν ⊗mν ∈ I ⊗AM different from zero with

∑r
ν=1 aνmν = 0. Let

I0 := 〈a1, . . . , ar〉 then
∑r

ν=1 aν ⊗mν ∈ I0 ⊗AM and, therefore, by assump-
tion, it has to be zero. In particular, its image in I ⊗AM has to be zero, too.
This implies that I ⊗AM →M is injective for all ideals I ⊂ A.

Similarly, we may assume that L is finitely generated (the statement that
an element from N ⊗AM is mapped to zero in L⊗AM involves only finitely
many elements in L). So we can find a chain

N = N0 ⊂ N1 ⊂ · · · ⊂ Nr = L

of A–modules such that each quotient Ni+1/Ni is generated by one element.
Since it is enough to prove that, for all i,Ni ⊗AM → Ni+1 ⊗AM is injective,
we have reduced the statement to the case that L/N ∼= A/I. Now, consider
the exact sequence

TorA1 (A/I,M) = TorA1 (L/N,M) −→ N ⊗AM −→ L⊗AM .

By assumption, TorA1 (A/I,M) = 0, which implies that N ⊗AM → L⊗AM
is injective.

Now we use Proposition 2.7.10 to give another criterion for flatness, in terms
of equations in M .

Proposition 7.3.4. Let A be a ring, and M an A–module. Then M is flat
if and only if the following condition is satisfied: let

∑r
i=1 aimi = 0, ai ∈ A,

mi ∈M , then there exist aij ∈ A, m̃j ∈M such that

(1)
s∑
j=1

aijm̃j = mi for all i = 1, . . . , r ,

(2)
r∑
i=1

aijai = 0 for all j = 1, . . . s .

Proof. Assume that M is flat. Let
∑r

i=1 aimi = 0, ai ∈ A, mi ∈M and set
I := 〈a1, . . . , ar〉. Since M is flat, the map induced by I ⊂ A, I ⊗AM →M ,
is injective. This implies

∑r
i=1 ai ⊗mi = 0, and the result follows by Propo-

sition 2.7.10.
On the other hand, assume that the condition above is satisfied, and let

I ⊂ A be a finitely generated ideal. By Theorem 7.3.3, it suffices to prove that
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TorA1 (A/I,M) = 0, or, equivalently, that the induced map I ⊗AM →M is
injective. Let

∑r
i=1 ai ⊗mi ∈ I ⊗AM and

∑
i aimi = 0. Using the condition

above, we obtain aij ∈ A, m̃i ∈M such that
∑s

j=1 aijm̃j = mi for all i and∑r
i=1 aijai = 0 for all j. Thus,

∑
i ai ⊗mi =

∑
j (
∑

i aijai)⊗ m̃j = 0.

Let I = 〈a〉 ⊂ A be a principal ideal. Then the preceding proof shows that the
induced map 〈a〉 ⊗AM →M is injective if and only if the following holds:
am = 0 for m ∈M implies that there exist a1, . . . , as ∈ A, m̃1, . . . , m̃s ∈M
such that m =

∑s
i=1 aim̃i and aai = 0 for all i.

In other words, 〈a〉 ⊗AM →M is injective if and only if

AnnM (a) :=
{
m ∈M ∣∣ am = 0

} ⊂ AnnA(a) ·M .

Since the other inclusion is obvious, we have shown

Corollary 7.3.5. Let A be a principal ideal domain. Then an A–module M
is flat if and only if, for every a ∈ A,

AnnM (a) = AnnA(a) ·M .

If, moreover, A is integral, then M is flat if and only if it is torsion free.

If we apply Corollary 7.3.5 to the ring A = K[ε] := K[t]/〈t2〉, where K is a
field and ε the class of t mod 〈t2〉, then we obtain

Corollary 7.3.6. A K[ε]–module M is flat if and only if AnnM (ε) = εM ,
that is, the multiplication by ε induces an isomorphism M/εM ∼= εM .

The above considerations imply also

Corollary 7.3.7. Let a ∈ A be a non–zerodivisor of A, and let M be a flat
A–module, then a is a non–zerodivisor for M .

Corollary 7.3.8. Let A be a local ring with maximal ideal m and M a flat A–
module. Moreover, let m1, . . . ,mk ∈M , such that their classes m1, . . . ,mk in
M/mM are linearly independent. Then m1, . . . ,mk are linearly independent.

In particular, a finitely generated A–module is flat if and only if it is free.

Proof. We use induction on k. Let k = 1 and assume am1 = 0 for some a ∈ A.
Using Proposition 7.3.4 we obtain m̃j ∈M , aj ∈ A such that

∑
j ajm̃j = m1

and aaj = 0 for all j. But m1 �∈ mM implies aj �∈ m for some j and, therefore,
a = 0.

Assume the corollary is proved for k − 1. Let
∑k

j=1 ajmj = 0. We use
Proposition 7.3.4 again and obtain m̃j ∈M , aij ∈ A such thatmi =

∑
j aijm̃j

and
∑

i aijai = 0 for all i = 1, . . . , k, respectively j = 1, . . . , k.
Because mk �∈ mM , we have akj �∈ m (and, hence, a unit) for some j. This

implies that ak is a linear combination of a1, . . . , ak−1, ak =
∑k−1

ν=1 hνaν for
hν := −aνj/akj . Now
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k−1∑

ν=1

aν(mν+ hνmk) = akmk +
k−1∑

ν=1

aνmν = 0 .

The induction hypothesis implies that a1 = . . . = ak−1 = 0 and, therefore,
ak = 0.

Proposition 7.3.9. Let A be a Noetherian ring and M an A–module of
finite presentation. Let Fi(M) be the i–th Fitting ideal of M . M is flat and
has rank r if and only if Fr(M) = A and Fr−1(M) = 0.

Proof. We use the fact that M is flat if and only if it is locally flat, which
will be proved in Proposition 7.4.1, below. Then the result is an immediate
consequence of Corollaries 7.2.8, 7.3.8 and Lemma 7.2.3.

Corollary 7.3.10. Let A be a ring, M an A–module of finite presentation
and ρ : A→ B an A–algebra. M ⊗A B is a flat B–module of rank r if and
only if Fr−1(M) ⊂ Ker(ρ) (that is, B is already an A/Fr−1(M)–algebra) and
Fr(M) ·B = B.

In particular, for any prime ideal P ⊂ A, such that P ⊃ Fr−1(M) and
P �⊃ Fr(M), the module MP /(Fr−1(M)P ·MP ) is a flat AP /Fr−1(M)P –
module of rank r.

Proof. The corollary is an immediate consequence of Proposition 7.3.9 and
the fact that the Fitting ideals are compatible with base change, see Lemma
7.2.5.

Definition 7.3.11. For r ≥ 0, the locally closed 3 subset of Spec(A),

Flatr(M) := {P ⊂ A prime ideal | P ⊃ Fr−1(M) and P �⊃ Fr(M)} ,

considered as an open subset in Spec
(
A/Fr−1(M)

)
, is called the flattening

stratum of rank r for M . The collection {Flatr(M) | r ≥ 0} is called the
flattening stratification of M .

To summarize the results of the discussion so far, we use the geometric lan-
guage of Appendix A. Let Am→ An→M → 0 be a presentation of M , and
let Fk = Fk(M) be the k–th Fitting ideal of M , k ≥ −1. Then we have the
inclusions (cf. Exercise 7.2.1)

Spec(A) = V (F−1) ⊃ V (F0) ⊃ V (F1) ⊃ V (F2) ⊃ . . . ⊃ V (Fn) = ∅

of closed subvarieties, respectively subschemes, of Spec(A). Moreover,

Flatr(M) = V (Fr−1) � V (Fr)

3 A subset of Spec(A) is called locally closed if it is the intersection of a Zariski
open and a Zariski closed subset. For the definition of the Zariski topology on
Spec(A), see Appendix A, Definition A.3.1.
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is locally closed in Spec(A), and Spec(A) is the disjoint union of the Flati(M),
i = 0, . . . , n.

By Exercise 7.2.5 and Lemma 2.1.40, V (F0) is the support of the module
M , and Flat0(M) is the open complement of the support. If we restrict M to
V (F0), that is, if we pass to the A/F0–module M ⊗A A/F0, then Flat1(M)
is exactly the set of all P ∈ V (F0) such that (M ⊗A A/F0)P is a flat (that
is, free, by Corollary 7.3.8) (A/F0)P –module of rank 1.

Again, Flat1(M) is an open subset of V (F0). Now we continue, restricting
M to V (F1), and obtain that Flat2(M) is the set of all P ∈ V (F1) such that
(M ⊗A A/F1)P is a flat (A/F1)P –module of rank 2, which is an open subset
of V (F1), etc. . In general, we have

P ∈ Flatr(M) ⇐⇒ (M ⊗A A/Fr−1)P is (A/Fr−1)P –flat of rank r,

whence the name “flattening stratification”.
Note that P ∈ Flatr(M) does not mean that the localization MP is AP –

flat (of rank r). The set of all P such that MP is AP –flat, the so–called flat
locus of M , will be described in Corollary 7.3.13, below.

SINGULAR Example 7.3.12 (flattening stratification).

In this example we give a procedure which computes the non–trivial Fitting
ideals of a module given by the presentation matrix M . The result is a list
L of ideals Ij = L[j], j = 1, . . . , r, with the following property: set I0 := 〈0〉,
Ir+1 := 〈1〉, then the flattening stratification of Coker(M) is given by the open
sets defined as the complement of V (Ij) in Spec(A/Ij−1) for j = 1, . . . , r + 1.
Note that Coker(M) is flat if L is the empty list.

proc flatteningStrat(matrix M)
{

list l;
int v,w;
ideal F;
while(1)
{

F=interred(fitting(M,w));
if(F[1]==1){return(l);}
if(size(F)!=0){v++;l[v]=F;}
w++;

}
return(l);

}

We apply this procedure to A = Q[x0, . . . , x4] and the module N given by
the presentation

A4 (x0 x1 x2 x3
x1 x2 x3 x4 )−−−−−−−−−→ A2 −→ N −→ 0 .
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ring A = 0,x(0..4),dp;
// the presentation matrix of N:
matrix M[2][4] = x(0),x(1),x(2),x(3),x(1),x(2),x(3),x(4);

flatteningStrat(M);
//-> [1]: [2]:
//-> _[1]=x(3)^2-x(2)*x(4) _[1]=x(4)
//-> _[2]=x(2)*x(3)-x(1)*x(4) _[2]=x(3)
//-> _[3]=x(1)*x(3)-x(0)*x(4) _[3]=x(2)
//-> _[4]=x(2)^2-x(0)*x(4) _[4]=x(1)
//-> _[5]=x(1)*x(2)-x(0)*x(3) _[5]=x(0)
//-> _[6]=x(1)^2-x(0)*x(2)

From the output, we read that the flattening stratification of N is given as
follows: let

I := 〈x2
3 − x2x4, x2x3 − x1x4, x1x3 − x0x4,

x2
2 − x0x4, x1x2 − x0x3, x

2
1 − x0x2〉 .

Then we have

Flat0(N) =
{
P ⊂ A prime ideals

∣∣ P �⊃ I
}

= A
5

� V (I) ,

Flat1(N) =
{
P ⊂ A/I prime ideals

∣∣ P �= 〈x0, . . . , x4〉
}

= V (I) � {0} ,
Flat2(N) =

{〈0〉 ⊂ A/〈x0, . . . , x4〉 = Q
}

= {0} ,
with {0} = V (x0, . . . , x4) ⊂ A

5.

Corollary 7.3.13 (flat locus is open). Let A be a ring, M an A–module
of finite presentation and

F (M) :=
∑

ν

(
(0 : Fν−1(M)) ∩ Fν(M)

)
.

Then

(1) M is flat if and only if F (M) = A;
(2) let P ⊂ A be a prime ideal, then MP is flat if and only if P �⊃ F (M).

Proof. Due to Proposition 7.4.1, below, (1) is a special case of (2). To prove
(2), let A	

ϕ−→ As →M → 0 be a presentation of M . Then Fν(M) is the ideal
generated by the (s− ν)–minors of ϕ with the convention Fν(M) = A if ν ≥ s
and Fν(M) = 0 if ν < 0. We have F (M) =

∑s
ν=0

(
(0 : Fν−1(M)) ∩ Fν(M)

)
.

Let P ⊂ A be a prime ideal. Because of Proposition 7.3.9, MP is a free
AP –module of rank r if and only if Fr(M)P = AP and Fr−1(M)P = 0. Now
Fr−1(M)P = 0 if and only if there exists h �∈ P such that hFr−1(M) = 0, that
is, P �⊃ (

0 : Fr−1(M)
)
. This implies that MP is a free AP –module of rank
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r if and only if P �⊃ (
0 : Fr−1(M)

) ∩ Fr(M). So MP is a free AP –module
implies P �⊃ F (M). Now assume P �⊃ F (M), then there exists r such that(
0 : Fr−1(M)

) ∩ Fr(M) �⊂ P . This implies that MP is a free AP –module.

The geometric interpretation of Corollary 7.3.13 and its proof is the following:
set Fr := Fr(M), then

Spec(A) � V
(
(0 : Fr−1) ∩ Fr

)
=
{
P ∈ Spec(A)

∣∣MP is AP –flat of rank r
}

is the open subset of Spec(A), where M is flat of rank r, and

Flat(M) :=
⋃

r

(
Spec(A) � V

(
(0 : Fr−1) ∩ Fr

))
= Spec(A) � V

(
F (M)

)

is the flat locus (or locally free locus) of M .

SINGULAR Example 7.3.14 (test for flatness).
We use Proposition 7.3.9 to write a procedure to test the flatness of a finitely
generated module defined by a presentation matrix M .

proc isFlat(matrix M)
{

if (size(ideal(M))==0) {return(1);}
int w;
ideal F=fitting(M,0);
while(size(F)==0)
{

w++;
F=fitting(M,w);

}
if (deg(std(F)[1])==0) {return(1);}
return(0);

}

The procedure returns 1 if Coker(M) is flat, and 0 otherwise. Let us try an
example:

ring A=0,(x,y),dp;
matrix M[3][3]=x-1,y,x,x,x+1,y,x2,xy+x+1,x2+y;
print(M);
//-> x-1,y, x,
//-> x, x+1, y,
//-> x2, xy+x+1,x2+y
isFlat(M);
//-> 0 // coker(M) is not flat over A=Q[x,y]

qring B=std(x2+x-y); // the ring B=Q[x,y]/<x2+x-y>
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matrix M=fetch(A,M);
isFlat(M);
//-> 1 // coker(M) is flat over B

setring A;
qring C=std(x2+x+y); // the ring C=Q[x,y]/<x2+x+y>
matrix M=fetch(A,M);
isFlat(M);
//-> 0 // coker(M) is not flat over C

Similarly, we can compute the flat locus. The procedure flatLocus returns
an ideal I such that the complement of V (I) is the flat locus of Coker(M).

proc flatLocus(matrix M)
{

if (size(ideal(M))==0) {return(ideal(1));}
int v,w;
ideal F=fitting(M,0);
while(size(F)==0)
{

w++;
F=fitting(M,w);

}
if(typeof(basering)=="qring")
{

for(v=w+1;v<=nrows(M);v++)
{

F=F+intersect(fitting(M,v),quotient(ideal(0),
fitting(M,v-1)));

}
}
return(interred(F));

}

As an example, let us compute the flat locus of the Q[x, y, z]/〈xyz〉–module
N given by the presentation

(Q[x, y, z]/〈xyz〉)3
( x y z

0 x3 z3

)

−−−−−−−→ (Q[x, y, z]/〈xyz〉)2 −→ N −→ 0 .

ring R=0,(x,y,z),dp;
qring S=std(xyz);
matrix M[2][3]=x,y,z,0,x3,z3;
flatLocus(M);
//-> _[1]=xz3 _[2]=x3z-yz3 _[3]=x4 _[4]=y2z3 _[5]=yz5

Hence, N = Coker(M) is flat outside V (x, yz).
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There is another possibility to describe the flat locus.

Proposition 7.3.15. Let A be a Noetherian ring and M a finitely gen-
erated A–module. Assume that 0 → K → Ap

π−→M → 0 is exact, that is,
K = syz1(M). Then M is flat if and only if Ext1A(M,K) = 0.

Proof. Because of Proposition 7.4.1, below, and the fact that Ext is compat-
ible with localizations, we may assume that A is local. If M is flat, then M
is free and, therefore, Ext1A(M,K) = 0. Now assume that Ext1A(M,K) = 0.
We have the following exact sequence

0 → HomA(M,K)→ HomA(M,Ap) π◦−−→ HomA(M,M)→ Ext1A(M,K)︸ ︷︷ ︸
=0

.

In particular, idM ∈ HomA(M,M) has a preimage i ∈ HomA(M,Ap), that
is, π : Ap→M has a section i : M → Ap satisfying π ◦ i = idM . Therefore,
M is, as a direct summand of Ap, a free module (Exercise 2.1.18).

Corollary 7.3.16. Let A be a Noetherian ring and M a finitely generated
A–module given by the exact sequence 0 → K → AP →M → 0. Then

{P ⊂A prime |MP is AP –flat} = {P ⊂A prime | P �⊃ Ann
(
Ext1A(M,K)

)} ,

that is, Flat(M) = Spec(A) � V
(
Ann

(
Ext1A(M,K)

))
.

SINGULAR Example 7.3.17 (flat locus).
We use Corollary 7.3.16 for a procedure flatLocus1, returning an ideal such
that the complement of its zero–set is the flat locus of Coker(M).

LIB"homolog.lib";
LIB"primdec.lib";
proc flatLocus1(matrix M)
{

list l=mres(M,2);
return(Ann(Ext(1,M,l[2])));

}
ring R=0,(x,y,z),dp;
qring S=std(xyz);
matrix M[2][3]=x,y,z,0,x3,z3;
print(M);
//-> x,y , z,
//-> 0,x3,z3

flatLocus1(M);
//-> _[1]=xz3 _[2]=x3z-yz3 _[3]=x4 _[4]=y2z3 _[5]=yz5
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Exercises

7.3.1. Let M be a flat A–module and S ⊂ A a multiplicatively closed subset.
Prove that M ⊗A S−1A ∼= S−1M via m⊗ a

b �→ ma
b and that S−1M is a flat

S−1A–module. Prove that S−1A is a flat A–module.

7.3.2. Prove that M⊕N is a flat A–module if and only if M,N are flat. More
generally, let {Mi}i∈I be a family of flat A–modules. Prove that ⊕i∈IMi is
flat; especially A[x1, . . . , xn] is a flat A–algebra.

7.3.3. An A–module M is called projective if, for every surjective homomor-
phism π : N → L, the induced map HomA(M,N) → HomA(M,L) is again
surjective. Prove that M is projective if and only if M is a direct summand
of a free module. Prove that a projective module is flat.

7.3.4. Prove that the ideal 〈2, 1 +
√−5〉 ⊂ Z[

√−5] is a projective module,
but not free.

7.3.5. Let ϕ : A → B be a ring homomorphism and M a flat A–module.
Prove that M ⊗A B is a flat B–module.

7.3.6. Let 0→M → N → P → 0 be an exact sequence of A–modules, and
suppose that M and P are flat. Prove that N is flat. Show that P is not
necesarily flat if M and N are flat (but cf. Exercise 7.3.8).

7.3.7. Let 0→M → N → P → 0 be an exact sequence of A–modules, and
assume that N and P are flat. Prove that M is flat.

7.3.8. Let 0 → M → N → P → 0 be an exact sequence of K[ε]–modules
with M flat. Show that P is flat iff N is flat. [Hint: use Corollary 7.3.6]

7.3.9. Prove that M is flat if and only if TorAi (N,M) = 0 for all A–modules
N and i > 0.

7.3.10. Prove that C[x, y]/〈1 + xy〉 is a flat C[x]–module but not a free
C[x]–module.

7.3.11. Let M,N be A–modules and B a flat A–algebra. Prove that

TorAi (M,N)⊗A B ∼= TorBi (M ⊗A B,N ⊗A B) .

7.3.12. Let A be Noetherian and {Mi}i∈I a family of flat A–modules. Then∏
i∈IMi is a flat A–module. In particular, A[[x1, . . . , xn]] is a flat A–algebra.

7.3.13. An A–module M is called faithfully flat if every complex

. . . −→ Ni −→ Ni−1 −→ Ni−2 −→ . . .

of A–modules is exact if and only if the induced complex

. . . −→ Ni ⊗AM −→ Ni−1 ⊗AM −→ Ni−2 ⊗AM −→ . . .

is exact. Prove that M is faithfully flat if and only if M is flat and mM �= M
for every maximal ideal m in A.
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7.3.14. Let K ⊂ L be a field extension. Prove that L is a faithfully flat
K–module.

7.3.15. Let A be a ring and B a faithfully flat A–module. Prove that an
A–module M is faithfully flat if and only if M ⊗A B is a faithfully flat B–
module.

7.3.16. Let A be a local ring and M a finitely generated flat A–module.
Prove that M is faithfully flat.

7.3.17. Let ϕ : A→ B be a faithfully flat ring homomorphism, that is, B is,
via ϕ, a faithfully flat A–module. Prove that, for any A–module M , the map
M → M ⊗A B, defined by m �→ m ⊗ 1, is injective. Use this result to prove
that IB ∩A = I for any ideal I ⊂ A.

7.3.18. Let K be a field and I ⊂ K[x1, . . . , xn, t] be a homogeneous ideal.
Prove that TorK[t]

1 (K,K[x1, . . . , xn, t]/I) = (I : 〈t〉)/I. Use this to prove that
K[x1, . . . , xn, t]/I is flat over K[t] if and only if I : 〈t〉 = I.

7.3.19. Let K be a field, and let I ⊂ K[x1, . . . , xn] be an ideal. More-
over, let w = (w1, . . . , wn) ∈ (Z \ {0})n, and let Ih ⊂ K[x1, . . . , xn, t] be the
weighted homogenization of I with respect to t (see Exercise 1.7.5). Prove
that K[x1, . . . , xn, t]/Ih is a flat K[t]–module.

7.3.20. Give an example of a homogeneous ideal J ⊂ K[x1, . . . , xn, t] such
that K[x1, . . . , xn, t]/J is not a flat K[t]–module.

7.3.21. Let A be an integral domain and I ⊂ A[x1, . . . , xn] an ideal. Prove
that A[x1, . . . , xn]/I is a torsion–free A–module if and only if

IQ(A)[x1, . . . , xn] ∩A[x1, . . . , xn] = I .

7.3.22. Use Exercise 7.3.21 and the results from Chapter 4 (Proposition
4.3.1) to write a Singular procedure to test torsion–freeness.

7.3.23. Let K be a field. Prove that the K[x]–module K[x][[y]]/〈y2 − xy〉 is
flat but not finitely generated.

The following two exercises provide further algorithms to compute the sin-
gular locus of a ring A, without using an equidimensional decomposition as
in Algorithm 5.7.8.

7.3.24. Let K be a perfect field and A = K[x1, . . . , xn]/〈f1, . . . , fm〉. Let
J ⊂ An be the submodule generated by the columns of the Jacobian matrix(
∂fi

∂xj

)
. Let I0 := Ann

(
Ext1A(ΩA|K , J)

)
. Prove that

Sing(A) = V (I0) = {Q ⊂ A prime | I0 ⊂ Q} .
(Hint: use Proposition 7.3.15 and Exercise 5.7.11.)

7.3.25. Use Singular Examples 7.3.14 and 7.3.17 and write a procedure to
compute the singular locus of A = K[x1, . . . , xn]/〈f1, . . . , fm〉, using the fact
that the flat locus of ΩA|K is the regular locus of A.
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7.4 Local Criteria for Flatness

In this section we give criteria for flatness over local rings, which can be
checked with a computer. We shall weaken the condition TorA1 (A/I,M) = 0
for all I ⊂ A to TorA1 (A/m,M) = 0, m the maximal ideal. We shall see that
we can compute TorA1 (A/m,M) and, therefore, check flatness.

Proposition 7.4.1. Let M be an A–module. The following conditions are
equivalent:

(1) M is a flat A–module.
(2) MP is a flat AP –module for all prime ideals P .
(3) MP is a flat AP –module for all maximal ideals P .

Proof. (1) implies (2), by Exercise 7.3.1. That (2) implies (3) is trivial. Fi-
nally, to prove that (3) implies (1), let I ⊂ A be an ideal. Then

(I ⊗AM)P = IP ⊗AP MP −→MP

is injective by assumption. This is true for all maximal ideals and, therefore,
I ⊗AM →M is injective by Corollary 2.1.39.

The following theorem can easily be proved if M is a finitely generated A–
module, by using Nakayama’s lemma. However, its importance is just the
fact that we need only a much weaker finiteness assumption, which turns out
to be extremely useful in applications.

Theorem 7.4.2. Let (A,m) and (R, n) be Noetherian local rings, R an A–
algebra and mR ⊂ n. Let M be a finitely generated R–module. Then M is flat
as an A–module if and only if TorA1 (A/m,M) = 0.

Proof. If M is flat as an A–module then TorA1 (A/m,M) = 0, because of The-
orem 7.3.3.

Now assume that TorA1 (A/m,M) = 0. Let I ⊂ A be an ideal. We have to
prove that I ⊗AM →M is injective.

We first claim that
⋂∞
n=0 mn · (I ⊗AM) = 0. To see this, we consider

I ⊗AM as an R–module via the R–module structure of M . It is finitely
generated as an R–module and, therefore, by Krull’s Intersection Theorem⋂∞
n=0 nn · (I ⊗AM) = 0. But mR ⊂ n implies the claim.
Let x ∈ Ker(I ⊗AM →M) then we will show that x ∈ mn · (I ⊗AM) for

all n. To prove this, we consider the map

(mnI)⊗AM −→ I ⊗AM .

The image of this map is mn · (I ⊗AM). Using the lemma of Artin-Rees
(Lemma 5.4.5), we obtain an integer s such that ms ∩ I ⊂ mnI. Therefore, it
is enough to prove that x is in the image of (mn ∩ I)⊗AM → I ⊗AM for
all n. From the exact sequence
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(mn ∩ I)⊗AM −→ I ⊗AM −→ (I/mn ∩ I)⊗AM −→ 0 ,

we deduce that it is sufficient to see that x maps to 0 in (I/mn ∩ I)⊗AM .
Consider the following commutative diagram:

I ⊗AM
α

��

γ
�� (I/mn ∩ I)⊗AM

π

��

M
β

�� (A/mn)⊗AM .

We know that α(x) = 0. Therefore, π ◦ γ(x) = 0, and it is sufficient to prove
that π is injective. To prove this, consider the following exact sequence

0 −→ I/(mn ∩ I) −→ A/mn −→ A/(I + mn) −→ 0

which induces an exact sequence

TorA1
(
A/(I + mn),M

)→ (I/I ∩mn)⊗AM π−→ (A/mn)⊗AM .

We see that, finally, it suffices to prove that TorA1
(
A/(I + mn),M

)
= 0. But

A/(I + mn) is an A–module of finite length. Therefore, the following lemma
proves the theorem.

Lemma 7.4.3. Let (A,m) be a local ring and M an A–module such that
TorA1 (A/m,M) = 0. Then TorA1 (P,M) = 0 for all A–modules P of finite
length.

Proof. We use induction on the length. The case length(P ) = 1 is clear be-
cause it implies P = A/m. Let N ⊂ P be a proper submodule, then we obtain
the exact sequence

TorA1 (N,M) −→ TorA1 (P,M) −→ TorA1 (P/N,M) .

By the induction hypothesis, TorA1 (N,M) = 0 and TorA1 (P/N,M) = 0. This
implies TorA1 (P,M) = 0.

Note that TorA1 (A/m,M) = 0 if and only if the homomorphism m⊗AM→M ,
a⊗m �→ am, is injective. Hence, Theorem 7.4.2 shows that, for modules
over local rings A, it suffices to consider a single injective homomorphism,
i : m ↪→ A, when studying flatness (cf. Definition 7.3.1).

Corollary 7.4.4. Let (A,m) and (R, n) be Noetherian local rings, R an A–
algebra and mR ⊂ n. Let M be a finitely generated R–module. Then M is flat
as an A–module if and only if M/mnM is a flat A/mn–module for all n.
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Proof. Let M be a flat A–module then m/mn ↪→ A/mn induces an injective
(multiplication) map

(m/mn)⊗A/mn (M/mnM) ∼= (m/mn)⊗AM ↪→M/mnM .

Hence, by the above, M/mnM is a flat A/mn–module.
For the other implication, we have to prove that m⊗AM →M is injec-

tive. As in the proof of Theorem 7.4.2, we know that m⊗AM is a finitely
generated R–module and, therefore,

⋂∞
n=0 mn · (m⊗AM) = 0.

Let x ∈ Ker(m⊗AM→M) then we have to prove that x ∈ mn · (m⊗AM)
for all n. As before, it is enough to see that x maps to 0 in (m/mn)⊗AM .
But (m/mn)⊗AM ∼= (m/mn)⊗A/mn (M/mnM)→M/mnM is injective by
assumption.

Corollary 7.4.5. Let (A,m) be a Noetherian local ring and Â the m–adic
completion, then Â is a faithfully flat A–algebra.

Proof. The corollary follows from Corollary 7.4.4 and Exercise 7.3.11.

Corollary 7.4.6. Let > be any monomial ordering on Mon(x1, . . . , xn) and
I ⊂ K[x]>, x = (x1, . . . , xn), be an ideal. Then the canonical inclusions

K[x]>/I ⊂ K[x]〈x〉/I ·K[x]〈x〉 ⊂ K[[x]]/IK[[x]]

are flat, and the second inclusion is faithfully flat. Moreover, if I ⊂ K[x],
then the inclusion K[x]/I ⊂ K[x]>/I is flat, too.

Corollary 7.4.7. Let (A,m) be a local ring with residue field K. Moreover,
let C be A[x]〈m,x〉, respectively A[[x]], x = (x1, . . . , xn), and let C be K[x]〈x〉,
respectively K[[x]], the reduction of C mod m. Then, for any F1, . . . , Fm ∈ C,
the following are equivalent:

(1) C/〈F1, . . . , Fm〉 is flat over A;
(2) every relation in C,

∑m
i=1HiFi ≡ 0 mod m, can be lifted to a relation∑m

i=1 H̃iFi = 0 in C.

Proof. By Theorem 7.4.2, the A–module B := C/〈F1, . . . , Fm〉 is flat if and
only if TorA1 (K,B) = 0. Now, consider the exact sequence

0 −→ 〈F1, . . . , Fm〉 −→ C −→ B −→ 0

and tensor with K. We obtain an exact sequence

0 −→ TorA1 (K,B) −→ 〈F1, . . . , Fm〉 ⊗A K −→ C −→ B −→ 0 ,

where B := C/〈f1, . . . , fm〉 = B/mB, fi := Fi mod m. This implies that B is
A–flat if and only if the map 〈F1, . . . , Fm〉 ⊗A K −→ C is injective. We have
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〈F1, . . . , Fm〉 ⊗A K =
{(

m∑
i=1

HiFi

)
⊗ 1

∣∣∣∣Hi ∈ C
}
.

By Proposition 2.7.10,
∑m

i=1HiFi ⊗ 1 = 0 in 〈F1, . . . , Fm〉 ⊗A K if and only
if
∑m
i=1HiFi =

∑r
j=1 bjmj for suitable bj ∈ A, mj ∈ 〈F1, . . . , Fm〉, satisfying

bj · 1 = 0 in K, that is, bj ∈ m; hence, if and only if
∑m
i=1HiFi =

∑m
i=1KiFi

for suitable Ki ∈ mC. Setting H̃i := Hi −Ki, the statement follows.

Corollary 7.4.8. Let (A,m) and (R, n) be Noetherian local rings, R an A–
algebra and mR ⊂ n. Let π : M → N be a homomorphism of finitely generated
R–modules with N being A–flat. Then the following conditions are equivalent.

(1) π is injective and L := M/π(N) is flat over A.
(2) π ⊗ 1A/m : M ⊗A A/m→ N ⊗A A/m is injective.

Proof. (1) ⇒ (2): assume that π is injective, then

TorA1 (A/m, L) −→M ⊗A A/m
π⊗1A/m−−−−−→ N ⊗A A/m

is exact. But L is flat over A, hence TorA1 (A/m, L) = 0 and, therefore,
π ⊗ 1A/m is injective.

(2) ⇒ (1): let x ∈ M and π(x) = 0. Then by assumption, x ∈ mM . As-
sume that we have already proved that x ∈ mnM and let m1, . . . ,mr be a
minimal system of generators of mn (as an A–module). Let x =

∑r
i=1 yimi

for suitable yi ∈M . Then 0 = π(x) =
∑r

i=1 π(yi)mi. Now N is a flat A–
module and, by Proposition 7.3.4, there exist aij ∈ A and zj ∈ N such that∑r

i=1miaij = 0 and π(yi) =
∑

j aijzj. By the choice of m1, . . . ,mr (to be a
minimal system of generators) we obtain aij ∈ m. This implies π(yi) ∈ mN
and, by the injectivity of π ⊗ 1A/m we obtain yi ∈ mM and, therefore,
x ∈ mn+1M . Using induction, we obtain x ∈ ⋂∞

n=0 mnM = 〈0〉. This implies
that π is injective.

Now the sequence
0→M

π−→ N → L→ 0

is exact. This implies that

TorA1 (A/m, N) −→ TorA1 (A/m, L) −→M/mM
π⊗1A/m−−−−−→ N/mN

is exact. As N is A–flat, TorA1 (A/m, N) = 0. Because π ⊗ 1A/m is injective, we
obtain TorA1 (A/m, L) = 0. This implies that L is A–flat by Theorem 7.4.2.

Exercises

7.4.1. Let (A,m), (R, n) be Noetherian local rings, R an A–algebra such
that mR ⊂ n. Let x ∈ m be a non–zerodivisor and M a finitely generated
R–module. If x is a non–zerodivisor for M , then M is a flat A–module if and
only if M/xM is a flat A/〈x〉–module.
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7.4.2. Let (A,m), (R, n) be Noetherian local rings and Â, respectively R̂,
their completions. Let R be an A–algebra such that mR ⊂ n. Let M be a
finitely generated R–module and M̂ = M ⊗R R̂.

Prove that M is flat over A if and only if M̂ is flat over Â.

7.4.3. Let A be a ring and B a flat A–algebra. Let Q ⊂ B be a prime ideal
and P = Q ∩A. Prove that the localizationBQ is a faithfully flatAP –algebra.

7.4.4. Let A be a ring and B a faithfully flat A–algebra. Let P ⊂ A be
a prime ideal. Prove that there exists a prime ideal Q ⊂ B, such that
Q ∩A = P . In the language of Appendix A, this means that the induced
map Spec(B)→ Spec(A) is surjective.

7.4.5. Let A be a ring and B a flat A–algebra. Prove that the going down
theorem holds for A ⊂ B. More precisely, let P ⊂ P ′ be prime ideals in A,
and let Q′ ⊂ B be a prime ideal such that Q′ ∩A = P ′. Prove that there
exists a prime ideal Q ⊂ Q′ ⊂ B, such that Q ∩A = P .
(Hint: use Exercises 7.4.3, 7.4.4.)

7.4.6. Let (A,m), (R, n) be Noetherian local rings, and assume that R is an
A–algebra with mR ⊂ n. Prove that

dim(R) ≤ dim(A) + dim(R/mR) ,

with equality if R is flat over A.
(Hint: use Exercise 7.4.5 to prove that dim(R) ≥ dim(A) + dim(R/mR). To
prove the other inequality, choose a system of parameters x1, . . . , xr ∈ A, and
choose y1, . . . , ys ∈ R, inducing a system of parameters in R/mR. Prove that
nk ⊂ 〈x1, . . . , xr, y1, . . . , ys〉R for a suitable k.)

7.4.7. Let A be a Noetherian ring and B a Noetherian A–algebra. Moreover,
let Q ⊂ B be a prime ideal and P := Q ∩A. Prove that

ht(Q) ≤ ht(P ) + dimBQ/PBQ ,

with equality if B is flat over A.

7.4.8. (Dimension of fibres in a faithfully flat family need not be constant.)
Let A := K[y] ⊂ K[x, y, z]/(〈xy − 1〉 ∩ 〈x, z〉) =: B. Prove that B is a faith-
fully flat A–algebra, and compute dim(B/mB) for m = 〈y〉 and m = 〈y − 1〉.
7.4.9. Modify the example of Exercise 7.4.8 to obtain a faithfully flat A–
algebra B such that, for all maximal ideals m ⊂ A, the fibres B/mB are finite
dimensional K–vector spaces, but B is not a finitely generated A–module.

7.4.10. Let A be a Noetherian ring and M a finitely generated A–module.
Prove that the following conditions are equivalent:

(1) M is projective.
(2) MP is free for all prime ideals P .
(3) MP is free for all maximal ideals P .
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7.5 Flatness and Standard Bases

In this section we show that standard bases can be characterized in terms of
flatness. More precisely, for a suitable weighted ordering >w “approximating”
the given ordering >, the ring K[x]>w/I and the ring K[x]>w/L(I) are fibres
in a flat family K[t]→ K[x, t]>w/J , where K[x]>w/L(I) is the special fibre
and K[x]>w/I is the general fibre. Even more, all fibres different from the
special fibre are isomorphic to K[x]>w/I. In this family, each component of
maximal dimension maps surjectively to the target, in particular, the family
is faithfully flat. These properties are the background and the reason for
many applications.

Let K be a field, and let x = (x1, . . . , xn) and t be variables.

Theorem 7.5.1. Let > be any monomial ordering on Mon(x), F ⊂ Mon(x)
a finite subset, and I ′ ⊂ K[x]> an ideal. Then there exist a weighted degree
ordering >w on Mon(x, t), which is global in t and coincides with > on F ,
such that the following holds: let J ⊂ K[x, t]>w be the ideal generated by the
weighted homogenization Ih of I := I ′ ∩K[x] (w.r.t. the weights w and with
homogenizing variable t), then the following holds:

(1) B := K[x, t]>w/J is a flat K[t]–algebra.
If IK[x]>� K[x]> then, for any maximal ideal m ⊂ K[t], there exists a
maximal ideal M ⊂ B such that M ∩K[t] = m and dim(B) = dim(BM ).
In particular, in this case B is faithfully flat over K[t].

(2) L(J) = L>(I)K[x, t].
(3) L>(J |t=λ) = L>(I) for all λ ∈ K.
(4) J |t=0 = L>(I)K[x]>w and J |t=1 = IK[x]>w .

Moreover, the fibre B ⊗K[t] K[t]/〈t− λ〉 ∼= K[x]>w/(J |t=λ) is isomorphic
to K[x]>w/IK[x]>w , for all λ �= 0.

Note that, for > a mixed ordering,K[x]>w �= K[x]>, in general. For example,
let > be the product ordering (lp,ls), then K[x1, x2]> = (K[x2]〈x2〉)[x1] is
a ring in which the units are precisely the polynomials in K[x2] with a non-
zero constant term. On the other hand, for any weight vector w = (w1, w2),
w1 > 0, w2 < 0, elements of the form 1 + xα1

1 xα2
2 with w1α1 + w2α2 < 0 are

units in K[x1, x2]>w . Hence, K[x1, x2]> � K[x1, x2]>w . However, this does
not occur for non–mixed orderings for which we obtain the following, stronger
result:

Corollary 7.5.2. If > is a global or local monomial ordering on Mon(x),
then Theorem 7.5.1 holds with the stronger assertion

(4’) J |t=0 = L(I)K[x]> and J |t=1 = IK[x]>.
Moreover, the fibre B ⊗K[t] K[t]/〈t− λ〉 ∼= K[x]>/(J |t=λ) is isomorphic
to K[x]>/IK[x]>, for all λ �= 0.
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Proof. We may assume that {1, x1, . . . , xn} ⊂ F . Since >w coincides with >
on F this means, in particular, that the ordering >w is global (respectively
local) if > is global (respectively local). Hence, K[x, t]>w = K[x, t]>.

To prove the theorem, we consider first the case that the ordering > is a
weighted degree ordering with weight vector w = (w1, . . . , wn) ∈ Z

n, wi �= 0
for i = 1, . . . , n. We consider on K[x, t] the weighted degree ordering with
weight vector (w1, . . . , wn, 1) refined by the given ordering onK[x] and denote
it also by >. We re–formulate the theorem in terms of standard bases.

For f ∈ K[x] let fh = tw–deg(f)f (x1/t
w1 , . . . , xn/t

wn) be the (weighted)
homogenization of f with respect to t. Moreover, let f1, . . . , fr ∈ K[x], having
the properties

w–deg
(
LM(fi)

)
> w–deg

(
LM(tail(fi))

)
, i = 1, . . . , r .

This property implies that

fhi |t=0 = LT(fi) , fhi |t=1 = fi .

Let I = 〈f1, . . . , fr〉K[x]> and Ĩ = 〈fh1 , . . . , fhr 〉K[x, t]>.

Proposition 7.5.3. With the above notations and assumptions, the follow-
ing conditions are equivalent:

(1) {f1, . . . , fr} is a standard basis of I.

(2) {fh1 |t=λ, . . . , fhr |t=λ} is a standard basis of Ĩ|t=λ for all λ ∈ K.
(3) {fh1 , . . . , fhr } is a standard basis of Ĩ.

(4) K[x, t]>/Ĩ is a flat K[t]–algebra.

Moreover, if I �= K[x]>, then K[x, t]>/Ĩ is faithfully flat over K[t].

Proof. (1)⇒ (2). Let {f1, . . . , fr} be a standard basis of I, then L(I) =
〈LM(f1), . . . ,LM(fr)〉. The case λ = 0 is clear because Ĩ |t=0 is the ideal gen-
erated by the terms fh1 |t=0, . . . , f

h
r |t=0.

If λ �= 0 then theK∗–action ϕλ : K[x]→ K[x] defined by ϕλ(xi) = xi/λ
wi

is a K–algebra isomorphism extending to an isomorphism of K[x]> also de-
noted by ϕλ.

Obviously, LM
(
ϕλ(g)

)
= LM(g) for any non–zero polynomial g ∈ K[x].

This implies that L(I) = L
(
ϕλ(I)

)
and, therefore, {ϕλ(f1), . . . , ϕλ(fr)} is a

standard basis of ϕλ(I). On the other hand, ϕλ(fi) = 1
λw–deg(fi)

fhi |t=λ. This
implies Ĩ|t=λ = ϕλ(I).

(2)⇒ (3). Let h ∈ Ĩ, then we have to prove that LM(fhi ) | LM(h) for some
i. Because Ĩ is homogeneous, we may assume that h = tρgh for some g ∈ I.
(2) implies that LM(fi) | LM(g) for some i, and, therefore, LM(fhi ) = LM(fi)
divides LM(h) = tρ LM(g).
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(3)⇒ (1) is similar. (3) ⇒ (4) is a consequence of Exercise 7.3.19 because
ĨK[x, t]> = IhK[x, t]> is the homogenization of I (Exercise 1.7.5).

To prove (4)⇒ (3) assume that {fh1 , . . . , fhr } is not a standard basis. We
may assume that h = NF(spoly(fh1 , fh2 ) | {fh1 , . . . , fhr }) �= 0. Let h = tρG with
(homogeneous) G ∈ K[x, t]>, such that t � LM(G). Since tρG ∈ Ĩ, we have,
by flatness, G ∈ Ĩ. Let G =

∑r
i=1 hif

h
i then LM(G) = LM

(
G
∣∣
t=0

)
. But

G
∣∣
t=0

=
r∑

i=1

hi
∣∣
t=0

· fhi
∣∣
t=0

=
r∑

i=1

hi
∣∣
t=0

· LT(fi) ∈ L(I) ,

which implies that LM(G|t=0) and, therefore, LM(h) is divisible by some
LM(fhi ) = LM(fi), in contradiction to the definition of h.

Now assume that I �= K[x]>. To prove faithful flatness, we have to show
that, for each maximal ideal m of K[t], (K[x, t]>/Ĩ)⊗K[t] K[t]/m �= 0 (cf.
Exercise 7.3.13).

By passing to the algebraic closure of K, we may assume that K is al-
gebraically closed (cf. Exercises 7.3.14 and 7.3.15). But then m = 〈t− λ〉 for
some λ ∈ K. For λ = 0, we obtain

(
K[x, t]>/Ĩ

)⊗K[t] K[t]/〈t〉 = K[x]/L(I) �= 0 .

For λ �= 0, we use, again, the K∗–action on K[x]>, to obtain Ĩ|t=λ = ϕλ(I).
Therefore,

(
K[x, t]>/Ĩ

)⊗K[t] K[t]/〈t− λ〉 = K[x]>/ϕλ(I) ∼= K[x]>/I �= 0

for λ �= 0.

Proof of Theorem 7.5.1. Let I = Q1 ∩ · · · ∩Qr be an irredundant primary
decomposition, and let S0, S1, . . . , Sr be standard bases of I,Q1, . . . , Qr. We
apply Corollary 1.7.9 and enlarge F if necessary, such that, for each monomial
ordering >1 on Mon(x) which coincides with > on F , the following holds:

• L>1(I) = L>(I),
• L>1(Qi) = L>(Qi), i = 1, . . . , r,
• LM>1(f) = LM>(f) for f ∈ S0 ∪ · · · ∪ Sr.
Using Lemma 1.2.11 and Exercise 1.7.15, we can choose an integer weight
vector w = (w1, . . . , wn) ∈ Z

n, with wi > 0 if xi > 1, respectively wi < 0 if
xi < 1, for all i, and a weighted degree ordering >w coinciding on F with >
such that

• w–deg
(
LM>w(f)

)
> w–deg

(
LM>w

(
tail(f)

))
for f ∈ S0 ∪ · · · ∪ Sr.

Now consider on K[x1, . . . , xn, t] the weighted degree ordering defined by the
weight vector (w1, . . . , wn, 1), refined with the ordering >w (and denote it
also by >w).
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Let Shi := {fh | f ∈ Si}, i = 0, . . . , r, and let J := 〈Sh0 〉 and Qi := 〈Shi 〉,
i = 1, . . . , r. Then J = Q1 ∩ · · · ∩Qr is an irredundant primary decompo-
sition (Exercise 4.1.9). Due to Proposition 7.5.3, B := K[x, t]>w/J and
K[x, t]>w/Qi are faithfully flat K[t]–algebras, i = 1, . . . , r. We may assume
that Q1 defines a maximal dimensional component of B. Since the family
K[t]→ K[x, t]>w/Q1 is faithfully flat, we can find, for every maximal ideal
m ⊂ K[t], a maximal ideal M ⊂ B containing Q1/J such that M ∩K[t] = m.
This implies that dim(B) = dim(BM ), which completes the proof of (1).

By construction, Sh0 is a standard basis of J , and L(Sh0 ) = L>(I)K[x, t]
implies (2). Moreover, (3) is a consequence of Proposition 7.5.3 (2).

(4) By construction, it is also clear that J |t=0 = L>(I)K[x]>w and
J |t=1 = IK[x]>w . For the same reason, we have

K[x, t]>w/J ⊗K[t] K[t]/〈t− λ〉 ∼= K[x]>w/J |t=λ ,
that is, K[x]>w/J |t=λ is isomorphic to K[x]>w/IK[x]>w .

Lemma 7.5.4. Let > be a monomial ordering on Mon(x) and I ⊂ K[x] an
ideal. Then there is a finite subset F ⊂ Mon(x) with the following property:
for any monomial ordering >1 on Mon(x), coinciding with > on F , we have

(1) dimK(K[x]>/IK[x]>) = dimK(K[x]>1/IK[x]>1) ,
(2) dim(K[x]>/IK[x]>) = dim(K[x]>1/IK[x]>1) .

Proof. Let I = Q1 ∩ · · · ∩Qr be a primary decomposition. By extending the
set F (adding the monomials appearing in a system of generators for Qi),
we obtain that QiK[x]>1 = K[x]>1 whenever QiK[x]> = K[x]>. Hence, we
may assume that QiK[x]> �= K[x]> for i = 1, . . . , r. Furthermore, we may
choose a maximal idealM ⊂ K[x], M ⊃ Q1 and MK[x]> �= K[x]>, such that
dim(K[x]M/IK[x]M ) = dim(K[x]>/IK[x]>) ≥ dim(K[x]M ′/IK[x]M ′) for
all maximal ideals M ′.

Let S0, S1, . . . , Sr be standard bases of M,Q1, . . . , Qr, respectively. We
apply Corollary 1.7.9 to S0, . . . , Sr and obtain a finite set F ⊂ Mon(x) such
that for any ordering >1 on Mon(x), coinciding with > on F , the leading
ideals of M, Q1, . . . , Qr with respect to > and >1 are the same.

To prove (1) we use (2) and only have to consider the case dim(Qi) = 0
for i = 1, . . . , r. In this case, we have

K[x]>/I = K[x]/I

because QiK[x]> �= K[x]> and all non–zerodivisors of K[x]/I are units. But,
by construction, we also have K[x]>1/I = K[x]/I and, therefore, (1) holds.

To prove (2) note that, by construction, we have QiK[x]>1 �= K[x]>1

and MK[x]>1 �= K[x]>1 . Therefore, (K[x]>1/IK[x]>1)M = K[x]M/IK[x]M .
This implies that

dim(K[x]>1/IK[x]>1)M = dim(K[x]>/IK[x]>)M .
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Since dim(K[x]M/IK[x]M ) ≥ dim(K[x]M ′/IK[x]M ′) for all maximal ideals
M ′, we obtain (2).

The following two corollaries generalize Corollaries 5.3.9 and 5.3.14, respec-
tively Corollary 5.3.17.

Corollary 7.5.5. Let > be any monomial ordering on K[x], and let I ⊂ K[x]
be an ideal. Then

dim
(
K[x]>/IK[x]>

)
= dim

(
K[x]/L(I)

)
.

Proof. We may assume that IK[x]> �= K[x]> and I = IK[x]> ∩K[x]. Let
f1, . . . , fr be a standard basis of I with respect to >. We choose a finite
set F ⊂Mon(x) such that each monomial ordering coinciding with > on F
satisfies the properties (1) and (2) of Lemma 7.5.4. Now we use Theorem 7.5.1
to obtain a weighted degree ordering>w on Mon(x, t) and an ideal J ⊂ K[x, t]
such that B := K[x, t]>w/J is a faithfully flat K[t]–algebra. Moreover, we
know that for every maximal ideal m ⊂ K[t] there exists a maximal ideal
M ⊂ B with M ∩K[t] = m and dim(B) = dim(BM ). By applying Exercise
7.4.6 to m = 〈t〉 and m = 〈t− 1〉, we obtain

dim
(
K[x]/L>(I)

)
= dim

(
K[x]/L>w(I)

)
= dim(K[x]>w/IK[x]>w)

= dim(K[x]>/IK[x]>) .

Corollary 7.5.6. With the assumptions of Corollary 7.5.5,

dimK

(
K[x]>/IK[x]>

)
= dimK

(
K[x]/L(I)

)
.

Moreover, if dimK(K[x]>/I) <∞, then the monomials in K[x] � L(I) rep-
resent a K–basis of vector space K[x]>/I.

Proof. It can easily be seen that the monomials of K[x] � L(I) are linearly
independent modulo I (use a standard basis of I and Lemma 1.6.7). Hence,
dimK

(
K[x]/L(I)

)
= ∞ implies dimK(K[x]>/I) =∞.

Suppose that dimK

(
K[x]/L(I)

)
<∞. Then there exists a K–basis of

K[x]/L(I) consisting of finitely many monomials xα∈ K[x] � L(I). We may
assume that I = IK[x]> ∩K[x] and choose a finite set F ⊂Mon(x) such
that each monomial ordering coinciding with > on F satisfies the properties
(1) and (2) of Lemma 7.5.4. Now we use Theorem 7.5.1, again, to obtain a
weighted degree ordering >w on Mon(x, t) and an ideal J ⊂ K[x, t] such that
B := K[x, t]>w/J is a faithfully flat K[t]–algebra and L>w(J) = L(I)K[x, t].
Hence, the monomials of K[x] � L(I) generate K[x, t]>w/J as K[t]–module
(Exercise 7.5.1) and, therefore, this module is K[t]–free, as it is finitely gen-
erated. This implies that

dimK(K[x]>/IK[x]>) = dimK(K[x]>w/IK[x]>w)
= dimK(K[x]>w/L>w(I)K[x]>w ) = dimK(K[x]/L(I)) .
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SINGULAR Example 7.5.7 (flatness test).
In this example we study the ideal I0 = 〈x3y + yz2, xy3 + x2z〉 ⊂ Q[x, y, z].
Its generators do not form a standard basis with respect to the degree re-
verse lexicographical ordering. Let I = 〈x3y + yz2t, xy3 + x2zt〉 ⊂ Q[x, y, z, t]
be the ideal generated by the homogenizations of the generators of I0. We
illustrate the relation between flatness and standard bases as shown above.

ring A=0,(x,y,z,t),dp;
ideal I0=x3y+yz2,xy3+x2z;
ideal I=homog(I0,t);

We compute J = I : 〈t〉 and see that J � I. Therefore, B := Q[x, y, z, t]/I is
not Q[t]–flat, because it is not torsion free (Corollary 7.3.5), in particular,
I �= Ih0 :

ideal J=quotient(I,t);

prune(modulo(J,I));
//-> _[1]=t*gen(1)
//-> _[2]=-xy*gen(1)

Now we compute a standard basis of I0 and use it to define Ih := Ih0 , the
homogenization of I0 with respect to t. We shall see that C := Q[x, y, z, t]/Ih
is Q[t]–flat, computing Ih : 〈t〉 = Ih.

ideal I1=std(I0);
ideal Ih=homog(I1,t);
ideal L=quotient(Ih,t);

prune(modulo(L,J));
//-> _[1]=0

Finally, we apply the formula TorQ[t]
1 (Q, B) ∼= TorQ[x,y,z,t]

1 (Q[x, y, z], B) (cf.
Exercise 7.1.8) to compute TorQ[t]

1 (Q, B) ∼= J/I (cf. Exercise 7.3.18) and
TorQ[t]

1 (Q, C) = 0.

matrix Ph=t;
matrix Ps[1][2]=I;

Tor(1,Ps,Ph); // Tor(1,Ps,Ph)=Q[x,y,z,t]/<xy,t>
//-> _[1]=t*gen(1)
//-> _[2]=xy*gen(1)

matrix Pl[1][4]=Ih;
Tor(1,Pl,Ph); // Tor(1,Pl,Ph)=0
//-> _[1]=0

Hence, the Tor–criterion for flatness (Theorem 7.3.3) does also show that C
is flat over Q[t].
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Exercises

7.5.1. Let > be a weighted degree ordering on Mon(x1, . . . , xn, t), and let
I ⊂ K[x] be an ideal such that IK[x]> ∩K[x] = I and dimK K[x]/L(I) <∞.
Moreover, let {m1, . . . ,ms} ⊂ K[x] be a monomial K–basis of K[x]/L(I).
Prove that m1, . . . ,ms generate K[x, t]>/IhK[x, t]> as K[t]–module, where
Ih ⊂ K[x, t] denotes the weighted homogenization of I.
(Hint: Use Exercise 1.7.22 to choose a standard basis G′ ⊃ G of I such that
RedNFBuchberger(− | G) terminates. Now use that the corresponding
standard representation with respect toG is compatible with homogenization.
Note that this implies, in particular, that Ih is generated by Gh. Use Exercise
1.7.23 to identify K[x, t]>/IhK[x, t]> with K[x, t]/Ih.)

7.5.2. With the notations of Theorem 7.5.1, let > be a global degree ordering
and I a homogeneous ideal. Prove that for all λ ∈ K the Hilbert function of
K[x]>/J |t=λ is the same.

7.5.3. Formulate and prove Exercise 7.5.2 in the local case for the Hilbert–
Samuel function.

In the following exercises, we extend the results of this section to modules.

7.5.4. Let> be a module ordering onK[x]r =
⊕r

i=1K[x]ei, x = (x1, . . . , xr).
For a weight vector w = (w1, . . . , wn+r) ∈ Z

n+r, set

w–deg(xαei) := w1α1 + · · ·+ wnαn + wn+i ,

and let w′ = (w1, . . . , wn).
Let f1, . . . , fk ∈ K[x]r and I be the submodule of (K[x]>)r generated by

f1, . . . , fk. Show that there exists a module ordering >w on K[x]r, which
induces the weighted degree ordering >w′ on K[x], and has the following
properties:

(1) L>w(I) = L>(I),
(2) LM>w (fi) = LM>(fi),
(3) w–deg

(
LM>w(fi)

)
> w–deg

(
LM>w

(
tail(f)

))
,

for i = 1, . . . , k.

7.5.5. Using the notations of Exercise 7.5.4, extend the ordering >w (respec-
tively >w′) to K[x, t]r (respectively K[x, t]), as in the proof of Theorem 7.5.1,
and denote it also by >w (respectively >w′). Let fh be the homogenization of
f ∈ K[x]r with respect to a new variable t, and let Ĩ = 〈fh1 , . . . , fhk 〉K[x, t]>w′ .
Prove Proposition 7.5.3 in this situation.

7.5.6. Formulate and prove an analog of Theorem 7.5.1 for modules.

7.5.7. Generalize Corollaries 7.5.5 and 7.5.6 to submodules of K[x]r.
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7.5.8. Consider the polynomial f = 1 + xnym, (n,m) ∈ N
2

� {(0, 0)} in the
ring R=0,(x,y),(lp,ls); and in the ring S=0,(x,y),M(A); with intmat
A[2][2]=u,v,1,0; and u > 0, v < 0. Show that

(1) f is a unit in R if and only if n = 0;
(2) f is a unit in S if and only if nu+mv < 0.

Check this using lead(f) in Singular for (u, v) = (2,−1) and n+m ≤ 100.

7.5.9. Write a Singular procedure which gets, as input, a finite set F of
monomials (in a Singular basering K[x1, . . . , xn]>) and which returns an
integer vector w = (w1, . . . , wn) satisfying wi < 0 if xi < 1, wi > 0 if xi > 1
and > |F =>w |F .

7.5.10. Let R =
(
Q[x]〈x〉

)
[y, z] and I ⊂ R2 be the submodule generated by

[x3y + yz2, y], [xy3+ x2z, y + z].

(1) Find a monomial ordering > on Mon(x, y, z) such that Q[x, y, z]> = R.
(2) Find a weight vector w ∈ Z

5 satisfying the properties of Exercise 7.5.1.

7.5.11. Denote by I0 the module I ⊂ R2 of Exercise 7.5.10. Construct the
submodules J and Ih and check flatness for the corresponding family of
modules over K[t] as in Example 7.5.7.

7.6 Koszul Complex and Depth

In this section we study regular sequences. We are especially interested in
the length of a maximal regular sequence which can be characterized by the
vanishing of certain homology groups of the Koszul complex.

Definition 7.6.1. Let A be a ring and M an A–module. a1, . . . , an ∈ A is
called a regular sequence with respect to M , or, in short, an M–sequence if

(1) ai is not a zerodivisor for M/〈a1, . . . , ai−1〉M for i = 1, . . . , n;
(2) M �= 〈a1, . . . , an〉M .

Remark 7.6.2. The permutation of a regular sequence need not be a regular
sequence: letK be a field and a1 = x(y−1), a2 = y, a3 = z(y−1) ∈ K[x, y, z].
Then a1, a2, a3 is a K[x, y, z]–sequence but a1, a3, a2 is not (cf. Exercise
7.6.11).

We shall see that, for local rings, the permutation of a regular sequence is
again a regular sequence. For checking this remark, we write a procedure to
test a regular sequence.

SINGULAR Example 7.6.3 (regular sequences).
Let > be any monomial ordering on Mon(x1, . . . , xm), let R := K[x]>, let
N ⊂ Rn be a submodule, and let f ⊂ R be an ideal, represented by the ordered
system of polynomial generators {f1, . . . , fk}. Then the following procedure
returns 1, if f1, . . . , fk is an Rn/N–sequence and 0 otherwise.
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proc isReg(ideal f, module N)
{

int n=nrows(N);
int i;
while(i<ncols(f))
{

i++;
N=std(N);
if(size(reduce(quotient(N,f[i]),N))!=0){return(0);}
N=N+f[i]*freemodule(n);

}
if (size(reduce(freemodule(n),std(N)))==0){return(0);}
return(1);

}

ring R=0,(x,y,z),dp;
ideal f=x*(y-1),y,z*(y-1);
module N=0;
isReg(f,N);
//-> 1

f=x*(y-1),z*(y-1),y;
isReg(f,N);
//-> 0

From the output we read that x(y − 1), y, z(y − 1) is a Q[x, y, z]–sequence,
while x(y − 1), z(y − 1), y is not a Q[x, y, z]–sequence.

Definition 7.6.4. Let A be a ring, I ⊂ A an ideal and M an A–module. If
M �= IM , then the maximal length n of an M–sequence a1, . . . , an ∈ I is
called the I–depth of M and denoted by depth(I,M). If M = IM then the
I–depth of M is by convention∞. If (A,m) is a local ring, then the m–depth
of M is simply called the depth of M , that is, depth(M) := depth(m,M).

Example 7.6.5.

(1) Let K be a field and K[x1, . . . , xn] the polynomial ring. Then

depth(〈x1, . . . , xn〉,K[x1, . . . , xn]) ≥ n ,

since x1, . . . , xn is an 〈x1, . . . , xn〉–sequence (and we shall see later that
it is = n).

(2) Let A be a ring, I ⊂ A an ideal and M an A–module. Then the I–depth
of M is 0 if and only if every element of I is a zerodivisor for M . Hence,
depth(I,M) = 0 if and only if I is contained in some associated prime
ideal of M .
In particular, for a local ring (A,m), we have depth(m, A/m) = 0.
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The aim of this section is to give, for A a Noetherian ring and M a finitely
generated A–module, a formula for the I–depth of M in terms of the homol-
ogy Hi(f1, . . . , fn,M) of the Koszul complex: if I = 〈f1, . . . , fn〉 then

depth(I,M) = n− sup{i | Hi(f1, . . . , fn,M) �= 0} .
We shall also see that

depth(I,M) = inf{n | ExtnA(A/I,M) �= 0} .
In particular, we shall see that the I–depth is a geometric invariant, that is,

depth(I,M) = depth(
√
I,M) .

Definition 7.6.6. Let A be a ring and x1, . . . , xn ∈ A, x := (x1, . . . , xn).
The Koszul complex K(x)• is defined as follows:

(1) K(x)0 := A, K(x)p := 〈0〉 for p �∈ {0, . . . , n}.
(2) Let 1 ≤ p ≤ n then K(x)p :=

⊕
1≤i1<···<ip≤nAei1...ip , the free A–module

with ( np ) free generators {ei1...ip}1≤i1<···<ip≤n.
(3) The differential dp : K(x)p → K(x)p−1 is defined by

dp(ei1...ip) =
p∑

μ=1

(−1)μ−1xiμei1...iμ−1iμ+1...ip if p ∈ {2, . . . , n} ,

d1(ei) = xi ,

dp = 0 if p �∈ {1, . . . , n} .
(4) For an A–module M we define

K(x,M)• := K(x)• ⊗AM ,

the Koszul complex of M and x.

Lemma 7.6.7.

(1) K(x)• is a complex, that is, dp ◦ dp+1 = 0 for all p.
(2) Let Hi(x,M) be the homology of K(x,M)•, that is,

Hi(x,M) := Ker
(
dp ⊗ 1M

)/(
Im dp+1 ⊗ 1M

)
,

then H0(x,M) = M/xM and Hn(x,M) = {m ∈M | xim = 0 ∀ i }.
(3) K(x,M)• = K(x1,M)• ⊗ · · · ⊗K(xn,M)•.

Proof. (1) and (2) are not difficult to see and left as an exercise.
To prove (3) we recall the definition of the tensor product of two com-

plexes: let (L•, d•), (K•, d•) be two complexes of A-modules. Then

(L• ⊗K•)n =
⊕

p+q=n
Lp ⊗Kq
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and for x ∈ Lp and y ∈ Kq we have

dn(x ⊗ y) = dp(x)⊗ y + (−1)px⊗ dq(y) .

Using induction, it is enough to prove that

K(x1, . . . , xn)• = K(x1, . . . , xn−1)• ⊗K(xn)• .

HereK(xn)• is the complex · · · → 0 → A→ A→ 0 with the differential being
multiplication by xn. This implies that
(
K(x1, . . . , xn−1)• ⊗K(xn)•

)
p

= K(x1, . . . , xn−1)p ⊕K(x1, . . . , xn−1)p−1 .

Let {ai1...ip}1≤i1<···<ip≤n−1 be bases of the free A-modulesK(x1, . . . , xn−1)p,
p ∈ {0, . . . , n− 1}, and let {ei1...ip}1≤i1<···<ip≤n be a basis of K(x1, . . . , xn)p.
We define isomorphisms

ϕp : K(x1, . . . , xn)p
∼=−→ K(x1, . . . , xn−1)p ⊕K(x1, . . . , xn−1)p−1

by

ϕp(ei1...ip) =

{
(ai1...ip , 0) if ip < n

(0, ai1...ip−1) if ip = n .

It is now straightforward to see that ϕ = {ϕp} is, indeed, an isomorphism of
complexes, and that ϕ⊗ idM defines an isomorphism for the Koszul complex
of M .

Corollary 7.6.8. Let A be a ring, M an A–module and x1, . . . , xn ∈ A. Let
x = (x1, . . . , xn) and y = (xπ(1), . . . , xπ(n)) for a permutation π. Then the
complexes K(x,M)• and K(y,M)• are isomorphic.

Lemma 7.6.9. Let A be a ring, C• a complex and x ∈ A.

(1) The sequence of complexes

0 −→ C• −→ C• ⊗K(x)• −→ C•(−1) −→ 0

is exact (with C•(−1)p = Cp−1).
(2) The induced homology sequence

. . . −→ Hp(C•) −→Hp

(
C• ⊗K(x)•

) −→ Hp−1(C•)
(−1)p−1x−−−−−−→Hp−1(C•) −→ Hp−1

(
C• ⊗K(x)•

) −→ . . .

is exact.
(3) x ·Hp

(
C• ⊗K(x)•

)
= 0 for all p ∈ Z.
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Proof. (1) and (2) are simple consequences of the usual diagram chase, where
we have to consider the following diagram

�� �� ��

0 �� Cp

dp

��

��
(
C• ⊗K(x)•

)
p

= Cp ⊕ Cp−1

d′p
��

�� Cp−1

dp−1

��

�� 0

0 �� Cp−1

��

��
(
C• ⊗K(x)•

)
p−1

= Cp−1 ⊕ Cp−2

��

�� Cp−2 ��

��

0

with d′p(a, b) =
(
dp(a) + (−1)p−1xb, dp−1(b)

)
.

To prove (3) let (a, b) be a representative of an element inHp

(
C•⊗K(x)•

)
,

that is, dp(a) + (−1)p−1xb = 0 and dp−1(b) = 0. But then we have

x · (a, b) = (xa, xb) = d′p+1

(
0 , (−1)pa

)
,

that is, x · (a, b) ≡ 0 mod Im(d′p+1).

Corollary 7.6.10. Let A be a ring, M an A–module and x1, . . . , xn ∈ A.

(1) Let x := (x1, . . . , xn), x′ := (x1, . . . , xi−1, xi+1, . . . , xn), then there exists
an exact sequence

. . .→ Hp+1(x,M)→ Hp(x′,M)
·(−1)pxi−−−−−→ Hp(x′,M)→ Hp(x,M)→ . . .

. . .→ H1(x,M)→M/〈x′〉M ·xi−−→M/〈x′〉M →M/〈x〉M → 0 .

(2) 〈x1, . . . , xn〉 ·Hp(x1, . . . , xn,M) = 0 for all p ∈ Z.

Corollary 7.6.11. Let A be a Noetherian ring, I = 〈f1, . . . , fn〉 an ideal of
A and M a finitely generated A–module. Assume that M �= IM , and set
q := sup{i | Hi(f1, . . . , fn,M) �= 0}. Then every maximal M–sequence in I
has length n− q. In particular,

depth(I,M) = n− sup{i | Hi(f1, . . . , fn,M) �= 0} .
Proof. Let x1, . . . , xs ∈ I be a maximalM–sequence. We shall prove s = n− q
by induction on s. If s = 0 then every element of I is a zerodivisor for
M . Then I is contained in an associated prime ideal P of M . Being as-
sociated prime of M , P = (0 : m) for some non–zero m ∈M . This implies
I ·m = 0, that is, m ∈ Hn(f1, . . . , fn,M) (cf. Lemma 7.6.7 (2)). Therefore,
q = n and we have s = n− q. Assume now that s > 0, and consider the ex-
act sequence 0→M

x1−→M →M/x1M → 0. Corollary 7.6.10 implies that
I ·Hi(f1, . . . , fn,M) = 0 for all i. By Exercise 7.6.13, the sequence
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0 −→ Hi(f1, . . . , fn,M) −→ Hi(f1, . . . , fn,M/x1M)
−→ Hi−1(f1, . . . , fn,M) −→ 0

is exact for all i. This implies especially that

0 = Hq+1(f1, . . . , fn,M) −→ Hq+1(f1, . . . , fn,M/x1M)
−→ Hq(f1, . . . , fn,M) −→ 0

is exact, hence Hq+1(f1, . . . , fn,M/x1M) �= 0, and Hi(f1, . . . , fn,M/x1M)
vanishes for i > q + 1. But x2, . . . , xs is a maximal M/x1M–sequence in I.
Using induction we obtain q + 1 = n− (s− 1) and, therefore, q = n− s.
Corollary 7.6.12. With the notations of Corollary 7.6.11 the following
holds:

(1) f1, . . . , fn is an M–sequence if and only if depth(I,M) = n;
(2) let J ⊂ A be an ideal and f1, . . . , fn an M–sequence in J , then

depth(J,M/〈f1, . . . , fn〉M) = depth(J,M)− n .
Example 7.6.13. Let A be one of the rings K[x1, . . . , xn], K[x1, . . . , xn]m,
K[[x1, . . . , xn]], with m := 〈x1, . . . , xn〉. Then depth(m, A) = n = dim(A).

The example is a consequence of Example 7.6.5 and Corollary 7.6.12.

Theorem 7.6.14. Let A be a ring, M an A–module and x1, . . . , xn ∈ A.

(1) If x = (x1, . . . , xn) is an M–sequence, then Hp(x,M) = 0 for all p > 0.
(2) If (A,m) is local, x1, . . . , xn ∈ m and M �= 0 is finitely generated, then

H1(x,M) = 0 implies that x = (x1, . . . , xn) is an M–sequence.
(3) If A and M are N–graded and x1, . . . , xn are homogeneous of positive

degree, then H1(x,M) = 0 and M �= 0 implies that x = (x1, . . . , xn) is
an M–sequence.

Proof. (1) is proved by induction on n. If n = 1 then, due to Lemma 7.6.7 (2),
H1(x1,M) = {m ∈M | x1m = 0}. Thus, H1(x1,M) = 0 if and only if x1 is
M–regular. Assume now that n > 1 and consider the exact sequence (of
Corollary 7.6.10 (1))

Hp(x1, . . . , xn−1,M)→ Hp(x1, . . . , xn,M)→ Hp−1(x1, . . . , xn−1,M) .

If x1, . . . , xn is an M–sequence then x1, . . . , xn−1 is an M–sequence and,
for all p ≥ 1, Hp(x1, . . . , xn−1,M) = 0 by induction hypothesis. It follows
that Hp(x1, . . . , xn,M) = 0 for all p > 1. For p = 1, we can apply Corollary
7.6.10 (1), again, and the vanishing of H1(x1, . . . , xn,M) follows from the
fact that xn is M/〈x1, . . . , xn−1〉M–regular.

To prove (2) assume that H1(x1, . . . , xn,M) = 0 and consider the exact
sequence
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H1(x1, . . . , xn−1,M) ±xn−−−→ H1(x1, . . . , xn−1,M)→ H1(x1, . . . , xn,M) = 0 ,

again using Corollary 7.6.10 (1) (2). This implies that

xnH1(x1, . . . , xn−1,M) = H1(x1, . . . , xn−1,M) .

We can use Nakayama’s Lemma and obtain H1(x1, . . . , xn−1,M) = 0, be-
cause xn ∈ m and H1(x1, . . . , xn−1,M) is finitely generated. Using induction
we obtain that x1, . . . , xn−1 is an M–sequence. Now

0 = H1(x1, . . . , xn,M) −→ H0(x1, . . . , xn−1,M) ±xn−−−→ H0(x1, . . . , xn−1,M)

is exact and H0(x1, . . . , xn−1,M) = M/〈x1, . . . , xn−1〉M . This implies that
xn is M/〈x1, . . . , xn−1〉M–regular and proves (2).

The proof of (3) is similar and left as an exercise.

Corollary 7.6.15. Let (A,m) be a local ring, M a finitely generated A–
module and x1, . . . , xn an M–sequence then xπ(1), . . . , xπ(n) is an M–sequence
for all permutations π.

Proof. The corollary is an immediate consequence of Corollary 7.6.8 and
Theorem 7.6.14.

Corollary 7.6.16. Let A be a ring, M an A–module, I ⊂ A an ideal.

(1) If x1, . . . , xn ∈ I is an M–sequence, then xm1 , . . . , x
m
n is an M–sequence

for all m ≥ 1.
(2) depth(I,M) = depth(

√
I,M).

Proof. (2) is a consequence of (1) and the definition of I–depth.
(1) is proved by induction on n. The case n = 1 is trivial. Assume that

n > 1 and that xm1 , . . . , x
m
n−1 is an M–sequence. We first prove that xn is

not a zerodivisor of M/〈xm1 , . . . , xmn−1〉M . It is enough to check this in the
localization at any prime ideal P . If P �⊃ 〈x1, . . . , xn〉, then either xn is a
unit in AP , or we have MP = 〈xm1 , . . . , xmn−1〉MP , that is, in this case xn is a
non–zerodivisor of MP /〈xm1 , . . . , xmn−1〉MP .

For the remaining cases, we may assume that (A,m) is already lo-
cal and x1, . . . , xn ∈ m. Now x1, . . . , xn being an M–sequence implies that
x1, . . . , xn−1, x

m
n is an M–sequence. Using Corollary 7.6.15, we obtain that

xmn , x1, . . . , xn−1 is an M–sequence. Repeating this n times we obtain that
xmn , . . . , x

m
1 is an M–sequence and Corollary 7.6.15 completes the proof.

SINGULAR Example 7.6.17 (Koszul Complex).
In this example, we should like to show how to compute the Koszul complex
and its homology. The method is similar to the computation of Tor: let A be
a ring and M an A–module given by the presentation A	

ϕ−→ As
π−→M → 0.

Let x = (x1, . . . , xn) and consider the following diagram:
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0 0 0

· · · �� Kp+1(x)⊗M

��

dM
p+1

�� Kp(x) ⊗M

��

dM
p

�� Kp−1(x) ⊗M

��

�� · · ·

· · · �� Kp+1(x)⊗As

��

dAs

p+1
�� Kp(x) ⊗As

��

dAs

p
�� Kp−1(x) ⊗As

��

�� · · ·

· · · �� Kp+1(x)⊗A	

��

�� Kp(x)⊗A	
ϕKp

��

�� Kp−1(x) ⊗A	
ϕKp−1

��

�� · · ·

As in the computation of Tor (cf. Proposition 7.1.3) it is an easy diagram
chase to prove that

Hp(x,M) := Ker(dMp )/ Im(dMp+1)

= (dA
s

p )−1
(
Im(ϕKp−1)

)
/
(
Im(dA

s

p+1) + Im(ϕKp)
)
.

First we need to compute the maps dA
s

i = di ⊗ idAs and ϕKp = ϕ⊗ idKp . To
do this we have to choose suitable bases in Kp(x) and order them linearly: we
shall inductively order the sets {ei1...ip}1≤i1<···<ip≤n, p = 1, . . . , n, in the fol-
lowing manner. If p = 1 then the element ei1 obtains the number i1. Assume
we already have a numbering for p− 1, then the number of ei1...ip is

i1−1∑
ν=1

(
n−ν
p−1

)
+ number of ei2−i1,...,ip−i1 with respect to n− i1.

We can use the following procedure:

Algorithm 7.6.18 (basisNumber

(
n, p, (i1, . . . , ip)

)
).

Input: n a positive integer, p ∈ {1, . . . , n} and a vector (i1, . . . , ip) of strictly
increasing positive integers ≤ n.

Output: b, the number of ei1...ip with respect to the above numbering.

• if p = 1 then b := i1;
else b :=

∑i1−1
ν=1

(
n−ν
p−1

)
+ basisNumber

(
n− i1, p− 1, (i2− i1, . . . , ip− i1)

)
;

• return(b).

In the language of Singular we obtain (since p is the size of the integer
vector v = (i1, . . . , ip), we only need two parameters):

proc basisNumber(int n,intvec v)
{

int p=size(v);
if(p==1){return(v[1]);}
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int j=n-1;
int b;
while(j>=n-v[1]+1)
{
b=b+binom(j,p-1);
j--;

}
intvec w=v-v[1];
w=w[2..size(w)];
b=b+basisNumber(n-v[1],w);
return(b);

}

The inverse function is given by the following procedure:

Algorithm 7.6.19 (basisElement

(
n, p,N)).

Input: n a positive integer, p ∈ {1, . . . , n} and N ∈ {
1, . . . ,

∑n
ν=1

(
n−ν
p−1

)}
.

Output: (i1, . . . , ip), the vector of strictly increasing integers in {1, . . . , n}
having number N with respect to the above numbering.

• if p = 1 then return(N);
else choose s such that

∑s−1
ν=1

(
n−ν
p−1

)
< N ≤∑s

ν=1

(
n−ν
p−1

)
;

i1 := s;
(j1, . . . , jp−1) := basisElement

(
n− i1, p− 1, N −∑s−1

ν=1

(
n−ν
p−1

))
;

iν := jν−1 + i1 for ν = 2, . . . , p;
return(i1, . . . , ip).

