
1 Preface

Singular version 3-0-0
University of Kaiserslautern

Department of Mathematics and Centre for Computer Algebra
Authors: G.-M. Greuel, G. Pfister, H. Schoenemann

Copyright c© 1986-2005

NOTICE

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation (version 2 of the
License); with the following additional restrictions (which override any conflicting restrictions
in the GPL):

The following software used with Singular have their own copyright: the omalloc library, the
readline library, the Gnu Multiple Precision Library (GMP), NTL: A Library for doing Number
Theory (NTL), the Multi Protocol library (MP), the Singular-Factory library, the Singular-libfac
library, and, for the Windows distributions the Cygwin DLL and the Cygwin tools (Cygwin),
and the XEmacs editor (XEmacs).

Their copyrights and licenses can be found in the accompanying files which are distributed
along with these packages.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA (see GPL)

Please send any comments or bug reports to singular@mathematik.uni-kl.de.

Please register yourself as a Singular user by using the registration form on the Singular
homepage http://www.singular.uni-kl.de. If for some reason you cannot access the regis-
tration form, you can also register by sending an email to singular@mathematik.uni-kl.de
with subject line register and body containing the following data: your name, email address,
organisation, country and platform(s).

If you use Singular or parts thereof in a project and/or publish results that were
partly obtained using Singular, we ask you to cite Singular and inform us thereof –
see http://www.singular.uni-kl.de/how_to_cite.html, for information on how to cite
Singular.

Availability

The latest information about Singular is always available from
http://www.singular.uni-kl.de.

Acknowledgements

The development of Singular is directed and coordinated by Gert-Martin Greuel, Gerhard
Pfister, and Hans Schönemann.

Currently, the Singular team has the following members: Michael Brickenstein, Wolfram
Decker, Anne Frühbis-Krüger, Kai Krüger, Christoph Lossen, Viktor Levandovskyy, Wilfred
Pohl and Oliver Wienand.

Former members of the Singular team are: Olaf Bachmann, Wolfgang Neumann, Jens
Schmidt, Mathias Schulze, Thomas Siebert, Rüdiger Stobbe, Eric Westenberger and Tim Wich-
mann.

Further contributions to Singular were made by: Thomas Bayer, Isabelle Bermejo, Markus
Becker, Kai Dehmann, Alexander Dreyer, Stephan Endraß, Jose Ignacio Farran, Vladimir Gerdt,
Philippe Gimenez, Christian Gorzel, Hubert Grassmann, Fernando Hernando, Agnes Heydt-
mann, Dietmar Hillebrand, Tobias Hirsch, Thomas Keilen, Anen Lakhal, Martin Lamm, Fran-
cisco Javier Lobillo, Bernd Martin, Michael Meßollen, Andrea Mindnich, Oleksandr Motsak,
Thomas Nüßler, Carlos Rabelo, Alfredo Sanchez-Navarro, Henrik Strohmayer, Christian Stus-
sak, Imade Sulandra, Christine Theis, Enrique Tobis, Alberto Vigneron-Tenorio, Moritz Wenk,
Denis Yanovich, Oleksandr Yena.

We should like to acknowledge the financial support given by the Volkswagen-Stiftung, the
Deutsche Forschungsgemeinschaft and the Stiftung für Innovation des Landes Rheinland-Pfalz
to the Singular project.

2 Introduction

2.1 Background

Singular is a Computer Algebra system for polynomial computations with emphasis on the
special needs of commutative algebra, algebraic geometry, and singularity theory.

Singular’s main computational objects are ideals and modules over a large variety of baser-
ings. The baserings are polynomial rings or localizations thereof over a field (e.g., finite fields, the
rationals, floats, algebraic extensions, transcendental extensions) or quotient rings with respect
to an ideal.

Singular features one of the fastest and most general implementations of various algorithms
for computing Groebner resp. standard bases. The implementation includes Buchberger’s al-
gorithm (if the ordering is a wellordering) and Mora’s algorithm (if the ordering is a tangent
cone ordering) as special cases. Furthermore, it provides polynomial factorizations, resultant,
characteristic set and gcd computations, syzygy and free-resolution computations, and many
more related functionalities.

Based on an easy-to-use interactive shell and a C-like programming language, Singular’s
internal functionality is augmented and user-extendible by libraries written in the Singular
programming language. A general and efficient implementation of communication links allows
Singular to make its functionality available to other programs.

Singular’s development started in 1984 with an implementation of Mora’s Tangent Cone
algorithm in Modula-2 on an Atari computer (K.P. Neuendorf, G. Pfister, H. Schönemann;
Humboldt-Universität zu Berlin). The need for a new system arose from the investigation of
mathematical problems coming from singularity theory which none of the existing systems was
able to compute.

In the early 1990s Singular’s "home-town" moved to Kaiserslautern, a general standard
basis algorithm was implemented in C and Singular was ported to Unix, MS-DOS, Windows
NT, and MacOS.

Continuous extensions (like polynomial factorization, gcd computations, links) and refine-
ments led in 1997 to the release of Singular version 1.0 and in 1998 to the release of version 1.2
(much faster standard and Groebner bases computations based on Hilbert series and on improved
implementations of the algorithms, libraries for primary decomposition, ring normalization, etc.)

For the highlights of the new Singular version 3-0-0 see 〈undefined〉 [News and changes],
page 〈undefined〉.

2.2 How to use this tutorial

In Chapter 3 [Getting started], page 5, some simple examples explain how to use Singular
in a step-by-step manner.

Chapter 4 [Examples], page 14 should come next for real learning-by-doing or to quickly solve
some given mathematical problems without dwelling too deeply into Singular.

Typographical conventions

Throughout this manual, the following typographical conventions are adopted:

• text in typewriter denotes Singular input and output as well as reserved names:

The basering can be set using the command setring.

• the arrow 7→ denotes Singular output:

poly p=x+y+z;

p*p;

7→ x2+2xy+y2+2xz+2yz+z2

• square brackets are used to denote parts of syntax descriptions which are optional:

[optional text] required text

• keys are denoted using typewriter, for example:

N (press the key N to get to the next node in help mode)

RETURN (press RETURN to finish an input line)

CTRL-P (press control key together with the key P to get the previous input line)

3 Getting started

Singular is a special purpose system for polynomial computations. Hence, most of the
powerful computations in Singular require the prior definition of a ring. Most important rings
are polynomial rings over a field, localizations hereof, or quotient rings of such rings modulo an
ideal. However, some simple computations with integers (machine integers of limited size) and
manipulations of strings are available without a ring.

3.1 First steps

Once Singular is started, it awaits an input after the prompt >. Every statement has to be
terminated by ; .

37+5;
7→ 42

All objects have a type, e.g., integer variables are defined by the word int. An assignment
is done by the symbol = .

int k = 2;

Test for equality resp. inequality is done using == resp. != (or <>), where 0 represents the boolean
value FALSE, any other value represents TRUE.

k == 2;
7→ 1
k != 2;
7→ 0

The value of an object is displayed by simply typing its name.

k;
7→ 2

On the other hand the output is suppressed if an assignment is made.

int j;
j = k+1;

The last displayed (!) result is always available with the special symbol _ .

2*_; // the value from k displayed above
7→ 4

Text starting with // denotes a comment and is ignored in calculations, as seen in the previous
example. Furthermore Singular maintains a history of the previous lines of input, which may
be accessed by CTRL-P (previous) and CTRL-N (next) or the arrows on the keyboard. Note that
the history is not available on Macintosh systems.

The whole manual is available online by typing the command help; . Explanation on single
topics, e.g., on intmat, which defines a matrix of integers, are obtained by

help intmat;

This shows the text from node intmat, in the printed manual.

Next, we define a 3× 3 matrix of integers and initialize it with some values, row by row from
left to right:

intmat m[3][3] = 1,2,3,4,5,6,7,8,9;

A single matrix entry may be selected and changed using square brackets [and].

m[1,2]=0;
m;
7→ 1,0,3,
7→ 4,5,6,

7→ 7,8,9

To calculate the trace of this matrix, we use a for loop. The curly brackets { and } denote
the beginning resp. end of a block. If you define a variable without giving an initial value, as
the variable tr in the example below, Singular assigns a default value for the specific type. In
this case, the default value for integers is 0. Note that the integer variable j has already been
defined above.

int tr;
for (j=1; j <= 3; j++) { tr=tr + m[j,j]; }
tr;
7→ 15

Variables of type string can also be defined and used without a ring being active. Strings are
delimited by " (double quotes). They may be used to comment the output of a computation
or to give it a nice format. If a string contains valid Singular commands, it can be executed
using the function execute. The result is the same as if the commands would have been written
on the command line. This feature is especially useful to define new rings inside procedures.

"example for strings:";
7→ example for strings:
string s="The element of m ";
s = s + "at position [2,3] is:"; // concatenation of strings by +
s , m[2,3] , ".";
7→ The element of m at position [2,3] is: 6 .
s="m[2,1]=0; m;";
execute(s);
7→ 1,0,3,
7→ 0,5,6,
7→ 7,8,9

This example shows that expressions can be separated by , (comma) giving a list of ex-
pressions. Singular evaluates each expression in this list and prints all results separated by
spaces.

3.2 Rings and standard bases

To calculate with objects as ideals, matrices, modules, and polynomial vectors, a ring has to
be defined first.

ring r = 0,(x,y,z),dp;

The definition of a ring consists of three parts: the first part determines the ground field,
the second part determines the names of the ring variables, and the third part determines the
monomial ordering to be used. So the example above declares a polynomial ring called r with
a ground field of characteristic 0 (i.e., the rational numbers) and ring variables called x, y, and
z. The dp at the end means that the degree reverse lexicographical ordering should be used.

Other ring declarations:

ring r1=32003,(x,y,z),dp;
characteristic 32003, variables x, y, and z and ordering dp.

ring r2=32003,(a,b,c,d),lp;
characteristic 32003, variable names a, b, c, d and lexicographical ordering.

ring r3=7,(x(1..10)),ds;
characteristic 7, variable names x(1),. . . ,x(10), negative degree reverse lexico-
graphical ordering (ds).

ring r4=(0,a),(mu,nu),lp;
transcendental extension of Q by a , variable names mu and nu.

ring r5=real,(a,b),lp;
floating point numbers (single machine precision), variable names a and b.

ring r6=(real,50),(a,b),lp;
floating point numbers with extended precision of 50 digits, variable names a and
b.

ring r7=(complex,50,i),(a,b),lp;
complex floating point numbers with extended precision of 50 digits and imaginary
unit i, variable names a and b.

Typing the name of a ring prints its definition. The example below shows that the default
ring in Singular is Z/32003[x, y, z]

with degree reverse lexicographical ordering:

ring r8;
r8;
7→ // characteristic : 32003
7→ // number of vars : 3
7→ // block 1 : ordering dp
7→ // : names x y z
7→ // block 2 : ordering C

Defining a ring makes this ring the current active basering, so each ring definition above
switches to a new basering. The concept of rings in Singular is discussed in detail in the
chapter "Rings and orderings" of the Singular manual.

The basering is now r8. Since we want to calculate in the ring r, which we defined first, we
have to switch back to it. This can be done using the function setring:

setring r;

Once a ring is active, we can define polynomials. A monomial, say x3 may be entered in
two ways: either using the power operator ^, saying x^3, or in short-hand notation without
operator, saying x3. Note that the short-hand notation is forbidden if the name of the ring
variable consists of more than one character. Note, that Singular always expands brackets
and automatically sorts the terms with respect to the monomial ordering of the basering.

poly f = x3+y3+(x-y)*x2y2+z2;
f;
7→ x3y2-x2y3+x3+y3+z2

The command size determines in general the number of ”single entries“ in an object. In
particular, for polynomials, size determines the number of monomials.

size(f);
7→ 5

A natural question is to ask if a point, e.g., (x,y,z)=(1,2,0), lies on the variety defined by
the polynomials f and g. For this we define an ideal generated by both polynomials, substitute
the coordinates of the point for the ring variables, and check if the result is zero:

poly g = f^2 *(2x-y);
ideal I = f,g;
ideal J = subst(I,var(1),1);
J = subst(J,var(2),2);
J = subst(J,var(3),0);
J;
7→ J[1]=5

7→ J[2]=0

Since the result is not zero, the point (1,2,0) does not lie on the variety V(f,g).

Another question is to decide whether some function vanishes on a variety, or in algebraic
terms if a polynomial is contained in a given ideal. For this we calculate a standard basis using
the command groebner and afterwards reduce the polynomial with respect to this standard
basis.

ideal sI = groebner(f);
reduce(g,sI);
7→ 0

As the result is 0 the polynomial g belongs to the ideal defined by f.

The function groebner, like many other functions in Singular, prints a protocol dur-
ing calculations, if desired. The command option(prot); enables protocolling whereas
option(noprot); turns it off.

The command kbase calculates a basis of the polynomial ring modulo an ideal, if the quotient
ring is finite dimensional. As an example we calculate the Milnor number of a hypersurface
singularity in the global and local case. This is the vector space dimension of the polynomial
ring modulo the Jacobian ideal in the global case resp. of the power series ring modulo the
Jacobian ideal in the local case. See Section 4.4.2 [Critical points], page 40, for a detailed
explanation.

The Jacobian ideal is obtained with the command jacob.

ideal J = jacob(f);
7→ // ** redefining J **
J;
7→ J[1]=3x2y2-2xy3+3x2
7→ J[2]=2x3y-3x2y2+3y2
7→ J[3]=2z

Singular prints the line // ** redefining J **. This indicates that we have previously defined
a variable with name J of type ideal (see above).

To obtain a representing set of the quotient vector space we first calculate a standard basis,
then we apply the function kbase to this standard basis.

J = groebner(J);
ideal K = kbase(J);
K;
7→ K[1]=y4
7→ K[2]=xy3
7→ K[3]=y3
7→ K[4]=xy2
7→ K[5]=y2
7→ K[6]=x2y
7→ K[7]=xy
7→ K[8]=y
7→ K[9]=x3
7→ K[10]=x2
7→ K[11]=x
7→ K[12]=1

Then

size(K);
7→ 12

gives the desired vector space dimension K[x, y, z]/jacob(f). As in Singular the functions
may take the input directly from earlier calculations, the whole sequence of commands may be
written in one single statement.

size(kbase(groebner(jacob(f))));
7→ 12

When we are not interested in a basis of the quotient vector space, but only in the resulting
dimension we may even use the command vdim and write:

vdim(groebner(jacob(f)));
7→ 12

3.3 Procedures and libraries

Singular offers a comfortable programming language, with a syntax close to C. So it is
possible to define procedures which collect several commands to a new one. Procedures are
defined with the keyword proc followed by a name and an optional parameter list with specified
types. Finally, a procedure may return values using the command return.

Define the following procedure called Milnor:

proc Milnor (poly h)
{

return(vdim(groebner(jacob(h))));
}

Note: if you have entered the first line of the procedure and pressed RETURN, Singular prints
the prompt . (dot) instead of the usual prompt > . This shows that the input is incomplete
and Singular expects more lines. After typing the closing curly bracket, Singular prints the
usual prompt indicating that the input is now complete.

Then call the procedure:

Milnor(f);
7→ 12

Note that the result may depend on the basering as we will see in the next chapter.

The distribution of Singular contains several libraries, each of which is a collection of useful
procedures based on the kernel commands, which extend the functionality of Singular. The
command help "all.lib"; lists all libraries together with a one-line explanation.

One of these libraries is sing.lib which already contains a procedure called milnor to calcu-
late the Milnor number not only for hypersurfaces but more generally for complete intersection
singularities.

Libraries are loaded with the command LIB. Some additional information during the process
of loading is displayed on the screen, which we omit here.

LIB "sing.lib";

As all input in Singular is case sensitive, there is no conflict with the previously defined
procedure Milnor, but the result is the same.

milnor(f);
7→ 12

The procedures in a library have a help part which is displayed by typing

help milnor;

as well as some examples, which are executed by

example milnor;

Likewise, the library itself has a help part, to show a list of all the functions available for the
user which are contained in the library.

help sing.lib;

The output of the help commands is omitted here.

3.4 Change of rings

To calculate the local Milnor number we have to do the calculation with the same commands
in a ring with local ordering. Define the localization of the polynomial ring at the origin.

ring rl = 0,(x,y,z),ds;

This ordering determines the standard basis which will be calculated. Fetch the polynomial
defined in the ring r into this new ring, thus avoiding retyping the input.

poly f = fetch(r,f);
f;
7→ z2+x3+y3+x3y2-x2y3

Instead of fetch we can use the function imap which is more general but less efficient. The most
general way to fetch data from one ring to another is to use maps.

In this ring the terms are ordered by increasing exponents. The local Milnor number is now

Milnor(f);
7→ 4

This shows that f has outside the origin in affine 3-space singularities with local Milnor
number adding up to 12− 4 = 8. Using global and local orderings as above is a convenient way
to check whether a variety has singularities outside the origin.

The command jacob applied twice gives the Hessian of f, a 3x3 - matrix.

matrix H = jacob(jacob(f));
H;
7→ H[1,1]=6x+6xy2-2y3
7→ H[1,2]=6x2y-6xy2
7→ H[1,3]=0
7→ H[2,1]=6x2y-6xy2
7→ H[2,2]=6y+2x3-6x2y
7→ H[2,3]=0
7→ H[3,1]=0
7→ H[3,2]=0
7→ H[3,3]=2

The print command displays the matrix in a nicer form.

print(H);
7→ 6x+6xy2-2y3,6x2y-6xy2, 0,
7→ 6x2y-6xy2, 6y+2x3-6x2y,0,
7→ 0, 0, 2

We may calculate the determinant and (the ideal generated by all) minors of a given size.

det(H);
7→ 72xy+24x4-72x3y+72xy3-24y4-48x4y2+64x3y3-48x2y4
minor(H,1); // the 1x1 - minors
7→ _[1]=2
7→ _[2]=6y+2x3-6x2y
7→ _[3]=6x2y-6xy2
7→ _[4]=6x2y-6xy2
7→ _[5]=6x+6xy2-2y3

The algorithm of the standard basis computations may be affected by the command option.
For example, a reduced standard basis of the ideal generated by the 1×1-minors of H is obtained
in the following way:

option(redSB);
groebner(minor(H,1));
7→ _[1]=1

This shows that 1 is contained in the ideal of the 1 × 1-minors, hence the corresponding
variety is empty.

3.5 Modules and their annihilator

Now we shall give three more advanced examples.

Singular is able to handle modules over all the rings, which can be defined as a basering.
A free module of rank n is defined as follows:

ring rr;
int n = 4;
freemodule(4);
7→ _[1]=gen(1)
7→ _[2]=gen(2)
7→ _[3]=gen(3)
7→ _[4]=gen(4)
typeof(_);
7→ module
print(freemodule(4));
7→ 1,0,0,0,
7→ 0,1,0,0,
7→ 0,0,1,0,
7→ 0,0,0,1

To define a module, we give a list of vectors generating a submodule of a free module. Then
this set of vectors may be identified with the columns of a matrix. For that reason in Singular
matrices and modules may be interchanged. However, the representation is different (modules
may be considered as sparse represented matrices).

ring r =0,(x,y,z),dp;
module MD = [x,0,x],[y,z,-y],[0,z,-2y];
matrix MM = MD;
print(MM);
7→ x,y,0,
7→ 0,z,z,
7→ x,-y,-2y

However the submodule MD may also be considered as the module of relations of the factor
module r3/MD. In this way, Singular can treat arbitrary finitely generated modules over the
basering.

In order to get the module of relations of MD , we use the command syz.

syz(MD);
7→ _[1]=x*gen(3)-x*gen(2)+y*gen(1)

We want to calculate, as an application, the annihilator of a given module. Let M = r3/U ,
where U is our defining module of relations for the module M .

module U = [z3,xy2,x3],[yz2,1,xy5z+z3],[y2z,0,x3],[xyz+x2,y2,0],[xyz,x2y,1];

Then, by definition, the annihilator of M is the ideal ann(M) = {a | aM = 0} which is by
the description of M the same as {a | ar3 ∈ U}. Hence we have to calculate the quotient U : r3.
The rank of the free module is determined by the choice of U and is the number of rows of the
corresponding matrix. This may be determined by the function nrows. All we have to do now
is the following:

quotient(U,freemodule(nrows(U)));

The result is too big to be shown here.

3.6 Resolution

There are several commands in Singular for computing free resolutions. The most general
command is res(... ,n) which determines heuristically what method to use for the given
problem. It computes the free resolution up to the length n , where n = 0 corresponds to the
full resolution.

Here we use the possibility to inspect the calculation process using the option prot.

ring R; // the default ring in char 32003
R;
7→ // characteristic : 32003
7→ // number of vars : 3
7→ // block 1 : ordering dp
7→ // : names x y z
7→ // block 2 : ordering C
ideal I = x4+x3y+x2yz,x2y2+xy2z+y2z2,x2z2+2xz3,2x2z2+xyz2;
option(prot);
resolution rs = res(I,0);
7→ using lres
7→ 4(m0)4(m1).5(m1)g.g6(m1)...6(m2)..

Disable this protocol with

option(noprot);

When we enter the name of the calculated resolution, we get a pictorial description of the
minimized resolution where the exponents denote the rank of the free modules. Note that the
calculated resolution itself may not yet be minimal.

rs;
7→ 1 4 5 2 0
7→R <-- R <-- R <-- R <-- R
7→
7→0 1 2 3 4
print(betti(rs),"betti");
7→ 0 1 2 3
7→ ------------------------------
7→ 0: 1 - - -
7→ 1: - - - -
7→ 2: - - - -
7→ 3: - 4 1 -
7→ 4: - - 1 -
7→ 5: - - 3 2
7→ ------------------------------
7→ total: 1 4 5 2

In order to minimize the resolution, that is to calculate the maps of the minimal free resolu-
tion, we use the command minres:

rs=minres(rs);

A single module in this resolution is obtained (as usual) with the brackets [and]. The
print command can be used to display a module in a more readable format:

print(rs[3]);

7→ z3, -xyz-y2z-4xz2+16z3,
7→ 0, -y2,
7→ -y+4z,48z,
7→ x+2z, 48z,
7→ 0, x+y-z

In this case, the output is to be interpreted as follows: the 3rd syzygy module of R/I,
rs[3], is the rank-2-submodule of R5 generated by the vectors (z3, 0,−y + 4z, x + 2z, 0) and
(−xyz − y2z − 4xz2 + 16z3,−y2, 48z, 48z, x + y − z).

4 Examples

4.1 Programming

4.1.1 Basic programming

We show in the example below the following:

• define the ring R with char 32003, variables x,y,z, monomial ordering dp (implementing
F 32003[x,y,z])

• list the information about R by typing its name

• define the integers a,b,c,t

• define a polynomial f (depending on a,b,c,t) and display it

• define the jacobian ideal i of f

• compute a Groebner basis of i

• compute the dimension of the algebraic set defined by i (requires the computation of a
Groebner basis)

• create and display a string in order to comment the result (text between quotes " "; is a
’string’)

• load a library (see 〈undefined〉 [primdec lib], page 〈undefined〉)
• compute a primary decomposition for i and assign the result to a list L (which is a list of

lists of ideals)

• display the number of primary components and the first primary and prime components
(entries of the list L[1])

• implement the localization of F 32003[x,y,z] at the homogeneous maximal ideal (generated
by x,y,z) by defining a ring with local monomial ordering (ds in place of dp)

• map i to this ring (see 〈undefined〉 [imap], page 〈undefined〉) - we may use the same name
i, since ideals are ring dependent data

• compute the local dimension of the algebraic set defined by i at the origin (= dimension of
the ideal generated by i in the localization)

• compute the local dimension of the algebraic set defined by i at the point (-2000,-6961,-
7944) (by applying a linear coordinate transformation)

For a more basic introduction to programming in Singular, we refer to Chapter 3 [Getting
started], page 5.

ring R = 32003,(x,y,z),dp;
R;
7→ // characteristic : 32003
7→ // number of vars : 3
7→ // block 1 : ordering dp
7→ // : names x y z
7→ // block 2 : ordering C
int a,b,c,t = 1,2,-1,4;
poly f = a*x3+b*xy3-c*xz3+t*xy2z2;
f;
7→ 4xy2z2+2xy3+xz3+x3
ideal i = jacob(f);
ideal si = std(i); // compute Groebner basis
int dimi = dim(si);

string s = "The dimension of V(i) is "+string(dimi)+".";
s;
7→ The dimension of V(i) is 1.
LIB "primdec.lib";
list L = primdecGTZ(i);
size(L); // number of prime components
7→ 6
L[1][1]; // first primary component
7→ _[1]=2y2z2+y3-16001z3
7→ _[2]=x
L[1][2]; // corresponding prime component
7→ _[1]=2y2z2+y3-16001z3
7→ _[2]=x
ring Rloc = 32003,(x,y,z),ds; // ds = local monomial ordering
ideal i = imap(R,i);
dim(std(i));
7→ 1
map phi = R, x-2000, y-6961, z-7944;
dim(std(phi(i)));
7→ 0

4.1.2 Writing procedures and libraries

The user may add his own commands to the commands already available in Singular by
writing Singular procedures. There are basically two kinds of procedures:

• procedures written in the Singular programming language (which usually are collected in
Singular libraries).