The corresponding Singular procedure is:

proc basisElement(int n,int p,int N)
{

if(p==1){return(N);}
int s,R;
while(R<N)
{

s++;
R=R+binom(n-s,p-1);

}
R=N-R+binom(n-s,p-1);
intvec v=basisElement(n-s,p-1,R);
intvec w=s,v+s;
return(w);

}

Now we compute the matrix describing dp : K(x)p → K(x)p−1, with respect
to the above bases.
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proc KoszulMap(ideal x,int p)
{

int n=size(x);
int a=binom(n,p-1);
int b=binom(n,p);
matrix M[a][b];
if(p==1){M=x;return(M);}
int j,k;
intvec v,w;
for(j=1;j<=b;j++)
{
v=basisElement(n,p,j);
w=v[2..p];
M[basisNumber(n,w),j]=x[v[1]];
for(k=2;k<p;k++)
{
w=v[1..k-1],v[k+1..p];
M[basisNumber(n,w),j]=(-1)^(k-1)*x[v[k]];

}
w=v[1..p-1];
M[basisNumber(n,w),j]=(-1)^(p-1)*x[v[p]];

}
return(M);

}

Finally, we compute the p–th Koszul homology Hp(x,Rn/M) of the quo-
tient Rn/M , M a submodule of Rn. It is presented via modulo (cf. Singu-

lar Example 2.1.26). That is, the return value is a module hom such that
matrix(hom) is a presentation matrix of Hp(x,Rn/M) with the number of
rows being minimized via prune. In particular, if Hp(x,Rn/M) = 0, then the
return value is hom = 0, with nrows(hom) = 0.

proc KoszulHomology(ideal x, module M, int p)
{

int n =size(x);
int a =binom(n,p-1);
int b =binom(n,p);
matrix N =matrix(M);
module ker=freemodule(nrows(N));
if(p!=0)
{
module im=tensorMaps(unitmat(a),N);
module f =tensorMaps(KoszulMap(x,p),unitmat(nrows(N)));
ker =modulo(f,im);

}
module im1=tensorMaps(unitmat(b),N);
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module im2=tensorMaps(KoszulMap(x,p+1),unitmat(nrows(N)));
module hom=modulo(ker,im1+im2);
hom =prune(hom);
return(hom);

}

As an example, we compute in the following the homology of the Koszul
complex K(x1, x2, x3)• as complex of Q[x1, x2, x3]–modules, respectively as
complex of Q[x1, x2, x3]/〈x1x2〉–modules.

LIB"matrix.lib";
ring R=0,x(1..3),dp;
ideal y=maxideal(1);
module M=0;

KoszulHomology(y,M,0);
//-> _[1]=x(3)*gen(1) _[2]=x(2)*gen(1) _[3]=x(1)*gen(1)

KoszulHomology(y,M,1);
//-> _[1]=0

Hence, H0(x,Q[x]) = Q[x]/〈x〉, x = (x1, x2, x3), and H1(x,Q[x]) = 0. The
latter is already clear by Theorem 7.6.14 (1).

qring S=std(x(1)*x(2));
module M=0;
ideal x=maxideal(1);

KoszulHomology(x,M,1);
//-> _[1]=-x(3)*gen(1) _[2]=-x(2)*gen(1) _[3]=-x(1)*gen(1)

KoszulHomology(x,M,2);
//-> _[1]=0

From the output, we read H1(x,Q[x]/〈x1x2〉) = Q[x]/〈x〉, x = (x1, x2, x3)
and H2(x,Q[x]/〈x1x2〉) = 0.

At the end of this section we describe the I–depth of a module M in terms of
ExtnA(A/I,M). To prove this characterization we need the following lemma.

Lemma 7.6.20. Let A be a Noetherian ring, M a finitely generated A–
module, I ⊂ A an ideal with IM �= M . The following are equivalent:

(1) ExtiA(N,M) = 0 for all i < n and all finitely generated A–modules N
with supp(N) ⊂ V (I).

(2) ExtiA(A/I,M) = 0 for all i < n.
(3) ExtiA(N,M) = 0 for all i < n and some finitely generated A–module N

with supp(N) = V (I).
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(4) I contains an M–sequence of length n.

Proof. That (1) implies (2) and that (2) implies (3) are obvious. To prove that
(3) implies (4), let n > 0 and assume first that I contains only zerodivisors
of M , that is, I is contained in an associated prime ideal P = (0 : m), m �= 0
an element of M . Then the map A/P →M , defined by 1 �→ m, is injective.
Localizing at P , we obtain that HomAP (k,MP ) �= 0 for k = AP /PAP . Now
P ∈ V (I) = supp(N), that is, NP �= 0 and, hence, NP /PNP = N ⊗A k �= 0
(Lemma of Nakayama). This implies that Homk(N ⊗A k, k) �= 0 and, there-
fore, we have a non–trivial AP -linear map

NP −→ N ⊗A k −→ k −→MP ,

that is, HomAP (NP ,MP ) �= 0. This implies that HomA(N,M) �= 0, which
contradicts (3) for i = 0. So we proved that I contains an M–regular element
f . By assumption M/IM �= 0, hence if n = 1 we are done. If n > 1, then we
obtain from the exact sequence

0 −→M
f−→M −→M/fM −→ 0

that ExtiA(N,M/fM) = 0 for i < n− 1. Using induction this implies that I
contains an M/fM–regular sequence f2, . . . , fn.

To prove (4) implies (1), let f1, . . . , fn ∈ I be anM–sequence and consider
again the exact sequence

0 −→M
f1−→M −→M/f1M −→ 0 .

Using Exercise 7.1.3 we obtain the exact sequence

· · · → ExtiA(N,M)
f1−→ ExtiA(N,M)→ ExtiA(N,M/f1M)→ · · · .

If n = 1 then we consider the first part of this sequence

0 −→ HomA(N,M)
f1−→ HomA(N,M) .

If n > 1 then we use induction to obtain ExtiA(N,M/f1M) = 0 for i < n− 1.
This implies

0 −→ ExtiA(N,M)
f1−→ ExtiA(N,M)

is exact for i < n. Now ExtiA(N,M) is annihilated by elements of Ann(N)
(Exercise 7.1.3).

On the other hand, by assumption, we have

supp(N) = V
(
Ann(N)

) ⊂ V (I) .

This implies that I ⊂ √
Ann(N). Therefore, a sufficiently large power of f1

annihilates ExtiA(N,M). But we already saw that f1 is a non–zerodivisor for
ExtiA(N,M) and, consequently, Exti(N,M) = 0 for i < n.



7.6 Koszul Complex and Depth 423

Corollary 7.6.21. Let A be a Noetherian ring, M a finitely generated A–
module and I ⊂ A an ideal with IM �= M , then

depth(I,M) = inf{n | ExtnA(A/I,M) �= 0} .

Exercises

7.6.1. Prove (1) and (2) of Lemma 7.6.7.

7.6.2. Prove that the map ϕ = {ϕp}, given in the proof of Lemma 7.6.7 (3),
is an isomorphism of complexes.

7.6.3. Prove (3) of Theorem 7.6.14.

7.6.4. Prove that in Singular Example 7.6.17

Hp(x,M) = (dA
s

p )−1
(
Im(ϕKp−1)

)
/
(
Im(dA

s

p+1) + Im(ϕKp)
)
.

7.6.5. Use Corollary 7.6.21 to give another proof for the equality

depth(I,M) = depth(
√
I,M) .

7.6.6. Let (A,m) be a local ring and M �= 0 a finitely generated A–module.
Let x1, . . . , xn ∈ m be an M–sequence. Prove that

dim(M/〈x1, . . . , xn〉M) = dim(M)− n .
7.6.7. Let A be a Noetherian ring, M a finitely generated A–module and
P ⊂ A a prime ideal. Prove that depth(P,M) ≤ depth(MP ).

7.6.8. Let (A,m) and (B, n) be local Noetherian rings such that A ⊂ B,
n ∩A = m and mB is n–primary. Let M be a B–module which is finitely
generated over A. Prove that depthB(M) = depthA(M).

7.6.9. Let K be a field, x = (x1, . . . , xn) variables, and A a K[x]–algebra.
Let M be an A–module. Prove that Hi(x,M) = TorK[x]

i (K,M).

7.6.10. Let A be a Noetherian ring, x1, . . . , xn an A–sequence. Prove that
ht(〈x1〉) < ht(〈x1, x2〉) < . . . < ht(〈x1, . . . , xn〉).
7.6.11. Prove the statement in Remark 7.6.2.

7.6.12. Show that a faithfully flat (see Exercise 7.3.13) morphism between
two rings maps a regular sequence to a regular sequence. In particular, if
(A,m), (B, n) are local rings such that B is a flat A–algebra and n ⊃ mB,
then any regular sequence of elements of A remains regular in B.

7.6.13. Let A be a ring, x = (x1, . . . , xn) a sequence of elements in A and
0→M → N → P → 0 an exact sequence of R–modules. Then, with the
canonically induced maps, the sequence

. . .→ Hi(x,M) → Hi(x,N) → Hi(x, P ) → Hi−1(x,M) → . . .

of homology modules is exact.
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7.7 Cohen–Macaulay Rings

At the beginning of this section we shall see that, for a Noetherian local ring
A and a finitely generated A–module, we always have the inequality

depth(M) ≤ dim(M) .

In the previous section we saw several examples with depth(M) = dim(M).
Modules with this property are called Cohen–Macaulay modules.

Definition 7.7.1. Let (A,m) be a local ring, M a finitely generated A–
module. M is called a Cohen–Macaulay module if M = 0 or M �= 0 and

depth(M) = dim(M) .

If depth(M) = dim(A) then M is called maximal Cohen–Macaulay. A is
called a Cohen–Macaulay ring if it is a Cohen–Macaulay A–module.

Example 7.7.2. Regular local rings are Cohen–Macaulay (Corollary 5.6.18
and Proposition 5.6.17).

Proposition 7.7.3. Let (A,m) be a Noetherian local ring and M a finitely
generated A–module, then dim(A/P ) ≥ depth(M) for all P ∈ Ass(M).

To prove the proposition we need the following lemma:

Lemma 7.7.4. Let (A,m) be a Noetherian local ring and M,N finitely gen-
erated A–modules different from zero, then

ExtiA(N,M) = 0 for i < depth(M)− dim(N) .

Proof of Proposition 7.7.3. Let P ∈ Ass(M), that is, P = (0 : m) for a suit-
able m �= 0 in M . This implies that Hom(A/P,M) �= 0 because 1 �→ m
defines a non–trivial homomorphism. Hence, by Lemma 7.7.4, we obtain
0 ≥ depth(M)− dim(A/P ).

Proof of Lemma 7.7.4. Let k = depth(M) and r = dim(N). We prove the
lemma by induction on r. If r = 0 then Ann(N) is m–primary. We use
Lemma 7.6.20 and obtain ExtiA(N,M) = 0 for i < depth(M). Now assume
that r > 0. We choose a sequence N = N0 ⊃ N1 ⊃ · · · ⊃ Nn = 〈0〉 such that
Nj/Nj+1

∼= A/Pj for suitable prime ideals Pj (Exercise 4.1.15).
Now it is sufficient to prove that ExtiA(Nj/Nj+1,M) = 0 for all j and

i < k − r because this implies ExtiA(N,M) = 0 (cf. Exercise 7.1.3). Since
dim(Nj/Nj+1) ≤ dim(N), we may assume that N = A/P , P a prime ideal.
Since dim(A/P ) > 0, we can choose x ∈ m � P . We consider the exact se-
quence

0 −→ N
x−→ N −→ N ′ −→ 0, N ′ = A/〈P, x〉 .
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Now dim(N ′) < r implies ExtiA(N ′,M) = 0 for i < k− r+ 1 (induction). On
the other hand, for i < k − r we have the exact sequence

0 −→ ExtiA(N,M) x−→ ExtiA(N,M) −→ Exti+1
A (N ′,M) = 0 .

This implies ExtiA(N,M) = xExtiA(N,M). Using Nakayama’s Lemma we ob-
tain ExtiA(N,M) = 0.

Theorem 7.7.5. Let (A,m) be a Noetherian local ring and M �= 0 a finitely
generated A–module.

(1) Let M be Cohen–Macaulay. Then dim(A/P ) = dim(M) for all P ∈
Ass(M). Moreover, if for x ∈ A, dim(M/xM) = dim(M) − 1, then x is
M -regular.

(2) Let x1, . . . , xr ∈ m be an M–sequence, then M is Cohen–Macaulay if and
only if M/〈x1, . . . , xr〉M is Cohen–Macaulay.

(3) If M is Cohen–Macaulay, then MP is Cohen–Macaulay for all prime
ideals P and depth(P,M) = depthAP

(MP ) if MP �= 0.

Proof. (1) By definition, dim(M) = sup{dim(A/P ) | P ∈ Ass(M)}. On the
other hand, we have depth(M) ≤ inf{dim(A/P ) | P ∈ Ass(M)} (Proposi-
tion 7.7.3), whence the first statement. Since dim(M/xM) < dim(M) =
dim(A/P ), x �∈ P for all P ∈ Ass(M). Hence x is M–regular.

(2) We obtain depth(M/〈x1, . . . , xr〉M) = depth(M)− r, using Corollary
7.6.12. On the other hand, dim(M/〈x1, . . . , xr〉M) = dim(M)− r (Exercise
7.6.6).

(3) Let P be a prime ideal. If P �⊃ Ann(M) then MP = 0. Then MP

is Cohen–Macaulay by definition. If P ⊃ Ann(M) then MP �= 0. Now, be-
cause of Proposition 7.7.3, we have dim(MP ) ≥ depth(MP ) and, obviously,
depth(MP ) ≥ depth(P,M). Therefore, it is enough to prove that

dim(MP ) = depth(P,M) .

We use induction on depth(P,M). If depth(P,M) = 0 then P is contained in
an associated prime of M . But P ⊃ Ann(M) and, since all associated primes
are minimal by (1), it follows that P is an associated prime of M . This
implies dim(MP ) = 0. Now assume that depth(P,M) > 0 and choose a ∈ P
M–regular. Then

depth(P,M/aM) = depth(P,M)− 1

(Corollary 7.6.12). By (2), the quotient M/aM is Cohen–Macaulay and, by
Nakayama’s Lemma, M/aM �= 0. If (M/aM)P = 0, then sM = aM for some
s �∈ P . Let M = 〈m1, . . . ,mn〉, then, for all i = 1, . . . , n, there exist hij ∈ P
such that smi =

∑n
j=1 hijmj , hence, det(hij − sδij) ∈ Ann(M) ⊂ P and,

therefore, s ∈ P , which is a contradiction. We conclude that (M/aM)P �= 0.
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Now, by induction, we have dim(M/aM)P = depth(P,M/aM). On the
other hand, a is MP –regular and (M/aM)P = MP /aMP . Using Exercise
7.6.6 once more, we obtain dim(M/aM)P = dim(MP )− 1. Finally, this im-
plies dim(MP ) = depth(P,M).

Corollary 7.7.6 (complete intersection rings4 are Cohen-Macaulay).
Let K be a field and f1, . . . , fk be a regular sequence in A = K[x]〈x〉 (re-
spectively A = K[[x]]), x = (x1, . . . , xn), then the quotient A/〈f1, . . . , fk〉 is
a Cohen–Macaulay ring.

Proposition 7.7.7. Let (A,m) be a Noetherian local ring. Then depth(A) =
depth(Â). In particular, A is Cohen–Macaulay if and only if Â is Cohen–
Macaulay.

Proof. Let m = 〈x1, . . . , xn〉, and letK(x1, . . . , xn, Â)• be the Koszul complex
of the A–module Â and x = (x1, . . . , xn), considered in Â. We already know
that Â is flat A–algebra. This implies that Hi(x, Â) = Hi(x,A)⊗A Â. Now,
the proposition is a consequence of Corollaries 7.6.11 and 6.3.6.

SINGULAR Example 7.7.8 (first test for Cohen–Macaulayness).
Let (A,m) be a local ring, m = 〈x1, . . . , xn〉. Let M be an A–module given by
a presentation A	 → As →M → 0. To check whether M is Cohen–Macaulay
we use that the equality

dim
(
A/Ann(M)

)
= dim(M) = depth(M)

= n− sup{i | Hi(x1, . . . , xn,M) �= 0} .
is necessary and sufficient for M to be Cohen–Macaulay. The following proce-
dure computes depth(m,M), where m = 〈x1, . . . , xn〉 ⊂ A = K[x1, . . . , xn]>
and M is a finitely generated A–module with mM �= M , by using Corollary
7.6.11.

proc depth(module M)
{

ideal m=maxideal(1);
int n=size(m);
int i;
while(i<n)
{
i++;
if(size(KoszulHomology(m,M,i))==0){return(n-i+1);}

}
return(0);

}
4 A local ring A is called a complete intersection ring if there exists a regu-

lar local Noetherian ring R and a regular sequence f1, . . . , fk in R such that
A ∼= R/〈f1, . . . , fk〉.
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Now the test for Cohen–Macaulayness is easy.

proc CohenMacaulayTest(module M)
{

return(depth(M)==dim(std(Ann(M))));
}

The procedure returns 1 if M is Cohen–Macaulay and 0 if not.
As an application, we check that a complete intersection is Cohen–Macau-

lay (Corollary 7.7.6) and that K[x, y, z]〈x,y,z〉/〈xz, yz, z2〉 is not Cohen–
Macaulay.

ring R=0,(x,y,z),ds;
ideal I=xz,yz,z2;
module M=I*freemodule(1);
CohenMacaulayTest(M);
//-> 0

I=x2+y2,z7;
M=I*freemodule(1);
CohenMacaulayTest(M);
//-> 1

Fig. 7.1. The zero–set of 〈xz, yz, z2〉, consisting of a plane with an embedded point
(indicated by the arrow).

Cohen–Macaulay rings have several nice properties:

Proposition 7.7.9. Let (A,m) be a local Cohen–Macaulay ring, and let
x1, . . . , xn ∈ m, then the following conditions are equivalent:

(1) x1, . . . , xn is an A–sequence.
(2) ht(〈x1, . . . , xi〉) = i for 1 ≤ i ≤ n.
(3) ht(〈x1, . . . , xn〉) = n.
(4) x1, . . . , xn is part of a system of parameters of A.

Proof. The implication (1)⇒ (2) is a consequence of Remark 5.6.11, which
states that ht(〈x1, . . . , xi〉) ≤ i, and the fact that

0 < ht(〈x1〉) < ht(〈x1, x2〉) < · · · < ht(〈x1, . . . , xi〉) ,
because x1, . . . , xi is an A–sequence (Exercise 7.6.10).
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(2)⇒ (3) is trivial. (3)⇒ (4) is clear, at least, for the case dim(A) = n. If
dim(A) > n then we can choose xn+1 ∈ m not being contained in any minimal
prime ideal of 〈x1, . . . , xn〉. Then ht(〈x1, . . . , xn+1〉) = n+ 1. We can continue
this way and obtain a system of parameters.

(4)⇒ (1). We shall show that any system of parameters x1, . . . , xn is an
A–sequence. Let x1, . . . , xn be a system of parameters, that is, n = dim(A)
and

√〈x1, . . . , xn〉 = m. By Theorem 7.7.5 (1), we obtain dim(A/P ) = n for
all minimal prime ideals P of A. This implies that x1 �∈ P for all minimal
prime ideals. But then x1 is A–regular and A/〈x1〉 is an (n− 1)–dimensional
Cohen–Macaulay ring (Theorem 7.7.5 (2)). The images of x2, . . . , xn in
A/〈x1〉 form a system of parameters of A/〈x1〉. Using induction on n we
deduce that x1, . . . , xn is an A–sequence.

Corollary 7.7.10. Let (A,m) be a Noetherian local Cohen–Macaulay ring,
and let I ⊂ A be an ideal. Then

(1) ht(I) = depth(I, A);
(2) ht(I) + dim(A/I) = dim(A);
(3) A is equidimensional.

Proof. If ht(I) = n, then we can choose elements x1, . . . , xn ∈ I such that
ht(〈x1, . . . , xi〉) = i for 1 ≤ i ≤ n. Using the previous proposition, we see
that x1, . . . , xn is an A–sequence. This implies ht(I) ≤ depth(I, A). Now
let x1, . . . , xs ∈ I be an A–sequence then s = ht(〈x1, . . . , xs〉) ≤ ht(I). This
proves (1).

By definition, ht(I) = inf{ht(P ) | P an associated prime ideal of I}, and
dim(A/I) = sup{dim(A/P ) | P an associated prime ideal of I}. Hence, it is
sufficient to prove that ht(P ) = dim(A) − dim(A/P ) for a prime ideal P .

Using (1) we obtain ht(P ) = depth(P,A). Let x1, . . . , xr ∈ P be an A–
sequence, r = ht(P ). Then A/〈x1, . . . , xr〉 is a (dim(A)− r)–dimensional Co-
hen–Macaulay ring (Theorem 7.7.5 (2)).

We have ht(〈x1, . . . , xr〉) = r = ht(P ) (Proposition 7.7.9) and, therefore,
P is a minimal associated prime for 〈x1, . . . , xr〉. This implies

dim(A/P ) = dim(A/〈x1, . . . , xr〉) = dim(A)− ht(P )

(Theorem 7.7.5 (1)) and proves (2).
(3) is an immediate consequence of Theorem 7.7.5 (1).

Corollary 7.7.11. Let (A,m) be a Noetherian local Cohen–Macaulay ring,
and let I = 〈x1, . . . , xr〉 ⊂ A be an ideal of height r. Then all associated prime
ideals of I have the same height.

Proof. Assume P ⊃ I is an associated prime. Localizing at P we may as-
sume that P = m (Theorem 7.7.5(3)). Using Proposition 7.7.9 we obtain that
x1, . . . , xr is an A–sequence. This implies that A/I is a Cohen–Macaulay ring
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(Theorem 7.7.5 (2)), hence dim(A/P ) = dim(A/I). Using Corollary 7.7.10 (2)
we obtain ht(P ) = ht(I).

We now globalize the notion of a Cohen–Macaulay ring. Theorem 7.7.5 (3)
gives rise to the following definition:

Definition 7.7.12. Let A be a Noetherian ring. A is called a Cohen–
Macaulay ring if Am is a Cohen–Macaulay ring for all maximal ideals m
of A.

Theorem 7.7.13. Let A be a Cohen–Macaulay ring, then A[x1, . . . , xn] is a
Cohen–Macaulay ring.

Proof. Using induction it is enough to prove the theorem for n = 1. Let P
be a maximal ideal in A[x] and P ∩A = m. Then A[x]P is a localization of
Am[x]. Therefore, we may assume that (A,m) is a local ring.

The quotient A[x]/mA[x] ∼= (A/m)[x] is a principal ideal domain, and
there exists a monic polynomial f ∈ A[x] such that P ≡ 〈f〉mod mA[x], that
is, P = mA[x] + 〈f〉. Let y1, . . . , yn be a system of parameters for A which is
an A–sequence by Proposition 7.7.9. Since A[x] is a free A–module, y1, . . . , yn
is an A[x]–sequence, too. On the other hand, f is (as monic polynomial) a
non–zerodivisor mod 〈y1, . . . , yn〉A[x]. This implies that y1, . . . , yn, f is an
A[x]–sequence in P , especially depth(P,A[x]) ≥ 1 + depth(A). We conclude

depth(A[x]P ) ≥ depth(P,A[x]) ≥ 1 + dim(A) = dim(A[x]P )

(cf. Exercise 3.3.8), that is, A[x]P is a Cohen–Macaulay ring.

Exercises

7.7.1. Let A be a local Cohen–Macaulay ring. Prove that A[[x1, . . . , xn]] is
a Cohen–Macaulay ring.

7.7.2. Let A be a zero–dimensional ring. Prove that A is Cohen–Macaulay.

7.7.3. Let A be a reduced one–dimensional ring. Prove that A is Cohen–
Macaulay.

7.7.4. Let A be a two–dimensional normal ring. Prove that A is Cohen–
Macaulay.

7.7.5. Consider Serre’s conditions (Ri), (Si), i ≥ 0, for a Noetherian ring A:

(Ri) AP is regular for every prime ideal P of height at most i.
(Si) depth(AP ) ≥ min{ht(P ), i} for every prime ideal P of A.

Show that A is Cohen–Macaulay if and only if (Si) holds for i ≥ 0, and show
that A is reduced if and only if (R0) and (S1) hold (see also Theorem 5.7.13).
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7.7.6. Let A = K[x1, . . . , xn]/I be Cohen–Macaulay, with K a perfect field.
Show that A is reduced if and only if dim(A/J) < dim(A), where J is the
ideal in A, generated by the (n− dim(A))–minors of the Jacobian matrix(
∂fi

∂xj

)
. (Geometrically, this means that a Cohen–Macaulay variety is reduced

if and only if its singular locus has codimension at least 1.)

7.7.7. Which of the following rings are Cohen–Macaulay and which are not ?

(1) K[x, y, z]/〈xy, yz〉 ,
(2) K[x, y, z]/〈xy, yz, xz〉 ,
(3) K[x, y]/〈xy, x2〉 ,
(4) K[x, y]/〈x2, y2〉 ,
(5) K[x, y]/〈y4− y2, xy3− xy, x3y − xy, x4− x2〉 .
First use Singular and then find a theoretical argument.

7.8 Further Characterization of Cohen–Macaulayness

In this section we shall first use finite ring extensions as, for instance, Noether
normalizations to characterize Cohen–Macaulay rings. We prove that a local
ring, which is finite over a regular local ring, is Cohen–Macaulay if and only
if it is free. Further, we shall introduce the projective dimension pdA(M) as
the length of a minimal resolution of a finitely generated module M over a
local ring A and prove the Auslander–Buchsbaum formula,

pdA(M) = depth(A)− depth(M) ,

which allows to check Cohen–Macaulayness over regular local rings by com-
puting a free resolution.

Proposition 7.8.1. Let (A,m) → (B, n) be a local map of local rings (that
is, mB ⊂ n), and assume that B is flat over A. Then

(1) depth(B) = depth(A) + depth(B/mB).
(2) B is Cohen–Macaulay if and only if A and B/mB are Cohen–Macaulay.

Proof. To prove (1), let x1, . . . , xr ∈ m be a maximal regular sequence and
y1, . . . , ys ∈ n induce a maximal regular sequence in B/mB. Let x̃1, . . . , x̃r be
the images of x1, . . . , xr in B. We shall prove that x̃1, . . . , x̃r, y1, . . . , ys is a
maximal regular sequence in n.

Using Exercise 7.6.12, we obtain that x̃1, . . . , x̃r is a regular sequence in n.
Using Corollary 7.4.8, we obtain that y1 is regular in B and B/〈y1〉 is A–flat.
Consider the exact sequence

0 −→ B
·y1−−→ B −→ B/〈y1〉 −→ 0

then, for A := A/〈x1, . . . , xr〉 we obtain
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TorA1 (A,B/〈y1〉) −→ A⊗A B ·y1−−→ A⊗A B
is exact. But TorA1 (A,B/〈y1〉) = 0, since B/〈y1〉 is A–flat. This implies
that y1 is regular in A⊗A B = B/〈x̃1, . . . , x̃r〉. Continuing like this, we
obtain that y1, . . . , ys is a regular sequence in B/〈x̃1, . . . , x̃r〉. It remains
to prove that depth(B/〈x̃1, . . . , x̃r, y1, . . . , ys〉) = 0. But this is clear, since
ma ⊂ 〈x1, . . . , xr〉 and nb ⊂ mB + 〈y1, . . . , ys〉 for suitable a, b, which implies
that 〈x̃1, . . . , x̃r, y1, . . . , ys〉 is n–primary.

To prove (2), we use (1) and Exercise 7.4.6 and obtain

dim(B)− depth(B) = dim(A) − depth(A) + dim(B/mB)− depth(B/mB) .

Since dimension is always greater or equal to depth, we obtain (2).

Theorem 7.8.2. Let (A,m) be a regular local ring and (B, n) a Noetherian
local A–algebra (mB ⊂ n).

(1) B is flat over A if and only if depth(mB,B) = dim(A).
(2) If B is Cohen–Macaulay, then B is flat over A if and only if dim(B) =

dim(A) + dim(B/mB).

Proof. To prove (1), let n = dim(A) and m = 〈x1, . . . , xn〉. Then, as A is regu-
lar, x1, . . . , xn is a regular sequence in A, which remains regular in B, since B
is flat over A (see Exercise 7.6.12). This implies that depth(mB,B) = dim(A)
(Corollary 7.6.11).

If depth(mB,B) = dim(A) = n, then Corollary 7.6.11 implies that the
homology Hi(x1, . . . , xn, B) vanishes for i > 0. Now K(x1, . . . , xn)• is a free
resolution of A/m. This implies TorA1 (A/m, B) = H1(x1, . . . , xn, B) = 0, and
we can apply Theorem 7.4.2 to deduce that B is A–flat.

To prove (2) assume first that B is flat over A. Then Exercise 7.4.6 gives
that dim(B) = dim(A) + dim(B/mB).

Conversely, assume that dim(B) = dim(A) + dim(B/mB). Let y1, . . . , ys
be a maximal regular sequence in mB, that is, s = depth(mB,B). We may
extend this sequence to a maximal sequence y1, . . . , yd in B. Because of
Corollary 7.6.11 and since B is Cohen–Macaulay, we have d = dim(B). On
the other hand, dim(B/mB) = d− s (Exercise 7.6.6). Finally, this implies
s = depth(mB,B) = dim(A) and, using (1), we obtain that B is flat.

Corollary 7.8.3. Let (A,m) be a regular local ring and B a finite A–algebra.
Assume that all localizations of B in maximal ideals have the same dimension.
Then B is Cohen–Macaulay if and only if B is a free A–module.

Proof. Let dim(A) = n and m = 〈x1, . . . , xn〉. Now assume that B is Cohen–
Macaulay, that is Bn is Cohen–Macaulay for all maximal ideals n of B. By
assumption, we know that dim(A) = dim(B) = dim(Bn) for all maximal ide-
als n. By Theorem 7.8.2 (2), B is flat over A and, therefore, free (Corollary
7.3.8).
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To prove the other direction, assume that B is a free A–module. Thus,
x1, . . . , xn, which is a regular sequence in A (since A is a regular local ring),
remains a regular sequence in B by flatness. Therefore,

depth(Bn) ≥ dim(A) = dim(B) = dim(Bn)

for all maximal ideals n ⊂ B.

Corollary 7.8.4. Let B = K[x]〈x〉/I (resp. B = K[[x]]/I), x = (x1, . . . , xn),
and let A ⊂ B be a Noether normalization, then B is Cohen–Macaulay if and
only if B is a free A–module.

SINGULAR Example 7.8.5 (second test for Cohen–Macaulayness).
Let A = K[x1, . . . , xn]〈x1,...,xn〉/I. Using Noether normalization, we may as-
sume that A ⊃ K[xs+1, . . . , xn]〈xs+1,...,xn〉 =: B is finite. We choose a mono-
mial basis m1, . . . ,mr ∈ K[x1, . . . , xs] of A

∣∣
xs+1=···=xn=0

.
Thenm1, . . . ,mr is a minimal system of generators ofA asB–module. A is

Cohen–Macaulay if and only if A is a free B–module, that is, there are no B–
relations between m1, . . . ,mr, in other words, syzA(m1, . . . ,mr) ∩Br = 〈0〉.
This test can be implemented in Singular as follows:

proc isCohenMacaulay(ideal I)
{

def A = basering;
list L = noetherNormal(I);
map phi = A,L[1];
I = phi(I);
int s = nvars(basering)-size(L[2]);
execute("ring B=("+charstr(A)+"),x(1..s),ds;");
ideal m = maxideal(1);
map psi = A,m;
ideal J = std(psi(I));
ideal K = kbase(J);
setring A;
execute("
ring C=("+charstr(A)+"),("+varstr(A)+"),(dp(s),ds);");

ideal I = imap(A,I);
qring D = std(I);
ideal K = fetch(B,K);
module N = std(syz(K));
intvec v = leadexp(N[size(N)]);
int i=1;
while((i<s)&&(v[i]==0)){i++;}
setring A;
if(!v[i]){return(0);}
return(1);

}
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As the above procedure uses noetherNormal from algebra.lib, we first have
to load this library.

LIB"algebra.lib";
ring r=0,(x,y,z),ds;
ideal I=xz,yz;
isCohenMacaulay(I);
//-> 0

I=x2-y3;
isCohenMacaulay(I);
//-> 1

We want to prove the Auslander–Buchsbaum formula, which is of fundamen-
tal importance for modules which allow a finite projective resolution. First
we need a definition.

Definition 7.8.6. Let (A,m) be a Noetherian local ring and M be a finitely
generated A–module. M has finite projective dimension if there exists an
exact sequence (a free resolution)

0 −→ Fn
αn−−→ Fn−1 −→ . . .

α1−→ F0
α0−→M −→ 0 ,

with finitely generated free A–modules Fi. The integer n is called the length of
the resolution. The minimal length of a free resolution is called the projective
dimension of M and is denoted by pdA(M).

This notion is generalized to non–local rings: pdA(M) = n if there exists
an exact sequence (projective resolution)

0→ Pn
αn−−→ Pn−1 → . . .

α1−→ P0
α0−→M → 0 ,

with finitely generated projective A–modules Pi, and n is minimal with this
property.

Note that in Chapter 2, Theorem 2.4.11, it is proved that all minimal free
resolutions have the same length. Obviously, free modules have projective
dimension zero.

Theorem 7.8.7 (Auslander–Buchsbaum formula). Let (A,m) be a
Noetherian local ring and M a finitely generated A–module of finite projective
dimension. Then

depth(M) + pdA(M) = depth(A) .

We shall postpone the proof and treat an example first.
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SINGULAR Example 7.8.8 (3rd test for Cohen–Macaulayness).
We use the Auslander–Buchsbaum formula to compute the depth of M and
then use the procedure of Singular Example 7.7.8 to test Cohen–Macaulay-
ness (check if depth(M) = dim(M) = dim

(
A/Ann(M)

)
).

We assume thatA = K[x1, . . . , xn]〈x1,...,xn〉/I and compute a minimal free
resolution. Then depth(A) = n− pdK[x1,...,xn]〈x1,...,xn〉(A). If M is a finitely
generated A–module of finite projective dimension, then we compute a min-
imal free resolution of M and obtain depth(M) = depth(A)− pdA(M).

proc projdim(module M)
{

list l=mres(M,0);
int i;
while(i<size(l))
{
i++;
if(size(l[i])==0){return(i-1);}

}
}

Note that projdim assumes that pdA(M) <∞. By Theorem 7.9.1 and Corol-
lary 7.9.5 below, this is true if A = K[x1, . . . , xn]> and if M is finitely gen-
erated. For quotient rings of such a ring, however, the resolution may not be
finite. In Singular the command mres(M,0) (respectively res(M,0), . . . )
has the effect that the resolution stops after n steps, where n is the number
of variables of the basering. 5

Now it is easy to give another test for Cohen–Macaulayness.

proc isCohenMacaulay1(ideal I)
{

int de=nvars(basering)-projdim(I*freemodule(1));
int di=dim(std(I));
return(de==di);

}

ring R=0,(x,y,z),ds;
ideal I=xz,yz;
isCohenMacaulay1(I);
//-> 0

I=x2-y3;
isCohenMacaulay1(I);
//-> 1

5 mres(M,k) stops computation after k steps, where k > 0 is any positive integer.
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I=xz,yz,xy;
isCohenMacaulay1(I);
//-> 1
kill R;

The following procedure checks whether the depth of M is equal to d. It uses
the procedure Ann from primdec.lib.

proc CohenMacaulayTest1(module M, int d)
{

return((d-projdim(M))==dim(std(Ann(M))));
}

LIB"primdec.lib";
ring R=0,(x,y,z),ds;
ideal I=xz,yz;
module M=I*freemodule(1);
CohenMacaulayTest1(M,3);
//-> 0

I=x2+y2,z7;
M=I*freemodule(1);
CohenMacaulayTest1(M,3);
//-> 1

To prove the Auslander–Buchsbaum formula, we need the following lemma:

Lemma 7.8.9. Let (A,m) be a Noetherian local ring and

0 −→M1 −→M2 −→M3 −→ 0

be an exact sequence of A–modules then

depth(M2) ≥ min
(
depth(M1), depth(M3)

)
.

If the inequality is strict then depth(M1) = depth(M3) + 1.

Proof. If all three modules have positive depth, then we can find a non–
zerodivisor f ∈ m ⊂ A of M1,M2,M3 (prime avoidance, Lemma 1.3.12), and
the sequence

0 −→M1/fM1 −→M2/fM2 −→M3/fM3 −→ 0

is exact (Snake Lemma). The depth drops by one if we divide by f (Corol-
lary 7.6.12). Therefore, the proof can be reduced to the case that the
depth of one of the Mi is zero. Suppose that depth(M1) = 0. But then
depth(M2) = 0 because any non–zerodivisor of M2 is a non–zerodivisor of
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M1. The lemma is proved in this case. Assume now that depth(M2) = 0. Sup-
pose depth(M1) > 0 and depth(M3) > 0. Let f ∈ m ⊂ A be a non–zerodivisor
of M1 and M3 (prime avoidance, Lemma 1.3.12). From the Snake Lemma we
obtain that f is a non–zerodivisor for M2, too. This is a contradiction.

Finally, assume that depth(M3) = 0. If depth(M2) > 0, let f ∈ m be a
non–zerodivisor of M2. This is also a non–zerodivisor for M1 and, therefore,
depth(M1) ≥ 1. Using the Snake Lemma, we obtain an inclusion

Ker(M3
f−→M3) ⊂M1/fM1 .

As depth(M3) = 0, we have Ker(f : M3 →M3) �= 0. Any non–zerodivisor of
M1/fM1 would give a non–zerodivisor of Ker(f : M3 →M3) ⊂M3. But this
is not possible, and, therefore, depth(M1) = 1.

Proof of Theorem 7.8.7. If depth(A) = 0, then there exists x ∈ A different
from zero satisfying xm = 0. Let

0 −→ Fn
πn−−→ Fn−1 −→ . . .

π1−→ F0 −→M −→ 0

be a minimal free resolution of M . If n > 0 we have πn(Fn) ⊂ mFn−1 (min-
imality of the resolution). Then xFn ↪→ xmFn−1 = 0, hence Fn = 0. This
contradicts the minimality of the resolution. Therefore, pdA(M) = 0 and
depth(M) = depth(A).

Now we use induction on depth(A). Assume that depth(M) > 0 and
depth(A) > 0. Let f ∈ m be a non–zerodivisor of M and of A. The projective
dimension is constant if we divide by f , that is, pdA/〈f〉(M/〈f〉M) = pdA(M),
but the depth drops by one. Moreover, by induction hypothesis, we have

pdA/〈f〉(M/〈f〉M) + depthA/〈f〉(M/〈f〉M) = depth(A/〈f〉) ,

hence the statement.
Finally, assume depth(M) = 0 and depth(A) > 0. Then pdA(M) > 0, be-

cause, otherwise, M would be free and depth(M) > 0. Let

0 −→ K −→ F −→M −→ 0

be an exact sequence, F a finitely generated free A–module and 0 �= K ⊂ mF .
We apply Lemma 7.8.9 and obtain depth(K) = 1. Using the previous case
we obtain depth(K) + pdA(K) = depth(A). But pdA(K) + 1 = pdA(M) and
depth(K) = depth(M) + 1 implies depth(M) + pdA(M) = depth(A).

Exercises

7.8.1. Let (A,m) be a zero–dimensional local ring. Let M be an A–module
with pdA(M) <∞. Prove that M is free.
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7.8.2. Prove the Auslander–Buchsbaum formula for the case of graded rings
and modules: let A be a finitely generated graded K–algebra with K a field,
and let M be a finitely generated A–module with pdA(M) <∞. Then

depth(m,M) + pdA(M) = depth(m, A) ,

where m is the irrelevant ideal of A.

7.8.3. Let I ⊂ K[x1, . . . , xn] be a homogeneous ideal. Prove that the ring
K[x1, . . . , xn]/I is Cohen–Macaulay if and only if K[x1, . . . , xn]〈x1,...,xn〉/I is
Cohen–Macaulay.

7.8.4. Show that the subring A = K[s3, s2t, st2, t3] of K[s, t] is Cohen–
Macaulay.
(Hint: compute, by elimination, a homogeneous ideal I ⊂ K[x0, . . . , x3] such
that A ∼= K[x0, . . . , x3]/I, and apply Exercise 7.8.3. Geometrically, this means
to compute the homogeneous coordinate ring of the twisted cubic curve,
which is the image of the morphism P

1→ P
3, (s : t) �→ (s3 : s2t : st2 : t3), cf.

Appendix A.7.)

7.8.5. Show that the subring A = K[s4, s3t, st3, t4] of K[s, t] is not Cohen–
Macaulay. A is the homogeneous coordinate ring of a smooth rational quartic
curve in three–space.
(Hint: see Exercise 7.8.4.)

7.8.6. Check whether K[x, y, z, w]〈x,y,z,w〉/〈xz, xw, yz, yw〉 is Cohen-Macau-
lay.

7.8.7. Let A = K[x, y]〈x,y〉/〈x · y〉 and M be the normalization of A. Prove
that pdA(M) =∞.

7.8.8. Let (A,m) be a Noetherian local ring, k = A/m the residue field, and
M a finitely generated A–module. Prove that

pdA(M) = sup
{
i
∣∣ TorAi (M,k) �= 0

}
.

(Hint: use Exercise 7.1.9.)

7.8.9. Let (A,m) be a Noetherian local ring, k = A/m the residue field and
M a finitely generated A–module. Prove that pdA(M) ≤ pdA(k).
(Hint: use Theorem 7.8.7 and Exercise 7.8.8.)

7.8.10. Let (A,m) be a regular local ring, and let (B, n) be a local A–algebra,
which is finitely generated as A–module. Then B is Cohen-Macaulay if and
only if pdA(B) = dim(A)− dim(A/AnnA(B)).

7.8.11. Let (A,m) be a Noetherian local ring. An ideal I ⊂ A is called
perfect, if depth(I, A) = pdA(A/I). Prove the following statements:

(1) Let I = 〈x1, . . . , xr〉, x1, . . . , xr be a regular sequence, then I is perfect.
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(2) If A is Cohen–Macaulay and I a perfect ideal then A/I is Cohen–
Macaulay.

7.8.12. Let (A,m) be a Noetherian local ring and M a finitely generated
A–module. Let P ∈ Ass(M). Prove that pdA(M) ≥ depth(P ).

7.8.13. (matrix factorization) Let (S,m) be a regular local ring and f ∈ m.
Let R = S/〈f〉 and M be a maximal Cohen–Macaulay R–module, that is,
depth(M) = dim(R). Consider M via the canonical map S → R as an S–
module. Prove the following statements:

(1) pdS(M) = 1.
(2) There exists a free resolution

0→ Sn
ϕ−→ Sn →M → 0 .

(3) There exists a linear map ψ : Sn → Sn such that ϕ ◦ ψ = f · 1Sn and
ψ ◦ ϕ = f · 1Sn . (ϕ, ψ) is called a matrix factorization of f .

(4) Let ϕ = ϕmod 〈f〉 and ψ = ψ mod f , then the complex

· · · → Rn
ϕ−→ Rn

ψ−→ Rn
ϕ−→ Rn

ψ−→ Rn → · · ·

is exact. In particular,

· · · → Rn
ϕ−→ Rn

ψ−→ Rn
ϕ−→ Rn →M → 0

is a periodic free resolution with periodicity 2.

(Hint: to prove (2) use (1) and the fact that M has rank 0 as an S–module.
To prove (3), note that fM = 0 implies fSn ⊂ ϕ(Sn).)

7.8.14. Let S = Q[x, y]〈x,y〉 and f = x2 + y3. Use Singular to compute
the first six modules of the periodic free resolution of the S/〈f〉–module
Q = S/〈x, y〉.

7.8.15. Let S = Q[x, y]〈x,y〉 and f = x3 + y5, and let ϕ =
(
y −x 0
0 y −x
x 0 y3

)
. Use

Singular to compute ψ such that (ϕ, ψ) is a matrix factorization of f .

7.9 Homological Characterization of Regular Rings

In this section we characterize regular rings by the property that all modules
have finite projective dimension. With this characterization we can apply
Hilbert’s Syzygy Theorem to obtain that the localization of a regular ring
at a prime ideal is regular, and that the rings K[x1, . . . , xn]> are regular for
every monomial ordering >.
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Theorem 7.9.1 (Serre). Let (A,m) be a Noetherian local ring. The fol-
lowing conditions are equivalent.

(1) A is regular.
(2) pdA(A/m) = dim(A).
(3) pdA(A/m) <∞.
(4) Every finitely generated A–module has finite projective dimension.

Proof. (1)⇒ (2): let A be regular of dimension n. Then there exists an A–
sequence x1, . . . , xn such that m = 〈x1, . . . , xn〉. Using Theorem 7.6.14 and
Corollary 7.6.10, we obtain that the Koszul complexK(x1, . . . , xn)• is a mini-
mal free resolution of k = A/m of length n. This implies pdA(A/m) = dim(A).

The implication (2)⇒ (3) is trivial, and (3)⇒ (4) is a consequence of
Exercise 7.8.9.

(4)⇒ (1): let s := edim(A). We have to prove that s = dim(A). Because
s ≥ dim(A), we may assume s > 0. We want to proceed by induction on
s. Therefore, we need a non–zerodivisor. Assume that depth(A) = 0, then
Theorem 7.8.7 implies pdA(A/m) = 0, that is, k = A/m is free, which is a
contradiction to s > 0. We may choose a non–zerodivisor x ∈ m � m2. Let
B := A/〈x〉, then edim(B) = s− 1.

We shall prove that pdB(k) ≤ pdA(k) + 1. Once we have proved this, we
obtain, by induction, that B is regular. This implies, using Proposition 5.6.17,
that A is regular. It remains to prove that pdB(k) ≤ pdA(k) + 1. Using the
following exact sequence of B–modules

0 −→ m/〈x〉 −→ B −→ k −→ 0 ,

it is enough to prove that pdB(m/〈x〉) ≤ pdA(k).
To do so, we show pdB(m/xm) = pdA(k) and pdB(m/〈x〉) ≤ pdB(m/xm).

The latter inequality is true, because the canonical surjection of B–modules
m/xm→ m/〈x〉 splits (Exercise 7.9.1). To prove pdB(m/xm) = pdA(k), we
use Exercise 7.8.8 and the fact that TorAi (m, k) ∼= TorBi (m/xm, k) for all i
(Exercise 7.1.6).

Definition 7.9.2. Let A be a Noetherian ring, then the global dimension of
A, gldim(A), is defined by6

gldim(A) = sup
{
pdA(M) |M a finitely generated A–module

}
.

Lemma 7.9.3.

(1) Let (A,m) be a Noetherian local ring, then gldim(A) = pdA(A/m).
(2) Let K be a field, then gldim(K[x1, . . . , xn]) = n.

6 The restriction to finitely generated A–modules is not really necessary. The fol-
lowing theorem of Auslander is proved in [66]: pdA(M) ≤ n for all A–modules
M ⇐⇒ pdA(M) ≤ n for all finitely generated A–modules M .
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Proof. (1) is a consequence of Exercise 7.8.9; (2) a consequence of Hilbert’s
Syzygy theorem (Theorem 2.5.15).

Lemma 7.9.4. Let A be a Noetherian ring, and let P ⊂ A be a prime ideal.
If pdA(A/P ) <∞ then AP is regular.

Proof. By assumption, A/P has a finite free resolution

0 −→ Fr −→ . . . −→ F0 −→ A/P −→ 0 .

Then F•⊗AAP is a free resolution of (A/P )⊗AAP = AP /PAP . This implies
that pdAP

(AP /PAP ) <∞ and, therefore, AP is regular.

Corollary 7.9.5.

(1) Let A be a regular local ring, then AP is regular for all prime ideals
P ⊂ A.

(2) Let A be a Noetherian ring and gldim(A) <∞, then A is regular.7

(3) K[x1, . . . , xn]> is a regular ring for every monomial ordering >.

Note that (3) follows from (2) and the constructive proof of Hilbert’s Syzygy
Theorem 2.5.15.

SINGULAR Example 7.9.6 (regularity test).
Lemma 7.9.4 gives another possibility to test whether K[x]P /IP is regular
for a prime ideal P ⊂ K[x], x = (x1, . . . , xn): if pdK[x]/I(K[x]/P ) <∞ then
K[x]P /IP is regular. The test is applicable even if K is not perfect.

ring A=(2,a),(x,y),(c,dp);
qring B=std(x2+y2+a);
ideal I=x2+a,y;

print(mres(I,2));
//-> [1]:
//-> _[1]=y
//-> [2]:
//-> _[1]=0

From the output, we read that F2(a)[x, y]〈x2+a,y〉/〈x2 + y2 + a〉 is regular.
Note that in this case the Jacobian matrix is the zero–matrix and the ground
field is not perfect.
7 A is called regular if AP is regular for each prime ideal P ⊂ A. It is also true that

a regular ring of finite Krull dimension has finite global dimension. The proof
needs some knowledge about projective resolutions, which we did not develop
here. This can be found in [159].
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setring A;
qring C=std(x2+y2+1);
ideal I=x+1,y;

print(mres(I,2));
//-> [1]:
//-> _[1]=y
//-> _[2]=x+1
//-> [2]:
//-> _[1]=[y,x+1]
//-> _[2]=[x+1,y]
//-> [3]:
//-> _[1]=[x,y+1]
//-> _[2]=[x+1,y]

Hence, F2(a)[x, y]〈x+1,y〉/〈x2 + y2 + 1〉 is not regular.

Exercises

7.9.1. Let (A,m) be a Noetherian local ring, x ∈ m � m2 a non–zerodivisor.
Prove that the canonical map m/xm→ m/〈x〉 splits.
(Hint: choose a minimal system of generators x = x1, . . . , xs of m, and let
Q := 〈x2, . . . , xs〉. Prove first that Q∩〈x〉 ⊂ xm to obtain a map Q/Q∩〈x〉 →
m/xm.)

7.9.2. Let A be a Noetherian ring. Prove that A is regular if and only if A[x]
is regular.

7.9.3. Let A be a regular local ring. Let B ⊂ A be a Noetherian local ring
such that A is a free B–module. Prove that B is a regular local ring.

7.9.4. Let A = F3(a)[x, y]/〈x3+ y3+ a〉. Use Singular to check whether
A〈x3+a,y〉 is a regular local ring.

7.9.5. Let A = F2(a)[x, y]〈x2+a,y〉/〈x2+ y2+ a〉. Use Singular to compute
gldim(A).
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Es ist die Freude an der Gestalt
in einem höheren Sinne,

die den Geometer ausmacht.

Alfred Clebsch

In this appendix we introduce a few concepts of algebraic geometry in order
to illustrate some of the algebraic constructions used in this book. These
illustrations are meant to stimulate the reader to develop his own geometric
intuition on what is going on algebraically. Indeed, the connection between
algebra and geometry has turned out to be very fruitful and both merged to
become one of the leading areas in mathematics: algebraic geometry.

In order to provide some geometric understanding, we present, in this
appendix, the very basic concepts of classical affine and projective varieties
over an algebraically closed field K (say C). However, we also introduce the
modern counterparts, Spec and Proj, which bridge, quite naturally and with
less assumptions, the canyon between algebra and geometry.

One word about the role of the ground field K. Algebraic geometers usu-
ally draw real pictures, think about them as complex varieties and perform
computations over some finite field. We recommend following this attitude,
which is justified by successful practice. Moreover, the modern language of
schemes even allows one to formulate and prove geometric statements for
arbitrary fields which coincide with the classical picture if the field is alge-
braically closed (cf. A.5).

For a deeper study of algebraic geometry, we recommend the book of
Hartshorne [120], which is not only the standard reference book but also
represents modern algebraic geometry in an excellent way, complemented
perhaps by the red book of Mumford [182], and the books of Harris [119] and
Brieskorn and Knörrer [29].

A.1 Introduction by Pictures

The basic problem of algebraic geometry is to understand the set of solutions
x = (x1, . . . , xn) ∈ Kn of a system of polynomial equations

f1(x1, . . . , xn) = 0 , . . . , fk(x1, . . . , xn) = 0 ,
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fi ∈ K[x] = K[x1, . . . , xn] and K a field. The solution set is called an alge-
braic set or algebraic variety. The pictures in Figures A.1 – A.8 show examples
of algebraic varieties.

However, algebraic sets really live in different worlds, depending on
whether K is algebraically closed or not. For instance, the question whether
the simple polynomial equation xn + yn + zn = 0, n ≥ 3, has any non–trivial
solution in K, is of fundamental difference if we ask this for K to be C, R

or Q. (For C we obtain a surface, for R we obtain a surface if n is odd but
only {0} if n is even, and for Q this is Fermat’s problem, solved by A. Wiles
in 1994.) Classical algebraic geometry assumes K to be algebraically closed.
Real algebraic geometry is a field in its own and the study of varieties over Q

belongs to arithmetic geometry, a merge of algebraic geometry and number
theory. In this appendix we assume K to be algebraically closed.

Many of the problems in algebra, in particular, computer algebra, have a
geometric origin. Therefore, we choose an introduction by means of some pic-
tures of algebraic varieties, some of them being used to illustrate subsequent
problems.

The pictures in this introduction, Figures A.1 – A.8, were not only chosen
to illustrate the beauty of algebraic geometric objects but also because these
varieties have had some prominent influence on the development of algebraic
geometry and singularity theory.

The Clebsch cubic itself has been the object of numerous investigations in
global algebraic geometry, the Cayley and the D4–cubic also, but, moreover,
since the D4–cubic deforms, via the Cayley cubic, to the Clebsch cubic, these
first three pictures illustrate deformation theory, an important branch of
(computational) algebraic geometry.

The ordinary node, also called A1–singularity (shown as a surface sin-
gularity), is the most simple singularity in any dimension. The Barth sextic
illustrates a basic but very difficult and still (in general) unsolved problem:
to determine the maximum possible number of singularities on a projective
variety of given degree.

Whitney’s umbrella was, at the beginning of stratification theory, an im-
portant example for the two Whitney conditions. We use the umbrella in
Chapter 3 to illustrate that the algebraic concept of normalization may even
lead to a parametrization of a singular variety, an ultimate goal in many
contexts, especially for graphical representations. In general, however, such
a parametrization is not possible, not even locally, if the variety has dimen-
sion larger than one. For curves, on the other hand, the normalization is
always smooth and, hence, provides, at least locally, a parametrization. In-
deed, computing the normalization of the ideal given by the implicit equations
for the space curve in Figure A.8, we obtain the given parametrization. Con-
versely, the equations are derived from the parametrization by eliminating
the variable t. Elimination of variables is perhaps the most important basic
application of Gröbner bases.
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Fig. A.1. The Clebsch Cubic.

This is the unique cubic surface which
has S5, the symmetric group of five let-
ters, as symmetry group. It is named
after its discoverer Alfred Clebsch and
has the affine equation

81(x3+ y3+ z3) − 189(x2y + x2z

+ xy2+ xz2+ y2z + yz2) + 54xyz

+ 126(xy + xz + yz) − 9(x2+ y2+ z2)

− 9(x + y + z) + 1 = 0 .

Fig. A.2. The Cayley Cubic.

There is a unique cubic surface which
has four ordinary nodes (see Fig. A.5),
usually called the Cayley cubic after
its discoverer, Arthur Cayley. It is a
degeneration of the Clebsch cubic, has
S4 as symmetry group, and the projec-
tive equation is

z0z1z2 + z0z1z3 + z0z2z3

+ z1z2z3 = 0 .

Fig. A.3. A cubic with a D4–singu-
larity.

Degenerating the Cayley cubic we get
a D4–singularity. The affine equation
is

x(x2 − y2) + z2(1 + z)

+ 2
5
xy + 2

5
yz = 0 .

Fig. A.4. The Barth Sextic.

The equation for this sextic was found
by Wolf Barth. It has 65 ordinary
nodes, the maximal possible number
for a sextic. Its affine equation is (with

c = 1+
√

5
2

)

(8c+4)x2y2z2− c4(x4y2+y4z2+x2z4)

+ c2(x2y4+ y2z4+ x4z2)

− 2c + 1

4
(x2+ y2+ z2− 1)2 = 0 .
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Fig. A.5. An ordinary node.

An ordinary node is the most simple
singularity. It has the equation

x2 + y2 − z2 = 0 .

Fig. A.6. Whitney’s Umbrella.

The Whitney umbrella is named after
Hassler Whitney who studied it in con-
nection with the stratification of ana-
lytic spaces. It has the affine equation

x2y − z2 = 0 .

Fig. A.7. A 5–nodal plane curve of
degree 11.

Deforming an A10–singularity (nor-
mal form: y11− x2 = 0) we obtain a
5–nodal plane curve of degree 11:

32x2 − 2097152y11 + 1441792y9

− 360448y7 + 39424y5

− 1760y3 + 22y − 1 .

Fig. A.8. A space curve.

This space curve is given parametri-
cally by x = t4, y = t3, z = t2, or im-
plicitly by

x − z2 = y2 − z3 = 0 .

Finally, the 5–nodal plane curve illustrates the singularities of plane
curves, in particular, the deformation of a curve singularity into a nodal
curve. Moreover, this kind of deformations, with the maximal number of
nodes, also play a prominent role in the local theory of singularities. For in-
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stance, from this real picture we can read off the intersection form and, hence,
the monodromy of the singularity A10 by the beautiful theory of A’Campo
and Gusein-Zade. By means of standard bases in local rings, there exists a
completely different, algebraic algorithm to compute the monodromy [206].

Singular can be used to draw real pictures of plane curves or of surfaces
in 3–space, that is, of hypersurfaces defined by polynomials in two or three
variables. For this, Singular calls the programme surf written by Stephan
Endraß, which is distributed together with Singular, but which can also be
used as a stand–alone programme (unfortunately, up to now, surf runs only
under Linux and Sun–Solaris). Drawing “nice” real pictures depends very
much on the chosen equation, for example, the scaling of the variables, and
the kind of projection chosen by the graphics system. It is, therefore, recom-
mended to experiment with the concrete equations and with the parameters
within surf. Here is the Singular input for drawing the Whitney umbrella
and a surprise surface:

SINGULAR Example A.1.1 (surface plot).

LIB "surf.lib";
ring r = 0,(x,y,z),dp;

poly f = -z2+yx2; //the Whitney umbrella
map phi = r,x,y,z-1/4x-2;
plot(phi(f));

f =(2*x^2+y^2+z^2-1)^3-(1/10)*x^2*z^3-y^2*z^3;
// A surprise surface (equation due to Tore Norstrand)

phi = r,1/6z,1/6x,1/6y; //rescaling
plot(phi(f));

Let us now discuss some geometric problems for which the book describes
algebraic algorithms, which are implemented in Singular.

Recall first the most basic, but also most important, applications of
Gröbner bases to algebraic constructions (Sturmfels called these “Gröbner
basics”). These can be found in Chapters 1, 2 and 5 of this book.

• Ideal (respectively module) membership problem,
• Intersection with subrings (elimination of variables),
• Intersection of ideals (respectively submodules),
• Zariski closure of the image of a map,
• Solvability of polynomial equations,
• Solving polynomial equations,
• Radical membership,
• Quotient of ideals,
• Saturation of ideals,
• Kernel of a module homomorphism,
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• Kernel of a ring homomorphism,
• Algebraic relations between polynomials,
• Hilbert polynomial of graded ideals and modules.

The next questions and problems lead to algorithms which are slightly more
(some of them much more) involved. They are, nevertheless, still very basic
and quite natural. We should like to illustrate them by means of four sim-
ple examples, shown in the Figures A.9 and A.10, referred to as Examples
(A) – (D). We recommend redoing the computations using Singular, the
appropriate commands can be found in the chapters we refer to.

(A) The Hypersurface V (x2+ y3− t2y2). (B) The Variety V (xz, yz).

Fig. A.9. Examples (A) and (B).

(C) The Space Curve

V (xy, xz, yz).

(D) The Set of Points V (y4− y2,

xy3− xy, x3y − xy, x4− x2).

Fig. A.10. Examples (C) and (D).

Assume we are given an ideal I ⊂ K[x] = K[x1, . . . , xn], by a finite set of
generators f1, . . . , fk ∈ K[x]. Consider the following questions and problems:

(1) Is V (I) irreducible or may it be decomposed into several algebraic va-
rieties? If so, find its irreducible components. Algebraically this means
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to compute a primary decomposition of I or of
√
I, the latter means to

compute the associated prime ideals of I.

Example (A) is irreducible; Example (B) has two components (one of dimen-
sion 2 and one of dimension 1); Example (C) has three (one–dimensional),
and Example (D) has nine (zero–dimensional) components. Primary decom-
position is treated in Chapter 4.

(2) Is I a radical ideal (that is, I =
√
I)? If not, compute its radical

√
I.

In Examples (A) – (C) the ideal I is radical, while in Example (D) we have√
I = 〈y3− y, x3− x〉, which is much simpler than I. In this example the

central point corresponds to V (〈x, y〉2) which is a fat point , that is, it is
a solution of I of multiplicity (= dimK K[x, y]/〈x, y〉2) larger than 1 (equal
to 3). All other points have multiplicity 1, hence, the total number of so-
lutions (counted with multiplicity) is 11. This is a typical example of the
kind B. Buchberger (respectively W. Gröbner) had in mind at the time of
writing his thesis, [32]. We show in Chapter 4, Section 4.5, how to compute
the radical. In Corollary 5.3.17 we show how to compute the dimension as a
K–vector space, respectively a K–basis, of K[x1, . . . , xn]/I if the quotient is
finite dimensional.

(3) A natural question to ask is, how independent are the generators f1, . . . , fk
of I? That is, we ask for all relations (r1, . . . , rk) ∈ K[x]k such that

k∑

i=1

rifi = 0 .

These relations form a submodule of K[x]k, which is called the syzygy
module of f1, . . . , fk and is denoted by syz(I).1 It is the kernel of the
K[x]–linear module homomorphism

K[x]k −→ K[x] , (r1, . . . , rk) �−→
k∑

i=1

rifi .

Syzygies are introduced and computed in Chapter 2, Section 2.5.
(4) More generally, we may ask for generators of the kernel of a K[x]–linear

map K[x]r→ K[x]s or, in other words, for solutions of a system of linear
equations over K[x].

A direct geometric interpretation of syzygies is not so clear, but there
are instances where properties of syzygies have important geometric con-
sequences, cf. [205]. To compute the kernel of a module homomorphism,
see Chapter 2, Section 2.8.7.

1 In general, the notion syz(I) is a little misleading, because the syzygy module
depends on the chosen system of generators for I , see Chapter 2, Remark 2.5.2.
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In Example (A) syz(I) = 0, in Example (B) syz(I) = 〈(−y, x)〉 ⊂ K[x, y, z]2,
in Example (C) syz(I) = 〈(−z, y, 0), (−z, 0, x)〉 ⊂ K[x, y, z]3, and in Example
(D) syz(I) ⊂ K[x, y, z]4 is generated by the vectors (x,−y, 0, 0), (0, 0, x,−y)
and (0, x2− 1,−y2+ 1, 0).

(5) A more geometric question is the following. Let V (I ′) ⊂ V (I) be a sub-
variety. How can we describe V (I) � V (I ′) ? Algebraically, this amounts
to finding generators for the ideal quotient2

I : I ′ = {f ∈ K[x] | fI ′ ⊂ I} .

Geometrically, for I a prime ideal, V (I : I ′) is the smallest variety con-
taining V (I) � V (I ′) which is the (Zariski) closure of V (I) � V (I ′), a
proof of this statement is given in Chapter 1, Section 1.8.9.

In Examples (B), (C) we compute the ideal quotients 〈xz, yz〉 : 〈x, y〉 = 〈z〉
and 〈xy, xz, yz〉 : 〈x, y〉 = 〈z, xy〉, which give, in both cases, equations for
the complement of the z–axis {x = y = 0}. In Example (D) we obtain
I : 〈x, y〉2 = 〈y(y2− 1), x(x2− 1), (x2− 1)(y2− 1)〉, the corresponding zero–
set being eight points, namely V (I) without the central point.

See Chapter 1, Sections 1.8.8 and 1.8.9 for further properties of ideal
quotients and for methods on how to compute them.

(6) Geometrically important is the projection of a variety V (I) ⊂ Kn onto a
linear subspace Kn−r. Given generators f1, . . . , fk of I ⊂ K[x1, . . . , xn],
we want to find generators for the (closure of the) image of V (I) ⊂ Kn in
Kn−r = {x | x1 = · · · = xr = 0}. The closure of the image is defined by
the ideal I ∩K[xr+1, . . . , xn], and finding generators for this intersection
is known as eliminating x1, . . . , xr from f1, . . . , fk.

Projecting the varieties of Examples (A) – (C) to the (x, y)–plane is, in the
first two cases, surjective and in the third case it gives the two coordinate
axes in the (x, y)–plane. This corresponds to the fact that the intersection
with K[x, y] of the first two ideals is 〈0〉, while the third one is 〈xy〉.

Projecting the nine points of Example (D) to the x–axis we obtain, by
eliminating y, the polynomial x2(x− 1)(x+ 1), describing the three image
points. This example is discussed further in Example A.3.13. The geometric
background of elimination is discussed in detail in A.2 and A.3. The algorith-
mic and computational aspects are presented in Chapter 1, Section 1.8.2.

(7) Another problem is related to the Riemann singularity removable theo-
rem, which states that a function of a complex manifold, which is holo-
morphic and bounded outside a subvariety of codimension 1, is actually
holomorphic everywhere. This statement is well–known for open subsets
of C. In higher dimensions there exists a second singularity removable
theorem, which states that a function, which is holomorphic outside a

2 The same definition applies if I, I ′ are submodules of K[x]k.
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subvariety of codimension 2 (no assumption on boundedness), is holo-
morphic everywhere. For singular complex algebraic varieties this is not
true in general, but those for which the two removable theorems hold
are called normal . Moreover, each reduced variety has a normalization,
and there is a morphism with finite fibres from the normalization to the
variety, which is an isomorphism outside the singular locus.
Given a variety V (I) ⊂ Kn, the problem is to find a normal variety
V (J) ⊂ Km and a polynomial map Km→ Kn inducing the normaliza-
tion map V (J)→ V (I). It can be reduced to irreducible varieties (but
need not be, as shown in Chapter 3, Section 3.6), and then the equivalent
algebraic problem is to find the normalization of K[x1, . . . , xn]/I, that
is, the integral closure of K[x]/I in the quotient field of K[x]/I, and to
present this ring as an affine ring K[y1, . . . , ym]/J for some m and J .

For Examples (A) – (C) it can be shown that the normalization is smooth. In
(B) and (C), it is actually the disjoint union of the smooth components. The
corresponding rings areK[x1, x2], K[x1, x2]⊕K[x3], K[x1]⊕K[x2]⊕K[x3].
(Use Singular as in Chapter 3, Section 3.6.) The fourth example (D) has
no normalization, as it is not reduced.

A related problem is to find, for a non–normal variety V , an ideal H such
that V (H) is the non–normal locus of V .

The normalization algorithm is described in Chapter 3, Section 3.6.
There, we also present an algorithm to compute the non–normal locus.

In the examples above, the non–normal locus is equal to the singular locus.

(8) The significance of singularities appears not only in the normalization
problem. The study of singularities is also called local algebraic geometry
and belongs to the basic tasks of algebraic geometry. Nowadays, singular-
ity theory is a whole subject on its own (cf. A.9 for a short introduction).
A singularity of a variety is a point which has no neighbourhood in which
the Jacobian matrix of the generators has constant rank.

In Example (A) the whole t–axis is singular, in the other three examples only
the origin.

One task is to compute generators for the ideal of the singular locus,
which is itself a variety. This is just done by computing subdeterminants
of the Jacobian matrix, if there are no components of different dimen-
sions. In general, however, we need, additionally, to compute either an
equidimensional decomposition or annihilators of Ext groups.

For how to compute the singular locus see Chapter 5, Section 5.7.

In Examples (A) – (D), the singular locus is given by the ideals 〈x, y〉, 〈x, y, z〉,
〈x, y, z〉, 〈x, y〉2, respectively.
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(9) Studying a variety V (I), I = 〈f1, . . . , fk〉, locally at a singular point, say
the origin of Kn, means studying the ideal IK[x]〈x〉, generated by I in
the local ring

K[x]〈x〉 =
{
f

g

∣∣∣∣ f, g ∈ K[x], g �∈ 〈x1, . . . , xn〉
}
.

In this local ring the polynomials g with g(0) �= 0 are units, and K[x] is
a subring of K[x]〈x〉.

Now all the problems we considered above can be formulated for ideals in
K[x]〈x〉 and modules over K[x]〈x〉 instead of K[x].

The geometric problems should be interpreted as properties of the variety in
a neighbourhood of the origin, or more generally, the given point.

At first glance, it seems that computation in the localization K[x]〈x〉 re-
quires computation with rational functions. It is an important fact that this
is not necessary, but that basically the same algorithms which were developed
for K[x] can be used for K[x]〈x〉. This is achieved by the choice of a special
ordering on the monomials of K[x] where, loosely speaking, the monomials
of lower degree are considered to be larger. A systematic study is given in
Chapter 1.

In A.8 and A.9 we give a short account of local properties of varieties and
of singularities.

All the above problems have algorithmic and computational solutions,
which use, at some place, Gröbner basis methods. Moreover, algorithms for
most of these have been implemented quite efficiently in several computer
algebra systems. Singular is also able to handle, in addition, local questions
systematically.

A.2 Affine Algebraic Varieties

From now on, we always assume K to be an algebraically closed field, except
when we specify K otherwise.

We start with the simplest algebraic varieties, affine varieties.

Definition A.2.1. A
n = A

n
K denotes the n–dimensional affine space over

K, the set of all n–tuples x = (x1, . . . , xn) with xi ∈ K, together with its
structure as affine space.

A set X ⊂ A
n
K is called an affine algebraic set or a (classical) affine al-

gebraic variety or just an affine variety (over K) if there exist polynomials
fλ ∈ K[x1, . . . , xn], λ in some index set Λ, such that

X = V
(
(fλ)λ∈Λ

)
= {x ∈ A

n
K | fλ(x) = 0, ∀ λ ∈ Λ} .

X is then called the zero–set of (fλ)λ∈Λ.
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If L is a non–algebraically closed field and fλ are elements of L[x], we may
consider an algebraically closed field K containing L (for example, K = L,
the algebraic closure of L) and all statements apply to the fλ considered as
elements of K[x].

Of course, X depends only on the ideal I generated by the fλ, that is,
X = V (I) with I = 〈fλ | λ ∈ Λ〉K[x]. By the Hilbert basis theorem, 1.3.5,
there are finitely many polynomials such that I = 〈f1, . . . , fk〉K[x] and, hence,
X = V (f1, . . . , fk).

If X = V (f1, . . . , fk) with deg(fi) = 1, then X ⊂ A
n is an affine linear

subspace of A
n. If X = V (f) for a single polynomial f ∈ K[x] � {0} then X

is called a hypersurface in A
n. A hypersurface in A

2 is called an (affine) plane
curve and a hypersurface in A

3 an affine surface in 3–space. Hypersurfaces
in A

n of degree 2, 3, 4, 5, . . . are called quadrics, cubics, quartics, quintics,
. . ..

Figure A.11 shows pictures of examples with respective equations. These
can be drawn using Singular as indicated in the following example:

SINGULAR Example A.2.2 (surface plot).

ring r=0,(x,y,z), dp;
poly f= ...;
LIB"surf.lib";
plot(f);

The pictures shown in Figure A.11 give the correct impression that the va-
rieties become more complicated if we increase the degree of the defining
polynomial. However, the pictures are real, and it is quite instructive to see
how they change if we change the coefficients of terms (in particular the
signs). The quintic in Figure A.11 is the Togliatti quintic, which embellishes
the cover of this book.

Lemma A.2.3. For ideals I, Ii, Iλ ⊂ K[x1, . . . , xn], Λ any index set, we have

(1) ∅ = V (〈1〉), A
n
K = V (〈0〉);

(2)
⋃k
i=1 V (Ii) = V

(⋂k
i=1 Ii

)
= V

(∏k
i=1 Ii

)
;

(3)
⋂
λ∈Λ V (Iλ) = V

(⋃
λ∈Λ Iλ

)
= V

(∑
λ∈Λ Iλ

)
;

(4) V (I1) ⊃ V (I2) if I1 ⊂ I2;
(5) V (I) = V

(√
I
)
;

(6) V (I1) = V (I2) if and only if
√
I1 =

√
I2 .

The easy proof is left to the reader, (6) being a consequence of Hilbert’s
Nullstellensatz (Theorem 3.5.2). A direct consequence is

Lemma A.2.4.

(1) ∅, A
n are affine varieties.

(2) The union of finitely many affine varieties is affine.
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x2− y2− z2 = 0 x3− y2− z2 = 0

x4+ y4+ z4+ 1 − x2− y2

−z2− y2z2− z2x2− x2y2 = 0

64 · (x−1) · (x4− 4x3− 10x2y2− 4x2

+16x − 20xy2+ 5y4+ 16 − 20y2
)

−5 ·
√

5 −√
5 ·

(
2z −

√
5 −√

5
)

·(4 · (x2+ y2− z2) + 1 + 3 · √5
)2

= 0

Fig. A.11. Quadric, cubic, quartic, quintic hypersurfaces.

(3) The intersection of arbitrary many affine varieties is affine.

The lemma says that the affine algebraic sets in A
n are the closed sets of a

topology. This topology is called the Zariski topology on A
n. For an algebraic

set X ⊂ A
n, the induced topology is called the Zariski topology on X . Hence,

an affine algebraic set is the same as a (Zariski–)closed (that is, closed in the
Zariski topology) subset of an affine space.

If Y ⊂ X is closed, we call Y also a (closed) subvariety of X . X ⊂ A
n is

called quasi–affine if it is locally closed , that is, the intersection of an open
and a closed subset.

Note that we can identify, as a set, A
n with A

1× · · · × A
1, but the Zariski

topology on A
n is not the product of the Zariski topologies of A

1 (for example,
the only non–trivial closed sets in the product topology of A

1× A
1 are finite

unions of points and lines).

Having defined the zero–set of an ideal, we define now the ideal of a set.
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Definition A.2.5. For any set X ⊂ A
n define

I(X) :=
{
f ∈ K[x1, . . . , xn]

∣∣ f |X = 0
}
,

the (full vanishing) ideal of X , where f |X : X → K denotes the polynomial
function of f restricted to X .

Lemma A.2.6. Let X ⊂ A
n be a subset, X1, X2 ⊂ A

n affine varieties.

(1) I(X) is a radical ideal.
(2) V

(
I(X)

)
= X the Zariski closure of X in A

n.
(3) If X is an affine variety, then V

(
I(X)

)
= X.

(4) I(X) = I(X).
(5) X1 ⊂ X2 if and only if I(X2) ⊂ I(X1),

X1 = X2 if and only if I(X1) = I(X2).
(6) I(X1 ∪X2) = I(X1) ∩ I(X2).
(7) I(X1 ∩X2) =

√
I(X1) + I(X2).

The proof is left as an exercise.
It follows that, for a closed set X , the ideal I(X) determines the affine

algebraic set X (and vice versa), showing already a tight connection between
ideals of K[x] and affine algebraic sets in A

n
K .

However, I(X) is abstractly defined, we only know (by the Hilbert basis
theorem) that it is finitely generated, but, given X , we do not know a set
of generators of I(X). Therefore, given any ideal I such that X = V (I), we
may ask how far does I differ from I(X) or, how far can we recover I from its
zero–set V (I)? Of course, V (I) = V (

√
I), that is, we can recover I at most

up to radical.
Hilbert’s Nullstellensatz (Theorem 3.5.2) says that, for algebraically closed

fields, this is the only ambiguity. That is, if I ⊂ K[x1, . . . , xn] is an ideal, K
is algebraically closed, and X = V (I), then

I(X) =
√
I .

Note that the inclusion
√
I ⊂ I(X) holds for any field. The other inclusion

does not hold for K not algebraically closed. Consider, for example, K = R,
I := 〈x2+ y2+ 1〉 ⊂ R [x, y]. Then V (I) = ∅, but

√
I = I � R [x, y] = I(∅).

As a consequence, we obtain, for K algebraically closed, an inclusion
reversing bijection (HN refers to Hilbert’s Nullstellensatz)

{affine algebraic sets in A
n
K} �� {radical ideals I ⊂ K[x1, . . . , xn]}HN



X
� �� I(X)

V (I) I .
�
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Corollary A.2.7. Let K[x] = K[x1, . . . , xn]. Then

(1) V (I) �= ∅ for any proper ideal I � K[x].
(2) If m ⊂ K[x] is a maximal ideal then

m = 〈x1 − p1, . . . , xn − pn〉K[x]

for some point p = (p1, . . . , pn) ∈ A
n. In particular, V (m) = {p}.

Proof. (1) X = V (I) = ∅ implies I(X) = K[x] and, hence,
√
I = K[x] by the

Nullstellensatz, which implies I = K[x].
(2) By (1) there exists some point p = (p1, . . . , pn) ∈ V (m). The corre-

sponding ideal Ip := 〈x1 − p1, . . . , xn − pn〉 ⊂ K[x] is maximal and satisfies
V (Ip) = {p} ⊂ V (m). Hence, m ⊂ Ip and, therefore, m = Ip, since m is maxi-
mal.

We see, in particular, that the bijection HN induces a bijection between points
in A

n
K and maximal ideals in K[x]. (This will be the link between classical

affine varieties and affine schemes defined in A.3.)
Moreover, we call an affine algebraic set X ⊂ A

n
K irreducible if X �= ∅,

and if it is not the union of two proper affine algebraic subsets. With this
definition, the irreducible algebraic sets in A

n
K correspond to prime ideals in

K[x] (cf. Proposition 3.3.5).

Hence, for K an algebraically closed field, we have the following inclusion
reversing bijections (with K[x] = K[x1, . . . , xn]):

{affine algebraic sets in A
n
K} HN←→ {radical ideals in K[x]}⋃ ⋃

{irreducible affine algebraic sets in A
n
K} ←→ {prime ideals in K[x]}⋃ ⋃

{points of A
n
K} ←→ {maximal ideals in K[x]} .

In particular, the irreducible components of an affine algebraic set V (I)
are precisely V (P1), . . . , V (Pr), where P1, . . . , Pr are the minimal associated
primes of I, that is, V (I) = V (P1) ∪ · · · ∪ V (Pr) is the unique decomposition
of V (I) into irreducible affine algebraic sets, no one containing another.

Definition A.2.8. Let X be an affine algebraic set, then the affine ring

K[X ] := K[x1, . . . , xn]/I(X)

is called the coordinate ring of X , and the elements of K[X ] are called regular
functions on X .

We define the dimension of an affine algebraic set X to be the dimension
of its coordinate ring K[X ]. In particular, if X1, . . . , Xr are the irreducible
components of X , then dim(X) = max

{
dim(X1), . . . ,dim(Xr)

}
, by Lemma

3.3.9.
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Definition A.2.9. Let X ⊂ A
n
K , Y ⊂ A

m
K be affine algebraic sets. A map

f : X → Y is called a morphism of algebraic sets if there exists a polynomial
map f̃ = (f̃1, . . . , f̃m) : A

n
K→ A

m
K , f̃i ∈ K[x1, . . . , xn], such that f = f̃ |X . f̃

is called a (polynomial) representative of f .
Mor(X,Y ) denotes the set of all morphisms fromX to Y . An isomorphism

is a bijective morphism with f−1 also a morphism.

It is easy to see that the composition of morphisms is again a morphism.
Moreover, morphisms are continuous in the Zariski topology: if Z ⊂ Y is
closed with I(Z) = 〈g1, . . . , gk〉K[Y ], then f−1(Z) = {x ∈ X | gi ◦ f̃(x) = 0}
is closed, too.

If f̃ = (f̃1, . . . , f̃m), g̃ = (g̃1, . . . , g̃m) : A
n
K→ A

m
K are two polynomial rep-

resentatives of f then (f̃i − g̃i)(x) = 0 for all x ∈ X, hence, f̃i − g̃i ∈ I(X).
In particular, we obtain a bijection

Mor(X,A1
K) = K[X ] .

More generally, Mor(X,Y ) =
{
f̃ ∈ K[x1, . . . , xn]m

∣∣ f̃(X) ⊂ Y
}

mod I(X).
Since any algebraically closed field is infinite, f |An

K
= 0 implies f = 0,

hence the coordinate ring of A
n
K is K[x] := K[x1, . . . , xn]. By the above re-

marks, we have
Mor(X,AmK) = K[X ]m

and, more generally, for any closed subvariety Y ⊂ A
m
K ,

Mor(X,Y ) =
{
f ∈ K[X ]m

∣∣ f(X) ⊂ Y
}
.

In the following we point out that there is a tight relation between morphisms
X → Y and K-algebra homomorphisms K[Y ]→ K[X ]: let f : X → Y be
a morphism with polynomial representative f̃ = (f̃1, . . . , f̃m) : A

n
K → A

m
K .

Then, for g ∈ K[y] := K[y1, . . . , ym], we set

f∗(g) := [g ◦ f̃ ] ,

the class of g
(
f̃1, . . . , f̃m

)
in K[x1, . . . , xn]/I(X), which is independent of the

chosen representative f̃ . The latter defines a map f∗ : K[y]→ K[x]/I(X),
which is easily checked to be a K–algebra homomorphism. Moreover, if
g ∈ I(Y ), then g ◦ f̃ |X = 0 and, hence, f∗(I(Y )

) ⊂ I(X).
Altogether, we see that a morphism f : X → Y between algebraic sets

X ⊂ A
n
K and Y ⊂ A

m
K induces a K–algebra homomorphism

f∗ : K[Y ] = K[y]/I(Y )→ K[x]/I(X) = K[X ]

of the corresponding coordinate rings (in the opposite direction).
Conversely, let ϕ : K[Y ] = K[y]/I(Y )→ K[x]/I(X) = K[X ] be a K–al-

gebra homomorphism. Then we may choose any representatives f̃i ∈ K[x] of
ϕ([yi]) ∈ K[x]/I(X), i = 1, . . . ,m, and define the polynomial map
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f̃ := (f̃1, . . . , f̃m) : A
n
K → A

m
K .

Since the possible choices for f̃i differ only by elements of I(X), the polyno-
mial function f̃ |X : X → A

m
K is, indeed independent of the chosen represen-

tatives. Moreover, its image is contained in Y : consider the K–algebra homo-
morphism ϕ̃ : K[y]→ K[x], defined by ϕ̃(yi) := f̃i, which is a lift of ϕ and
satisfies ϕ̃

(
I(Y )

) ⊂ I(X). It follows that, for each x ∈ X and each g ∈ I(Y ),
we have g

(
f̃1(x), . . . , f̃m(x)

)
=
(
ϕ̃(g)

)
(x) = 0, showing that f̃(X) ⊂ Y .

Altogether, we see that a K–algebra homomorphism ϕ : K[Y ]→ K[X ]
induces a morphism of algebraic sets

ϕ# := f̃ |X : X → Y .

As an example, consider f : A
1→ X = V (y2− x3) ⊂ A

2, t �→ (t2, t3). The
induced ring map is ϕ = f∗ : K[x, y]/〈y2− x3〉 → K[t], induced by the K–
algebra homomorphism ϕ̃ : K[x, y]→ K[t], x �→ t2, y �→ t3, that is, f∗(g) =
g(t2, t3). ϕ induces ϕ# : A

1→ X, t �→ (
ϕ̃(x), ϕ̃(y)

)
= (t2, t3). Altogether, we

see that (f∗)# = f and (ϕ#)∗ = ϕ. The following proposition shows that this
is a general fact.

In Singular, morphisms between affine varieties have to be represented
by the corresponding ring maps, see Chapter 1, in particular Sections 1.1, 1.3
and 1.5 for definitions and examples.

Proposition A.2.10. Let X ⊂ A
n
K , Y ⊂ A

m
K , Z ⊂ A

p
K be affine algebraic

sets and K[X ], K[Y ], K[Z] the corresponding coordinate rings.

(1) (idX)∗ = idK[X], (idK[X])# = idX .

(2) For morphisms X
f−→ Y

g−→ Z of algebraic sets we have

(g ◦ f)∗ = f∗ ◦ g∗ : K[Z]→ K[X ] ,

and for K–algebra homomorphisms K[Z]
ϕ−→ K[Y ]

ψ−→ K[X ] we have

(ψ ◦ ϕ)# = ϕ# ◦ ψ# : X → Z .

(3) (f∗)# = f for f : X → Y , a morphism of algebraic sets; (ϕ#)∗ = ϕ for
ϕ : K[Y ]→ K[X ], a K–algebra homomorphism.

All the statements are easy to check and left as an exercise.

Corollary A.2.11. A morphism f : X → Y of affine varieties is an isomor-
phism if and only if f∗ : K[Y ]→ K[X ] is an isomorphism of K–algebras.

In the language of categories and functors, Proposition A.2.10 says that as-
sociating

X �−→ K[X ], (f : X → Y ) �−→ (f∗ : K[Y ]→ K[X ])
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defines a (contravariant) functor from the category of affine algebraic varieties
to the category of affine K–algebras. Indeed, this functor is an equivalence
onto the full subcategory of all reduced affine K–algebras (by the Hilbert
Nullstellensatz).

The following proposition gives a geometric interpretation of injective,
respectively surjective, K–algebra homomorphisms.

Proposition A.2.12. Let f : X → Y be a morphism of affine varieties and
f∗ : K[Y ]→ K[X ] the corresponding map of coordinate rings. Then

(1) f∗ is surjective if and only if the image f(X) ⊂ Y is a closed subvariety,
and f : X → f(X) is an isomorphism.

(2) f∗ is injective if and only if f(X) is dense in Y , that is, f(X) = Y .

We call f : X → Y a closed embedding or closed immersion if f(X) ⊂ Y is
closed and f : X → f(X) is an isomorphism; f is called dominant if f(X) is
dense in Y .

For the proof of Proposition A.2.12 we need an additional lemma. More-
over, we shall use that under the identification Mor(X,A1

K) = K[X ] a mor-
phism g : X → A

1
K satisfies g(x) = 0 for all x ∈ X if and only if g = 0 in

K[X ].
If Y ⊂ X ⊂ A

n is any subset then we write

I(Y ) := IAn(Y ) :=
{
f ∈ K[x1, . . . , xn]

∣∣ f |Y = 0
}
,

IX(Y ) :=
{
f ∈ K[X ]

∣∣ f |Y = 0
}
.

Lemma A.2.13. Let f : X → Y be a morphism of affine algebraic sets, then

IY
(
f(X)

)
= IY

(
f(X)

)
= Ker(f∗ : K[Y ]→ K[X ]) .

Proof. For g ∈ K[Y ] we have g
(
f(X)

)
= {0} if and only if g

(
f(X)

)
= {0},

since g is continuous. Since g
(
f(X)

)
= f∗(g)(X) = {0} if and only if f∗(g)

is the zero morphism, we obtain IY
(
f(X)

)
= IY

(
f(X)

)
= Ker(f∗).

Proof of Proposition A.2.12. (1) Let p ∈ f(X) and mp = IY ({p}) ⊂ K[Y ]
the maximal ideal of p, then mp ⊃ IY

(
f(X)

)
= Ker(f∗), the latter equal-

ity being given by Lemma A.2.13. If f∗ is surjective, then the induced map
f∗ : K[Y ]/Ker(f∗) → K[X ] is an isomorphism, and the same holds for

f∗ : K[Y ]/mp

∼=−→ K[X ]/f∗(mp) .

Hence, f∗(mp) is a maximal ideal and corresponds, by the Hilbert Nullstel-
lensatz, to a unique point, V

(
f∗(mp)

)
= {q}.

If X ⊂ A
n, Y ⊂ A

m, p = (p1, . . . , pm), and if f has the polynomial rep-
resentative f̃ = (f̃1, . . . , f̃m) ∈ K[x]m then mp = 〈y1− p1, . . . , ym− pm〉K[Y ],
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f∗(mp) = 〈f̃1− p1, . . . , f̃m− pm〉K[X]. Hence, we obtain {q} = V
(
f∗(mp)

)
=

f̃−1(p) ∩X = f−1(p), and it follows that f(q) = p ∈ f(X) and that f is in-
jective. We conclude that f(X) is closed and that f : X → f(X) is bijective.
Finally, since f∗ : K[f(X)] = K[Y ]/IY

(
f(X)

)→ K[X ] is an isomorphism, f
is an isomorphism, too, by Corollary A.2.11.

Conversely, if f(X) is closed and if f : X → f(X) is an isomorphism then
f∗ : K[Y ]/IY

(
f(X)

)→ K[X ] is an isomorphism by Corollary A.2.11. Hence,
f∗ : K[Y ]→ K[X ] is surjective.

(2) Using Lemma A.2.13, we have Ker(f∗) = 0 if and only if IY
(
f(X)

)
= 0

which is equivalent to f(X) = Y .

For example, the projection A
2 ⊃ X = V (xy − 1)

f−→ A
1, (x, y) �→ x, has the

image f(X) = A
1

� {0}. For g ∈ K[A1] = K[x] we have f∗(g)(x) = g(x), and
we see that f∗ is not surjective ([y] ∈ K[x, y]/〈xy − 1〉� Im(f∗)), hence, f is
not a closed embedding. But f∗ is injective, as it should be, since f(X) is
dense in A

1.
The library algebra.lib contains procedures to test injectivity, asurjec-

tivity and isomorphy of ring maps:

SINGULAR Example A.2.14 (injective, surjective).

LIB "algebra.lib";
ring R = 0,(x,y,z),dp;
qring Q = std(z-x2+y3); // quotient ring R/<z-x2+y3>

ring S = 0,(a,b,c,d),dp;
map psi = R,a,a+b,c-a2+d3; // a map from R to S,

// x->a, y->a+b, z->c-a2+d3
is_injective(psi,R);
//-> 1 // psi is injective
is_surjective(psi,R);
//-> 0 // psi is not surjective

qring T = std(ideal(d,c-a2+b3));// quotient ring
// S/<d,c-a2+b3>

map chi = Q,a,b,a2-b3; // map Q --> T between two
// quotient rings,
// x->a, y->b, z->a2-b3

is_bijective(chi,Q);
//-> 1 // chi is an isomorphism

Remark A.2.15. The reader might wonder whether there is an algebraic char-
acterization of f : X → Y being surjective. Of course, f∗ has to be injective
but the problem is to decide whether f(X) is closed in Y . In general, this is
difficult and a simple algebraic answer does not exist.
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By a theorem of Chevalley (cf. [120], [119]), f(X) is constructible, that
is, a finite union of locally closed subsets of Y . However, if f is a projective
morphism of projective varieties, then f(X) is closed. We prove this fact in
Section A.7, where we also explain the origin of the points in f(X) � f(X)
(cf. Remark A.7.14).

For the further study of morphisms, we need to consider products of varieties.
This will be especially useful for an algorithmic treatment and, hence, for
computational aspects of images of affine varieties.

First we identify A
n× A

m with A
n+m. In particular, we have the Zariski

topology of A
n+m on A

n× A
m (which is not the product of the two Zariski

topologies).
If X = V (I) ⊂ A

n and Y = V (J) ⊂ A
m are affine algebraic sets defined

by ideals I ⊂ K[x1, . . . , xn] and J ⊂ K[y1, . . . , ym], then X × Y ⊂ A
n+m is

an affine algebraic set, since, as can easily be seen,

X × Y = V (〈I, J〉K[x,y]) .

Definition A.2.16. For a morphism f : X → Y , we define the graph of f ,

Γf :=
{
(x, y) ∈ X × Y ∣∣ y = f(x)

}
.

If f̃ = (f̃1, . . . , f̃m) ∈ K[x]m is a polynomial representative of f , then

Γf =
{
(x, y) ∈ X × Y ∣∣ yi − f̃i(x) = 0, i = 1, . . . ,m

}
,

=
{
(x, y) ∈ X × A

m
∣∣ yi − f̃i(x) = 0, i = 1, . . . ,m

}
.

Hence, Γf ⊂ A
n+m is an affine algebraic set,

Γf = V
(〈
I, y1− f̃1, . . . , ym− f̃m

〉
K[x,y]

)
.

Remark A.2.17. The projections pr1 : X × Y → X and pr2 : X × Y → Y are
induced by the inclusions j1 : K[x] ↪→ K[x, y] and j2 : K[y] ↪→ K[x, y]. For an
ideal I ⊂ K[x] with V (I) = X, and a morphism f : X → Y with polynomial
representative (f̃1, . . . , f̃m), j1 induces an isomorphism

K[x]/I
∼=−→ K[x, y]/〈I, y1− f̃1, . . . , ym− f̃m〉 ,

the inverse morphism being induced by K[x, y]→ K[x], xi �→ xi, yj �→ f̃j.
Back to geometry, we see that the projection pr1 : X × Y → X induces

an isomorphism π1 : Γf → X of affine varieties: π1 is the restriction of the
projection A

n× A
m→ A

n, hence π1 is a morphism, and the polynomial map
A
n→ A

n× A
m, x �→ (

x, f̃(x)
)
, induces an inverse to π1. We obtain the fol-

lowing commutative diagram
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A
n ⊃ X

f
�� Γfπ1

∼=



π2

��

	 � �� X × Y

pr2
����

��
��

��
�

⊂ A
n+m

A
m ⊃ Y

where π2 is the restriction of the second projection pr2 : X × Y → Y . It fol-
lows that any morphism f of affine varieties can be represented as a compo-
sition of an inclusion and a projection.

The following lemma contains the geometric meaning of elimination. In par-
ticular, part (2) says that we can compute an ideal defining the closure of
f(X) by eliminating variables from an appropriate ideal J .

Lemma A.2.18.

(1) Let f : X → Y be a morphism of affine algebraic sets, then

IY
(
f(X)

)
= IX×Y (Γf ) ∩K[Y ] .

(2) Let X ⊂ A
n, Y ⊂ A

m be affine algebraic sets, and let IX ⊂ K[x1, . . . , xn]
be any ideal with X = V (IX). Moreover, let f : X → Y be a morphism,
induced by f̃ = (f̃1, . . . , f̃m) : A

n → A
m with f̃i ∈ K[x1, . . . , xn]. Define

J := 〈IX , y1− f̃1, . . . , ym− f̃m〉K[x,y] .

Then the closure of the image of f is given by

f(X) = V (J ∩K[y1, . . . , ym] ) .

Moreover, for IX = I(X) the full vanishing ideal, we obtain

IAn+m(Γf ) = 〈I(X), y1− f̃1, . . . , ym− f̃m〉K[x,y] ,

and the full vanishing ideal of f(X) ⊂ A
m is

IAm

(
f(X)

)
= IAn+m(Γf ) ∩K[y1, . . . , ym] .

Proof. (1) Note that Lemma A.2.13 gives IY
(
f(X)

)
= Ker(f∗) = Ker(π∗

2),
since f∗ = (π∗

1)−1 ◦ π∗
2 and since π∗

1 is an isomorphism.
Now the result follows, since we may considerK[Y ] = K[y]/I(Y ) as a sub-

algebra of K[X × Y ] = K[x, y]/〈I(X), I(Y )〉K[x,y] and since π∗
2 is the canon-

ical map K[Y ]→ K[X × Y ]/IX×Y (Γf ).
For (2) note that K[x]/IX → K[x, y]/J is an isomorphism with inverse

induced by xi �→ xi, yi �→ f̃j . Therefore, J is radical if and only if IX is
radical, and then J ∩K[y] is a radical ideal, too.

Since V (J) = Γf , we have
√
J = IAn+m(Γf ) ⊂ K[x, y] by Hilbert’s Null-

stellensatz. Therefore,
√
J ∩K[y] =

√
J ∩K[y] = IAn+m(Γf ) ∩K[y], and (2)

follows from (1).
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A.3 Spectrum and Affine Schemes

Abstract algebraic geometry, as introduced by Grothendieck, is a far reaching
generalization of classical algebraic geometry. One of the main points is that it
allows the application of geometric methods to arbitrary commutative rings,
for example, to the ring Z. Thus, geometric methods can be applied to number
theory, creating a new discipline called arithmetic geometry.

However, even for problems in classical algebraic geometry, the abstract
approach has turned out to be very important.

For example, for polynomial rings over an algebraically closed field, affine
schemes provide more structure than classical algebraic sets. In a systematic
manner, the abstract approach allows nilpotent elements in the coordinate
ring. This has the advantage of understanding and describing much better
“dynamic aspects” of a variety, since nilpotent elements occur naturally in
the fibre of a morphism, that is, when a variety varies in an algebraic family.

The abstract approach to algebraic geometry has, however, the disadvan-
tage that it is often far away from intuition, although a geometric language
is used. A scheme has many more points than a classical variety, even a lot of
non–closed points. This fact, although against any “classical” geometric feel-
ing, has, on the other hand, the effect that the underlying topological space of
a scheme carries more information. For example, the abstract Nullstellensatz,
which is formally the same as Hilbert’s Nullstellensatz, holds without any as-
sumption. However, since the geometric assumptions are much stronger than
in the classical situation (we make assumptions on all prime ideals containing
an ideal, not only on the maximal ideals), the abstract Nullstellensatz is more
a remark than a theorem and Hilbert’s Nullstellensatz is not a consequence
of the abstract one. Nevertheless, the formal coincidence makes the formula-
tion of geometric results in the language of schemes much smoother, and the
relation between algebra and geometry is, even for arbitrary rings, as close as
it is for classical algebraic sets defined by polynomials over an algebraically
closed field.

At the end of Section A.5, we shall show how results about algebraic sets
can, indeed, be deduced from results about schemes (in a functorial manner).

In the following we assume, as usual, all rings to be commutative with 1.

Definition A.3.1. Let A be a ring. Then

Spec(A) := {P ⊂ A | P is a prime ideal }
is called the (prime) spectrum of A, and

Max(A) := {m ⊂ A | m is a maximal ideal }
is called the maximal spectrum of A. For X = Spec(A) and I ⊂ A an ideal

V (I) := {P ∈ X | P ⊃ I}
is called the zero–set of I in X . Note that V (I) = supp(A/I).
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As for classical affine varieties, we have the following relations (recall that
prime ideals are proper ideals):

(1) V (〈1〉) = ∅, V (〈0〉) = X ;
(2)

⋃k
i=1 V (Ii) = V

(⋂k
i=1 Ii

)
;

(3)
⋂
λ∈Λ V (Iλ) = V

(⋃
λ∈Λ Iλ

)
= V

(∑
λ∈Λ Iλ

)
;

(4) if I1 ⊂ I2 then V (I1) ⊃ V (I2);
(5) V (I) = V (

√
I);

(6) V (I1) = V (I2) if and only if
√
I1 =

√
I2.

Only the statements (2) and (6) are non–trivial. (2) follows, since, by defini-
tion, P ∈ V (

⋂k
i=1 Ii) if and only if P ⊃ ⋂k

i=1 Ii, which means due to Lemma
1.3.12 that P ⊃ Ii for some i, which is equivalent to P ∈ ⋃k

i=1 V (Ii). (6) will
follow from Lemma A.3.3 and Theorem A.3.4 below.

Using the above properties (1) – (3) we can define on X the Zariski topol-
ogy by defining the closed sets of X to be the sets V (I) for I ⊂ A an ideal.
Note that this is formally the same definition as for classical varieties. Max(A)
has the induced topology from Spec(A).

Definition A.3.2. Let X = Spec(A) and Y ⊂ X any subset. The ideal

I(Y ) :=
⋂

P∈Y
P

is called the (vanishing) ideal of Y in X .

As in the classical case, we have the following

Lemma A.3.3. Let Y ⊂ X = Spec(A) be a subset.

(1) I(Y ) is a radical ideal.
(2) V

(
I(Y )

)
is the Zariski closure of Y in X.

(3) If Y is closed, then V
(
I(Y )

)
= Y .

(4) Let Y denote the Zariski closure of Y in X, then I
(
Y
)

= I(Y ).

Proof. (1) If, for some a ∈ A, the n–th power an is in the intersection of
prime ideals, then also a is in the intersection.

(2) V
(
I(Y )

)
is closed and contains Y . If W = V (J) is closed in X and

contains Y then, for each a ∈ J , we have a ∈ P for all P ⊃ J , that is, for all
P ∈W . Hence, a ∈ ⋂

P∈Y P = I(Y ). This implies J ⊂ I(Y ) and, therefore,
V
(
I(Y )

) ⊂ V (J) = W , showing that V
(
I(Y )

)
is the smallest closed subset

of X containing Y .
Finally, (3) and (4) are consequences of (2).

The following analogue of Hilbert’s Nullstellensatz is sometimes called the
abstract Nullstellensatz , which holds for Spec(A), A any ring.
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Theorem A.3.4. Let X = Spec(A), and I ⊂ A an ideal. Then

I
(
V (I)

)
=
√
I .

Proof. The statement follows, since

I
(
V (I)

)
=

⋂

P∈V (I)

P =
⋂

P∈Spec(A)
P⊃I

P =
√
I ,

where the last equality follows from Exercise 3.3.1.

Note that a point P ∈ Spec(A) (or, more precisely, the set {P} ⊂ Spec(A))
need not be closed. Indeed, by Lemma A.3.3 and Theorem A.3.4 we have

{P} = V (P ) = {Q ∈ Spec(A) | Q ⊃ P} , I({P}) = I
({P}) = P ,

where {P} denotes the Zariski closure of {P} in Spec(A).
Since P is always contained in some maximal ideal, it follows that {P} is

closed in Spec(A) if and only if P is a maximal ideal. Hence,

Max(A) = {P ∈ Spec(A) | P is a closed point} .
Recall that a topological space X is called irreducible if X �= ∅ and whenever
X = A1 ∪A2, with A1, A2 ⊂ X closed, then X = A1 or X = A2. X is called
reducible if it is not irreducible.

The following lemma is left as an exercise.

Lemma A.3.5. Let A be a ring and X = Spec(A). A closed subset Y ⊂ X
is irreducible if and only if I(Y ) ⊂ A is a prime ideal.

We shall now define morphisms of spectra.
Let ϕ : A→ B be a ring map. Since for a prime ideal P ⊂ B, the preimage

ϕ−1(P ) is a prime ideal in A, ϕ induces a map

ϕ# = Spec(ϕ) : Spec(B) −→ Spec(A) ,
P �−→ ϕ−1(P ) .

Note that the preimage ϕ−1(M) of a maximal ideal M ⊂ B need not be a
maximal ideal in A. Hence, in general, the map ϕ# does not induce a map
Max(B) → Max(A). However, if ϕ is integral, then ϕ# : Max(B)→ Max(A)
is defined by Lemma 3.1.9 (4).

Lemma A.3.6. Let ϕ : A→ B be a ring map. Then the induced map

ϕ# : Spec(B) → Spec(A)

is continuous. More precisely, we have ϕ#−1
(
V (I)

)
= V

(
ϕ(I) · B).
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Proof. Let I ⊂ A be an ideal, then

ϕ#−1
(
V (I)

)
= ϕ#−1

({P ∈ Spec(A) | P ⊃ I})

= {Q ∈ SpecB | ϕ−1(Q) ⊃ I}
= {Q ∈ SpecB | Q ⊃ ϕ(I)} = V

(
ϕ(I) ·B) .

In particular, the preimages of closed sets in Spec(A) are closed.

Similarly to the classical case (cf. Lemma A.2.13), we have the following

Lemma A.3.7. Let ϕ : A→ B be a ring map. Then

I
(
ϕ#(SpecB)

)
= I

(
ϕ#(SpecB)

)
=
√

Ker(ϕ) .

Proof. The first equality follows from Lemma A.3.3, the second from

I
(
ϕ#(SpecB)

)
=

⋂

P∈SpecB

ϕ−1(P ) = ϕ−1

(
⋂

P∈SpecB

P

)
= ϕ−1

(√〈0〉) ,

since, obviously, ϕ−1
(√〈0〉) =

√
Ker(ϕ).

Proposition A.3.8. Let ϕ : A→ B be a ring map and consider the induced
map ϕ# : X = SpecB → Spec(A) = Y .

(1) If ϕ is surjective then ϕ#(X) = V (Kerϕ) and ϕ# : X → ϕ#(X) is a
homeomorphism.

(2) If ϕ is injective then ϕ#(X) is dense in Y .
(3) Let ϕ : A→ Ared = A/

√〈0〉 be the canonical projection, then the induced
map ϕ# : Spec(Ared) → Spec(A) is a homeomorphism.

Proof. (1) ϕ induces an isomorphism A/Ker(ϕ) → B, hence, we have a bijec-
tion SpecB → Spec

(
A/Ker(ϕ)

)
. However, we also have a bijection between

prime ideals of A/Ker(ϕ) and prime ideals of A which contain Ker(ϕ). This
shows that ϕ# is a bijection X → V

(
Ker(ϕ)

)
. It is also easy to see that ϕ#

and ϕ#−1 are continuous.
The remaining statements (2), (3) follow from Lemma A.3.7 and (1).

Note that the converse of (1) and (2) need not be true if the rings are not
reduced: for instance, ϕ : K[x] ↪→ K[x, y]/〈y2〉 is not surjective, but ϕ# is a
homeomorphism; ϕ : K[x, y]/〈y2〉� K[x] = K[x, y]/〈y〉 is not injective, but
again ϕ# is a homeomorphism. However, if ϕ#(X) is dense in Y , then, at
least, Ker(ϕ) consists of nilpotent elements by Lemma A.3.7.

We have seen that Spec(Ared) and Spec(A) are homeomorphic. Hence, the
topological space Spec(A) contains less information than A — the nilpotent
elements of A are invisible in Spec(A). However, in many situations nilpotent
elements occur naturally, and they are needed to understand the situation.
The notion of a scheme takes care of this fact.
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Definition A.3.9. The pair
(
Spec(A), A

)
with A a ring, is called an affine

scheme. A morphism f :
(
Spec(A), A

)→ (
Spec(B), B

)
of affine schemes is a

pair f = (ϕ#, ϕ) with ϕ : B → A a ring map and ϕ# : Spec(A) → Spec(B)
the induced map. The map ϕ is sometimes denoted as f∗. An isomorphism
is a morphism which has a two–sided inverse.

A subscheme of
(
Spec(A), A

)
is a pair

(
Spec(A/I), A/I

)
, where I ⊂ A is

any ideal.

Although f is determined by ϕ we also mention ϕ# in order to keep the
geometric language. Usually we write X = Spec(A) to denote the scheme
(Spec(A), A) and sometimes we write |X | to denote the topological space
Spec(A). As topological spaces, we have a canonical identification,

Spec(A/I) = V (I) ⊂ Spec(A) ,

and, usually, we shall not distinguish between V (I) and Spec(A/I).
If A = K[x1, . . . , xn]/I then we call A also the coordinate ring of the affine

scheme
(
Spec(A), A

)
.

If Xi =
(
Spec(A/Ii), A/Ii

)
, i = 1, 2, are two subschemes of the affine

scheme X =
(
Spec(A), A

)
then we define the intersection and the union as

X1 ∩X2 :=
(
Spec(A/(I1 + I2)), A/(I1 + I2)

)
,

X1 ∪X2 :=
(
Spec(A/(I1 ∩ I2)), A/(I1 ∩ I2)

)
.

As topological spaces, we have, indeed,

Spec(A/I1 + I2) = V (I1) ∩ V (I2) , Spec(A/I1 ∩ I2) = V (I1) ∪ V (I2) .

As an example, consider I := 〈y2, xy〉 ⊂ K[x, y]. Then V (I) ⊂ A
2 consists of

the x–axis, but the affine scheme X =
(
Spec(K[x, y]/I),K[x, y]/I

)
has an

embedded fat point at 0. Since y �= 0 in K[x, y]/I, but y2 = 0, this additional
structure may be visualized as an infinitesimal direction, pointing in the y–
direction (Fig. A.12).

•�
Fig. A.12. A line with an infinitesimal direction pointing out of the line.

As in the classical case, we want to define products and the graph of a mor-
phism: let ϕ : C → A and ψ : C → B be two ring maps, that is, A and B
are C–algebras. Let X = Spec(A), Y = Spec(B) and S = Spec(C). Then the
affine scheme

X ×S Y :=
(
Spec(A⊗C B), A⊗C B

)
,
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together with the projection maps pr1 and pr2 defined below, is called the
fibre product of X and Y over S. If C = K is a field, then S = Spec(K) is a
point, and we simply set

X × Y := X ×K Y := X ×Spec(K) Y .

The ring maps A→ A⊗C B, a �→ a⊗ 1, and B → A⊗C B, b �→ 1⊗ b induce
projection maps

pr1 : X ×S Y → X , pr2 : X ×S Y → Y

such that the following diagram commutes

X ×S Y
pr1

��

pr2 �� Y

ψ#

��

X
ϕ#

�� S .

Moreover, given an affine scheme Z = Spec(D) and the following commuta-
tive diagram with solid arrows, there exists a unique dotted arrow such that
everything commutes (all arrows being morphisms of affine schemes),

Z

��

��
��

X ×S Y pr2
��

pr1

��

Y

ψ#

��

X
ϕ#

�� S .

This is called the universal property of the fibre product , and it is a conse-
quence of the universal property of tensor products (Proposition 2.7.11).

Note that for A = K[x1, . . . , xn]/I, B = K[y1, . . . , ym]/J , X = Spec(A),
Y = Spec(B), we obtain

X × Y = Spec(K[x1, . . . , xn, y1, . . . , yn]/〈I, J〉) .
Now let ϕ : B → A be a C–algebra morphism. Then we have morphisms
f = (ϕ#, ϕ) : X → Y and idX : X → X and, by the universal property of
the fibre product, a unique morphism X → X ×S Y such that the diagram

X

idX

��

f

��
���������

X ×S Y pr2
��

pr1

��

Y

��

X �� S .
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commutes. Note that the morphism X → X ×S Y is given on the ring level
by a ring map γf : A⊗C B → A, a⊗ b �→ aϕ(b). This map is surjective and,
hence, there exists a unique affine subscheme

Γf = Spec
(
(A⊗C B)/Ker(γf )

) ⊂ X ×S Y ,

called the graph of f .
Of course, since (A⊗C B)/Ker γf ∼= A, the morphism X → Γf is an iso-

morphism with π1 = pr1 |Γf
as inverse. There is a commutative diagram

X

f
����������� Γf

π1

∼=




π2

��

⊂ X ×S Y

pr2
����

��
��

��
�

Y

with π1 and π2 the restrictions of pr1 and pr2. Dually, we have a commutative
diagram of ring maps

A
a�→[a⊗1]

∼=
�� (A⊗C B)/Kerγf

γf

��
A⊗C B





B .

ϕ

���������������������

��

b�→1⊗b

���������������

If ϕ : B = K[y1, . . . , ym]/IY → A = K[x1, . . . , xn]/IX is a morphism of affine
K–algebras, induced by ϕ̃ : K[y]→ K[x], yi �→ f̃i, with ϕ̃(IY ) ⊂ IX , then

γf : A⊗K B = K[x, y]/〈IX + IY 〉 −→ K[x]/IX = A

is given by [xi] �→ [xi], yi �→ [f̃i], and γf has as kernel J/〈IX , IY 〉 with

J := 〈IX , y1− f̃1, . . . , ym− f̃m〉K[x,y] .

(Note that IY ⊂ J , since modulo the ideal 〈y1− f̃1, . . . , ym− f̃m〉, we have
g ≡ g

(
f̃1, . . . , f̃m

)
= ϕ̃(g) ∈ IX , for all g ∈ IY .)

Hence, in this case we have, for K an arbitrary field,

Γf = Spec(K[x, y]/J) .

Lemma A.3.10. Let f : X = Spec(A) → Spec(B) = Y be as above, then

f(X) = π2(Γf ) = V (J ∩K[y1, . . . , ym]) .

Proof. The statement follows from Lemma A.3.7.
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We shall explain, at the end of Section A.3, how this lemma generalizes
Lemma A.2.18. It shows that, as topological space,

f(X) = Spec
(
K[y]/(J ∩K[y])

)

and, hence, we can define a scheme structure on the closure of the image by
defining the coordinate ring of f(X) as K[y]/(J ∩K[y]). The above lemma
will be used to actually compute equations of the closure of the image of a
morphism.

The ideal of f(X) in SpecB can be defined intrinsically, even for maps
between arbitrary rings:

Lemma A.3.11. Let f : X = Spec(A)→ Y = Spec(B) be a morphism in-
duced by the ring map ϕ : B → A. Then

f(X) = V
(
AnnB(A)

)
.

Proof. The proof follows easily from Lemma A.3.7, since

Ker(ϕ) = {b ∈ B | ϕ(b)A = 〈0〉} = 0 :B A = AnnB(A) .

Remark A.3.12. If f : X → Y is as in Lemma A.3.10, then

AnnB(A) = J ∩K[y] ,

that is, the structure defined on f(X) by eliminating x from J is the annihi-
lator structure. Since annihilators are, in general, not compatible with base
change, one has to be careful, for example, when computing multiplicities
using ideals obtained by elimination. We illustrate this fact by an example.

Example A.3.13. Consider the set of nine points displayed in Figure A.13.

Fig. A.13. V (y4 − y2, xy3 − xy, x3y − xy, x4 − x2).

Projecting these points to the x–axis, we obtain, by eliminating y, the
polynomial x2(x− 1)(x+ 1), describing the three image points. Set–theo-
retically, this is correct, however, it is not satisfactory if we wish to count
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multiplicities. For example, the two border points are the image of three
points each, hence should appear with multiplicity three, but they appear
only with multiplicity one.

In case the ideal is given by two polynomials we can use, instead of elim-
ination, resultants (not discussed in this book, for a definition see, for ex-
ample, the textbooks [85, 162]), which do count multiplicities correctly. For
example, consider the polynomials f = x(x− 1)(x+ 1), g = y(y − 1)(y + 1),
defining together the same set as above, but all nine points being reduced. A
Singular analysis gives:

SINGULAR Example A.3.14 (elimination and resultant).

ring R = 0,(x,y),dp;
poly f = x*(x-1)*(x+1);
poly g = y*(y-1)*(y+1);

poly e = eliminate(ideal(f,g),y)[1];
factorize(e);
//-> [1]: // 3 linear factors,
//-> _[1]=1 // each of multiplicity 1
//-> _[2]=x+1
//-> _[3]=x-1
//-> _[4]=x
//-> [2]:
//-> 1,1,1,1

poly r = resultant(f,g,y);
factorize(r);
//-> [1]: // 3 linear factors,
//-> _[1]=1 // each of multiplicity 3
//-> _[2]=x-1
//-> _[3]=x
//-> _[4]=x+1
//-> [2]:
//-> 1,3,3,3

The resultant counts each image point with multiplicity 3, as each of this
point has three preimage points, while elimination counts the image points
only with multiplicity 1.

A.4 Projective Varieties

Affine varieties are the most important varieties as they are the building
blocks for arbitrary varieties. Arbitrary varieties can be covered by open
subsets which are affine varieties together with certain glueing conditions.
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In modern treatments this glueing condition is usually coded in the notion
of a sheaf, the structure sheaf of the variety. We are not going to introduce
arbitrary varieties, since this would take us too deep into technical geometric
constructions and too far away from commutative algebra.

However, there is one class of varieties which is the most important class
of varieties after affine varieties and almost as closely related to algebra as
affine ones. This is the class of the projective varieties.

What is the difference between affine and projective varieties? Affine vari-
eties, for example C

n, are in a sense open; travelling as far as we want, we can
imagine the horizon — but we shall never reach infinity. On the other hand,
projective varieties are closed (in the sense of compact, without boundary);
indeed, we close up C

n by adding a “hyperplane at infinity” and, in this way,
we domesticate infinity. The hyperplane at infinity can then be covered by
finitely many affine varieties. In this way, finally, we obtain a variety covered
by finitely many affine varieties, and we feel pretty well at home, at least
locally.

However, the importance of projective varieties does not result from the
fact that they can be covered by affine varieties, this holds for any variety.
The important property of projective varieties is that they are closed, hence
there is no escape to infinity. The simplest example demonstrating this are
two parallel lines which do not meet in C

2 but do meet in the projective
plane P

2(C). This is what a perspective picture suggests, two parallel lines
meeting at infinity.

This fact has many important consequences, the most important being
probably Bézout’s theorem (Theorem A.8.17), which says that two projec-
tive varieties X,Y ⊂ P

n
K (where K is an algebraically closed field) of com-

plementary dimension, that is, dim(X) + dim(Y ) = n, and without common
component, meet in exactly deg(X) · deg(Y ) points, if we count the inter-
section points with appropriate multiplicities. The degree deg(X) is a global
invariant and can be defined using the Hilbert polynomial (see Definitions
5.3.3 and A.8.8), while the correct definition of the local multiplicities (for
arbitrary singularities), for which Bézout’s theorem holds, is a non–trivial
task (cf. [120] for special cases and [82], [184] for arbitrary varieties). The
Bézout’s theorem, and many other “projective theorems”, do not hold for
affine varieties and, with respect to this geometric point of view, affine and
projective varieties are completely different.

From an algebraic point of view, the difference is not that large, at least at
first glance. Affine varieties in A

n
K are the zero–set of arbitrary polynomials in

n variables, while projective varieties in P
n
K are the zero–set of homogeneous

polynomials in n+1 variables. For any affine variety in A
n
K we can consider the

projective closure in P
n
K , obtained by homogenizing the ideal with the help of

an extra variable. However, homogenizing an ideal is not completely trivial,
except for hypersurfaces, since the homogenized ideal is not generated by an
arbitrary homogenized set of generators. But we can compute generators for
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the homogenized ideal by homogenizing a Gröbner basis (with respect to a
degree ordering).

Thus, we are able to compute equations for the projective closure of an
affine variety. For homogeneous ideals we can compute the degree, the Hilbert
polynomial, the graded Betti numbers and many more, all being important
invariants of projective varieties. However, one has to be careful in choosing
the correct ordering. Special care has to be taken with respect to elimination.
This will be discussed in Section A.7.

Again, let K denote an algebraically closed field.

Definition A.4.1. Let V be a finite dimensional vector space over K. We
define the projective space of V , denoted by PK(V ) = P(V ), as the space of
lines in V going through 0.

More formally, two elements v, w ∈ V � {0} are called equivalent, v ∼ w,
if and only if there exists a λ ∈ K∗ such that v = λw. The equivalence classes
are just the lines in V through 0 and, hence,

P(V ) := (V � {0})/ ∼ .

We denote by π : (V � {0})→ P(V ) the canonical projection, mapping a
point v ∈ V � {0} to the line through 0 and v.

P
n := P

n
K := P(Kn+1)

is called the projective n–space over K.
An equivalence class of (x0, . . . , xn) ∈ Kn+1

� {0}, that is, a line through
0 and (x0, . . . , xn) is called a point of P

n, which we denote as

p = π(x0, . . . , xn) =: (x0 : . . . : xn) ∈ P
n ,

and (x0 : . . . : xn) are called homogeneous coordinates of p.

Note that for λ ∈ K∗, (λx0 : . . . : λxn) are also homogeneous coordinates of
p, that is, (x0 : . . . : xn) = (λx0 : . . . : λxn).

Any linear isomorphism of K–vector spaces V ∼= W , induces a bijection
P(V ) ∼= P(W ), and the latter is called a projective isomorphism. In particular,
if dimK(V ) = n+ 1, then P(V ) ∼= P

n and, therefore, it is sufficient to consider
P
n.

Note that f ∈ K[x0, . . . , xn] defines a polynomial function f : A
n+1→ K,

but not a function P
n → K since f(λx0, . . . , λxn) �= f(x0, . . . , xn), in general.

However, if f is a homogeneous polynomial of degree d, then for λ ∈ K,

f(λx0, . . . , λxn) = λdf(x0, . . . , xn)

since (λx)α = (λx0)α0 · . . . · (λxn)αn = λdxα for any α = (α0, . . . , αn) with
|α| = d. In particular, f(x0, . . . , xn) = 0 if and only if f(λx0, . . . , λxn) = 0
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for all λ. Hence, the zero–set in P
n of a homogeneous polynomial is well–

defined.

In the following, x denotes (x0, . . . , xn), and K[x]d denotes the vector space
of homogeneous polynomials of degree d. Note that any f ∈ K[x] � {0} has
a unique homogeneous decomposition

f = fd1 + · · ·+ fdk
, fi ∈ K[x]i � {0} .

Definition A.4.2. A set X ⊂ P
n
K is called a projective algebraic set or a

(classical) projective variety if there exists a family of homogeneous polyno-
mials fλ ∈ K[x0, . . . , xn], λ ∈ Λ, such that

X = V
(
(fλ)λ∈Λ

)
:= {p ∈ P

n
K | fλ(p) = 0 for all λ ∈ Λ} .

X is called the zero–set of (fλ)λ∈Λ in P
n.

As in the affine case, X depends only on the ideal I = 〈fλ | λ ∈ Λ〉K[x], which
is finitely generated, since K[x0, . . . , xn] is Noetherian. Note that the polyno-
mials fλ may have different degree for different λ. If X = V (f1, . . . , fk) and
all fi are homogeneous of degree 1, then X ⊂ P

n is a projective linear sub-
space of P

n, that is X ∼= P
m with m = n− dimK〈f1, . . . , fk〉K . If X = V (f)

for a single homogeneous polynomial f ∈ K[x0, . . . , xn] of degree d > 0, then
X is called a projective hypersurface in P

n of degree d.
The polynomial ring K[x], x = (x0, . . . , xn), has a canonical grading,

where the homogeneous component of degree d, K[x]d, consists of the ho-
mogeneous polynomials of degree d (see Section 2.2).

Recall that an ideal I ⊂ K[x] is called homogeneous if it can be generated
by homogeneous elements. Hence, projective varieties in P

n are the zero–sets
V (I) of homogeneous ideals I ⊂ K[x0, . . . , xn].

As in the affine case (cf. Lemma A.2.4) we have, using Exercise 2.2.4,

Lemma A.4.3.

(1) ∅, P
n are projective varieties.

(2) The union of finitely many projective varieties is projective.
(3) The intersection of arbitrary many projective varieties is projective.

The Zariski topology on P
n is defined by taking as closed sets the projective

varieties in P
n. The Zariski topology on a projective variety X ⊂ P

n is the
induced topology. An open subset of a projective variety is called a quasi–
projective variety.

Again, we call a projective variety X ⊂ P
n irreducible if it is irreducible

as a topological space, that is, if X �= ∅, and if it is not the union of two
proper projective algebraic subsets.

As in the affine case, there is a tight connection between (irreducible)
projective varieties and homogeneous (prime) ideals, the reason being the
projective Nullstellensatz.
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Definition A.4.4. For any non–empty set X ⊂ P
n
K define

I(X) := 〈f ∈ K[x0, . . . , xn] | f homogeneous, f |X = 0〉 ⊂ K[x0, . . . , xn] ,

the (full) homogeneous (vanishing) ideal of X ⊂ P
n
K . The quotient ring

K[X ] := K[x0, . . . , xn]/I(X)

is called the homogeneous coordinate ring of X . We set

K[X ]d := K[x0, . . . , xn]d
/(
I(X) ∩K[x0, . . . , xn]d

)
.

If X = V (I) ⊂ P
n is projective, I ⊂ K[x0, . . . , xn] a homogeneous ideal, then

the projective Nullstellensatz (see below) compares I and the full homoge-
neous vanishing ideal I(X) of X . Of course, we can recover I from X only up
to radical, but there is another ambiguity in the homogeneous case, namely
V (〈1〉) = ∅ = V (〈x0, . . . , xn〉). We define

I(∅) := 〈x0, . . . , xn〉 =
⊕

d>0

K[x]d =: K[x]+

which is called the irrelevant ideal .

Remark A.4.5. The irrelevant ideal can be used to adjust the degrees of the
defining equations of a projective variety. Since V (f) = V (x0f, . . . , xnf)⊂ P

n,
we see that a projective variety defined by a polynomial of degree d is also
the zero–set of polynomials of degree d+ 1. Hence, if X ⊂ P

n is the zero–set
of homogeneous polynomials of degree di ≤ d, then X is also the zero–set
of homogeneous polynomials having all the same degree d (but with more
equations).

If X ⊂ P
n is a projective algebraic set and π : Kn+1

� {0} → P
n the projec-

tion, we may also consider the affine variety

CX := π−1(X) ∪ {0} = {(x0, . . . , xn) ∈ A
n+1 | (x0 : . . . : xn) ∈ X} ∪ {0} ,

which is the union of lines through 0 in A
n+1, corresponding to the points

in X if X �= ∅, and C∅ = {0}. CX is called the affine cone of X (see the
symbolic picture in Figure A.14, respectively Figure A.15). It is the affine
variety in A

n+1 defined by the homogeneous ideal I ⊂ K[x0, . . . , xn].
Now consider I(CX), the vanishing ideal of the affine variety CX ⊂ A

n+1.
If f = fd1 + · · ·+ fdk

∈ I(CX) is the homogeneous decomposition of f , then,
for any (x0, . . . , xn) ∈ CX � {0}, we have

f(λx0, . . . , λxn) = λd1fd1(x0, . . . , xn) + · · ·+ λdkfdk
(x0, . . . , xn) = 0 ,

for all λ ∈ K. Hence, since K is algebraically closed and has infinitely many
elements, all homogeneous components fd1 , . . . , fdk

of f are in I(CX) (this
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CV ⊂ A
n+1

Fig. A.14. The affine cone of a projective variety V .

need not be true if K is finite). By Lemma 2.2.7, I(CX) is a homogeneous
ideal.

Slightly more general, let P
n ⊂ P

n+1 be a projective hyperplane, let
X ⊂ P

n be a projective variety, and let p ∈ P
n+1

� P
n. Then the projective

cone over X with vertex p is the union of all projective lines pq, q running
through all points of X . We denote it by CpX, it is a projective variety
in P

n+1. If X is given by homogeneous polynomials fi(x1, . . . , xn+1) and if
p = (1 : 0 : . . . : 0), then CpX is given by the same polynomials, considered as
elements of K[x0, . . . , xn+1]. An affine or a projective cone over some variety
X with vertex some point p �∈ X is simply called a cone.

Theorem A.4.6 (Projective Nullstellensatz). Let K be an algebraically
closed field and I ⊂ K[x0, . . . , xn] a homogeneous ideal. Then

(1) V (I) = ∅ if and only if 〈x0, . . . , xn〉 ⊂
√
I;

(2) if V (I) �= ∅ then I
(
V (I)

)
=
√
I.

Moreover, there is an inclusion reversing bijection
{

projective algebraic
sets in P

n
K

}
←→

{
homogeneous radical ideals

I ⊂ 〈x0, . . . , xn〉
}

⋃ ⋃
{

irreducible projective
algebraic sets in P

n
K

}
←→

{
homogeneous prime ideals

I � 〈x0, . . . , xn〉
}

⋃ ⋃
{

points in P
n
K

}
←→

{
homogeneous maximal ideals

I � 〈x0, . . . , xn〉
}

.

Proof. Let Va(I) ⊂ A
n+1, respectively V (I) ⊂ P

n, denote the affine, respec-
tively projective, variety defined by I.

(1) We have V (I) = ∅ if and only if Va(I) ⊂ {0}, which is equivalent to
〈x0, . . . , xn〉 ⊂ I

(
Va(I)

)
. But the latter ideal equals

√
I, due to the usual

Nullstellensatz.
(2) The considerations before Theorem A.4.6 imply that I

(
Va(I)

)
is gen-

erated by all homogeneous polynomials vanishing on Va(I), hence, we have
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I
(
Va(I)

)
= I

(
V (I)

)
and, therefore, everything follows from the affine Null-

stellensatz. For example, the point (p0 : . . . : pn) with p0 �= 0 corresponds to
the ideal 〈p0x1 − p1x0, . . . , p0xn − pnx0〉.
As an example, look at the affine cone of the cuspidal cubic, given by
f = y3+ x2z = 0. By Remark A.4.5, this is also given as the zero–set of the
ideal I = 〈xf, yf, zf〉. However, the latter ideal is not radical. We check this
and draw the surface using Singular:

SINGULAR Example A.4.7 (projective Nullstellensatz).

ring R = 0,(x,y,z),dp;
poly f = x2z+y3;
ideal I = maxideal(1)*f; //<xf,yf,zf>
LIB"primdec.lib";
radical(I);
//-> _[1]=y3+x2z

LIB"surf.lib";
plot(f); // cf. Figure A.15

Fig. A.15. Affine cone of cuspidal cubic.

Moreover, any projective algebraic set X = V (I) ⊂ P
n has a unique minimal

decomposition into irreducible components: let P1, . . . , Pr denote the minimal
associated primes of I (which are homogeneous ideals by Exercise 4.1.8), then
X = V (P1) ∪ · · · ∪ V (Pr) is the unique decomposition of X into irreducible
projective varieties, no one containing another.

Let us now see how to cover P
n by affine charts.
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Definition A.4.8. In P
n
K , with homogeneous coordinates (x0 : . . . : xn), let

Hi := V (xi) = {(x0 : . . . : xn) ∈ P
n | xi = 0}

denote the i–th hyperplane at infinity, i = 0, . . . , n, and let

Ui := D(xi) := P
n

�Hi = {(x0 : . . . : xn) ∈ P
n | xi �= 0}

denote the i–th (canonical) affine chart of P
n. Usually, H0 = V (x0) is de-

noted by H∞ and called the hyperplane at infinity, and U0 is called the affine
chart of P

n.

In an obvious way, Hi can be identified with P
n−1, and we shall see below

that Ui can be identified with A
n. Of course, Ui and Hi depend on the chosen

coordinates.

Definition A.4.9. For a homogeneous polynomial f ∈ K[x0, . . . , xn], let

fa(x1, . . . , xn) := f(1, x1, . . . , xn) ∈ K[x1, . . . , xn]

denote the affinization or dehomogenization of f . For an arbitrary polynomial
g ∈ K[x1, . . . , xn] of degree d, let

gh(x0, x1, . . . , xn) := xd0 · g
(
x1

x0
, . . . ,

xn
x0

)
∈ K[x0, . . . , xn]

denote the homogenization of g (with respect to x0). x0 is called the homog-
enizing variable.

Remark A.4.10.

(1) Instead of substituting x0 = 1, we can substitute xi = 1 and obtain the
affinization with respect to xi. Since any monomial xα1

1 · . . . · xαn
n of g

satisfies |α| = α1 + · · ·+ αn ≤ d,

xd0

(
x1

x0

)α1

· . . . ·
(
xn
x0

)αn

= x
d−|α|
0 xα1

1 · . . . · xαn
n

is a monomial of degree d. That is, gh is a homogeneous polynomial of
degree d.

(2) (gh)a = g for any g ∈ K[x1, . . . , xn].
(3) Let f ∈ K[x0, . . . , xn] be homogeneous and f = xp0g(x0, . . . , xn) such that

x0 does not divide g, then (fa)h = g. Hence, we have xe0 · (fa)h = f for
some e, and (fa)h = f if and only if x0 � f . For example, if f = x2z2+ y3z,
and if z is the homogenizing variable, then z · (fa)h = f .
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Lemma A.4.11. Let Ui := D(xi), then {Ui}i=0,...,n is an open covering of
P
n and

ϕi : Ui −→ A
n, (x0 : . . . : xn) �−→

(
x0

xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)

is a homeomorphism ( ̂ means that the respective component is deleted). The
map

ϕj ◦ ϕ−1
i : A

n
� V (xj) −→ A

n
� V (xi) ,

(x1, . . . , xn) �−→ 1
xj

(x1, . . . , xi, 1, xi+1, . . . , x̂j , . . . , xn)

describes the coordinate transformation on the intersection Ui ∩ Uj, i < j.

Proof. The first statement is clear, since for p = (x0 : . . . : xn) ∈ P
n there

exists an i with xi �= 0, hence p ∈ Ui. It is also clear that ϕi is well–defined
and bijective, with ϕ−1

i (x1, . . . , xn) = (x1 : . . . : xi−1 : 1 : xi : . . . : xn).
It remains to show that ϕi and ϕ−1

i are continuous, that is, the preimages
of closed sets are closed. We show this for i = 0 and set ϕ := ϕ0, U = U0.

If Y ⊂ U is closed, then there exists a closed set X = V (f1, . . . , fk) ⊂ P
n,

fi ∈ K[x0, . . . , xn] homogeneous, such that Y = U ∩X. Then the image
ϕ(Y ) = V (fa1 , . . . , fak ) ⊂ A

n is closed.
Conversely, let W = V (g1, . . . , g	) ⊂ A

n be closed, gi ∈ K[x1, . . . , xn].
Since (ghj )a = gj, ϕ−1(W ) = V (gh1 , . . . , g

h
	 ) ∩ U is closed in U .

We usually identify Ui with A
n and V (xi) with P

n. More generally, if X ⊂ P
n

is a projective variety, we identify X ∩Ui with ϕi(X ∩ Ui) ⊂ A
n and, in this

sense, X ∩Ui is an affine variety. We specify this when we define morphisms
of quasi–projective varieties in Section A.6.

Example A.4.12. Consider the projective cubic curve C in P
2, given by the

homogeneous equation x2z − y3 = 0.
In U0 := {x �= 0}, we have the affine equation (setting x = 1), z − y3 = 0,

in U1 := {y �= 0}, we have x2z − 1 = 0 and in U2 := {z �= 0}, x2− y3 = 0.
The line H0 := {x = 0} meets C in (0 : 0 : 1) ∈ U2, H1 := {y = 0}, meets

C in (1 : 0 : 0) and (0 : 0 : 1), while H2 := {z = 0}, meets C in (1 : 0 : 0).
The local pictures in the neighbourhoods of 0 in U0, U1, U2 are displayed in
Figure A.16.

We can also represent the global curve C by a symbolic picture in all
three coordinate neighbourhoods (cf. Figure A.17).

We define the dimension of the projective variety X as

dim(X) = dim(CX)− 1 ,

where CX is the affine cone of X .
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z

(1 :0 :0)

y

(0 :1 :0)
x

z y

(0 :0 :1)

x

U0 ∩ C U1 ∩ C U2 ∩ C

Fig. A.16. Local pictures of the projective cubic x2z − y3 = 0.

(0 :1 :0)

(1 :0 :0)
H2 : z = 0

H1 : y = 0
H0 : x = 0

(0:0 :1)

Fig. A.17. A symbolic picture of the projective cubic x2z − y3 = 0.

Lemma A.4.13. If X ⊂ P
n is a projective variety, then

dimX = max{dimϕi(X ∩ Ui) | i = 0, . . . , n} .

If X = V (f1, . . . , fk), fi ∈ K[x0, . . . , xn] homogeneous, then ϕ(X ∩Ui) is the
affine variety in A

n defined by f1|xi=1, . . . , fk|xi=1 ∈ K[x0, . . . , x̂i, . . . , xn],
where fj |xi=1 := fj(x0, . . . , xi−1, 1, xi+1, . . . , xn).

The proof is left as an exercise.

So far, we related a projective variety X ⊂ P
n to affine varieties. We did this

in two different ways, by considering the affine cone CX ⊂ A
n+1 and the

affine pieces X ∩ Ui ⊂ A
n, where we fixed coordinates x1, . . . , xn of A

n and
x0, . . . , xn of A

n+1, respectively P
n. In particular, we have, for i = 1, . . . , n,

X =
(
X ∩ Ui

) ∪ (
X ∩ V (xi)

)

where X ∩ Ui ⊂ A
n is affine and X ∩ V (xi) ⊂ P

n−1 is projective. Sometimes
we callX ∩ U0 the affine part ofX andX∞ := X ∩ V (x0) the part at infinity.

Now we go the opposite way and associate to any affine variety X in A
n

a projective variety X in P
n, such that its affine part is equal to X .
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Definition A.4.14. Let x0, . . . , xn be homogeneous coordinates on P
n, let

U0 = D(x0) ⊂ P
n be the affine chart, and let ϕ0 : U0 → A

n be as before.

(1) Let V ⊂ A
n be an affine variety. The closure of ϕ−1

0 (V ) in P
n in the

Zariski topology is called the projective closure of V in P
n and denoted

by V . Let V∞ := V ∩H∞ denote the part at infinity of V (respectively
V ), where H∞ := V (x0) denotes the hyperplane at infinity .

(2) If I ⊂ K[x1, . . . , xn] is an ideal, then

Ih := 〈fh | f ∈ I〉 ⊂ K[x0, . . . , xn]

is called the homogenization of I. For g ∈ K[x0, . . . , xn] let

g|x0=0 := g(0, x1, . . . , xn) ∈ K[x1, . . . , xn] ,

and set
I∞ :=

〈
g|x0=0

∣∣ g ∈ Ih〉 ⊂ K[x1, . . . , xn] .

(3) If X ⊂ P
n is projective then Xa = ϕ0(X ∩ U0) ⊂ A

n is called the affine
part of X . If J ⊂ K[x0, . . . , xn] is a homogeneous ideal, the ideal

Ja := J |x0=1 := 〈fa | f ∈ J〉

is called the affinization of J .

The following lemma shows that Ih, respectively I∞, describes the projective
closure, respectively the part at infinity of V (I), and that the affinization Ja

describes the affine part of V (J). Of course, an analogous result holds for
J |xi=1, the dehomogenization of J with respect to xi.

Recall that I(V ) denotes the full vanishing ideal of the affine, respectively
projective, variety V .

Lemma A.4.15.

(1) Let I ⊂ K[x1, . . . , xn] be an ideal and V = V (I) ⊂ A
n. Then

I(V ) = I(V )h , V (Ih) = V and I(V∞) =
√
I(V )∞ , V (I∞) = V∞ .

(2) If J ⊂ K[x0, . . . , xn] is a homogeneous ideal and X = V (J) ⊂ P
n. Then

I(Xa) = I(X)a , V (Ja) = Xa .

Proof. (1) By definition, V is the intersection of all projective varieties con-
taining ϕ−1

0 (V ) and, hence, the intersection of all projective hypersurfaces
containing ϕ−1

0 (V ). Therefore, I(V ) is generated by all homogeneous poly-
nomials f satisfying f |V = 0, that is, fa ∈ I(V ). Hence, if x0g ∈ I(V ), then
g ∈ I(V ).
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This implies that I(V ) is generated by homogeneous elements f which
are not divisible by x0. By Remark A.4.10, for such elements we have
f = (fa)h ∈ I(V )h, that is, I(V ) ⊂ I(V )h.

Conversely, I(V )h ⊂ I(V ), since, by continuity, fh|V = 0 for fh ∈ I(V )h.
If I is any ideal with V (I) = V , then V (Ih) is projective and contains
ϕ−1

0 (V ), hence V ⊂ V (Ih). For the other inclusion, let p ∈ V (Ih). Since
V (Ih) ∩ U0 = V = V ∩ U0, we only have to consider points p of the form
(0 : x1 : . . . : xn) ∈ V (Ih)∞. Then gh(p) = 0 for all g ∈ I. Since I(V )m ⊂ I
for somem by Hilbert’s Nullstellensatz, 0 = (fm)h(p) = (fh(p))m and, hence,
fh(p) = 0 for all f ∈ I(V ), that is, p ∈ V (I(V )h

) ⊂ V by the first part. This
implies also V (I∞) = V∞ = V

(
I(V )∞

)
and, hence, by Hilbert’s Nullstellen-

satz
√
I∞ = I(V∞) =

√
I(V )∞.

(2) is obvious.

It can easily be seen that it is not sufficient to homogenize an arbitrary set
of generators of I in order to obtain a set of generators of Ih (cf. Example
A.4.17). However, if f1, . . . , fk is a Gröbner basis of I with respect to a degree
ordering, then Ih = 〈fh1 , . . . , fhk 〉, cf. Exercise 1.7.4, and we have

V (I) = V (fh1 , . . . , f
h
k ) , V (I)∞ = V (fh1 |x0=0, . . . , f

h
k |x0=0) .

In contrast, if J = 〈f1, . . . , fk〉, with fi arbitrary homogeneous generators,
then Ja = 〈fa1 , . . . , fak 〉.
Corollary A.4.16. Let V ⊂ A

n be an affine variety, V ⊂ P
n its projective

closure and H∞ := P
n

� A
n the hyperplane at infinity. Then

(1) V is irreducible if and only if V is irreducible.
(2) If V = V1 ∪ · · · ∪ Vs is the decomposition of V into irreducible compo-

nents, then V = V 1 ∪ · · · ∪ V s is the decomposition of V into irreducible
components.

(3) The map V �→ V induces a bijection

{affine varieties in A
n} ←→

{
projective varieties in P

n with
no component contained in H∞

}
.

Proof. (1) follows, since I is a prime ideal if and only if Ih is a prime ideal
(Exercise 4.1.9 (1)). (2) follows easily from (1) and, using (2), we may assume
in (3) that V is irreducible. For any irreducible projective variety W ⊂ P

n,
we have W ⊂ H∞ if and only if x0 ∈ I(W ). This implies (3), since x0 �∈ Ih
for any ideal I ⊂ K[x1, . . . , xn].

Example A.4.17. Consider the ideal I := 〈x3+ z2, x3+ y2〉 ⊂ K[x, y, z]. Then
Ih � z2− y2 �∈ J = 〈x3+ z2u, x3+ y2u〉, where u is the homogenizing vari-
able. Indeed, V (I) is a curve in A

3, its projective closure V (Ih) should meet
H∞ = {u = 0} only in finitely many points, while V (J) contains the line
{u = x = 0} as component in H∞.
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We verify this, using Singular:

SINGULAR Example A.4.18 (projective closure).

ring R = 0,(x,y,z,u),dp;
ideal I = x3 + z2, x3 + y2;
ideal J = homog(I,u);
J;
//-> J[1]=x3+z2u
//-> J[2]=x3+y2u

ideal Ih = homog(std(I),u);
Ih; //the homogenization of I
//-> Ih[1]=y2-z2
//-> Ih[2]=x3+y2u

LIB "primdec.lib";
minAssGTZ(J,1); //the minimal associated primes
//-> [1]:
//-> _[1]=u
//-> _[2]=x
//-> [2]:
//-> _[1]=y+z
//-> _[2]=x3+z2u
//-> [3]:
//-> _[1]=y-z
//-> _[2]=x3+z2u

Note that we obtain in V (J) the extra component {u = x = 0} at infinity, as
J is not equal to Ih. V = V (Ih) meets H∞ in (0 : 1 : ±1 : 0).

A.5 Projective Schemes and Varieties

Let us give a short account of projective schemes, the projective counterpart
of affine schemes.

Definition A.5.1. Let A =
⊕

d≥0Ad be a graded ring and A+ the homoge-
neous ideal

⊕
d>0Ad, which is called the irrelevant ideal of A. We set

Proj(A) := {P ⊂ A | P a homogeneous prime ideal, A+ �⊂ P} .
The elements of Proj(A) are called relevant prime ideals of A, and Proj(A) is
called the projective, or homogeneous, spectrum of A. For X = Proj(A) and
I ⊂ A a homogeneous ideal, the set

V (I) := {P ∈ X | P ⊃ I}
is called the zero–set of I in X .
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We have V (A+) = ∅, V (〈0〉) = Proj(A), and, as for Spec(A), the sets V (I)
are the closed sets of a topology, the Zariski topology on Proj(A). This is also
the induced topology from Proj(A) ⊂ Spec(A).

From now on, let R be a Noetherian ring and A = R [x0, . . . , xn] the poly-
nomial ring over R with Ad the homogeneous polynomials of degree d. Then
Proj(A) is called the n–dimensional projective space over R and is denoted
by P

n
R.

If I ⊂ A = R [x0, . . . , xn] is a homogeneous ideal, then V (I) coincides with
Proj(A/I) under the map sending P ∈ V (I) to its residue class modulo I.
This bijection is even a homeomorphism, and we shall consider Proj(A/I) as
a closed subspace of P

n
R.

So far, we have defined P
n
R only as a topological space. To define a scheme

structure on P
n
R or, more generally, on the closed subspace Proj(A/I) of P

n
R

we cannot, as we did in the affine case, define it as a pair of the topological
space Proj(A/I) together with the homogeneous coordinate ring A/I. This
would distinguish between schemes which we want to be the same. Namely, if
m = 〈x0, . . . , xn〉 ⊂ A is the irrelevant ideal, then mkI and I define the same
zero–sets in P

n
R. But we also want Proj(A/I) and Proj(A/mkI) to define the

same projective scheme. For example, we do not want to distinguish between
Proj(A/m) and Proj(A/m2), since both are the empty scheme. Of course,
Spec(A/I) and Spec(A/mkI) are different, but the difference is located in
the vertex of the affine cone, which is irrelevant for the projective scheme.

What we do is, we define the scheme structure of a projective variety
locally: for f ∈ A homogeneous of positive degree we set V (f) := V (〈f〉) and
call its complement

D(f) := P
n
R � V (f)

a principal open set in P
n
R. As a set, D(f) coincides with the homogeneous

prime ideals not containing f . Intersecting them with

(Af )0 =
{
h

fn

∣∣∣∣ h ∈ R[x1, . . . , xn] homogeneous of degree n · deg(f)
}
,

the subring of Af of homogeneous elements of degree 0, they correspond to
all prime ideals of (Af )0. That is, we have

D(f) = Spec
(
(Af )0

)
,

which is an affine scheme. Since each V (I) can be written as a finite inter-
section V (I) = V (f1) ∩ . . . ∩ V (fr) with f1, . . . , fr a system of homogeneous
generators for I, it follows that the open sets D(f) are a basis of the Zariski
topology of P

n
R.

We define the scheme structure on P
n
R by the collection of the affine

schemes Spec
(
(Af )0

)
, where f varies over the homogeneous elements of A of

positive degree. To specify the scheme structure, we can actually take any
open covering by affine schemes. In particular, it is sufficient to consider the
covering of P

n
R by the canonical charts
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Ui := D(xi) = Spec
(
(R [x0, . . . , xn]xi)0

)
,

i = 0, . . . , n, where

(R [x0, . . . , xn]xi)0 = R

[
x0

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

]

is isomorphic to the polynomial ring R [y1, . . . , yn] in n variables over R.
Now let X = Proj(A/I) ⊂ P

n
R be a closed subset. Then X is covered by

the open subsets
D(xi) ∩X ∼= Spec

(
((A/I)xi)0

)
,

where
((A/I)xi)0 ∼= R [x0, . . . , xi−1, xi+1, . . . , xn]/(I|xi=1) .

Then the scheme X = Proj(A/I) is given by the topological space |X | and
the scheme structure, which is specified by the collection of affine schemes
Spec

(
((A/I)xi)0

)
, i = 0, . . . , n. Any scheme X ⊂ P

n
R, given in this way, is

called a projective subscheme of P
n
R. A projective scheme over R is a closed

subscheme of some P
n
R and a quasi–projective scheme is an open subset of a

projective scheme with the induced scheme structure. A projective scheme
X is called reduced if the affine schemes Spec

(
((A/I)xi)0

)
, that is, the rings

((A/I)xi)0 are reduced for i = 0, . . . , n.
With the above definition, Proj(A/I) and Proj(A/mkI) coincide. In par-

ticular, in contrast to the case of affine schemes (where, by definition, the
ideals in A correspond bijectively to the subschemes of Spec(A)), there is no
bijection between homogeneous ideals in m and projective subschemes of P

n
R,

even if R is an algebraically closed field.
The following lemma clarifies the situation and gives a geometric inter-

pretation of saturation (considered in Section 1.8.9).

Lemma A.5.2. Let R be a Noetherian ring, and let I, J ⊂ A = R[x0, . . . , xn]
be two homogeneous ideals. Then Proj(A/I) and Proj(A/J) define the same
projective subscheme of P

n
R if and only if the saturations of I and J coincide.

Hence, there is a bijection
{

projective subschemes
X of P

n
R

}
←→

{
saturated homogeneous ideals

I ⊂ m := 〈x0, . . . , xn〉
}

Recall that the saturation of the homogeneous ideal I ⊂ R [x0, . . . , xn] is

sat(I) := I : m∞ = {f ∈ A | mrf ∈ I for some r ≥ 0} ,

m = 〈x0, . . . , xn〉 (see Section 1.8.9). I is called saturated if sat(I) = I. We
leave the proof of the lemma as an exercise.



486 A. Geometric Background

SINGULAR Example A.5.3 (projective subscheme, saturation).

ring R=0,(x,y,z),dp;
ideal M=maxideal(1);
ideal I=(x2z+y3)*M^2;
I;
//-> I[1]=x2y3+x4z
//-> I[2]=xy4+x3yz
//-> I[3]=xy3z+x3z2
//-> I[4]=y5+x2y2z
//-> I[5]=y4z+x2yz2
//-> I[6]=y3z2+x2z3

LIB"elim.lib";
sat(I,M);
//-> [1]:
//-> _[1]=y3+x2z
//-> [2]:
//-> 2

We obtain that I and 〈y3+ x2z〉 define the same subscheme of P
2
C
.

If X = Proj(A/I) is a projective scheme, then Spec(A/I) is called the affine
cone of X . As in the classical case, we define the dehomogenization of a homo-
geneous polynomial, the homogenization of an arbitrary polynomial and the
projective closure of an affine scheme. We leave the details to the reader.

To summarize the discussion so far, we see that a projective scheme X ⊂ P
n
K

(K an algebraically closed field) can be given algebraically in three different
ways, each way having a clearly distinguished geometric meaning.

(1) We give X by a homogeneous radical ideal I ⊂ 〈x0, . . . , xn〉.
This means, by the projective Nullstellensatz, to give X set–theoretically.
That is, we specify X as a classical projective variety or, in the language
of schemes, we specify X with its reduced structure.

(2) We give X by a homogeneous saturated ideal I ⊂ 〈x0, . . . , xn〉.
This is, by the above lemma, equivalent to specifying X as a projective
scheme scheme–theoretically.

(3) We give X by an arbitrary homogeneous ideal I ⊂ 〈x0, . . . , xn〉.
This means that we do not only specify X with its scheme–structure but
we do also specify the affine cone over X scheme–theoretically. This is
sometimes called the arithmetic structure of X .

Note that in Section 4.5, respectively Section 1.8.9, we have shown how the
radical, respectively the saturation, of a polynomial ideal can be computed
effectively.
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So far we have not yet defined morphisms between projective varieties, re-
spectively projective schemes, since this is more involved than in the affine
case. It is not true that such morphisms are induced by morphisms of the
homogeneous coordinate rings, rather we have to refer to a covering by open
affine pieces. This will be explained in detail in Section A.7.

Nevertheless, already, we give here the relation between varieties and
schemes in a functorial way, referring to Section A.7 for the definition of
morphisms between quasi–projective schemes, used in (2) below.

Theorem A.5.4.

(1) There is a functor F from the category of classical affine varieties to
the category of affine schemes, defined as follows: for X an affine vari-
ety, set F (X) := Spec(K[X ]) where K[X ] is the coordinate ring of X and
for f : X → Y a morphism of affine varieties set ϕ := f∗ : K[Y ]→ K[X ]
and F (f) := (ϕ#, ϕ) : Spec(K[X ])→ Spec(K[Y ]) the corresponding mor-
phism of affine schemes. F has the following properties:
a) F is fully faithful, that is, the map

Mor(X,Y )→ Mor
(
Spec(K[X ]), Spec(K[Y ])

)
, f �→ F (f) ,

is bijective. In particular, X and Y are isomorphic if and only if the
schemes Spec(K[X ]) and Spec(K[Y ]) are isomorphic.

b) For any affine variety X, the topological space |X | is homeomor-
phic to the set of closed points of Spec(K[X ]) which is dense in
Spec(K[X ]).

c) The image of F is exactly the set of reduced affine schemes of finite
type over K, that is, schemes of the form Spec(A) with A a reduced
affine ring over K.

(2) The functor F extends to a fully faithful functor from quasi–projective
varieties to quasi–projective schemes over K. For any quasi–projective
variety X, the topological space |X | is homeomorphic to the (dense) set
of closed points of F (X). Irreducible varieties correspond to irreducible
schemes. The image under F of the set of projective varieties is the set
of reduced projective schemes over K.

The proof of (1) is an easy consequence of the results of Section A.1 and A.2.
For a detailed proof we refer to [120, Propositions II.2.6 and II.4.10]. Note
that varieties in [120] are irreducible, but the generalization to reducible
varieties is straightforward.

Although classical varieties are not schemes in a strict sense, however,
we can use the above theorem to transfer results about schemes to results
about varieties. For example, the statement of Lemma A.3.10, saying that
the closure of the image f(X) equals V (J ∩K[y1, . . . , ym]), holds for the
whole scheme, in particular, it holds when restricting ourselves to the subset
of closed points. We conclude that the statement of Lemma A.3.10 holds for
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classical varieties, too, provided we work over an algebraically closed field
K. In other words, Lemma A.2.18 is an immediate consequence of Lemma
A.3.10.

A.6 Morphisms Between Varieties

The definition of morphisms between projective varieties is more complicated
than for affine varieties. To see this, let us make a naive try by simply us-
ing homogeneous polynomials. Let X ⊂ P

n be a projective variety, and let
f0, . . . , fm be homogeneous polynomials of the same degree d inK[x0, . . . , xn].

If p = (x0 : . . . : xn) ∈ X is a point with fi(p) �= 0 for at least one i then(
f0(p) : . . . : fm(p)

)
is a well–defined point in P

m. Thus, f = (f0 : . . . : fm)
defines a map X → P

m, provided that X ∩ V (f0, . . . , fm) = ∅. However, by
Bézout’s theorem, the assumption X ∩ V (f0, . . . , fm) = ∅ is very restric-
tive as this is only possible if dim(X) + dimV (f0, . . . , fm) < n. In partic-
ular, since dimV (f0, . . . , fm) ≥ n−m− 1, the naive approach excludes mor-
phisms X → P

m with dimX > m.
The naive approach is, in a sense, too global. The good definition of

morphisms between projective and, more generally, quasi–projective varieties
uses the concept of a regular function, where regularity is a local condition
(not to be confused with regularity of a local ring). Since any affine variety
is open in its projective closure, it is quasi–projective. Thus, we shall obtain
a new definition of morphisms between affine varieties which turns out to be
equivalent to the previous one, given in Section A.2.

Definition A.6.1. Let X ⊂ P
n
K and Y ⊂ P

m
K be quasi–projective varieties.

(1) A function f : X → K is called regular at a point p ∈ X if there ex-
ists an open neighbourhood U ⊂ X of p and homogeneous polynomials
g, h ∈ K[x0, . . . , xn] of the same degree such that, for each q ∈ U , we have

f(q) =
g(q)
h(q)

, h(q) �= 0 .

f is called regular on X if it is regular at each point of X . O(X) denotes
the K–algebra of regular functions on X .

(2) A morphism f : X → Y is a continuous map such that for each open set
V ⊂ Y and for each regular function g : V → K the composition

g ◦ f : f−1(V ) → K

is a regular function on f−1(V ).

Note that in (1), if g and h both have degree d, then

g(λq)
h(λq)

=
λdg(q)
λdh(q)

=
g(q)
h(q)

,
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for all λ ∈ K∗, that is, the quotient g/h is well–defined on P
n. If X ⊂ A

n

is quasi–affine, we can, equivalently, define f : X → K to be regular at
p, if there exists an open neighbourhood U of p in A

n and polynomials
g, h ∈ K[x1, . . . , xn], not necessarily homogeneous, such that h(q) �= 0 and
f(q) = g(q)/h(q) for all q ∈ U .

If we identifyK with A
1
K , that is, if we endowK with the Zariski topology,

then a regular function is a continuous map X → A
1. Therefore, the regular

functions X → K are just the morphisms X → A
1.

It is also quite easy to see that a map f : X → Y is a morphism if and
only if there exist open coverings {Ui} of X and {Vi} of Y with f(Ui) ⊂ Vi
such that f |Ui : Ui → Vi is a morphism.

It is now easy to check that the quasi–projective varieties and, hence, also
the projective varieties, together with the morphisms defined above, are a
category. This means, essentially, that the composition of two morphisms is
again a morphism of quasi–projective varieties.

A morphism f : X → Y between quasi–projective varieties is an isomor-
phism if it has an inverse, that is, there exists a morphism g : Y → X such
that f ◦ g = idY and g ◦ f = idX . f : X → Y is called a closed immersion or
an embedding if f(X) is a closed subvariety of Y and if f : X → f(X) is an
isomorphism.

Note that an isomorphism is a homeomorphism but the converse is not
true, as the map A

1 → V (x2 − y3) ⊂ A
2, t �→ (t3, t2) shows.

So far, affine varieties were always given as subvarieties of some A
n. Hav-

ing the notion of morphisms of quasi–projective varieties, we extend this by
saying that a quasi–projective variety is affine if it is isomorphic to an affine
subvariety of some A

n.
An important example is the complement of a hypersurface in an affine va-

riety: if X ⊂ A
n is affine, f ∈ K[x1, . . . , xn], then X � V (f) is affine. Indeed,

the projection A
n+1→ A

n, (x1, . . . , xn, t) �→ (x1, . . . , xn), induces an isomor-
phism from the affine subvariety V (I, tf(x)− 1) ⊂ A

n+1 onto X � V (f).

We should like to emphasize that isomorphic projective varieties need not
have isomorphic homogeneous coordinate rings as this was the case for affine
varieties. The simplest example is the Veronese embedding of P

1 in P
2,

ν2 : P
1 −→ P

2, (x0 : x1) �−→ (y0 : y1 : y2) = (x2
0 : x0x1 : x2

1) ,

which maps P
1 isomorphic to the non–singular quadric ν2(P1) defined by the

homogeneous polynomial y2
1 − y0y1. But the coordinate rings K[x0, x1] and

K[y0, y1, y2]/〈y2
1 − y0y1〉 are not isomorphic (show this).