• procedures written in C/C++ (collected in dynamic modules).

At this point, we restrict ourselves to describing the first kind of (library) procedures, which
are sufficient for most applications. The syntax and general structure of a library (procedure) is
described in 〈undefined〉 [Procedures], page 〈undefined〉, and 〈undefined〉 [Format of a library],
page 〈undefined〉.

The probably most efficient way of writing a new library is to use one of the official Singular
libraries, say ring.lib as a sample. On a Unix-like operating system, type LIB "ring.lib";
to get information on where the libraries are stored on your disk.

Singular provides several commands and tools, which may be useful when writing a pro-
cedure, for instance, to have a look at intermediate results (see 〈undefined〉 [Debugging tools],
page 〈undefined〉).

We give short examples of procedures to demonstrate the following:

• Write procedures which return an integer (ring independent), see also Section 4.4.1 [Mil-
nor and Tjurina number], page 39. (Here we restrict ourselves to the main body of the
procedures).

− The procedure milnorNumber must be called with one parameter, a polynomial. The
name g is local to the procedure and is killed automatically when leaving the procedure.
milnorNumber returns the Milnor number (and displays a comment).

− The procedure tjurinaNumber has no specified number of parameters. Here, the
parameters are referred to by #[1] for the 1st, #[2] for the 2nd parameter, etc.
tjurinaNumber returns the Tjurina number (and displays a comment).

− the procedure milnor_tjurina which returns a list consisting of two integers, the
Milnor and the Tjurina number.

• Write a procedure which creates a new ring and returns data dependent on this new ring
(two numbers) and an int. In this example, we also show how to write a help text for the
procedure (which is optional, but recommended).

proc milnorNumber (poly g)
{

"Milnor number:";
return(vdim(std(jacob(g))));

}

proc tjurinaNumber
{

"Tjurina number:";
return(vdim(std(jacob(#[1])+#[1])));

}

proc milnor_tjurina (poly f)
{

ideal j=jacob(f);
list L=vdim(std(j)),vdim(std(j+f));
return(L);

}

proc real_sols (number b, number c)
"USAGE: real_sols (b,c); b,c number
ASSUME: active basering has characteristic 0
RETURN: list: first entry is an integer (the number of different real

solutions). If this number is non-negative, the list has as second
entry a ring in which the list SOL of real solutions of x^2+bx+c=0
is stored (as floating point number, precision 30 digits).

NOTE: This procedure calls laguerre_solve from solve.lib.
"
{

def oldring = basering; // assign name to the ring active when
// calling the procedure

number disc = b^2-4*c;
if (disc>0) { int n_of_sols = 2; }
if (disc==0) { int n_of_sols = 1; }
string s = nameof(var(1)); // name of first ring variable
if (disc>=0) {
execute("ring rinC =(complex,30),("+s+"),lp;");
if (not(defined(laguerre_solve))) { LIB "solve.lib"; }
poly f = x2+imap(oldring,b)*x+imap(oldring,c);

// f is a local ring-dependent variable
list SOL = laguerre_solve(f,30);
export SOL; // make SOL a global ring-dependent variable

// such variables are still accessible when the
// ring is among the return values of the proc

setring oldring;
return(list(n_of_sols,rinC));

}
else {

return(list(0));
}

}

//
// Applying the procedures:
//
ring r = 0,(x,y),ds;
poly f = x7+y7+(x-y)^2*x2y2;

milnorNumber(f);
7→ Milnor number:
7→ 28
tjurinaNumber(f);
7→ Tjurina number:
7→ 24
milnor_tjurina(f); // a list containing Milnor and Tjurina number
7→ [1]:
7→ 28
7→ [2]:
7→ 24

def L=real_sols(2,1);
L[1]; // number of real solutions of x^2+2x+1
7→ 1
def R1=L[2];
setring R1;
listvar(R1); // only global ring-dependent objects are still alive
7→ // R1 [0] *ring
7→ // SOL [0] list, size: 2
SOL; // the real solutions
7→ [1]:
7→ -1
7→ [2]:
7→ -1

setring r;
L=real_sols(1,1);
L[1]; // number of reals solutions of x^2+x+1
7→ 0

setring r;
L=real_sols(1,-5);
L[1]; // number of reals solutions of x^2+x-5
7→ 2
def R3=L[2];
setring R3; SOL; // the real solutions
7→ [1]:
7→ -2.791287847477920003294023596864
7→ [2]:
7→ 1.791287847477920003294023596864

Writing a dynamic module is not as simple as writing a library procedure, since it does not
only require some knowledge of C/C++, but also about the way the Singular kernel works. See
also Section 4.1.6 [Dynamic modules], page 20.

4.1.3 Rings associated to monomial orderings

In Singular we may implement localizations of the polynomial ring by choosing an appropri-
ate monomial ordering (when defining the ring by the ring command). We refer to 〈undefined〉
[Monomial orderings], page 〈undefined〉 for a thorough discussion of the monomial orderings
available in Singular.

At this point, we restrict ourselves to describing the relation between a monomial ordering
and the ring (as mathematical object) which is implemented by the ordering. This is most easily
done by describing the set of units: if > is a monomial ordering then precisely those elements
which have leading monomial 1 are considered as units (in all computations performed with
respect to this ordering).

In mathematical terms: choosing a monomial ordering > implements the localization of the
polynomial ring with respect to the multiplicatively closed set of polynomials with leading
monomial 1.

That is, choosing ¿ implements the ring

K[x]> :=

{
f

u

∣∣∣∣ f, u ∈ K[x], LM(u) = 1

}
.

If > is global (that is, 1 is the smallest monomial), the implemented ring is just the polynomial
ring. If > is local (that is, if 1 is the largest monomial), the implemented ring is the localization
of the polynomial ring w.r.t. the homogeneous maximal ideal. For a mixed ordering, we obtain
"something in between these two rings":

ring R = 0,(x,y,z),dp; // polynomial ring (global ordering)
poly f = y4z3+2x2y2z2+4z4+5y2+1;
f; // display f in a degrevlex-ordered way
7→ y4z3+2x2y2z2+4z4+5y2+1
short=0; // avoid short notation
f;
7→ y^4*z^3+2*x^2*y^2*z^2+4*z^4+5*y^2+1
short=1;
leadmonom(f); // leading monomial
7→ y4z3

ring r = 0,(x,y,z),ds; // local ring (local ordering)
poly f = fetch(R,f);
f; // terms of f sorted by degree
7→ 1+5y2+4z4+2x2y2z2+y4z3
leadmonom(f); // leading monomial
7→ 1

// Now we implement more "advanced" examples of rings:
//
// 1) (K[y]_<y>)[x]
//
int n,m=2,3;
ring A1 = 0,(x(1..n),y(1..m)),(dp(n),ds(m));
poly f = x(1)*x(2)^2+1+y(1)^10+x(1)*y(2)^5+y(3);

leadmonom(f);
7→ x(1)*x(2)^2
leadmonom(1+y(1)); // unit
7→ 1
leadmonom(1+x(1)); // no unit
7→ x(1)

//
// 2) some ring in between (K[x]_<x>)[y] and K[x,y]_<x>
//
ring A2 = 0,(x(1..n),y(1..m)),(ds(n),dp(m));
leadmonom(1+x(1)); // unit
7→ 1
leadmonom(1+x(1)*y(1)); // unit
7→ 1
leadmonom(1+y(1)); // no unit
7→ y(1)

//
// 3) K[x,y]_<x>
//
ring A4 = (0,y(1..m)),(x(1..n)),ds;
leadmonom(1+y(1)); // in ground field
7→ 1
leadmonom(1+x(1)*y(1)); // unit
7→ 1
leadmonom(1+x(1)); // unit
7→ 1

Note, that even if we implictly compute over the localization of the polynomial ring, most
computations are explicitly performed with polynomial data only. In particular, 1/(1-x); does
not return a power series expansion or a fraction but 0 (division with remainder in polynomial
ring).

See 〈undefined〉 [division], page 〈undefined〉 for division with remainder in the localization
and 〈undefined〉 [invunit], page 〈undefined〉 for a procedure returning a truncated power series
expansion of the inverse of a unit.

4.1.4 Parameters

Let us now deform a given 0-dimensional ideal j by introducing a parameter t and com-
pute over the ground field Q(t). We compute the dimension at the generic point, i.e.,
dimQ(t)Q(t)[x, y]/j.

For almost all a ∈ Q this is the same as dimQQ[x, y]/j0, where j0 = j|t=a.
ring Rt = (0,t),(x,y),lp;
Rt;

7→ // characteristic : 0
7→ // 1 parameter : t
7→ // minpoly : 0
7→ // number of vars : 2
7→ // block 1 : ordering lp
7→ // : names x y

7→ // block 2 : ordering C
poly f = x5+y11+xy9+x3y9;
ideal i = jacob(f);
ideal j = i,i[1]*i[2]+t*x5y8; // deformed ideal, parameter t
vdim(std(j));

7→ 40
ring R=0,(x,y),lp;
ideal i=imap(Rt,i);
int a=random(1,30000);
ideal j=i,i[1]*i[2]+a*x5y8; // deformed ideal, fixed integer a
vdim(std(j));

7→ 40

4.1.5 Formatting output

We show how to insert the result of a computation inside a text by using strings. First we
compute the powers of 2 and comment the result with some text. Then we do the same and
give the output a nice format by computing and adding appropriate space.

// The powers of 2:
int n;
for (n = 2; n <= 128; n = n * 2)
{"n = " + string (n);}

7→ n = 2
7→ n = 4
7→ n = 8
7→ n = 16
7→ n = 32
7→ n = 64
7→ n = 128
// The powers of 2 in a nice format
int j;
string space = "";
for (n = 2; n <= 128; n = n * 2)
{
space = "";
for (j = 1; j <= 5 - size (string (n)); j = j+1)
{ space = space + " "; }
"n =" + space + string (n);

}
7→ n = 2
7→ n = 4
7→ n = 8
7→ n = 16
7→ n = 32
7→ n = 64
7→ n = 128

4.1.6 Dynamic modules

The purpose of the following example is to illustrate the use of dynamic modules. Giving an
example on how to write a dynamic module is beyond the scope of this manual. Detailed informa-

tion on the latter topic can be found in a separate PostScript file at http://www.singular.uni-
kl.de/DynMod.ps.

In this example, we use a dynamic module, residing in the file kstd.so, which allows ignoring
all but the first j entries of vectors when forming the pairs in the standard basis computation.

ring r=0,(x,y),dp;
module mo=[x^2-y^2,1,0,0],[xy+y^2,0,1,0],[y^2,0,0,1];
print(mo);
7→ x2-y2,xy+y2,y2,
7→ 1, 0, 0,
7→ 0, 1, 0,
7→ 0, 0, 1

// load dynamic module - at the same time creating package Kstd
// procedures will be available in the packages Top and Kstd
LIB("kstd.so");
listvar(package);
7→ // Kstd [0] package (C,kstd.so)
7→ // Standard [0] package (S,standard.lib)
7→ // Top [0] package (N)

// set the number of components to be considered to 1
module mostd=kstd(mo,1); // calling procedure in Top

// obviously computation ignored pairs with leading
// term in the second entry

print(mostd);
7→ 0, 0, y2,xy,x2,
7→ -y, y, 0, 0, 1,
7→ x-y,-x, 0, 1, 0,
7→ 0, x+y,1, -1,1

// now consider 2 components
module mostd2=Kstd::kstd(mo,2); // calling procedure in Kstd

// this time the previously unconsidered pair was
// treated too

print(mostd2);
7→ 0, 0, y2,xy,x2,
7→ 0, y, 0, 0, 1,
7→ -y, -x+y,0, 1, 0,
7→ x+y,0, 1, -1,1

4.2 Computing Groebner and Standard Bases

4.2.1 groebner and std

The basic version of Buchberger’s algorithm leaves a lot of freedom in carrying out the
computational process. Considerable improvements are obtained by implementing criteria for
reducing the number of S-polynomials to be actually considered (e.g., by applying the product
criterion or the chain criterion). We refer to Cox, Little, and O’Shea [1997], Chapter 2 for more
details and references on these criteria and on further strategies for improving the performance
of Buchberger’s algorithm (see also Greuel, Pfister [2002]).

Singular’s implementation of Buchberger’s algorithm is available via the std command
(’std’ referring to ’st’an’d’ard basis). The computation of reduced Groebner and standard bases
may be forced by setting option(redSB) (see 〈undefined〉 [option], page 〈undefined〉).

However, depending on the monomial ordering of the active basering, it may be advisable
to use the groebner command instead. This command is provided by the Singular library
standard.lib which is automatically loaded when starting a Singular session. Depending on
some heuristics, groebner either refers to the std command (e.g., for rings with ordering dp),
or to one of the algorithms described in the sections Section 4.2.2 [Groebner basis conversion],
page 23, Section 4.2.3 [slim Groebner bases], page 25. For information on the heuristics behind
groebner, see the library file standard.lib (see also Section 3.3 [Procedures and libraries],
page 9).

We apply the commands std and groebner to compute a lexicographic Groebner basis for the
ideal of cyclic roots over the basering with 6 variables (see 〈undefined〉 [Cyclic roots], page 〈un-
defined〉). We set option(prot) to make Singular display some information on the performed
computations (see 〈undefined〉 [option], page 〈undefined〉 for an interpretation of the displayed
symbols). For long running computations, it is always recommended to set this option.

LIB "poly.lib";
ring r=32003,(a,b,c,d,e,f),lp;
ideal I=cyclic(6);
option(prot);
int t=timer;
system("--ticks-per-sec", 100); // give time in 1/100 sec
ideal sI=std(I);
7→ [31:1]1(5)s2(4)s3(3)s4s(4)s5(6)s(9)s(11)s(14)s(17)-s6s(19)s(21)s(24)s(27)\

s(30)s(33)s(35)s(38)s(41)ss(42)-s----s7(41)s(43)s(46)s(48)s(51)s(54)s(56)\
s(59)s(62)s(63)s(65)s(66)s(68)s(70)s(73)s(75)s(78)---ss(81)-----------s(7\
3)--------8-s(66)s(69)s(72)s(75)s(77)s(80)s(81)s(83)s(85)s(88)s(91)s(93)s\
(96)s(99)s(102)s(105)s(107)s(110)s(113)-------------(100)-----------s(101\
)s(108)s(110)----------(100)--------9-s(94)s(97)s(99)s(84)s(74)s(77)s(80)\
---ss(83)s(86)s(73)s(76)s10(78)s(81)s(82)s(84)s(86)s(89)s(92)s(94)s(97)s(\
100)s(103)s(82)s(84)s(86)s(89)s(92)s(95)s11(98)s(87)s(90)s(93)s(95)s(98)s\
(101)s(104)----(100)---12-s(99)s(90)s(93)s(92)---------s(86)-----------13\
-s(74)s(77)s(79)s(82)s(85)s(88)------------------14-s(64)s(67)ss(70)s(73)\
s(77)s(81)-----------------------15-s(57)s(65)s(68)ss(71)----------------\
-s(57)----16-s(55)ss(56)------------------------17-s(34)s(32)--------18-s\
(26)s(28)s-----19-s(25)s(28)s(31)------20-s(27)s(30)s(35)-------21-s(23)s\
(26)------22-s(22)------23-s(15)24-s(17)-s(19)--25-s(18)s(19)s26-s(21)---\
------27-s(11)28-s(13)--29-s(12)-30--s--31-s(11)---32-s33(7)s(10)---34-s-\
35----[1023:2]36-s37(6)s38s39s40---42-s43(5)s44s45--48-s49s50s51---54-s55\
(4)--67-86-

7→ product criterion:664 chain criterion:2844
timer-t; // used time (in 1/100 secs)
7→ 72
size(sI);
7→ 17
t=timer;
sI=groebner(I);
7→ std in (32003),(a,b,c,d,e,f,@t),(dp,C)
7→ [15:1]1(5)s2(4)s3(3)s4ss5(4)s(6)s(7)s(9)6-s(11)s(12)s(14)s(16)s(19)s(21)s\

(24)-7-s(23)s(24)s(27)s(29)s(31)s(32)s(35)-s(37)s(40)s(42)s(44)s(45)--s(4\
6)s(48)-----8-s(44)s(47)s(50)s(52)s(55)s(57)s(59)s(61)-s(63)----s(62)----\
s(61)s(64)-s(66)-----------s(58)-------9-s(53)s(56)s(59)s(62)s(65)s(68)s(\

71)s(74)s(77)s(80)s(83)s(86)s(90)s(95)s(102)s(108)--------(100)----------\
------------s(81)---10-s(83)s(88)s(90)s(94)s(99)s(104)s(109)s(114)-s(116)\
s(121)s(126)s(128)s(132)--------------------------------(100)------------\
--11-s(87)---------------------------------------12-s(50)--------13-s(44)\
s(47)s(51)s(55)-------------14-s(45)s(48)s(51)s(55)s(58)s(61)s(64)s(67)s(\
70)--------------------15-s(52)s(55)s(58)s(61)s(64)s(67)s(70)s(73)s(76)s(\
79)s(82)-------------------------------------16--------------------------\
------------------17-

7→ product criterion:284 chain criterion:4184
7→ std with hilb in (32003),(a,b,c,d,e,f,@t),(lp(6),C)
7→ [15:1]1(5)s2(4)s3(3)s4s(4)s5(6)s(9)s(11)s(14)s(17)-s6s(19)s(21)s(24)s(27)\

s(30)s(33)s(35)s(38)s(41)ss(42)-s----s7(41)s(43)s(46)s(48)s(51)s(54)s(56)\
s(59)s(62)s(63)s(65)s(66)s(68)s(70)s(73)s(75)s(78)---ss(81)-----------shh\
hhhhhhh8(64)s(66)s(69)s(72)s(75)s(77)s(80)s(81)s(83)s(85)s(88)s(91)s(93)s\
(96)s(99)s(102)s(105)s(107)s(110)s(113)-------------(100)-----------s(101\
)s(108)shhhhhhhhhhhhhhhhhhh9(91)s(94)s(97)s(99)s(125)s(128)s(131)s(134)s(\
147)s(152)s(157)s(161)s(162)s(164)s(166)s(169)---s-s(170)-----------s(163\
)---------shhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh10(124)s(127)s(129)s(132)s(138\
)s(141)s(144)s(147)shhh\
hh11(99)s(102)s(104)s(107)s(110)shhhhhhhhhhhhhhhhhhhhhhhhhhhh12(85)s(88)s\
(95)s(98)s(102)--(100)-----------shhhhhhhhhhhhhh13(78)s(82)s(85)s(87)s(90\
)s(93)----shhhhhhhhhhhhhhhhhhhhhhhhhhh14(65)s(70)s(73)s(77)s(80)s(83)----\
sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh15(57)s(61)s(64)s(68)s(74)----shhhhhhhhhh\
hhhhhhhhhhhhhhhhhhhhhh16(42)s(45)s(49)shhhhhhhhhhhhhhhhhhhhhh17(34)s(37)s\
hhhhhhhhhhhhhh18(27)s(30)s(32)[255:2]-shhhhhhhhh19(26)s(29)s(32)shhhhhhhh\
hhhhh20(22)s(25)s(28)shhhhhhhhhhhhh21(20)s(26)shhhhhhhhhhhh22(18)shhhhhhh\
hh23(12)shhhhh24(11)s(14)-shhhh25(13)s(18)-s(21)shhhhhhh26(18)shhhhhhhhhh\
hh27(9)shhhhh28(8)shhhh29(7)shhhh30(8)-shhh31shhhhh32(7)shhhh33shhhh34(6)\
shhhhhhhh36(2)s37(6)shhhh38shhhh39shhhhhhhh42(2)s43(5)shhhh44shhhhhhhh48s\
49shhhh50shhhhhhhh54shhhhh

7→ product criterion:720 chain criterion:11620
7→ hilbert series criterion:448
7→ dehomogenization
7→ imap to original ring
7→ simplification
timer-t; // used time (in 1/100 secs)
7→ 27
size(sI);
7→ 17
option(noprot);

4.2.2 Groebner basis conversion

The performance of Buchberger’s algorithm is sensitive to the choice of monomial order.
A Groebner basis computation with respect to a less favorable order such as the lexicographic
ordering may easily run out of time or memory even in cases where a Groebner basis computation
with respect to a more efficient order such as the degree reverse lexicographic ordering is very
well feasible. Groebner basis conversion algorithms and the Hilbert-driven Buchberger algorithm
are based on this observation:

• Groebner basis conversion: Given an ideal I ⊂ K[x1, . . . , xn] and a slow monomial order,
compute a Groebner basis with respect to an appropriately chosen fast order. Then convert
the result to a Groebner basis with respect to the given slow order.

• Hilbert-driven Buchberger algorithm: Homogenize the given generators for I with respect
to a new variable, say, x0 . Extend the given slow ordering on K[x1, . . . , xn] to a global
product ordering on K[x0, . . . , xn] . Compute a Groebner basis for the ideal generated by
the homogenized polynomials with respect to a fast ordering. Read the Hilbert function,
and use this information when computing a Groebner basis with respect to the extended
(slow) ordering. Finally, dehomogenize the elements of the resulting Groebner basis.

Singular provides implementations for the FGLM conversion algorithm (which applies to
zero-dimensional ideals only, see 〈undefined〉 [stdfglm], page 〈undefined〉) and variants of the
Groebner walk conversion algorithm (which works for arbitrary ideals, See 〈undefined〉 [frwalk],
page 〈undefined〉, 〈undefined〉 [grwalk lib], page 〈undefined〉). An implementation of the Hilbert-
driven Buchberger algorithm is accessible via the stdhilb command (see also 〈undefined〉 [std],
page 〈undefined〉).

For the ideal below, stdfglm is more than 100 times and stdhilb about 10 times faster than
std.

ring r =32003,(a,b,c,d,e),lp;
ideal i=a+b+c+d, ab+bc+cd+ae+de, abc+bcd+abe+ade+cde,

abc+abce+abde+acde+bcde, abcde-1;
int t=timer;
option(prot);
ideal j1=stdfglm(i);

7→ [63:2]1(4)s2(3)s3(2)s4s(3)s5s(4)s(5)s(6)6-ss(7)s(9)s(11)-7-ss(13)s(15)s(1\
7)--s--8-s(16)s(18)s(20)s(23)s(26)-s(23)-------9--s(16)s10(19)s(22)s(25)-\
---s(24)--s11---------s12(17)s(19)s(21)------s(17)s(19)s(21)s13(23)s--s--\
---s(20)----------14-s(12)--------15-s(6)--16-s(5)--17---

7→ (S:21)---------------------
7→ product criterion:109 chain criterion:322
7→+....-...-..-+-....-...-..---...-++---++---....-...-++---.++-----------...------....-...------+--------+---.++------++++-+++----------------+---
7→ vdim= 45
7→ ...++--+--+--+--
timer-t;

7→ 0
size(j1); // size (no. of polys) in computed GB

7→ 5
t=timer;
ideal j2=stdhilb(i);

7→ [31:1]1(4)s2(3)s3(2)s4s(3)s5s(4)s(5)s(6)6-ss(7)s(9)s(11)-7-ss(13)s(15)s(1\
7)--s--8-s(16)s(18)s(20)s(23)s(26)-s(29)-------9-s(25)s(28)--s(29)---s---\
----10-s(24)-------s(19)---11-s(17)s(19)s(21)-----s(18)-s(19)s12(21)s(23)\
s(26)-s(27)------s(23)----------13-s(15)-----------14-s(6)--15-s(5)--16--\
-

7→ product criterion:88 chain criterion:650
7→ [31:1]1(4)s2(3)s3(2)s4s(3)s5(5)s(8)s(10)s-ss6(12)s(15)s(17)s(20)s(21)s(22\