Example A.6.2. More generally, the d–tuple Veronese embedding is given by

νd : P
n −→ P

N , p �−→ (
M0(p) : . . . : MN (p)

)
,
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where M0, . . . ,MN , N =
(
n+d
d

)
, are all monomials xα0

0 · · ·xαn
n in x0, . . . , xn of

degree |α| = d, in, say, lexicographical order. Note that for V = V (f) ⊂ P
n a

hypersurface of degree d, the image νd(V ) ⊂ P
N is the intersection of νd(Pn)

with a linear hyperplane in P
N .

Two projective varieties X,Y ⊂ P
n are called projectively equivalent if there

exists a linear automorphism of K[x0, . . . , xn], inducing an isomorphism of
the homogeneous coordinate rings K[X ] and K[Y ]. Projective equivalence is
an important equivalence relation which implies isomorphy, but it is stronger.

As we have seen, morphisms between projective varieties are not as easy
to describe as between affine varieties. For morphisms to A

n this is, however,
still fairly simple, as the following lemma shows.

Lemma A.6.3. Let X be a quasi–projective variety, and let Y ⊂ A
n be

quasi–affine. The component functions

xi : A
n −→ K, (x1, . . . , xn) �−→ xi ,

define regular functions xi|Y : Y → K and a map f : X → Y is a morphism
if and only if the component function fi = xi ◦ f is regular for i = 1, . . . , n.

We leave the proof of the lemma to the reader.

It is now also easy to see that the canonical morphism

ϕi : Ui = P
n

� V (xi) −→ A
n ,

given by (x0 : . . . : xn) �→ (x0/xi, . . . , 1̂, . . . , xn/xi), is indeed an isomorphism
of affine varieties.

Lemma A.6.3 already shows that morphisms between affine varieties in
the sense of Definition A.2.9 (that is, represented by a polynomial map) are
morphisms in the sense of Definition A.6.1. To see that both definitions do
coincide, we still need a better understanding of regular functions on an affine
variety.

Let X ⊂ A
n be an affine, respectively X ⊂ P

n a projective, variety, then
the principal open sets

D(f) = X � V (f) = {x ∈ X | f(x) �= 0} ,
f ∈ K[X ], form a basis of the Zariski topology on X (since K[X ] is Noethe-
rian, see also Section A.5). We haveD(fg) = D(f) ∩D(g), andD(f) is empty
if and only if f = 0, due to the affine, respectively projective, Nullstellensatz.

If U ⊂ X is open and f : U → K is a regular function U , then it follows
that U can be covered by finitely many principal open sets, U =

⋃k
i=1D(hi),

such that f = gi/hi on D(hi) for some gi, hi ∈ K[X ], where gi and hi are
homogeneous of the same degree if X is projective.

In general, it is not true that f has, on all of U , a representation as g/h
with g(p) �= 0 for all p ∈ U . However, for U a principal open set, this is true.
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Proposition A.6.4. Let X be an affine (respectively projective) variety,
and let h ∈ K[X ] be non–zero (respectively homogeneous of positive degree).
Then every regular function f : D(h)→ K is of the form f = g/hd on D(h),
for some d > 0 and g ∈ K[X ] (respectively with g homogeneous of degree
ddeg(h), if X is projective).

Proof. Let D(h) =
⋃s
i=1D(hi) such that f |D(hi) = gi/hi. Then gihj = gjhi

on D(hi) ∩D(hj) = D(hihj), hence, we have hihj(gihj − gjhi) = 0 onX and
gihj = gjhi on D(hihj). Replacing, for all i, hi by h2

i and gi by gihi, we may
assume that gihj = gjhi on X , hence this equality holds in K[X ].

Since D(h) =
⋃
iD(hi), we obtain V (h) = X �D(h) = V (h1, . . . , hs) and

the affine, respectively projective, Nullstellensatz implies h ∈√〈h1, . . . , hs〉,
that is, hd =

∑s
i=1 kihi for some d > 0 and ki ∈ K[X ]; if X is projective, the

ki are homogeneous of appropriate degree.
Set g :=

∑s
i=1 giki. Then hd · gj =

∑s
i=1 kihigj =

∑s
i=1(kigi)hj = g · hj ,

hence, f = gj/hj = g/hd on D(hj) for each j, that is, f = g/hd on D(h).

For a further understanding of morphisms between projective varieties, we
need to consider rational functions.

Definition A.6.5. Let X be a quasi–projective variety. A rational function
onX is given by a pair (U, f) where U ⊂ X is open and dense, and f : U → K
is a regular function on U . Two pairs, (U, f) and (V, g), are equivalent if
f |W = g|W for an open dense subset W ⊂ U ∩ V . An equivalence class is
called a rational function on X . The set of rational functions on X is denoted
by R(X).

Given a representative (U, f) of a rational function on X , there exists a
maximal open set Ũ such that U ⊂ Ũ ⊂ X and a regular function f̃ : Ũ → K
such that f̃ |U = f . Hence, a rational function is uniquely determined by an
open dense set U ⊂ X and a regular function f : U → K such that f has no
extension to a regular function on a larger open set in X . U is then called
the definition set and X � U the pole set of f . Hence, a rational function is
a function on its definition set, while it is not defined on its pole set.

For example, xi/x0 is a rational function on P
n, i = 1, . . . , n, with pole

set V (x0) and definition set D(x0).
We define the addition and multiplication of rational functions on X by

taking representatives. Thus, R(X) is a K–algebra.

Theorem A.6.6.

(1) Let X be a quasi–projective variety and X = X1 ∪ · · · ∪Xr the decompo-
sition of X into irreducible components. Then the map

R(X) −→ R(X1)⊕ · · · ⊕R(Xr), f �−→ (f |X1 , . . . , f |Xr)

is an isomorphism of K–algebras.
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(2) Let X be an affine or a projective variety, and let f ∈ R(X). Then there
exists a non–zerodivisor g ∈ K[X ], homogeneous of positive degree if X
is projective, such that D(g) is contained and dense in the definition set
of f and

f =
h

gd
on D(g)

for some d > 0, h ∈ K[X ], and h homogeneous of degree d · deg(g) if X
is projective.

(3) If X is an irreducible affine or projective variety, then R(X) is a field.
a) If X is affine, then R(X) ∼= K(X) where K(X) = Quot(K[X ]) is the

quotient field of K[X ].
b) If X is projective, then R(X) ∼= K(X)0, where K(X)0 is the subfield

of K(X) of homogeneous elements of degree 0, that is,

K(X)0 =
{
f

g

∣∣∣∣ f, g ∈ K[X ] homogeneous of same degree, g �= 0
}
.

Proof. (1) is straightforward.
(2) We use the fact that for U ⊂ X, open and dense, there exists a prin-

cipal open set D(g) ⊂ U , which is dense in X . Indeed, if U = X �A, and if
X1, . . . , Xr are the irreducible components of X , then I(A) �⊂ I(Xi) for all i,
and, hence, by prime avoidance (Lemma 1.3.12), I(A) �⊂ I(X1) ∪ · · · ∪ I(Xr),
that is, there is some g ∈ I(A) such that g �∈ I(Xi) for all i. Such a g is the
desired non–zerodivisor (homogeneous of positive degree if X is projective)
and f = h/gd by Proposition A.6.4.

(3) Let f/g ∈ K(X), respectively K(X)0, then D(g) is dense in X , since
X is irreducible and, hence, we have a map to R(X) which is clearly injective.
Surjectivity follows from (2).

Note that the dimension of an irreducible affine algebraic set X is equal to
the transcendence degree of the field extension K ↪→ K(X) (Theorem 3.5.1).

If X is a reducible quasi–projective variety with irreducible components
X1, . . . , Xr, then the above theorem implies that R(X) is a direct sum of
fields. More precisely,

R(X) ∼= Quot(K[X1])⊕ · · · ⊕Quot(K[Xr])

for X an affine variety, respectively

R(X) ∼= Quot(K[X1])0 ⊕ · · · ⊕Quot(K[Xr])0

for X a projective variety, and the right–hand side is isomorphic to the total
quotient ring Quot(K[X ]), respectively Quot(K[X ])0 (see Example 1.4.6 and
Exercise 1.4.8).

With these preparations we can identify the ringO(X) of regular functions
on affine and projective varieties.
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Theorem A.6.7.

(1) Let X ⊂ A
n be an affine variety, then O(X) is isomorphic to the affine

coordinate ring K[X ] = K[x1, . . . , xn]/I(X).
(2) Let X ⊂ P

n be a connected (for example, irreducible) projective variety,
then O(X) = K.

The theorem shows a principal difference between affine and projective vari-
eties: affine varieties have plenty of regular functions, while on a projective
variety we have only regular functions which are constant on each connected
component.

Proof. To see (1), note that each polynomial defines a regular function on X .
Hence, we have a canonical map K[x1, . . . , xn]→ O(X) with kernel I(X).

To see that the injective map K[X ]→ O(X) is surjective, let f ∈ O(X)
and apply Proposition A.6.4 to h = 1.

(2) Let X ⊂ P
n be projective and f ∈ O(X). By Proposition A.6.4, we

can write f on the dense principal open set Ui := D(xi) as

f |Ui =
gi

xdi

i

, gi ∈ K[X ]di .

By Theorem A.6.6, we may consider R(X) and, in particular, O(X), as sub-
ring of the total ring of fractions Quot(K[X ]). Then the above equality means
that f = gi/x

di

i ∈ Quot(K[X ]), that is, xdi

i f ∈ K[X ]di, for i = 0, . . . , n.
Each monomial xα1

0 · . . . · xαn
n of degree N = |α| ≥ d0 + · · ·+ dk satifies

αi ≥ di for at least one i. Therefore, K[X ]N · f ⊂ K[X ]N . Multiplying, suc-
cessively, both sides with f , we see that

K[X ]N · f q ⊂ K[X ]N for all q > 0 .

Let h ∈ K[X ] be a non–zerodivisor of degree 1 (for example, a generic linear
combination h := λ0x0 + · · ·+ λnxn), then hNf q ∈ K[X ]N for all q ≥ 0 and,
hence,

(K[X ])[f ] ⊂ 1
hN

K[X ] .

Since 1/hNK[X ] is a finitely generated K[X ]–module, and since K[X ] is
Noetherian, the subring (K[X ])[f ] is finite overK[X ] and, therfore, f satisfies
an integral relation (by Proposition 3.1.2)

fm + a1f
m−1 + · · ·+ am = 0, ai ∈ K[X ] .

Since f ∈ Quot(K[X ])0, we can replace in this equation the ai by their ho-
mogeneous components of degree 0 and see that f is integral, hence algebraic,
over K[X ]0 = K.

If X is irreducible, then Quot(K[X ]) is a field and, sinceK is algebraically
closed, it follows that f belongs to K. Otherwise, the same reasoning gives
that f is constant on each irreducible component, and the result follows from
continuity of f .
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Morphisms in concrete terms

We can now describe morphisms f : X → Y between varieties in concrete
terms. If Y ⊂ A

m, respectively Y ⊂ P
m, then f may be considered as a mor-

phism to A
m, respectively P

m, such that f(X) ⊂ Y . We, therefore, have to
distinguish two main cases, Y = A

m and Y = P
m.

(1) Morphisms to A
m: By Lemma A.6.3, a morphism f : X → A

m is given
by regular component functions fi : X → K, i = 1, . . . ,m.

If X ⊂ A
n is affine, then, by Theorem A.6.7 (1), fi = f̃i|X , where f̃i is a

polynomial in K[x1, . . . , xn] representing fi ∈ K[X ].
If X ⊂ P

n is projective, then f is constant on each connected component
of X by Theorem A.6.7 (2), and f(X) consists of finitely many points.

(2) Morphisms to P
m: Consider a map f : X → P

m, and let Vi := D(yi) be
the canonical charts of P

m. Then f is a morphism if and only if the restriction
f : f−1(Vi)→ Vi ∼= A

m is a morphism for all i = 0, . . . ,m. Hence, we can give
a morphism f by giving morphisms gi : Ui → Vi ∼= A

m, where {Ui} is an open
covering ofX , such that gi and gj coincide on Ui ∩ Uj , taking into account the
coordinate transformation Vi ∼= Vj . Since this is not very practical, we prefer
to describe morphisms to P

m by specifying homogeneous polynomials.3

To see that this is possible, assume that, for each irreducible compo-
nent Xi of X , f(Xi) �⊂ H∞ = V (y0) ⊂ P

m (this can always be achieved by
a linear change of the homogeneous coordinates y0, . . . , ym of P

m). Then
f−1(V0) ∩Xi �= ∅ and, hence, X ′ := f−1(V0) is dense in X and the restric-
tion of f to X ′ is a morphism f ′ = (f ′

1, . . . , f
′
m) : X ′ → A

m with f ′
i regular

functions on X ′. Each f ′
i defines a rational function fi on X and, hence, on

the projective closure X ⊂ P
n. By Theorem A.6.6, fi is of the form hi/g

di

i

with gi, hi ∈ K[x0, . . . , xn] homogeneous, deg(hi) = di deg(gi) and D(gi) ∩X
dense inX . Set g := gd11 · . . . · gdm

m and ĝi := g/gdi

i . Consider the homogeneous
polynomials f̃0 := g, f̃1 := h1ĝ1, . . . , f̃m = hmĝm, are all homogeneous of the
same degree. Hence the polynomial map f̃ ,

x = (x0 : . . . : xn) �−→
(
f̃0(x) : . . . : f̃m(x)

)
,

is a morphism to P
m, defined on P

n
� V (f̃0, . . . , f̃m), which coincides on

D(f̃0) with f . Since D(f̃0) = D(g1) ∩ · · · ∩D(gm) is dense in X , f coincides
with f̃ on X � V (f̃0, . . . , f̃m), the definition set of f̃ |X , which is, again, dense
in X . Since f is continuous, f is uniquely determined by f̃ . Hence, any mor-
phism X → P

m can be given by homogeneous polynomials f̃0, . . . , f̃m of the
same degree, satisfying that

(
f̃0 : . . . : f̃m

)
extends fromX � V (f̃0, . . . , f̃m) to

a morphism defined onX . It may, indeed, happen thatX ∩ V (f̃0, . . . , f̃m) �= ∅
(cf. Example A.6.9).
3 More conceptual but less concrete is the description of f in terms of sections of

some invertible sheaf [120].
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Conversely, if f̃0, . . . , f̃m are homogeneous of same degree, then, certainly,
f̃ = (f̃0 : . . . : f̃m) defines a morphism X → P

m if X ∩ V (f̃0, . . . , f̃m) = ∅.
SINGULAR Example A.6.8 (morphisms of projective varieties).
We consider X = V (z3− xy2+ y3) ⊂ P

2, and want to define a morphism
φ : X → P

2, given by the homogeneous polynomials f̃0 = xz, f̃1 = xy and
f̃2 = x2+ yz. We have to check that X ∩ V (f̃0, f̃1, f̃2) = ∅.

ring R=0,(x,y,z),dp;
ideal I=z3-xy2+y3;
ideal J=xz,xy,x2+yz;
dim(std(I+J));
//-> 0

From the result we read that, indeed, X ∩ V (f̃0, f̃1, f̃2) = ∅.
map phi=R,J;
phi(I);
//-> _[1]=x6+x3y3+3x4yz-x3y2z+3x2y2z2+y3z3

The latter means that the image of X is a curve of degree 6, given by the
polynomial x6+ x3y3+ 3x4yz − x3y2z + 3x2y2z2+ y3z3.

However, if X ∩ V (f̃0, . . . , f̃m) �= ∅, then f̃ defines, in general, only a rational
map (cf. Definition A.7.11). It defines a morphism X → P

m if and only if X
can be covered by open sets Uj such that Uj ⊃ f̃−1(Vj), and such that for
each i, the function f̃i/f̃j, which is regular on f̃−1(Vj), extends to a regular
function on Uj (since f̃ is not defined everywhere, the preimages f̃−1(Vj)
need not cover X).

To see how this can happen, consider (x0 : . . . : xn) �→ (x1 : . . . : xn),
which defines a morphism π : P

n
� {p0} → P

n−1, p0 := (1 : 0 : . . . : 0). Ge-
ometrically, this is the projection from a point , here p0, to P

n−1. A point
p ∈ P

n
� {p0} is mapped to the intersection point of the projective line p0p

through p0 and p with the hyperplane at infinity, H∞ = P
n−1. Certainly,

if n ≥ 2 then π cannot be extended to a continuous map P
n→ P

n−1, since
otherwise π(p0) = π(p0p) = π(p) for each p ∈ P

n
� {p0}.

If X ⊂ P
n is a subvariety and p0 �∈ X, then the restriction of π is a mor-

phism from X to P
n−1. But even for p0 ∈ X, π may define a morphism on

all of X . We show this by a concrete example.

Example A.6.9. Let X ⊂ P
2 be the curve defined by x2− y2− yz = 0, and

consider the map π defined by X � (x : y : z) �→ (x : y) ∈ P
1.

π is the projection from q = (0 : 0 : 1) to the projective line P
1 = {z = 0}.

Since q ∈ X , π is not defined at q, and we have to analyse the situation in
the charts V0 = {x �= 0} and V1 = {y �= 0} of the image P

1. We have

π−1(V0) = X � {(0 : 0 : 1), (0 : 1 : −1)} ,
π−1(V1) = X � {(0 : 0 : 1)} .
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On π−1(V0) the regular function y/x coincides with
y

x
=
xy

x2
=

yx

y(y + z)
=

x

y + z

which is a regular function on X � {(0 : 1 : −1)}, in particular in (0 : 0 : 1).
Setting π(0 : 0 : 1) := (1 : 0), we see that π defines a morphism from X to
P

1. On X � {(0 : 0 : 1)}, the projection π is given by (x : y : z) �→ (x : y) and
on X � {(0 : 1 : −1)} by (y+z : x). This fact is illustrated by the picture in
Figure A.18.

z = 0
(1 : 0 : 0)

p

(0 : 0 : 1)

π(p)

x = 0
y = 0

(0 : 1 : 0)

Fig. A.18. Projecting X = V (x2− y2− yz) from the point (0 : 0 : 1) ∈ X to the
projective line {z = 0}.

A.7 Projective Morphisms and Elimination

We introduce projective morphisms and prove the “main theorem of elim-
ination theory”, which says that the image of a closed subvariety under a
projective morphism is again closed. Then we discuss in some detail the ge-
ometric meaning of elimination in the context of projective morphisms and,
more generally, in the context of rational maps.

In order to be able to compute images under projective morphisms, we
need, as in the affine case, products of projective varieties and graphs. For
simplicity, we work in the framework of varieties, although there is no essential
difficulty in establishing the results for algebraic schemes over an algebraically
closed field.

To show that the product of projective varieties is again projective is less
straightforward than for affine varieties. The easiest way is to use the Segre
embedding.

Definition A.7.1. The Segre embedding of P
n × P

m is the map

σ : P
n × P

m −→ P
N , N = (n+ 1)(m+ 1)− 1 ,

(
(x0 : . . . : xn), (y0 : . . . : ym)

) �−→ (x0y0 : . . . : xiyj : . . . : xnym) ,
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with the image of a point being the pairwise product of the xi and yj sorted,
say, lexicographically.

Let zij , 0 ≤ i ≤ n, 0 ≤ j ≤ m, denote the homogeneous coordinates of P
N .

One can use the local description of σ below to check that σ is injective and
the image is Σn,m := σ(Pn × P

m), the zero–set of the quadratic equations

zijzkl − zilzkj = 0 ,

hence, a projective subvariety of P
N with

I (Σn,m) = 〈zijzkl − zilzkj | 0 ≤ i < k ≤ n, 0 ≤ j < l ≤ m〉 .

Definition A.7.2. We identify P
n× P

m with the image Σn,m and, thus,
endow P

n× P
m with the structure of a projective variety, which is called

the product of P
n and P

m. A subvariety of P
n× P

m is a subvariety of P
N

contained in Σn,m.

If f is homogeneous of degree d in zij , then we can replace zij by xiyj and
obtain a bihomogeneous polynomial in xi and yj of bidegree (d, d). Here
f ∈ K[x0, . . . , xn, y0, . . . , ym] is called bihomogeneous of bidegree (d, e) if ev-
ery monomial xαyβ appearing in f satisfies |α| = d and |β| = e.

A bihomogeneous polynomial has a well–defined zero–set in P
n× P

m, and
it follows that the closed sets in the Zariski topology or, equivalently, the
projective subvarieties of P

n× P
m are the zero–sets of bihomogeneous poly-

nomials of arbitrary bidegrees. Indeed, by Remark A.4.5, the zero–set of a
bihomogeneous polynomial of bidegree (d, e) with e < d, is also the zero–set
of bihomogeneous polynomials of bidegree (d, d).

For example, denote by Ui = D(xi), i = 0, . . . , n, respectively Vj = D(yj),
j = 0, . . . ,m, the canonical affine charts in P

n, respectively P
m. Then the xi,

respectively the yj , are bihomogeneous polynomials of degree (1, 0), respec-
tively (0, 1), the products xiyj are bihomogeneous of degree (1, 1), and the
sets Ui × Vj = P

n × P
m

� V (xiyj) ∼= A
n+m are open in P

n× P
m. It follows

that {Ui × Vj}i,j is an open, affine covering of P
n× P

m.
We use the Segre embedding σ : P

n× P
m → P

N also to define the prod-
uct of two arbitrary quasi–projective varieties X ⊂ P

n, Y ⊂ P
m. Namely, the

image σ(X × Y ) is a quasi–projective subvariety of P
N and, by identify-

ing X × Y with σ(X × Y ), we define on the set X × Y the structure of a
quasi–projective variety. Moreover, if X , respectively Y , are closed in P

n,
respectively P

m, hence projective, then the image σ(X × Y ) is closed in P
N .

Therefore, X × Y is a projective variety.
In affine coordinates (x1, . . . , xn) on U0 ⊂ P

n and (y1, . . . , ym) on V0 ⊂ P
n

the Segre embedding is (up to permutation of coordinates) just the map
A
n+m→ A

N ,

(x1, . . . , xn, y1, . . . , ym) �−→ (x1, . . . , xn, y1, . . . , ym, x1y1, . . . , xnym) ,
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hence, the image is isomorphic to the graph of the map A
n+m→ A

nm,

(x1, . . . , xn, y1, . . . , ym) �−→ (x1y1, . . . , xiyj , . . . , xnym)

between affine spaces. Using the universal properties of the product and of
the graph of affine varieties from Section A.2, respectively A.3, one can show
that the product of two quasi–projective varieties X,Y has the following uni-
versal property: the projections πX : X × Y → X and πY : X × Y → Y are
morphisms of quasi–projective varieties, and for any quasi–projective variety
Z and morphisms f : Z → X and g : Z → Y there exists a unique morphism
f × g : Z → X × Y such that the following diagram commutes:

Z

f

��

f×g
��
�
�
�

g

��

X × Y
πX

����
��

��
��

�

πY
����

���
��

��

X Y .

Example A.7.3. The Segre map σ : P
2× P

1 → P
5,

(x : y : z, s : t) �−→ (xs : xt : ys : yt : zs : zt) = (z0 : · · · : z5)
has as image, the Segre threefold Σ2,1, given in P

5 by the equations

z0z3 − z1z2 = z0z5 − z1z4 = z2z5 − z3z4 = 0 ,

which may be defined as

Σ2,1 =
{
z ∈ P

5

∣∣∣∣ rank
(
z0 z2 z4
z1 z3 z5

)
< 2

}
.

If X is the quadric x2− y2− yz = 0 in P
2, then the product X × P

1 can be
defined in P

2× P
1 by the two bihomogeneous polynomials s2(x2− y2− yz)

and t2(x2− y2− yz). Hence, σ(X × P
1) ⊂ Σ2,1 ⊂ P

5 is given by the two ad-
ditional quadratic equations z2

0 − z2
2 − z2z4 = z2

1 − z2
3 − z3z5 = 0.

As in the affine case, the notion of a product can be generalized to the fibre
product of two morphisms.

Let f : X → S and g : Y → S be two morphisms of quasi–projective va-
rieties, then there exists a quasi–projective variety X ×S Y and morphisms
pr1 : X ×S Y → X, pr2 : X ×S Y → Y such that the following diagram com-
mutes:

X ×S Y
pr1

��

pr2 �� Y

g

��

X
f

�� S .



A.7 Projective Morphisms and Elimination 499

(X ×S Y, pr1, pr2) is called the fibre product of X and Y over S. It has the
same universal property as explained in Section A.3, but with Z a quasi–
projective scheme.

X ×S Y can be implemented as a closed subvariety of X × Y with pr1
and pr2 induced by the projections. In particular, X ×S Y is projective if X
and Y are projective.

The existence of the fibre product can be shown as follows: cover S by
affine varieties and cover their preimages in X and Y by affine varieties, too,
then glue the corresponding affine fibre products (cf. [120]). To discuss this
in concrete terms, let X ⊂ P

n and Y ⊂ P
m be projective and S = P

k. As-
sume that f and g are given by homogeneous polynomials f̃0, . . . , f̃k and
g̃0, . . . , g̃k, where the f̃i, respectively the g̃j , have the same degree, with
U = X � V (f̃0, . . . , f̃k), respectively V = Y � V (g̃0, . . . , g̃k), dense in X , re-
spectively Y . Assume also that no component ofX , respectively Y , is mapped
to V (z	) ⊂ P

k, � = 0, . . . , k (see the discussion in A.6). Then the set

W :=
{
(p, q) ∈ U × V ∣∣ (f̃0(p) : · · · : f̃k(p)

)
=
(
g̃0(q) : · · · : g̃k(q)

)}

is well–defined, and over the open chart {z	 �= 0} of P
k, this set is given by the

equations f̃i/f̃	 = g̃i/g̃	, i = 0, . . . , k. Hence, W is closed in U × V and given
by the bihomogeneous equations f̃	g̃i − g̃	f̃i = 0, i, � = 0, . . . , k. The closure
of W in X × Y is X ×S Y , and we have

X ×S Y ⊂ Z :=
(
X × Y ) ∩ V (f̃ig̃j − g̃if̃j | 0 ≤ i < j ≤ k

)
.

The inclusion may be strict, since V
(
f̃0, . . . , f̃k

)× Y and X × V (g̃0, . . . , g̃k
)

are contained in Z. To compute the ideal of X ×S Y , we have to saturate the
ideal of Z by

〈
f̃0, . . . , f̃k

〉
and by

〈
g̃0, . . . , g̃k

〉
.

The above construction makes sense for f and g rational maps. An arbi-
trary closed subvariety of X × Y is called a correspondence between X and
Y (cf. [181]).

As in Section A.3, we obtain, as a special case of the fibre product,
the existence of the graph of a morphism. If f : X → Y is a morphism,
then the graph of f , Γf := {(x, y) ∈ X × Y | f(x) = y}, is a closed subva-
riety of X × Y . The projection pr1 : Γf → X is an isomorphism. If X = P

n,
Y = P

m and f = (f0 : . . . : fm) defines a rational map, then the saturation〈{fiyj − fjyi}
〉

:
〈{fiyj}

〉∞ describes Γf .

Example A.7.4. Let X ⊂ P
2 be the quadric x2− y2− yz = 0, and π : X → P

1

the projection to the first two coordinates, as in Example A.6.9. The prod-
uct X × P

1 is described in P
2× P

1 by x2− y2− yz = 0 (bidegree (2, 0)) and
Γπ by the additional equation xt− ys = 0, where (x : y : z, s : t) denote the
coordinates of P

2× P
1.

Definition A.7.5. Let f : X → Y be a morphism of quasi–projective vari-
eties. Then f is called a projective morphism if there exists a commutative
diagram
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X
	 � ��

f
����������� P
n× Y

pr2

��

Y

with X ↪→ P
n× Y as closed embedding and pr2 the projection.

If X ⊂ P
n is a projective variety, then each morphism f : X → Y , Y a

quasi–projective variety, is projective: it factors through the closed embedding
X ∼= Γf ↪→ P

n× Y and the projection to the second factor, where Γf denotes
the graph of f .

Theorem A.7.6 (Main Theorem of Elimination Theory).
Let Y be any quasi–projective variety and π : P

n× Y → Y the projection on
the second factor. Then π is a closed map, that is, the image of any closed
set in P

n× Y is closed in Y .

Proof. Let {Ui}i∈I be an open affine covering of Y . Then A ⊂ Y is closed if
and only if, for all i ∈ I, the intersection A ∩ Ui is closed in Ui. Hence, we
may assume that Y is affine, that is, Y is a closed subset of some A

m. But
then it is obviously sufficient to consider the case Y = A

m.
Let X ⊂ P

n× A
m be closed. Then X = V (f1, . . . , fk), where the fi are

homogeneous polynomials of degree di in the variables x = (x0, . . . , xn), but
not necessarily homogeneous in y = (y1, . . . , ym).

We show that π(X) is the zero–set of certain determinants, hence closed: if
K[x]d ⊂ K[x] denotes the vector space of homogeneous polynomials of degree
d, then K[x]d ⊗K K[y] is a free K[y]–module of finite rank. For d ≥ 0, define
a K[y]–linear map between free modules (K[x]i := 0 for i < 0),

Ad :

(
k⊕

j=1

K[x]d−dj

)
⊗K K[y] −→ K[x]d ⊗K K[y] ⊂ K[x, y] ,

(g1(x), . . . , gk(x))⊗ 1 �−→
k∑

j=1

gj(x)fj(x, y) ,

and consider the set

Sd :=
{
y ∈ Y ∣∣ rankAd(y) ≤ dimK K[x]d − 1

}
,

which is exactly the set of all y ∈ Y such that Ad(y) is not surjective.
Since Ad(y) is, with respect to fixed bases, a matrix with polynomial

entries, Sd is a zero–set of appropriate subdeterminants of Ad and, hence, a
closed subset of Y .

Finally, we show that π(X) =
⋂∞
d=0 Sd. We actually prove the equivalence

of the following four statements (for y ∈ Y fixed):

(a) y ∈ π(X), that is, π−1(y) ∩X �= ∅,
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(b) V
(
f1(x, y), . . . , fk(x, y)

) �= ∅,
(c) Ad(y) is not surjective for all d,
(d) y ∈ ⋂∞

d=0 Sd.

The equivalence of (a) and (b), respectively (c) and (d), being obvious, it re-
mains to show the equivalence of (b) and (c). Clearly, for any fixed y and d, the
map Ad(y) is surjective if and only if 〈x0, . . . , xn〉d ⊂ 〈f1(x, y), . . . , fk(x, y)〉.
On the other hand, by the projective Nullstellensatz, the latter is satisfied
for some d if and only if the variety V

(
f1(x, y), . . . , fk(x, y)

)
is empty.

As a corollary, we obtain

Theorem A.7.7 (image of projective morphisms is closed).
Let f : X → Y be a projective morphism of quasi–projective varieties. Then
the image f(X) is a closed subvariety of Y .

In particular, if X ⊂ P
n is a projective variety and f : X → Y a morphism

to a quasi–projective variety Y , then f(X) is a closed subvariety of Y .

Note that Theorem A.7.7 provides a new proof of Theorem A.6.7 (2) about
regular functions on a projective variety. Since any regular function f on X
may be considered as a morphism to A

1, and since the closed subsets of A
1

are just finitely many points, it follows that f is constant on each connected
component of X .

Geometric interpretation of elimination

The above theorem allows a geometric interpretation of what we really com-
pute when we do elimination.

Case 1: To start with, let X ⊂ P
n× A

m be a closed subvariety. As shown in
the proof of Theorem A.7.6, X is given by an ideal I ⊂ K[x, y], generated
by polynomials f1, . . . , fk ∈ K[x, y], homogeneous in x = (x0, . . . , xn), and
arbitrary in y = (y1, . . . , ym). Consider the projection π : P

n× A
m → A

m. By
Theorem A.7.7, the image π(X) is closed in A

m.

What do we compute when we eliminate x0, . . . , xn from I ?
In general, perhaps nothing. To see this, let Va(I) ⊂ A

n+1× A
m be the affine

variety defined by I (the “affine cone with respect to x”) and let Vp(I) denote
the “partially projective” variety defined by I in P

n× A
m. π denotes in both

cases the projection to A
m. Eliminating x from I computes I ∩K[y]. We

have V (I ∩K[y]) = π(Va(I)) ⊂ A
m, by Lemma A.2.13. This may be strictly

larger than the image π
(
Vp(I)

)
= π(X), we may even have π

(
Va(I)

)
= A

m.
Namely, Vp(I) = Vp(〈x〉rI) for any r ≥ 0 (see Remark A.4.5), but since

{0} × A
m ⊂ Va(〈x〉rI) we have π

(
Va(〈x〉rI)

)
= A

m for r > 0. Algebraically,
this means that I ∩K[y] = 〈0〉 if I is of the form 〈x〉rI ′ for some ideal I ′ with
r > 0 (Lemma A.2.18). Hence, if I = 〈x〉rI ′, then eliminating x from I gives
〈0〉.
Nevertheless, we can compute the image π(X) by elimination.
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Lemma A.7.8. With the notations from above,

π(X) = V

(
n⋂

i=0

(
I|xi=1

) ∩K[y]

)
.

Proof. Let Ui = {xi �= 0} ∼= A
n× A

m ⊂ P
n× A

m, then

π(X) =
n⋃

i=0

π(X ∩ Ui) =
n⋃

i=0

π(X ∩ Ui) ⊂ A
m ,

since π(X) is closed, by Theorem A.7.7. Hence, by Lemmas A.2.18 and A.2.3,

π(X) =
n⋃

i=0

V
(
I|xi=1 ∩K[y]

)
= V

(
n⋂

i=0

(
I|xi=1

) ∩K[y]

)
.

The following lemma implies that eliminating x from I, indeed, defines the
image π(X) if I is saturated with respect to x0, . . . , xn.

Lemma A.7.9. Let I ⊂ K[x, y], x = (x0, . . . , xn), y = (y1, . . . , ym), be an
ideal, which is homogeneous with respect to x, then

(
n⋂

i=0

I|xi=1

)
∩K[y] = (I : 〈x0, . . . , xn〉∞) ∩K[y] .

We notice that I : 〈x0, . . . , xn〉∞ = I : 〈x∞0 , . . . , x∞n 〉, the latter being by def-
inition

⋃
d≥0 I : 〈xd0, . . . , xdn〉, and that we may use I : 〈x∞0 , . . . , x∞n 〉 for com-

putations.

Proof. If f ∈ I : 〈x〉∞ ∩K[y], then, for each i, xdi f ∈ I for some d and, hence,
f = (xdi f |xi=1) ∈ I|xi=1 for all i.

Conversely, if f ∈ (
⋂n
i=0 I|xi=1), then, for each i, there exists some Fi ∈ I

such that f = Fi|xi=1. By Lemma 2.2.7, each x–homogeneous part of Fi is
in I. Hence, multiplying the parts with appropriate powers of xi, we can
assume that Fi is, indeed, x–homogeneous. But then Fi = xdi

i f
h(i), where

the superscript h(i) denotes the x–homogenization with xi as homogenizing
variable.

If, additionally, f ∈ K[y], then it is already x–homogeneous, and we ob-
tain xdi

i f = xdi

i f
h(i) ∈ I for all i. This implies that, for sufficiently large d,

we have 〈x〉df ∈ I, hence f ∈ I : 〈x〉∞ ∩K[y].

Algorithms to compute intersections of ideals and ideal quotients were de-
scribed in Section 1.8. Since these computations may be expensive, it is worth
looking for situations where they can be avoided. This happens, for example,
if no irreducible component of X is contained in the hyperplane {xi = 0},
then V (I|xi=1 ∩K[y]) = π(X). In concrete examples, it may even be worth-
while to change coordinates instead of computing the ideal quotient.
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Remark A.7.10. The statement (and proof) of Lemma A.7.9 is even simpler
if the ideal is of the form Ih of some ideal I ⊂ K[x1, . . . , xn, y1, . . . , ym], where
Ih denotes the homogenization with respect to the x–variables with x0 the
homogenizing variable. Then

I ∩K[y] = Ih ∩K[y] .

Namely, since I ∩K[y] is x–homogeneous, I ∩K[y] ⊂ Ih. The other inclusion
Ih ∩K[y] ⊂ I ∩K[y] follows, since I = Ih |x0=1. Moreover, since xk0f ∈ Ih for
some k if and only if f ∈ Ih (by definition of Ih), we have

Ih = Ih : 〈x0, . . . , xn〉∞ .

Combining this with Lemmas A.7.9 and A.7.8, we obtain the following: let
X = V (I) ⊂ A

n× A
m, and let X be the closure of X in P

n× A
m. Then

π
(
X
)

= π
(
V (Ih)

)
= V (I ∩K[y]) = V (Ih ∩K[y]) .

Recall that it is, in general, not sufficient to homogenize the generators of
I with respect to x in order to obtain generators for Ih (see also Exercise
1.7.4).

Case 2: Let X ⊂ P
n× P

m be a projective subvariety. Then X is given by an
ideal I ⊂ K[x, y] generated by polynomials fi, i = 1, . . . , k, which are bihomo-
geneous in x = (x0, . . . , xn) and y = (y0, . . . , ym), and the image π(X) ⊂ P

m

is closed by Theorem A.7.6.
Let Va(I) ⊂ P

n× A
m+1 be the affine cone with respect to y. It is easy

to see that π
(
Va(I)

) ⊂ A
m+1 is a cone and that the corresponding projec-

tive variety in P
m coincides with π(X). By Lemmas A.7.8 and A.7.9, we

obtain π
(
Va(I)

)
= Va

(
(I : 〈x〉∞) ∩K[y]

) ⊂ A
m+1. Now (I : 〈x〉∞) ∩K[y] is

a homogeneous ideal in K[y], and we obtain

π(X) = V
(
(I : 〈x〉∞) ∩K[y]

)
.

The same remark as above shows that I ∩K[y] may be 0, hence, in general,
it does not describe π(X). Remark A.7.10 applies, too.

Computing the image of projective morphisms and rational maps.

Consider a morphism f : X → P
m with X ⊂ P

n projective. Then the graph
Γf ⊂ X × P

n ⊂ P
n× P

m is closed and f(X) = π(Γf ) ⊂ P
m. Thus to com-

pute a homogeneous ideal defining the image f(X) ⊂ P
m, we can apply the

method described above to an ideal defining Γf in P
n× P

m. However, there is
a simpler method which we are going to describe now (cf. Corollary A.7.13).

Any morphism f : X → P
m can be described by homogeneous polyno-

mials f0, . . . , fm ∈ K[x], all of the same degree, subject to some conditions
which guarantee that, at the points x ∈ X ∩ V (f0, . . . , fm), (f0 : . . . : fm) can
be extended to a morphism in some open neighbourhood of x (see the dis-
cussion at the end of Section A.6).

Slightly more general, let us consider rational maps.
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Definition A.7.11. Let X,Y be two quasi–projective varieties. A rational
map f : X ��� Y is an equivalence class of pairs (U, g), where U ⊂ X is open
and dense and where g : U → Y is a morphism. Two pairs (U, g) and (V, h)
are equivalent if there exists an open dense subset W ⊂ U ∩ V such that
g|W = h|W .

A rational map f : X ��� Y is called birational if there exist open dense
sets U ⊂ X, V ⊂ Y such that f : U → V is an isomorphism.

A rational map is denoted by a dotted arrow, since it is not defined ev-
erywhere. As for rational functions, there exists a maximal open dense set
U ⊂ X such that f : U → Y is a morphism. f is not defined on X � U , which
is called the indeterminacy set or pole set of the rational map; U is called the
definition set . Note that, in general, f cannot be extended in any reasonable
way to all of X , even if Y = P

m. There is, in general, no way to map points
from X � U to “points at infinity”.

A rational map X ��� A
m is, up to a choice of coordinates of A

m, the
same as an m–tuple of rational functions on X .

A rational map X ��� P
m can be given either by m+ 1 rational functions

gi/hi where gi and hi are homogeneous of the same degree or, multiplying
gi/hi with the least common multiple of h0, . . . , hm, by an (m+ 1)–tuple
(f0 : . . . : fm), where the fi are homogeneous polynomials of the same degree,
such that X � V (f0, . . . , fm) is dense in X .

Since the ring of rational functions on X is the direct sum of the fields of
rational functions of the irreducible components of X (Theorem A.6.6), we
can give a rational map, separately, on each irreducible component (with no
condition on the intersection of components).

Case 3: Let f0, . . . , fm ∈ K[x0, . . . , xn] define a rational map f : P
n ��� P

m,
the fi being homogeneous of the same degree, let X ⊂ P

n be closed, and
set X0 := X � V (f0, . . . , fm). Then f(X0) ⊂ P

m is well–defined, though not
necessarily closed. We describe how to compute the closure f(X0).

Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal with V (I) = X, and let
Xa = Va(I) denote the affine cone of X in A

n+1. Moreover, let fa be the affine
morphism (f0, . . . , fm) : A

n+1→ A
m+1. Since the polynomials fi are homo-

geneous of the same degree, it follows easily that fa(Xa) ⊂ A
m+1 is a cone

and that π
(
fa(Xa) � {0}) = f(X0), where π : A

m+1
� {0} → P

m denotes the
canonical projection. Hence, any homogeneous ideal in K[y0, . . . , ym] describ-
ing the closure of fa(Xa) in A

m+1 describes f(X0). By Lemma A.2.18,

fa(Xa) = Va
(〈
I, f0− y0, . . . , fm− ym

〉 ∩K[y]
)
.

This does also hold ifX ⊂ V (f0, . . . , fm), since then f is not defined anywhere
on X , that is, X0 = ∅, and f(X) = ∅. On the other hand, X ⊂ V (f0, . . . , fm)
implies 〈f0, . . . , fm〉r ⊂ I for some r by the Nullstellensatz. Using the iso-
morphism K[x]/I ∼= K[x, y]/〈I, y1− f1, . . . , ym− fm〉, we obtain an inclusion
〈y0, . . . , ym〉r ⊂ 〈I, y1− f1, . . . , ym− fm〉 ∩K[y], hence the latter ideal defines
the empty set in P

m. Thus, we have shown:
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Proposition A.7.12. Let f = (f0 : . . . : fm) : P
n ��� P

m be a rational map,
with fi ∈ K[x0, . . . , xn] being homogeneous polynomials of the same degree.
Moreover, let I ⊂ K[x0, . . . , xn] be a homogeneous ideal, defining the projec-
tive variety X := V (I) ⊂ P

n, and let X0 := X � V (f0, . . . , fm). Then

f(X0) = V (〈I, f0− y0, . . . , fm− ym〉 ∩K[y0, . . . , ym]) ⊂ P
m .

Corollary A.7.13. Let X = V (I) ⊂ P
n be a projective variety, and assume

that f : X → P
m is a morphism, then

f(X) = V (〈I, f0− y0, . . . , fm− ym〉 ∩K[y0, . . . , ym]) .

Proof. f can be described by homogeneous polynomials f0, . . . , fm ∈ K[x] of
the same degree, such that X0 := X � V (f1, . . . , fm) is dense in X (see Page
494). Since f is continuous, it follows that

f(X0) ⊃ f
(
X0

)
= f(X) ,

which is closed in P
m and contains f(X0). Hence, f(X0) = f(X), and the

statement follows from Proposition A.7.12.

Let us return to morphisms of affine varieties f : X → A
m, where X ⊂ A

n is
affine. As we saw in Section A.2, the closure of the image f(X) is the zero–set
of the ideal J = 〈I, y1− f1, . . . , ym− fm〉 ∩K[y], where y = (y1, . . . , ym) are
coordinates of A

m, f1, . . . , fm ∈ K[x], x = (x1, . . . , xn), are the component
functions of f , and where I ⊂ K[x] is an ideal describing X .

Remark A.7.14. In view of the previous discussion, we are able to explain
where the points in f(X) � f(X) come from: since f factors as

f : X
∼=−→ Γf ⊂ A

n× A
m π−→ A

m ,

the image f(X) coincides with the image of the graph Γf under the projec-
tion π. Now let Γf be the closure of Γf in P

n× A
m. It is easy to see that

Γf = V (Jh), where Jh is the homogenization of J with respect to x1, . . . , xn
and with the new homogenizing variable x0 (see Exercise 1.7.4 on how to
compute Jh). By Remark A.7.10, we obtain

f(X) = V (J ∩K[y]) = V (Jh ∩K[y]) = π
(
Γf

)
.

That is, the closure of f(X) is the image of Γf under the projective map
π. Hence, in general, the image f(X) is not closed, because the presages of
points in f(X) � f(X) escaped to infinity, that is, to Γf � Γf = V (Jh|x0=0)
in P

n× A
m. Therefore,

f(X) � f(X) = π
(
Γf

)
� π(Γf ) ⊂ π

(
V (Jh|x0=0)

)
.

Note that we had to take the closure of Γf in P
n× A

m, but not the closure
of X in P

n. Namely, if f(X) is not a finite set, then f : X → A
m does not

extend to a morphism X → A
m, not even to X → P

m (consider, for instance,
the projection A

2→ A
1).
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Example A.7.15. Look at the parametrization of the cuspidal cubic

A
1 −→ A

2, t �−→ (t2, t3) .

We have f(X) = V (x3− y2) ⊂ A
2, and Γf = V (x − t2, y − t3) ⊂ A

1× A
2. In

order to compute the closure Γf ⊂ P
1× A

2, we compute a Gröbner basis
of the ideal 〈x − t2, y − t3〉 ⊂ K[t, x, y] with respect to a global monomial or-
dering satisfying tαxβ0yβ1 > tα

′
xβ

′
0yβ

′
1 if α > α′. We obtain, by homogenizing

this Gröbner basis with respect to t and with the homogenizing variable s,

Γf = V (x3− y2, ty − sx2, tx− sy, t2− s2x) ⊂ P
1× A

2 .

Let us do this using Singular.

SINGULAR Example A.7.16 (projective elimination).

ring R = 0,(t,s,x,y),(dp(1),dp);
ideal I = x-t2,y-t3; //ideal of the graph of f

eliminate(I,t);
//-> _[1]=x3-y2 //ideal of the closure of f(X)

ideal J = std(I); //Groebner basis w.r.t. a good ordering
J;
//-> J[1]=x3-y2
//-> J[2]=ty-x2
//-> J[3]=tx-y
//-> J[4]=t2-x

In order to homogenize only with respect to t, with s as homogenizing vari-
able, we map to a ring R1, where x, y are considered as parameters, and
homogenize in this new ring:

ring R1 = (0,x,y),(t,s),dp;
ideal Jh = homog(imap(R,J),s);

setring R; //go back to R
ideal Jh= imap(R1,Jh);
Jh; //ideal of the closure of the graph of f
//-> Jh[1]=x3-y2
//-> Jh[2]=ty-sx2
//-> Jh[3]=tx-sy
//-> Jh[4]=t2-s2x

std(subst(Jh,t,1,s,0)); //points at infinity of the closure
//-> _[1]=1 //of the graph of f
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We see that the closure of the graph of f in P
1× A

2 has no points at infinity,
hence, in this case the image f(X) is closed.

In the following simple example f(X) is not closed: let f be the projection
of X = V (xt− 1, y) ⊂ A

3 to the (x, y)–plane:

ring S = 0,(t,s,x,y),(dp(1),dp);
ideal I = xt-1,y; //ideal of affine hyperbola

eliminate(I,t);
//-> _[1]=y //ideal of the projection

By the above, the closure of the image f(X) equals the image of the closure
of X ⊂ A

3 = A
1× A

2 in P
1× A

2 under the projection (t, x, y) �→ (x, y). We
compute

ideal J = std(I);
ring S1 = (0,x,y),(t,s),dp; //homogenize J as ideal of
ideal Jh = homog(imap(S,J),s); //polynomials in t only

setring S; //go back to original ring
ideal Jh = imap(S1,Jh);
Jh;
//-> Jh[1]=y
//-> Jh[2]=tx-s

std(subst(Jh,t,1,s,0)); //intersection with infinity
//-> _[1]=y
//-> _[2]=x

Hence, the closure of X in P
1× A

2, with coordinates (t : s;x, y), meets infinity
at (1 : 0; 0, 0) which is not a point of X .

Remark A.7.17. So far, we explained how to compute the image of a map by
elimination. We now pose the opposite question. Let I ⊂ K[x0, . . . , xn] be a
homogeneous ideal defining the projective variety X = V (I) ⊂ P

n. What do
we compute, when we eliminate, say, x0, . . . , xr−1 from I ? That is, what is
the zero–set of J = I ∩K[xr, . . . , xn] ?

First, notice that J is homogeneous, that is, it defines a projective variety
Y = V (J) ⊂ P

n−r. We claim that Y is the closure of the image of X under
the projection from the linear subspace H = V (xr , . . . , xn) ∼= P

r−1 to P
n−r.

Here, we define the projection from H to P
n−r as

πH : P
n

�H −→ P
n−r, (x0 : . . . : xn) �−→ (xr : . . . : xn) .

Geometrically, this is the map which sends p ∈ P
n

�H to the intersection of
V (x0, . . . , xr) ∼= P

n−r with the subspace pH ∼= P
r, the union of all lines in P

n

through p and any point of H . Similarly, we can define the projection from
any other (r − 1)–dimensional linear subspace to a complementary P

n−r.
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Since πH defines a rational map from P
n to P

n−r, the claim is a direct
consequence of Proposition A.7.12, and we obtain

V (I ∩K[xr, . . . , xn]) = πH(X0) .

If X ∩H = ∅, then the projection πH is defined everywhere on X , hence,
defines a morphism πH : X → P

n−r, and then the image πH(X) is closed.
If r = 1, then H is the point p0 = (1 : 0 : . . . : 0) and πp0 is the projection

from the point p0 to P
n−1. That is, a point q ∈ P

n
� {p0} is sent to the

intersection of the projective line p0q with V (x0) = H∞ = P
n−1. We saw in

Example A.6.9 that even if p0 ∈ X , πp0 may define a morphism from X to
P
n−1, and then πp0(X) is closed in P

n−1.

Note that the result may be quite different if we project from different points,
as is shown in the following example.

Example A.7.18. Consider the twisted cubic in threespace, which is the clo-
sure in P

3 of the image of A
2→ A

3, t �→ (t, t2, t3). The image in A
3 is given

by eliminating t from 〈x1 − t, x2 − t2, x3 − t3〉:
SINGULAR Example A.7.19 (degree of projection).

ring R = 0,(x(0..3),t),dp;
ideal I = x(1)-t,x(2)-t2,x(3)-t3;
ideal J = eliminate(I,t);
J;
//-> J[1]=x(2)^2-x(1)*x(3)
//-> J[2]=x(1)*x(2)-x(3)
//-> J[3]=x(1)^2-x(2)

Hence, the image is given by x2
2 − x1x3 = x1x2 − x3 = x2

1 − x2 = 0.
Homogenizing gives the ideal I = 〈x2

2 − x1x3, x1x2 − x3x0, x
2
1 − x2x0〉 of

X in P
3. Projecting X from (1 : 0 : 0 : 0) to P

2, that is, eliminating x0 from I,
gives the quadric polynomial x2

2 − x1x3 for the image, which has one degree
less than X (see Definition A.8.8). Projecting from (0 : 1 : 0 : 0) gives, by elim-
inating x1, the cubic polynomial x3

2 − x0x
2
3, hence, the degree of the image

equals the degree of X . This is due to the fact that (1 : 0 : 0 : 0) ∈ X, while
(0 : 1 : 0 : 0) �∈ X.

ideal Jh = homog(std(J),x(0));
eliminate(Jh,x(0));
//-> _[1]=x(2)^2-x(1)*x(3)

eliminate(Jh,x(1));
//-> _[1]=x(2)^3-x(0)*x(3)^2

To summarize the above discussion, we assume that we have an ideal (arbi-
trary, homogeneous, partially homogeneous, or bihomogeneous) and eliminate
some of the variables.
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What do we compute geometrically when we eliminate ?

(1) Let I = 〈g1, . . . , gk〉 ⊂ K[x1, . . . , xn] and X = V (I) ⊂ A
n.

a) By eliminating x1, . . . , xr from I, we compute an ideal I ′ describing
the closure of the image of X under the projection π : A

n→ A
n−r

on the last n−r coordinates (that is, I ′ = I ∩K[xr+1, . . . , xn] and
V (I ′) = π(X)).

b) Let f1, . . . , fm ∈ K[x1, . . . , xn] and f = (f1, . . . , fm) : A
n→ A

m, then
eliminating x1, . . . , xn from the ideal

J = 〈I, y1− f1, . . . , ym− fm〉 ⊂ K[x1, . . . , xn, y1, . . . , ym]

computes the closure of the image, f(X) ⊂ A
m.

Moreover, if Jh ⊂ K[x0, . . . , xn, y1, . . . , ym] is the homogenization of
J with respect to x1, . . . , xn and with homogenizing variable x0,4

then V (Jh) is the closure in P
n× A

m of V (J) ⊂ A
n× A

m. Moreover,
V (J) ∼= X and f(X) = π

(
V (Jh)

)
, where π denotes the projection

π : P
n× A

m → A
m.

(2) Let I = 〈f1, . . . , fk〉, fi ∈ K[x0, . . . , xn, y1, . . . , ym] being homogeneous in
x0, . . . , xn and being arbitrary in y1, . . . , ym. Let X = V (I) ⊂ P

n× A
m

and π : P
n× A

m→ A
m the projection.

a) By eliminating x0, . . . , xn from I, we compute an ideal describing
π(Va(I)) ⊂ A

m, where Va(I) ⊂ A
n+1× A

m is the affine variety de-
fined by I. Note that π(Va(I)) contains π(X), but it may be strictly
larger.

b) Eliminating x0, . . . , xn from I : 〈x0, . . . , xn〉∞ computes an ideal de-
scribing π(X) (which is closed).

c) If J ⊂ K[x1, . . . , xn, y1, . . . , yn] is arbitrary and if I = Jh denotes
the ideal in K[x0, . . . , xn, y1, . . . , yn], obtained by homogenizing J
with respect to x1, . . . , xn, then π(X) is described by eliminating
x0, . . . , xn from I, that is, π(X) = V (I ∩K[y1, . . . , yn]).

(3) If I is as in (2), but also homogeneous in yi (that is, the fi are biho-
mogeneous in x and y), X = V (I) ⊂ P

n× P
m−1, and π the projection

P
n× P

m−1 → P
m−1. Then a), b) and c) of (2) hold.

(4) Let f0, . . . , fm ∈ K[x0, . . . , xn] be homogeneous polynomials of the same
degree, let X ⊂ P

n be a projective variety given by a homogeneous ideal
I ⊂ K[x0, . . . , xn] and let f = (f0 : . . . : fm) : P

n ��� P
m be the rational

map defined by the fi. Eliminating x0, . . . , xn from

〈I, f0− y0, . . . , fm− ym〉 ⊂ K[x0, . . . , xn, y0, . . . , ym]

computes f(X0), where X0 := X � V (f0, . . . , fm). If f is a morphism,
then f(X0) = f(X).

4 Note that Jh can be computed from J by computing a Gröbner basis for J with

respect to an ordering satisfying xαyβ > xα′
yβ′

if |α| > |α′|.
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(5) Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal andX = V (I) ⊂ P
n. Elim-

inating x0, . . . , xr−1 from I computes πH(X), where πH : P
n ��� P

n−r is
the projection from H = V (xr, . . . , xn) ∼= P

r−1. If X ∩H = ∅, then πH
is a morphism and the image πH(X) is closed in P

n−r.

A.8 Local Versus Global Properties

So far, we have discussed global properties of affine or projective varieties.
Algebraically, these properties are coded in the affine or homogeneous coor-
dinate ring. When talking about local properties, we mean those properties
which hold in an arbitrary small neighbourhood of a given point. Since any
projective variety is covered by open affine varieties, we can, without loss
of generality, restrict our attention to affine varieties. However, of special
interest are results which combine local and global properties.

Given an affine variety X and a point p ∈ X , then the neighbourhoods
of p in X are complements of closed subvarieties not containing the point
p. Recall from Section A.6 that the coordinate ring of X is isomorphic to
O(X), the ring of regular functions on X . Restricting the regular functions
to smaller and smaller neighbourhoods of p, we obtain, in the limit, a ring
of germs at p of regular functions, the local ring of X at p. It turns out that
this ring is just the localization of the coordinate ring at the maximal ideal
defining the closed point p. As we have seen in Chapter 1, we can effectively
compute in such rings.

If X = Spec(A) is an affine scheme, and m ∈ X a maximal ideal of A,
then the localization Am is the straightforward generalization of the local ring
of a classical variety. Hence, Am should be considered as the ring carrying
information about X , which is valid in an arbitrary small neighbourhood of
the closed point m in X , in the Zariski topology.

So far we considered “local” with respect to the Zariski topology, which
is a rather coarse topology. When working with complex varieties or schemes
we also have the (usual) Euclidean topology. The local rings arising from this
topology are discussed in the next section on singularities.

In this section, a variety means a classical quasi–projective variety. Even-
tually, we mention the corresponding definitions and statements for arbitrary
quasi–projective schemes.

The following definition applies to any variety.

Definition A.8.1. Let X be a variety and p a point of X .
A germ of a regular function at p is an equivalence class of pairs (U, f)

where U is an open neighbourhood of p and f a regular function on U . Two
such pairs (U, f) and (V, g) are equivalent if there exists an open neighbour-
hood W ⊂ U ∩ V of p such that f |W = g|W .
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The local ring of X at p is the ring of germs of regular functions of X
at p and is denoted by OX,p. We set dimpX := dimOX,p. X is called pure
dimensional or equidimensional if dimpX is independent of p ∈ X .

Proposition A.8.2. Let X ⊂ A
n be an affine variety with coordinate ring

K[X ] = K[x1, . . . , xn]/I(X), and let p ∈ X, then the following holds:

(1) OX,p is a local ring with maximal ideal

mp := mX,p := {f ∈ OX,p | f(p) = 0} ,

the vanishing ideal of p.
(2) OX,p ∼= K[X ]mp.
(3) dimOX,p = max{dimXi | p ∈ Xi} where the Xi are the irreducible com-

ponents of X.

Proof. (1) Let f be a regular function with f(p) �= 0. Then, since f is con-
tinuous, f(q) �= 0 for all q in a neighbourhood U of p. Hence, (U, 1/f) is an
inverse of (U, f) and, therefore, every element f ∈ OX,p � mp is a unit and
mp is the only maximal ideal of OX,p.

To see (2), note that we have OX,p = {(U, f) | f regular on U}/ ∼, and

K[X ]mp =
{
f

g

∣∣∣∣ f, g ∈ K[X ], g(p) �= 0
}
.

Now, let f/g ∈ K[X ]mp. Since g is continuous, g �= 0 in a neighbourhood U
of p, hence, f/g defines a regular function on U . Therefore, we obtain a map
K[X ]mp → OX,p, which is easily seen to be bijective.

(3) The canonical map j : K[X ]→ K[X ]mp, f �→ f/1, induces a bijection
between the set of prime ideals in K[X ]mp and the set of all prime ideals in
K[X ] which are contained in mp, via P �→ j−1(P ) and Q �→ QK[X ]mp .

Hence, dimK[X ]mp equals the maximal length of chains of prime ideals
in K[X ] contained in mp. But each maximal chain of prime ideals starts with
a minimal associated prime I0 of I(X), which corresponds to an irreducible
component of X . The latter contains p, since I0 ⊂ mp.

Example A.8.3. Consider the reducible variety X defined by zx = zy = 0,
consisting of the line {x = y = 0} and the plane {z = 0} (see Figure A.19).

Let 0 := (0, 0, 0), q := (1, 0, 0) and p := (0, 0, 1), then the geometric pic-
ture (Figure A.19) suggests dim0X = dimqX = 2 and dimpX = 1. We check
this for the respective local rings: OX,0 = K[x, y, z]〈x,y,z〉/〈xz, yz〉, which is
a local ring of dimension 2. As x is a unit in K[x, y, z]〈x−1,y,z〉, the local
ring OX,q is isomorphic to K[x, y, z]〈x−1,y,z〉/〈z〉, which has dimension 2. In
K[x, y, z]〈x,y,z−1〉 we have z as a unit, hence, OX,p ∼= K[x, y, z]〈x,y,z−1〉/〈x, y〉
has dimension 1.
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(1, 0, 0)

(0, 0, 1)

(0, 0, 0)

Fig. A.19. The variety V (〈xz, yz〉).

SINGULAR Example A.8.4 (local and global dimension).
We confirm the latter by using Singular:

ring R = 0,(x,y,z),dp; //global affine ring
ideal I = xz,yz;
dim(std(I));
//-> 2 //dimension of affine variety V(I)

ring r = 0,(x,y,z),ds; //localization of R at (0,0,0)
ideal I = imap(R,I);
dim(std(I));
//-> 2 //dimension of V(I) at (0,0,0)

map phi1 = r,x-1,y,z; //maps the point (1,0,0) to (0,0,0)
ideal I1 = phi1(I);
dim(std(I1));
//-> 2 //dimension of V(I) at (1,0,0)

map phi2 = r,x,y,z-1; //maps the point (0,0,1) to (0,0,0)
ideal I2 = phi2(I);
dim(std(I2));
//-> 1 //dimension of V(I) at (0,0,1)

For projective varieties, we can describe the local rings also directly with the
help of the homogeneous coordinate ring.

Lemma A.8.5. Let X ⊂ P
n be a projective variety, let p ∈ X be a point,

and let K[X ] = K[x0, . . . , xn]/I(X) be the homogeneous coordinate ring of
X. Then

OX,p = K[X ](mp) :=
{
f

g

∣∣∣∣
f, g ∈ K[X ] homogeneous of
the same degree, g(p) �= 0

}
.

We leave the proof, which is similar to the affine case, as an exercise.

The above statements are used to define local rings for schemes.
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Definition A.8.6. Let X be a quasi–projective scheme, p ∈ X, and let
U = Spec(A) be an affine neighbourhood of p. If P denotes the prime ideal
of A corresponding to p, then the local ring of X at p is OX,p := AP , the
localization of A at P .

Of course, p = P , but we have chosen different letters to distinguish be-
tween geometry and algebra.

Let A = K[x1, . . . , xn]/I be an affine K–algebra, K algebraically closed and
X = Spec(A). Then any closed point p corresponds to a maximal ideal mp,
which is of the form mp = 〈x1− p1, . . . , xn− pn〉/I (Corollary A.2.7) and,
hence, A/mp = K. Therefore, any f ∈ A determines a function

{closed points of X} = Max(A) −→ K ,

p �−→ f(p) := class of f in A/mp .

However, due to nilpotent elements in A, p �→ f(p) may be the zero–function,
even if f �= 0 in A. The simplest example is A = K[x]/〈x2〉 with 0 as the only
closed point, m0 = 〈x〉, x(0) = 0, but x �= 0 in A.

Hence, if X is a non–reduced scheme, we cannot define the local rings
as germs of continuous functions. Indeed, since Max(A) is dense in Spec(A),
every continuous function which is 0 on Max(A) must be 0 on Spec(A),
identically.

Local properties of varieties are of particular interest in the neighbourhood
of singular points.

Definition A.8.7. Let X be a variety or scheme and p ∈ X . Then p is called
a singular point of X , or X is called singular at p, if the local ring OX,p is not
a regular local ring. Otherwise, p is called a regular point , or non–singular
point of X . X is called regular if it is regular at each point p of X .

The definition applies, if X is a scheme, to closed and non–closed points. Re-
call that a local ring A with maximal ideal m is regular, if dim(A) = edim(A),
where edim(A) = dimA/m(m/m2) is the embedding dimension. This is the
definition which works in general, unfortunately, it is not very geometric.

A good geometric interpretation of regular points is given by the Ja-
cobian criterion (cf. Corollary 5.6.14), which is valid for varieties over an
algebraically closed field. If X ⊂ A

n is affine with ideal I(X) = 〈f1, . . . , fk〉
and p ∈ X , then X is regular at p if and only if

dimpX = n− rank
(
∂fi
∂xj

(p)
)
.

That is, the linear parts of the power series expansions of f1, . . . , fk at p
define a linear subspace of the same dimension as X at p. By the implicit
function theorem for formal power series (Theorem 6.2.17), there exists an
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analytic coordinate change at p, that is, an automorphism ϕ of the power se-
ries ring K[[x1, . . . , xn]] (but, in general, not of the polynomial ring) such that
ϕ
(
I(X)K[[x1, . . . , xn]]

)
= 〈x1, . . . , xr〉K[[x1, . . . , xn]], where r is the rank of

the Jacobian matrix at p. This means that X is regular at p if and only if
formally at the point p,X is analytically isomorphic to a linear subspace.

We shall discuss regular and singular points in the framework of local
analytic geometry in the next section on singularities.

The Jacobian criterion is also the basis for computing the singular locus

Sing(X) =
{
p ∈ X ∣∣X is singular at p

}

of a variety X . If X is equidimensional, this is particularly simple. We just
have to compute the (n− dimX)–minors of the Jacobian matrix

(
∂fi

∂xj

)
, see

Corollary 5.7.5.
If X is not equidimensional, then Sing(X) is the union of the singular loci

of the irreducible components of X and the locus of the pairwise intersections
of the components. Hence, Sing(X) can be computed from a primary decom-
position of X and then applying the Jacobian criterion to each irreducible
component. In practice, it is, however, cheaper to compute an equidimen-
sional than a prime decomposition. Methods to compute an ideal describing
the singular locus without any decomposition by using either fitting ideals
or Ext (cf. Exercises 7.3.24 and 7.3.25) also exist. Algorithms, describing the
singular locus, are given in Chapter 5, Section 5.7.

We are particularly interested in distinguishing singular points by invari-
ants. Invariants can be numbers, groups, vector spaces or other varieties which
reflect certain properties of the variety at p and which do not change under
isomorphisms of the local ring OX,p. Ideally, one could hope to classify all
singular points on a given variety by a discrete set of invariants. However,
this is only possible for the most simple singularities, the ADE–singularities
(see Section A.9).

One warning is perhaps in order. One should not expect the classification
of singularities to be simpler than the classification of, say, projective vari-
eties. For example, if X ⊂ P

n is projective, then the affine cone CX ⊂ A
n+1

has a singularity at 0 and a classification of this singularity, up to local iso-
morphism (which must be linear as CX is a cone), implies a classification
of X up to projective equivalence. Hence, the classification of singularities
includes the projective classification of projective varieties, but the singulari-
ties arising this way are only the homogeneous ones, which is a small subclass
of all singularities.

In this section we discuss only one local invariant, the multiplicity, and com-
pare it with a global invariant, the degree.

The multiplicity was introduced in Section 5.5, using the Hilbert–Samuel
function. This is, perhaps, algebraically the most elegant way but not very
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geometric. Algebraically, as well as geometrically, the multiplicity is the local
counterpart of the degree, see Section 5.3.

Definition A.8.8.

(1) Let X be any variety and p ∈ X. The multiplicity of X at p is the multi-
plicity of the local ring OX,p in the sense of Definition 5.5.2, and denoted
by mult(X, p).

(2) Let X ⊂ P
n be a projective variety, then the degree of X is the degree of

the homogeneous coordinate ring K[X ] in the sense of Definition 5.3.3,
and denoted by deg(X) .

Note that mult is invariant under local isomorphisms of varieties (that is,
isomorphisms of their local rings), while deg is not invariant under isomor-
phisms of projective varieties. The degree is only invariant under projective
equivalence or, geometrically speaking, it is an invariant of the embedding.

Example A.8.9. Consider the d–tuple Veronese embedding of Example A.6.2.
One shows that νd is an isomorphism from P

n onto the image Vd := νd(Pn),
which is called the Veronese variety. The hypersurface M0(x) := {xd0 = 0} in
P
n is mapped isomorphically onto the hyperplane {z0 = 0} in P

N . M0(x) has
degree d, {z0 = 0} degree 1. Moreover, one can show that Vd has degree dn

in P
N , while P

n certainly has degree 1 in P
n.

It is useful to compare the notions of degree and multiplicity for the most sim-
ple case, the case of a hypersurface. If f ∈ K[x1, . . . , xn] is a squarefree poly-
nomial with f(0) = 0, and if X ⊂ A

n is the hypersurface defined by f = 0,
then mult(X, 0) = ord(f), the smallest degree of a monomial appearing in
f (Corollary 5.5.9), while deg(X) = deg(X) = deg(f), the largest degree of
a monomial appearing in f (Lemma 5.3.5). Here, X ⊂ P

n is the projective
closure of X , defined by fh = 0, where fh ∈ K[x0, . . . , xn] denotes the ho-
mogenization of f .

We start with a geometric interpretation of the degree as the number of
intersection points with a sufficiently general hyperplane. What is meant here
by “sufficiently general” will be explained in the proof.

Proposition A.8.10. Let X ⊂ P
n be a projective variety of dimension d,

and let X1, . . . , Xr, Xr+1, . . . , Xs be the irreducible components of X, ordered
such that dimXi = d for i = 1, . . . , r and dimXi < d for i = r + 1, . . . , s.
Then

deg(X) = #(X ∩H) =
r∑

i=1

#(Xi ∩H) ,

where H ⊂ P
n is a sufficiently general projective hyperplane of dimension

n− d and # denotes the cardinality.
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Proof. By Lemma 5.3.11, we have deg(X) =
∑r

i=1 deg(Xi). Hence, we can as-
sumeX to be irreducible with homogeneous coordinate ring K[x0, . . . , xn]/P ,
where P is a homogeneous prime ideal.

Choose a homogeneous Noether normalization X → P
d (Theorem 3.4.1):

after a linear change of coordinates, we have an inclusion

K[x0, . . . , xd] ⊂ K[x0, . . . , xn]/P

together with irreducible homogeneous polynomials gd+1, . . . , gn ∈ P ,

gi = xpi

i +
pi−1∑

j=0

cij(x0, . . . , xi−1)x
j
i ,

such that Quot(K[x0, . . . , xn]/P ) = Quot(K[x0, . . . , xd])[xd+1]/〈gd+1〉, espe-
cially, pd+1 = deg(X), by Proposition 5.3.10.

Set f := gd+1, which defines a hypersurface V (f) ⊂ P
d+1 of degree deg(X).

Then, for a sufficiently general line L, the restriction f |L has exactly deg(X)
simple roots, that is, the intersection V (f) ∩ L consists of precisely deg(X)
points.

We show now that the projection π : X → V (f) is birational, and that
the preimage of a general line, H = π−1(L) intersects X in deg(X) points.

Let Δ ∈ K[x0, . . . , xd] be the discriminant of f (with respect to xd+1). Δ
is homogeneous and vanishes at a point a = (a0 : . . . : ad) ∈ P

d if and only if
f(a0, . . . , ad, xd+1) has a multiple root.5

By Lemma 3.5.12 (applied as in the proof of Theorem 3.5.10), we have
an inclusion

K[x0, . . . , xn]/P ⊂ 1
Δ
K[x0, . . . , xd+1]/〈f〉 .

In particular, there exist polynomials qd+2, . . . , qn ∈ K[x0, . . . , xd+1] such
that xiΔ− qi ∈ P , for i = d+ 2, . . . , n, and

〈f, xd+2Δ− qd+2, . . . , xnΔ− qn〉K[x0, . . . , xn]Δ = PK[x0, . . . , xn]Δ .

Hence, for any point (x0 : . . . : xd) ∈ P
d

� V (Δ) we have

(x0 : . . . : xn) ∈ V (P ) ⇐⇒ f(x0, . . . , xd+1) = 0 and

xi =
qi(x0, . . . , xd+1)
Δ(x0, . . . , xd)

, i = d+ 2, . . . , n .

This shows that the projection π : P
n→ P

d+1 induces an isomorphism
5 Another way to describe the zero–set of the discriminant is given by considering

the projection V (f) → P
d. Then V (Δ) is the image of the set of critical points

C = V (f, ∂f/∂xd+1) in P
d (which we know already to be closed by Theorem

A.7.7). Note that the polynomial Δ′ ∈ K[x0, . . . , xd], obtained by eliminating
xd+1 from 〈f, ∂f/∂xd+1〉, has the same zero–set as Δ and satisfies 〈Δ〉 ⊂ 〈Δ′〉,
however, the inclusion may be strict.
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π : X � V (Δ)
∼=−→ V (f) � V (Δ) .

Therefore, if a = (a0 : . . . : ad) ∈ P
d

� V (Δ), then the line

L := {(a : xd+1) | xd+1 ∈ K}
intersects V (f) in deg(X) distinct points, and the hyperplane

H := π−1(L) = {(a : xd+1 : . . . : xn) | xd+1, . . . , xn ∈ K}
intersects X in exactly deg(X) points, too.

In the above proof we showed, moreover,

Proposition A.8.11. Let X ⊂ P
n be an irreducible d–dimensional projec-

tive variety, then, for general homogeneous coordinates x0 : . . . : xn, there ex-
ists a hypersurface V (f) ⊂ P

d+1 = V (xd+2, . . . , xn) such that the projection
π : X → V (f) is birational. Moreover, deg(X) = deg(f).

SINGULAR Example A.8.12 (degree of projective variety).
Consider the rational normal curve C of degree r in P

r, which is the projective
closure of the image of the morphism

P
1 � (s : t) �−→ (sr : sr−1t : . . . : tr) ∈ P

r .

The homogeneous ideal of C is the kernel of the ring map

K[x0, . . . , xr] −→ K[s, t], xi �−→ sr−iti .

We compute the degree of C and count the number of intersection points of
C with a general hyperplane:

LIB"random.lib";
int r = 5;
ring R = 0,x(0..r),dp;

ring S = 0,(s,t),dp;
ideal I = maxideal(r); //s^r, s^(r-1)*t,..., s*t^(r-1), t^r
ideal zero;
map phi = R,I; //R --> S, x(i) --> s^(r-i)*t^i

setring R;
ideal I = preimage(S,phi,zero); //kernel of map phi R --> S
I = std(I); //ideal of rational normal curve C
dim(I); //dimension of affine cone over C
//-> 2
degree(I); //degree of C is 5
//-> 5
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ideal L = sparsepoly(1,1,0,10); //a general linear form
//?sparsepoly; explains the syntax

ideal CL = std(I+L+(x(0)-1)); //ideal of intersection of C
//with L=0
//in affine chart x(0)=1

vdim(CL); //number of intersection points is 5
//-> 5 //in affine chart x(0)=1

Note that vdim counts the number of intersection points with multiplicity.
By Proposition A.8.10, this number should coincide with the degree of C.
In order to count the points set theoretically, we compute the radical of
CL. Since C is smooth (check this), a general hyperplane meets C in simple
points, hence CL should coincide with the radical of CL and vdim should give
the same number. We check this:

LIB"primdec.lib";
vdim(std(radical(CL)));
//-> 5

Let us now consider the multiplicity. It has a similar geometric interpreta-
tion as the degree. It counts the number of intersection points of a variety
with a general hyperplane of the right dimension in a sufficiently small neigh-
bourhood of the given point. However, this interpretation is only valid in the
Euclidean topology, not in the Zariski topology. The algebraic reason for this
fact is that the Noether normalization of an algebraic local ring may fail. The
Noether normalization holds for affine algebras (Theorem 3.4.1) and for ana-
lytic algebras (Theorem 6.2.16) but, in general, not for the localization of an
affine algebra (Exercise 3.4.7).

Therefore, we assume in the following discussion that K = C, and we use
the Euclidean topology.

Proposition A.8.13. Let X ⊂ C
n be a variety of dimension d and p ∈ X.

We denote by X1, . . . , Xr, Xr+1, . . . , Xs the irreducible components of X
passing through p, such that dimXi = d for i = 1, . . . , r and dimXi < d for
i = r + 1, . . . , s. Then, for any sufficiently small (Euclidean) neighbourhood
U of p and for any sufficiently general hyperplane H ⊂ C

n of dimension n− d
and sufficiently close to p (but not passing through p), we have

mult(X, p) = #(X ∩H ∩ U) =
r∑

i=1

#(Xi ∩H ∩ U) .

The proof is completely analogous to the previous one, by using an ana-
lytic Noether normalization (cf. Theorem 6.2.16, Exercise 6.2.1 for the formal
case). Moreover, we need a Weierstraß polynomial for generic coordinates,
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f = xpd+1 +
p−1∑

j=0

cj(x1, . . . , xd)x
j
d+1 ,

where cj(x1, . . . , xd) are convergent power series and, thus, define holomor-
phic functions in a neighbourhood of (p1, . . . , pd) ∈ C

d. This follows from the
Weierstraß preparation theorem for convergent power series (cf. [108], [128],
for example). Now everything else works as in the global case.

Note that mult(X, p) = mult
(
Cp(X), p

)
, where Cp(X) is the tangent cone

of X at p, which is defined as follows: if X ⊂ C
n is defined by an ideal

I ⊂ C[x1, . . . , xn], then Cp(X) is defined by Inp(I). Here Inp(I) denotes the
ideal generated by the initial forms of all f ∈ I, written as polynomials in
y := x− p (cf. Proposition 5.5.12). The tangent cone can be computed ac-
cording to Lemma 5.5.11.

Geometrically, the tangent cone is the union of all limits of secants ppi
with pi ∈ X � {p} a sequence of points converging to p. The direction of the
hyperplaneH in Proposition A.8.13 (equivalently, the choice of the generic co-
ordinates) is predicted by the tangent cone. Choose a hyperplane H0 through
p, which is transversal to Cp(X), that is, H0 ∩ Cp(X) = {p}. Then a small,
sufficiently general displacement of H0 intersects U ∩X in exactly mult(X, p)
points.

Example A.8.14. Let X be the cuspidal cubic given by f := x3− y2 = 0, and
let Lε := {x+ by = ε} be a general line. Then f |Lε =

(
ε− by)3 − y2 has two

zeros close to 0 (check this), and we have ord(f) = mult(X, 0) = 2 (cf. Figure
A.20). The tangent cone is the x–axis {y = 0}, and the line Lε is a small dis-
placement of the line L0 = {x+ by = 0}, which is transversal to the tangent
cone. A small displacement of the line {y = 0} meets X in three complex
points (check this), although we see only one point in the real picture.

0

L0 L

X

Fig. A.20. mult(X, 0) = #(Lε ∩ X) = 2.
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SINGULAR Example A.8.15 (multiplicity and tangent cone).
Although the above example is very simple, let us demonstrate the commands
to compute the multiplicity and the tangent cone. Moreover, we compute the
intersection multiplicity of the curve {f = 0} with a general line Lo through 0
(which is transversal to the tangent cone) and with the special line L1 (which
coincides with the tangent cone). In order to compute the correct multiplicity,
we have to work with a local degree ordering (the procedure tangentcone
works for any ordering).

ring r = 0,(x,y),ds;
ideal f = x3-y2;
mult(std(f)); //the multiplicity of f at 0
//-> 2

LIB"sing.lib";
tangentcone(f); //the tangent cone of f at 0
//-> _[1]=y2

ideal Lo = random(1,100)*x + random(1,100)*y;
//a general line through 0

vdim(std(f+Lo)); //intersection multiplicity of
//-> 2 //f and Lo at 0

ideal L1 = y; //the special line y=0
vdim(std(f+L1)); //intersection multiplicity of
//-> 3 //f and L1 at 0

When we want to compute the number of intersection points of {f = 0} with
a small displacement Le of Lo (where e is a small number), we have to be
careful: in the local ring r the polynomial defining the displaced line is a
unit, hence, the intersection multiplicity is 0. Thus, we have to use a global
ordering. However, counting the intersection number in a global ring gives
the total intersection number in affine space of {f = 0} with the given line
(which is 3 for Lo as well as for Le), and not only in a small Euclidean
neighbourhood of 0 (which is 2).

The only thing we can do is to solve the system given by f = Le = 0
numerically and then “see”, which points are close to 0 (which is, in general,
a guess).

Let X be the parabola {x− y2 = 0} with mult(X, 0) = 1. The tangent
cone is the y–axis, equal to L0. A small displacement of L0 intersects X in
more than mult(X, 0) points. The line L′

0 is transversal to the tangent cone,
L′
ε intersects X in one point close to 0 (cf. Figure A.21).

What we discussed in the above examples was the intersection multiplicity
of a curve with a line. We generalize this to the intersection multiplicity of
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L0 Lε

XX

L′
0

L′
ε

Fig. A.21. mult(X, 0) = 1, #X ∩ Lε = 2, #X ∩ L′
ε = 1.

two plane curves. In the following, K is again an algebraically closed field (of
arbitrary characteristic).

Definition A.8.16.

(1) Let f, g ∈ K[x, y] be of positive degree, p = (p1, p2) ∈ V (f) ∩ V (g) ⊂ A
2
K ,

and let mp = 〈x− p1, y − p2〉 be the maximal ideal of p. We define

i(f, g; p) := dimK

(
K[x, y]mp

/〈f, g〉) ,

and call it the intersection multiplicity of f and g at p.
(2) If C = Spec(K[x, y]/〈f〉) and D = Spec(K[x, y]/〈g〉), then

i(C,D; p) := i(f, g; p)

is called the intersection multiplicity of C and D at p.
(3) If C,D ⊂ A

2
K are classical affine plane curves and I(C) = 〈f〉, I(D) = 〈g〉,

then i(C,D; p) := i(f, g; p) is called the intersection multiplicity of C and
D at p.6

Note that in (2) and (3) the generator of the (principal) ideal 〈f〉, respec-
tively 〈g〉, is unique up to multiplication by a non–zero constant. Hence, the
intersection multiplicity i(C,D; p) is well–defined. Note also that i(f, g; p) is
finite if and only if f and g have no common factor which vanishes at p.
This follows from Krull’s principal ideal theorem (cf. Corollary 5.6.10) and
Corollary 5.3.17.

Now let F,G ∈ K[z, x, y] be homogeneous polynomials of positive degree, let
p = (p0 : p1 : p2) ∈ V (F ) ∩ V (G) ⊂ P

2
K , and let mp = 〈p0x− p1z, p0y − p2z〉

6 The difference here is just that f and g are not allowed to have multiple factors
which are allowed in (1) and (2).
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be the homogeneous ideal of p. Assume that p0 �= 0, then it is easy to see
that

i(F,G; p) := dimK

(
K[z, x, y]mp

/〈F,G〉) = i(f, g; p) ,

where f = F a = F |z=1 and g = Ga = G|z=1 are the affinizations of F and G.
i(F,G; p) is called the intersection multiplicity of F and G at p. Note that,
by definition, it is a purely local invariant.

If C = Proj(K[z, x, y]/〈f〉) and D = Proj(K[z, x, y]/〈g〉), respectively, if
C,D ⊂ P

2
K are classical projective plane curves with I(C) = 〈F 〉, I(D) = 〈G〉,

then we set
i(C,D; p) := i(F,G; p) ,

and call it the intersection multiplicity of the projective plane curves C and
D at p.

It is clear that i(F,G; p) = 0 if and only if f or g is a unit in the local ring
K[x, y]〈x−p1,y−p2〉, and the latter is equivalent to p �∈ V (F ) ∩ V (G). More-
over, i(F,G; p) <∞ for all p ∈ P

2
K if and only if F and G have no common

non-constant factor. It is also clear that i(f r, gs; p) ≥ i(f, g; p) for r, s ≥ 1,
hence, i(Fred, Gred; p) ≤ i(F,G; p), where Fred, Gred denote the squarefree
parts of F,G, respectively. Hence, the scheme–theoretic intersection multi-
plicity is at least the intersection multiplicity of the reduced curves.

Now we can formulate one of the most important theorems in projective
geometry, combining local and global invariants:

Theorem A.8.17 (Bézout’s Theorem). Let F,G ∈ K[z, x, y] be polyno-
mials of positive degree, without common non–constant factor. Then the in-
tersection V (F ) ∩ V (G) is a finite set and

deg(F ) · deg(G) =
∑

p∈V (F )∩V (G)

i(F,G; p) .

Since the right–hand side is zero if and only if V (F ) ∩ V (G) is empty, we
obtain:

Corollary A.8.18. Let C,D ∈ P
2
K be two projective plane curves without

common components, C = V (F ), D = V (G), then

deg(F ) · deg(G) ≥ #(C ∩D) ≥ 1 .

Proof of Theorem A.8.17. Since F andG have no common factor, F is a non–
zerodivisor in K[z, x, y]/〈G〉. By Lemma 5.3.5, deg(G) = deg(K[z, x, y]/〈G〉),
and, by Proposition 5.3.6, we obtain

deg(K[z, x, y]/〈F,G〉) = deg(F ) · deg(G) .

By Krull’s principal ideal theorem 5.6.8, dim(K[z, x, y]/〈F,G〉) = 1. Now
Theorem 5.3.7 implies that the Hilbert polynomial of K[z, x, y]/〈F,G〉 is con-
stant and, by definition, this constant is deg(K[z, x, y]/〈F,G〉). In particular,
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the projective variety V (F,G) ⊂ P
2
K has dimension 0, and we may assume

(after a linear change of coordinates) that V (F,G) ∩ V (z) = ∅ and F and G
are not divisible by z.

Let f = F a = F |z=1 and g = Ga = G|z=1 ∈ K[x, y] be the affinizations of
F and G. Then, by Remark 5.3.16, the Hilbert function of K[z, x, y]/〈F,G〉
coincides with the affine Hilbert function of K[x, y]/〈f, g〉 and, hence,

deg(K[z, x, y]/〈F,G〉) = dimK(K[x, y]/〈f, g〉) .

Let V (f) ∩ V (g) = {p1, . . . , pr}, pi = (pi1, pi2), and let mi = 〈x− pi1, y − pi2〉
be the corresponding maximal ideals, i = 1, . . . , r. Then, by the Chinese re-
mainder theorem (cf. Exercise 1.3.13),

K[x, y]/〈f, g〉 ∼=
r⊕

i=1

K[x, y]/Qi ,

where the Qi are mi–primary ideals. Now K[x, y]/Qi ∼= K[x, y]mi/〈f, g〉, and
the result follows.

A.9 Singularities

In Section A.8 we have already defined singular points as points p of a variety
X where the local ring OX,p is not regular. In particular, “singular” is a
local notion, where “local” so far was mainly considered with respect to
the Zariski topology. However, since the Zariski topology is so coarse, small
neighbourhoods in the Zariski topology might not be local enough. If our
field K is C, then we may use the Euclidean topology and we can study
singular points p in arbitrary small ε–neighbourhoods (as we did already
at the end of Section A.8). But then we must also allow more functions,
since the regular functions at p (in the sense of Definition A.6.1) are always
defined in a Zariski neighbourhood of p. Thus, instead of considering germs
of regular functions at p, we consider germs of complex analytic functions
at p = (p1, . . . , pn) ∈ C. The ring of these functions is isomorphic to the ring
of convergent power series C{x1− p1, . . . , xn− pn}, which is a local ring and
contains the ring C[x1, . . . , xn]〈x1−p1,...,xn−pn〉 of regular functions at p.

For arbitrary (algebraically closed) fields K, we cannot talk about conver-
gence and then a substitute for C{x1− p1, . . . , xn− pn} is the formal power
series ring K[[x1− p1, . . . , xn− pn]]. Unfortunately, with formal power series,
we cannot go into a neighbourhood of p; formal power series are just not
defined there. Therefore, when talking about geometry of singularities, we
consider K = C and convergent power series. Usually, the algebraic state-
ments which hold for convergent power series do also hold for formal power
series (but are easier to prove since we need no convergence considerations).
We just mention in passing that there is, for varieties over general fields,
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another notion of “local” with étale neighbourhoods and Henselian rings (cf.
[143]) which is a geometric substitute of convergent power series over C.

For I ⊂ C[x], x = (x1, . . . , xn), an ideal, we have inclusions of rings

C[x]/I ⊂ C[x]〈x〉/IC[x]〈x〉 ⊂ C{x}/IC{x} ⊂ C[[x]]/IC[[x]] .

To distinguish the different points of view, we make the following definition:

Definition A.9.1. Let X ⊂ C
n be an algebraic variety and p ∈ X. The an-

alytic germ (X, p) of X at p is an equivalence class of open neighbourhoods
of p in X , in the Euclidean topology, where any two open neighbourhoods of
p in X are equivalent.

The analytic local ring of X at p is the ring of germs of complex analytic
functions at p = (p1, . . . , pn),

OanX,p := C{x1−p1, . . . , xn−pn}/I(X) ·C{x1−p1, . . . , xn−pn} .
If X ⊂ A

n
K , K an arbitrary algebraically closed field, let

OX,p = K[x1, . . . , xn]〈x1−p1,...,xn−pn〉

be the algebraic local ring of X at the (closed) point p = (p1, . . . , pn) and

OanX,p := ÔX,p = K[[x1−p1, . . . , xn−pn]]/I(X) ·K[[x1−p1, . . . , xn−pn]]
be the analytic local ring of X at p, ̂ denoting the 〈x1−p1, . . . , xn−pn〉–adic
completion.

We call the analytic germ (X, p), and the analytic local ring OanX,p, also a
singularity.

In the following, we write K〈x1, . . . , xn〉 to denote either K[[x1, . . . , xn]] or
C{x1, . . . , xn}.

For analytic singularities, regular (in the sense of non–singular) points
have a very nice interpretation. By the Jacobian criterion and the implicit
function theorem, p is a regular point of the complex variety X if, in a
small Euclidean neighbourhood of p, X is a complex manifold. Algebraically,
this is equivalent to OanX,p being isomorphic to K〈x1, . . . , xd〉, as analytic
algebra, which holds for convergent and formal power series (but not for
regular functions in the sense of Definition A.6.1).

Many invariants of singularities, which are defined in the convergent, re-
spectively formal, power series ring, can be computed in the localization
C[x]〈x〉 but this is not always the case, as the following shows.

Consider the singularity at 0 = (0, 0) of the plane curve y2 − x2(1 + x) = 0
(cf. Figure A.22).

The picture shows that in a small neighbourhood of 0 (with respect to
the Euclidean topology) the curve has two irreducible components, meeting
transversally, but in the affine plane the curve is irreducible.
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Fig. A.22. The variety V
(
y2 − x2(1 + x)

)
.

To see this algebraically, let us consider f = y2 − x2(1 + x) as an element
of C{x, y}. We have a decomposition

f =
(
y − x√1 + x

)(
y + x

√
1 + x

)

with y ± x√1 + x ∈ C{x, y}, that is, f can be factorized in C{x, y} into two
non–trivial factors. The zero–set of these factors corresponds to the two com-
ponents of V (f) in a small neighbourhood of 0. This is also the factorization in
C[[x, y]], since the factorization is unique. However, f is irreducible in C[x, y],
and even in C[x, y]〈x,y〉. Otherwise, there would exist g, h ∈ C[x, y]〈x,y〉 sat-
isfying f = (y + xg)(y + xh), hence g = −h and g2 = 1 + x. But, since 1 + x
is defined everywhere, g2 and, hence, g must be a polynomial, which is im-
possible since g2 has degree 1. We can imagine the irreducibility of f in
C[x, y]〈x,y〉 also geometrically, since this corresponds to the irreducibility of
the curve {f = 0} in an arbitrary small neighbourhood of 0 with regard to the
Zariski topology. Such a neighbourhood consists of the curve minus finitely
many points different from 0. Since the curve is a complex curve and since a
connected open subset of C minus finitely many points is irreducible (here,
the above real picture is misleading), we can “see” the irreducibility of f in
C[x, y]〈x,y〉 (this argument can actually be turned into a proof).

The above example shows that the Zariski neighbourhoods are too big for
certain purposes, or, algebraically, the algebraic local rings K[x]〈x〉/I ·K[x]〈x〉
are too small and we have to work with the analytic local rings, K〈x〉/IK〈x〉.
The basic theorem for the study of C{x} and K[[x]] is the Weierstraß prepa-
ration theorem (which does not hold for K[x]〈x〉) and which is treated in
Section 6.2 for formal power series.

Computationally, however, we can, basically, treat only K[x] and K[x]〈x〉
or factor rings of those in Singular. In particular, we cannot put a poly-
nomial into Weierstraß normal form, nor factorize it in K[[x]], effectively in
Singular. We are only able to do so approximately, up to a given order (not
to mention the problem of coding an infinite, but not algebraic, power series).

Nevertheless, it has turned out that many invariants of singularities can
be computed in K[x]〈x〉, an algebraic reason for this being the fact that
K[x]〈x〉 ⊂ K[[x]] is faithfully flat (Corollary 7.4.6).
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We illustrate this with a few examples, the simplest is stated in the fol-
lowing lemma:

Lemma A.9.2. Let OX,p be the algebraic local ring of a variety at p ∈ X
and let I ⊂ OX,p be an ideal such that dimK(OX,p/I) <∞. Then, as local
k–algebras, OX,p/I ∼= OanX,p/IOanX,p. In particular, both vector spaces have the
same dimension and a common basis represented by monomials.

To see this, we may assume p = 0. Then 〈x1, . . . , xn〉s ⊂ IOX,0 for some s, by
assumption, and OX,0/〈x1, . . . , xn〉s = OanX,0/〈x1, . . . , xn〉s. The same result
holds for submodules I ⊂ OrX,0 of finiteK–codimension. However, if I ⊂ OX,0
is generated by polynomials f1, . . . , fk, then there may be no s such that
〈x1, . . . , xn〉s ⊂ 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn] (this inclusion holds if and only
if V (f1, . . . , fk) = {0}) and, therefore,

dimK OX,0/I �= dimK K[x1, . . . , xn]/〈f1, . . . , fk〉 ,
in general.

Important examples are given by the Milnor number and by the Tjurina
number of an isolated hypersurface singularity.

Definition A.9.3.

(1) We say that f ∈ K[x], x = (x1, . . . , xn), has an isolated critical point at
p if p is an isolated point of V (∂f/∂x1, . . . , ∂f/∂xn). Similarly, we say
that p is an isolated singularity of f , or of the hypersurface V (f) ⊂ A

n
K ,

if p is an isolated point of V (f, ∂f/∂x1, . . . , ∂f/∂xn).7

(2) We call the number

μ(f, p) := dimK

(
K〈x1−p1, . . . , xn−pn〉

/〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉)

the Milnor number , and

τ(f, p) := dimK

(
K 〈x1−p1, . . . , xn−pn〉

/〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn

〉)

the Tjurina number of f at p. We write μ(f) and τ(f) if p = 0.

If p is an isolated critical point of f , then mp := 〈x1−p1, . . . , xn−pn〉 is a
minimal associated prime of 〈∂f/∂x1, . . . , ∂f/∂xn〉 by the Hilbert Nullstel-
lensatz and, therefore, ms

p ⊂ 〈∂f/∂x1, . . . , ∂f/∂xn〉 ·K[x]mp for some s. It
follows that the Milnor number μ(f, p) is finite and, similarly, if p is an iso-
lated singularity of V (f), then the Tjurina number τ(f, p) is finite, too.

By Lemma A.9.2 we can compute the Milnor number μ(f), resp. the Tju-
rina number τ(f), by computing a standard basis of 〈∂f/∂x1, . . . , ∂f/∂xn〉,
respectively 〈f, ∂f/∂x1, . . . , ∂f/∂xn〉 with respect to a local monomial order-
ing and then apply the Singular command vdim.

7 Examples of isolated and non–isolated hypersurface singularities are shown in
Figure A.23.
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Isolated Singularities

Non–isolated singularities

A1 : x2 − y2 + z2 = 0 D4 : z3 − zx2 + y2 = 0

A∞ : x2 − y2 = 0 D∞ : y2 − zx2 = 0

Fig. A.23. Isolated and non–isolated singularities.

We can use the interplay between local and global orderings to check the
existence of critical points and of singularities outside 0. For this we use the
(easy) facts:

• μ(f, p) = 0 if and only if p is a non–critical point of f , that is,

p �∈ V
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
=: Crit(f) ,

• τ(f, p) = 0 if and only if p is a non–singular point point of V (f), that is,

p �∈ V
(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
=: Sing(f) .

Note that we have the following equalities for the total Milnor number , re-
spectively the total Tjurina number , of f :
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dimK

(
K[x1, . . . , xn]

/〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉)
=

∑

p∈Crit(f)

μ(f, p) ,

dimK

(
K[x1, . . . , xn]

/〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn

〉)
=

∑

p∈ Sing(f)

τ(f, p) ,

Moreover, note that a singular point of f is a critical point of f which lies on
the hypersurface {f = 0}.
SINGULAR Example A.9.4 (Milnor and Tjurina number).
We compute the local and the total Milnor, respectively Tjurina, number
and check in this way, whether there are further critical, respectively singular,
points outside 0.

LIB "sing.lib";
ring r = 0,(x,y,z),ds; //local ring
poly f = x7+y7+(x-y)^2*x2y2+z2;
milnor(f);
//-> 28 //Milnor number at 0
tjurina(f);
//-> 24 //Tjurina number at 0

ring R = 0,(x,y,z),dp; //affine ring
poly f = x7+y7+(x-y)^2*x2y2+z2;
milnor(f);
//-> 36 //total Milnor number
tjurina(f);
//-> 24 //total Tjurina number

We see that the difference between the total and the local Milnor number
is 8; hence, f has eight critical points (counted with their respective Milnor
numbers) outside 0.

On the other hand, since the total Tjurina number coincides with the
local Tjurina number, V (f) ⊂ A

3 has no other singular points except 0.

The most simple singularities of a hypersurface are (ordinary) nodes: a crit-
ical point p = (p1, . . . , pn) of f ∈ K[x1, . . . , xn] is called a node or an A1–
singularity if there exist analytic coordinates y1, . . . , yn centred at p such
that f(y1, . . . , yn) = y2

1 + · · ·+ y2
n (that is, there exist ϕi ∈ K[[y1, . . . , yn]],

ϕi(0) = 0, i = 1, . . . , n, such that substituting xi by ϕi + pi, i = 1, . . . , n,
induces an isomorphism ϕ : K[[x1−p1, . . . , xn−pn]] → K[[y1, . . . , yn]] with
ϕ(f) = y2

1 + · · ·+ y2
n). In this definition, we assume that char(K) �= 2.

By the Morse lemma (cf. [164], [108], [128]), a critical point p of f is a
node if and only if the Hessian at p is nondegenerate, that is, if and only if

det
(

∂2f

∂xi∂xj
(p)

)
�= 0 .
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Moreover, as is not difficult to see, this is also equivalent to μ(f, p) = 1 and
also to τ(f − f(p), p) = 1 (in characteristic 0). Hence, we can count the num-
ber of nodes of a function as in the following example:

SINGULAR Example A.9.5 (counting nodes).
Consider f from Example A.9.4 and use the rings defined there. We compute
the ideal nn of critical points which are not nodes.

setring R;
ideal j = jacob(f); //ideal of critical locus
poly h = det(jacob(j)); //det of Hessian of f
ideal nn = j,h; //ideal of non-nodes
vdim(std(nn));
//-> 27
setring r; //go back to local ring
ideal nn = jacob(f),det(jacob(jacob(f)));
vdim(std(nn));
//-> 27

The computation in the affine ring R shows that there are, perhaps several,
non–nodes. The ideal of non–nodes of f is generated by ∂f/∂x1, . . . , ∂f/∂xn
and by the determinant of the Hessian det

(
∂2f/(∂xi∂xj)

)
. The Singular

command vdim(std(nn)) counts the number of non–nodes, each non–node
p being counted with the multiplicity

dimK

(
K〈x1−p1, . . . , xn−pn〉

/〈
∂f

∂x1
, . . . ,

∂f

∂xn
, det

(
∂2f

∂xi∂xj

)〉)

(which is equal to or less than the local Milnor number, since the determinant
of the Hessian reduces the multiplicity). The computation in the local ring
r shows, however, that 0 is the only non–node, since the multiplicity of the
non–nodes is 27 in both cases. Hence, all the critical points in A

3
� {0} of

f are nodes and there are 36− 28 = 8 of them (the singularity at 0 is, of
course, not a node, since it has Milnor number 29).

As the analytic local ring of a singularity is a quotient ring of a power series
ring, singularity theory deals with power series rather than with polynomials.
It is, however, a fundamental fact that isolated hypersurface singularities
are finitely determined by a sufficiently high jet (power series expansion up
to a sufficiently high order). That is, if f ∈ K〈x1, . . . , xn〉 has an isolated
singularity at 0, then there exists a k > 0 such that any g ∈ K〈x1, . . . , xn〉,
having the same k–jet as f , is right equivalent to g (that is, there exists an
automorphism ϕ of K〈x1, . . . , xn〉 such that ϕ(f) = g). We say that f is k–
determined in this situation, and the minimal such k is called the determinacy
of f . Hence, if f has an isolated singularity, then we can replace it by its k–jet
(which is a polynomial), without changing the singularity.
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The finite determinacy has important consequences, theoretical as well
as computational ones. A typical application is the construction of analytic
coordinate transformations ϕ =

∑
ν≥1 ϕν of K〈x1, . . . , xn〉, where ϕν is ho-

mogeneous of degree ν and which are constructed degree by degree. Usu-
ally, this process will not stop, but if f is k–determined, then we know that(∑

ν=1,...,k ϕν
)
(f) is right equivalent to f .

As a general estimate, we have that f ∈ K〈x1, . . . , xn〉 is
(
μ(f) + 1

)
–

determined, provided char(K) = 0 (cf. [128], [108]).
Using this estimate, the Morse lemma cited above is an easy consequence:

it follows that for f ∈ 〈x1, . . . , xn〉2 and μ(f) = 1, f is right equivalent to its
2–jet and, hence, a node.

The estimate μ(f) + 1 for the determinacy is, in general, not very good.
Instead, we have a much better estimate given by the following theorem (cf.
[128], [108]):

Theorem A.9.6. Let f ∈ m = 〈x1, . . . , xn〉 ⊂ K〈x1, . . . , xn〉, where K is a
field of characteristic 0. Then

mk+1 ⊂ m2 ·
〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉

implies that f is k–determined.

In particular, if mk ⊂ m · 〈∂f/∂x1, . . . , ∂f/∂xn〉, then f is k–determined. Of
course, we can compute, by the method of Section 1.8.1, the minimal k satisfy-
ing mk+1 ⊂ I := m2 · 〈∂f/∂x1, . . . , ∂f/∂xn〉, by computing a standard basis
G of I and then a normal form for mi with respect to G, for increasing i.

However, this can be avoided due to a very useful feature of Singular,
the so–called highest corner (cf. Definition 1.7.11). The highest corner of an
ideal I is the minimal monomial m (with respect to the monomial ordering)
such that m �∈ I. In case of a local degree ordering the highest corner exists
if and only if dimK K〈x1, . . . , xn〉/I is finite (Lemma 1.7.14). If we compute
a standard basis of I, then Singular computes automatically the highest
corner, if it exists. The command highcorner(I); returns it. Hence, if we
compute a standard basis of I with respect to a local degree ordering and if
the monomial m is the highest corner of I, then mdeg(m)+1 ⊂ I. We obtain

Corollary A.9.7. Let char (K) = 0, and let f ∈ m ⊂ K〈x1, . . . , xn〉 have an
isolated singularity. Moreover, let mi ∈ Mon(x1, . . . , xn) be the highest corner
of mi · 〈∂f/∂x1, . . . , ∂f/∂xn〉, i = 0, 1, 2 with respect to a local degree order-
ing. Then f is deg(mi) + 2− i determined.

SINGULAR Example A.9.8 (estimating the determinacy).
We compute the highest corner of 〈x, y〉i · 〈∂f/∂x, ∂f/∂y〉, i = 0, 1, 2, for the
E7–singularity f = x3+ xy3 ∈ C{x, y} and estimate the determinacy.
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ring r = 0,(x,y),ds;
poly f = x3+xy3;
ideal j = jacob(f);
ideal j1 = maxideal(1)*j;
ideal j2 = maxideal(2)*j;
j = std(j);
deg(highcorner(j));
//-> 4
j1 = std(j1);
deg(highcorner(j1));
//-> 4
j2 = std(j2);
deg(highcorner(j2));
//-> 5

Corollary A.9.7 implies, using the ideal j, that f is 6–determined. If we use
the ideals j1, respectively j2, it follows that f is 5–determined. One can
show that E7 is even 4–determined, hence Corollary A.9.7 provides only an
estimate for the determinacy (which, nevertheless, is quite good in general).

We should like to finish this section with two further applications of standard
bases in local rings: classification of singularities and deformation theory.
There are many more, some of them are in the Singular libraries and we
refer to the examples given there.

In a tremendous work, V.I. Arnold started, in the late sixties, the classi-
fication of hypersurface singularities up to right equivalence. His work culmi-
nated in impressive lists of normal forms of singularities and, moreover, in a
determinator for singularities which allows the determination of the normal
form for a given power series ([5]). This work of Arnold has found numerous
applications in various areas of mathematics, including singularity theory,
algebraic geometry, differential geometry, differential equations, Lie group
theory and theoretical physics. The work of Arnold was continued by many
others, we just mention C.T.C. Wall [224].

Most prominent is the list of ADE or simple or Kleinian singularities ,
which have appeared in surprisingly different areas of mathematics, and still
today, new connections of these singularities to other areas are being discov-
ered (see, for example, [62], [101]). Here is the list of ADE–singularities for
algebraically closed fields of characteristic 0 (for the classification in positive
characteristic see [52]). The names come from their relation to the simple Lie
groups of type A, D and E.

Ak : xk+1
1 + x2

2 + x2
3 + · · ·+ x2

n , k ≥ 1 ,
Dk : x1(xk−2

1 + x2
2) + x2

3 + · · ·+ x2
n , k ≥ 4 ,

E6 : x4
1 + x3

2 + x2
3 + · · ·+ x2

n ,
E7 : x2(x3

1 + x2
2) + x2

3 + · · ·+ x2
n ,

E8 : x5
1 + x3

2 + x2
3 + · · ·+ x2

n .
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A3–singularity D6–singularity E7–singularity

Fig. A.24. Some two–dimensional simple singularities.

Arnold introduced the concept of “modality”, related to Riemann’s idea of
moduli, into singularity theory and classified all singularities of modality ≤ 2
(and also of Milnor number ≤ 16), and many more. The ADE–singularities
are just the singularities of modality 0. Singularities of modality 1 are the
three parabolic singularities :

Ẽ6 = P8 = T333 : x3 + y3 + z3 + axyz, a3 + 27 �= 0 ,
Ẽ7 = X9 = T244 : x4 + y4 + ax2y2, a2 �= 4 ,
Ẽ8 = J10 = T236 : x3 + y5 + ax2y2, 4a3 + 27 �= 0 ,

the 3–indexed series of hyperbolic singularities

Tpqr : xp + yq + zr + axyz, a �= 0,
1
p

+
1
q

+
1
r
< 1 ,

and 14 exceptional families, cf. [5].
The proof of Arnold for his determinator is, to a great part, constructive

and has been partly implemented in Singular, cf. [140]. Although the whole
theory and the proofs deal with power series, everything can be reduced to
polynomial computations, since we deal with isolated singularities, which are
finitely determined, as explained above.

An important initial step in Arnold’s classification is the generalized
Morse lemma, or splitting lemma, which says that

f ◦ ϕ(x1, . . . , xn) = x2
1 + · · ·+ x2

r + g(xr+1, . . . , xn) ,

for some analytic coordinate change ϕ and some power series g ∈ m3, if the
rank of the Hessian matrix of f at 0 is r.

The determinacy allows the computation of ϕ up to sufficiently high order
and the polynomial g. This has been implemented in Singular and is a
cornerstone in classifying hypersurface singularities.

In the following example we use Singular to obtain the singularity T5,7,11

from a database A L (“Arnold’s list”), make some coordinate change and de-
termine then the normal form of the complicated polynomial after coordinate
change.
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SINGULAR Example A.9.9 (classification of singularities).

LIB "classify.lib";
ring r = 0,(x,y,z),ds;
poly f = A_L("T[5,7,11]"); f;
//-> xyz+x5+y7+z11

map phi = r, x+z,y-y2,z-x;
poly g = phi(f); g;
//-> -x2y+yz2+x2y2-y2z2+x5+5x4z+10x3z2+10x2z3+5xz4+z5+y7
//-> -7y8+21y9-35y10-x11+35y11+11x10z-55x9z2+165x8z3
//-> -330x7z4+462x6z5-462x5z6+330x4z7-165x3z8+55x2z9
//-> -11xz10+z11-21y12+7y13-y14

quickclass(g);
//-> Singularity R-equivalent to : T[k,r,s]=T[5,7,11]
//-> normal form : xyz+x5+y7+z11
//-> xyz+x5+y7+z11

Beyond classification by normal forms, the construction of moduli spaces for
singularities, for varieties or for vector bundles is a pretentious goal, theoret-
ically as well as computational. First steps towards this goal for singularities
were undertaken in [19] and [76].

Let us finish with a few remarks about deformation theory. Consider a sin-
gularity (X, 0) given by power series f1, . . . , fk ∈ K〈x1, . . . , xn〉. The idea of
deformation theory is to perturb the defining functions in a controlled way,
that is, we consider power series F1(t, x), . . . , Fk(t, x) with Fi(0, x) = fi(x),
where t ∈ S may be considered as a small parameter of a parameter space S
(containing 0).

For t ∈ S, the power series fi,t(x) = Fi(t, x) define a singularity Xt, which
is a perturbation of X = X0 for t �= 0 close to 0. It may be hoped that Xt

is simpler than X0, but still contains enough information about X0. For this
hope to be fulfilled, it is, however, necessary to restrict the possible pertur-
bations of the equations to flat perturbations, which are called deformations
(cf. Chapter 7 for the notion of flatness).

By a theorem of Grauert [98], for any isolated singularity (X, 0) there ex-
ists a semi–universal (or miniversal) deformation, which contains essentially
all information about all deformations of (X, 0).

For an isolated hypersurface singularity f(x1, . . . , xn), the semi–universal
deformation is given by

F (t, x) = f(x) +
τ∑

j=1

tjgj(x) ,

where 1 =: g1, g2, . . . , gτ represent a K–basis of the Tjurina algebra
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K〈x1, . . . , xn〉
/〈

f,
∂f

∂x1
, . . . ,

∂f

∂xn

〉
,

τ being the Tjurina number.
To compute g1, . . . , gτ we only need to compute a standard basis of the

ideal 〈f, ∂f/∂x1, . . . , ∂f/∂xn〉 with respect to a local ordering and then com-
pute a basis of K[x] modulo the leading monomials of the standard basis.
For complete intersections, that is, singularities whose analytic local rings
are complete intersection rings, we have similar formulas.

Fig. A.25. Deformation of an E7–singularity in four A1–singularities.

For non–hypersurface singularities, the semi–universal deformation is
much more complicated and, up to now, no finite algorithm is known in
general. However, there exists an algorithm to compute this deformation up
to arbitrary high order (cf. [145], [158]), which is implemented in Singular.

As an example, we calculate the semi–universal deformation of the normal
surface singularity, being the cone over the rational normal curve C of degree
4, parametrized by t �→ (t, t2, t3, t4). Homogeneous equations for the cone over
C are given by the 2× 2–minors of the matrix:

m :=
(
x y z u

y z u v

)
∈Mat(2× 4, K[x, y, z, u, v]) .

SINGULAR Example A.9.10 (deformation of singularities).

LIB "deform.lib";
ring r = 0,(x,y,z,u,v),ds;
matrix m[2][4] = x,y,z,u,y,z,u,v;
ideal f = minor(m,2); //ideal of 2x2 minors of m
versal(f); //computes semi-universal deformation
setring Px; //data are contained in the ring Px
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Fs;
//-> Fs[1,1]=-u2+zv+Bu+Dv
//-> Fs[1,2]=-zu+yv-Au+Du
//-> Fs[1,3]=-yu+xv+Cu+Dz
//-> Fs[1,4]=z2-yu+Az+By
//-> Fs[1,5]=yz-xu+Bx-Cz
//-> Fs[1,6]=-y2+xz+Ax+Cy
Js;
//-> Js[1,1]=BD
//-> Js[1,2]=-AD+D2
//-> Js[1,3]=-CD

The ideal Js = 〈BD,AD −D2, CD〉 ⊂ K[A,B,C,D] defines the required
base space, which consists of a 3–dimensional component (D = 0) and a
transversal 1–dimensional component (B = C = A−D = 0). This was the
first example, found by Pinkham, of a base space of a normal surface singu-
larity having several components of different dimensions.

The full versal deformation is given by the canonical map (Fs and Js as
above) K[[A,B,C,D]]/Js → K[[A,B,C,D, x, y, z, u, v]]/〈Js, Fs〉.

Although, in general, the equations for the versal deformation are formal
power series, in many cases of interest (as in the example above) the algorithm
terminates and the resulting ideals are polynomial.

Finally, let us compute the discriminant of the semi-universal deformation of
the hypersurface singularity A3.

Fig. A.26. Swallow tail , the discriminant of the semi-universal deformation of the
hypersurface singularity A3.
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ring s = 0,x,ds;
poly f = x4;
versal(f);
setring Px;
Fs; //the semi-universal deformation
//-> Fs[1,1]=x4+Ax2+Bx+C

The discriminant of Fs is the ideal describing the locus of points (A,B,C)
in the base space of the semi–universal deformation such that the polyno-
mial x4+Ax2+Bx+ C has multiple roots. We compute it by projecting the
singular locus of the semi–universal deformation to the parameter space.

ideal sing = Fs,diff(Fs,x); //the singular locus
eliminate(sing,x); //the discriminant
//-> _[1]=256C3-27B4+144AB2C-128A2C2-4A3B2+16A4C

Let us plot the discriminant.

LIB"surf.lib";
plot(256C3-27B4+144AB2C-128A2C2-4A3B2+16A4C);



B. Polynomial Factorization

In this section we shall give a short introduction to univariate and multivari-
ate polynomial factorization. The aim is to present the basic algorithms for
polynomial factorization over finite fields Fq, the rational numbers Q, and
algebraic extensions of these fields. Finally we explain absolute factorization,
i.e. factorization over the algebraic closure of a field.

Factorization of polynomials from K[x1, . . . , xn] is, besides Gröbner ba-
sis computation, the most important tool for computational commutative
algebra and algebraic geometry. It is used, for example, in any primary de-
composition algorithm. In contrast to Gröbner basis methods, algorithms for
polynomial factorization depend in an essential way on the ground field K.
On the other hand, we face again the problem of intermediate coefficient
swell when working over non finite fields. Therefore, factorization over Q is
reduced to factorization over finite fields, together with Hensel lifting. This
works quite well since checking of the result is easy (in contrast to Gröbner
basis computation).

Multivariate factorization over K is reduced to univariate factorization
by substituting all variables except one by a randomly chosen constant and
going back to several variables again by Hensel lifting.

In the last section we explain absolute factorization of multivariate poly-
nomials f from K[x1, . . . , xn] where K is a field of characteristic zero. That
is, we compute a suitable algebraic field extension L of K and the factoriza-
tion of f into irreducible factors in L[x1, . . . , xn] which is the factorization of
f in K[x1, . . . , xn], where K is an algebraic closure of K.

We start with the univariate case and with a partial factorization (square-
free factorization and distinct degree factorization) which uses only gcd–
computations and is therefore fast and hence indispensible as preprocessing.

We assume the reader to be familiar with the elementary notions and
results of factorization in unique factorization domains. In particular, every
non–constant polynomial f ∈ K[x1, . . . , xn] factorizes as f = f1 · . . . · fr
with fi ∈ K[x1, . . . , xn] � K irreducible. This factorization is unique up to
multiplication with non–zero constants and permutation of the irreducible
factors fi.
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B.1 Squarefree Factorization

Let K be a field of characteristic p. In this chapter we will explain how to
decompose a univariate polynomial g ∈ K[x] as a product g =

∏k
i=1 g

i
(i) of

powers of pairwise coprime1 squarefree factors g(1), . . . , g(k).

Definition B.1.1. (1) g ∈ K[x] is called squarefree if g is not constant and
if it has no non–constant multiple factor, that is, each irreducible factor
of g appears with multiplicity 1.

(2) Let g ∈ K[x], g =
∏k
i=1 g

i
(i) is called the squarefree factorization of g if

g(1), . . . , g(k) are squarefree, and those g(i), which are non–constant are
pairwise coprime.

It follows from the existence and uniqueness of the factorization of f into
irreducible factors that the squarefree factorization exists and the squarefree
factors are unique up to multiplication by a non–zero constant.

Example B.1.2. Let g = x2(x+1)2(x+3)4(x2+1)5 ∈ Q[x] then g(1) = g(3) = 1
and g(2) = x(x+ 1), g(4) = x+ 3, g(5) = x2 + 1.

As the case of char K = 0 is an easy exercise using some of the same ideas
as in the following proposition we concentrate from this point on on the case
of fields of positive characteristic.

Proposition B.1.3. Let f ∈ Fq[x] be non–constant with q = pr and p prime.
Then f is squarefree if and only if f ′ �= 0 and gcd(f, f ′) = 1.

Proof. If f ′ = 0 then f =
∑s
j=0 ajx

pj . Since p–th roots exist in Fq, i.e.
aj = bpj for suitable bj ∈ Fq, this implies f =

∑
bpjx

pj = (
∑
bjx

j)p.
Let f ′ �= 0 and h an irreducible polynomial with h| gcd(f, f ′). Then f =

h · g and h|(f ′ = h′g + hg′). If h′ = 0 then h is a p–th power and hence f is
not squarefree. Otherwise h|(h′g) and, since h is irreducible, h|g. This implies
h2|f and again f is not squarefree. Conversely, if f = h2 · g then h|f ′ and
gcd (f, f ′) �= 1.

The following lemma is the basis for the algorithm to compute the square-
free decomposition.

Lemma B.1.4. Let f ∈ Fq[x] and f ′ �= 0. If f =
∏k
i=1 f

i
(i) is the squarefree

decomposition then

g := gcd(f, f ′) =
∏

p|j
f j(j)

k∏

i=2,p�i

f i−1
(i) .

1 f and g are called coprime if gcd (f, g) = 1.
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Proof. The fact that g|f is clear. The product rule implies

f ′ = g ·
k∑

i=2,p�i

(i · f ′
(i) ·

∏

j �=i,p�j

f(j)).

It remains to prove that gcd(f,
∑k

i=2,p�i if
′
(i)

∏
j �=i,p�j f(j)) = 1 .

Let h be irreducible such that h| fg and h| f ′

g . There exist l such that p � l

and h|f(l) and h � f(j) for j �= l since the f(j) are pairwise coprime. This
implies that h|l · f ′

(l)

∏
j �=l,p�j f(j) and therefore h|f ′

(l). But f(l) is squarefree
and this is impossible.

Lemma B.1.5. Let f ∈ Fq[x] and f =
k∏
i=1

f i(i) be the squarefree decomposi-

tion. Let g0 = gcd(f, f ′) and w0 = f
g0

, and define inductively for i ≤ k

wi = gcd(gi−1, wi−1) and gi =
gi−1

wi
.

Then
wν =

∏

p�i,i≥ν+1

f(i) and gν =
∏

p|i
f i(i) ·

∏

p�i,i≥ν+2

f i−ν−1
(i) ,

especially

wk = 1, gk =
∏

p|i
f i(i), and

wi−1

wi
= f(i) if p � i .

Proof. The proof is left as exercise.

By Lemma B.1.5 we get the squarefree factors f(i) of f by gcd–computations
if p � i. If p | i then the factors f(i) are contained in gk which is of the form
(g̃)p for some g̃ and we can apply the lemma to g̃. This leads to the following
algorithm.

Algorithm B.1.6 (squarefreeDeco (f)).

Input: f ∈ Fq[x] monic
Output: a list of monic polynomials f1, . . . , fk ∈ Fq[x]

such that f =
k∏
i=1

f i(i) is the squarefree decomposition

• i = 0; L = ∅;
• if (f ′ = 0)

compute g ∈ Fq[x] such that f = gp;
{g1, . . . , gs} = squarefreeDeco(g);
return {(1, . . . , 1︸ ︷︷ ︸

p−1

, g1, 1, . . . , 1︸ ︷︷ ︸
p−1

, g2, 1, . . . , gs)}
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• g0 = gcd(f, f ′); ω0 = f
g0

;
• while (wi �= 1)

i = i+ 1;
wi = gcd(fi−1, wi−1); gi = gi−1

wi
;

L[i] = wi−1
wi

;
• if (gi = 1)

return L;
• {h1, . . . , hs} = squarefreeDeco(gi)

For j = 1 to s
L[j] = L[j] · hj ;

return L;

We give now an example to show how the algorithm works.

Example B.1.7. f = x(x + 1)2(x2 + x+ 1)3 ∈ F2[x]

• f ′ = (x + 1)4(x2 + x+ 1)2

• g0 = gcd(f, f ′) = (x+ 1)2(x2 + x+ 1)2 w0 = f
g0

= x(x2 + x+ 1)
• w1 = gcd(g0, w0) = x2 + x+ 1 g1 = g0

w1
= (x+ 1)2(x2 + x+ 1)

L[1] = w0
w1

= x

• w2 = gcd(g1, w1) = x2 + x+ 1 g2 = g1
w2

= (x+ 1)2

L[2] = w1
w2

= 1
• w3 = gcd(g2, w2) = 1 g3 = g2

w3
= (x+ 1)2

L[3] = w2
w3

= x2 + x+ 1
• i = 3 and g3 = (x + 1)2

squarefreeDeco(g3)={1, x+ 1}
L[1] = x · 1 = x
L[2] = 1 · (x+ 1) = x+ 1
L[3] = x2 + x+ 1

B.2 Distinct Degree Factorization

In this section we describe an (optional) preprocessing step for the factoriza-
tion. We show how to factor a given squarefree polynomial f ∈ Fq[x] into a
product f = f[1] · . . . · f[m] , where f[i] is the product of all irreducible factors
of f of degree i.

Recall that two finite fields Fq and Fq′ satisfy: Fq can be embedded as a
subfield of Fq′ iff, for some prime number p, q = pd, q′ = pd

′
and d|d′. Recall

also that Fqd is the splitting field of xq
d − x ∈ Fq[x].

Lemma B.2.1. The polynomial xq
d − x is the product of all monic, irre-

ducible polynomials g ∈ Fq[x] whose degree is a divisor of d.
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Proof. It is easy to see that xq
d − x is squarefree; as d

dx(xq
d − x) = −1 this

is a consequence of B.1.3. Let g ∈ Fq[x] be monic and irreducible of degree
e. We have to prove that e|d if and only if g|(xqd − x). Assuming e|d, then
Fqe = Fq[x]/〈g〉 can be embedded as a subfield of Fqd . If α ∈ Fqe is a root
of g then αq

d − α = 0. This implies that g|(xqd − x). Assume now that
g|(xqd − x). Then there is a subset L ⊂ Fqd such that g =

∏
a∈L(x− a). Let

α ∈ Fqe = Fq[x]/〈g〉 be a zero of g then Fq(α) = Fq[x]/〈g〉. Fq(α) ⊂ Fqd

implies e|d.

Corollary B.2.2. Let f ∈ Fq[x] be squarefree. Then gcd(f, xq
d−x) =

∏
i|d
f[i],

where f[i] denotes the product of all irreducible factors of f of degree i ≥ 1.

Example B.2.3. In F2[x] we have
x16 − x =
x(x + 1)︸ ︷︷ ︸

f[1]

(x2 + x+ 1)(x4 + x+ 1)︸ ︷︷ ︸
f[2]

(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)︸ ︷︷ ︸
f[4]

.

We obtain the following algorithm to compute a squarefree polynomial
into factors of distinct degrees.

Algorithm B.2.4 (distinctDegFac (f)).

Input: f ∈ Fq[x] monic, squarefree

Output: (f[d1], d1), . . . , (f[d2], d2) such that f =
s∏
i=1

f[di] and

f[di] is the product of all irreducible factors of f of degree di

• d = 0; R = ∅;
• g0 = f, h0 = x;
• while (d ≤ deg(gd)

2 − 1)
d = d+ 1;
hd = hqd−1 mod gd−1;
f[d] = gcd(gd−1, hd − x);
if (f[d] �= 1)
R = R ∪ {(f[d], d)};
gd = gd−1

f[d]
;

• If (gd �= 1)
R = R ∪ {(gd, deg(gd))};

• Return R;

Example B.2.5. Let f = x15 − 1 ∈ F11[x]

• g0 = f = x15 − 1, h0 = x
• d = 1, h1 = x11, f[1] = gcd(x15 − 1, x11 − x) = x5 − 1
g1 = g0

f[1]
= x10 + x5 + 1, R = {(x5 − 1, 1)}
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• d = 2 h2 = x121 mod (x10 + x5 + 1) = x
f[2] = gcd(x10 + x5 + 1, 0) = x10 + x5 + 1
g2 = g1

f[2]
= 1, R = {(x5 − 1, 1), (x10 + x5 − 1, 2)}.

We obtain that f = (x5 − 1)(x10 + x5 + 1) has 5 factors of degree 1 and
5 factors of degree 2.

B.3 The Algorithm of Berlekamp

In the previous section we described partial factorization methods, based on
gcd–computation. In this section we describe the algorithm of Berlekamp
and its improvement by Cantor and Zassenhaus which computes a complete
factorization of polynomials in Fq[x].

Let f ∈ Fq[x] be a squarefree, non–constant, monic polynomial. Let f =
f1 · . . . · fs be the irreducible decomposition of f , which we want to compute.
The key tool in Berlekamp’s algorithm is the Frobenius map F : Fq[x] →
Fq[x], F (h) = hq, which reduces the factorization problem to linear algebra.
F is an Fq–linear endomorphism of Fq[x]. It induces an endomorphism

φ : Fq[x]/〈f〉 → Fq[x]/〈f〉,

φ(h̄) = h̄q − h̄, of the finite dimensional Fq–vector space Fq[x]/〈f〉.
Lemma B.3.1. With the notations above we have

(1) dimFq(Ker(φ)) = s .
(2) Let h ∈ Fq[x] represent h̄ ∈ Ker(φ) then

f =
∏

a∈Fq

gcd(f, h− a) .

.
(3) Let 1 = h1, h2, . . . , hs ∈ Fq[x] represent a basis of Ker(φ). Then, for all

1 ≤ i < j ≤ s, there exist k ∈ {2, . . . , s} and a, b ∈ Fq, a �= b, such that

fi|(hk − a) and fj |(hk − b) .

In particular gcd(f, hk − a) is a proper factor of f .

Proof. We use the Chinese remainder theorem (Exercise 1.3.13) and obtain
an isomorphism

χ : Fq[x]/〈f〉 ∼−→ Fq[x]/〈f1〉 ⊕ . . .⊕ Fq[x]/〈fs〉,
χ(h mod 〈f〉) = (h mod 〈f1〉, . . . , h mod 〈fs〉).

If di = deg(fi) then Fq[x]/〈fi〉 ∼= Fqdi .
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Now h̄ = h mod 〈f〉 ∈ Ker(φ) if and only if h̄ = h̄q. This is the case if
and only if (h mod 〈fi〉)q = h mod 〈fi〉, i.e. hq − h ∈ 〈fi〉, for 1 ≤ i ≤ s.
But in Fqdi we have αq = α if and only if α ∈ Fq. This implies that

Ker(φ) = χ−1(Fq ⊕ . . .⊕ Fq)

which is an s–dimensional Fq–vector space. This proves (1).
To prove (2) let h ∈ Fq[x] represent h̄ ∈ Ker(φ) and χ(h̄) = (a1, . . . , as).

Then, as discussed in the proof of (1), we have ai ∈ Fq. This implies fi|(h−ai)
hence fi|

∏
a∈Fq

(h−a). Since the f1, . . . , fs are pairwise coprime we obtain that

f | ∏
a∈Fq

(h − a). On the other hand the h − a, a ∈ Fq, are pairwise coprime.

Hence, each irreducible factor fi occurs in precisely one of the h − a. This
implies

f =
∏

a∈Fq

gcd(f, h− a).

To prove (3), consider fi, fj for i < j. Since {h̄1, . . . , h̄s} is a basis of Ker(φ) =
χ−1(Fq⊕. . .⊕Fq) there exist k ≥ 2 such that χ(hk) = (a1, . . . , as) and ai �= aj .
But fi|(hk−ai) and fj|(hk−aj). This proves (3) with a = ai and b = aj .

The lemma is the basis of Berlekamp’s algorithm.

Algorithm B.3.2 (Berlekamp(f)).

Input: f ∈ Fq[x] squarefree, non-constant and monic
Output: f1, . . . , fs the irreducible factors of f

• Compute representatives 1, h2, . . . , hs ∈ Fq[x] of a basis of Ker(φ)
• R = {f}; I = ∅;
• while (#R+ #I < s)

choose g ∈ R;
h = 1; i = 1;
while ((i < s) and ((h = 1 or (h = g)))
i = i+ 1;
for a ∈ Fq do
h = gcd(g, hi − a);

if (h �= g)
I = I ∪ {h};
R = (R � {g}) ∪ { gh};

else
R = R� {g};
I = I ∪ {g};

• return R ∪ I;
Let us consider the following example.
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Example B.3.3. Let f = x8 + x6 + x4 + x3 + 1 ∈ F2[x] then {1, x, . . . , x7} is
a basis of F2[x]/〈f〉. With respect to this basis φ has the following matrix.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 1
0 1 1 0 0 1 1 0
0 0 0 1 1 1 0 1
0 0 1 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We obtain that h1 = 1 and h2 = x+ x2 + x5 + x6 + x7 induce a basis of
Ker(φ). Now gcd(f, h2) = x6 +x5 +x4 +x+1 and gcd(f, h2−1) = x2 +x+1.
This implies

f = (x6 + x5 + x4 + x+ 1)(x2 + x+ 1)

which is the decomposition of f into irreducible factors.

Remark B.3.4. (1) If q is a power of 2, say q = 2r for some r, then xq − x =
Tr(x)(Tr(x) + 1) with Tr(x) =

∑r−1
i=0 x

2i

.
(2) If q is odd, then xq − x = x(x

q−1
2 + 1)(x

q−1
2 − 1).

Applying these observations to k, we obtain the following corollary which
is the basis for the probabilistic algorithm of Cantor and Zassenhaus.

Corollary B.3.5. Let f be squarefree and let h ∈ Fq[x] satisfy hq − h ∈ 〈f〉,
that is, h induces an element h̄ ∈ Ker(φ).

(1) If q = 2r, then

f = gcd(f,Tr(h)) · gcd(f,Tr(h) + 1).

(2) If q is odd, then

f = gcd(f, h) · gcd(f, h
q−1
2 + 1) · gcd(f, h

q−1
2 − 1).

It is not difficult to see that for a monic squarefree polynomial f with
s ≥ 2 irreducible factors in case (1) the probabiliby of gcd(f,Tr(h)) being
non–trivial is at least 1

2 . Similarly the decomposition of (2) is non–trivial
with probability at least 1

2 .
Using this, we obtain the improvement of Berlekamp’s algorithm by Can-

tor and Zassenhaus. This algorithm is usually more efficient due to fewer
gcd–computations.
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Algorithm B.3.6 (BerlekampCantorZassenhaus(f)).

Input: f ∈ Fq[x] squarefree, non–constant and monic
Output: f1, . . . , fs the irreducible factors of f

• Compute representatives 1, h2, . . . , hs ∈ Fq[x] of a basis of Ker(φ)

• define the function T (h) =
{
h

q−1
2 − 1 if q odd

Tr(h) if q even
• R = {f};
• while (#R < s)

choose g ∈ R at random
choose c = (c1, . . . , cs) ∈ F

s
q � {0} at random

h = c1 + c2h2 + · · ·+ cshs;
w = gcd(g, T (h));
if (w �= 1 and w �= g)
R = (R� {g}) ∪ {w, gw};• return R

Example B.3.7. Let f = x6 − 3x5 + x4 − 3x3 − x2 − 3x+ 1 ∈ F11[x]

• 1, h2 = x4 + x3 + x2 + x, h3 = x5 − 2x3 − 4x2 induces a basis of Ker(φ)
• R = {f}
• random choice h = 3− 2h2 + 5h3

• gcd(f, h5 − 1) = x5 − 4x4 + 5x3 + 3x2 − 4x+ 1 = w
• R = {x+ 1, w}
• random choice h = 2 + 3h2 + 4h3

• gcd(w, h5 − 1) = 1
• random choice h = 1 + 3h2 − 4h3

• gcd(w, h5 − 1) = x2 + 5x+ 3
• R = {x+ 1, x2 + 5x+ 3, x3 + 2x2 + 3x+ 4}

We obtain as factorization

f = (x + 1)(x2 + 5x+ 3)(x3 + 2x2 + 3x+ 4).

B.4 Factorization in Q[x]

In this chapter we shall show how to relate the problem of factorization in
Q[x] with factorization in Fp[x] for a suitable p. First of all let us consider an
example, showing that this relation is by no means obvious.

Example B.4.1. The polynomial x4 + 1 is irreducible in Z[x] and Q[x] but
reducible in Fp[x] for all prime numbers p.
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Proof. Obviously x4 +1 has no linear factor in Q[x] because its zero’s are not
real. Moreover it is easy to see that x4 + 1 = (x2 + ax+ b)(x2 + cx+ d) has
no solution for a, b, c, d in Q. This implies that x4 + 1 is irreducible in Z[x],
and hence in Q[x] by the lemma of Gauss (Proposition B.4.3).

In F2[x] we have x4+1 = (x+1)4. To prove reducibility for the odd primes
we fix a prime number p > 2 and apply the theory of the previous sections.
The polynomial x4 + 1 is squarefree by Proposition B.1.3 since gcd(x4 +
1, 4x3) = 1. Let us consider the endomorphism introduced in B.3

φ : Fp[x]/〈x4 + 1〉 → Fp[x]/〈x4 + 1〉,
φ(h̄) = h̄p − h̄. To prove that x4 + 1 is reducible, we have to prove that
Ker(φ) is non–trivial. We choose the basis {1, x, x2, x3} in Fp[x]/〈x4 + 1〉.
With respect to this basis we compute the matrix of φ.

If p ≡ 1(8) then xp ≡ x mod x4 + 1 and therefore φ is the zero–map.
A basis of Ker(φ) is {1, x, x2, x3}. If p ≡ 1(4) and p �≡ 1(8) then xp ≡ −x
mod x4 + 1 and we obtain

⎛

⎜⎜⎝

0 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 −2

⎞

⎟⎟⎠

as the matrix of φ. A basis of Ker(φ) is {1, x2}. If p = 4r+3 then xp ≡ (−1)rx3

mod x4 + 1 and we obtain
⎛

⎜⎜⎝

0 0 0 0
0 −1 0 (−1)r

0 0 −2 0
0 (−1)r 0 −1

⎞

⎟⎟⎠

as the matrix of φ. A basis of Ker(φ) is {1, x3 + (−1)rx}.
We deduce the following splitting of x4 + 1:

If p ≡ 1(8) then x4 + 1 =
4∏
i=1

(x− ai), where a4
i = −1 for 1 ≤ i ≤ 4.

If p ≡ 1(4) and p �≡ 1(8) then x4 + 1 = (x2 + a)(x2 − a), where a2 = −1.
If p = 4r + 3 then x4 + 1 = (x2 − (−1)rax− (−1)r)(x2 + (−1)rax− (−1)r),
where a2 = −(−1)r · 2.

Next we will show that irreducibility in Z[x] and Q[x] is (modulo integer
factors) the same.

Definition B.4.2. f =
∑n

ν=0 aνx
ν ∈ Z[x] is called a primitive polynomial if

gcd(a0, . . . , an) = 1. The integer gcd(a0, . . . , an) is called the content of f . It
is unique up to sign. Any g ∈ Z[x] � {0} can be uniquely written as g = cf
where c ∈ Z is the content of g and f ∈ Z[x] is primitive with an > 0. f is
called the primitive part of g.
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Of course, every g ∈ Z[x] � {0} can be made primitive by dividing it by
its content.

Proposition B.4.3 (Gauss). Let f ∈ Z[x] be a primitive polynomial. Then
f is irreducible in Z[x] if and only if f is irreducible in Q[x].

Proof. Obviously f irreducible in Q[x] and f primitive implies f ∈ Z[x]
irreducible. Conversely, assume f ∈ Z[x] being irreducible but f = f1 · f2 in
Q[x], where deg(fi) > 0. We can choose n1, n2 ∈ Q such that nifi ∈ Z[x]
are primitive polynomials. Now consider in Q[x] the equation (n1n2)f =
(n1f1) · (n2f2). Since nifi ∈ Z[x] we have n1n2f ∈ Z[x].

Since Z[x] is a unique factorization domain and n1f1, n2f2 are primitive
it follows n1n2 = 1. This is a contradiction.

The following example illustrates the way we want to factor polynomials
in Z[x]. We use Hensel lifting (cf. Proposition B.4.10), that is, for a fixed
prime p, we try to lift a given factorization over Z/p, to Z/pk for increasing
k.

Example B.4.4. Let F = x5 − 5x4 + 10x3 − 10x2 + 1 ∈ Z[x]. We consider
f = F (mod 2) = x5+x4+1 in F2[x]. Here f ′ = x4 and hence f is squarefree.
With respect to the basis 1, x, x2, x3, x4 of F2[x]/〈f〉 we obtain the following
matrix for φ ⎛

⎜⎜⎜⎜⎝

0 0 0 1 1
0 1 0 1 1
0 1 1 0 1
0 0 0 1 1
0 0 1 1 0

⎞

⎟⎟⎟⎟⎠
.

This implies that {1, x4 + x3 + x2} is a basis of Ker(φ). We compute that
gcd(x5 + x4 + 1, x4 + x3 + x2) = x2 + x + 1, which implies x5 + x4 + 1 =
(x2 + x+ 1)(x3 + x+ 1).

Let g1 = x2 + x + 1 and h1 = x3 + x + 1. Note that in F2[x] we have
1 = (x+ 1)h1 + x2g1, that is, h1 and g1 are coprime.

We consider g1 and h1 as polynomials in Z[x] and obtain F − g1h1 =
−6x4 +8x3−12x2−2x. In order to lift the decomposition f = g1h1 in Z/2[x]
to a decomposition F (mod 4) = g2h2 in Z/4[x] we make the Ansatz (using
that n ∈ Z can be written as finite sum n = ±∑

εi2i, εi ∈ {0, 1})
g2 = g1 + 2s
h2 = h1 + 2t

with s, t ∈ Z[x]. We can lift the factorization if and only if f = g2h2(mod 4),
that is

F − g1h1

2
≡ g1t+ h1s mod 2.

This implies s = 0 and t = x2 + x and we obtain
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g2 = x2 + x+ 1, h2 = x3 + 2x2 + 3x+ 1.

We make the Ansatz
g3 = g2 + 4s
h3 = h2 + 4t

to lift the factors to Z/8[x]. We obtain as condition for lifting

F − g2h2

4
= −2x4 + x3 − 4x2 − x ≡ g2t+ h2s mod 2.

This implies s = x and t = x2 and hence g3 = x2 + 5x + 1, h3 = x3 +
6x2 + 3x+ 1 in Z/8[x]. In order to have unique representatives in Z[x] with
coefficients in [−4, 4) we choose g3 = x2 − 3x + 1, h3 = x3 − 2x2 + 3x + 1.
These are the true factors of F , which we can easily check by multiplying g3
with h3.

In this example everything worked well. The following two examples show
that not every prime p is good (Example B.4.5) and that F may have more
factors over Z/pk than over Z. In this case we have to check whether products
of factors over Z/pk are factors over Z. Moreover, if f = anx

n+· · ·+a1x+a0 ∈
Z[x] is not normalized, an may become a unit in Z/p and then we have to
distribute the integer factors of an to the lifted factors in an appropriate
manner (Example B.4.6).

Example B.4.5. F = x4 + 3x3 − 13x2 + 6x− 30 has the following properties:

(1) F is squarefree and primitive in Z[x]
(2) F is not squarefree in F3[x] (that is, 3 is not a good prime)
(3) F is squarefree in F5[x], namely F = x(x− 2)(x2 + 2)
(4) The factors lift to F = (x+45)(x−42)(x2 +2) in Z/54[x] and 45, 42, 2 ∈[− 1

254, 1
254

]
.

(5) x2 + 2 is a factor of F in Z[x] but x + 45 and x − 42 are not. We have
that F = (x2 + 2)(x2 + 3x − 15), with x2 + 3x − 15 irreducible in Z[x]
and representing (x+ 45)(x− 42) in Z/54[x].

Example B.4.6. F = 12x3 + 10x2 − 36x+ 35 has the following properties:

(1) It is squarefree and primitive in Z[x], but not normalized
(2) F = 2x(x2 + 2) in F5[x]
(3) F = 12(x+ 315)(x2 − 210x+ 103) in Z/54[x].

(4) By checking all possibilities we find that the factors 2 resp. 6 of 12 (which
is a unit in Z/54) have to be distributed as factors of the first resp. second
irreducible factor of F over Z/54.
Then we get F = (2x+ 5)(6x2 − 10x+ 7) in Z[x].



B.4 Factorization in Q[x] 549

The idea of Berlekamp and Zassenhaus is as in the above examples: Reduce
the factorization problem for f in Z[x] to factorization in Z/p[x] and lift the
result to Z/pN [x] with the choice of the coefficients in [− 1

2p
N , 1

2p
N ), a bound

for N is given in Proposition B.4.9. First of all we have to make f primitive
(by dividing by the content) and then apply the squarefree decomposition
of section B.1. Then we apply the following algorithm of Berlekamp and
Zassenhaus.

Algorithm B.4.7 (UnivariateFactorize).

Input: f ∈ Z[x], deg(f) > 1, f primitive and squarefree
Output: f1, . . . , fs ∈ Z[x] irreducible, deg(fi) ≥ 1 and f = f1 · . . . · fs.
(1) choose a prime p such that f̄ := f mod pZ[x] is squarefree of the same

degree as f (a random prime number will do)
(2) compute the irreducible factors ḡ1, . . . , ḡs of f̄ in Fp[x] (using Berlekamp’s

algorithm from section B.3)
(3) choose an integer N such that the coefficients of each factor of f in Z[x]

are integers in [− 1
2p
N , 1

2p
N) (choose N to be the bound from Proposition

B.4.9)
(4) lift the irreducible factorization ḡ1 · . . . · ḡs to a factorization g̃1 · . . . · g̃s

of f in Z/pN [x] (using Hensel–lifting B.4.10)
(5) Take products of a subset of the (unique) representatives g1, . . . , gs ∈ Z[x]

of g̃1, . . . , g̃s with coefficients in [− 1
2p
N , 1

2p
N ) in an appropriate way to

obtain the true factors (cf. Algorithm B.4.11).

We shall now discuss the details of steps (3) - (5) of the above algorithm.
First we give bounds for the coefficients of the factors of f .

Definition B.4.8. Let f =
∑n
i=0 aix

i ∈ C[x] and denote by the quadratic
norm of f ‖f‖2 :=

√∑n
i=0 |ai|2 and by M(f) := |am|

∏n
i=1 max{1, |zi|} the

measure of f , where z1, . . . , zn ∈ C are the roots of f .

Proposition B.4.9. Let g =
k∑
i=0

bix
i ∈ Z[x] be a factor of f =

n∑
i=0

aix
i, then

|bi| ≤
(
k

[ k
2 ]

) · ‖f‖2 for all i.

Proof. The coefficients of g are sums of products of the roots of f multiplied
by an. Let Li be the number of products of roots contributing to bi then
|bi| ≤ M(f) · Li. Now Li ≤

(
k
i

)
and

(
k
i

) ≤ (
k

[ k
2 ]

)
. It remains to prove that

M(f) ≤ ‖f‖2. Let z1, . . . , zn be the roots of f and assume |zi| > 1 for
i = 1, . . . , l, then M(f) = |an|

∏l
i=1 |zi|. Let

h := an

l∏

i=1

(z̄ix− 1)
n∏

i=l+1

(x− zi) =
n∑

i=0

hix
i
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then |hn| = |an|
∏l
j=1 |z̄j| = M(f). Especially ‖h‖2 ≥ |hn| = M(f).

To finish the proof we will show that ‖h‖2 = ‖f‖2 holds.
Let p =

∑n
i=0 pix

i ∈ C[x] and z ∈ C then

‖(z̄x− 1)p‖22 =
n+1∑
i=0

(z̄pi−1 − pi)(zp̄i−1 − p̄i)

=
n∑
i=0

z̄zp̄ipi +
n∑
i=0

p̄ipi −
n+1∑
i=0

(z̄pi−1p̄i + zp̄i−1pi)

=
n+1∑
i=0

(zpi − pi−1)(z̄p̄i − p̄i−1)

= ‖(z − x)p‖22
Applying this equality l times to h we obtain ‖h‖2 = ‖f‖2.

Next we prove that we can always lift a factorization from Z/p[x] to
Z/pN [x].

Proposition B.4.10 (Hensel Lifting).
Let p be a prime number and k a non–negative integer. Let f, gk, hk, u, v ∈
Z[x], f =

n∑
i=0

aix
i, with the following properties:

(1) p � an,
(2) f ≡ angkhk mod pk,
(3) ugk + vhk ≡ 1 mod p,
(4) deg(u) < deg(hk) and deg(v) < deg(gk),
(5) gk, hk are monic.

Then there exist monic polynomials gk+1, hk+1 ∈ Z[x] such that

f ≡ angk+1hk+1 mod pk+1

and
gk+1 ≡ gk mod pk, hk+1 ≡ hk mod pk.

Moreover, gk+1, hk+1 are uniquely determined mod pk+1.

Proof. We consider the following Ansatz (with s, t ∈ Z[x]):

gk+1 = gk + pk · s, hk+1 = hk + pk · t
Let d := f−angkhk

pk then we have to solve

d ≡ gkt+ hks mod p,

where condition (3) implies that udgk + vdhk ≡ d mod p.
Using pseudo–division with remainder by the monic polynomial hk ∈ Z[x],

we find z, t ∈ Z[x] such that ud = hkz + t, deg(t) < deg(hk) and define
s := vd + zgk. Then deg(s) < deg(gk) since tgk + shk ≡ d(p) and deg(d) <
deg(f) = deg(gk)+deg(hk). The fact that t, s are uniquely determined mod p
implies that gk+1, hk+1 are uniquely determined mod pk+1.
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Finally we give an algorithm to find the “true” factors.

Algorithm B.4.11 (trueFactors).

Input: f =
n∑
ν=0

aνx
ν ∈ Z[x] squarefree and primitive,

p prime, p � an,

N ∈ N, pN ≥ 2
(
n

[ n
2 ]

)‖f‖2
g1, . . . , gl ∈ Z[x],

l∑
i=0

deg(gi) = deg(f), f ≡ ang1 · . . . · gl mod pN ,

Output: Irreducible polynomials f1, . . . , fr ∈ Z[x] such that f = f1 · . . . · fr.
(1) d = 1; c = an;M = {1, . . . , l}; g = f ; Result=∅;

(2) while (d ≤ #M
2 )

• S = {T ⊂M | #T = d}
• while ((S �= ∅) and (d ≤ #M

2 ))
- choose T ∈ S
- S = S � {T }
- compute h̄ = c ·∏i∈T gi in Z/pN [x] and represent it by its

unique representative h ∈ Z[x] with coefficients in [− 1
2p
N , 1

2p
N )

- if (h|c · g)
h := primitive part of h
Result = Result ∪{h}
g = g

h
M = M � T
S = S � {D ⊂M |D ∩ T �= ∅}

• d = d+ 1
(3) if (deg(g) > 0) Result = Result ∪ {h}
(4) return (Result)

B.5 Factorization in Algebraic Extensions

Let K be a field and K(α) ⊃ K an algebraic extension. In this chapter we
show how to reduce the factorization over K(α) to the factorization over K.

Let us recall first the definition and the basic properties of the resultant
of two polynomials.

Let f =
∑n
ν=0 aνx

ν and g =
∑m

ν=0 bνx
ν two polynomials of degree n re-

spectively m, i.e. an �= 0 and bm �= 0. Then the resultant of f and g is
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Res(f, g) := det

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 · · · am
. . . . . .

a0 · · · am
b0 · · · bn

. . . . . .
b0 · · · bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

}
n rows

}
m rows

By definition Res(f, g) ∈ F[a0, . . . , an, b0, . . . , bm] where F is a prime field
for K.

As an example we consider

(1) Res(x2 − 2x+ 1, 3x+ 7) = det
(

1 −2 1
3 7 0
0 3 7

)
= 100

(2) Res(x2 − 2x+ 1, 5) = det ( 5 0
0 5 ) = 25.

SINGULAR Example B.5.1 (resultant).

ring R=0,x,dp;
resultant(x2-2x+1,3x+7,x);
//->100

The resultant is characterized by the following properties, a proof of which
can e.g. be found in [192].

Proposition B.5.2.

(1) Res(f, g) = (−1)nm Res(g, f)
(2) Res(f, g) = gn, if m = 0.
(3) Res(f, g) = a

m−deg(r)
n Res(f, r) if g = qf + r, deg(r) < deg(f).

Corollary B.5.3.

(1) There exist polynomials a, b ∈ K[x] such that af + bg = Res(f, g).
(2) Let α1, . . . , αn be the zeros of f and β1, . . . , βm the zeros of g (in some

extension field of K) then

Res(f, g) = amn b
n
m

∏

i,j

(αi − βj) = amn
∏

i

g(αi) = bnm
∏

i

f(βi)

.
(3) Res(f1f2, g) = Res(f1, g) ·Res(f2, g)

Definition B.5.4. Let f ∈ K[x] be the minimal polynomial of the extension
K(α) of K. Let β ∈ K(α) and b ∈ K[x] with β = b(α). We define the norm of
β to be Norm(β) = Res(b, f) ∈ K. Moreover, for g ∈ K(α)[z] and G ∈ K[x, z]
with G(α) = g we define2 Norm (g) = Resx(G, f) ∈ K[z].

2 We consider G as element in K(z)[x] and therefore Res(G, f) is well–defined and
an element in K[z].
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Remark B.5.5. It is not difficult to see that the definition is independent of
the choice of b (resp. G). E.g. the uniqueness of Norm (β) follows since (by
Corollary B.5.3 (3))

Norm(β) =
n∏

i=1

b(αi),

where α1, . . . , αn are the roots of f in an algebraic closure of K.
The norm is (by Corollary B.5.3 (3)) a multiplicative mapK(α)[z]→ K[z]

since Norm(g) =
∏n
i=1G(αi, z), where α1, . . . , αn are the roots of f .

Proposition B.5.6. Let g ∈ K(α)[z] be irreducible then Norm(g) is a power
of an irreducible element in K[z].

Proof. Let f be the minimal polynomial of the extension K(α) ⊃ K and de-
note its roots by α1 = α, α2, . . . , αn. Assume Norm(g) = h1(z)·h2(z), h1, h2 ∈
K[z] relatively prime. Since g|Norm(g) and g is irreducible we obtain g|hi for
a suitable i. We may assume that g|h1. Let h1 = g1g. Let σi : K(α) → K(αi)
be the map defined by σ(α) = αi. Then h1 = σi(h1) = σi(g1) · σi(g) for all i.
But Norm(g) =

∏n
i=1 σi(g) implies that h1h2 = Norm(g) divides hn1 which

is a contradiction.

Theorem B.5.7. Let g ∈ K(α)[z] and assume that Norm(g) is squarefree.

Let Norm(g) =
k∏
i=1

hi be a factorization in K[z], then

g(z) =
k∏

i=1

gcd(g(z), hi(z))

is a factorization of g(z) in K(α)[z].

Proof. Let g =
∏k
i=1 gi be the factorization of g in K(α)[z], then Norm(g) =∏k

i=1 Norm(gi). Since Norm(g) is squarefree we may assume by Proposition
B.5.6 that Norm(gi) = hi, i = 1, . . . , k. Let α = α1, α2, . . . , αn be the roots
of f then hi = Norm(gi) =

∏n
j=1Gi(αj , z) with Gi(α, z) = gi(z) as in Defi-

nition B.5.4. This implies gi|hi.
Assume gj |hi for some j �= i. Then Norm(gj)| Norm(hi). But, since hi ∈

K[z] does not depend on x, Norm(hi) = Res(hi, f) = hni by Proposition B.5.2
(2), and Norm(gj) = hj . This implies hj |hni which is a contradiction.

Proposition B.5.8. Let g ∈ K(α)[z] be squarefree. Then Norm(g(z − s · α))
is squarefree except for finitely many of s ∈ K.

Proof. Let Norm(g) =
∏r
i=1 g

i
i be the squarefree factorization in K[z]. Since

g is assumed to be squarefree and g| Norm(g) we obtain g|∏r
i=1 gi. Let

p :=
∏r
i=1 gi and β1, . . . , βt be the roots of p in a suitable extension field
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of K. Since p is squarefree the roots are pairwise distinct. Let s ∈ K and
denote by as(z) := Norm (p(z − sα)) =

∏r
i=1 Norm(gi(z − sα)).

Since Norm(gi(z−sα)) = Resx(Gi(z−sx), f) =
∏
j Gi(z−sαj), where αi

are the roots of the minimal polynomial f of the field extension K(α) ⊃ K,
we get from Corollary B.5.3 that as(z) =

∏
i,j(z − (sαj + βi)). Therefore as

has multiple roots if and only if sαj + βi = sαk + βl for suitable i, j, k, l, i.e.
for the finitely many s = βl−βi

αj−αk
.

But Norm (g(z − s · α)) | p(z − sα) and p(z − sα) | as(z). This implies
that for all but finitely many s ∈ K the polynomial g(z − sα) has a squarefree
norm.

Remark B.5.9. (1) If deg(f) = n and deg(g) = k, the proof of Proposition
B.5.8 shows that for #K > kn ·n2 there exists an s ∈ K such that Norm(g(z−
sα)) is squarefree.

(2) For small fields, however, it is possible that Norm(g(z − sα)) is not
squarefree for every s ∈ K. In this case one has to pass to a suitable extension
field L ⊃ K to obtain this property. We will illustrate this in the following
example where we compute the factorization in an algebraic extension.

SINGULAR Example B.5.10. Let K = F2 and let K(α) = F2[x]/f
where f = x2 + x+ 1.

The aim is to factorize the polynomial g(z) = z2 + z + 1 in K(α)[z]. We
have g(z− s ·α) = g(z)+ s for s ∈ K = F2. This implies Norm(g(z− sα)) =
Norm(g(z) + s) = (g(z) + s)2 is not squarefree.

We choose L = F2(β), β5 + β3 + β2 + β + 1 = 0 as field extension. Let
h = y5 + y3 + y2 + y + 1 then K(β) = F2[y]/h.

We consider now g(z + βα) = z2 + z + α2β2 + αβ + 1 ∈ F2(α, β) andG =
z2 + z + x2y2 + xy + 1 its representative 3 in F2[x, y, z].

As one can see later in the Singular–computation r := Norm(g(z + βα))
= z4 + (β2 + β + 1)z2 + (β2 + β)z + β4 + β3 + β + 1. Note that g(z + βα)
∈ F2(α, β)[z] and its Norm r is an element of F2(β)[z]. If we compute the
norm of r we obtain Norm(r) = z20 + z18 + z16 + z8 + z6 + z + 1 ∈ F2[z].
This norm is squarefree and factorizes as

Norm(r) = (z10 + z9 + z7 + z6 + z3 + z2 + 1)(z10 + z9 + z7 + z5 + z2 + z+ 1).

Taking the gcd of r and the factors of Norm(r) we obtain a factorization of
r by Theorem B.5.7,

r = (z2 + (β + 1)z + β2 + β + 1)(z2 + (β + 1)z + β2 + 1).