)s(24)s(25)--shhh7(23)s(25)s(27)s(29)s(31)-s(32)s(38)s(40)s(41)s(44)--shh\
hhhhhhhhh8(33)s(36)s(40)s(43)s(46)-s(47)s(50)--------shhhhhhhhhhhhh9(32)s\
(34)s(37)s(39)s(42)s(45)------s(42)s(45)shhhhhhhhhhh10(38)s(40)s(43)s(47)\
s(49)s(52)s(55)--s(56)------s(53)s(56)s(58)--shhhhhhhhhhhhhh11(45)s(47)s(\
50)s(53)s(56)s(59)s(61)---s-s(63)s(66)----s(65)-------shhhhhhhhhhhhhhhhh1\
2(44)s(47)s(50)s(51)s(53)s(56)s(58)s(61)s(63)s(66)s(69)s(72)--s(73)----sh\
hhhhhhhhhhhhhhhhhhhhhhhhh13(45)s(48)s(51)s(54)s(56)s(58)s(61)s(64)shhhhhh\
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh14(29)s(31)s(34)s(37)s(40)s(43)shhhhhhhhh\
hhhhhhhhhhhhhhh15(22)s(25)s(28)s(31)s(34)shhhhhhhhhhhhhhhhhh16(18)s(21)s(\

24)s(27)shhhhhhhhhhhhhhh17(15)s(18)s(21)s(24)shhhhhhhhhhhh18(15)s(18)s(21\
)s(24)shhhhhhhhhhhh19(14)s(17)s(20)shhhhhhhhhhhh20(11)s(14)s(17)shhhhhhhh\
h21(11)s(14)s(17)shhhhhhhhh22(11)s(14)s(16)shhhhhhhhh23(10)s(13)shhhhhhhh\
h24(7)s(10)shhhhhh25(7)s(10)shhhhhh26(7)s(10)shhhhhh27(7)s(10)shhhhhh28(7\
)s(10)shhhhhh29(7)s(10)shhhhhh30(7)s(9)shhhhhh31(6)shhhhhh[1023:2]32(3)sh\
hh33shhh34shhh35shhh36shhh37shhh38shhh39shhh40shhh41shhh42shhh43shhh44shh\
h45shhh46shhh47shhh48shhh49shhh50shhh51shhh52shhh53shhh54shhhhhh

7→ product criterion:491 chain criterion:11799
7→ hilbert series criterion:382
7→ map[63:1]{2833:2944}----------...
timer-t;

7→ 1
size(j2); // size (no. of polys) in computed GB

7→ 158
// usual Groebner basis computation for lex ordering
t=timer;
ideal j0 =std(i);

7→ [63:1]1(4)s2(3)s3(2)s4s(3)s5(5)s(4)s6(6)s(7)s(9)s(8)sss7(10)s(11)s(10)s(1\
1)s(13)s8(12)s(13)s(15)s.s(14).s.9.s(16)s(17)s(19)........10.s(20).s(21)s\
s..11.s(23)s(25).ss(27)...s(28)s(26)...12.s(25)sss(23)sss.......s(22)...1\
3.s(23)ssssssss(21)s(22)sssss(21)ss..14.ss(22)s.s.sssss(21)s(22)sss.s...1\
5.ssss(21)s(22)ssssssssss(21)s(22)sss16.ssssssss(21)s(22)sssssssssss17ss(\
21)s(22)ssssssssss(21)sss(22)ss(21)ss18(22)s(21)s(22)s.s..............19.\
sssss(21)ss(22)ssssssssss(21)s(22)s20.ssssssssss(21)s........21.s(22)ssss\
sssssssssss(21)s(22)ssss22ssssssssssss(21)s(22)sssssss23sssssssssss(21)s(\
22)ssssssss24ssssssssssss(21)s(22)sssssss25ssssssssss(21)s(22)sssssssss26\
ssssssssss(21)s(20)ssssssss27.sssssssss..........s28.ssssss.............2\
9.sssssssssssssssssss30sssssssssssssssssss31.sssssssssssssssssss32.ssssss\
ssssssssssssss33ssssssssssssssssssss34ssssssssssssssssssss35sssssssssssss\
sssssss36ssssssssssssssssssss37ssssssssssssssssssss38ssssssssssssssssssss\
39ssssssssssssssssssss40ssssssssssssssssssss41ssss---------------42-s(4)-\
-43-s44s45s46s47s48s49s50s51s52s53s54s55s56s

7→ product criterion:1395 chain criterion:904
option(noprot);
timer-t;

7→ 0

4.2.3 slim Groebner bases

The command slimgb is designed for keeping the polynomials slim (short with small coef-
ficients) during a Groebner basis computation. It provides, in particular, a fast algorithm for
computing Groebner bases over function fields and with respect to degree orderings.

In the example below (Groebner basis with respect to degree reverse lexicographic ordering
over function field) it is more than 600 times faster than the std command.

ring r=(32003,u1, u2, u3, u4),(x1, x2, x3, x4, x5, x6, x7),dp;
timer=1;
ideal i=
-x4*u3+x5*u2,
x1*u3+2*x2*u1-2*x2*u2-2*x3*u3-u1*u4+u2*u4,
-2*x1*x5+4*x4*x6+4*x5*x7+x1*u3-2*x4*u1-2*x4*u4-2*x6*u2-2*x7*u3+u1*u2+u2*u4,
-x1*x5+x1*x7-x4*u1+x4*u2-x4*u4+x5*u3+x6*u1-x6*u2+x6*u4-x7*u3,
-x1*x4+x1*u1-x5*u1+x5*u4,

-2*x1*x3+x1*u3-2*x2*u4+u1*u4+u2*u4,
x1^2*u3+x1*u1*u2-x1*u2^2-x1*u3^2-u1*u3*u4+u3*u4^2;
i=slimgb(i);

For detailed information and limitations see 〈undefined〉 [slimgb], page 〈undefined〉.

4.3 Commutative Algebra

4.3.1 Saturation

For any two ideals i, j in the basering R let

sat(i, j) = {x ∈ R | ∃ n s.t. x · (jn) ⊆ i} =
∞⋃

n=1

i : jn

denote the saturation of i with respect to j . This defines, geometrically, the closure of the
complement of V(j) in V(i) (V(i) denotes the variety defined by i).

The saturation is computed by the procedure sat in elim.lib by computing iterated ideal
quotients with the maximal ideal. sat returns a list of two elements: the saturated ideal and
the number of iterations.

We apply saturation to show that a variety has no singular points outside the origin (see
also Section 4.4.2 [Critical points], page 40). We choose m to be the homogeneous maximal
ideal (note that maxideal(n) denotes the n-th power of the maximal ideal). Then V (i) has no
singular point outside the origin iff

sat(j + (f),m) is the whole ring, that is, generated by 1. (Note that maxideal(n) denotes
the n-th power of the maximal ideal).

LIB "elim.lib"; // loading library elim.lib
ring r2 = 32003,(x,y,z),dp;
poly f = x^11+y^5+z^(3*3)+x^(3+2)*y^(3-1)+x^(3-1)*y^(3-1)*z3+
x^(3-2)*y^3*(y^2)^2;

ideal j=jacob(f);
sat(j+f,maxideal(1));

7→ [1]:
7→ _[1]=1
7→ [2]:
7→ 17
// list the variables defined so far:
listvar();

7→ // r2 [0] *ring
7→ // j [0] ideal, 3 generator(s)
7→ // f [0] poly

4.3.2 Elimination

Elimination is the algebraic counterpart of the geometric concept of projection. If f =
(f1, . . . , fn) : kr → kn is a polynomial map, the Zariski-closure of the image is the zero-set of
the ideal j = J ∩ k[x1, . . . , xn], whre

J = (x1 − f1(t1, . . . , tr), . . . , xn − fn(t1, . . . , tr)) ⊆ k[t1, . . . , tr, x1, . . . , xn]

that is, of the ideal j obtained from J by eliminating the variables t1, . . . , tr. This can be done by
computing a Groebner basis for J with respect to a (global) product ordering where the block of
t-variables precedes the block of x-variables, and then selecting those polynomials which do not
contain any t. Alternatively, we may use a global monomial ordering with extra weight vector
(see 〈undefined〉 [Extra weight vector], page 〈undefined〉), assigning to the t-variables a positive
weight and to the x-variables weight 0.

Since elimination is expensive, it may be useful to use a Hilbert-driven approach to the
elimination problem (see Section 4.2.2 [Groebner basis conversion], page 23).

compute the Hilbert function of the ideal with a fast ordering (e.g., dp). Then make use of it
to speed up the computation: a Hilbert-driven elimination uses the intvec provided as the third
argument.

In Singular the most convenient way is to use the eliminate command. In contrast to the
first method, with eliminate the result needs not be a standard basis in the given ordering.
Hence, there may be cases where the first method is the preferred one.

WARNING: In the case of a local or a mixed ordering, elimination needs special care. f may
be considered as a map of germs f : (kr, 0)→ (kn, 0), but even if this map germ is finite, we are
in general not able to compute the image germ because for this we would need an implementation
of the Weierstrass preparation theorem. What we can compute, and what eliminate actually
does, is the following: let V(J) be the zero-set of J in kr × (kn, 0), then the closure of the image
of V(J) under the projection

pr : kr × (kn, 0)→ (kn, 0)

can be computed. Note that this germ contains also those components of V(J) which meet the
fiber of pr outside the origin. This is achieved by an ordering with the block of t-variables having
a global ordering (and preceding the x-variables) and the x-variables having a local ordering.

In any case, if the input is weighted homogeneous (=quasihomogeneous), the weights given to
the variables should be chosen accordingly. Singular offers a function weight which proposes,
given an ideal or module, integer weights for the variables, such that the ideal, resp. module, is
as homogeneous as possible with respect to these weights. The function finds correct weights, if
the input is weighted homogeneous (but is rather slow for many variables). In order to check,
whether the input is quasihomogeneous, use the function qhweight, which returns an intvec of
correct weights if the input is quasihomogeneous and an intvec of zeros otherwise.

Let us give two examples:

1. First we compute the equations of the simple space curve T[7]’ consisting of two tangential
cusps given in parametric form.

2. We compute weights for the equations such that the equations are quasihomogeneous w.r.t.
these weights.

3. Then we compute the tangent developable of the rational normal curve in P 4.

// 1. Compute equations of curve given in parametric form:
// Two transversal cusps in (k^3,0):
ring r1 = 0,(t,x,y,z),ls;
ideal i1 = x-t2,y-t3,z; // parametrization of the first branch
ideal i2 = y-t2,z-t3,x; // parametrization of the second branch
ideal j1 = eliminate(i1,t);
j1; // equations of the first branch

7→ j1[1]=z
7→ j1[2]=y2-x3
ideal j2 = eliminate(i2,t);
j2; // equations of the second branch

7→ j2[1]=x
7→ j2[2]=z2-y3

// Now map to a ring with only x,y,z as variables and compute the
// intersection of j1 and j2 there:
ring r2 = 0,(x,y,z),ds;
ideal j1= imap(r1,j1); // imap is a convenient ringmap for
ideal j2= imap(r1,j2); // inclusions and projections of rings
ideal i = intersect(j1,j2);
i; // equations of both branches

7→ i[1]=z2-y3+x3y
7→ i[2]=xz
7→ i[3]=xy2-x4
7→ i[4]=x3z
//
// 2. Compute the weights:
intvec v= qhweight(i); // compute weights
v;

7→ 4,6,9
//
// 3. Compute the tangent developable
// The tangent developable of a projective variety given parametrically
// by F=(f1,...,fn) : P^r --> P^n is the union of all tangent spaces
// of the image. The tangent space at a smooth point F(t1,...,tr)
// is given as the image of the tangent space at (t1,...,tr) under
// the tangent map (affine coordinates)
// T(t1,...,tr): (y1,...,yr) --> jacob(f)*transpose((y1,...,yr))
// where jacob(f) denotes the jacobian matrix of f with respect to the
// t’s evaluated at the point (t1,...,tr).
// Hence we have to create the graph of this map and then to eliminate
// the t’s and y’s.
// The rational normal curve in P^4 is given as the image of
// F(s,t) = (s4,s3t,s2t2,st3,t4)
// each component being homogeneous of degree 4.
ring P = 0,(s,t,x,y,a,b,c,d,e),dp;
ideal M = maxideal(1);
ideal F = M[1..2]; // take the 1st two generators of M
F=F^4;
// simplify(...,2); deletes 0-columns
matrix jac = simplify(jacob(F),2);
ideal T = x,y;
ideal J = jac*transpose(T);
ideal H = M[5..9];
ideal i = H-J; // this is tricky: difference between two