We can again apply Theorem B.5.7 to get a factorization of g(z+ βα). How-
ever, we want to factorize g(z). Therefore we use the inverse transformation
3

F2[x, y]/〈f, h〉 = F2(α, β). We can compute in this extension field of F2 without
choosing a primitive element just computing in the qring defined by 〈f, g〉. The
computation of the gcd is then replaced by the corresponding Gröbner basis
computation.
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to z �→ z + βα (which is the same here) and we obtain a factorization of
r(z + βα). Taking the gcd of g and these factors we finally obtain the factor-
ization of g as g = (z + α+ 1)(z + α).

ring R=2,(z,x,y),lp;
poly f=x2+x+1; //minimal polynomial of the field

//extension
poly g=z2+z+1; //polynomial to factorize
resultant(f,g,x);
//->z4+z2+1 //the norm of the polynomial g
resultant(f,subst(g,z,z+x),x);
//->z4+z2 //the norm of g(z+x)

poly h=y5+y3+y2+y+1; //the minimal polynomial for the new
//field extension

poly G=subst(g,z,z+xy); //the transformed polynomial
poly r=resultant(f,G,x);
r; //the norm r of the transformed

//polynomial
//->z4+z2y2+z2y+z2+zy2+zy+y4+y3+y+1

poly s=resultant(h,r,y);
s; //the norm of r
//->z20+z18+z16+z8+z6+z+1

factorize(s);

//->[1]: //the factors of the norm of r
//-> _[1]=1
//-> _[2]=z10+z9+z7+z6+z3+z2+1
//-> _[3]=z10+z9+z7+z5+z2+z+1
//->[2]:
//-> 1,1,1

ring S=(2,y),(z,x),lp;
minpoly=y5+y3+y2+y+1;
poly r=imap(R,r);
poly f1=gcd(r,z10+z9+z7+z6+z3+z2+1); //the gcd with the first

//factor
f1;
//->(y2+1)*z2+(y3+y2+y+1)*z+(y4+y3+y+1);
f1=simplify(f1,1); //we normalize f1
f1;
//->z2+(y+1)*z+(y2+y+1)
poly f2=gcd(r,z10+z9+z7+z5+z2+z+1); //the gcd with the second



556 B. Polynomial Factorization

//factor
f2=simplify(f2,1);
f2;
//->z2+(y+1)*z+(y2+1)
r-f1*f2; //test the result
//->0
f1=subst(f1,z,z+x*y); //the inverse transformation
f1=simplify(f1,1);
f1;
//->z2+(y+1)*z+(y2)*x2+(y2+y)*x+(y2+y+1)
f2=subst(f2,z,z+x*y); //the inverse transformation
f2=simplify(f2,1);
f2;
//->z2+(y+1)*z+(y2)*x2+(y2+y)*x+(y2+1)

setring R;
ideal I=std(ideal(f,h));
qring T=I;
option(redSB);
poly f1=imap(S,f1);
poly f2=imap(S,f2);
poly g=imap(R,g);
std(ideal(f1,g)); //gcd of g with the first factor

//->_[1]=z+x+1

std(ideal(f2,g)); //gcd of g with the second factor
//->_[1]=z+x

std((x+z+1)*(x+z)); //test the result
//->_[1]=z2+z+1 //our original f

For an infinite field K we obtain the following algorithm for the factor-
ization in the algebraic extension K(α).

Algorithm B.5.11 (factorization).

Input: f ∈ K(α)[z] squarefree
Output: f1, . . . , fk ∈ K(α)[z] irreducible such that f = f1 · . . . · fk.
(1) Choose a random element s ∈ K and compute g = Norm(f(z − sα))
(2) If g is not squarefree go to (1)
(3) factorize g = g1 · . . . · gk in K[z]
(4) For i = 1 to k compute fi = gcd(f, gi)
(5) return {f1, . . . , fk}.
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B.6 Multivariate Factorization

In this chapter we show how to reduce the factorization of multivariate
polynomials in K[x1, . . . , xn] to the case of one variable. The idea is sim-
ilar to the reduction of the factorization in Z[x] to the factorization in
Z/p[x]. We choose a so–called main variable, say xn and a suitable point
a = (a1, . . . , an−1) ∈ Kn−1. Let ma ∈ K[x1, . . . , xn−1] be the maximal ideal
corresponding to a. We factorize f(a, xn) inK[xn]=(K[x1, . . . , xn−1]/ma)[xn]
and use Hensel lifting to lift the factors to (K[x1, . . . , xn−1]/mN

a )[xn] for suf-
ficiently large N . We choose (unique) representatives of these liftings and
combine them to obtain the true factors. Let us start with an example.

Example B.6.1.

f =x4 + (−z + 3)x3 + (z3 + (y − 3)z − y2 − 13)x2

+ (−z4 + (y2 + 3y + 15)z + 6)x

+ yz4 + 2z3 + z(−y3 − 15y)− 2y2 − 30.

We chose x as main variable, a = (0, 0), ma = 〈y, z〉 and factorize f(x, 0, 0).
We obtain

f(x, 0, 0) = x4 + 3x3 − 13x2 + 6x− 30 = g1 · h1

with g1 = x2 + 2 and h1 = x2 + 3x− 15.
We want to lift the factorization f = g1h1(mod ma) to f = gihi(mod mi

a) for
increasing i (Hensel lifting).
We have

f − g1h1(mod m2
a) = −zx3 − 3zx2 + 15zx

= −zx · h1 .

For the Hensel lifting we obtain

h2 = h1 and g2 = g1 − zx = x2 − zx+ 2.

In the next step we have

f − g2h2 mod m3
a = (yz − y2)x2 + 3yzx− 15yz − 2y2

= yzg2 − y2 · h2 .

Therefore we obtain

h3 = h2 − y2 = x2 + 3x− 15− y2

g3 = g2 + yz = x2 − zx+ 2 + yz.

In the following step we have

f − g3h3 mod m4
a = z3x2 + 2z3 = z3g3 mod m4

a.

This implies g4 = g3 and h4 = x2 + 3x − 15 − y2 + z3. One checks that
f = g4h4 by multiplication.
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SINGULAR Example B.6.2 (multivariate factorization).

ring R=0,(x,y,z),dp;
poly f=x4+(-z+3)*x3+(z3+(y-3)*z-y2-13)*x2

+(-z4+(y2+3y+15)*z+6)*x
+yz4+2z3+z*(-y3-15y)-2y2-30;

factorize(f);
//->[1]:
//-> _[1]=1
//-> _[2]=x2-xz+yz+2
//-> _[3]=z3+x2-y2+3x-15
//->[2]:
//-> 1,1,1

Example B.6.3. This example shows that, similar to Example B.4.5, f may
factor modulo ma but not f itself, which is detected after finitely many Hensel
liftings.
Factorisation in K[x,y]/〈y〉
f = x2 − (y + 1)3

f(x, 0) = x2 − 1 = (x+ 1)(x− 1) = g1h1

Step 1: Lifting
f = g1h1 mod 〈y〉2 = −3y = − 3

2yg1 + 3
2yh1

g2 = x+ 1 + 3
2y, h2 = x− 1− 3

2y

Step 2: Lifting
f − g2h2 mod 〈y〉3 = − 3

4y
2 = − 3

8y
2(x+ 1) + 3

8y
2(x − 1)

g3 = x+ 1 + 3
2y + 3

8y
2, h3 = x− 1− 3

2y − 3
8y

2

Step 3: Lifting
f − g3h3 mod 〈y〉4 = 1

8y
3 = 1

16y
3(x+ 1)− 1

16y
3(x − 1)

g4 = x+ 1 + 3
2y + 3

8y
2 − 1

16y
3, h4 = x− 1− 3

2y − 3
8y

2 + 1
16y

3

Testing the product of g4h4:
f �= g4h4 implies f is irreducible. We can stop now since deg(f) = 3.

SINGULAR Example B.6.4.
We compute this example with Singular.

ring R=0,(x,y),dp;
poly f=x2-(y+1)^3;
factorize(f);
//->[1]:
//-> _[1]=-1
//-> _[2]=y3-x2+3y2+3y+1
//->[2]:
//-> 1,1

Example B.6.5. f = (xy + 1)(x + y) ∈ F2[x, y] has the following (bad) pro-
perties:
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(1) f(x, 0) = x, i.e. the degree drops,
(2) f(x, 1) = (x+ 1)2 is not squarefree.

That is, substituting y by any element of F2 has bad properties. Therefore
we have to substitute y by an element of a field extension of F2.

Consider f over F4 = F2(α), α2 + α+ 1 = 0. Substituting y by α we get
f(x, α) = (αx+ 1)(x+α) = α(x+α+ 1)(x+α). It is squarefree of the same
degree as f . Now we choose g1 = α(x + α + 1) = αx + 1 and h1 = x + α as
factors of the factorization of f in F2(α)[x, y]/〈y − α〉.

We obtain f − g1h1 = (y − α)x2 + (y − α)2x + y − α, i.e. f − g1h1

mod 〈y−α〉2 = (y−α)(αx+1)+(xy−αx)(x+α) = (y−α)g1 +(xy−αx)h1.
We apply Hensel lifting (cf. the proof of Proposition B.6.9) and get g2 =

αx+ 1 + xy − αx = xy + 1, h2 = x+ α+ y − α = x+ y.

The examples gave already an idea of the following algorithm. Let K be
a field and assume we can factorize univariate polynomials over K.

Algorithm B.6.6 (Extended Zassenhaus).

Input: f ∈ K[x1, . . . , xn] primitive and squarefree and degxi
(f) ≥ 1 for all

i = 1, . . . , n.
Output: f1 . . . , fs ∈ K[x1, . . . , xn] irreducible such that f = f1 · . . . · fs
• Choose a main variable4, say x = xn and let f =

∑k
ν=0 fνx

ν , fk �= 0, fν ∈
K[x1, . . . , xn−1].

• Choose a point a = (a1, . . . , an−1) ∈ Kn−1 such that
fk(a) �= 0,
f(a, x) is squarefree5.

• Choose N to be the total degree of F := f(y1 + a1, . . . , yn−1 + an−1, x) as
polynomial in y = (y1, . . . , yn−1) with coefficients in K[x].

• Compute the irreducible factorization of f(a, x) in K[x].
• Apply Hensel lifting: lift the irreducible factorization inK[x]=(K[y]/〈y〉)[x]

to (K[y]/〈y〉N+1)[x] such that f ≡ ḡ1 · . . . · ḡe mod 〈y〉N+1(cf. Proposition
B.6.9).

4 A good choice of the main variable is very important for the performance of the
algorithm. There are several heuristics: f(a, x) should have low degree, f should
be monic with respect to x if possible, etc.

5 In case of an infinite field K a random choice of a will have these properties.
In case of a finite field it may happen that there is no a ∈ K satisfying these
conditions. In this situation one has to pass to a field extension with sufficiently
many elements, see Example B.6.5. To avoid dense polynomials, the point a
should satisfy an algebraic relation with only few terms.
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• Combine the (unique) representatives g1, . . . , ge ∈ K[x, y] of the ḡ1, . . . , ḡe
of total degree ≤ N in an appropriate way to obtain the true factors6.
Then obtain the irreducible factors of f by substituting yi by xi − ai.

Remark B.6.7. (1) The algorithm is correct since the degree of the factors
is bounded by the degree of f and since the Hensel lifting is unique (cf.
Proposition B.6.9).

(2) In the last step one has to take products of the unique representatives
of the factors mod〈y〉N+1, obtained by Hensel lifting, to obtain the true
factors of f

(3) Similar to the univariate case one can reduce the factorization of mul-
tivariate polynomials to the factorization of primitive, squarefree multivariate
polynomials: factorize the content(f) = gcd(f0, . . . , fk) and the primitive part
of f (= f/content(f)) separately. The squarefree decomposition is similar to
the univariate case.

We prove now that the choice of a point a ∈ Kn−1 with the required
properties is always possible. The set of those points is Zariski open in Kn.

Lemma B.6.8. Let K be an infinite field and f =
∑k
ν=0 fνx

ν
n squarefree,

fk �= 0 and fν ∈ K[x1, . . . , xn−1]. Let D be the discriminant of f with respect
to xn. Then f(a, xn) is squarefree for a ∈ Kn−1 if and only if ∂f

∂xn
(a) �= 0

and D(a) �= 0.

Proof. This is an immediate consequence of Proposition B.1.3.

Proposition B.6.9. (Hensel Lifting). Let K be a field and let R = K[y], y =

(y1, . . . , ym). Let f =
s∑

ν=0
fνx

ν ∈ R[x], fs /∈ 〈y〉 and gk, hk ∈ R[x] such that

(a) f ≡ gkhk mod 〈y〉k
(b) degx(f) = degx(gk) + degx(hk)
(c) For all i there exist si, ti ∈ K[x] such that 7

• sigk + tihk ≡ xi mod 〈y〉
• deg(si) < deg(hk), deg(ti) ≤ deg(gk).

Then there are gk+1, hk+1 ∈ R[x] uniquely determined up to units in R/〈y〉k+1

with the following properties:

(1) f ≡ gk+1hk+1 mod 〈y〉k+1

(2) gk+1 ≡ gk mod 〈y〉k, hk+1 ≡ hk mod 〈y〉k.
Moreover the conditions (b) and (c) are satisfied for gk+1 and hk+1.

6 The number of factors of f(a, x) may by far exceed the one of f . To guess the
correct combination of the factors one can consider the factorization of f(a, x)
with different points a ∈ Kn−1 and compare them. If f is monic then each
irreducible factor of f corresponds to some product of the (monic) gi. In general
it is more complicated.

7 This condition is satisfied if and only if gcd (gk mod 〈y〉, hk mod 〈y〉) = 1.
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Proof. Let gkhk − f =
∑s

j=0 bjxj and define gk+1 := gk −
∑s

j=0 bjtj and
hk+1 = hk −

∑s
j=0 bjsj . The condition (a) implies bi ∈ 〈y〉k for all i. This

implies (2).
Condition (c) implies degx(hk) = degx(hk+1) and degx(gk+1) ≤ degx(gk).

Now (1) holds because

gk+1hk+1 ≡ gkhk −
s∑

j=0

bj(sjgk + tjhk) ≡ f mod 〈y〉k+1.

This implies (by (c)) that degx(f) = degx(gk+1) + degx(hk+1). Finally

sigk+1 + tihk+1 = sigk + tihk −
s∑

j=0

bj(sitj + tisj) ≡ xi mod 〈y〉.

To prove uniqueness assume that f ≡ gk+1hk+1 ≡ ḡk+1h̄k+1 mod 〈y〉k+1 and
ḡk+1 ≡ gk mod 〈y〉k, h̄k+1 ≡ hk mod 〈y〉k. This implies gk+1+ḡ = ḡk+1 and
hk+1 + h̄= h̄k+1 for suitable, h̄, ḡ ∈ 〈y〉k, and ḡhk+1 + h̄gk+1 ≡ 0 mod 〈y〉k+1

From condition (c) for gk+1 and hk+1 we deduce that ḡ ≡ ξ ·gk+1 +ηhk+1

mod 〈y〉k+1 and h̄ = λgk+1 +μhk+1 mod 〈y〉k+1 for suitable ξ, η, λ, μ ∈ 〈y〉k.
This implies that (ξ + μ)gk+1hk+1 + ηh2

k+1 + λg2
k+1 ≡ 0 mod 〈y〉k+1.

Let gk+1 =
∑

|r|≤k g
(r)
k+1y

r and hk+1 =
∑

|r|≤k h
(r)
k+1 yr for suitable

g
(r)
k+1, h

(r)
k+1 ∈ K[x]. Assume that ξ + μ =

∑
|α|=k cαy

α mod 〈y〉k+1, η =∑
|α|=k dαy

α mod 〈y〉k+1 and λ =
∑

|α|=k eαy
d mod 〈y〉k+1.

This implies that cαg
(0)
k+1h

(0)
k+1 + dαh

(0)2

k+1 + eαg
(0)2

k+1 = 0 for all α, |α| = k. But

(c) implies gcd (g(0)
k+1, h

(0)
k+1) = 1. This implies cα = dα = eα = 0, for all α and

therefore λ ∈ 〈y〉k+1 and ξ + μ ∈ 〈y〉k+1. Then we have ḡk+1 ≡ (1 + ξ)gk+1

mod 〈y〉k+1 and h̄k+1 = (1 − ξ)hk+1 mod 〈y〉k+1.

Remark B.6.10. Our aim in this appendix was to explain only the main ideas
for computing the factorization. These ideas can also be used to compute the
multivariate gcd. If K is a field, then the univariate gcd in K[x] can be com-
puted by using the Euclidean algorithm. The reduction of the multivariate
case to the univariate case is the same as in the factorization. If K = Q

the Euclidean algorithm can produce coefficients with large numerators and
denominators. Therefore it is better to consider the problem over Z and use
modular techniques. If we want to factorize a polynomial f ∈ Z[x1, . . . , xn]
or compute the gcd of two such polynomials it is more efficient to reduce the
problem to the computation in Z/p[xi] = Z[x1, . . . , xn]/〈p, I〉 for a suitable
prime p, a main variable xi, and an ideal I = 〈x1 − a1, . . . , x̂i, . . . , xn − an〉.
Then use a combination of the Hensel liftings B.6.8 and B.4.10 to lift the re-
sult to Z[x1, . . . , xn]/〈pl, Ik〉 for suitable l, k. Finally, products of the factors
give the true factors resp. we obtain the true gcd. This method was proposed
by Zassenhaus. The corresponding gcd–computation based on this idea is
called EZGCD (extended Zassenhaus gcd).



562 B. Polynomial Factorization

A significantly more efficient algorithm was proposed by Wang ([229],
[230]). The corresponding algorithm to compute the gcd was called EEZ-
GCD (Enhanced EZGCD).

Here the Hensel lifting from Z/p[x1] to Z[x1, . . . , xn]/〈pl, Ik〉 (x1 the main
variable) is replaced by single–variable Hensel liftings step by step. From
Z/p[x1] to Z/pl[x1], from Z/pl[x1] to Z/pl[x1, x2], . . . , to Z/pl[x1, . . . , xn].
For more details see [85].

To illustrate this remark let us describe the EZGCD algorithm.

Algorithm B.6.11 (EZGCD).

Input: f, g ∈ Z[x1, . . . , xn]
Output: gcd(f, g)

(1) Choose a main variable8 xi and let x = xi and y = (y1, . . . , yn−1) =
(x1, . . . , x̂i, . . . , xn).

(2) Compute fc (resp. gc) the content of f (resp. g) with respect to x and
set f = f/fc, g = g/gc. If (degx(g) > degx(f)) exchange f and g.

(3) Compute a = EZGCD(fc, gc) in Z[y1, . . . , yn−1].
(4) Choose a random prime p such that the leading coefficients of f and g

with respect to x do not vanish mod p.
(5) Choose randomly an evaluation9 point b = (b1, . . . , bn−1), 0 ≤ bi < p,

such that the leading coefficients of f and g with respect to x do not
vanish at b mod p. If this is not possible go to (4).

(6) Use the Euclidean algorithm to compute c = gcd(f(b, x), g(b, x)) in
Z/p[x], d = deg(c).

(7) If d = 0 return(a).
(8) Choose a random prime10 q �= p such that the leading coefficients of f

and g with respect to x do not vanish mod q.
(9) Choose at random an evaluation point b̄ = (b̄1, . . . , b̄n−1), 0 ≤ b̄i < q,

such that the leading coefficients of f and g with respect to x do not
vanish at b̄ mod q. If this is not possible go to (8).

(10) Use the Euclidean algorithm to compute e = gcd(f(b̄, x), g(b̄, x)) in Z/q[x].
(11) If deg(e) = 0 return(a)
(12) If (deg(e) < d) then p = q, c = e, b = b̄, d = deg(e) and go to (8).
(13) If (deg(e) > d) go to (8)
(14) If d = degx(g)
8 A suitable choice is to minimize the degree of f and g with respect to this main

variable.
9 To avoid density b should contain as many zeros as possible. In practice we

will try special values first and use random values after several failures (cf. the
following example B.6.12).

10 To double check the answer mod p. This double check has the effect that, in
practice, we almost never have to go back to step (8) again after expensive
calculations.
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• if g|f return(ag)
• d = d− 1 go to (8)

(15) If gcd(f(b,x)
c , c) = 1 use Hensel lifting to lift the product f(b, x) = f(b,x)

c ·c
of coprime factors over Z/p[x] to Z[x, y]. Let C be the primitive part of
the lifting corresponding to c. If C|f and C|g return (aC) else go to (8).

(16) If gcd(g(b,x)c , c) = 1 use Hensel lifting to lift the product g(b, x) = g(b,x)
c · c

of coprime factors over Z/p[x] to Z[x, y]. Let C be the primitive part of
the lifting corresponding to c.
If C|f and C|g return(aC) else go to (8).

(17) Choose11α, β ∈ Z, 0 ≤ α, β < p such that gcd(αf(b,x)+βg(b,x)
c , c) = 1 and

use Hensel lifting to lift the product αf(b,x)+βg(b,x)
c · c of coprime factors

over Z/p[x] to Z[x, y]. Let C be the primitive part of the lifting corre-
sponding to c. If C|f and C|g return (a,C) else go to (8).

To illustrate the algorithm consider the following example.

SINGULAR Example B.6.12 (EZGCD).

ring R=0,(x,y),dp;
poly f=3x2y+4xy2+y3+3x2+6xy+y2+3x;
poly g=2x2y+xy2-y3-2x2-y2-2x;

//we decide to use x as main variable

ring S=(0,y),x,dp;
poly f=imap(R,f); poly g=imap(R,g);
f;
//->(3y+3)*x2+(4y2+6y+3)*x+(y3+y2)
g;
//->(2y-2)*x2+(y2-2)*x+(-y3-y2)

//we can choose as prime p=5 and as evaluation point y=0

ring T1=5,x,dp;
map phi=R,x,0;
poly f=phi(f); poly g=phi(g);
f;
//->-2x2-2x
g;
//->-2x2-2x

ring T2=7,x,dp;

11 Since degx(gcd( f(b,x)
c

, c)) ≥ 1 and degx(gcd( g(b,x)
c

, c)) ≥ 1 there are infinitely
many α, β with this property. We can choose them by trial and error.
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map psi=R,x,0;
poly f=psi(f); poly g=psi(g);
f;
//->3x2+3x
g;
//->-2x2-2x
//in both cases we obtain x2+x as gcd which has the same
//degree as g, but g does not divide f and step (14) of the
//algorithm implies that we should try again with (8)
//note: here y=0 was a bad choice

setring T1;
phi=R,x,2;
f=phi(f); g=phi(g); //we substitute y by 2
gcd(f,g);
//->x-2

setring T2;
psi=R,x,2;
f=psi(f); g=psi(g);
gcd(f,g);
//->x+3

//now we come to step (15) in the algorithm and
//Hensel lifting gives x+y+1

setring R;
gcd(f,g); //the SINGULAR built-in function
//->x+y+1

B.7 Absolute Factorization

Let K be a field of characteristic 0, K its algebraic closure and assume we are
able to compute the multivariate factorization over algebraic extensions of K
(our main example is K = Q). In this chapter we explain how to compute the
absolute factorization of a polynomial f ∈ K[x1, . . . , xn], that is, to compute
the irreducible factors (and their multiplicities) of f in K[x1, . . . , xn]. To solve
this problem we may assume that f is irreducible in K[x1, . . . , xn].

There exist several approaches to solve this problem (cf. [59], the part
written by Chèze and Galligo, or [42]). We concentrate on the algorithm
implemented by G. Lecerf in Singular.

The idea of this algorithm is to find an algebraic field extension K(α) ofK
and a smooth point of the affine variety V (f) in K(α)n. Then an (absolutely)
irreducible factor of f will be defined over K(α) which can be computed by
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using the factorization over K(α) described in Section B.5. The idea is based
on the following theorem:

Theorem B.7.1. Let f ∈ K[x1, . . . , xn] be irreducible and a ∈ Kn a smooth
point of V (f) ⊆ K

n
. Then f is absolutely irreducible, i.e. irreducible in

K[x1, . . . , xn].

Proof. Let f = f1 · . . . · ft be the factorization of f in K[x1, . . . , xn]. We
may assume that f1(a) = 0. Assume that t > 1. This implies that fi /∈
K[x1, . . . , xn] for all i. Now a being a smooth point of V (f) implies that
fi(a) �= 0 for i > 1. We may choose α ∈ K such that fi ∈ K(α)[x1, . . . , xn]
for all i. Since f1 /∈ K[x1, . . . , xn] there exist σ ∈ GalK(K(α)) such that
σ(f1) �= f1.

But σ(f) = f = σ(f1) · . . . · σ(ft) implies that there is i �= 1 such that
σ(f1) = c · fi for some non–zero constant c ∈ K(α).
This implies 0 = σ(f1(a)) = c · fi(a) which is a contradiction. We obtain t = 1
and f is absolutely irreducible.

If we apply the theorem to K(α) we obtain:

Corollary B.7.2. Let f ∈ K[x1, . . . , xn] be irreducible, α ∈ K and a ∈
K(α)n a smooth point of V (f) ⊆ K

n
, then at least one absolutely irreducible

factor of f is defined over K(α).

For f irreducible it is not difficult to find α and a smooth point of V (f) in
K(α)n (use Lemma B.6.8). We deduce that for irreducible f ∈ K[x1, . . . , xn],
degxn

(f) > 0, f(a, xn) is squarefree for almost all a ∈ Kn−1.

Lemma B.7.3. Let f ∈ K[x1, . . . , xn] be irreducible, degxn
(f) > 0 and

f(a, xn) squarefree for some a ∈ Kn−1. Let g(xn) be an irreducible factor
of f(a, xn) and α ∈ K with g(α) = 0. Then (a, α) ∈ K(α)n is a smooth point
of V (f) ⊂ K

n
.

Proof. Obviously (a, α) ∈ V (f). Let f(a, xn) = g(xn) · h(xn). Since f(a, xn)
is squarefree h(α) �= 0. Now ∂f

∂xn
(a, α) = ∂g

∂xn
(α) · h(α) �= 0 and therefore

(a, α) is a smooth point in V (f).

We describe now an algorithm to compute the factorization of a mul-
tivariate polynomial over the algebraic closure of the ground field K with
char(K) = 0.

Algorithm B.7.4 (AbsFactorization).

Input: f ∈ K[x1, . . . , xn] irreducible, deg(f) = d.
Output: A list of two polynomials g, q with g ∈ K[x1, . . . , xn, z], q ∈ K[z]

irreducible such that for α ∈ K with q(α) = 0 the following holds:
g(x, α) irreducible in K[x1, . . . , xn] and f =

∏
σ∈ GalK(K(α))

g(x, σ(α)).
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(1) Choose i such that degxi
(f) > 0 and minimal with this property. We

may assume i = n.
(2) Choose a random point a = (a1, . . . , an−1) ∈ Kn−1 such that f(a, xn) has

a simple irreducible factor, say q(xn) (using univariate factorization in
K[xn]). Let r = deg(q).

(3) If (r = 1) return (f, z).
(4) Let K(β) = K[z]/q(z) and factorize f over K(β)[x1, . . . , xn]. Let h ∈

K[x, z] be a representative of an irreducible factor of minimal degree.
(5) If (d = r · deg(h)) return (h(x, z), q(z)).

Note: if this holds r is the degree of a minimal field extension K(β) of K
s.t. f has an irreducible factor h over K(β) satisfying d = r · deg(h). But
in general h may already be defined over a smaller field extension.

(6) Choose, by Algorithm B.7.8, an extension K(α) ⊂ K(β) of K given
by a minimal polynomial p(z) ∈ K[z] of minimal degree (= d/ deg(h))
such that h is defined over K(α)[x1, . . . , xn] given by a representative
h1 ∈ K[x1, . . . , xn, z].

(7) return (h1, p).

SINGULAR Example B.7.5 (absolute factorization).

LIB"absfact.lib";

ring R1=0,(x,y),dp;
poly f=(x2+y2)^3*(x3+y2)^5*(x4+4)^2;
def S1 =absFactorize(f);
setring(S1);
absolute_factors;

//->[1]:
//-> _[1]=1 //coefficient
//-> _[2]=x+(a-2) //factor of x4+4
//-> _[3]=x+(a+2) //factor of x4+4
//-> _[4]=x+(a)*y //factor of x2+y2
//-> _[5]=x3+y2
//->[2]:
//-> 1,2,2,3,5 //the multiplicities of the factors
//->[3]:
//-> _[1]=(a) //the minimal polynomials corresponding
//-> _[2]=(a2-2a+2) //to the factors above
//-> _[3]=(a2+2a+2)
//-> _[4]=(a2+1)
//-> _[5]=(a)
//->[4]:
//-> 19 //total number of irreducible factors of f

ring R2=0,(x,y,z,w),dp;
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poly f=(x2+y2+z2)^2+w4;
def S2 =absFactorize(f);
setring(S2);
absolute_factors;

//->[1]:
//-> _[1]=1
//-> _[2]=-x2-y2-z2+(a)*w2
//->[2]:
//-> 1,1
//->[3]:
//-> _[1]=(a)
//-> _[2]=(a2+1)
//->[4]:
//-> 2

Finally let us make some remarks on step (6) in the algorithm. Here one
has to construct a primitive element α of the field extension L of K generated
by the coefficients of h(x, β), and the corresponding minimal polynomial.
Theoretically, this could be done using a generic linear combination of the
coefficients of h. Then h(x, β) has to be rewritten in terms of α. In practise,
this method is not recommended.

In the implementation in Singular this problem is solved in a different
way, using the Rothstein–Trager algorithm (cf. [42], [150]) which computes
the absolute partial fraction decomposition. We explain now the idea of G.
Lecerf (cf. [150]) to find the corresponding minimal field extension.

In step (6) of Algorithm B.7.4 we are in the following situation with
x′ = (x1, . . . , xn−1) and x = ((x′, xn):

We have f ∈ K[x] irreducible, a ∈ Kn−1, q ∈ K[z] a simple factor of
f(a, z) of degree r, h ∈ K[x, z] with degz h < r and degxn

h ≥ 1, representing
a proper factor12 of f over K(β) := K[z]/q. There exist roots γ1, . . . , γs ∈ K
of q, s ≤ r such that fi := h(z = γi)13 gives the irreducible decomposition
f1 · . . . · fs of f over K[x].

We want to find an irreducible polynomial p ∈ K[z] of degree s and a poly-
nomial k ∈ K[x, z] such that f =

∏
α,p(α)=0 k(z = α). Let w ∈ K[x, z] such

that degz w < r and hw=f ∂h
∂xn

mod q and write w=g1 + g2z + . . .+ grz
r−1.

Then we have w(z = γ) = f
h(z=γ)

∂h
∂xn

(z = γ) for all roots γ of q.

Proposition B.7.6 (Lecerf). With these notations let c = (c1, . . . , cr) ∈ Kr

be a generic point and g = c1g1 + . . . + crgr. Let p be the monic squarefree
part of Resxn(f(a, xn), z ∂f

∂xn
(a)− g(a, xn)) and k ∈ K[x, z], degz k < s, be a

12 Note that this implies that no proper factor of f in K[x] is an element of K[x′].
13 Here, and in the following, this notation means that z is substituted by γi in h.
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representative of gcd(f, z ∂f
∂xn

−g) in (K[z]/p)[x]. Then p ∈ K[z] is irreducible
of degree s and f =

∏
α,p(α)=0

k(z = d).

Proof. Consider the K–subvectorspace of K[x]

〈g1, . . . , gr〉K =
〈{

f
h(z=γ)

∂h
∂xn

(z = γ) | q(γ) = 0
}〉

K

=
〈
f
f1

∂f1
∂xn

, . . . , ffs

∂fs

∂xn

〉

K
.

There are ρij ∈ K such that gj =
s∑
i=1

ρij
f
fi

∂fi

∂xn
. The matrix (ρij) has maximal

rank s because
{
f
fi

∂fi

∂xn
|1 ≤ i ≤ s

}
are linearly independent overK as we shall

prove in Theorem B.7.7. Let ρi = (ρi1, . . . , ρir) then it is not difficult to see
that the set of all c ∈ Kr such that the scalar products (((c, ρ1))), . . . , (((c, ρr))) are
pairwise distinct contains a non–empty Zariski open subset U ⊆ Kr.

Let c = (c1, . . . , cr) ∈ U and g :=
r∑
j=1

cjgj =
s∑
i=1

(((c, ρi))) ffi

∂fi

∂xn
then

g

f
=

s∑

i=1

(((c, ρi)))
∂fi

∂xn

fi
.

The classical theorem of Rothstein–Trager (Theorem B.7.7) applied to
K(x′)[xn] implies

fi = gcd(f, (((c, ρi)))
∂f

∂xn
− g)

and14

Resxn(f, z
∂f

∂xn
− g) = Resxn(f,

∂f

∂xn
)
s∏

i=1

(z − (((c, ρi))))di .

for suitable di ∈ N.
This implies, with b(x′) = Resxn(f, ∂f∂xn

),

b(a) ·
s∏

i=1

(z − (((c, ρi))))di = Resxn(f(a, xn), z
∂f

∂xn
(a, xn)− g(a, xn)) ∈ K[z]

and especially p :=
∏s
i=1(z − (((c, ρi)))) (which is a priori an element of K[z]) is

in K[z].

14 The classical theorem of Rothstein–Trager requires monic polynomials but

we can extend it to non–monic polynomials as well. Let f̂ , f̃i ∈ K(x′)[xn]

be monic and f = ef̃ , fi = eif̃i, e, ei ∈ K[x′], then Theorem B.7.7 implies

f̃i = gcdxn
(f̃ ,(((c, ρi)))

∂f̃
∂xn

− g
e
). But f is irreducible over K[x] and has no factors

in K[x′] implies fi = gcd(f,(((c, ρi)))
∂f

∂xn
− g). Similarly the next equation follows.
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It remains to prove the classical Rothstein–Trager theorem:

Theorem B.7.7 (Rothstein–Trager). Let f ∈ K[y] be a univariate monic
polynomial of degree d ≥ 1 such that δ := Res(f, f ′) �= 0.

Let g ∈ K[y] and deg(g) ≤ d− 1. Let ρ1, . . . , ρr ∈ K be the roots of Q :=
Resy(f(y), zf ′(y)−g(y)) ∈ K[z] and fi := gcd(f, ρif ′ − g) be monic of degree
di > 0. Then the following hold

(1) f = f1 · . . . · fr,
(2) ρi = g(β)

f ′(β) for all roots β of fi,

(3) g
f =

r∑
i=1

ρi
f ′

i

fi
,

(4) Q = δ
r∏
i=1

(z − ρi)di ,

(5) the set { f ′
i

fi
|i = 1, . . . , r} is linearly independent over K.

Proof. δ �= 0 implies gcd(fi, fj) = 1 for i �= j and therefore
∏r
i=1 fi | f . Let

β ∈ K be a root of f then f ′(β) �= 0. Let ρ := g(β)
f ′(β) , then Resy(f(y), ρf ′(y)−

g(y)) = 0. This implies ρ ∈ {ρ1, . . . , ρr}. Let ρ = ρi then β is a root of fi.
This implies (1) (otherwise β would be a root of another factor of f) and (2).

Now let f̂i := f
fi

and consider H := g −
r∑
i=1

ρif̂if
′
i . Let β be a root of

f and fi(β) = 0 then H(β) = g(β)− ρif̂i(β)f ′
i(β) and as before we obtain

H(β) = 0. This implies H ≡ 0 because deg(H) < d and δ �= 0. This implies
(3).

To prove (4) we use (1) and the properties of the resultant,

Resy(f(y), zf ′(y)− g(y)) =
r∏

i=1

Resy(fi(y), zf ′(y)− g(y)) .

By (3) we have g =
∑r

i=1 ρif
′
i f̂i. This implies that the remainder of g of

divison by fi is the same as the remainder of ρif ′
i f̂i of division by fi

which is the same as the remainder of ρif ′ of division by fi. We obtain
Resy(fi(y), zf ′(y)− g(y)) = Resy(fi(y), (z − ρi)f ′(y)). This proves (4) since
Resy(f(y), zf ′(y)− g(y)) = Resy(f, f ′)

∏r
i=1(z − ρi)di .

To prove (5) let
∑r
i=1 ci

f ′
i

fi
= 0 for suitable ci ∈ K. This implies

∑r
i=1 cif

′
i f̂i=0.

Let β be a root of fi then cif ′
i(β)f̂i(β) = 0 but f ′

i(β)f̂i(β) �= 0, hence (5).

Proposition B.7.6 leads to the following algorithm.
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Algorithm B.7.8 (Rothstein–Trager–Lecerf).

Input: f ∈ K[x] irreducible, a ∈ Kn−1,
q ∈ K[z] a simple irreducible factor of f(a, z) of degree r,
h ∈ K[x, z] representing a proper factor of f over K(β) := K[z]/q,
i.e. degz(h) < r, degxn

(h) ≥ 1 and degx(h) < deg(f).
Output: k, p such that p ∈ K[z] irreducible of degree s = deg(f)

degx(h)

k ∈ K[x, z] with degz(k) < s, degx(k) = degx(h) such that k repre-
sents a factor of f over K(α) := K[z]/p.

(1) s = deg(f)
degx(h)

(2) If deg(q) = s return(h, q)

(3) Choose w =
r∑
i=1

giz
i−1 ∈ K[x, z] , degz w < r such that

hw = f ∂h
∂xn

mod q

(4) Choose c1, . . . , cr ∈ K at random and let g :=
r∑
i=1

cigi

(5) Let p be the monic squarefree part of
Resxn(f(a, xn), z ∂f

∂xn
(a, xn)− g(a, xn))

(6) If deg(p) �= s go to (4)
(7) In (K[z]/p)[x] compute k = gcd(f, z ∂f

∂xn
− g)

(8) return (k, p).



C. SINGULAR — A Short Introduction

De computer is niet de steen, maar de slijpsteen der wijzen.
(The computer is not the philosophers’ stone but the philosophers’ whetstone.)

Hugo Battus, Rekenen op taal (1983).

In this section we shall give a short introduction to the computer algebra
system Singular . In all the chapters of this book there are already many
examples for the interactive use of Singular and the possibility to write
own programmes in the Singular programming language. For more details
we refer to the Singular Manual, which is offered as an online help for
Singular, and can be found as a postscript file in the distribution. See
also the Singular examples in the distribution. We start with instructions
on how to obtain Singular , explain the first steps on how to work with
Singular and, finally, give an overview about the data types and functions
of Singular.

C.1 Downloading Instructions

Singular is available, free of charge, as a binary programme for most com-
mon hardware and software platforms. Release versions of Singular can be
downloaded through ftp from our FTP site

ftp://www.mathematik.uni-kl.de/pub/Math/Singular/,

or, using your favourite WWW browser, from

http://www.singular.uni-kl.de/download.html

There are detailed installation instruction available on this webpage or
on the included CD–ROM. On Windows they will start with the autostart
feature. Otherwise you can just open index.html in the root directory of the
CD–ROM.
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C.2 Getting Started

Singular can either be run in a text terminal or within Emacs.
To start Singular in its text terminal user interface, enter Singular (or

Singular-<version>) at the system prompt. The Singular banner appears
which, among others, reports the version (and the compilation date, search
path, location of programme and libraries, etc.):

SINGULAR /
A Computer Algebra System for Polynomial Computations / version <version>

0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ May 2007

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

To start Singular in its Emacs user interface enter ESingular at the system
prompt.

While using Windows you can just double–click the icons, as you are used
from other programmes.

Generally, we recommend using Singular in its Emacs interface, since
this offers many more features and is more convenient to use than the ASCII–
terminal interface.

To exit Singular type quit;, exit; or $ (or, when running within Emacs
preferably type CTRL-C $). To exit during computation type CTRL-C.

There are a few important notes which one should keep in mind:

• Every command has to be terminated by a ; (semicolon) followed by a
Return .

• The online help is accessible by means of help; or ?;.

Singular is a special purpose system for polynomial computations. Hence,
most of the powerful computations in Singular require the prior definition
of a ring. The most important rings are polynomial rings over a field, local-
izations thereof, or quotient rings of such rings modulo an ideal. However,
some simple computations with integers (machine integers of limited size)
and manipulations of strings are available without a ring.
Once Singular is started, it awaits an input after the prompt >. Every
statement has to be terminated by ; . If you type 37+5; followed by a Return,
then 42 will appear on the screen. We always start the Singular output with
//-> to have it clearly separated from the input.

37+5;
//-> 42

All objects have a type, for example, integer variables are defined by the word
int. An assignment is done by the symbol = .

int k = 2;
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Testing for equality, respectively inequality, is done using ==, respectively !=,
(or <>), where 0 represents the boolean value FALSE, any other integer value
represents TRUE.

k == 2;
//-> 1
k != 2;
//-> 0

The value of an object is displayed by simply typing its name.

k;
//-> 2

On the other hand, the output is suppressed if an assignment is made.

int j;
j = k+1;

The last displayed (!) result is always available with the special symbol _.

2*_; // two times the value of k displayed above
//-> 4

Starting with // denotes a comment and the rest of the line is ignored in cal-
culations, as seen in the previous example. Furthermore, Singular maintains
a history of the previous lines of input, which may be accessed by CTRL-P
(previous) and CTRL-N (next) or the arrows on the keyboard.

To edit Singular input we have the following possibilities:

TAB: automatic name completion.
CTRL-B: moves the cursor to the left.
CTRL-F: moves the cursor to the right.
CTRL-D: deletes the symbol in the cursor.
CTRL-P: gives the preceding line in the history.
RETURN: sends the current line to the Singular–Parser.

For more commands see the Singular Manual.
The Singular Manual is available online by typing the command help;.

Explanations on single topics, for example, on intmat, which defines a matrix
of integers, are obtained by

help intmat;

Next, we define a 3× 3 matrix of integers and initialize it with some values,
row by row from left to right:

intmat m[3][3] = 1,2,3,4,5,6,7,8,9;

A single matrix entry may be selected and changed using square brackets
[ and ].
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m[1,2]=0;
m;
//-> 1,0,3,
//-> 4,5,6,
//-> 7,8,9

To calculate the trace of this matrix, we use a for loop. The curly brackets
{, respectively }, denote the beginning, respectively end, of a block. If you
define a variable without giving an initial value, as the variable tr in the
example below, Singular assigns a default value for the specific type. In
this case, the default value for integers is 0. Note that the integer variable j
has already been defined above.

int tr;
for ( j=1; j <= 3; j++ ) { tr=tr + m[j,j];}
tr;
//-> 15

j++ is equivalent to j=j+1. To count the even and the odd entries of the
second row of this matrix, we use the if and else and a while loop.

j=0;
int even,odd;
while(j<3)
{

j++;
if((m[2,j] mod 2)==0){even++;}
else {odd++;}

}
even;
//-> 2
odd;
//-> 1

Variables of type string can also be defined and used without a ring being
active. Strings are delimited by " (quotation–marks). They may be used to
comment the output of a computation or to give it a nice format. If a string
contains valid Singular commands, it can be executed using the function
execute. The result is the same as if the commands were written on the
command line. This feature is especially useful to define new rings inside
procedures.

"example for strings:";
//-> example for strings:
string s="The element of m ";
s = s + "at position [2,3] is:"; //+ concatenates strings
s , m[2,3] , ".";
//-> The element of m at position [2,3] is: 6.



C.2 Getting Started 575

s="m[2,1]=0; m;";
execute(s);
//-> 1,0,3,
//-> 0,5,6,
//-> 7,8,9

This example shows that expressions can be separated by , (comma) giving a
list of expressions. Singular evaluates each expression in this list and prints
all results separated by spaces.

To read data from a file, or to write it to a file, we can use the commands
read and write. For example, the following Singular session creates a file
hallo.txt and writes 2 and example to this file.

int a = 2;
write("hallo.txt",a,"example");

This data can be read from the file again (as strings):

read("hallo.txt");
//-> 2
//-> example

If we want to execute commands from a file, we have to write

execute(read("hallo.txt"));

or, in short,

<"hallo.txt";

If, for instance, in hallo.txt we have the command

int j=1; j;

we obtain

//-> 1

To calculate with objects as polynomials, ideals, matrices, modules, and poly-
nomial vectors, a ring has to be defined first:

ring r = 0,(x,y,z),lp;

The definition of a ring consists of three parts: the first part determines the
ground field, the second part determines the names of the ring variables, and
the third part determines the monomial ordering to be used. So the example
above declares a polynomial ring called r with a ground field of characteristic
0 (that is, the rational numbers) and ring variables called x, y, and z. The
lp at the end means that the lexicographical ordering is used.

The default ring in Singular is Z/32003[x, y, z] with degree reverse lex-
icographical ordering:
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ring s;
s;
//-> // characteristic : 32003
//-> // number of vars : 3
//-> // block 1 : ordering dp
//-> // : names x y z
//-> // block 2 : ordering C

Defining a ring makes this ring the current active basering, so each ring
definition above switches to a new basering.

The basering is now s. If we want to calculate in the ring r, which we
defined first, we have to switch back to it. This can be done by using

setring r;

Once a ring is active, we can define polynomials. A monomial, say x3, may
be entered in two ways: either using the power operator ^, saying x^3, or
in shorthand notation without operator, saying x3. Note that the shorthand
notation is forbidden if the name of the ring variable consists of more than
one character. Note also that Singular always expands brackets and au-
tomatically sorts the terms with respect to the monomial ordering of the
basering.

poly f = x3+y3+(x-y)*x2y2+z2;
f;
//-> x3y2-x2y3+x3+y3+z2

C.3 Procedures and Libraries

Singular offers a comfortable programming language, with a syntax close
to C. So it is possible to define procedures which combine several commands
to form a new one. Procedures are defined with the keyword proc followed
by a name and an optional parameter list with specified types. Finally, a
procedure may return values using the command return.

Assume we want to compute for f = x3y2− x2y3+ x3+ y3+ z2 ∈ Q[x, y, z]
the vector space dimension dimQ(Q[x, y, z]/〈∂f/∂x, ∂f/∂y, ∂f/∂z〉), the so–
called global Milnor number of f (see also Page 527). Then we type

ring R=0,(x,y,z),dp;
poly f=x3y2-x2y3+x3+y3+z2;
ideal J=diff(f,x),diff(f,y),diff(f,z);

or

ideal J=jacob(f);

Then we have to compute a standard basis of J :
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ideal K=std(J);

We obtain the Milnor number as

vdim(K);
//-> 12.

As a procedure, we can write

proc Milnor (poly h)
{

ideal J=jacob(h);
ideal K=std(J);
int d=vdim(K);
return(d);

}

or, in a more compact form:

proc Milnor (poly h)
{
return(vdim(std(jacob(h))));

}

Note: if you have entered the first line of the procedure and pressed RETURN,
Singular prints the prompt . (dot) instead of the usual prompt > . This
shows that the input is incomplete and Singular expects more lines. After
typing the closing curly bracket, Singular prints the usual prompt, indicat-
ing that the input is now complete.

Then call the procedure:

Milnor(f);
//-> 12

If we want to compute the local Milnor number of f at 0 (cf. Definition A.9.3),
then we can use the same procedure, but we have to define a local monomial
ordering on R, for example, ring R=0,(x,y,z),ds;, and then define f, J,K,
as above.

The distribution of Singular contains several libraries, which extend
the functionality of Singular. Each of these libraries is a collection of useful
procedures based on the kernel commands. The command help all.lib;
lists all libraries together with a one–line explanation.

One of these libraries is sing.lib which already contains a procedure
called milnor to calculate the Milnor number not only for hypersurfaces but,
more generally, for complete intersection singularities.

Libraries are loaded with the command LIB. Some additional information
during the process of loading is displayed on the screen, which we omit here.

LIB "sing.lib";
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As all input in Singular is case sensitive, there is no conflict with the
previously defined procedure Milnor, but the result is the same.

milnor(f);
//-> 12

Let us compute the local Milnor number of f . We use the command imap to
map f from R to the new basering with a local ordering:

ring S=0,(x,y,z),ds;
poly f=imap(R,f);
milnor(f);
//-> 4

(Since the global Milnor number is the sum of all local Milnor numbers at
all critical points of f , this shows that f must have further critical points
outside 0.)

The procedures in a library have a help part, which is displayed by typing

help milnor;

as well as some examples, which are executed by

example milnor;

Likewise, the library itself has a help part, to show a list of all the functions
available for the user, which are contained in the library.

help sing.lib;

The output of the help commands is omitted here.
We want to give some more examples to explain how to write procedures.

First of all we give an example of a procedure to compute the prime numbers
up to a given bound to explain the use of loops. We use the sieve of Eratos–
thenes:

We test the integers from 2 to n whether they are divisible by the primes
which are already in the list L. If this is not the case we include this number
in L and continue.

proc primList(int n)
{

int i,j;
list L;
for(i=2;i<=n;i++)
{
j=1;
while(j<=size(L))
{

if((i mod L[j])==0){break;}
j++;
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}
if(j==size(L)+1){L[size(L)+1]=i;}

}
return(L);

}

primList(10);
//->[1]: [2]: [3]: [4]:

2 3 5 7

Finally we will explain a recursive procedure call. Let us program the gen-
eralized Euclidean algorithm. The generalized Euclidean algorithm is applied
to two vectors x, y in Z

n as follows. Let x = (x1, . . . , xn), y = (y1, . . . , yn).
We perform the Euclidean algorithm for x1, y1 but do the operations for the
whole vectors.

Let x1− qy1 = r, 0 ≤ r < |y1| then we compute in the first step the vector
x− qy. We continue with y and x− qy. If the condition c to stop is true we
return y.

Algorithm C.3.1 (generalEuclid(x, y, c)).

Input: x, y ∈ Z
n, c a condition to stop

Output: z ∈ Z
n

(1) z = y
(2) if (c) return(z)
(3) q = x1 div y1
(4) z = x− qy
(5) x = y
(6) y = z
(7) go to (1)

If we use the procedure recursively it looks like that:

Algorithm C.3.2 (generalEuclid(x, y, c)).

• if (c) return (y)
• return (generalEuclid (y, x− (x1 div y1)y, c))

Before we come to the corresponding Singular example we will make a
remark on the use of this procedure.

(1) If x, y ∈ Z and the condition c is (x ≡ 0 mod y) then we have the
classical Euclidean algorithm.

(2) If x = (a, 1, 0), y = (b, 0, 1) and the condition c is (x1 ≡ 0 mod y1) then
for the result y = (y1, y2, y3) we have gcd(a, b) = y1 = ay2 + by3.

(3) If x = (p, 0), y = (b, a), gcd(b, p) = 1 , and the condition c is as before
(x1 ≡ 0 mod y1) then the result (y1, y2) = (1, ab−1 mod p).
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(4) If x = (p, 0), y = (q, 1), p a prime p � q, and the condition c is (2y2
1 <

p or y1 = 0) then in every step of the algorithm y = (y1, y2) has the
property y1

y2
mod p = q. The result (y1, y2) has also the property 2y2

i <

p, i = 1, 2 if y1 �= 0. This is the so–called Farey1 fraction corresponding
to q and is uniqueley determined.
In Singular we obtain the following procedures

proc generalEuclid(intvec x,intvec y,int c)
{

if(c==0)
{

if((x[1] mod y[1])==0){return(y);}
}
else //the case of Farey fractions
{

if((2*y[1]^2<c)||(y[1]==0)){return(y);}
}
return(generalEuclid(y,x-(x[1] div y[1])*y,c));

}

intvec x=28;
intvec y=36;
generalEuclid(x,y,0);
//->4 4=gcd(28,36)

x=28,1,0;
y=36,0,1;
generalEuclid(x,y,0);
//->4,4,-3 4=4*28-3*36

x=37,0;
y=3,4;
generalEuclid(x,y,0);
//->1,-48 -48 mod 37=26=4/3 mod 37

1 The set Fn := {a
b

∈ Q | gcd(a, b) = 1), 0 ≤ |a| ≤ n, 0 < b ≤ n} is called
Farey frations of order n for a prime number p. Let Qp = {a

b
∈ Q | gcd(a, b) =

gcd(b, p) = 1} and denote by fp : Qp → Fp = Z/p the canonical map defined
by fp( a

b
) = (a mod p) · (b mod p)−1. If 2n2 < p then Fn ⊂ Qp and fp|Fn

is injective. In this case the Euclidean algorithm computes for q ∈ fp(Fn) the
uniquely determined a

b
∈ Fn such that fp(

a
b
) = q. For more details and proofs

cf. [118]. The Farey fractions and the algorithm to compute them are used to
compute a Gröbnerbasis of an ideal in Q[x1, . . . , xn] computing it over Z/p for
several primes and lifting the coefficients using Chinese remainder theorem and
Farey fractions (cf. [4]). This is implemented in Singular in modstd.lib.
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x=37,0;
y=26,1;
generalEuclid(x,y,37);
//->4,3 26 = 4/3 mod 37

More Examples of procedures can be found in Section 3.7 and Section 4.8.

C.4 Data Types

In this section, we give an overview of all data types in Singular. For more
details see the Manual.

def: Objects may be defined without a specific type: they get their type from
the first assignment to them. For example, ideal i=x,y,z; def j=i^2;
defines the ideal i^2 with the name j.

ideal: Ideals are represented as lists of polynomials, which generate the
ideal: ideal I=x2-1,xy;. Like polynomials, they can only be defined or
accessed with respect to a basering.

ideal operations are:

+ addition (concatenation of the generators and simplification),
* multiplication (with ideal, poly, vector, module; simplification in case

of multiplication with ideal),
^ exponentiation (by a nonnegative integer).

ideal related functions are:

char_series, coeffs, contract, diff, degree, dim, eliminate,
facstd, factorize, fglm, finduni, groebner, highcorner, homog, hilb,
indepSet, interred, intersect, jacob, jet, kbase, koszul, lead, lift,
liftstd, lres, maxideal, minbase, minor, modulo, mres, mstd, mult,
ncols, preimage, qhweight, quotient, reduce, res, simplify, size,
sortvec, sres, std, stdfglm, stdhilb, subst, syz, vdim, weight

int: Variables of type int represent the machine integers and are, therefore,
limited in their range (for example, the range is between −2147483647 and
2147483647 on 32–bit machines): int i=1; .

int operations are:
++ changes its operand to its successor, is itself not an int ex-

pression
-- changes its operand to its predecessor, is itself not an int

expression
+ addition
- negation or subtraction
* multiplication
/ integer division (omitting the remainder), rounding toward 0
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div integer division (omitting the remainder >=0)
% integer modulo (the remainder of the division /)
mod integer modulo (the remainder of the division div), always

nonnegative
^, ** exponentiation (exponent must be nonnegative)
<, >, <=, >=, ==,<>

comparison
An assignment j=i++; or j=i--; is not allowed, in particular it does not
change the value of j.

int related functions are:

char, deg, det, dim, extgcd, find, gcd, koszul, memory, mult, ncols,
npars, nrows, nvars, ord, par, pardeg, prime, random, regularity, rvar,
size, trace, var, vdim.

boolean expressions are:

A boolean expression is really an int expression used in a logical context:
an int expression (<> 0 evaluates to TRUE (represented by 1), 0 represents
FALSE).

boolean operations are:

and (logical), may also be written as &&,
or (logical), may also be written as ||,
not (not logical), may also be written as !

intmat: Integer matrices are matrices with integer entries. Integer matrices
do not belong to a ring, they may be defined without a basering being
defined: intmat im[2][3]=1,2,3,4,5,6;.

intmat operations are:
+ addition with intmat or int; the int is converted into a diagonal

intmat
- negation or subtraction with intmat or int; the int is converted

into a diagonal intmat
* multiplication with intmat, intvec, or int; the int is converted

into a diagonal intmat
div,/ division of entries in the integers (omitting the remainder)
%, mod entries modulo int (remainder of the division)

<>, == comparison
intmat related functions are:

betti, det, ncols, nrows, random, size, transpose, trace.
intvec: Variables of type intvec are lists of integers: intvec iv=1,2,3,4;.
intvec operations are:

+ addition with intvec or int (component–wise)
- change of sign or subtraction with intvec or int (component–

wise)
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* multiplication with int (component–wise)
/, div division by int (component–wise)
%, mod modulo (component–wise)
<>, ==, <=, >=, >, <

comparison (done lexicographically)
intvec related functions are:

hilb, indepSet, leadexp, nrows, qhweight, size, sortvec, transpose,
weight.

link: Links are the communication channels of Singular, that is, some-
thing Singular can write to and/or read from. Currently, Singular sup-
ports four different link types:
• ASCII links,
• MPfile links,
• MPtcp links,
• DBM links.

link related functions are:

close, dump, getdump, open, read, status, write, kill.
Via ASCII links, data, which can be converted to a string, can be written
into files for storage or communication with other programmes. The data
is written in plain text format. The output format of polynomials is done
w.r.t. the value of the global variable short. Reading from an ASCII link
returns a string — conversion into other data is up to the user. This can
be done, for example, using the command execute.
MP (Multi Protocol) links give the possibility to store and communicate
data in the binary MP format: read and write access is very fast compared
to ASCII links.
MPtcp links give the possibility to exchange data in the binary MP for-
mat between two processes, which may run on the same or on different
computers.
DBM links provide access to data stored in a data base.

list: Lists are arrays whose elements can be of any type (including ring and
qring). If one element belongs to a ring the whole list belongs to that ring:
list L=5,"Hallo";.
Note that a list stores the objects themselves and not the names. Hence, if
L is a list, L[1] for example has no name. A name, say R, can be created
for L[1] by def R=L[1];.

list operations are:
+ concatenation

delete deletes one element from list, returns new list
insert inserts or appends a new element to list, returns a new list

list related functions are:

bareiss, betti, delete, facstd, factorize, insert, lres, minres, mres,
names, res, size, sres.



584 C. SINGULAR — A Short Introduction

map: Maps are ring maps from a ring into the basering: map g=R,x,y,z;.
map operations are:

composition of maps. If, for example, f and g are maps, then f(g) is a map
expression giving the composition of f and g.

matrix: Objects of type matrix are matrices with polynomial entries. Like
polynomials they can only be defined or accessed with respect to a basering:
matrix m[2][2]=x,1,y,xy;.

matrix related functions are:

bareiss, coef, coeffs, det, diff, jacob, koszul, lift, liftstd, minor,
ncols, nrows, print, size, subst, trace, transpose, wedge.

module: Modules are submodules of a free module over the basering with
basis gen(1), gen(2), ... . They are represented by lists of vectors,
which generate the submodule. Like vectors they can only be defined or
accessed with respect to a basering. If M is a submodule of Rn, R the
basering, generated by vectors v1, . . . , vk, then v1, . . . , vk may be consid-
ered as the generators of relations of Rn/M between the canonical gener-
ators gen(1), ..., gen(n). Hence, any finitely generated R–module can
be represented in Singular by its module of relations:
module mo=[x,yz,y],[xy,1,3];.

module operations are:

+ addition (concatenation of the generators and simplification)
* multiplication with ideal or poly.

module related functions are:

coeffs, degree, diff, dim, eliminate, freemodule, groebner, hilb,
homog, interred, intersect, jet, kbase, lead, lift, liftstd, lres,
minbase, modulo, mres, mult, ncols, nrows, print, prune, qhweight,
quotient, reduce, res, simplify, size, sortvec, sres, std, subst, syz,
vdim, weight.

number: Numbers are elements from the coefficient field (or ground field).
They can only be defined or accessed with respect to a basering, which
determines the coefficient field: number n=4/6;.

number operations are:
+ addition
- change of sign or subtraction
* multiplication
/ division

^, ** power, exponentiation (by an integer)
<=, >=, ==, <> comparison.

number related functions are:

cleardenom, impart, numerator, denominator, leadcoef, par, pardeg,
parstr, repart.
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poly: Polynomials are the basic data for all main algorithms in Singular.
They consist of finitely many terms, which are combined by the usual
polynomial operations. Polynomials can only be defined or accessed with
respect to a basering, which determines the coefficient type, the names of
the indeterminants and the monomial ordering.

ring r=32003,(x,y,z),dp;
poly f=x3+y5+z2;

poly operations are:
+ addition
- change of sign or subtraction
* multiplication
/ division by a monomial,

non divisible terms yield 0
^, ** power by an integer

<, <=, >, >=, ==, <> comparison (w.r.t. the monomial ordering)
poly related functions are:

cleardenom, coef, coeffs, deg, det, diff, extgcd, factorize, finduni,
gcd, homog, jacob, lead, leadcoef, leadexp, leadmonom, jet, ord,
qhweight, reduce, rvar, simplify, size, subst, trace, var, varstr.

proc: Procedures are sequences of Singular commands in a special for-
mat. They are used to extend the set of Singular commands with user
defined commands. Once a procedure is defined it can be used like any
other Singular command. Procedures may be defined by either typing
them on the command line or by loading them from a file. A file containing
procedure definitions, which comply with certain syntax rules is called a
library. Such a file is loaded using the command LIB.

qring: Singular offers the opportunity to calculate in quotient rings, that
is, rings modulo an ideal. The ideal has to be given as a standard basis:
qring Q=I;.

resolution: The resolution type is intended as an intermediate representa-
tion, which internally retains additional information obtained during com-
putation of resolutions. It furthermore enables the use of partial results to
compute, for example, Betti numbers or minimal resolutions. Like ideals
and modules, a resolution can only be defined w.r.t. a basering.

resolution related functions are:

betti, lres, minres, mres, res, sres.
ring: Rings are used to describe properties of polynomials, ideals, etc. Al-

most all computations in Singular require a basering.
ring related functions are:

charstr, keepring, npars, nvars, ordstr, parstr, qring, setring,
varstr.
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ring operations are:

+ construct a new ring k[X,Y ] from k[X ] and k[Y ].
string: Variables of type string are used for output (almost every type

can be “converted” to string) and for creating new commands at run-
time. They are also return values of certain interpreter related functions.
String constants consist of a sequence of any characters (including new-
line!) between a starting " and a closing " . There is also a string constant
newline, which is the newline character. The + sign “adds” strings, "" is
the empty string. Strings may be used to comment the output of a compu-
tation or to give it a nice format. Strings may also be used for intermediate
conversion of one type into another.
A comma between two strings makes an expression list out of them (such a
list is printed with a separating blank in between), while a + concatenates
strings.

string operations are:
+ concatenation

<=, >=, ==, <> comparison (lexicographical with respect to the ASCII
encoding)

string related functions are:

charstr, execute, find, names, nameof, option, ordstr, parstr, read,
size, sprintf, typeof, varstr.

vector: Vectors are elements of a free module over the basering with basis
gen(1), gen(2), ... . Each vector belongs to a free module of rank equal to
the greatest index of a generator with non–zero coefficient. Since generators
with zero coefficients need not be written, any vector may be considered
also as an element of a free module of higher rank. (For example, if f and g
are polynomials then f*gen(1)+g*gen(3)+gen(4) may also be written as
[f,0,g,1] or as [f,0,g,1,0].) Like polynomials they can only be defined
or accessed with respect to the basering. Note that the elements of a vector
have to be surrounded by square brackets ([ , ]).

vector operations are:
+ addition
- change of sign or subtraction
/ division by a monomial, not divisible terms yield

0
<, <=, >, >=, ==, <> comparison of leading terms w.r.t. monomial or-

dering

vector related functions are:

cleardenom, coeffs, deg, diff, gen, homog, jet, lead, leadcoef,
leadexp, leadmonom, nrows, ord, reduce, simplify, size, subst.
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C.5 Functions

This section gives a short reference of all functions, commands and special
variables of the Singular kernel (that is, all built–in commands).
The general syntax of a function is

[target =] function_name (<arguments>);

If no target is specified, the result is printed. In some cases (for example,
export, keepring, kill, setring, type) the brackets enclosing the argu-
ments are optional. For the commands help, continue, break, quit and
exit brackets are not allowed.

attrib: attrib ( name ) displays the attribute list of the object called
name. attrib ( name , string ) returns the value of the attribute string
of the variable name. If the attribute is not defined for this variable, attrib
returns the empty string. attrib ( name , string , expression ) sets the
attribute string of the variable name to the value expression.
An attribute may be described by any string. Some of these are used by
the kernel of Singular and referred to as reserved attributes.
Reserved attributes are: isSB, isHomog, isCI, isCM, rank, withSB,
withHilb, withRes, withDim, withMult.

bareiss: bareiss(M) applies the sparse Gauß-Bareiss algorithm to a module
(or with type conversion to a matrix) M with an “optimal” pivot strategy.
The vectors of the module are the columns of the matrix, hence elimination
takes place with respect to rows. With only one parameter a complete elim-
ination is done. Result is a list: the first entry is a module with a minimal
independent set of vectors (as a matrix lower triangular), the second entry
an intvec with the permutation of the rows w.r.t. the original matrix, that
is, a k at position l indicates that row k was carried over to the row l.
The further parameters control the algorithm. bareiss(M, i, j) does not
attempt to diagonalize the last i rows in the elimination procedure and stops
computing when the remaining number of vectors (columns) to reduce is
at most j.

betti: betti(L) computes the graded Betti numbers of a minimal resolution
of Rn/M , if R denotes the basering and M a homogeneous submodule of
Rn and the argument represents a resolution of Rn/M . The entry d of the
intmat at place (i,j) is the minimal number of generators in degree i+ j of
the j-th syzygy module (= module of relations) of Rn/M (the 0–th (resp.
1–st) syzygy module of Rn/M is Rn (resp. M)).The argument is considered
to be the result of a res/sres/mres/nres/lres command. This implies that a
zero is only allowed (and counted) as a generator in the first module. For
the computation betti uses only the initial monomials. This could lead to
confusing results for a non-homogeneous input.

bracket: bracket(p,q) computes the Lie bracket [p, q] = pq − qp of p with
q. It uses special routines, based on the Leibniz rule.
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char: char(R) returns the characteristic of the coefficient field of the ring
R.

char series: char_series(I) computes a matrix. The rows of the matrix
represent the irreducible characteristic series (cf. [167]) of the ideal I with
respect to the current ordering of variables.

charstr: charstr(R) returns the description of the coefficient field of the
ring R as a string.

cleardenom: cleardenom(f)multiplies the polynomial f , respectively vec-
tor f , by a suitable constant to cancel all denominators of the coefficients
and then divides it by its content.

close: close(L) closes the link L.
coef: coef(f,m) determines the monomials in f divisible by one of the

variables appearing in m (which is a product of ring variables) and the
coefficients of these monomials as polynomials in the remaining variables.

coeffs: coeffs(J,z) develops each polynomial of J as a univariate poly-
nomial in the given ring variable z, and returns the coefficients as a k × d
matrixM , where d−1 is the maximal z–degree of all occurring polynomials;
k is the number of generators if J is an ideal (k = 1, if J is a polynomial).
If J is a vector or a module this procedure is repeated for each component
and the resulting matrices are appended. An (optional) third argument T
is used to return the matrix T of coefficients such that matrix(J) = TM .
coeffs(M,K,p) returns a matrix A of coefficients with KA = M such that
the entries of A do not contain any variable from p. Here K is a set of
monomials, respectively vectors, with monomial entries, in the variables
appearing in p, p is a product of variables (if this argument is not given,
then the product of all ring variables is taken as default argument).
M is supposed to consist of elements of (respectively have entries in) a
finitely generated module over a ring in the variables not appearing in p.
K should contain the generators of M over this smaller ring.
If K does not contain all M , then KA = M ′ where M ′ is the part of M
corresponding to the monomials of K.

contract: contract(I,J) contracts each of the n elements of the second
ideal J by each of the m elements of the first ideal I, producing an m×n–
matrix. Contraction is defined on monomials by:

contract(xA, xB) :=

{
xB−A, if B ≥ A component–wise
0, otherwise

where A and B are the multi–exponents of the ring variables represented
by x. contract is extended bilinearly to all polynomials.

defined: defined(name) returns a value �= 0 (TRUE) if there is a user–
defined object with this name, and 0 (FALSE) otherwise.

deg: deg(f) returns the maximal (weighted) degree of the terms of a poly-
nomial or a vector f ; the weights are the weights used for the first block of
the ring ordering. deg(0) is −1.
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degree: degree(I) computes the (weighted) degree of the projective va-
riety, respectively sheaf over the projective variety, defined by the ideal,
respectively module, generated by the leading monomials of the input.
This is equal to the (weighted) degree of the projective variety, respectively
sheaf over the projective variety, defined by the ideal, respectively module,
if the input is a standard basis with respect to a (weighted) degree ordering.

delete: delete(L,n) deletes the n–th element from the list L.
det: det(M) computes the determinant of the matrix M .
diff: diff(f,x) computes the partial derivative of the polynomial f by the

ring variable x.
dim: dim(I) computes the dimension of the ideal, respectively module, gen-

erated by the leading monomials of the given generators of the ideal I, re-
spectively module. This is also the dimension of the ideal if it is represented
by a standard basis.

division: computes a division with remainder. division(I,J) returns a list
T,R,U where T is a matrix, R is an ideal, respectively a module, and U is a
diagonal matrix of units such that matrix(I)*U=matrix(J)*T+matrix(R)
is a standard representation for the (weak) normal form R of I with respect
to a standard basis of J.

dump: dump(L) dumps (that is, writes in one “message” or “block”) the
state of the Singular session (that is, all defined variables and their values)
to the link L (which must be either an ASCII or MP link) such that a
getdump can retrieve it later on.

eliminate: eliminate(I,m) eliminates variables occurring as factors of the
second argument m from an ideal I, respectively module, by intersecting it
with the subring not containing these variables. eliminate does not need
a special ordering nor a standard basis as input.
Since elimination is expensive, for homogeneous input it might be useful
first to compute the Hilbert function of the ideal (first argument) with
a fast ordering (for example, dp). Then make use of it to speed up the
computation: a Hilbert–driven elimination uses the intvec provided as the
third argument.
Remark: in a noncommutative algebra, not every subset of a set of variables
generates a proper subalgebra. But if it is so, there may be cases, when no
elimination is possible. In these situations error messages will be reported.

envelope: envelope(r) creates an enveloping algebra of a given algebra r,
that is Aenv = A⊗K Aopp, where Aopp is the opposite algebra of A.

eval: evaluates (quoted) expressions. Within a quoted expression, the quote
can be “undone” by an eval (that is, each eval “undoes” the effect of
exactly one quote). Used only when receiving a quoted expression from an
MP link, with quote and write to prevent local evaluations when writing
to an MP link.

ERROR: immediately interrupts the current computation, returns to the
top level, and displays the argument string_expression as error message.
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This should be used as an emergency, respectively failure, exit within pro-
cedures.

example: example topic; computes an example for topic. Examples are
available for all Singular kernel and library functions.

execute: executes a string containing a sequence of Singular commands.
exit: exits (quits) Singular , works also from inside a procedure or from

an interrupt.
extgcd: computes extended gcd: the first element is the greatest common

divisor of the two arguments, the second and third are factors such that if
list L=extgcd(a,b); then L[1]=a*L[2]+b*L[3].
Polynomials must be univariate to apply extgcd.

facstd: facstd(I) returns a list of ideals computed by the factorizing
Gröbner basis algorithm. The intersection of these ideals has the same
zero–set as the ideal I, that is, the radical of the intersection coincides
with the radical of the input ideal. In many (but not all!) cases this is al-
ready a decomposition of the radical of the ideal. (Note, however, that, in
general, no inclusion between the input and output ideals holds.) A second,
optional, argument can be a list of polynomials, which define non–zero con-
straints. Hence, the intersection of the output ideal has a zero–set, which
is the (closure of the) complement of the zero–set of the second argument
in the zero–set of the first argument.

factorize: factorize(f) computes the irreducible factors (as an ideal) of
the polynomial f together with or without the multiplicities (as an intvec)
depending on the optional second argument:
0: returns factors and multiplicities, first factor is a constant.

(factorize(f) is a short notation for factorize(f,0)).
1: returns non–constant factors (no multiplicities).
2: returns non–constant factors and multiplicities.

fetch: fetch(R,I) maps the object I defined over the ring R to the base-
ring. fetch is the canonical map between rings and qrings: the i–th variable
of the source ring R is mapped to the i–th variable of the basering. The
coefficient fields must be compatible.
Compared to imap, fetch uses the position of the ring variables, not their
names.

fglm: fglm(R,I) computes for the ideal I in the ring R a reduced Gröbner
basis in the basering, by applying the so–called FGLM (Faugère, Gianni,
Lazard, Mora) algorithm. The main application is to compute a lexico-
graphical Gröbner basis from a reduced Gröbner basis with respect to a
degree ordering. This can be much faster than computing a lexicographical
Gröbner basis directly. The ideal must be zero–dimensional and given as a
reduced Gröbner basis in the ring R.

fglmquot: fglmquot(I,p) computes a reduced Gröbner basis of the ideal
quotient I : 〈p〉 of a zero–dimensional ideal I and an ideal generated by
a polynomial p, by using FGLM–techniques. The ideal must be zero–
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dimensional and given as a reduced Gröbner basis in the given ring. The
polynomial must be reduced with respect to the ideal.

find: returns the first position of a substring in a string or 0 (if not found),
starts the search at the position given in the (optional) third argument.

finduni: finduni(I) returns an ideal, which is contained in the given ideal
I such that the i–th generator is a univariate polynomial in the i–th ring
variable. The polynomials have minimal degree with respect to this prop-
erty. The ideal must be zero–dimensional and given as a reduced Gröbner
basis in the current ring.

fprintf: fprintf(l,fmt,...) performs output formatting. The second ar-
gument is a format control string. Additional arguments may be required,
depending on the content of the control string. A series of output characters
is generated as directed by the control string; these characters are written
to the link l. The control string fmt is simply text to be copied, except that
the string may contain conversion specifications.

freemodule: freemodule(n) creates the free module of rank n generated
by gen(1),...,gen(n).

frwalk: frwalk(R,I) computes for the ideal I in the ring R a Groebner
basis in the current ring, by applying the fractal walk algorithm. The main
application is to compute a lexicographical Gröbner basis from a reduced
Gröbner basis with respect to a degree ordering. This can be much faster
than computing a lexicographical Gröbner basis directly.

gcd: computes the greatest common divisor of two integers or two polyno-
mials.

gen: gen(i) is the i–th free generator of a free module.
getdump: getdump(L) reads the content of the entire file, respectively link,
L and restores all variables from it. For ASCII links, getdump is equivalent
to an execute(read(L)) command. For MP links, getdump should only be
used on data, which were previously dumped.

groebner: groebner(I) computes the standard basis of the argument I
(ideal or module), by a heuristically chosen method: Possibilities are std,
slimgb, fglm or stdhilb. If a second argument wait is given, then
the computation proceeds at most wait seconds. That is, if no result
could be computed in wait seconds, then the computation is interrupted,
0 is returned, a warning message is displayed, and the global variable
groebner_error is defined.

help: help topic; displays online help information for topic using the
currently set help browser. If no topic is given, the title page of the manual
is displayed.
• ? may be used instead of help.
• topic can be an index entry of the Singular manual or the name of a

(loaded) procedure, which has a help section.
• topic may contain wildcard characters (that is, * characters).
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• If a (possibly “wildcarded”) topic cannot be found (or uniquely matched)
a warning is displayed and no help information is provided.

• If topic is the name of a (loaded) procedure whose help section has
changed w.r.t. the help available in the manual then, instead of displaying
the respective help section of the manual in the help browser, the “newer”
help section of the procedure is simply printed to the terminal.

• The browser in which the help information is displayed can be set either
with the command–line option
--browser=<browser>
or, if Singular is already running, with the command
system("--browser", "<browser>").
Use the command
system("browsers");
for a list of all available browsers.

highcorner: highcorner(I) returns the smallest monomial not contained
in the ideal, respectively module, generated by the initial terms of the
given generators of I. If the generators are a standard basis, this is also the
smallest monomial not contained in the ideal, respectively module I. If the
ideal, respectively module, is not zero–dimensional, 0 is returned. Hence,
highcorner is always 1 or 0 for global monomial orderings.

hilb: computes the (weighted) Hilbert series of the ideal, respectively mod-
ule, defined by the leading terms of the generators of the given ideal, respec-
tively module. If hilb(I) is called with one argument (the ideal or module
I), then the first and second Hilbert series, together with some additional
information, are displayed. If hilb(I,n) is called with two arguments, then
the n–th Hilbert series is returned as an intvec, where n = 1, 2 is the sec-
ond argument. More precisely, if hilb(I,n) = v0, . . . , , vd, 0, then the n–th
Hilbert series (Q(t), respectively G(t)) is

∑d
i=0 vit

i, cf. page 316.
If a weight vector w is a given as third argument, then the Hilbert series
is computed with respect to these weights w (by default all weights are set
to 1).
The last entry of the returned intvec is not part of the actual Hilbert series,
but is used in the Hilbert driven standard basis computation.
If the input is homogeneous with respect to the weights and a standard
basis, the result is the (weighted) Hilbert series of the original ideal, re-
spectively module.

homog: homog(I) tests for homogeneity: returns 1 for homogeneous input,
0 otherwise. homog(I,t) homogenizes polynomials, vectors, generators of
ideals or modules I by multiplying each monomial with a suitable power
of the given ring variable t (which must have weight 1).

imap: is the map between rings and qrings with compatible ground fields,
which is the identity on variables and parameters of the same name and
0 otherwise. imap(R,I) maps I defined over the ring R to the basering.
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Compared with fetch, imap uses the names of variables and parameters.
Unlike map and fetch, imap can map parameters to variables.

impart: returns the imaginary part of a number in a complex ground field,
returns 0 otherwise.

indepSet: indepSet(I) computes a maximal set U of independent vari-
ables of the ideal I given by a standard basis. If v is the result then v[i] is 1
if and only if the i–th variable of the ring, x(i), is an independent variable.
Hence, the set U consisting of all variables x(i) with v[i] = 1 is a maximal
independent set.

insert: insert(L,I) inserts a new element I into a list L at the first place
or (if called with three arguments) after the given position.

interred: interred(I) interreduces a set of polynomials or vectors I .
intersect: intersect(I,J, ...) computes the intersection of the ideals,

respectively modules, I, J, ....
jacob: jacob(f) computes the Jacobian ideal, respectively Jacobian ma-

trix, generated by all partial derivatives of the input f .
janet: janet(I) computes the Janet basis of the ideal I, resp. a standard

basis if 1 is given as the second argument.
jet: jet(f,k) deletes from the first argument, f , all terms of degree larger

than the second argument, k. If a third argument, w, of type intvec is
given, the degree is replaced by the weighted degree defined by w. jet is
independent of the given monomial ordering.

kbase: kbase(I) computes a vector space basis (consisting of monomials) of
the quotient ring by the ideal, respectively of a free module by the module,
I, in case it is finite dimensional and if the input is a standard basis with
respect to the ring ordering.
With two arguments: computes the part of a vector space basis of the
respective quotient with degree of the monomials equal to the second ar-
gument. Here, the quotient does not need to be finite dimensional.
Note: in the noncommutative case, a ring modulo an ideal has a ring struc-
ture if and only if the ideal is two-sided.

kill: deletes objects.
killattrib: deletes the attribute given as the second argument
koszul: koszul(d,n) computes a matrix of the Koszul relations of degree d

of the first n ring variables. koszul(d,id) computes a matrix of the Koszul
relations of degree d of the generators of the ideal id. koszul(d,n,id) com-
putes a matrix of the Koszul relations of degree d of the first n generators
of the ideal id.

laguerre: laguerre(p,n,m) computes all complex roots of the univariate
polynomial p using Laguerre’s algorithm. The second argument, n, defines
the precision of the fractional part if the ground field is the field of rational
numbers, otherwise it will be ignored. The third argument (can be 0, 1 or
2) gives the number of extra runs for Laguerre’s algorithm (with corrupted
roots), leading to better results.



594 C. SINGULAR — A Short Introduction

lead: lead(I) returns the leading term(s) of a polynomial, a vector, re-
spectively of the generators of an ideal or module I with respect to the
monomial ordering.

leadcoef: leadcoef(f) returns the leading coefficient of a polynomial or a
vector f with respect to the monomial ordering.

leadexp: leadexp(f) returns the exponent vector of the leading monomial
of a polynomial or a vector f . In the case of a vector the last component
is the index in the vector.

leadmonom: leadmonom(f) returns the leading monomial of a polynomial
or a vector f as a polynomial or vector, whose coefficient is one.