// ideals is not defined, but between two
// matrices. By automatic type conversion
// the ideals are converted to matrices,
// subtracted and afterwards converted
// to an ideal. Note that ’+’ is defined
// and adds (concatenates) two ideals

i;
7→ i[1]=-4s3x+a
7→ i[2]=-3s2tx-s3y+b
7→ i[3]=-2st2x-2s2ty+c

7→ i[4]=-t3x-3st2y+d
7→ i[5]=-4t3y+e
// Now we define a ring with product ordering and weights 4
// for the variables a,...,e.
// Then we map i from P to P1 and eliminate s,t,x,y from i.
ring P1 = 0,(s,t,x,y,a,b,c,d,e),(dp(4),wp(4,4,4,4,4));
ideal i = fetch(P,i);
ideal j= eliminate(i,stxy); // equations of tangent developable
j;

7→ j[1]=3c2-4bd+ae
7→ j[2]=2bcd-3ad2-3b2e+4ace
7→ j[3]=8b2d2-9acd2-9b2ce+12ac2e-2abde
// We can use the product ordering to eliminate s,t,x,y from i
// by a std-basis computation.
// We need proc ’nselect’ from elim.lib.
LIB "elim.lib";
j = std(i); // compute a std basis j
j = nselect(j,1,4); // select generators from j not
j; // containing variable 1,...,4

7→ j[1]=3c2-4bd+ae
7→ j[2]=2bcd-3ad2-3b2e+4ace
7→ j[3]=8b2d2-9acd2-9b2ce+12ac2e-2abde

4.3.3 Free resolution

In Singular a free resolution of a module or ideal has its own type: resolution. It is a
structure that stores all information related to free resolutions. This allows partial computations
of resolutions via the command res. After applying res, only a pre-format of the resolution is
computed which allows to determine invariants like Betti-numbers or homological dimension. To
see the differentials of the complex, a resolution must be converted into the type list which yields
a list of modules: the k-th module in this list is the first syzygy-module (module of relations) of
the (k-1)st module. There are the following commands to compute a resolution:

res computes a free resolution of an ideal or module using a heuristically chosen method.
This is the preferred method to compute free resolutions of ideals or modules.

lres computes a free resolution of an ideal or module with LaScala’s method. The input
needs to be homogeneous.

mres computes a minimal free resolution of an ideal or module with the syzygy method.

sres computes a free resolution of an ideal or module with Schreyer’s method. The input
has to be a standard basis.

nres computes a free resolution of an ideal or module with the standard basis method.

minres minimizes a free resolution of an ideal or module.

syz computes the first syzygy module.

res(i,r), lres(i,r), sres(i,r), mres(i,r), nres(i,r) compute the first r modules of the
resolution of i, resp. the full resolution if r=0 and the basering is not a qring. See the manual
for a precise description of these commands.
Note: The command betti does not require a minimal resolution for the minimal betti numbers.

Now let’s look at an example which uses resolutions: The Hilbert-Burch theorem says that
the ideal i of a reduced curve in K3 has a free resolution of length 2 and that i is given by the
2x2 minors of the 2nd matrix in the resolution. We test this for two transversal cusps in K 3.

Afterwards we compute the resolution of the ideal j of the tangent developable of the rational
normal curve in P 4 from above. Finally we demonstrate the use of the type resolution in
connection with the lres command.

// Two transversal cusps in (k^3,0):
ring r2 =0,(x,y,z),ds;
ideal i =z2-1y3+x3y,xz,-1xy2+x4,x3z;
resolution rs=mres(i,0); // computes a minimal resolution
rs; // the standard representation of complexes

7→ 1 3 2
7→ r2 <-- r2 <-- r2
7→
7→ 0 1 2
7→

list resi=rs; // convertion to a list
print(resi[1]); // the 1st module is i minimized

7→ xz,
7→ z2-y3+x3y,
7→ xy2-x4
print(resi[2]); // the 1st syzygy module of i

7→ -z,-y2+x3,
7→ x, 0,
7→ y, z
resi[3]; // the 2nd syzygy module of i

7→ _[1]=0
ideal j=minor(resi[2],2);
reduce(j,std(i)); // check whether j is contained in i

7→ _[1]=0
7→ _[2]=0
7→ _[3]=0
size(reduce(i,std(j))); // check whether i is contained in j

7→ 0
// size(<ideal>) counts the non-zero generators
// ---
// The tangent developable of the rational normal curve in P^4:
ring P = 0,(a,b,c,d,e),dp;
ideal j= 3c2-4bd+ae, -2bcd+3ad2+3b2e-4ace,

8b2d2-9acd2-9b2ce+9ac2e+2abde-1a2e2;
resolution rs=mres(j,0);
rs;

7→ 1 2 1
7→ P <-- P <-- P
7→
7→ 0 1 2
7→
list L=rs;
print(L[2]);

7→ 2bcd-3ad2-3b2e+4ace,
7→ -3c2+4bd-ae
// create an intmat with graded betti numbers
intmat B=betti(rs);
// this gives a nice output of betti numbers

print(B,"betti");
7→ 0 1 2
7→ ------------------------
7→ 0: 1 - -
7→ 1: - 1 -
7→ 2: - 1 -
7→ 3: - - 1
7→ ------------------------
7→ total: 1 2 1
// the user has access to all betti numbers
// the 2-nd column of B:
B[1..4,2];

7→ 0 1 1 0
ring cyc5=32003,(a,b,c,d,e,h),dp;
ideal i=
a+b+c+d+e,
ab+bc+cd+de+ea,
abc+bcd+cde+dea+eab,
abcd+bcde+cdea+deab+eabc,
h5-abcde;
resolution rs=lres(i,0); //computes the resolution according LaScala
rs; //the shape of the minimal resolution

7→ 1 5 10 10 5 1
7→ cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5
7→
7→ 0 1 2 3 4 5
7→ resolution not minimized yet
7→
print(betti(rs),"betti"); //shows the Betti-numbers of cyclic 5

7→ 0 1 2 3 4 5
7→ --
7→ 0: 1 1 - - - -
7→ 1: - 1 1 - - -
7→ 2: - 1 1 - - -
7→ 3: - 1 2 1 - -
7→ 4: - 1 2 1 - -
7→ 5: - - 2 2 - -
7→ 6: - - 1 2 1 -
7→ 7: - - 1 2 1 -
7→ 8: - - - 1 1 -
7→ 9: - - - 1 1 -
7→ 10: - - - - 1 1
7→ --
7→ total: 1 5 10 10 5 1
dim(rs); //the homological dimension

7→ 4
size(list(rs)); //gets the full (non-reduced) resolution

7→ 6
minres(rs); //minimizes the resolution

7→ 1 5 10 10 5 1
7→ cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5 <-- cyc5

7→
7→ 0 1 2 3 4 5
7→
size(list(rs)); //gets the minimized resolution

7→ 6

4.3.4 Handling graded modules

How to deal with graded modules in Singular is best explained by looking at an example:

ring R = 0, (w,x,y,z), dp;
module I = [-x,0,-z2,0,y2z], [0,-x,-yz,0,y3], [-w,0,0,yz,-z3],

[0,-w,0,y2,-yz2], [0,-1,-w,0,xz], [0,-w,0,y2,-yz2],
[x2,-y2,-wy2+xz2];

print(I);
7→ -x, 0, -w, 0, 0, 0, x2,
7→ 0, -x, 0, -w, -1,-w, -y2,
7→ -z2,-yz,0, 0, -w,0, -wy2+xz2,
7→ 0, 0, yz, y2, 0, y2, 0,
7→ y2z,y3, -z3,-yz2,xz,-yz2,0

// (1) Check on degrees:
// =====================
attrib(I,"isHomog"); // attribute not set => empty output
7→
homog(I);
7→ 1
attrib(I,"isHomog");
7→ 2,2,1,1,0

print(betti(I,0),"betti"); // read degrees from Betti diagram
7→ 0 1
7→ ------------------
7→ 0: 1 -
7→ 1: 2 1
7→ 2: 2 5
7→ 3: - 1
7→ ------------------
7→ total: 5 7

// (2) Shift degrees:
// ==================
def J=I;
intvec DV = 0,0,-1,-1,-2;
attrib(J,"isHomog",DV); // assign new weight vector
attrib(J,"isHomog");
7→ 0,0,-1,-1,-2
print(betti(J,0),"betti");
7→ 0 1
7→ ------------------
7→ -2: 1 -
7→ -1: 2 1
7→ 0: 2 5

7→ 1: - 1
7→ ------------------
7→ total: 5 7

intmat bettiI=betti(I,0); // degree corresponding to first non-zero row
// of Betti diagram is accessible via
// attribute "rowShift"

attrib(bettiI);
7→ attr:rowShift, type int
intmat bettiJ=betti(J,0);
attrib(bettiJ);
7→ attr:rowShift, type int

// (3) Graded free resolutions:
// ============================
resolution resJ = mres(J,0);
attrib(resJ);
7→ attr:isHomog, type intvec
print(betti(resJ),"betti");
7→ 0 1 2
7→ ------------------------
7→ -2: 1 - -
7→ -1: 2 - -
7→ 0: 1 4 -
7→ 1: - - 1
7→ ------------------------
7→ total: 4 4 1
attrib(betti(resJ));
7→ attr:rowShift, type int

A check on degrees ((1), by using the homog command) shows that this is a graded matrix.
The homog command assigns an admissible weight vector (here: 2,2,1,1,0) to the module I which
is accessible via the attribute "isHomog". Thus, we may think of I as a graded submodule of
the graded free R -module

F = R(−2)2 ⊕R(−1)2 ⊕R .
We may also read the degrees from the Betti diagram as shown above. The degree on the left
of the first nonzero row of the Betti diagram is accessible via the attribute "rowShift" of the
betti matrix (which is of type intmat):

(2) We may shift degrees by assigning another admissible degree vector. Note that Singular
does not check whether the assigned degree vector really is admissible. Moreover, note that all
assigned attributes are lost under a type conversion (e.g. from module to matrix).

(3) The same applies to the computation of free resolutions:

4.3.5 Factorization

The factorization of polynomials is implemented in the C++ libraries Factory (written mainly
by Ruediger Stobbe) and libfac (written by Michael Messollen) which are part of the Singular
system. For the factorization of univariate polynomials these libraries make use of the library
NTL written by Victor Shoup.

ring r = 0,(x,y),dp;
poly f = 9x16-18x13y2-9x12y3+9x10y4-18x11y2+36x8y4

+18x7y5-18x5y6+9x6y4-18x3y6-9x2y7+9y8;

// = 9 * (x5-1y2)^2 * (x6-2x3y2-1x2y3+y4)
factorize(f);

7→ [1]:
7→ _[1]=9
7→ _[2]=x6-2x3y2-x2y3+y4
7→ _[3]=-x5+y2
7→ [2]:
7→ 1,1,2
// returns factors and multiplicities,
// first factor is a constant.
poly g = (y4+x8)*(x2+y2);
factorize(g);

7→ [1]:
7→ _[1]=1
7→ _[2]=x8+y4
7→ _[3]=x2+y2
7→ [2]:
7→ 1,1,1
// The same in characteristic 2:
ring s = 2,(x,y),dp;
poly g = (y4+x8)*(x2+y2);
factorize(g);

7→ [1]:
7→ _[1]=1
7→ _[2]=x+y
7→ _[3]=x2+y
7→ [2]:
7→ 1,2,4
// factorization over algebraic extension fields
ring rext = (0,i),(x,y),dp;
minpoly = i2+1;
poly g = (y4+x8)*(x2+y2);
factorize(g);

7→ [1]:
7→ _[1]=1
7→ _[2]=x4+(-i)*y2
7→ _[3]=x4+(i)*y2
7→ _[4]=x+(-i)*y
7→ _[5]=x+(i)*y
7→ [2]:
7→ 1,1,1,1,1

4.3.6 Primary decomposition

There are two algorithms implemented in Singular which provide primary decomposition:
primdecGTZ, based on Gianni/Trager/Zacharias (written by Gerhard Pfister) and primdecSY,
based on Shimoyama/Yokoyama (written by Wolfram Decker and Hans Schoenemann).

The result of primdecGTZ and primdecSY is returned as a list of pairs of ideals, where the
second ideal form the prime ideal and the first ideal form the corresponding primary ideal.

LIB "primdec.lib";
ring r = 0,(a,b,c,d,e,f),dp;
ideal i= f3, ef2, e2f, bcf-adf, de+cf, be+af, e3;

primdecGTZ(i);
7→ [1]:
7→ [1]:
7→ _[1]=f
7→ _[2]=e
7→ [2]:
7→ _[1]=f
7→ _[2]=e
7→ [2]:
7→ [1]:
7→ _[1]=f3
7→ _[2]=ef2
7→ _[3]=e2f
7→ _[4]=e3
7→ _[5]=de+cf
7→ _[6]=be+af
7→ _[7]=-bc+ad
7→ [2]:
7→ _[1]=f
7→ _[2]=e
7→ _[3]=-bc+ad
// We consider now the ideal J of the base space of the
// miniversal deformation of the cone over the rational
// normal curve computed in section *8* and compute
// its primary decomposition.
ring R = 0,(A,B,C,D),dp;
ideal J = CD, BD+D2, AD;
primdecGTZ(J);

7→ [1]:
7→ [1]:
7→ _[1]=D
7→ [2]:
7→ _[1]=D
7→ [2]:
7→ [1]:
7→ _[1]=C
7→ _[2]=B+D
7→ _[3]=A
7→ [2]:
7→ _[1]=C
7→ _[2]=B+D
7→ _[3]=A
// We see that there are two components which are both
// prime, even linear subspaces, one 3-dimensional,
// the other 1-dimensional.
// (This is Pinkhams example and was the first known
// surface singularity with two components of
// different dimensions)
//
// Let us now produce an embedded component in the last
// example, compute the minimal associated primes and

// the radical. We use the Characteristic set methods
// from prim_dec.lib.
J = intersect(J,maxideal(3));
// The following shows that the maximal ideal defines an embedded
// (prime) component.
primdecSY(J);

7→ [1]:
7→ [1]:
7→ _[1]=D
7→ [2]:
7→ _[1]=D
7→ [2]:
7→ [1]:
7→ _[1]=C
7→ _[2]=B+D
7→ _[3]=A
7→ [2]:
7→ _[1]=C
7→ _[2]=B+D
7→ _[3]=A
7→ [3]:
7→ [1]:
7→ _[1]=D2
7→ _[2]=C2
7→ _[3]=B2
7→ _[4]=AB
7→ _[5]=A2
7→ _[6]=BCD
7→ _[7]=ACD
7→ [2]:
7→ _[1]=D
7→ _[2]=C
7→ _[3]=B
7→ _[4]=A
minAssChar(J);

7→ [1]:
7→ _[1]=C
7→ _[2]=B+D
7→ _[3]=A
7→ [2]:
7→ _[1]=D
radical(J);

7→ _[1]=CD
7→ _[2]=BD+D2
7→ _[3]=AD

4.3.7 Kernel of module homomorphisms

Let A , B be two matrices of size m × r and m × s over the ring R and consider the
corresponding maps

Rr A−→ Rm B←− Rs .

We want to compute the kernel of the map Rr A−→ Rm −→ Rm/Im(B) . This can be done using
the modulo command:

modulo(A,B) = ker(Rr A−→ Rm/Im(B)) .

More precisely, the output of modulo(A,B) is a module such that the given generating vectors
span the kernel on the right-hand side.

ring r=0,(x,y,z),(c,dp);
matrix A[2][2]=x,y,z,1;
matrix B[2][2]=x2,y2,z2,xz;
print(B);

7→ x2,y2,
7→ z2,xz
def C=modulo(A,B);
print(C); // matrix of generators for the kernel

7→ yz2-x2, xyz-y2, x2z-xy, x3-y2z,
7→ x2z-xz2,-x2z+y2z,xyz-yz2,0
print(A*matrix(C)); // should be in Im(B)

7→ x2yz-x3,y3z-xy2, x3z+xy2z-y2z2-x2y,x4-xy2z,
7→ yz3-xz2,xyz2-x2z,x2z2-yz2, x3z-y2z2

4.3.8 Algebraic dependence

Let g, f1, . . . , fr ∈ K[x1, . . . , xn]. We want to check whether

1. f1, . . . , fr are algebraically dependent.

Let I = 〈Y1 − f1, . . . , Yr − fr〉 ⊆ K[x1, . . . , xn, Y1, . . . , Yr]. Then I ∩K[Y1, . . . , Yr] are the
algebraic relations between f1, . . . , fr.

2. g ∈ K[f1, . . . , fr].

g ∈ K[f1, . . . , fr] if and only if the normal form of g with respect to I and a blockordering
with respect to X = (x1, . . . , xn) and Y = (Y1, . . . , Yr) with X > Y is in K[Y] .

Both questions can be answered using the following procedure. If the second argument is
zero, it checks for algebraic dependence and returns the ideal of relations between the generators
of the given ideal. Otherwise it checks for subring membership and returns the normal form of
the second argument with respect to the ideal I.

proc algebraicDep(ideal J, poly g)
{
def R=basering; // give a name to the basering
int n=size(J);
int k=nvars(R);
int i;
intvec v;

// construction of the new ring:

// construct a weight vector
v[n+k]=0; // gives a zero vector of length n+k
for(i=1;i<=k;i++)
{

v[i]=1;
}
string orde="(a("+string(v)+"),dp);";
string ri="ring Rhelp=("+charstr(R)+"),

("+varstr(R)+",Y(1.."+string(n)+")),"+orde;
// ring definition as a string

execute(ri); // execution of the string

// construction of the new ideal I=(J[1]-Y(1),...,J[n]-Y(n))
ideal I=imap(R,J);
for(i=1;i<=n;i++)
{

I[i]=I[i]-var(k+i);
}
poly g=imap(R,g);
if(g==0)
{

// construction of the ideal of relations by elimination
poly el=var(1);
for(i=2;i<=k;i++)
{
el=el*var(i);

}
ideal KK=eliminate(I,el);
keepring(Rhelp);
return(KK);

}
// reduction of g with respect to I
ideal KK=reduce(g,std(I));
keepring(Rhelp);
return(KK);

}

// applications of the procedure
ring r=0,(x,y,z),dp;
ideal i=xz,yz;
algebraicDep(i,0);

7→ _[1]=0
// Note: after call of algebraicDep(), the basering is Rhelp.
setring r; kill Rhelp;
ideal j=xy+z2,z2+y2,x2y2-2xy3+y4;
algebraicDep(j,0);

7→ _[1]=Y(1)^2-2*Y(1)*Y(2)+Y(2)^2-Y(3)
setring r; kill Rhelp;
poly g=y2z2-xz;
algebraicDep(i,g);

7→ _[1]=Y(2)^2-Y(1)
// this shows that g is contained in i.
setring r; kill Rhelp;
algebraicDep(j,g);

7→ _[1]=-z^4+z^2*Y(2)-x*z
// this shows that g is contained in j.

4.4 Singularity Theory

4.4.1 Milnor and Tjurina number

The Milnor number, resp. the Tjurina number, of a power series f in K[[x1, . . . , xn]] is

milnor(f) = dimK(K[[x1, . . . , xn]]/jacob(f)),

respectively
tjurina(f) = dimK(K[[x1, . . . , xn]]/((f) + jacob(f)))

where jacob(f) is the ideal generated by the partials of f. tjurina(f) is finite, if and only if f
has an isolated singularity. The same holds for milnor(f) if K has characteristic 0. Singular
displays -1 if the dimension is infinite.

Singular cannot compute with infinite power series. But it can work in Loc(x)K[x1, . . . , xn],
the localization of K[x1, . . . , xn] at the maximal ideal (x1, . . . , xn). To do this, one has to define
a ring with a local monomial ordering such as ds, Ds, ls, ws, Ws (the second letter ’s’ referring
to power ’s’eries), or an appropriate matrix ordering. Look at the manual to get information
about the possible monomial orderings in Singular, or type help Monomial orderings; to get
a menu of possible orderings. For further help type, e.g., help local orderings;).

For theoretical reasons, the vector space dimension computed over the localization ring co-
incides with the Milnor (resp.
Tjurina) number as defined above (in the power series ring).

We show in the example below the following:

• set option prot to have a short protocol during standard basis computation

• define the ring r1 with char 32003, variables x,y,z, monomial ordering ds, series ring (i.e.,
K[x,y,z] localized at (x,y,z))

• list the information about r1 by typing its name

• define the integers a,b,c,t

• define a polynomial f (depending on a,b,c,t) and display it

• define the jacobian ideal i of f

• compute a standard basis of i

• compute the Milnor number (=250) with vdim and create and display a string in order to
comment the result (text between quotes " "; is a ’string’)

• compute a standard basis of i+(f)

• compute the Tjurina number (=195) with vdim

• then compute the Milnor number (=248) and the Tjurina number (=195) for t=1

• reset the option to noprot

See also 〈undefined〉 [sing lib], page 〈undefined〉 for the library commands for the computation
of the Milnor and Tjurina number.

option(prot);
ring r1 = 32003,(x,y,z),ds;
r1;

7→ // characteristic : 32003
7→ // number of vars : 3
7→ // block 1 : ordering ds
7→ // : names x y z
7→ // block 2 : ordering C
int a,b,c,t=11,5,3,0;
poly f = x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3+

x^(c-2)*y^c*(y^2+t*x)^2;
f;

7→ y5+x5y2+x2y2z3+xy7+z9+x11
ideal i=jacob(f);
i;

7→ i[1]=5x4y2+2xy2z3+y7+11x10
7→ i[2]=5y4+2x5y+2x2yz3+7xy6
7→ i[3]=3x2y2z2+9z8
ideal j=std(i);

7→ [1023:2]7(2)s8s10s11s12s(3)s13(4)s(5)s14(6)s(7)15--.s(6)-16.-.s(5)17.s(7)\
s--s18(6).--19-..sH(24)20(3)...21....22....23.--24-

7→ product criterion:10 chain criterion:69
"The Milnor number of f(11,5,3) for t=0 is", vdim(j);

7→ The Milnor number of f(11,5,3) for t=0 is 250
j=i+f; // overwrite j
j=std(j);

7→ [1023:2]7(3)s8(2)s10s11(3)ss12(4)s(5)s13(6)s(8)s14(9).s(10).15--sH(23)(8)\
...16......17.......sH(21)(9)sH(20)16(10).17...........18.......19..----.\
.sH(19)

7→ product criterion:10 chain criterion:53
vdim(j); // compute the Tjurina number for t=0

7→ 195
t=1;
f=x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3
+x^(c-2)*y^c*(y^2+t*x)^2;

ideal i1=jacob(f);
ideal j1=std(i1);

7→ [1023:2]7(2)s8s10s11s12s13(3)ss(4)s14(5)s(6)s15(7).....s(8)16.s...s(9)..1\
7............s18(10).....s(11)..-.19.......sH(24)(10).....20...........21\
..........22.............................23..............................\
.24.----------.25.26

7→ product criterion:11 chain criterion:83
"The Milnor number of f(11,5,3) for t=1:",vdim(j1);

7→ The Milnor number of f(11,5,3) for t=1: 248
vdim(std(j1+f)); // compute the Tjurina number for t=1

7→ [1023:2]7(16)s8(15)s10s11ss(16)-12.s-s13s(17)s(18)s(19)-s(18).-14-s(17)-s\
(16)ss(17)s15(18)..-s...--.16....-.......s(16).sH(23)s(18)...17..........\
18.........sH(20)17(17)....................18..........19..---....-.-....\
.....20.-----...s17(9).........18..............19..-.......20.-......21..\
.......sH(19)16(5).....18......19.-----

7→ product criterion:15 chain criterion:174
7→ 195
option(noprot);

4.4.2 Critical points

The same computation which computes the Milnor, resp. the Tjurina, number, but with
ordering dp instead of ds (i.e., in K[x1, . . . , xn] instead of Loc(x)K[x1, . . . , xn]) gives:

• the number of critical points of f in the affine plane (counted with multiplicities)

• the number of singular points of f on the affine plane curve f=0 (counted with multiplici-
ties).

We start with the ring r1 from section Section 4.4.1 [Milnor and Tjurina number], page 39
and its elements.

The following will be realized below:

• reset the protocol option and activate the timer

• define the ring r2 with char 32003, variables x,y,z and monomial ordering dp (= degrevlex)
(i.e., the polynomial ring = K[x,y,z]).

• Note that polynomials, ideals, matrices (of polys), vectors, modules belong to a ring, hence
we have to define f and jacob(f) again in r2. Since these objects are local to a ring,
we may use the same names. Instead of defining f again we map it from ring r1 to r2
by using the imap command (imap is a convenient way to map variables from some ring
identically to variables with the same name in the basering, even if the ground field is
different. Compare with fetch which works for almost identical rings, e.g., if the rings
differ only by the ordering or by the names of the variables and which may be used to
rename variables). Integers and strings, however, do not belong to any ring. Once defined
they are globally known.