LIB: reads a library of procedures from a file. If the given filename does
not start with . or / and cannot be located in the current directory, each
directory contained in the SearchPath (SingularPath) for libraries is
searched for a file of this name.

lift: lift(m,sm) computes the transformation matrix, which expresses the
generators of a submodule in terms of the generators of a module. More
precisely, if m denotes the module (or ideal), if sm denotes the submodule
(or subideal), and if T denotes the transformation matrix returned by lift,
then matrix(sm)*U=matrix(m)*T, where U is a diagonal matrix of units.
U is always the unity matrix if the basering is a polynomial ring (not a
power series ring). U is stored in the optional third argument.

liftstd: liftstd(m,T) returns a standard basis of an ideal or module and
the transformation matrix from the given ideal, respectively module, to
the standard basis. That is, if m is the ideal or module, sm the stan-
dard basis returned by liftstd, and T the transformation matrix, then
matrix(sm)=matrix(m)*T.

listvar: lists all (user–)defined names in the current namespace:
• listvar(): all currently visible names except procedures,
• listvar(type): all currently visible names of the given type,
• listvar(ring_name): all names, which belong to the given ring,
• listvar(name): the object with the given name,
• listvar(all): all names except procedures,
• listvar(proc): all names of currently available library proce-

dures.
lres: computes a free resolution of a homogeneous ideal using La Scala’s

algorithm. It can be used in the same way as res.
maxideal: maxideal(i) returns the i–th power of the maximal ideal gen-

erated by all ring variables (maxideal(i)=1 for i ≤ 0).
memory: returns statistics concerning the memory management:
• memory(0) is the number of active (used) bytes,
• memory(1) is the number of bytes allocated from the operating system,
• memory(2) is the maximal number of bytes ever allocated from the op-

erating system during the current Singular session.
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To monitor the memory usage during ongoing computations the option mem
should be set.

minbase: minbase(I) returns a minimal set of generators of an ideal, re-
spectively module I, if the input is either homogeneous or if the ordering
is local.

minor: minor(M,r) returns the set of all minors (=subdeterminants) of
the given size r of a matrix M . The optional third argument must be
a standard basis. If a third argument is given, the computations will be
performed modulo that ideal.

minres: minres(L) minimizes a free resolution L of an ideal or module.
modulo: modulo(h1,h2) returns generators of the kernel of the map Rk →
R	/h2 induced by h1; k is the number of generators of h1, that is, it rep-
resents h1/(h1 ∩ h2) ∼= (h1 + h2)/h2 where h1 and h2 are considered as
submodules of the same free module R	 (� = 1 for ideals).

monitor: monitor("xxx.txt", "io") controls the recording of all user in-
put and/or programme output into the file xxx.txt. The second argument
describes what to log: "i" means input, "o" means output, "io" for both.
The default for the second argument is "i". Each monitor command closes
a previous monitor file and opens the file given by the first string expression.
monitor ("") turns off recording.

mpresmat: mpresmat(I,n) computes the multipolynomial resultant ma-
trix of the ideal I. It uses the sparse resultant matrix method of Gelfand,
Kapranov and Zelevinsky (second parameter = 0) or the resultant matrix
method of Macaulay (second parameter = 1).
When using the resultant matrix method of Macaulay the input system
must be homogeneous. The number of elements in the input system must
be the number of variables in the basering, plus one.

mres: computes a minimal free resolution of an ideal or module M by
the standard basis method. More precisely, let A = matrix(M), then
mres(M,k) computes a free resolution of Coker(A) = F0/M

. . .→ F2
A2−−→ F1

A1−−→ F0 → F0/M → 0 ,

where the columns of the matrix A1 are a minimal set of generators
of M if the basering is local or if M is homogeneous. If k is not zero
then the computation stops after k steps and returns a list of modules
Mi =module(Ai), i = 1 . . . k.
mres(M,0) returns a resolution consisting of, at most, n+2 modules, where
n is the number of variables of the basering. Let list L=mres(M,0); then
L[1] consists of a minimal set of generators of the input, L[2] consists of
a minimal set of generators for the first syzygy module of L[1], etcetera.

mstd: mstd(I) returns a list whose first entry is a standard basis for the
ideal, respectively module I. If the monomial ordering is global then the
second entry is both a generating set for the ideal, respectively module, and
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a subset of the standard basis. If, additionally, the input is homogeneous
then the second entry is a minimal generating set for I.

mult: mult(I) computes the multiplicity of the monomial ideal, respec-
tively module I, generated by the leading monomials of the input. If the
input is a standard basis of an ideal, respectively module, with respect to
a local degree ordering then it returns the multiplicity of this ideal, respec-
tively module, (in the sense of Samuel, with respect to the maximal ideal
of the basering).

nameof: returns the name of an expression as string.
names: names(); returns the names of all user–defined variables, which

are ring independent (this includes the names of procedures), names(R);
returns the names belonging to the ring R.

ncalgebra: executed in the commutative basering R, say, in k variables
x1, . . . , xk, ncalgebra(C,D) creates the noncommutative extension of R
subject to relations {xjxi = cij · xixj + dij , 1 ≤ i < j ≤ k}, where cij and
dij must be put into two strictly upper triangular matrices C with entries
cij from the ground field of R and D with polynomial entries dij from R.
If ∀i < j, cij = n , one can input a number n instead of the matrix C. If
∀i < j, dij = p , one can input a poly p instead of the matrix D.

ncols: ncols(M) returns the number of columns of a matrix M or an intmat
or the number of given generators of the ideal, including zeros.

npars: npars(R) returns the number of parameters of a ring R.
nres: computes a free resolution of an ideal or module M , which is mini-

mized from the second module onwards (by the standard basis method).
nrows: nrows(M) returns the number of rows of a matrix M , an intmat

or an intvec, respectively the minimal rank, of a free module in which the
given module or vector lives (the index of the last non–zero component).

nvars: nvars(R) returns the number of variables of a ring R.
open: open(L) opens the link L.
oppose: oppose(r,p) for a given object p in the given ring r, creates its

opposite object in the opposite ring (ropp is assumed to be the current
ring).

opposite: opposite(r) creates an opposite algebra of a given algebra r.
option: lists all set options. option(option_name) sets an option. To dis-

able an option, use the prefix no. The state of all options is dumped to an
intvec by option(get). The state of all options from an intvec (produced
by option(get)) is restored by option(set,intvec_expression).
The following options are used to manipulate the behaviour of compu-
tations and act like boolean switches. Notice that some options are ring
dependent and reset to their default values on a change of the current
basering:
none: turns off all options.
returnSB: the functions syz, intersect, quotient, modulo return a
standard base instead of a generating set if returnSB is set. This option
should not be used for lift.
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fastHC: tries to the find the highest corner of the staircase as fast as pos-
sible during a standard basis computation (only used for local orderings).
intStrategy: avoids division of coefficients during standard basis com-
putations. This option is ring dependent. By default, it is set for rings with
characteristic 0 or parameters.
notRegularity: disables the regularity bound for nres and mres.
notSugar: disables the sugar strategy during standard basis computa-
tion.
notBuckets: disables the bucket representation of polynomials during
standard basis computations. This option usually decreases the memory
usage but increases the computation time. It should only be set for mem-
ory critical standard basis computations.
prot: shows protocol information indicating the progress during the fol-
lowing computations: facstd, fglm, groebner, lres, mres, minres, mstd,
res, sres, std, stdfglm, stdhilb, syz.
redSB: computes reduced standard bases S (up to normalization) in any
standard basis computation in rings with global monomial orderings. Warn-
ing: since, for efficiency reasons, Singular prefers to compute with inte-
gers, the leading coefficients are not necessarily 1. Use simplify(S,1) to
obtain a reduced standard basis.
redTail: reduction of the tails of polynomials during standard basis com-
putations. This option is ring dependent. By default, it is set for rings with
global degree orderings and not set for all other rings.
redThrough: for inhomogeneous input, polynomial reductions during
standard basis computations are never postponed, but always finished
through. This option is ring dependent. By default, it is set for rings with
global degree orderings and not set for all other rings.
sugarCrit: uses criteria similar to the homogeneous case to keep more
useless pairs.
weightM: automatically computes suitable weights for the weighted ecart
and the weighted sugar method.

ord: ord(f) returns the (weighted) degree of the initial term of the poly-
nomial or a vector f ; the weights are the weights used for the first block of
the ring ordering. ord(0) is -1.

ordstr: ordstr(R) returns the description of the monomial ordering of the
ring R as string.

par: par(n) returns the n–th parameter of the basering.
pardeg: pardeg(p) returns the degree of a number p considered as a poly-

nomial in the ring parameters.
parstr: parstr(R) returns the list of parameters of the ring R as a

string. parstr(R,n) returns the name of the n–th parameter. If the ring
name is omitted, the basering is used, thus parstr(n) is equivalent to
parstr(basering,n).
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preimage: preimage(R,phi,I) returns the preimage of the ideal I under
the map phi. The monomial ordering must be global. The second argument
phi has to be a map from the basering to the given ring R (or an ideal
defining such a map), and the ideal has to be an ideal in the given ring R.
To compute the kernel of a map, the preimage of the zero–ideal has to be
computed. Use preimageLoc from ring.lib for the non–global case.
Remark: In the noncommutative case, it is implemented only for maps
A→ B, where A is a commutative ring.

prime: prime(n) returns the largest prime smaller or equal to n; returns 2
for all arguments smaller than 3 and 32003 for arguments ≥ 32004.

print: print(E) prints the expression E to the terminal and has no return
value. print(E,F) prints the expression E in a special format. The format
string F determines which format to use to generate the output:
"betti" The Betti numbers are printed in a matrix–like format where

the entry d in row i and column j is the minimal number of
generators in degree i + j of the j–th syzygy module of Rn/M
(the 0–th, respectively 1–st, syzygy module of Rn/M are Rn,
respectively M).

"%s" returns string( expression ).
"%2s" similar to "%s", except that newlines are inserted after every

comma and at the end.
"%l" similar to "%s", except that each object is embraced by its type

such that it can be directly used for “cutting and pasting”
"%2l" similar to "%l", except that newlines are inserted after every

comma and at the end.
"%;" returns the string equivalent to typing expression;.
"%t" returns the string equivalent to typing type expression;.
"%p" returns the string equivalent to typing print(expression);.
"%b" returns the string equivalent to typing print(expression,

"betti");.
prune: prune(M) returns the moduleM minimally embedded in a free mod-

ule such that the corresponding factor modules are isomorphic.
qhweight: qhweight(I) computes the weight vector of the variables for a

quasihomogeneous ideal I. If the input is not weighted homogeneous, an
intvec of zeros is returned.

quote: prevents expressions from evaluation. Used only in connection with
write to MPfile links, prevents evaluation of an expression before sending it
to another Singular process. Within a quoted expression, the quote can
be “undone” by an eval (that is, each eval “undoes” the effect of exactly
one quote).

quotient: computes the ideal quotient, respectively module quotient. Let
R be the basering, I, J ideals in R, and M,N modules in Rn. Then
quotient(I,J)= {a ∈ R | aJ ⊂ I}, quotient(M,J)= {b ∈ Rn | bJ ⊂M}
and quotient(M,N)= {a ∈ R | aN ⊂M}. In the noncommutative case,
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quotient can only be used for two-sided ideals (bimodules), otherwise the
result may have no meaning.

random: random(a,b) returns a random integer between the integer a and
the integer b. random(a,b,c) returns a b× c random intmat. The absolute
value of the entries of the matrix is smaller than or equal to the integer a.

read: read(L) reads data from a link.
For ASCII links, the content of the entire file is returned as one string. If the
ASCII link is the empty string, read reads from standard input. For MP
links, one expression is read from the link and returned after evaluation.
For MPtcp links the read command blocks as long as there is no data to
be read from the link. The status command can be used to check whether
or not there is data to be read. For DBM links, a read with one argument
returns the value of the next entry in the data base, and a read with two
arguments returns the value to the key given as the second argument from
the data base.

reduce: reduce(I,J) reduces a polynomial, vector, ideal or module I to its
normal form with respect to an ideal or module J represented by a standard
basis. 2 Returns 0 if and only if the polynomial (respectively vector, ideal,
module) is an element (respectively subideal, submodule) of the ideal (re-
spectively module). reduce(I,J,1) does no tail reduction. reduce(I,J,U)
reduces U−1I modulo J . This works only for zero dimensional ideals (re-
spectively modules) J and gives a reduced normal form; U has to be a
diagonal matrix with units on the diagonal. One may give a degree bound
in the fourth argument with respect to a weight vector in the fifth argu-
ment in order have a finite computation. If some of the weights are zero,
the procedure may not terminate!

regularity: regularity(L) computes the regularity of a homogeneous
ideal, respectively module, from a minimal resolution L.
Let 0 →⊕

aK[x]ea,n → . . .→⊕
aK[x]ea,0 → I → 0 be a minimal resolu-

tion of I considered with homogeneous maps of degree 0. The regularity is
the smallest number s with the property deg(ea,i) ≤ s+ i for all i.
If the input to the commands res and mres is homogeneous, then the
regularity is computed and used as a degree bound during the computation
unless option(notRegularity); is given.

repart: returns the real part of a number from a complex ground field,
returns its argument otherwise.

res: res(M,k) computes a (possibly minimal) free resolution of an ideal or
module M using a heuristically chosen method. The second argument k
specifies the length of the resolution. If it is not positive then k is assumed
to be the number of variables of the basering. If a third argument is given,
the returned resolution is minimized.

2 If J is not a standard basis, then a warning is displayed (the result has in general
no invariant meaning).
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reservedName: reservedName() prints a list of all reserved identifiers,
reservedName("xyz") tests whether the string xyz is a reserved identifier.

resultant: resultant(f,g,x) computes the resultant of f and g with re-
spect to the variable x.

ringlist: ringlist(r) decomposes a ring/qring into a list of 4 (or 6 in the
noncommutative case) components:
1 the field description in the following format:
• for Q, Z/p: the characteristic, type int (0 or prime number)
• for real, complex: a list of: the characteristic, type int (always 0) the

precision, type list (2 integers: external, internal precision) the name
of the imaginary unit, type string

• for transcendental or algebraic extensions: described as a ringlist
(that is, as list L with 4 entries:
L[1] the characteristic,
L[2] the names of the parameters,
L[3] the monomial ordering for the ring of parameters (default: lp),
L[4] the minimal polynomial (as ideal))

2 the names of the variables (a list L of strings: L[i] is the name of the
i-th variable)

3 the monomial ordering (a list L of lists): each block L[i] consists of
• the name of the ordering ( string )
• parameters specifying the ordering and the size of the block ( intvec

: typically the weights for the variables [default: 1] )
4 the quotient ideal.

In the noncommutative case, two additional fields appear:
5 square matrix C with nonzero upper triangle, containing structural

coefficients of a G-algebra (this corresponds to the matrix C from the
definition of G-algebras)

6 square matrix D, containing structural polynomials of a G-algebra (this
corresponds to the matrix D from the definition of G-algebras). ¿From
a list L of such structure, a new ring S may be defined by the command
def S=ring(L).

rvar: rvar(x) returns the number of the variable x if the name is a ring
variable of the basering or if the string is the name of a ring variable of the
basering; returns 0 if not.

setring: setring(S) changes the basering to the (already defined) ring S.
simplex: simplex(M,m,n,m1,m2,m3) perform the simplex algorithm for

the tableau given by the input:
• M matrix of numbers :first row describing the objective function (maxi-

mize problem), the remaining rows describing constraints;
• n = number of variables;
• m = total number of constraints;
• m1 = number of ≤ constraints (rows 2 ...m1 + 1 of M);
• m2 = number of ≥ constraints (rows m1 + 2 ...m1 +m2 + 1 of M);
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• m3 = number of =constraints.
The following assumptions are made:
• ground field is of type (real,N), N ≥ 4;
• the matrix M is of size m x n;
• m = m1 +m2 +m3;
• the entries M[2,1] ,..., M[m+1,1] are non-negative;
• the variables x(i) are non-negative;
• a row b, a(1) ,..., a(n) corresponds to b+a(1)x(1)+...+a(n)x(n);
• for a ≤, ≥, or = constraint: add ”in mind” ≥ 0, ≤ 0, or =0.
The output is a list L with
• L[1] = matrix
• L[2] = int: 0 = finite solution found; 1 = unbounded; -1 = no solution;

-2 = error occurred;
• L[3] = intvec : L[3][k] = number of variable which corresponds to row

k+1 of L[1];
• L[4] = intvec : L[4][j] = number of variable which is represented by

column j+1 of L[1] (”non-basis variable”);
• L[5] = int : number of constraints (= m);
• L[6] = int : number of variables (= n).
The solution can be read from the first column of L[1] as is done by the
procedure simplexOut in solve.lib.

simplify: simplify(f,n) returns the “simplified” first argument f depend-
ing on the simplification rule given by n. The simplification rules are sums
of the following basic rules:
1 normalize (make leading coefficients 1),
2 erase zero generators (respectively columns),
4 keep only the first one of identical generators (respectively

columns),
8 keep only the first one of generators (respectively columns),

which differ only by a factor in the ground field,
16 keep only those generators (respectively columns) whose leading

monomials differ,
32 keep only those generators (respectively columns) whose leading

monomials are not divisible by other ones.
size: depends on the type of argument: size(M) for an ideal or module M

returns the number of (non–zero) generators. For a string, intvec, list or
resolution it returns the length, that is, the number of characters, entries or
elements. For a polynomial or vector it returns the number of monomials.
For a matrix or intmat it returns the number of entries. For a ring it
returns the number of elements in the ground field (for Z/p and algebraic
extensions) or −1.

slimgb: slimgb(I) returns a Groebner basis of an ideal I with respect to
the monomial ordering of the basering, which has to be global.
Note: It is designed to keep polynomials slim (short with small coefficients).
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sortvec: sortvec(I) computes the permutation v, which orders the ideal,
respectively module, I by its leading monomials, starting with the small-
est, that is, I(v[i]) < I(v[i + 1]) for all i if the leading monomials of the
generators of I are different.

sres: computes a free resolution of an ideal or module with Schreyer’s
method. The ideal, respectively module, has to be a standard basis. More
precisely, let M be given by a standard basis and A1 =matrix(M). Then
sres(M,k) computes a free resolution of Coker(A1) = F0/M

. . .→ F2
A2−−→ F1

A1−−→ F0 → F0/M → 0 .

If the int expression k is not zero then the computation stops after k steps
and returns a list of modules (given by standard bases), Mi =module(Ai),
i = 1 . . . k. sres(M,0) returns a list of n modules, where n is the number
of variables of the basering. Even if sres does not compute a minimal
resolution, the betti command gives the true betti numbers! In many cases
of interest sres is much faster than any other known method. Let list
L=sres(M,0); then L[1]=M is identical to the input, L[2] is a standard
basis with respect to the Schreyer ordering of the first syzygy module of
L[1], etc. (L[i] = Mi in the notations from above.)

status: returns the status of the link as asked for by the second argument. If
a third argument is given, the result of the comparison to the status string
is returned: (status(l,s1)==s2) is equivalent to status(l,s1,s2). If a
fourth integer argument (say, i) is given and if status(l,s1,s2) yields 0,
then the execution of the current process is suspended (the process is put
to “sleep”) for approximately i microseconds, and afterwards the result
of another call to status(l,s1,s2) is returned. The latter is useful for
“polling” the read status of MPtcp links such that busy loops are avoided.
Note that on some systems, the minimum time for a process to be put to
sleep is one second. The following string expressions are allowed:
"name" the name string given by the definition of the link (usually the

filename)
"type" returns "ASCII", "MPfile", "MPtcp" or "DBM"
"open" returns "yes" or "no"
"openread"

returns "yes" or "no"
"openwrite"

returns "yes" or "no"
"read" returns "ready" or "not ready"
"write" returns "ready" or "not ready"
"mode" (depending on the type of the link and its status)

"","w","a","r" or "rw"
std: std(I) returns a standard basis of the ideal or module I with respect

to the monomial ordering of the basering. Use an optional second argu-
ment of type intvec as Hilbert series if the ideal, respectively module, is
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homogeneous (Hilbert driven standard basis computation). If the ideal is
quasihomogeneous with respect to weights w and if the Hilbert series is
computed w.r.t. to these weights, then use w as third argument. Use an
optional second argument of type poly, respectively vector, to construct
the standard basis from an already computed one (given as the first ar-
gument) and one additional generator (the second argument). For global
orderings, use the groebner command instead, which heuristically chooses
the “best” algorithm to compute a Gröbner basis. To view the progress of
computations, use option(prot).

stdfglm: stdfglm(I) computes the standard basis of the 0–dimensional
ideal I in the basering via fglm (from the ordering given as the second
argument to the ordering of the basering). If no second argument is given,
"dp" is used.

stdhilb: stdhilb(I) computes a standard basis of the ideal I in the baser-
ing, via a Hilbert driven standard basis computation. It contains the com-
putation of the Hilbert function of the homogenized ideal Ih.

subst: subst(f,x,m) substitutes the ring variable x by the term (a poly-
nomial of length at most 1) m.
Use map for substitutions by polynomials.

system: interface to internal data and the operating system.
syz: syz(I) computes the first syzygy (that is, the module of relations of

the given generators) of the ideal, respectively module, I.
trace: trace(A) returns the trace of the matrix A.
transpose: transpose(A) transposes the matrix A.
twostd: twostd(I) returns a left Groebner basis of the two-sided ideal,

generated by the input, treated as a set of two-sided generators.
type: prints the name, level, type and value of a variable. To display the

value of an expression, it is sufficient to type the expression followed by ;.
typeof: returns the type of an expression as string. Possible types are:
"ideal", "int", "intmat", "intvec", "list", "map", "matrix",
"module", "number", "none", "poly", "proc", "qring", "resolution",
"ring", "string", "vector".

uressolve: uressolve(I,a,b,c) computes all complex roots of the zero–
dimensional ideal I. Makes either use of the multipolynomial resultant of
Macaulay (a = 1), which works only for homogeneous ideals, or uses the
sparse resultant of Gelfand, Kapranov and Zelevinsky (a = 0).
The third argument b defines the precision of the fractional part if the
ground field is the field of rational numbers, otherwise it will be ignored.
The fourth argument c (can be 0, 1 or 2) gives the number of extra runs of
Laguerre’s algorithm, leading to better results.

vandermonde: vandermonde(p,v,d) computes the (unique) polynomial of
degree d with prescribed values v1, . . . , vN at the points

p0 = (p0,1, . . . , p0,n), . . . , pN−1 = (pN−1,1, . . . , pN−1,n),
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where n denotes the number of ring variables and N := (d+ 1)n.
The returned polynomial is

∑
cα1...αn ·xα1

1 · . . . ·xαn
n , where the coefficients

cα1...αn are the solution of the (transposed) Vandermonde system of linear
equations

∑

α1+...+αn≤d
cα1...αn · pα1

k−1,1 · . . . · pαn

k−1,n = vk, k = 1, . . . , N .

The ground field has to be the field of rational numbers.
var: var(n) returns the n–th ring variable.
varstr: varstr(R) returns the list of the names of the ring variables as

a string: varstr(R,n) returns the name of the n–th ring variable. If the
ring name is omitted, the basering is used, thus varstr(n) is equivalent to
varstr(basering,n).

vdim: vdim(I) computes the vector space dimension of the ring, respec-
tively free module, modulo the ideal, respectively module, I generated by
the initial terms of the given generators. If the generators form a standard
basis, this is the same as the vector space dimension of the ring, respec-
tively free module, modulo the ideal, respectively module I. If the ideal,
respectively module, is not zero–dimensional, -1 is returned.
Note: In the noncommutative case, a ring modulo an ideal has a ring struc-
ture if and only if the ideal is two-sided.

weightKB: weightKB(M,i,L) computes the part of a vector space basis of
the quotient defined by M with weighted degree of the monomials equal to
i. L is a list containing the information about the weights:
L[1] for all variables (positive),
L[2] only for module for the generators.

wedge: wedge(M,n) computes the n–th exterior power of the matrix M .
weight: weight(I) computes an “optimal” weight vector for an ideal, re-

spectively module I, which may be used as weight vector for the variables
in order to speed up the standard basis algorithm. If the input is weighted
homogeneous, a weight vector for which the input is weighted homogeneous
is found.

write: writes data to a link.
If the link is of type ASCII, all expressions are converted to strings (and sep-
arated by a newline character) before they are written. As a consequence,
only such values, which can be converted to a string can be written to an
ASCII link. For MP links, ring–dependent expressions are written together
with a ring description. To prevent an evaluation of the expression before it
is written, the quote command (possibly together with eval) can be used.
A write call blocks (that is, does not return to the prompt), as long as
a MPtcp link is not ready for writing. For DBM links, write with three
arguments inserts the first string as key and the second string as value into
the DBM data base. Called with two arguments, it deletes the entry with
the key specified by the string from the data base.
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C.6 Control Structures

A sequence of commands surrounded by curly brackets is a so–called block .
Blocks are used in Singular to define procedures and to collect commands
belonging to if, else, for and while statements and to the example part in
libraries. Even if the sequence of statements consists of only a single command
it has to be surrounded by curly brackets! Variables, which are defined inside
a block, are local to that block. Note that there is no ending semicolon at the
end of the block.

break: leaves the innermost for or while block.
breakpoint: sets a breakpoint at the beginning of the specified procedure

or at the given line. Note: Line number 1 is the first line of a library (for
procedures from libraries), respectively the line with the {. A line number
of -1 removes all breakpoints from that procedure.

continue: skips the rest of the innermost for or while loop and jumps to
the beginning of the block. This command is only valid inside a for or a
while construction.

else: executes the false block if the boolean expression of the if statement
is false. This command is only valid in combination with an if command.

export: converts a local variable of a procedure to a global one that is
the identifier is moved from the current package to package Top. Objects
defined in a ring are not automatically exported when exporting the ring.

export to: exportto(p,n) transfers an identifier n in the current package
into the package p. p can be Current, Top or any other identifier of type
package. (Objects defined in a ring are not automatically exported when
exporting the ring.)

for: repetitive, conditional execution of a command block. In for(i=1;
i<7;i++), the init command i=1 is executed first. Then the boolean expres-
sion i<7 is evaluated. If its value is TRUE the block is executed, otherwise
the for statement is complete. After each execution of the block, the iterate
command i++ is executed and the boolean expression is evaluated. This is
repeated until the boolean expression evaluates to FALSE. The command
break; leaves the innermost for construct.

if: executes true block if the boolean condition is true. If the if statement
is followed by an else statement and the boolean condition is false, then
false block is executed.

importfrom: importfrom(p,n) creates a new identifier n in the current
package which is a copy of the one specified by n in the package p. p can
be Top or any other identifier of type package.

load: load(s) reads a library of procedures from the file s. In contrast to
the command LIB, load can also handle dynamic modules.

quit: quits Singular; works also from inside a procedure. The commands
quit and exit are synonymous.
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return: returns the result(s) of a procedure and can only be used inside a
procedure. Note that the brackets are required even if no return value is
given, return().

while: repetitive, conditional execution of a block. In while(i<7), the
boolean expression i<7 is evaluated and if its value is TRUE, the block is
executed. This is repeated until the boolean expression evaluates to FALSE.
The command break leaves the innermost while construction.
~(break point): sets a break point. Whenever Singular reaches the
command ~; in a sequence of commands it prompts for input. The user
may now input lines of Singular commands. The line length cannot ex-
ceed 80 characters. Singular proceeds with the execution of the command
following ~; as soon as it receives an empty line.

C.7 System Variables

System variables can be used to modify the default behaviour of Singular.

degBound: The standard basis computation is stopped if the (weighted)
total degree exceeds degBound. degBound should not be used for a global
ordering with inhomogeneous input. Reset this bound by setting degBound
to 0.

echo: Input is echoed if echo >= voice. echo is a local setting for a pro-
cedure and defaulted to 0. echo does not affect the output of commands.

minpoly: describes the coefficient field of the current basering as an alge-
braic extension with the minimal polynomial equal to minpoly. Setting the
minpoly should be the first command after defining the ring.
The minimal polynomial has to be specified in the syntax of a polynomial.
Its variable is not one of the ring variables, but the algebraic element, which
is adjoined to the field. Algebraic extensions in Singular are only possible
over the rational numbers or over Z/p, p a prime number.
Singular does not check whether the given polynomial is irreducible! It
can be checked in advance with the function factorize.

multBound: The standard basis computation is stopped if the ideal is zero–
dimensional in a ring with local ordering and its multiplicity (mult) is lower
than multBound. Reset this bound by setting multBound to 0.

noether: The standard basis computation in local rings cuts off all mono-
mials above (in the sense of the monomial ordering) the monomial noether
during the computation. Reset noether by setting noether to 0.

printlevel: sets the debug level for dbprint. If printlevel >= voice then
dbprint is equivalent to print, otherwise nothing is printed.

short: the output of monomials is done in the short manner, if short is
non–zero. A C–like notation is used, if short is zero. Both notations may
be used as input. The default depends on the names of the ring variables
(0 if there are names of variables longer than one character, 1 otherwise).
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Every change of the basering sets short to the previous value for that ring.
In other words, the value of the variable short is “ring-local”.

timer:
1. the CPU time (i.e, user and system time) used for each command is

printed if timer is set to a positive value , if this time is bigger than a
(customizable) minimal time and if printlevel+1 ≥ voice (which is by
default true on the Singular top level, but not true while procedures
are executed).

2. yields the used CPU time since the start-up of Singular in a (cus-
tomizable) resolution.
The default setting of timer is 0, the default minimal time is 0.5 sec-
onds, and the default timer resolution is 1 (i.e., the default unit of time
is one second).

TRACE: sets level of debugging.
TRACE=0 no debugging messages are printed.
TRACE=1 messages about entering and leaving of procedures are displayed.
TRACE=3 messages about entering and leaving of procedures together with

line numbers are displayed.
TRACE=4 each line is echoed and the interpretation of commands in this

line is suspended until the user presses RETURN.
TRACE is defaulted to 0. It does not affect the output of commands.

voice: shows the nesting level of procedures.

C.8 Libraries

C.8.1 Standard-lib

LIBRARY: standard.lib Procedures, which are always loaded at Start-up

PROCEDURES:
stdfglm(ideal[,ord]) standard basis of ideal via fglm [and ordering ord]
stdhilb(ideal[,h]) standard basis of ideal using the Hilbert function
groebner(ideal/module) standard basis using a heuristically chosen method
res(ideal/module,[i]) free resolution of ideal or module
sprintf(fmt,...) returns formatted string
fprintf(link,fmt,..) writes formatted string to link
printf(fmt,...) displays formatted string
weightkb(s,d,v); degree d part of kbase(s) with respect to weights v

C.8.2 General purpose

LIBRARY: general.lib Elementary Computations of General Type

PROCEDURES:
A_Z("a",n); string a,b,... of n comma separated letters
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ASCII([n,m]); string of printable ASCII characters (number n to m)
binomial(n,m[,../..]); n choose m (type int), [type string/type number]
cr_roots(n,m); complex and real (positive) m-th roots of number n
chebychev(n); n-th Chebychev polynomial
deleteSublist(iv,l); delete entries given by iv from list l
factorH(p); factorizes with good choice of principal variable
factorial(n[,../..]); n factorial (=n!) (type int), [type string/number]
fibonacci(n[,p]); n-th Fibonacci number [char p]
kmemory([n[,v]]); active [allocated] memory in kilobyte
killall(); kill all user-defined variables
number_e(n); compute exp(1) up to n decimal digits
number_pi(n); compute pi (area of unit circle) up to n digits
primecoeffs(J[,q]); prime factors ≤ min(p,32003) of coeffs of J
primefactors(n[,p]); prime factors ≤ min(p,32003) of n
primes(n,m); intvec of primes p, n ≤ p ≤ m
product(../..[,v]); multiply components of vector/ideal/...[indices v]
sort(ideal/module); sort generators according to monomial ordering
sum(vector/id/..[,v]); add components of vector/ideal/...[with indices v]
timeStd(i,d); std(i) if computation finished after d seconds else i
timeFactorize(p,d); works as timeStd with factorization
watchdog(i,cmd); only wait for result of command cmd for i seconds
which(command); search for command and return absolute path, if found

LIBRARY: inout.lib Printing and Manipulating In- and Output

PROCEDURES:
allprint(list); print list if ALLprint is defined, with pause if ¿0
lprint(poly/...[,n]); display poly/... fitting to pagewidth [size n]
pmat(matrix[,n]); print form-matrix [first n chars of each column]
rMacaulay(string); read Macaulay˙1 output and return its Singular format
show(any); display any object in a compact format
showrecursive(id,p); display id recursively with respect to variables in p
split(string,n); split given string into lines of length n
tab(n); string of n space tabs
writelist(...); write a list into a file and keep the list structure
pause([prompt]); stop the computation until user input

LIBRARY: poly.lib Procedures for Manipulating Polys, Ideals, Modules

AUTHORS: Olaf Bachmann, obachman@mathematik.uni-kl.de,
Gert-Martin Greuel, greuel@mathematik.uni-kl.de,
Anne Frühbis-Krüger, anne@mathematik.uni-kl.de

PROCEDURES:
hilbPoly(I); Hilbert polynomial of basering/I
cyclic(int); ideal of cyclic n-roots
katsura([i]); katsura [i] ideal
freerank(poly/...) rank of coker(input) if coker is free else -1
is_zero(poly/...); int, =1 resp. =0 if coker(input) is 0 resp. not
lcm(ideal); lcm of given generators of ideal
maxcoef(poly/...); maximal length of coefficient occurring in poly/...
maxdeg(poly/...); int/intmat = degree/s of terms of maximal order
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maxdeg1(poly/...); int = [weighted] maximal degree of input
mindeg(poly/...); int/intmat = degree/s of terms of minimal order
mindeg1(poly/...); int = [weighted] minimal degree of input
normalize(poly/...); normalize poly/... such that leading coefficient is 1
rad_con(p,I); check radical containment of poly p in ideal I
content(f); content of polynomial/vector f
numerator(n); numerator of number n
denominator(n) denominator of number n
mod2id(M,iv); conversion of a module M to an ideal
id2mod(i,iv); conversion inverse to mod2id
subrInterred(i1,i2,iv); interred w.r.t. a subset of variables
substitute(I): substitute in I variables by monomials
newtonDiag(p); Newton diagram of the polynomial p

LIBRARY: random.lib Creating Random and Sparse Matrices, Ideals, Polys

PROCEDURES:
genericid(i[,p,b]); generic sparse linear combinations of generators of i
randomid(id,[k,b]); random linear combinations of generators of id
randommat(n,m[,id,b]); nxm matrix of random linear combinations of id
sparseid(k,u[,o,p,b]); ideal of k random sparse poly’s of degree d
sparsematrix(n,m,o[,.]);nxm sparse matrix of polynomials of degree ≤ o
sparsemat(n,m[,p,b]); nxm sparse integer matrix with random coefficients
sparsepoly(u[,o,p,b]); random sparse polynomial, terms of degree in [u,o]
sparsetriag(n,m[,.]); nxm sparse lower-triang intmat with random coeffs
triagmatrix(n,m,o[,.]); nxm sparse lower-triang matrix of poly’s of deg ≤ o
randomLast(b); random transformation of the last variable
randomBinomial(k,u,..); binomial ideal, k random generators of deg ≥ u

LIBRARY: ring.lib Manipulating Rings and Maps

PROCEDURES:
changechar("R",c[,r]); make a copy R of basering [ring r] with new char c
changeord("R",o[,r]); make a copy R of basering [ring r] with new ord o
changevar("R",v[,r]); make a copy R of basering [ring r] with new vars v
defring("R",c,n,v,o); define a ring R in specified char c, n vars v, ord o
defrings(n[,p]); define ring Sn in n vars, char 32003 [p], ord ds
defringp(n[,p]); define ring Pn in n vars, char 32003 [p], ord dp
extendring("R",n,v,o); extend given ring by n vars v, ord o and name it R
fetchall(R[,str]); fetch all objects of ring R to basering
imapall(R[,str]); imap all objects of ring R to basering
mapall(R,i[,str]); map all objects of ring R via ideal i to basering
ord_test(R); test whether ordering of R is global, local or mixed
ringtensor("R",s,t,..); create ring R, tensor product of rings s,t,...
ringweights(r); intvec of weights of ring variables of ring r
preimageLoc(I); computes the preimage of I for non-global orderings
rootofUnity(n); the minimal polynomial of the n-th primitive

root of unity
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C.8.3 Linear algebra

LIBRARY: linalg.lib Algorithmic Linear Algebra

AUTHORS: Ivor Saynisch, ivs@math.tu-cottbus.de
Mathias Schulze, mschulze@mathematik.uni-kl.de

PROCEDURES:
inverse(A); the inverse matrix of A
inverse_B(A); list(matrix Inv,poly p), Inv ·A = p ·En (using busadj(A))
inverse_L(A); list(matrix Inv,poly p), Inv ·A = p ·En (using lift)
sym_gauss(A); symmetric Gaussian algorithm
orthogonalize(A); Gram-Schmidt orthogonalization
diag_test(A); test whether A can be diagonalized
busadj(A); coeffs of Adj(En · t−A) and coeffs of det(En · t−A)
charpoly(A,v); characteristic polynomial of A (using busadj(A))
adjoint(A); adjoint of A (using busadj(A))
det_B(A); determinant of A (using busadj(A))
gaussred(A); Gaussian reduction: P ·A = U ·S, S row reduced form of A
gaussred_pivot(A); Gaussian reduction: P ·A = U ·S, uses row pivoting
gauss_nf(A); Gaussian normal form of A
mat_rk(A); rank of constant matrix A
U_D_O(A); P ·A = U ·D ·O, P,D,U,O = permutation, diagonal,

lower-, upper-triangular matrix
pos_def(A,i); test symmetric matrix for positive definiteness
hessenberg(M); Hessenberg form of M
eigenvals(M); eigenvalues with multiplicities of M
minipoly(M); minimal polynomial of M
spnf(sp); normal form of spectrum sp
spprint(sp); print spectrum sp
jordan(M[,opt]); eigenvalues, Jordan block sizes, transformation matrix
jordanbasis Jordan basis and weight filtration of M
jordanmatrix(l); Jordan matrix with eigenvalues, Jordan block sizes
jordannf(M); Jordan normal form of constant square matrix M

LIBRARY: matrix.lib Elementary Matrix Operations

PROCEDURES:
compress(A); matrix, zero columns from A deleted
concat(A1,A2,..); matrix, concatenation of matrices A1,A2,...
diag(p,n); matrix, nxn diagonal matrix with entries poly p
dsum(A1,A2,..); matrix, direct sum of matrices A1,A2,...
flatten(A); ideal, generated by entries of matrix A
genericmat(n,m[,id]); generic nxm matrix [entries from id]
is_complex(c); 1 if list c is a complex, 0 if not
outer(A,B); matrix, outer product of matrices A and B
power(A,n); matrix/intmat, n-th power of matrix/intmat A
skewmat(n[,id]); generic skew-symmetric nxn matrix [entries from id]
submat(A,r,c); submatrix of A with rows/cols specified by intvec r/c
symmat(n[,id]); generic symmetric nxn matrix [entries from id]
tensor(A,B); matrix, tensor product of matrices A and B
unitmat(n); unit square matrix of size n
gauss_col(A); transform a matrix into col-reduced Gauß normal form
gauss_row(A); transform a matrix into row-reduced Gauß normal form
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addcol(A,c1,p,c2); add p · (c1-th col) to c2-th column of matrix A, p poly
addrow(A,r1,p,r2); add p · (r1-th row) to r2-th row of matrix A, p poly
multcol(A,c,p); multiply c-th column of A with poly p
multrow(A,r,p); multiply r-th row of A with poly p
permcol(A,i,j); permute i-th and j-th columns
permrow(A,i,j); permute i-th and j-th rows
rowred(A[,any]); reduction of matrix A with elementary row-operations
colred(A[,any]); reduction of matrix A with elementary col-operations
rm_unitrow(A); remove unit rows and associated columns of A
rm_unitcol(A); remove unit columns and associated rows of A
headstand(A,i,j); A[n-i+1,m-j+1]=A[i,j]

C.8.4 Commutative algebra

LIBRARY: absfact.lib Absolute factorization for characteristic 0

AUTHORS: Wolfram Decker, decker@math.uni-sb.de
Gregoire Lecerf, lecerf@math.uvsq.fr
Gerhard Pfister, pfister@mathematik.uni-kl.de

OVERVIEW:
A library for computing the absolute factorization of multivariate polynomials f
with coefficients in a field K of characteristic zero. Using Trager’s idea, the im-
plemented algorithm computes an absolutely irreducible factor by factorizing over
some finite extension field L (which is chosen such that V(f) has a smooth point
with coordinates in L). Then a minimal extension field is determined making use
of the Rothstein-Trager partial fraction decomposition algorithm. See [Cheze and
Lecerf, Lifting and recombination techniques for absolute factorization].

PROCEDURES:
absFactorize(f); absolute factorization of poly

LIBRARY: algebra.lib Compute with Algebras and Algebra Maps

AUTHORS: Gert-Martin Greuel, greuel@mathematik.uni-kl.de,
Agnes Eileen Heydtmann, agnes@math.uni-sb.de,
Gerhard Pfister, pfister@mathematik.uni-kl.de

PROCEDURES:
algebra_containment(); query of algebra containment
module_containment(); query of module containment over a subalgebra
inSubring(p,I); test whether poly p is in subring generated by I
algDependent(I); computes algebraic relations between generators of I
alg_kernel(phi,R); computes the kernel of the ring map phi
is_injective(phi,R); test for injectivity of ring map phi
is_surjective(phi,R); test for surjectivity of ring map phi
is_bijective(phi,R); test for bijectivity of ring map phi
noetherNormal(id); Noether normalization of ideal id
mapIsFinite(R,phi,I); query for finiteness of map phi: R→ basering/I
finitenessTest(I,z); find variables which occur as pure power in lead(I)
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LIBRARY: ehv.lib Procedures for Primary Decomposition of Ideals

AUTHORS: Kai Dehmann, dehmann@mathematik.uni-kl.de;
OVERVIEW:
Algorithms for primary decomposition and radical-computation based on
the ideas of Eisenbud, Huneke, and Vasconcelos.
PROCEDURES:
equiMaxEHV(I); equidimensional part of I
equiRadEHV(I [,Strategy]); equidimensional radical of I
radEHV(I [,Strategy]); radical of I
decompEHV(I); decomposition of a zero-dimensional I
AssEHV(I [,Strategy]); associated primes of I
minAssEHV(I [,Strategy]); minimal associated primes of I
localize(I,P,l); the contraction of the ideal generated by I
componentEHV(I,P,L [,Strategy]);a P-primary component for I
primdecEHV(I [,Strategy]); a minimal primary decomposition of I

LIBRARY: elim.lib Elimination, Saturation and Blowing up

PROCEDURES:
blowup0(j[,s1,s2]); create presentation of blownup ring of ideal j
elim(id,n,m); variable n..m eliminated from id (ideal/module)
elim1(id,p); p=product of vars to be eliminated from id
nselect(id,n[,m]); select generators not containing nth [..m-th] variable
sat(id,j); saturated quotient of ideal/module id by ideal j
select(id,n[,m]); select generators containing all variables n...m
select1(id,n[,m]); select generators containing one variable n...m

LIBRARY: grwalk.lib Groebner Walk Conversion Algorithms

AUTHOR: I Made Sulandra
PROCEDURES:
fwalk(ideal[,intvec]); standard basis of ideal via fractalwalk alg
twalk(ideal[,intvec]); standard basis of ideal via Tran’s alg
awalk1(ideal[,intvec]); standard basis of ideal via the first alt. alg
awalk2(ideal[,intvec]); standard basis of ideal via the second alt. alg
pwalk(ideal[,intvec]); standard basis of ideal via perturbation walk alg
gwalk(ideal[,intvec]); standard basis of ideal via groebnerwalk alg

LIBRARY: homolog.lib Procedures for Homological Algebra

AUTHORS: Gert-Martin Greuel, greuel@mathematik.uni-kl.de,
Bernd Martin, martin@math.tu-cottbus.de
Christoph Lossen, lossen@mathematik.uni-kl.de

PROCEDURES:
cup(M); ∪ : Ext1(M’,M’)×Ext1(M ′) → Ext2(M ′)
cupproduct(M,N,P,p,q); ∪ : Extp(M’,N’)×Extq(N’,P’)→ Extp+q(M’,P’)
depth(I,M); depth(I,M’), I ideal, M module,M’=coker(M)
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Ext_R(k,M); Extk(M’,R), M module, R basering, M’=coker(M)

Ext(k,M,N); Extk(M’,N’), M’=coker(M), N’=coker(N)
fitting(M,n); n-th Fitting ideal of M’=coker(M), M module, n int
flatteningStrat(M); Flattening stratification of M’=coker(M), M module
Hom(M,N); Hom(M’,N’), M’=coker(M), N’=coker(N)

homology(A,B,M,N); ker(B)/im(A), homology of complex Rk A−→M’
B−→N’

isCM(M); test if coker(M) is Cohen-Macaulay, M module
isFlat(M); test if coker(M) is flat, M module
isLocallyFree(M,r); test if coker(M) is locally free of constant rank r
isReg(I,M); test if I is coker(M)-sequence, I ideal, M module
kernel(A,M,N); ker(A:M’→N’) M,N modules, A matrix
kohom(A,k); Hom(Rk,A), A matrix over basering R

kontrahom(A,k); Hom(A,Rk), A matrix over basering R
KoszulHomology(I,M,n); n-th Koszul homology H n(I,coker(M)), I=ideal
tensorMod(M,N); Tensor product of modules M’=coker(M), N’=coker(N)
Tor(k,M,N); Tor˙k(M’,N’), M,N modules, M’=coker(M), N’=coker(N)

LIBRARY: intprog.lib Integer Programming with Gröbner Basis Methods

AUTHOR: Christine Theis, ctheis@math.uni-sb.de
PROCEDURES:
solve_IP(..); procedures for solving integer programming problems

LIBRARY: lll.lib Integral LLL-Algorithm (see also [151])

AUTHOR: Alberto Vigneron-Tenorio, alberto.vigneron@uca.es
Alfredo Sanchez-Navarro, alfredo.sanchez@uca.es

PROCEDURES:
LLL(..); Integral LLL-Algorithm

LIBRARY: mprimdec.lib Procedures for Primary Decomposition of Modules

AUTHORS: Alexander Dreyer, adreyer@web.de

REMARK:
These procedures are implemented to be used in characteristic 0. They also work
in positive characteristic. In small characteristic and for algebraic extensions, the
procedures via Gianni, Trager, Zacharias may not terminate.

PROCEDURES:
separator(l); computes a list of separators of prime ideals
PrimdecA(N[,i]); decomposition via Shimoyama/Yokoyama (S/Y)
PrimdecB(N,p); primary decomposition for pseudo-primary ideals
modDec(N[,i]); minimal primary decomposition via S/Y
zeroMod(N[,check]); minimal zero-dimensional primary decomposition

via Gianni, Trager and Zacharias (GTZ)
GTZmod(N[,check]); minimal primary decomposition
dec1var(N[,check[,ann]]); primary decomposition for one variable
annil(N); the annihilator of Rˆn/N in the basering
splitting(N[,check[,ann]]); splitting to simpler modules
primTest(i[,p]); tests whether i is prime or homogeneous
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preComp(N,check[,ann]); enhanced version of splitting
indSet(i); lists with varstrings of(in)dependent variables
GTZopt(N[,check[,ann]]); a faster version of GTZmod
zeroOpt(N[,check[,ann]]); a faster version of zeroMod
clrSBmod(N); extracts an minimal SB from a SB
minSatMod(N,I); minimal saturation of N w.r.t. I
specialModulesEqual(N1,N2); checks if N1 is contained in N2 or vice versa
stdModulesEqual(N1,N2); checks for equality of standard bases
modulesEqual(N1,N2); checks for equality of modules
getData(N,l[,i]); extracts oldData and computes the remaining data

LIBRARY: modstd.lib Groebner basis of ideals

AUTHORS: A. Hashemi, Amir.Hashemi@lip6.fr
G. Pfister pfister@mathematik.uni-kl.de
H. Schoenemann hannes@mathematik.uni-kl.de

NOTE:
A library for computing the Groebner basis of an ideal in the polynomial ring over
the rational numbers using modular methods. The procedures are inspired by the
following paper: Elizabeth A. Arnold: Modular Algorithms for Computing Groebner
Bases, Journal of Symbolic Computation, April 2003, Volume 35, (4), p. 403-419.

PROCEDURES:
modStd(I); compute a standard basis of I using modular methods
modS(I,L); liftings to Q of standard bases of I mod p for p in L

LIBRARY: compregb.lib comprehensive Groebner systems

AUTHOR: Akira Suzuki sakira@kobe-u.ac.jp

OVERVIEW:
A simple algorithm to compute Comprehensive Groebner Bases using Groebner
Bases by Akira Suzuki and Yosuke Sato.

PROCEDURES:
cgs(polys,vars,pars,R1,R2); comprehensive Groebner systems
base2str(G); pretty print of the result G

LIBRARY: mregular.lib Castelnuovo-Mumford Regularity of CM-Schemes

AUTHORS: Isabel Bermejo, ibermejo@ull.es
Philippe Gimenez, pgimenez@agt.uva.es
Gert-Martin Greuel, greuel@mathematik.uni-kl.de

OVERVIEW:
A library for computing the Castelnuovo–Mumford regularity of a subscheme of the
projective n-space that DOES NOT require the computation of a minimal graded
free resolution of the saturated ideal defining the subscheme. The procedures are
based on [24], and [25]. The algorithm assumes the variables to be in Noether
position.
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PROCEDURES:
regIdeal(id,[,e]); regularity of homogeneous ideal id
depthIdeal(id,[,e]); depth of S/id with S=basering, id homogeneous ideal
satiety(id,[,e]); saturation index of homogeneous ideal id
regMonCurve(li); regularity of projective monomial curve defined by li
NoetherPosition(id); Noether normalization of ideal id
is_NP(id); checks whether variables are in Noether position
is_nested(id); checks whether monomial ideal id is of nested

LIBRARY: noether.lib Noether normalization of an ideal

AUTHORS: A. Hashemi, Amir.Hashemi@lip6.fr

OVERVIEW:
A library for computing the Noether normalization of an ideal that DOES NOT
require the computation of the dimension of the ideal. It checks whether an ideal
is in Noether position. A modular version of these algorithms is also provided. The
procedures are based on a paper of Amir Hashemi ’Efficient Algorithms for Com-
puting Noether Normalization’ Submitted to: Special Issue of Mathematics in Com-
puter Science on Symbolic and Numeric Computation. This library computes also
Castelnuovo-Mumford regularity and satiety of an ideal. A modular version of these
algorithms is also provided. The procedures are based on a paper of Amir Hashemi
’Computation of Castelnuovo-Mumford regularity and satiety’ Submitted to: IS-
SAC 2007.

PROCEDURES:
NPos_test(id); checks whether monomial ideal id is in Noether position
modNPos_test(id); checks the same by modular methods
NPos(id); Noether normalization of ideal id
modNPos(id); Noether normalization of ideal id by modular methods
nsatiety(id); Satiety of ideal id
modsatiety(id) Satiety of ideal id by modular methods
regCM(id); Castelnuovo-Mumford regularity of ideal id
modregCM(id); the same by modular methods

LIBRARY: normal.lib Normalization of Affine Rings

AUTHORS: Gert-Martin Greuel, greuel@mathematik.uni-kl.de,
Gerhard Pfister, pfister@mathematik.uni-kl.de

PROCEDURES:
normal(I[,"wd"]); computes the normalization of basering/I, respectively

the normalization of basering/I and the delta-invariant
HomJJ(L); presentation of End˙R(J) as affine ring, L a list
genus(I); computes the genus of the projective curve defined by I
primeClosure(L) integral closure of R/p, p prime, L a list
closureFrac(L) write poly in integral closure as element of Q(R/p)

LIBRARY: primdec.lib Primary Decomposition and Radical of Ideals

AUTHORS: Gerhard Pfister, pfister@mathematik.uni-kl.de (GTZ),
Wolfram Decker, decker@math.uni-sb.de (SY),
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Hans Schönemann, hannes@mathematik.uni-kl.de (SY)
Santiago Laplagne, laplagn@dm.uba.ar (GTZ)

OVERVIEW:
Algorithms for primary decomposition based on ideas of Gianni,Trager and Zacha-
rias, [90], (implementation by G. Pfister), respectively based on ideas of Shimo-
yama and Yokoyama [213] (implementation by W. Decker and H. Schönemann).
The procedures are implemented to be used in characteristic 0. They also work in
positive characteristic >> 0. In small characteristic and for algebraic extensions,
primdecGTZ and minAssGTZ may not terminate, while primdecSY and minAss-
Char may not give a complete decomposition. Algorithms for the computation of
the based on the ideas of Krick, Logar [139] and Kemper (implementation by G.
Pfister).

PROCEDURES:
Ann(M); annihilator of module Rn/M
primdecGTZ(I); complete primary decomposition via Gianni,Trager,Zacharias
primdecSY(I...); complete primary decomposition via Shimoyama-Yokoyama
minAssGTZ(I); the minimal associated primes via Gianni,Trager,Zacharias
minAssChar(I...); the minimal associated primes using characteristic sets
testPrimary(L,k); tests the result of the primary decomposition
radical(I); computes the radical of I via Krick/Logar and Kemper
radicalEHV(I); computes the radical of I via Eisenbud,Huneke,Vasconcelos
equiRadical(I); the radical of the equidimensional part of the ideal I
prepareAss(I); list of radicals of the equidimensional components of I
equidim(I); weak equidimensional decomposition of I
equidimMax(I); equidimensional locus of I
equidimMaxEHV(I); equidimensional locus of I via Eisenbud,Huneke,Vasconcelos
zerodec(I); zero-dimensional decomposition via Monico
absPrimdec GTZ(I); the absolute prime components of I

LIBRARY: primitiv.lib Computing a Primitive Element

AUTHOR: Martin Lamm, lamm@mathematik.uni-kl.de
PROCEDURES:
primitive(ideal i); find minimal polynomial for a primitive element
primitive_extra(i); find primitive element for two generators
splitring(f,R[,L]); define ring extension with name R and switch to it

LIBRARY: reesclos.lib Procedures to Compute Integral Closure of an Ideal

AUTHOR: Tobias Hirsch, hirsch@math.tu-cottbus.de

OVERVIEW:
A library to compute the integral closure of an ideal I in a R=k[x(1),...,x(n)] using
the Rees–Algebra R[It] of I. It computes the integral closure of R[It] (in the same
manner as done in the library ’normal.lib’), which is a graded subalgebra of R[t].
The degree k component is the integral closure of the k-th power of I.

PROCEDURES:
ReesAlgebra(I); computes Rees-Algebra of an ideal I
normalI(I[,p[,r]]); computes integral closure of an ideal I using R[It]
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LIBRARY: toric.lib Standard Basis of Toric Ideals

AUTHOR: Christine Theis, ctheis@math.uni-sb.de
PROCEDURES:
toric_ideal(A,..); computes the toric ideal of A
toric_std(ideal I); standard basis of I by a specialized Buchberger algorithm

LIBRARY: resolve.lib Resolution of singularities (Algorithm of Villamayor)

AUTHORS: A. Fruehbis-Krueger, anne@mathematik.uni-kl.de,
G. Pfister, pfister@mathematik.uni-kl.de

MAIN PROCEDURES:
blowUp(J,C[,W,E]) blowing up of the variety V(J) in V(C)
blowUp2(J,C) blowing up of the variety V(J) in V(C)
Center(J[,W,E]) computes ’Villamayor’-center for blow up
resolve(J) computes the desingularization of the variety V(J)
PROCEDURES FOR PRETTY PRINTING OF OUTPUT:
showBO(BO) prints the content of a BO in more human readable

form
presentTree(L) prints the final charts in more human readable form
showDataTypes() prints help text for output data types
AUXILIARY PROCEDURES:
createBO(J,W,E) creates basic object from input data
CenterBO(BO) computes the center for the next blow-up
Delta(BO) apply the Delta-operator of [Bravo,Encinas,Villamayor]
DeltaList(BO) list of results of Deltaˆ0 to Deltaˆbmax

LIBRARY: reszeta.lib Zeta-function of Denef and Loeser

AUTHORS: A. Fruehbis-Krueger, anne@mathematik.uni-kl.de,
G. Pfister, pfister@mathematik.uni-kl.de

MAIN PROCEDURES:
intersectionDiv(L) intersection form, genera of exceptional divisors
spectralNeg(L) negative spectral numbers
discrepancy(L) computes discrepancy of given resolution
zetaDL(L,d) computes Denef-Loeser zeta function
AUXILIARY PROCEDURES:
collectDiv(L[,iv]) identify exceptional divisors in different charts
abstractR(L) pass from embedded to non-embedded resolution

LIBRARY: sagbi.lib Subalgebras bases Analogous to Groebner bases for ideals

AUTHORS: Gerhard Pfister, pfister@mathematik.uni-kl.de,
Anen Lakhal, alakhal@mathematik.uni-kl.de

PROCEDURES:
proc reduction(p,I); Perform one step subalgebra reduction
proc sagbiSPoly(I); S-polynomial of the Subalgebra
proc sagbiNF(id,I); iterated S-reductions
proc sagbi(I); SAGBI basis for the Subalgebra defined by I
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proc sagbiPart(I); partial SAGBI basis

LIBRARY: sheafcoh.lib Procedures for Computing Sheaf Cohomology

AUTHORS: Wolfram Decker, decker@math.uni-sb.de,
Christoph Lossen, lossen@mathematik.uni-kl.de
Gerhard Pfister, pfister@mathematik.uni-kl.de

PROCEDURES:
truncate(phi,d); truncation of coker(phi) at d
CM_regularity(M); Castelnuovo-Mumford regularity of coker(M)
sheafCohBGG(M,l,h); cohomology of sheaf associated to coker(M)
sheafCoh(M,l,h); cohomology of sheaf associated to coker(M)
dimH(i,M,d); compute hˆi(F(d)), F sheaf associated to coker(M)
AUXILIARY PROCEDURES:
displayCohom(B,l,h,n); display intmat as Betti diagram (with zero rows)

C.8.5 Singularities

LIBRARY: alexpoly.lib Resolution Graph and Alexander Polynomial

AUTHOR: Fernando Hernando Carrillo, hernando@agt.uva.es
Thomas Keilen, keilen@mathematik.uni-kl.de

OVERVIEW:
A library for computing the resolution graph of a plane curve singularity f, the
total multiplicities of the total transforms of the branches of f alongthe exceptional
divisors of a minimal good resolution of f, the Alexander polynomial of f, and the
zeta function of its monodromy operator.

PROCEDURES:
resolutiongraph(f); resolution graph f
totalmultiplicities(f); resolution graph, multiplicities of f
alexanderpolynomial(f); Alexander polynomial of f
semigroup(f); calculates generators for the semigroup of f
multseq2charexp(v); multiplicity sequence to characteristic exponents
charexp2multseq(v); characteristic exponents to multiplicity sequence
charexp2generators(v); characteristic exponents to the semigroup
charexp2inter(c,e); charact. exp. to intersection matrix
charexp2conductor(v); characteristic exponents to conductor
charexp2poly(v,a); calculates f with characteristic exponents v
tau_es2(f); equisingular Tjurina number of f

LIBRARY: arcpoint.lib Truncations of arcs at a singular point

AUTHOR: Nadine Cremer cremer@mathematik.uni-kl.de

OVERVIEW:
An arc is given by a power series in one variable, say t, and truncating it at a
positive integer i means cutting the t-powers i. The set of arcs truncated at order
-bound- is denoted Tr(i). An algorithm for computing these sets (which happen to
be constructible) is given in [Lejeune-Jalabert, M.: Courbes tracées sur un germe
d’hypersurface, American Journal of Mathematics, 112 (1990)]. Our procedures for
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computing the locally closed sets contributing to the set of truncations rely on this
algorithm.

PROCEDURES:
nashmult(f,bound); the sequence of Nash Multiplicities
removepower(I); removes powers of variable
idealsimplify(I,maxiter); further simplification of I
equalJinI(I,J); tests if two ideals I and J are equal

LIBRARY: classify.lib Arnold Classifier of Singularities

AUTHOR: Kai Krüger, krueger@mathematik.uni-kl.de
Corina Baciu, baciu@mathematik.uni-kl.de

OVERVIEW:
A library for classifying isolated hypersurface singularities w.r.t. right equivalence,
based on the determinator of singularities by V.I. Arnold.

PROCEDURES:
basicinvariants(f); computes Milnor number, determinacy-bd. and crk of f
classify(f); normal form of poly f determined with Arnold’s method
corank(f); computes the corank of f (i.e. of the Hessian of f)
Hcode(v); coding of intvec v according to the number repetitions
init_debug([n]); print trace and debugging information depending on int n
internalfunctions(); display names of internal procedures of this library
milnorcode(f[,e]); Hilbert poly of [e-th] Milnor algebra coded with Hcode
morsesplit(f); residual part of f after applying the splitting lemma
quickclass(f) normal form of f determined by invariants (milnorcode)
singularity(s,[]); normal form of singularity given by its name s and index
swap(a,b); returns b,a
A_L(s/f) shortcut for quickclass(f) or normalform(s)
normalform(s); normal form of singularity given by its name s
debug_log(lev,[]); print trace and debugging information w.r.t

level

LIBRARY: deform.lib Miniversal Deformation of Singularities and Modules

AUTHOR: Bernd Martin, martin@math.tu-cottbus.de
PROCEDURES:
versal(Fo[,d,any]); miniversal deformation of isolated singularity Fo
mod_versal(Mo,I,[,d,any]); miniversal deformation of module Mo mod ideal I
lift_kbase(N,M); lifting N into standard kbase of M
lift_rel_kb(N,M[,kbM,p]); relative lifting N into a kbase of M

LIBRARY: equising.lib Equisingularity Stratum of a Family of Plane Curves

AUTHOR: Andrea Mindnich, mindnich@mathematik.uni-kl.de
PROCEDURES:
esStratum(F[,m]); computes the equisingularity stratum of the family F
isEquising(F[,m]); tests if a given deformation is equisingular
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LIBRARY: gmspoly.lib Gauss-Manin System of Tame Polynomials

AUTHOR: Mathias Schulze, email: mschulze@mathematik.uni-kl.de

OVERVIEW:
A library to compute invariants related to the Gauss-Manin system of a cohomo-
logically tame polynomial

PROCEDURES:
isTame(f); test if the polynomial f is tame
goodBasis(f); a good basis of the Brieskorn lattice of a cohomologically tame f

LIBRARY: gmssing.lib Gauss-Manin System of Isolated Singularities

AUTHOR: Mathias Schulze, email: mschulze@mathematik.uni-kl.de

OVERVIEW:
A library to compute invariants related to the the Gauss-Manin system of an iso-
lated hypersurface singularity

PROCEDURES:
gmsring(t,s); Gauss-Manin system of t with variable s
gmsnf(p,K); Gauss-Manin normal form of p
gmscoeffs(p,K); Gauss-Manin basis representation of p
bernstein(t); roots of the Bernstein polynomial of t
monodromy(t); Jordan data of complex monodromy of t
spectrum(t); singularity spectrum of t
sppairs(t); spectral pairs of t
vfilt(t); V-filtration of t on Brieskorn lattice
vwfilt(t); weighted V-filtration of t on Brieskorn lattice
tmatrix(t); matrix of t w.r.t. good basis of Brieskorn lattice
endvfilt(V); endomorphism V-filtration on Jacobian algebra
sppnf(a,w[,m]); spectral pairs normal form of (a,w[,m])
sppprint(spp); print spectral pairs spp
spadd(sp1,sp2); sum of spectra sp1 and sp2
spsub(sp1,sp2); difference of spectra sp1 and sp2
spmul(sp0,k); linear combination of spectra sp
spissemicont(sp[,opt]); semicontinuity test of spectrum sp
spmilnor(sp); Milnor number of spectrum sp
spgeomgenus(sp); geometrical genus of spectrum sp
spgamma(sp); gamma invariant of spectrum sp

LIBRARY: hnoether.lib Hamburger-Noether (Puiseux) Development

AUTHOR: Martin Lamm, lamm@mathematik.uni-kl.de
Christoph Lossen lossen@mathematik.uni-kl.de

OVERVIEW:
A library for computing the Hamburger–Noether, respectively Puiseux, devel-
opment of a plane curve singularity following [39]. The library contains also
procedures for computing the (topological) numerical invariants of plane curve
singularities.
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MAIN PROCEDURES:
hnexpansion(f); Hamburger-Noether (H-N) expansion of f
develop(f[,n]); H-N development of irreducible curves
extdevelop(hne,n); extension of the H-N development hne of f
param(hne [,x]); a parametrization of f (input=output(develop))
displayHNE(hne); display H-N development as an ideal
invariants(hne); invariants of f, e.g. the characteristic exponents
multsequence(hne); sequence of multiplicities
displayInvariants(hne); display invariants of f
intersection(hne1,hne2); intersection multiplicity of two curves
displayMultsequence(hne); display sequence of multiplicities
is_irred(f); test for irreducibility
delta(f); delta-invariant of f
newtonpoly(f) local Newton polygon of f
is_NND(f) test whether f is Newton non-degenerate
AUXILIARY PROCEDURES:
puiseux2generators(m,n); convert Puiseux pairs to generators of semigroup
separateHNE(hne1,hne2); number of quadratic transf. needed for separation
squarefree(f); a squarefree divisor of the poly f
allsquarefree(f,l); the maximal squarefree divisor of the poly f
further_hn_proc(); show further procedures useful for
interactive use
stripHNE(hne); reduce amount of memory consumed by hne

LIBRARY: kskernel.lib Kernel of the Kodaira--Spencer map

AUTHOR: Tetyana Povalyaeva
PROCEDURES:
KSker(p,q); kernel of the Kodaira-Spencer map
KSlinear(M); matrix of linear terms of the kernel
KScoef(i,j,P,Q,qq); coefficient of the given term in the matrix

OVERVIEW:
computes the kernel of the Kodaira-Spencer map of a versal deformation of an
irreducible plane curve singularity as a matrix.

LIBRARY: KVequiv.lib Procedures related to K˙V-Equivalence

AUTHOR: Anne Fruehbis-Krueger, anne@mathematik.uni-kl.de
PROCEDURES:
derlogV(iV); derlog(V(iV))
KVtangent(I,rname,dername,k) K˙V tangent space to given singularity
KVversal(KVtan,I,rname,idname) K˙V versal family
KVvermap(KVtan,I) section inducing K˙V versal family
lft_vf(I,rname,idname) liftable vector fields

LIBRARY: mondromy.lib Monodromy of an Isolated Hypersurface Singularity

AUTHOR: Mathias Schulze, mschulze@mathematik.uni-kl.de
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OVERVIEW:
Library to compute the monodromy of an isolated hypersurface singularity. It uses
an algorithm by Brieskorn [28] to compute a connection matrix of the meromorphic
Gauß-Manin connection up to arbitrarily high order, and an algorithm of Gerard
and Levelt [87] to transform it to a simple pole.

PROCEDURES:
detadj(U); determinant and adjoint matrix of square matrix U
invunit(u,n); series inverse of polynomial u up to order n
jacoblift(f); lifts fκ in jacob(f) with minimal κ
monodromyB(f[,opt]); monodromy of isolated hypersurface singularity f
H2basis(f); basis of Brieskorn lattice H’’

LIBRARY: qhmoduli.lib Moduli Spaces of Semi-Quasihomogeneous Singularities

AUTHOR: Thomas Bayer, bayert@in.tum.de

OVERVIEW:
Compute equations for the moduli space of an isolated semi-quasihomogeneous
hypersurface singularity with fixed principal part (based on [105]).

PROCEDURES:
ArnoldAction(f,[G,w]); induced action of G˙f on T˙
ModEqn(f); equations of the moduli space for principal part f
QuotientEquations(G,A,I); equations of Variety(I)/G w.r.t. action ’A’
StabEqn(f); equations of the stabilizer of f
StabEqnId(I,w); equations of the stabilizer of the qhom. ideal I
StabOrder(f); order of the stabilizer of f
UpperMonomials(f,[w]); upper basis of the Milnor algebra of f
Max(data); maximal integer contained in ’data’
Min(data); minimal integer contained in ’data’

LIBRARY: sing.lib Invariants of Singularities

AUTHORS: Gert-Martin Greuel, greuel@mathematik.uni-kl.de,
Bernd Martin, martin@math.tu-cottbus.de

PROCEDURES:
codim (id1, id2); vector space dimension of of id2/id1 if finite
deform(i); infinitesimal deformations of ideal i
dim_slocus(i); dimension of singular locus of ideal i
is_active(f,id); is poly f an active element mod id? (id ideal/module)
is_ci(i); is ideal i a complete intersection?
is_is(i); is ideal i an isolated singularity?
is_reg(f,id); is poly f a regular element mod id? (id ideal/module)
is_regs(i[,id]); are gen’s of ideal i regular sequence modulo id?
milnor(i); Milnor number of ideal i; (assume i is ICIS in nf)
nf_icis(i); generic combinations of generators; get ICIS in nf
qhspectrum(f,w); spectrum numbers of w-homogeneous polynomial f
slocus(i); ideal of singular locus of ideal i
tangentcone(i); tangent cone of ideal i
Tjurina(i); SB of Tjurina module of ideal i (assume i is ICIS)
tjurina(i); Tjurina number of ideal i (assume i is ICIS)
T_1(i); Tˆ1-module of ideal i
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T_2((i); Tˆ2-module of ideal i
T_12(i); Tˆ1- and Tˆ2-module of ideal i
locstd(I); SB of I for local degree orderings without

cancelling units

LIBRARY: space_curve.lib

AUTHOR: Viazovska Maryna, viazovsk@mathematik.uni-kl.de
PROCEDURES:
BlowingUp(f,I,l); BlowingUp of V(I) at the point 0;
CurveRes(I); Resolution of V(I)
CurveParam(I); Parametrization of algebraic branches of V(I)
WSemigroup(X,b); Weierstrass semigroup of the curve

LIBRARY: spcurve.lib Deformations and Invariants of CM-codim 2 Singularities

AUTHOR: Anne Frühbis-Krüger, anne@mathematik.uni-kl.de
PROCEDURES:
isCMcod2(i); presentation matrix of the ideal i, if i is CM
CMtype(i); Cohen-Macaulay type of the ideal i
matrixT1(M,n); 1-st order deformation T1 in matrix description
semiCMcod2(M,T1); semiuniversal deformation of maximal minors of M
discr(sem,n); discriminant of semiuniversal deformation
qhmatrix(M); weights if M is quasihomogeneous
relweight(N,W,a); relative matrix weight of N w.r.t. weights (W,a)
posweight(M,T1,i); deformation of coker(M) of non-negative weight
KSpencerKernel(M); kernel of the Kodaira-Spencer map

LIBRARY: spectrum.lib Singularity Spectrum for Nondegenerate
Singularities

AUTHOR: Stefan Endraß
PROCEDURES:
spectrumnd(poly[,1]); spectrum of a nondegenerate isolated singularity

C.8.6 Invariant theory

LIBRARY: ainvar.lib Invariant Rings of the Additive Group (see also [113])

AUTHORS: Gerhard Pfister, pfister@mathematik.uni-kl.de,
Gert-Martin Greuel, greuel@mathematik.uni-kl.de

PROCEDURES:
invariantRing(m..); compute ring of invariants of (K,+)-action given by m
derivate(m,f); derivation of f with respect to the vectorfield m
actionIsProper(m); tests whether action defined by m is proper
reduction(p,I); SAGBI reduction of p in the subring generated by I
completeReduction(); complete SAGBI reduction
localInvar(m,p..); invariant polynomial under m computed from p,...
furtherInvar(m..); compute further invariants of m from the given ones
sortier(id); sorts generators of id by increasing leading terms
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LIBRARY: finvar.lib Invariant Rings of Finite Groups

AUTHOR: Agnes E. Heydtmann, agnes@math.uni-sb.de
Simon A. King, king@mfo.de

OVERVIEW:
A library for computing polynomial invariants of finite matrix groups and generators
of related varieties. The algorithms are based on B. Sturmfels, G. Kemper and W.
Decker et al.

MAIN PROCEDURES:
invariant_ring(); generators of the invariant ring (i.r.)
invariant_ring_random(); generators of the i.r., randomized alg.
primary_invariants(); primary invariants (p.i.)
primary_invariants_random(); primary invariants, randomized alg.

AUXILIARY PROCEDURES:
cyclotomic(); cyclotomic polynomial
group_reynolds(); finite group and Reynolds operator (R.o.)
molien(); Molien series (M.s.)
reynolds_molien(); Reynolds operator and Molien series
partial_molien(); partial expansion of Molien series
evaluate_reynolds(); image under the Reynolds operator
invariant_basis(); basis of homogeneous invars of a degree
invariant_basis_reynolds(); as invariant˙basis(), with R.o.
primary_char0(); primary invariants in char 0
primary_charp(); primary invariant in char p
primary_char0_no_molien(); p.i., char 0, without Molien series
primary_charp_no_molien(); p.i., char p, without Molien series
primary_charp_without(); p.i., char p, without R.o. or Molien series
primary_char0_random(); primary invariants in char 0, randomized
primary_charp_random(); primary invariants in char p, randomized
primary_char0_no_molien_random(); p.i., char 0, without M.s., randomized
primary_charp_no_molien_random(); p.i., char p, without M.s., randomized
primary_charp_without_random(); p.i., char p, without R.o. or M.s., random.
power_products(); exponents for power products
secondary_char0(); secondary (s.i.) invariants in char 0
secondary_charp(); secondary invariants in char p
secondary_no_molien(); secondary invariants, without M.s.
secondary_and_irreducibles_no_molien(); s.i. & irreducible s.i., without M.s.
secondary_not_cohen_macaulay(); s.i. when invariant ring not CM
orbit_variety(); ideal of the orbit variety
relative_orbit_variety(); ideal of a relative orbit variety
image_of_variety(); ideal of the image of a variety

LIBRARY: rinvar.lib Invariant Rings of Reductive Groups

AUTHOR: Thomas Bayer, tbayer@in.tum.de

OVERVIEW:
Implementation based on Derksen’s algorithm. Written in the frame of the diploma
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thesis (advisor: Prof. Gert-Martin Greuel) ’Computations of moduli spaces of semi-
quasihomogeneous singularities and an implementation in Singular’

PROCEDURES:
HilbertSeries(I, w); Hilbert series of the ideal I w.r.t. weight w
HilbertWeights(I, w); weighted degrees of the generators of I
ImageVariety(I, F); ideal of the image variety F(variety(I))
ImageGroup(G, F); ideal of G w.r.t. the induced representation
InvariantRing(G, Gaction); generators of the invariant ring of G
InvariantQ(f, G, Gaction); decide if f is invariant w.r.t. G
LinearizeAction(G, Gaction); linearization of the action ’Gaction’ of G
LinearActionQ(action,s,t); decide if action is linear in var(s..nvars)
LinearCombinationQ(base, f); decide if f is in the linear hull of ’base’
MinimalDecomposition(f,s,t); minimal decomposition of f (like coef)
NullCone(G,act); ideal of the nullcone of the action ’act’ of G
ReynoldsImage(RO,f); image of f under the Reynolds operator ’RO’
ReynoldsOperator(G, Gaction); Reynolds operator of the group G
SimplifyIdeal(I[,m,s]); simplify the ideal I (try to reduce variables)

LIBRARY: stratify.lib Algorithmic Stratification for Unipotent Group-Actions

AUTHOR: Anne Frühbis-Krüger, anne@mathematik.uni-kl.de

OVERVIEW:
This library provides an implementation of the algorithm of Greuel and Pfister
introduced in the article “Geometric quotients of unipotent group actions”.

PROCEDURES:
prepMat(M,wr,ws,step); list of sub matrices corresp. to given filtration
stratify(M,wr,ws,step); algorithmic stratification (main procedure)

C.8.7 Symbolic-numerical solving

LIBRARY: digimult.lib Satisfiability of prop. logical expressions

AUTHORS: Michael Brickenstein, bricken@mathematik.uni-kl.de

OVERVIEW:
Various algorithms for verifying digital circuits, including SAT-Solvers

PROCEDURES:
satisfiable(I); returns 1, if system is satisfiable

LIBRARY: ntsolve.lib Real Newton Solving of Polynomial Systems

AUTHORS: Wilfred Pohl, pohl@mathematik.uni-kl.de
Dietmar Hillebrand

PROCEDURES:
nt_solve(G,ini,[..]); find one real root of 0-dimensional ideal G
triMNewton(G,a,[..]); find one real root for 0-dim triangular system G



626 C. SINGULAR — A Short Introduction

LIBRARY: presolve.lib Pre-Solving of Polynomial Equations

AUTHORS: Gert-Martin Greuel, greuel@mathematik.uni-kl.de,
PROCEDURES:
degreepart(id,d1,d2); elements of id of total degree ≥ d1 and ≤ d2
elimlinearpart(id); linear part eliminated from id
elimpart(id[,n]); partial elimination of vars [among first n vars]
elimpartanyr(i,p); factors of p partially eliminated from i in any ring
fastelim(i,p[..]); fast elimination of factors of p from i [options]
findvars(id[..]); ideal of variables occurring in id [more information]
hilbvec(id[,c,o]); intvec of Hilbert series of id [in char c and ord o]
linearpart(id); elements of id of total degree ≤ 1
tolessvars(id[,]); maps id to new basering having only vars occurring in id
solvelinearpart(id); reduced std-basis of linear part of id
sortandmap(id,s1,s2); map to new basering with vars sorted w.r.t. complexity
sortvars(id[n1,p1..]); sort vars w.r.t. complexity in id [different blocks]
valvars(id[..]); valuation of vars w.r.t. to their complexity in id
idealSplit(id,tF,fS); radical of the intersection of the ideals =radical(id)

LIBRARY: realrad.lib Computation of real radicals

AUTHOR : Silke Spang

OVERVIEW:
Algorithms about the computation of the real radical of an arbitrary ideal over the
rational numbers and transcendental extensions thereof

PROCEDURES:
realpoly(f); Computes the real part of the univariate polynomial f
realzero(j); Computes the real radical of the zerodimensional ideal j
realrad(j); Computes the real radical of an arbitrary ideal over

transcendental extension of the rational numbers

LIBRARY: solve.lib Complex Solving of Polynomial Systems

AUTHOR: Moritz Wenk, wenk@mathematik.uni-kl.de
Wilfred Pohl, pohl@mathematik.uni-kl.de

PROCEDURES:
laguerre_solve(p,[..]); find all roots of univariate polynomial p
solve(i,[..]); all roots of 0-dim. ideal i using triangular sets
ures_solve(i,[..]); find all roots of 0-dimensional ideal i with resultants
mp_res_mat(i,[..]); multipolynomial resultant matrix of ideal i
interpolate(p,v,d); interpolate poly from evaluation points p and results v
fglm_solve(i,[..]); find roots of 0-dim. ideal using FGLM and lex˙solve
lex_solve(i,p,[..]); find roots of reduced lexicographic standard basis
triangLf_solve(l,[..]); find roots using triangular sys. (factorizing Lazard)
triangM_solve(l,[..]); find roots of given triangular system (Moeller)
triangL_solve(l,[..]); find roots using triangular system (Lazard)
triang_solve(l,p,[..]); find roots of given triangular system
simplexOut(L); print solution L of simplex in nice format
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LIBRARY: triang.lib Decompose Zero-dimensional Ideals into Triangular Sets

AUTHOR: Dietmar Hillebrand
PROCEDURES:
triangL(G); Decomposition of (G) into triangular systems (Lazard).
triangLfak(G); Decomp. of (G) into tri. systems plus factorization.
triangM(G[,.]); Decomposition of (G) into triangular systems (Möller).
triangMH(G[,.]); Decomp. of (G) into tri. syst. with disjoint varieties.

LIBRARY: zeroset.lib Procedures For Roots and Factorization

AUTHOR: Thomas Bayer, bayert@in.tum.de

OVERVIEW:
Algorithms for finding the zero–set of a zero–dimensional ideal in Q(a)[x1, ..., xn].
Roots and Factorization of univariate polynomials over Q(a)[t] where a is an al-
gebraic number. Written in the frame of the diploma thesis (advisor: Prof. Gert-
Martin Greuel) ’Computations of moduli spaces of semiquasihomogeneous singu-
larities and an implementation in Singular’. This library is meant as a preliminary
extension of the functionality of Singular for univariate factorization of polynomi-
als over simple algebraic extensions in characteristic 0. Subprocedures with postfix
’Main’ require that the ring contains a variable ’a’ and no parameters, and the ideal
’mpoly’, where ’minpoly’ from the basering is stored.

PROCEDURES:
EGCD(f,g); gcd over an algebraic extension field of Q
Factor(f); factorization of f over an algebraic extension field
Quotient(f,g); quotient q of f w.r.t. g (in f = q · g + remainder)
Remainder(f,g); remainder of the division of f by g
Roots(f); computes all roots of f in an extension field of Q
SQFRNorm(f); norm of f (f must be squarefree)
ZeroSet(I); zero-set of the 0-dim. ideal I

AUXILIARY PROCEDURES:
EGCDMain(f,g); gcd over an algebraic extension field of Q
FactorMain(f); factorization of f over an algebraic extension field
InvertNumberMain(c); inverts an element of an algebraic extension field
QuotientMain(f,g); quotient of f w.r.t. g
RemainderMain(f,g); remainder of the division of f by g
RootsMain(f); computes all roots of f, might extend the groundfield
SQFRNormMain(f); norm of f (f must be squarefree)
ContainedQ(data,f); f in data
SameQ(a,b); a = b (list a,b)

LIBRARY: rootsmr.lib Counting the number of real roots of polynomial systems

AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar

OVERVIEW:
Routines for counting the number of real roots of a multivariate polynomial sys-
tem. Two methods are implemented: deterministic computation of the number of
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roots, via the signature of a certain bilinear form (nrRootsDeterm); and a ratio-
nal univariate projection, using a pseudorandom polynomial (nrRootsProbab). It
also includes a command to verify the correctness of the pseudorandom answer.
References: Basu, Pollack, Roy, Älgorithms in Real Algebraic Geometrÿ, Springer,
2003.

PROCEDURES:
nrRootsProbab(I) Number of real roots of 0-dim ideal (probabilistic)
nrRootsDeterm(I) Number of real roots of 0-dim ideal (deterministic)
symsignature(m) Signature of the symmetric matrix m
sturmquery(h,B,I) Sturm query of h on V(I)
matbil(h,B,I) Matrix of the bilinear form on R/I associated to h
matmult(f,B,I) Matrix of multiplication by f (m˙f) on R/I in the basis B
tracemult(f,B,I) Trace of m˙f (B is an ordered basis of R/I)
coords(f,B,I) Coordinates of f in the ordered basis B
randcharpoly(B,I,n)Pseudorandom charpoly of univ. projection, n optional
verify(p,B,i) Verifies the result of randcharpoly
randlinpoly(n) Pseudorandom linear polynomial, n optional
powersums(f,B,I) Powersums of the roots of a char polynomial
symmfunc(S) Symmetric functions from the powersums S
univarpoly(l) Polynomial with coefficients from l
qbase(i) Like kbase, but the monomials are ordered

LIBRARY: rootsur.lib Counting number of real roots of univariate polynomial

AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar

OVERVIEW:
Routines for bounding and counting the number of real roots of a univariate poly-
nomial, by means of several different methods, namely Descartes’ rule of signs, the
Budan-Fourier theorem, Sturm sequences and Sturm-Habicht sequences. The first
two give bounds on the number of roots. The other two compute the actual num-
ber of roots of the polynomial. There are several wrapper functions, to simplify the
application of the aforesaid theorems and some functions to determine whether a
given polynomial is univariate. References: Basu, Pollack, Roy, Älgorithms in Real
Algebraic Geometrÿ, Springer, 2003.

PROCEDURES:
isuni(p) Checks whether a polynomial is univariate
whichvariable(p) The only variable of a univariate monomial (or 0)
varsigns(p) Number of sign changes in a list
boundBuFou(p,a,b) Bound for number of real roots of poly p
boundposDes(p) Bound for the number of positive real roots of p
boundDes(p) Bound for the number of real roots of poly p
allrealst(p) Checks whether all the roots of a poly are real
maxabs(p) A bound for the maximum absolute value of a root
allreal(p) Checks whether all the roots of a poly are real
sturm(p,a,b) Number of real roots of a poly on an interval
sturmseq(p) Sturm sequence of a polynomial
sturmha(p,a,b) Number of real roots of a poly in (a,b)
sturmhaseq(p) A Sturm-Habicht Sequence of a polynomial
reverse(l) Reverses a list
nrroots(p) The number of real roots of p
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LIBRARY: signcond.lib Routines for computing realizable sign conditions

AUTHOR: Enrique A. Tobis, etobis@dc.uba.ar

OVERVIEW:
Routines to determine the number of solutions of a multivariate polynomial system
which satisfy a given sign configuration. References: Basu, Pollack, Roy, Algorithms
in Real Algebraic Geometrÿ, Springer, 2003.

PROCEDURES:
signcnd(P,I) The sign conditions realized by polynomials of P on a V(I)
psigncnd(P,l) Pretty prints the output of signcnd (l)
firstoct(I) The number of elements of V(I) with every coordinate ¿ 0

C.8.8 Visualization

LIBRARY: latex.lib Typesetting of Singular-Objects in LaTeX2e

AUTHOR: Christian Gorzel, gorzelc@math.uni-muenster.de
PROCEDURES:
closetex(fnm); writes closing line for LaTeX-document
opentex(fnm); writes header for LaTeX-file fnm
tex(fnm); calls LaTeX2e for LaTeX-file fnm
texdemo([n]); produces a file explaining the features of this lib
texfactorize(fnm,f); creates string in LaTeX-format for factors of poly f
texmap(fnm,m,r1,r2); creates string in LaTeX-format for map m: r1→ r2
texname(fnm,s); creates string in LaTeX-format for identifier
texobj(l); creates string in LaTeX-format for any (basic) type
texpoly(f,n[,l]); creates string in LaTeX-format for poly
texproc(fnm,p); creates string in LaTeX-format of text from proc p
texring(fnm,r[,l]); creates string in LaTeX-format for ring/qring
rmx(s); removes .aux and .log files of LaTeX-files
xdvi(s); calls xdvi for dvi-files

LIBRARY: surf.lib Procedures for Graphics with surf

AUTHOR: Hans Schönemann, hannes@mathematik.uni-kl.de,
the programme surf is written by Stefan Endraß

NOTE:
To use this library requires the programme surf to be installed. surf is only avail-
able for Linux PCs and Sun workstations. You can download surf either from

http://sourceforge.net/projects/surf
or from ftp://www.mathematik.uni-kl.de/pub/Math/Singular/utils/.

PROCEDURES:
plot(I,[...]); plots plane curves and surfaces
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LIBRARY: surfex.lib Procedures for visualizing Surfaces.

AUTHOR: Oliver Labs
NOTE:
This library uses the program surf and surfex. surfex was written by Oliver
Labs and others, mainly Stephan Holzer. surf was written by Stefan Endrass
and others.
This software is used for producing raytraced images of the surfaces.
You can download surfex from http://www.surfex.AlgebraicSurface.net.
surfex is a front-end for surf which aims to be easier to use than the original tool.
PROCEDURES:
plotRotated(); Plot the surface given by the polynomial p
plotRot(); Similar to plotRotated
plotRotatedList(); Plot the varieties given by a list of polynomials
plotRotatedDirect(); Plot the varieties given by a list directely

C.8.9 Coding theory

LIBRARY: brnoeth.lib Brill-Noether Algorithm, Weierstraß-SG and AG-codes

AUTHORS: Jose Ignacio Farran Martin, ignfar@eis.uva.es
Christoph Lossen, lossen@mathematik.uni-kl.de

OVERVIEW:
Implementation of the Brill–Noether algorithm for solving the Riemann–Roch prob-
lem and applications in Algebraic Geometry codes. The computation of Weierstraß
semigroups is also implemented. The procedures are intended only for plane (sin-
gular) curves defined over a prime field of positive characteristic.

MAIN PROCEDURES:
Adj_div(f); computes the conductor of a curve
NSplaces(h,A); computes non-singular places up to given degree
BrillNoether(D,C); computes a vector space basis of the linear system L(D)
Weierstrass(P,m,C); computes the Weierstraß semigroup of C at P up to m
extcurve(d,C); extends the curve C to an extension of degree d
AGcode_L(G,D,E); computes the evaluation AG code with divisors G and D
AGcode_Omega(G,D,E); computes the residual AG code with divisors G and D
prepSV(G,D,F,E); preprocessing for the basic decoding algorithm
decodeSV(y,K); decoding of a word with the basic decoding algorithm

AUXILIARY PROCEDURES:
closed_points(I); computes the zero-set of a zero-dim. ideal in 2 vars
dual_code(C); computes the dual code
sys_code(C); computes an equivalent systematic code
permute_L(L,P); applies a permutation to a list

C.8.10 System and Control theory

LIBRARY: control.lib Algebraic analysis tools for System and Control Theory

AUTHORS: Oleksandr Iena yena@mathematik.uni-kl.de
Markus Becker mbecker@mathematik.uni-kl.de
Viktor Levandovskyy levandov@mathematik.uni-kl.de
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MAIN PROCEDURES:
control(R); analysis of controllability-related properties of R
controlDim(R); analysis of controllability-related properties of R
autonom(R); analysis of autonomy-related properties of R
autonomDim(R); analysis of autonomy-related properties of R

COMPONENT PROCEDURES:
leftKernel(R); a left kernel of R
rightKernel(R); a right kernel of R
leftInverse(R); a left inverse of R
rightInverse(R); a right inverse of R
smith(M); a Smith form of a module M
colrank(M); a column rank of M as of matrix
genericity(M); analysis of the genericity of parameters
canonize(L); Groebnerification for modules
iostruct(R); computes an IO-structure of behaviour by a module R
findTorsion(R, I); submodule of R, annihilated by the ideal I

AUXILIARY PROCEDURES:
controlExample(s); set up an example from the mini database inside
view(); well-formatted output of lists, modules and matrices

C.8.11 Teaching

LIBRARY: teachstd.lib Procedures for Teaching Standard Bases

AUTHOR: Gert-Martin Greuel, greuel@mathematik.uni-kl.de

NOTE:
The library is intended to be used for teaching purposes only. The procedures
are implemented exactly as described in the book ’A SINGULAR Introduction to
Commutative Algebra’ by G.-M. Greuel and G. Pfister. Sufficiently high printlevel
allows to control each step.

PROCEDURES:
ecart(f); ecart of f
tail(f); tail of f
sameComponent(f,g); test for same module component of lead(f) and lead(g)
leadmonomial(f); leading monomial as poly (also for vectors)
monomialLcm(m,n); lcm of monomials m and n as poly (also for vectors)
spoly(f[,1]); s-polynomial of f [symmetric form]
minEcart(T,h); element g ∈ T of minimal ecart s.t. LM(g) divides LM(h)
NFMora(i); normal form of i w.r.t Mora algorithm
prodcrit(f,g); test for product criterion
chaincrit(f,g,h); test for chain criterion
pairset(G); pairs form G neither satisfying prodcrit nor chaincrit
updatePairs(P,S,h); pairset P enlarged by not useless pairs (h,f), f in S
standard(id); standard basis of ideal/module
localstd(id); local standard basis of id using Lazard’s method
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LIBRARY: weierstr.lib Procedures for the Weierstraß Theorems

AUTHOR: Gert-Martin Greuel, greuel@mathematik.uni-kl.de
PROCEDURES:
weierstr_div(g,f,d); perform Weierstrass division of g by f up to degree d
weierstr_prep(f,d); perform Weierstrass preparation of f up to degree d
lastvar_general(f); make f general of finite order w.r.t. last variable
general_order(f); compute integer b s.t. f is x˙n-general of order b

LIBRARY: aksaka.lib Primality testing after Agrawal, Saxena, Kayal

AUTHOR: Christoph Mang
OVERVIEV:
Algorithms for primality testing in polynomial time based on the ideas of Agrawal,
Saxena and Kayal.
PROCEDURES:
schnellexpt(a,m,n) aˆm for numbers a,m;
log2(n) logarithm to basis 2 of n
PerfectPowerTest(n) checks if there are a,b such that aˆb=n
wurzel(r) square root of number r
euler(r) phi-function of euler
coeffmod(f,n) poly f modulo number n (coefficients mod n)
powerpolyX(q,n,a,r) (poly a)ˆq modulo (poly r,number n)
ask(n) ASK-Algorithm; deterministic Primality test

LIBRARY: atkins.lib Procedures for Teaching Cryptography

AUTHOR: Stefan Steidel, Stefan.Steidel@gmx.de

NOTE:
The library contains auxiliary procedures to compute the elliptic curve primality
test of Atkin and the Atkin’s Test itself. The library is intended to be used for
teaching purposes but not for serious computations. Sufficiently high printLevel
allows to control each step, thus illustrating the algorithms at work.

PROCEDURES:
newTest(L,D) checks if number D already exists in list L
bubblesort(L) sorts elements of the list L
disc(N,k) generates a list of negative discriminants
Cornacchia(d,p) computes solution (x,y) for xˆ2+d*yˆ2=p
CornacchiaModified(D,p) computes solution (x,y) for xˆ2+D*yˆ2=4p
maximum(L) computes the maximal number contained in L
expo(z,k) computes exp(z)
jOft(t,k) computes the j-invariant of t
round(r) rounds r to the nearest number out of Z
HilbertClassPoly(D,k) computes the Hilbert Class Polynomial
rootsModp(p,P) computes roots of the polynomial P modulo p
wUnit(D) computes the number of units in Q(sqr(D))
Atkin(N,K,B) tries to prove that N is prime
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LIBRARY: crypto.lib Procedures for Teaching Cryptography

AUTHOR: Gerhard Pfister, pfister@mathematik.uni-kl.de

NOTE:
The library contains procedures to compute the discrete logarithm, primaly-tests,
factorization included elliptic curve methodes. The library is intended to be used
for teaching purposes but not for serious computations. Sufficiently high printlevel
allows to control each step, thus illustrating the algorithms at work.

PROCEDURES:
decimal(s); number corresponding to the hexadecimals
exgcdN(a,n) compute s,t,d such that d=gcd(a,n)=s*a+t*n
eexgcdN(L) T with sum L[i]*T[i]=T[n+1]=gcd(L[1],...,L[n])
gcdN(a,b) compute gcd(a,b)
lcmN(a,b) compute lcm(a,b)
powerN(m,d,n) compute mˆd mod n
chineseRem(T,L) compute x such that x = T[i] mod L[i]
Jacobi(a,n) the generalized Legendre symbol of a and n
primList(n) the list of all primes below n
intPart(x) the integral part of a rational number
intRoot(m) the integral part of the square root of m
squareRoot(a,p) the square root of a in Z/p, p prime
solutionsMod2(M) basis solutions of Mx=0 over Z/2
powerX(q,i,I) q-th power of the i-th variable modulo I
babyGiant(b,y,p) discrete logarithm x: bˆx=y mod p
rho(b,y,p) discrete logarithm x: bˆx=y mod p
MillerRabin(n,k) probabilistic primaly-test of Miller-Rabin
SolowayStrassen(n,k) probabilistic primaly-test of Soloway-Strassen
PocklingtonLehmer(N,[]) primaly-test of Pocklington-Lehmer
PollardRho(n,k,a,[]) Pollard’s rho factorization
pFactor(n,B,P) Pollard’s p-factorization
quadraticSieve(n,c,B,k) quadratic sieve factorization
isOnCurve(N,a,b,P) P is on the curve yˆ2z=xˆ3+a*xzˆ2+b*zˆ3
ellipticAdd(N,a,b,P,Q) P+Q, addition on elliptic curves
ellipticMult(N,a,b,P,k) k*P on elliptic curves
ellipticRandomCurve(N) generates yˆ2z=xˆ3+a*xzˆ2+b*zˆ3
ellipticRandomPoint(N,a,b) random point on yˆ2z=xˆ3+a*xzˆ2+b*zˆ3
countPoints(N,a,b) number of points of yˆ2=xˆ3+a*x+b over Z/N
ellipticAllPoints(N,a,b) points of yˆ2=xˆ3+a*x+b over Z/N
ShanksMestre(q,a,b,[]) number of points of yˆ2=xˆ3+a*x+b over Z/N
Schoof(N,a,b) number of points of yˆ2=xˆ3+a*x+b over Z/N
generateG(a,b,m) m-th division polynomial of yˆ2=xˆ3+a*x+b
factorLenstraECM(N,S,B,[]) Lenstra’s factorization
ECPP(N) primaly-test of Goldwasser-Kilian

LIBRARY: hyperelliptic.lib Procedures for Teaching Cryptography

AUTHOR: Markus Hochstetter, markushochstetter@gmx.de

NOTE:
This library provides procedures for computing with divisors in the jacobian of
hyperelliptic curves. In addition procedures are available for computing the rational
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representation of divisors and vice versa.The library is intended to be used for
teaching and demonstrating purposes but not for efficient computations.

PROCEDURES:
ishyper(h,f) test, if yˆ2+h(x)y=f(x) is hyperelliptic
isoncurve(P,h,f) test, if point P is on C: yˆ2+h(x)y=f(x)
chinrestp(b,moduli) compute polynom x, s.t. x=b[i] mod moduli[i]
norm(a,b,h,f) norm of a(x)-b(x)y in IF[C]
multi(a,b,c,d,h,f) (a(x)-b(x)y)*(c(x)-d(x)y) in IF[C]
ratrep (P,h,f) returns polynomials a,b, s.t. div(a,b)=P
divisor(a,b,h,f,[]) computes divisor of a(x)-b(x)y
gcddivisor(p,q) gcd of the divisors p and q
semidiv(D,h,f) semireduced divisor of the pair of polys D[1], D[2]
cantoradd(D,Q,h,f) adding divisors of the hyperell. curve yˆ2+h(x)y=f(x)
cantorred(D,h,f) returns reduced divisor which is equivalent to D
double(D,h,f) computes 2*D on yˆ2+h(x)y=f(x)
cantormult(m,D,h,f) computes m*D on yˆ2+h(x)y=f(x)

C.8.12 Non–commutative

LIBRARY: central.lib Computation of central elements of GR-algebras

AUTHOR: Oleksandr Motsak motsak@mathematik.uni-kl.de

OVERVIEW:
A library for computing elements of the center and centralizers of sets of elements
in GR-algebras.

KEYWORDS: center; centralizer; reduce; centralize; PBW
PROCEDURES:
centralizeSet(F, V) v.s. basis of the centralizer of F within V
centralizerVS(F, D) v.s. basis of the centralizer of F
centralizerRed(F, D[, N]) reduced basis of the centralizer of F
centerVS(D) v.s. basis of the center
centerRed(D[, k]) reduced basis of the center
center(D[, k]) reduced basis of the center
centralizer(F, D[, k]) reduced bais of the centralizer of F
sa_reduce(V) ’s.a. reduction’ of elements
sa_poly_reduce(p, V) ’s.a. reduction’ of p
inCenter(T) checks the centrality of T
inCentralizer(T, S) checks whether T, S commutes
isCartan(p) checks whether p is a Cartan element
applyAdF(Basis, f) images under the k-linear map Ad˙f
linearMapKernel(Images) kernel of a linear map given by images
linearCombinations(Basis, C) k-linear combinations of elements
variablesStandard() set of algebra generators
variablesSorted() heuristically sorted set of generators
PBW_eqDeg(Deg) PBW monomials of given degree
PBW_maxDeg(MaxDeg) PBW monomials up to given degree
PBW_maxMonom(MaxMonom) PBW monomials up to given maximal
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LIBRARY: dmod.lib Algorithms for algebraic D-modules

AUTHORS: Viktor Levandovskyy, levandov@risc.uni-linz.ac.at
Jorge Martin Morales, jorge@unizar.es

THEORY:
Given a polynomial ring R = K[x1, ..., xn] and a polynomial F in R, one is interested
in the ring R[1/F s] for a natural number s. In fact, the ring R[1/F s] has a structure
of a D(R)-module, where D(R) is a Weyl algebra. Constructively, one needs to find a
left ideal I = I(F s) in D(R), such that K[x1, ..., xn, 1/F s] is isomorphic to D(R)/I
as a D(R)-module.

We provide two implementations:
1) the classical Ann Fˆs algorithm from Oaku and Takayama (J. Pure

Applied Math., 1999) and
2) the newer Ann Fˆs algorithm by Briancon and Maisonobe (Remarques sur

l’ideal de Bernstein associe a des polynomes, preprint, 2002).
PROCEDURES:
annfsOT(F[,eng]); compute Ann Fˆs for a poly F (algorithm of Oaku-Takayama)
annfsBM(F[,eng]); compute Ann Fˆs for a poly F (Briancon-Maisonobe)
minIntRoot(P,fact); minimal integer root of a maximal ideal P
reiffen(p,q); create a poly, describing a Reiffen curve
arrange(p); create a poly, describing a generic hyperplane arrangement
isHolonomic(M); check whether a module is holonomic
convloc(L); replace global orderings with local in the ringlist L

LIBRARY: gkdim.lib Procedures for calculating the Gelfand-Kirillov dimension

AUTHORS: Lobillo, F.J., jlobillo@ugr.es
Rabelo, C., crabelo@ugr.es

SUPPORT: ’Metodos algebraicos y efectivos en grupos cuanticos’,
BFM2001-3141, MCYT, Jose Gomez-Torrecillas (Main researcher).

PROCEDURES:
GKdim(M); Gelfand-Kirillov dimension

LIBRARY: involut.lib Procedures for Computations with Involutions

AUTHORS: Oleksandr Iena, yena@mathematik.uni-kl.de,
Markus Becker, mbecker@mathematik.uni-kl.de,
Viktor Levandovskyy, levandov@mathematik.uni-kl.de

THEORY:
Involution is an antiisomorphism of a noncommutative algebra with the property
that applied an involution twice, one gets an identity. Involution is linear with
respect to the ground field. In this library we compute linear involutions, distin-
guishing the case of a diagonal matrix (such involutions are called homothetic) and
a general one.
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NOTE:
This library provides algebraic tools for computations and operations with algebraic
involutions and linear automorphisms of noncommutative algebras.

PROCEDURES:
findInvo(); computes linear involutions on a basering;
findInvoDiag(); computes homothetic (diagonal) involutions;
findAuto(); computes linear automorphisms of a basering;
ncdetection(); computes an ideal, presenting an involution map.

LIBRARY: ncalg.lib Definitions of important GR-algebras

AUTHORS: Viktor Levandovskyy, levandov@mathematik.uni-kl.de,
Oleksandr Motsak, motsak@mathematik.uni-kl.de

CONVENTIONS:
This library provides pre-defined important noncommutative algebras. For univer-
sal enveloping algebras of finite dimensional Lie algebras sln, gln, g2 etc. there are
functions makeUsl, makeUgl, makeUg2 etc. There are quantized enveloping alge-
bras Uq(sl2) and Uq(sl3) (via functions makeQsl2, makeQsl3) and non-standard
quantum deformation of so3, accessible via makeQso3 function. For bigger alge-
bras we suppress the output of the (lengthy) list of non-commutative relations and
provide only the number of these relations instead.

PROCEDURES:
makeUsl2([p]) create U(sl˙2) in the variables (e,f,h) in char p
makeUsl(n[,p]) create U(sl˙n) in char p
makeUgl(n,[p]) create U(gl˙n) in the variables (e˙i˙j (1¡i,j¡n)) in char p
makeUso5([p]) create U(so˙5) in the variables (x(i),y(i),H(i)) in char p
makeUso6([p]) create U(so˙6) in the variables (x(i),y(i),H(i)) in char p
makeUso7([p]) create U(so˙7) in the variables (x(i),y(i),H(i)) in char p
makeUso8([p]) create U(so˙8) in the variables (x(i),y(i),H(i)) in char p
makeUso9([p]) create U(so˙9) in the variables (x(i),y(i),H(i)) in char p
makeUso10([p]) create U(so˙10) in the variables (x(i),y(i),H(i)) in char p
makeUso11([p]) create U(so˙11) in the variables (x(i),y(i),H(i)) in char p
makeUso12([p]) create U(so˙12) in the variables (x(i),y(i),H(i)) in char p
makeUsp1([p]) create U(sp˙1) in the variables (x(i),y(i),H(i)) in char p
makeUsp2([p]) create U(sp˙2) in the variables (x(i),y(i),H(i)) in char p
makeUsp3([p]) create U(sp˙3) in the variables (x(i),y(i),H(i)) in char p
makeUsp4([p]) create U(sp˙4) in the variables (x(i),y(i),H(i)) in char p
makeUsp5([p]) create U(sp˙5) in the variables (x(i),y(i),H(i)) in char p
makeUg2([p]) create U(g˙2) in the variables (x(i),y(i),Ha,Hb) in char p
makeUf4([p]) create U(f˙4) in the variables (x(i),y(i),H(i)) in char p
makeUe6([p]) create U(e˙6) in the variables (x(i),y(i),H(i)) in char p
makeUe7([p]) create U(e˙7) in the variables (x(i),y(i),H(i)) in char p
makeUe8([p]) create U(e˙8) in the variables (x(i),y(i),H(i)) in char p
makeQso3([n]) create U˙q(so˙3) in the presentation of Klimyk
makeQsl2([n]) preparation for U˙q(sl˙2) as factor-algebra;
makeQsl3([n]) preparation for U˙q(sl˙3) as factor-algebra;
Qso3Casimir(n [,m]) Casimir elements of U˙q(so˙3)
GKZsystem(A, sord, alg [,v]) Gelfand-Kapranov-Zelevinsky system
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LIBRARY: ncdecomp.lib Decomposition of a module into central characters

AUTHORS: Viktor Levandovskyy, levandov@mathematik.uni-kl.de.

OVERVIEW:
This library presents algorithms for the central character decomposition of a mod-
ule, i.e. a decomposition into generalized weight modules with respect to the center.
Based on ideas of O. Khomenko and V. Levandovskyy (see the article [153] in the
References for details).

PROCEDURES:
CentralQuot(M,G); central quotient M:G,
CenCharDec(I,C); decomposition of I into central characters w.r.t. C
IntersectWithSub(M,Z); intersection of M with the subalgebra.

LIBRARY: nctools.lib General tools for noncommutative algebras

AUTHORS: Levandovskyy V., levandov@mathematik.uni-kl.de,
Lobillo, F.J., jlobillo@ugr.es,
Rabelo, C., crabelo@ugr.es,
Motsak, O., motsak@mathematik.uni-kl.de.

MAIN PROCEDURES:
Gweights(r); compute weights for a compatible ordering
weightedRing(r); change the ordering to a weighted one
ndcond(); the ideal of non-degeneracy conditions
Weyl([p]); create Weyl algebra structure in a basering
makeWeyl(n, [p]); return n-th Weyl algebra
makeHeisenberg(N, [p,d]); return n-th Heisenberg algebra
Exterior(); return qring, the exterior algebra of a basering,
findimAlgebra(M,[r]); create finite dimensional algebra
SuperCommutative([b,e,Q]);the super-commutative algebra over a basering,
rightStd(I); compute a right Groebner basis of an ideal,

LIBRARY: perron.lib computation of algebraic dependences

AUTHORS: Oleksandr Motsak, motsak@mathematik.uni-kl.de.
PROCEDURES:
perron(L[, D]); relations between pairwise commuting polynomials

LIBRARY: qmatrix.lib Quantum matrices, quantum minors and symmetric
groups

AUTHORS: Lobillo, F.J., jlobillo@ugr.es
Rabelo, C., crabelo@ugr.es

MAIN PROCEDURES:
quantMat(n, [p]); generates the quantum matrix ring of order n;
qminor(u, v, nr); calculate a quantum minor of a quantum matrix
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AUXILIARY PROCEDURES:
SymGroup(n); generates an intmat containing S(n),
LengthSymElement(v); calculates the length of the element v of S(n)
LengthSym(M); calculates the length of each element of M

LIBRARY: ratgb.lib Groebner bases in Ore localizations

AUTHOR: Viktor Levandovskyy, levandov@risc.uni-linz.ac.at
PROCEDURES:
ratstd(ideal I, int n); compute Groebner basis in Ore localization

C.9 Singular and Maple

In this section we give two examples how to use Singular as a support for
a Maple session and one example showing how to use Maple in a Singular

session. The first example is the trivial way, the second is based on a simplified
version of a script of G. Kemper.3

Assume we are in a Maple session and want to compute a Gröbner basis
with Singular of the ideal I = 〈x10+ x9y2, y8− x2y7〉 in characteristic 0
with the degree reverse lexicographical ordering dp.

The first solution is to write the polynomials to the file singular input
(already in the Singular language). This is done by the following:

f:=x^10+x^9*y^2;
g:=y^8-x^2*y^7;

interface(prettyprint=0);
interface(echo=0);
writeto( singular_input );
lprint(‘ideal I = ‘);
f, g ;
lprint(‘;‘);
writeto(terminal);

The resulting file looks like:

ideal I =
x^10+x^9*y^2, y^8-x^2*y^7
;

Now we can start Singular, and perform the following
3 Warning: The scripts run only on Unix like operating systems.
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ring R=0,(x,y),dp;
< "singular_input";
short=0; // output in Maple format
ideal J=std(I);
write(":w maple_input",J);

This Singular session writes the computed Gröbner basis (in Maple format)
to the file maple input:

x^2*y^7-y^8,x^9*y^2+x^10,x^12*y+x*y^11,x^13-x*y^12,y^14+x*y^12,
x*y^13+y^12

A more advanced solution is given by the following procedure. Here I is a
list of polynomials, P is the characteristic of the ground field, and tord is a
string specifying the Singular ordering (for instance dp, lp, . . .).4

SINGULARlink:=proc(I,P,tord)
local i,j,path,vars,F,p,ele;

F:=map(expand,I);
vars:=indets(F);
if P>0 then p:=P else p:=0 fi;

path:="Trans";
if assigned(pathname) then path:=cat(pathname,path) fi;
if system("mkdir ".path)<>0 then
ERROR("Couldn’t make the Transfer-directory")

fi;

# produce input for Singular ...
writeto(cat(path,"/In"));

# Define the ring (with term order)
lprint(‘ring R =‘);
lprint(‘‘.p.‘,‘);
lprint(‘(x(1..‘.(nops(vars)).‘)),‘);
lprint(‘(‘.tord.‘);‘);

# Define the ideal ...
lprint(‘ideal I =‘);
for i to nops(F) do

if i>1 then lprint(‘,‘) fi;
ele:=subs([seq(vars[j]=x(j), j=1..nops(vars))],F[i]);
if type(ele,monomial) then lprint(ele)

4 This procedure works with Maple V Release 5. In older versions of Maple,
string expression were enclosed in a pair of back quotes ‘ ‘ instead of ” ”;
moreover, the nullary operator was denoted by ” instead of %. The direc-
tory EXAMPLES/ on the enclosed CD contains two versions of the procedure
– one for Maple V Release 5 and one for Maple V Release 3 (with the
old syntax). A modified worksheet for Maple V, Release 10 is available at
http://www.singular.uni-kl.de/interfaces.html.
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else # split into summands, otherwise line might get chopped!
lprint(op(1,ele));
for j from 2 to nops(ele) do

lprint(‘+‘,op(j,ele))
od

fi
od;
lprint(‘;‘);

lprint(‘short=0;‘);
lprint(‘ideal b = std(I);‘);
lprint(‘write(\"‘.path.‘/Out\",\"[\");‘);
lprint(‘write(\"‘.path.‘/Out\",b);‘);
lprint(‘write(\"‘.path.‘/Out\",\"];\");‘);
lprint(‘quit;‘);
writeto(terminal);

# Call Singular ...
system("Singular < ".path."/In > ".path."/temp");
if %<>0 then

system("’rm’ -r ".path);
ERROR("Something went wrong while executing Singular")

fi;

# Retrieve the results ...
read(cat(path,"/Out"));
F:=%;
system("’rm’ -r ".path);
F:=subs([seq(x(i)=vars[i],i=1..nops(vars))],F);
F:=map(expand,F);
F

end:

Let’s apply this procedure to an example:

f:=x^10+x^9*y^2;
g:=y^8-x^2*y^7;
J:=SINGULARlink([f,g],0,"dp"):

interface(prettyprint=0);
J;
#-> [x^2*y^7-y^8, x^10+x^9*y^2, x^12*y+x*y^11, x^13-x*y^12,
#-> y^14+x*y^12, x*y^13 +y^12]

Assume now that we are in a Singular session and want to use Maple to
factorize a polynomial. This can be done by using the following Singular

procedure:

proc maple_factorize(poly p)
{

int saveshort=short;
short=0;
string in="maple-in."+string(system("pid"));
string out="maple-out."+string(system("pid"));
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link l=in;
write(l,"res:=factors("+string(p)+");");
write(l,"interface(prettyprint=0);");
write(l,"interface(echo=0);");
write(l,"writeto(‘"+out+"‘);");
write(l,"lprint(‘ideal fac=‘);");
write(l,"lprint(op(1,res));");
write(l,"for i to nops(op(2,res)) do");
write(l," lprint(‘,‘);");
write(l," lprint(op(1,op(i,op(2,res))));");
write(l,"od;");
write(l,"lprint(‘;‘);");
write(l,"lprint(‘intvec multies=‘);");
write(l,"lprint(‘1‘);");
write(l,"for i to nops(op(2,res)) do");
write(l," lprint(‘,‘);");
write(l," lprint(op(2,op(i,op(2,res))));");
write(l,"od;");
write(l,"lprint(‘;‘);");
write(l,"lprint(‘list res=fac,multies;‘);");
write(l,"writeto(terminal);");
write(l,"quit;");
int dummy=system("sh","maple <"+in+" > dummy");
if (dummy <> 0) { ERROR("something went wrong"); }
string r=read(out);
execute(r);
return(res);

}

Here comes an example:

ring R = 0,(x,y),dp;
poly f = 5*(x-y)^2*(x+y);

maple_factorize(f);
//-> [1]:
//-> _[1]=5
//-> _[2]=x+y
//-> _[3]=-x+y
//-> [2]:
//-> 1,1,2

C.10 Singular and Mathematica

We show by an example how to use Singular as support for a Mathematica
session.5 Assume we are in a Mathematica session and want to compute a
5 Warning: The scripts run only on Unix like operating systems. M.

Kauers and V. Levandovskyy developed a Mathematica package to
call Singular from Mathematica. It is available from RICAM Linz
www.risc.uni-linz.ac.at/research/combinat/software/Singular and also
at www.singular.uni-kl.de/interfaces.html.
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Gröbner basis with Singular of the ideal 〈x10+ x9y2, y8− x2y7〉 in charac-
teristic 0 with the degree reverse lexicographical ordering dp.

SINGULARlink[J_List,P_Integer,tord_String] := Module[
{i,vars,F,p,subst,varnames,SINGULARin,SINGULARout},
F=J;
vars=Variables[F];
(* Substitution of Variable names *)
varnames = Table[ ToExpression[ "x[" <> ToString[i] <> "]"],

{i, 1, Length[vars]} ];
subst = Dispatch[MapThread[Rule, {vars, varnames} ]];
F = F /. subst;
singF = ToString[F // InputForm];
singF = StringReplace[ singF, { "{"->"", "}"->"", ", "->",\n",

"]"->")", "["->"(" } ];
If[P>0, p=P, (*Else*) p=0];
(* Prepare Singular input string *)
SINGULARin = "ring R =" <> ToString[p] <> ", (" <>

"x(1.." <> ToString[Length[vars]] <> ")), (" <>
tord <> ");\n";

(* Define the ideal... *)
SINGULARin = SINGULARin <> "ideal I =" <> singF <> " ;\n" <>

"short=0;\n" <>
"ideal b = std(I);\n" <>
"write(\".tmp.sing.mathematica\",b );\n" <>
"quit;\n";

(* Call Singular ... *)
SINGULARin // OutputForm >> "!Singular -q";
SINGULARout=ReadList[".tmp.sing.mathematica",String];
>>"!rm .tmp.sing.mathematica";
SINGULARout= StringReplace[SINGULARout , { ")"->"]",

"("->"[" } ];
SINGULARout= "{" <> SINGULARout <> "}";
SINGULARout= ToExpression[SINGULARout];
subst = Dispatch[MapThread[Rule, {varnames, vars} ]];
SINGULARout=SINGULARout/. subst;
SINGULARout

]

Let’s apply this

f=x^10+x^9*y^2;
g=y^8-x^2*y^7;
J=SINGULARlink[{f,g},0,"dp"];

J // InputForm
(*-> //InputForm=

{x^2*y^7 - y^8, x^10 + x^9*y^2, x^12*y + x*y^11,
x^13 - x*y^12, x*y^12 + y^14, y^12 + x*y^13}

*)
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C.11 Singular and MuPAD

Finally, we give an example how to use Singular as support for a MuPAD
session.6 Assume we are in a MuPAD session and want to compute a Gröbner
basis with Singular of the ideal 〈x10+ x9y2, y8− x2y7〉 in characteristic 0
with the degree reverse lexicographical ordering dp.

SINGULARlink := proc(L:DOM_LIST, P:DOM_INT, tord)
local i, path, ipath, opath, tpath, fd, vars, F, p;

begin
F := map(L, expand);
vars := indets(F);

if P > 0 then
p := P;

else
p := 0;

end_if;

// Create the directory where "communication files" are stored
path := "Trans";

if singpath <> hold(singpath) then
path := pathname(singpath, path) ;

end_if;

if system("mkdir ".path) <> 0 then
error("Could not make the Transfer-directory")

end_if;

// produce input for Singular ...
ipath := pathname(path)."In" ;
if version() = [2, 0, 0] then
fd := fopen(Text, ipath, Write) ;

else // MuPAD 2.5
fd := fopen(ipath, Write, Text) ;

end_if ;

// Define the ring (with term order)
fprint(NoNL, fd, "ring R = ");
fprint(NoNL, fd, p,", (");
fprint(NoNL, fd, vars[i], ", " ) $i=1..nops(vars)-1;
fprint(NoNL, fd, vars[nops(vars)], "), ");
fprint(Unquoted, fd, "( ",tord," ); ");

// Define the ideal ...
fprint(Unquoted, fd, "ideal I =");
fprint(Unquoted, fd, F[i], ", " ) $i=1..nops(F)-1;
fprint(Unquoted, fd, F[nops(F)], ";");

6 We should like to thank Torsten Metzner for providing the scripts. Warning: The
scripts run only on Unix like operating systems.
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fprint(Unquoted, fd, "short=0;");
fprint(Unquoted, fd, "ideal b = std(I);");
opath := pathname(path)."Out" ;
fprint(Unquoted, fd, "write(\"".opath."\",\"[\");");
fprint(Unquoted, fd, "write(\"".opath."\",b);");
fprint(Unquoted, fd, "write(\"".opath."\",\"];\");");
fprint(Unquoted, fd, "quit;");
fclose(fd);

// Call Singular ...
tpath := pathname(path)."temp" ;
if system("Singular < ".ipath."> ".tpath) <> 0 then
system("rm -r ".path);
error("Something went wrong while executing Singular");

end_if;

// Retrieve the results ...
F := read(opath, Quiet):
system("rm -r ".path);
F := map(F,expand);

end_proc:

Now apply this procedure:

f:=x^10+x^9*y^2;
g:=y^8-x^2*y^7;
J:=SINGULARlink([f,g],0,"dp"):
output::tableForm(J,",");
//-> x^2*y^7 - y^8,x^10 + x^9*y^2,x*y^11 + x^12*y,x^13 - x*y^12,
//-> y^14 + x*y^12,y^12 + x*y^13

Assume now that we are in a Singular session and want to use MuPAD to
factorize a polynomial. This can be done by using the following Singular

procedure:

proc mupad_factorize(poly p)
{

int saveshort = short;
short = 0;
string in = "mupad-in."+string(system("pid"));
string out = "mupad-out."+string(system("pid"));
link l = in;
write(l, "res:=factor("+string(p)+");");
write(l, "if version() = [2, 0, 0] then ");
write(l, "fd := fopen(Text, \""+out+"\", Write) ;");
write(l, "else");
write(l, "fd := fopen(\""+out+"\", Write, Text) ;");
write(l, "end_if;");

write(l,"fprint(Unquoted, fd, \"ideal fac=\");");
write(l,"fprint(Unquoted, fd, op(res,1));");
write(l,"for i from 2 to nops(res) step 2 do");
write(l," fprint(Unquoted, fd, \",\", op(res,i));");
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write(l,"end_for;");
write(l,"fprint(Unquoted, fd, \";\");");

write(l,"fprint(Unquoted, fd, \"intvec multies=\");");
write(l,"fprint(Unquoted, fd, \"1\");");
write(l,"for i from 3 to nops(res) step 2 do");
write(l," fprint(Unquoted, fd, \",\", op(res,i));");
write(l,"end_for;");
write(l,"fprint(Unquoted, fd, \";\");");

write(l,"fprint(Unquoted, fd, \"list res=fac,multies;\");");
write(l,"fclose(fd);");
write(l,"quit;");
int dummy = system("sh","mupad <"+in+" > dummy");
if (dummy <> 0) { ERROR("something went wrong"); }
string r=read(out);
execute(r);
return(res);

}

We apply this procedure to an example:

ring R = 0,(x,y),dp;
poly f = 5*(x-y)^2*(x+y);

mupad_factorize(f);
//-> [1]:
//-> _[1]=5
//-> _[2]=x+y
//-> _[3]=-x+y
//->[2]:
//-> 1,1,2

C.12 Singular and GAP

Of course we can use GAP’s functionality in a Singular session in the same
way as in the preceding sections.

For the opposite direction there is a GAP package called “singular” writ-
ten by Marco Costantini and Willem A. de Graaf. This package allows the
GAP user to access functions of Singular from within GAP, and to apply
these functions to the GAP objects. With this package, the user keeps work-
ing with GAP and, if he needs a function of Singular that is not present
in GAP, he can use this function via “SingularInterface”.

The interface is expected to work with every version of GAP 4, every
(not very old) version of Singular, and on every platform, on which both
GAP and Singular run. It may be found at
http://www.gap-system.org/Packages/singular.html or
http://www.singular.uni-kl.de/interfaces.html.
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Since there is a detailed documentation on the homepage, we will confine
ourselves to give a short example:

We compute a Groebner basis (that will be returned as a list of polyno-
mials) of an ideal I of a polynomial ring. As term ordering, Singular will
use the value of TermOrdering of the polynomial ring containing I. If this
value is not set, then the degree reverse lexicographical ordering (”dp”) will
be used.

gap> LoadPackage("singular");
gap> R:= PolynomialRing( Rationals, ["x","y","z"] : old );;
gap> x:= R.1;; y := R.2;; z := R.3;;
gap> r:= [x*y*z-x^2*z,x^2*y*z-x*y^2*z-x*y*z^2,x*y-x*z-y*z];;
gap> I:= Ideal( R, r );
<two-sided ideal in PolynomialRing(..., [ x, y, z ]),
(3 generators)>

gap> GroebnerBasis( I );
[x*y-x*z-y*z,x^2*z-x*z^2-y*z^2,x*z^3+y*z^3,-x*z^3+y^2*z^2
-y*z^3]

C.13 Singular and SAGE

SAGE [249] is a new computer algebra system and mathematics software
distribution developed under the lead of William Stein by a worldwide team
of developers.

The SAGE developers describe SAGE as a free distribution of open source
math software with new functionality that fills in gaps in what is available
elsewhere, and provides a unified interface to most math software: to Axiom,
GAP, Macaulay2, Magma, Maple, Mathematica, MATLAB, Pari, Singular,
etc. .

Singular is shipped with SAGE and is used to provide functionality for
global and local commutative algebra, for non–commutative algebra and for
symbolic–numerical polynomial solving.

SAGE communicates with several computer algebra systems by interact-
ing with their command line using the pexpect Python package. As a result
Singular can be used from the SAGE command line in several ways.

First, there is an object oriented interface to ’native’ Singular objects,
which allows to perform almost every calculation Singular is capable of.

sage: r = singular.ring(0,’(x,y,z)’,’dp’)
sage: f = singular(’x + 2*y + 2*z - 1’)
sage: g = singular(’x^2 + 2*y^2 + 2*z^2 - x’)
sage: h = singular(’2*x*y + 2*y*z - y’)
sage: I = singular.ideal(f,g,h)
sage: I.std()
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//->x+2*y+2*z-1,
//->10*y*z+12*z^2-y-4*z,
//->4*y^2+2*y*z-y,
//->210*z^3-79*z^2+7*y+3*z

Alternatively, commands can be passed to the Singular interpreter di-
rectly, allowing SAGE to perform exactly every calculation Singular is capa-
ble of.

sage: ret = singular.eval(’ring r = 0,(x,y,z),dp’)
sage: ret = singular.eval(’poly f= x + 2*y + 2*z - 1’)
sage: ret = singular.eval(’poly g = x^2 + 2*y^2 + 2*z^2 - x’)
sage: ret = singular.eval(’poly h = 2*x*y + 2*y*z - y’)
sage: ret = singular.eval(’ideal i = f,g,h’)
sage: print singular.eval(’std(i)’)

//->_[1]=x+2y+2z-1
//->_[2]=10yz+12z2-y-4z
//->_[3]=4y2+2yz-y
//->_[4]=210z3-79z2+7y+3z

This functionality is used by several ’native’ SAGE objects. For instance,
if a Gröbner basis is to be calculated in SAGE Singular is used by default:

sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P,3)
sage: I.groebner_basis() # calls Singular in background

//->[x + 2*y + 2*z - 1, \
//->10*y*z + 12*z^2 - y - 4*z, \
//->5*y^2 - 3*z^2 - y + z, \
//->210*z^3 - 79*z^2 + 7*y + 3*z]

However, the communication channel via string parsing of Singular in-
and output may be pretty slow depending on the (size of the) task at hand.

To use Singular ’s multivariate polynomial arithmetic, SAGE links di-
rectly against a shared library called libSINGULAR which is derived from
Singular by the SAGE developers7. As of SAGE 2.7 multivariate polyno-
mial arithmetic over Q, GF (p), and GF (pn) is implemented this way pro-
viding SAGE with the very fast multivariate polynomial arithmetic of Sin-

gular . However, in this shared library mode no support for the Singular

command-line interpreter is provided which means that only a basic subset
of Singular ’s capabilities are available, i.e. those written in C/C++. All of
Singular ’s capabilities are however available through the aforementioned
pexpect interface and conversion methods are provided.
7 We would like to thank Martin Albrecht for improving the Singular interface and

making it possible to compile Singular as a shared library.
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# uses Singular in shared library mode
sage: P.<x,y,z> = PolynomialRing(QQ,3)
sage: I = sage.rings.ideal.Katsura(P)
# calls Singular via the pexpect interface in background
sage: I.groebner_basis()
//->[x + 2*y + 2*z - 1, \
//->10*y*z + 12*z^2 - y - 4*z, \
//->5*y^2 - 3*z^2 - y + z, \
//->210*z^3 - 79*z^2 + 7*y + 3*z]
sage: f = I.gens()[0]

# shared library implementation -> pexpect interface
sage: g = f._singular_()

# pexpect interface implementation -> shared library mode
sage: P(g)
//->x + 2*y + 2*z - 1
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81. Frühbis-Krüger, A.; Terai, N.: Bounds for the Regularity of Monomial Ideals.
LE Mathematiche, Vol. LIII, 83–97 (1998).

82. Fulton, W.: Intersection Theory. Springer (1984).
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Polynomial Ideals over Various Euclidean Rings. EUROSAM 84, Symbolic
and Algebraic Computation, Proc. Int. Symp., Cambridge/Engl. 1984, Lecture
Notes Comput. Sci. 174, 195–206 (1984).

132. Kandri–Rody, A.; Weispfenning, V.: Non–commutative Gröbner bases in al-
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174. Möller, H.M.; Mora, T.: New Constructive Methods in Classical Ideal Theory.
J. Algebra 100, 138–178 (1986).
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free resolution, 154
homomorphism, 133
ideal, 133, 263, 474

prime, 136
part, 133
polynomial, 473
spectrum, 483
submodule, 133

homogenization, 56, 63, 478, 481
weighted, 64, 263, 398

homogenizing variable, 478
homolog.lib, 115, 116, 396, 612
homological algebra, 612
homomorphism, 3

local, 359
of algebras, 110
of modules, 110

hyperelliptic curves, 633
hyperelliptic.lib, 633
hyperplane at infinity, 478, 481
hypersurface

affine, 453
Hilbert polynomial of, 324
projective, 474

ideal, 19
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equidimensional, 259, 278
equidimensional part, 278
leading, 41
left–sided, 89
maximal, 23
membership, 67
perfect, 437
prime, 23
quotient, 27, 79, 590

geometric interpretation, 82
radical, 27
reduced, 27
right–sided, 89
saturated, 485
two–sided, 89
vanishing, 455, 464, 475

ideal, 581
identity, 1, 592
I–depth, 412
if, 605
image, 20, 117

closure of, 71, 450, 462
annihilator structure, 470
scheme structure, 470

computation of, 503
of projective morphism, 502

is closed, 501
imaginary part, 593
imap, 7–9, 592
imapall, 609
immersion, 459, 489
impart, 593
implicit function theorem, 365
implicitization, 222
importfrom, 605
independent set, 237

geometrical meaning, 238
maximal, 237

indepSet, 237, 238, 593
indeterminacy set, 504
index of nilpotency, 27, 28
initial

form, 285, 337, 340
ideal, 337, 338, 340

initial form, 285, 286
injective, 20
inout.lib, 113, 122, 608
insert, 593
inSubring, 87, 611
int, 581
integer programming, 613
integral, 211

closure, 219, 221
of an ideal, 220, 616
strong, 219
weak, 219

dependence, 213
properties of, 217

domain, 9, 23, 28, 29, 346
element, 211
extension, 211
strongly, 219

integrally closed, 221
interpolation, 626
interred, 172, 593
interreduced, 45, 138
interreduction, 45
intersect, 79, 120, 593
intersection, 197

multiplicity, 520–522
of affine curves, 521
of projective curves, 522

of ideals, 79
of schemes, 467
of submodules, 198
with subrings, 69

intmat, 582
intprog.lib, 613
intStrategy, 145
intvec, 582
invariant

ring, 623, 624
subspace, 181

invariant ring, 624
invers, 356
inverse, 26

of power series, 356
inverse, 610
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involut.lib, 635
IrrAscending, 293
irreducible, 448

algebraic set, 456, 474
component, 448, 456, 477
decomposition, 456, 477, 482
element, 29
polynomial, 4, 8
projective variety, 474
topological space, 465

irreducible ascending, 290
irredundant, 259
irrelevant ideal, 475, 483
is bijective, 21, 460, 611
isCohenMacaulay, 432
isCohenMacaulay1, 434
isFlat, 394
is injective, 20, 460, 611
isIsolatedSingularity, 257
isLocallyFree, 387
isolated

critical point, 526
singularity, 526

isomorphic, 110
isomorphism, 20, 457, 467, 489

of modules, 110
projective, 473

isReg, 411
is surjective, 21, 460, 611

jacob, 30, 593
Jacobian

criterion, 344, 372, 513
general, 347

ideal, 247, 593
matrix, 247, 347

Jacobson radical, 37, 128
janet, 593
jet, 356, 529, 593
jet, 593
Jordan normal form, 181, 610
jordannf, 610

Kapranov, 595, 603
kbase, 593

k–determined, 529
Kemper, 616, 638
kernel, 20, 84, 117
kill, 593
killattrib, 593
k–jet, 356, 529, 593
kohom, 116
kontrahom, 115
Koszul

complex, 413, 417
homology, 420
relations, 593

koszul, 593
KoszulHomology, 420
KoszulMap, 419
Krick, 281, 313, 616
Kronecker symbol, 114
Krull dimension, 225
Krull’s

intersection theorem, 128
principal ideal theorem, 235,

342, 343, 521
kskernel.lib, 621
Kurke, XV
KVequiv.lib, 621

La Scala, 594
Laguerre, 75, 76, 593
laguerre, 593
latex.lib, 629
Lazard, 76, 590, 626, 631
lcm, 49
lead, 10, 594
leadcoef, 10, 594
leadexp, 10, 594
leading

coefficient, 10, 41, 93, 137
exponent, 10, 41
ideal, 41
module, 137
monomial, 10, 41, 93, 137, 631
submodule, 137
term, 10, 41, 137

leadmonom, 10, 594
least common multiple, 49, 631
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left–sided, 89
LeftGröbnerBasis, 95
LeftNF, 95
LeftSpoly, 95
length, 225

of a resolution, 151, 433
lexicographical ordering, 13

degree, 13
degree reverse, 13
negative, 14

LIB, 594
library, 576, 594, 607
lift, 26, 53, 68, 196, 594
liftstd, 594
linalg.lib, 181, 610
linear, 110

algebra, 610
link, 583
listvar, 594
lll.lib, 613
load, 605
local, 523

degree ordering, 336
homomorphism, 359
ordering, 11, 14, 136
ring, 31

algebraic, 524, 525
analytic, 524, 525
at p, 511, 513
regular, 344, 369

localization, 32
at a prime ideal, 33
computing in, 452
of a module, 129
w.r.t. ordering, 39

locally
closed, 391, 454
free, 386

Logar, 281, 313, 616
long exact

Ext–sequence, 382
Tor–sequence, 377

lres, 153, 594
lying over, 243

geometrical meaning, 217
property, 217

Macaulay, 44, 595, 608
Macaulay2, IX
Main Theorem of Elimination The-

ory, 500
map

definition of, 8
projection, 468
quotient, 23
residue, 23

map, 7, 584
mapall, 609
mapIsFinite, 216, 364, 611
Maple, 638
Mathematica, 641
matrix

factorization, 438
operations, 112
ordering, 12

matrix, 584
matrix.lib, 112, 181, 190, 421, 610
maxideal, 594
maximal

chain, 225
Cohen–Macaulay, 424
ideal, 23

in general position, 265
i–th power, 594

spectrum, 463
maximality condition, 22
measure of quadratic norm, 549
memory, 594
memory management, 594
Milnor, 577
milnor, 528, 578, 622
Milnor number, 526, 528, 622

total, 527, 576
minAscending, 288
minAssChar, 616
minAssGTZ, 243, 349, 483, 616
minbase, 595
minimal

polynomial, 4–6
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presentation, 127
resolution, 151, 153

length, 430
standard basis, 45, 138
system of generators, 127, 595,

596
miniversal deformation, 533, 619
minor, 383
minor, 595
minpoly, 606
minRel(M,G), 299
minres, 153, 168, 595
mixed ordering, 11, 136
modality, 532
modstd.lib, 614
module, 109

cyclic, 119
dual, 111
elimination of components, 198
finitely generated, 119
free, 120, 591
homomorphism, 110
isomorphic, 110
Noetherian, 126
of differentials, 354, 376
of finite presentation, 121
of syzygies, 158
ordering, 136
quotient, 201
shift of, 133
sparse representation, 122
support, 130
twist of, 133

module, 584
module containment, 611
modulo, 125, 205, 380, 420, 595
mod versal, 619
Möller, 76, 626
mondromy.lib, 621
monitor, 595
monodromy, 621
monomial, 2, 92, 136

leading, 10
ordering, 10, 136

module, 136
MonomialHilbertPoincare,

320
Mora, 44, 55, 590

normal form, 57, 141, 631
morphism, 3, 457, 467, 488, 494

dominant, 459
projective, 499

Morse lemma, 528, 530
generalized, 532

mpresmat, 595
mprimdec.lib, 263, 613
mregular.lib, 614
mres, 153, 168, 434, 595
M–sequence, 411
mstd, 595
mult, 596
multBound, 606
multiplicative subset, 32
multiplicatively closed, 32
multiplicity, 336, 372, 515, 518, 596

geometric interpretation, 518
Hilbert–Samuel, 335
intersection, 521, 522
of monomial ideal, 596
w.r.t. an ideal, 335

multsequence, 621
MuPAD, 643

Nakayama’s Lemma, 126, 136
nameof, 596
names, 596
ncalg.lib, 636
ncalgebra, 596
ncdecomp.lib, 637
ncols, 596
nctools.lib, 637
Newton’s Lemma, 366
NF, 48
NFBuchberger, 50, 52, 55, 57, 140,

144
NFBuchberger, 50
NFMora, 57, 68, 140, 141, 144, 631
NFMora, 57
nilpotent, 27, 28
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index, 28
nilradical, 27
node, 528
Noether, 240

normalization, 231, 364, 518
for local rings, 234
general, 231, 366
over finite fields, 234
theorem, 231

noether, 606
noether.lib, 615
Noetherian

module, 126
ring, 21

NoetherNormal, 251
noetherNormal, 251, 433, 611
NoetherNormalization, 233
non–normal locus, 244

is closed, 244
non–zerodivisor, 23
non–normalLocus, 249
norm, 552
normal, 221

cone, 340
form, 46, 138, 374

Gaussian, 610
Jordan, 181, 610
over rings, 52
polynomial, 47, 138, 144
pseudo, 144
rational, 181, 185
reduced, 46, 66, 138, 139
w.r.t. an ideal, 48
weak, 47, 138
without division, 144

ring, 221
variety, 451

normal, 220, 248, 253, 615
normal.lib, 220, 224, 615
normalI, 616
normality criterion, 245
normalization, 221, 615

is finite, 240
normalization, 247

normalization, 253
npars, 596
nres, 596
nrows, 596
ntsolve.lib, 625
Nullstellensatz, 463

abstract, 464
Hilbert’s, 235
projective, 476

number
of parameters, 596
of points, 283
of variables, 596

number, 5
nvars, 596

open, 596
oppose, 596
opposite, 596
opposite algebra, 97
option, 596
option(redSB), 46, 66, 597
ord, 355
ord, 597
order, 337, 355

weighted, 355
ordering, 101

block, 14
degree, 14, 18
degree lexicographical, 13
degree reverse lexicographical,

13
elimination, 41, 101
global, 11, 136

degree, 14
lexicographical, 13
local, 11, 14, 136
matrix, 12
mixed, 11, 136
monomial, 10, 93
negative degree lexicographi-

cal, 14
negative degree reverse lexico-

graphical, 14
negative lexicographical, 14
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product, 14
semigroup, 10
test, 609
weighted degree, 14
weighted lexicographical, 13
weighted reverse lexicographi-

cal, 13
ordstr, 597
output format, 598

par, 597
parameter, 6, 7, 34
parametrization, 218, 219
pardeg, 597
parstr, 597
part at infinity, 480
partial derivative, 589
PBW algebra, 90
perfect

field, 9, 231, 265
ideal, 437

periodic free resolution, 438
perron.lib, 637
Pinkham, 535
plane curve, 453
plot, 215, 447, 629
pmat, 112
Poincaé–Birkhoff–Witt, 89
Poincaré complex, XIV, 376
point

closed, 465
non–singular, 513
of P

n, 473
regular, 513
singular, 513

pole set, 491, 504
poly, 585
poly.lib, 329, 608
polynomial

constant, 2
degree of, 2
distributive representation, 3
function, 3, 8
irreducible, 4
minimal, 4, 6

normal form, 47
over A, 2
primitive, 546
recursive representation, 3
ring, 7

is Noetherian, 21
standard, 89
weak normal form, 138

power series, 355
expansion, 41, 137
ring, 355

is complete, 358
is local, 356
is Noetherian, 362

P -primary, 259
preimage, 19, 21
preimage, 20, 21, 85, 598
prepareQuotientring, 308
prepareSat, 309
presentation

matrix, 121
minimal, 127

presolve.lib, 626
primary

decomposition, 259, 449, 613,
615

irredundant, 259
of a submodule, 264

ideal, 259
submodule, 264

primaryTest, 269
primaryTest, 305
primdec.lib, 25, 27, 78, 314, 349,

396, 435, 477, 483, 615
primdecGTZ, 25, 616
primdecSY, 25, 616
prime

avoidance, 24
element, 29
ideal, 23, 33

embedded, 259
minimal associated, 226
relevant, 483

prime, 598
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prime ideal
ascending set, 291
associated to, 291
associated to irreducible as-

cending set, 291
irreducible, 291

primes, 608
primitiv.lib, 616
primitive element, 9, 616
primitive part, 546
primitive polynomial, 546
principal

ideal, 19
domain, 23, 171, 346
ring, 23

open set, 484, 490
variable, 286

print, 112, 113, 598
printlevel, 606
proc, 585
product

criterion, 63, 163, 631
generalized, 96

of P
n, 497

of ideals, 19
of varieties, 461

universal property, 498
ordering, 14

projdim, 434
projection

from H , 507
from a point, 495
onto linear subspace, 450

projective, 397
algebraic set, 474
closure, 472, 481, 482
cone, 476
dimension, 433, 434
hypersurface in P

n, 474
isomorphism, 473
morphism, 499

image of, 501, 502
n–space, 473
Nullstellensatz, 476

resolution, 433
scheme, 486
scheme over R, 485
space, 473
space over R, 484
spectrum, 483
subscheme of P

n
R, 485

variety, 474
dimension of, 479
isomorphism, 489
morphism, 488

projectively equivalent, 490
prompt, 577
prune, 127, 380, 381, 420, 598
pseudo

normal form, 144
polynomial, 144

quotient, 285
remainder, 285, 286
standard basis, 53, 145

Puiseux development, 620
pure dimensional, 511

ideal, 259, 278
ring, 278

qhmoduli.lib, 622
qhweight, 134, 598
qring, 25, 585
quadratic norm, 549
quadric, 453
quantum deformation, 91
quartic, 453

rational, 437
quasi–affine, 454
quasi–projective

scheme, 485, 487
variety, 474, 487

affine, 489
quasihomogeneous, 132, 376, 622,

623
quickclass, 533, 619
quintic, 453
quit, 572, 605
quote, 598
quotient, 119
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field, 32, 33
map, 23
module, 118
of ideals, 27, 80
of module by ideal, 119, 120,

202
of submodules, 119
ring, 22, 25, 585

total, 33
quotient, 27, 120, 200, 202, 598

(R1), 352
(Ri), 429
Rabinowich’s trick, 77
radical, 27, 201, 210, 283

Jacobson, 37, 128
membership, 77, 78, 201

radical, 282
radical, 27, 78, 313, 349, 477, 616
random, 599
random.lib, 517, 609
rank, 120, 383
ratg.lib, 638
rational

function, 491
map, 504
normal curve, 328, 517
normal form, 181, 185
numbers, 5

read, 575, 599
read from a file, 575
real, 6

part, 599
real radical, 626
realrad.lib, 626
redNFBuchberger, 51
reduce, 48
reduce, 25, 51, 599
reduced, 45, 286

completely, 45
element, 138
ideal, 27
normal form, 46, 66, 138, 139,

374
is unique, 48, 140

ring, 27, 29, 429
scheme, 485
set, 45, 138

reducible, 465
reduction

of a ring, 27, 228
of a set, 45

reductionToZero, 274
Rees–Algebra, 250, 616
ReesAlgebra, 616
reesclos.lib, 616
regular

at a point, 488
function, 456, 488

germ of, 510
local ring, 344, 347, 369, 440,

513
homological characteriza-

tion, 438
is Cohen–Macaulay, 424
is integral domain, 346
is normal, 346, 352
test for, 440

point, 513
ring, 350, 353, 440
sequence, 346, 411
system of parameters, 343
variety, 513
xn–, 359

regularity, 599
relation, 158

trivial, 19
relevant prime ideal, 483
remainder, 48
Remmert, 245
repart, 599
representation of polynomial

distributive, 3
recursive, 3

representative, 118
res, 153, 434, 599
reservedName, 600
residue

field, 31
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map, 23
Resolution, 160
resolution, 151, 154, 599, 607

homogeneous, 154, 594
length of, 433
minimal, 151, 153
periodic, 438
projective, 433
Schreyer, 168

resolution, 585
resolve.lib, 617
resultant, 471, 600

multipolynomial, 595, 626
resultant, 471, 552, 600
reszeta.lib, 617
return, 576, 606
Riemann, 532

singularity removable theorem,
450

right equivalent, 529
right exact, 189
right–sided, 89
ring, 1, 7

affine, 23
Artinian, 30
associated to K[x] and >, 39,

40
commutative, 1
complete intersection, 426
coordinate, 456
default, 575
definition of, 575
direct sum, 8
factor, 22
map, 3
Noetherian, 21
of fractions, 32

total, 33
polynomial, 2
principal ideal, 23
quotient, 22, 25, 585

total, 33
reduced, 27
reduction of, 27

regular, 350
semi–local, 31

ring, 575, 585
ring.lib, 609
ringlist, 600
rinvar.lib, 624
Robbiano, 13
rootsmr.lib, 627
rootsur.lib, 628
Rothstein–Trager–Lecerf, 570
RowNF, 172
rvar, 600

(S2), 352
(Si), 429
sagbi.lib, 617
SAGE, 646
sameComponent, 631
Samuel, 596
sat, 83, 486, 612
saturated, 485, 502
saturation, 27, 37, 81, 83, 485, 486,

612
exponent, 81
geometric interpretation, 82,

485
scalar multiplication, 109
Schanuel’s Lemma, 170
scheme, 485

affine, 467
intersection, 467
projective, 483
structure, 484, 485
union, 467

Schreyer, 161
ordering, 161
resolution, 168

Segre
embedding, 496
threefold, 498

semi–local, 31
semi–universal deformation, 533
separable

field extension, 9
polynomial, 9
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Serre, 346, 352, 439
conditions, 352, 429

setring, 7, 600
Shape Lemma, 284
sheafcoh.lib, 618
shift of a module, 133
Shimoyama, 613, 616
short, 7, 606
short exact sequence, 146
show, 122
signcond.lib, 629
simplex, 600
simplify, 601
sing.lib, 520, 528, 622
singular

at a point, 513
locus, 347, 349, 398, 514, 622
point, 513

singularity, 451, 524
ADE, 531
classification of, 533
hyperbolic, 532
isolated, 526
Kleinian, 531
parabolic, 532
simple, 531
spectrum, 622, 623

singularLocus, 348
singularLocusEqui, 348
size, 601
slimgb, 601
slocus, 622
snake lemma, 149
solvability, 74
solve, 76, 626
solve.lib, 76, 626
solve IP, 613
solving, 74, 76, 205

complex, 626
linear equations, 205
Newton, 625
with polynomial constraints,

207
sortvec, 602

space curve, 623
space curve.lib, 623
sparsepoly, 517
sparsetriag, 233
spcurve.lib, 623
specialization of a standard basis,

53
spectrum, 622, 623

homogeneous, 483
maximal, 463
prime, 463
projective, 483

Split(X), 294
splitting lemma, 532
splitting tool, 226
spoly, 631
s–polynomial, 49, 95, 140
squarefree, 272, 538, 621

part, 313
squarefree, 313
squarefree factorization, 538
squarefreeDeco, 539
sres, 153, 168, 602
SResolution, 165
stable filtration, 332
Standard, 54, 140
standard

basis, 45, 52, 138, 373, 602,
603, 607, 631

finite determinacy, 59
in power series ring, 373
minimal, 45, 138
over a ring, 52, 66
pseudo, 53, 145
specialization of, 53, 144
without division, 145

polynomial, 89
representation, 46, 94, 138
word, 89

standard, 631
standard.lib, 607
StandardBasis, 59, 141
status, 602
std, 5, 322, 602
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stdfglm, 603
stdhilb, 603
stratification theory, 444
stratify.lib, 625
string, 574, 586
strong integral closure, 219
strongly integral, 219
structural matrix, 90
Sturmfels, 447
subalgebra membership, 86
submodule, 116
subring, 1
subscheme, 467
subst, 603
substitution, 358
substring, 591
subvariety, 454

complement of, 450
of P

n × P
m, 497

sum of submodules, 119
support, 130, 203
surf, 447, 629
surf.lib, 215, 222, 447, 453, 629
surface, 453

in 3-space, 453
surfex.lib, 630
surjective, 20, 21
swallow tail, 536
system, 603
system of

generators, 19
minimal, 127

parameters, 343
syz, 159
syz, 117, 159, 603
syzygy, 158

left, 104
module, 158, 449
right, 104
theorem, 164

tail, 10, 41, 137, 631
tail, 631
tangent cone, 337, 519, 622
tangentcone, 520, 622

teachstd.lib, 631
tensor, 610
tensor product, 185, 610

is right exact, 189
of maps, 188
of modules, 186, 190
of rings, 193, 609
universal property, 192, 468

tensorMaps, 188
tensorMod, 190
term, 2, 93

leading, 10
test ideal for normality, 246
timer, 607
tjurina, 528, 622
Tjurina number, 376, 526, 528, 622

total, 527
Togliatti quintic, 453
topology

m–adic, 357
Euclidean, 518, 523
Zariski, 23, 454, 464, 474, 484

Tor, 377
computation of, 380

Tor, 380
Tor–

module, 377
sequence, 377

toric ideal, 617
toric.lib, 617
torsion

free, 119
module, 119, 120
submodule, 119

total
Milnor number, 527
ring of fractions, 33
Tjurina number, 527

TRACE, 607
trace, 603
Trager, 264, 306, 309, 616
transpose, 603
triang.lib, 76, 627
TriangDecomp, 304
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triangMH, 627
triangular decomposition, 301
triangular set, 76, 300, 626, 627
trivial relation, 19
trueFactors, 551
twist of a module, 133
twisted cubic, 508
two–sided, 89
twostd, 603
type, 286
type, 603
typeof, 603

unique factorization domain, 38,
224

unit, 1
UnivariateFactorize, 549
universal property

of fibre product, 468
of localization, 34
of product, 498
of tensor product, 192

universally Japanese, 241
uressolve, 603

vandermonde, 603
Vandermonde system, 604
vanishing ideal, 455, 464, 475
var, 604
variety

affine algebraic, 452
projective, 471, 483

varstr, 604
Vasconcelos, 251
vdim, 77, 518, 604
vector, 116
vector, 586
Veronese

embedding, 489, 515
d–tuple, 489

variety, 515
versal, 534, 619
voice, 607

w–deg, 13, 410

w–ord, 355
Wall, 531
weak normal form, 47, 138
wedge, 604
weierstr.lib, 632
Weierstrass, 361
Weierstraß, 632

division theorem, 360
polynomial, 234, 361
preparation theorem, 361, 519
semigroup, 630

weight, 604
weight–vector, 15, 355
weighted

degree, 13, 132, 355
ordering, 14

ecart, 56
homogeneous, 132
order, 355

weightKB, 604
Weispfenning, 52
Weyl algebra, 94

first quantized, 93
while, 606
Whitney umbrella, 73, 248, 249,

444, 446
word, 89

standard, 89
write, 575, 604
write to a file, 575

Yokoyama, 613, 616

Zacharias, 264, 306, 309, 616
Zariski

closed, 454
closure of image, 73
conjecture, XIV
topology, 23, 454, 464, 474, 484

basis, 484
Zelevinsky, 595, 603
zero–dimensional ideal

in general position, 265
zero–set, 452, 463, 474, 483

number of points, 283
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ZeroCharsets(F ), 298
zeroDecomp, 270
zeroDecomp, 306
zerodivisor, 23, 201

test, 25, 202
zeroradical, 282
zeroset.lib, 627
Zorn’s Lemma, 31
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AbsFactorization, 565

basisElement, 419
basisNumber, 418
Berlekamp, 543
BerlekampCantorZassenhaus,

545

Characteristic, 288
Clear(Result), 294
coeffMat, 209
coeffMatExt, 209
CohenMacaulayTest, 427
CohenMacaulayTest1, 435

decomp, 275, 309
depth, 426
diagonalForm, 172
distinctDegFac, 541

equidimensional, 279, 311
equidimensionalDecomp, 280
Extended Zassenhaus, 559
extendedDiagonalForm, 178
EZGCD, 562

Facstd, 284
factorization, 556
finitenessTest, 252
fitting, 385
flatLocus, 395
flatLocus1, 396
flatteningStrat, 392

generalEuclid(x, y, c), 579

HilbertPoincare, 322

invers, 356
Irrascending, 293

isCohenMacaulay, 432
isCohenMacaulay1, 434
isFlat, 394
isLocallyFree, 387
isReg, 411

KoszulHomology, 420
KoszulMap, 419

LeftGröbnerBasis, 95
LeftNF, 95

mapIsFinite, 364
maple factorize, 640
Milnor, 577
minAscending, 288
minRel(M,G), 299
MonomialHilbertPoincare, 320, 321
mupad factorize, 644

NFBuchberger, 50
NFMora, 57, 141
NoetherNormal, 251
NoetherNormalization, 233
non–normalLocus, 249
normalization, 253
normalization(I), 247

polyOfEndo, 183
prepareQuotientring, 308
prepareSat, 309
primaryTest, 269, 305
projdim, 434

radical, 282, 313
redNFBuchberger, 51
reductionToZero, 274
Resolution, 160
Rothstein–Trager–Lecerf,

570
RowNF, 172
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singularLocus, 348
singularLocusEqui, 348
Split(X), 294
squarefree, 313
squarefreeDeco, 539
SResolution, 165
Standard, 54, 140
StandardBasis, 59, 141
syz, 159

tensorMaps, 188

tensorMod, 190
Tor, 380
TriangDecomp, 304
trueFactors, 551

UnivariateFactorize, 549

Weierstrass, 361

ZeroCharsets(F ), 298
zeroDecomp, 270, 306
zeroradical, 282
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absolute factorization, 566
algebra

enveloping, 91
algebraic dependence, 86
annihilator, 204

Betti numbers, 107, 153
graded, 155

Center and centralizer, 100
classification of singularities, 533
computation

in fields, 5
in polynomial rings, 7
in quotient rings, 25
of d(I,K[x]), 240
of Hom, 124
of the dimension, 228
of Tor, 380

computing with radicals, 27
counting nodes, 529
creating ring maps, 8
cyclic decomposition, 177

deformation of singularities, 534
degree, 328

of projection, 508
of projective variety, 517

diagonal form, 172
dimension, 328

embedding, 344
of a module, 341

elimination
and resultant, 471
no ordering exists, 103
of module components, 198
of variables, 70
projective, 506

equidimensional
decomposition, 281
part, 279

estimating the determinacy, 530

factor algebras, 99
finite maps, 214
finiteness test, 364
Fitting ideal, 204, 385
flat locus, 396
flatness test, 409
flattening stratification, 392

Gel’fand-Kirillov Dimension, 107
global versus local rings, 36
graded

Betti numbers, 155
rings and modules, 134

Gröbner
basis

left, 97
right, 98
two-sided, 98

highest corner, 61
Hilbert

function, 328
polynomial, 338

Hilbert–Poincaré series, 320
homogeneous

resolution, 155

ideal membership, 67
image of module homomorphism,

117
independent set, 238
initial ideal, 338
injective, 460
integral
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closure of an ideal, 220
elements, 213

intersection
of ideals, 79
of submodules, 120, 199
with essential subalgebras, 102

inverse of a power series, 356
irreducible ascending set, 296

Jacobian
criterion, 344

Jordan normal form, 181

kernel
of a ring map, 85
of module homomorphism,

103, 117, 205
Koszul complex, 417

leading data, 11
linear combination of ideal mem-

bers, 68
local and global dimension, 512
lying over theorem, 243

maps induced by Hom, 114
matrix operations, 112
Milnor and Tjurina number, 528
minimal

associated primes, 227
presentations, 127

module
annihilator, 204
membership, 196
presentation of, 122
quotient, 120
radical and zerodivisors, 202

monomial orderings, 16
morphisms of projective varieties,

495
multiplicity, 520

Noether normalization, 233
non–normal locus, 249
normal form, 51, 141
normalization, 248

Poincaré series, 338
presentation of a module, 122
primary

decomposition, 276
test, 270

projective
closure, 483
elimination, 506
Nullstellensatz, 477
subschemes, 486

properties of ring maps, 20

quantum deformation, 91
quotient

of ideals, 80
of submodules, 120, 201

radical, 202, 283
membership, 78

realization of rings, 42
reduction to zero–dimensional case,

275
regular

sequences, 411
system of parameters, 344

regularity test, 440
resolution, 106, 153

homogeneous, 155
resultant, 552

saturation, 83, 486
Schreyer resolution, 168
singular locus, 349
solving equations, 76

linear, 207
standard bases, 59, 142
subalgebra membership, 87
submodules, 122

intersection of, 120, 199
of An, 116

sum of submodules, 120
surface plot, 447, 453
surjective, 460
syzygies, 104, 159

tangent cone, 520
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tensor product
of maps, 188
of modules, 190
of rings, 193

test
for Cohen–Macaulayness, 426,

432, 434
for flatness, 394
for local freeness, 387

triangular
decomposition, 303

Weierstraß polynomial, 361

Zariski closure of the image, 73
zero–dim primary

decomposition, 271
zerodivisors, 202
z–general power series, 360