• The result of the computation here (together with the previous one in Section 4.4.1 [Milnor
and Tjurina number], page 39) shows that (for t=0) dimK(Loc(x,y,z)K[x, y, z]/jacob(f))
= 250 (previously computed) while dimK(K[x, y, z]/jacob(f)) = 536. Hence f has
286 critical points, counted with multiplicity, outside the origin. Moreover, since
dimK(Loc(x,y,z)K[x, y, z]/(jacob(f) + (f))) = 195 = dimK(K[x, y, z]/(jacob(f) + (f))), the
affine surface f=0 is smooth outside the origin.

ring r1 = 32003,(x,y,z),ds;
int a,b,c,t=11,5,3,0;
poly f = x^a+y^b+z^(3*c)+x^(c+2)*y^(c-1)+x^(c-1)*y^(c-1)*z3+

x^(c-2)*y^c*(y^2+t*x)^2;
option(noprot);
timer=1;
ring r2 = 32003,(x,y,z),dp;
poly f=imap(r1,f);
ideal j=jacob(f);
vdim(std(j));

7→ 536
vdim(std(j+f));

7→ 195
timer=0; // reset timer

4.4.3 Deformations

• The libraries sing.lib, respextively deform.lib, contain procedures to compute total
and base space of the miniversal (= semiuniversal) deformation of an isolated complete
intersection singularity, respectively of an arbitrary isolated singularity.

• The procedure deform in sing.lib returns a matrix whose columns h1, . . . , hr represent all
1st order deformations. More precisely, if I ⊂ R is the ideal generated by f1, ..., fs, then any
infinitesimal deformation of R/I over K[ε]/(ε2) is given by f + εg, where f = (f1, ..., fs),
and where g is a K-linear combination of the hi.

• The procedure versal in deform.lib computes a formal miniversal deformation up to a
certain order which can be prescribed by the user. For a complete intersection the 1st order
part is already miniversal.

• The procedure versal extends the basering to a new ring with additional deformation
parameters which contains the equations for the miniversal base space and the miniversal
total space.

• There are default names for the objects created, but the user may also choose his own
names.

• If the user sets printlevel=2; before running versal, some intermediate results are shown.
This is useful since versal is already complicated and might run for some time on more
complicated examples. (type help versal;)

We give three examples, the first being a hypersurface, the second a complete intersection,
the third no complete intersection and compute in each of the cases the miniversal deformation:

LIB "deform.lib";
ring R=32003,(x,y,z),ds;
//--
// hypersurface case (from series T[p,q,r]):
int p,q,r = 3,3,4;
poly f = x^p+y^q+z^r+xyz;
print(deform(f));

7→ z3,z2,yz,xz,z,y,x,1
// the miniversal deformation of f=0 is the projection from the
// miniversal total space to the miniversal base space:
// { (A,B,C,D,E,F,G,H,x,y,z) | x3+y3+xyz+z4+A+Bx+Cxz+Dy+Eyz+Fz+Gz2+Hz3 =0 }
// --> { (A,B,C,D,E,F,G,H) }
//--
// complete intersection case (from series P[k,l]):
int k,l =3,2;
ideal j=xy,x^k+y^l+z2;
print(deform(j));

7→ 0,0, 0,0,z,1,
7→ y,x2,x,1,0,0
def L=versal(j); // using default names

7→ // smooth base space
7→ // ready: T_1 and T_2
7→
7→
7→ // ’versal’ returned a list, say L, of four rings. In L[1] are stored:
7→ // as matrix Fs: Equations of total space of the miniversal deformation\

,
7→ // as matrix Js: Equations of miniversal base space,
7→ // as matrix Rs: syzygies of Fs mod Js.
7→ // To access these data, type
7→ def Px=L[1]; setring Px; print(Fs); print(Js); print(Rs);
7→
def Px=L[1]; setring Px;
show(Px); // show is a procedure from inout.lib

7→ // ring: (32003),(A,B,C,D,E,F,x,y,z),(ds(6),ds(3),C);
7→ // minpoly = 0
7→ // objects belonging to this ring:
7→ // Rs [0] matrix 2 x 1
7→ // Fs [0] matrix 1 x 2
7→ // Js [0] matrix 1 x 0
listvar(matrix);

7→ // Rs [0] matrix 2 x 1
7→ // Fs [0] matrix 1 x 2
7→ // Js [0] matrix 1 x 0
// ___ Equations of miniversal base space ___:
Js;

7→
// ___ Equations of miniversal total space ___:
Fs;

7→ Fs[1,1]=xy+Ez+F
7→ Fs[1,2]=y2+z2+x3+Ay+Bx2+Cx+D
// the miniversal deformation of V(j) is the projection from the
// miniversal total space to the miniversal base space:
// { (A,B,C,D,E,F,x,y,z) | xy+F+Ez=0, y2+z2+x3+D+Cx+Bx2+Ay=0 }
// --> { (A,B,C,D,E,F) }
//--
// general case (cone over rational normal curve of degree 4):
kill L;
ring r1=0,(x,y,z,u,v),ds;
matrix m[2][4]=x,y,z,u,y,z,u,v;
ideal i=minor(m,2); // 2x2 minors of matrix m
int time=timer;
// Call parameters of the miniversal base A(1),A(2),...:
def L=versal(i,0,"","A(");

7→ // ready: T_1 and T_2
7→ // start computation in degree 2.
7→
7→
7→ // ’versal’ returned a list, say L, of four rings. In L[1] are stored:
7→ // as matrix Fs: Equations of total space of the miniversal deformation\

,
7→ // as matrix Js: Equations of miniversal base space,
7→ // as matrix Rs: syzygies of Fs mod Js.
7→ // To access these data, type
7→ def Px=L[1]; setring Px; print(Fs); print(Js); print(Rs);
7→
"// used time:",timer-time,"sec"; // time of last command

7→ // used time: 0 sec
def Def_rPx=L[1]; setring Def_rPx;
Fs;

7→ Fs[1,1]=-u^2+z*v+A(2)*u+A(4)*v
7→ Fs[1,2]=-z*u+y*v-A(1)*u+A(4)*u
7→ Fs[1,3]=-y*u+x*v+A(3)*u+A(4)*z
7→ Fs[1,4]=z^2-y*u+A(1)*z+A(2)*y
7→ Fs[1,5]=y*z-x*u+A(2)*x-A(3)*z
7→ Fs[1,6]=-y^2+x*z+A(1)*x+A(3)*y
Js;

7→ Js[1,1]=A(2)*A(4)
7→ Js[1,2]=-A(1)*A(4)+A(4)^2
7→ Js[1,3]=-A(3)*A(4)
// the miniversal deformation of V(i) is the projection from the
// miniversal total space to the miniversal base space:
// { (A(1..4),x,y,z,u,v) |
// -u^2+x*v+A(2)*u+A(4)*v=0, -z*u+y*v-A(1)*u+A(3)*u=0,
// -y*u+x*v+A(3)*u+A(4)*z=0, z^2-y*u+A(1)*z+A(2)*y=0,
// y*z-x*u+A(2)*x-A(3)*z=0, -y^2+x*z+A(1)*x+A(3)*y=0 }
// --> { A(1..4) |

// A(2)*A(4) = -A(3)*A(4) = -A(1)*A(4)+A(4)^2 = 0 }
//--

4.4.4 Invariants of plane curve singularities

The Puiseux pairs of an irreducible and reduced plane curve singularity are probably its most
important invariants. They can be computed from its Hamburger-Noether expansion (which is
the analogue of the Puiseux expansion in characteristic 0 for fields of arbitrary characteristic).

The library hnoether.lib (see 〈undefined〉 [hnoether lib], page 〈undefined〉) uses the algo-
rithm of Antonio Campillo in "Algebroid curves in positive characteristic" SLN 813, 1980. This
algorithm has the advantage that it needs least possible field extensions and, moreover, works
in any characteristic. This fact can be used to compute the invariants over a field of finite
characteristic, say 32003, which will most probably be the same as in characteristic 0.

We compute the Hamburger-Noether expansion of a plane curve singularity given by a poly-
nomial f in two variables. This expansion is given by a matrix, and it allows us to compute
a primitive parametrization (up to a given order) for the curve singularity definbed by f and
numerical invariants such as the

• characteristic exponents,

• Puiseux pairs (of a complex model),

• degree of the conductor,

• delta invariant,

• generators of the semigroup.

Besides commands for computing a parametrization and the invariants mentioned above, the
library hnoether.lib provides commands for the computation of the Newton polygon of f, the
squarefree part of f and a procedure to convert one set of invariants to another.

LIB "hnoether.lib";
// ======== The irreducible case ========
ring s = 0,(x,y),ds;
poly f = y4-2x3y2-4x5y+x6-x7;
list hn = develop(f);
show(hn[1]); // Hamburger-Noether matrix

7→ // matrix, 3x3
7→ 0,x, 0,
7→ 0,1, x,
7→ 0,1/4,-1/2
displayHNE(hn); // Hamburger-Noether development

7→ y = z(1)*x
7→ x = z(1)^2+z(1)^2*z(2)
7→ z(1) = 1/4*z(2)^2-1/2*z(2)^3 + (terms of degree >=4)
setring s;
displayInvariants(hn);

7→ characteristic exponents : 4,6,7
7→ generators of semigroup : 4,6,13
7→ Puiseux pairs : (3,2)(7,2)
7→ degree of the conductor : 16
7→ delta invariant : 8
7→ sequence of multiplicities: 4,2,2,1,1
// invariants(hn); returns the invariants as list
// partial parametrization of f: param takes the first variable
// as infinite except the ring has more than 2 variables. Then

// the 3rd variable is chosen.
param(hn);

7→ // ** Warning: result is exact up to order 5 in x and 7 in y !
7→ _[1]=1/16x4-3/16x5+1/4x7
7→ _[2]=1/64x6-5/64x7+3/32x8+1/16x9-1/8x10
ring extring=0,(x,y,t),ds;
poly f=x3+2xy2+y2;
list hn=develop(f,-1);
param(hn); // partial parametrization of f

7→ // ** Warning: result is exact up to order 2 in x and 3 in y !
7→ _[1]=-t2
7→ _[2]=-t3
list hn1=develop(f,6);
param(hn1); // a better parametrization

7→ // ** Warning: result is exact up to order 6 in x and 7 in y !
7→ _[1]=-t2+2t4-4t6
7→ _[2]=-t3+2t5-4t7
// instead of recomputing you may extend the development:
list hn2=extdevelop(hn,12);
param(hn2); // a still better parametrization

7→ // ** Warning: result is exact up to order 12 in x and 13 in y !
7→ _[1]=-t2+2t4-4t6+8t8-16t10+32t12
7→ _[2]=-t3+2t5-4t7+8t9-16t11+32t13
//
// ======== The reducible case ========
ring r = 0,(x,y),dp;
poly f=x11-2y2x8-y3x7-y2x6+y4x5+2y4x3+y5x2-y6;
// = (x5-1y2) * (x6-2x3y2-1x2y3+y4)
list L=hnexpansion(f);

7→ // No change of ring necessary, return value is HN expansion.
show(L[1][1]); // Hamburger-Noether matrix of 1st branch

7→ // matrix, 3x3
7→ 0,x,0,
7→ 0,1,x,
7→ 0,1,-1
displayInvariants(L);

7→ --- invariants of branch number 1 : ---
7→ characteristic exponents : 4,6,7
7→ generators of semigroup : 4,6,13
7→ Puiseux pairs : (3,2)(7,2)
7→ degree of the conductor : 16
7→ delta invariant : 8
7→ sequence of multiplicities: 4,2,2,1,1
7→
7→ --- invariants of branch number 2 : ---
7→ characteristic exponents : 2,5
7→ generators of semigroup : 2,5
7→ Puiseux pairs : (5,2)
7→ degree of the conductor : 4
7→ delta invariant : 2
7→ sequence of multiplicities: 2,2,1,1

7→
7→ -------------- contact numbers : --------------
7→
7→ branch | 2
7→ -------+-----
7→ 1 | 2
7→
7→ -------------- intersection multiplicities : --------------
7→
7→ branch | 2
7→ -------+-----
7→ 1 | 12
7→
7→ -------------- delta invariant of the curve : 22
param(L[2]); // parametrization of 2nd branch

7→ _[1]=x2
7→ _[2]=x5

4.4.5 Resolution of singularities

Resolution of singularities and applications thereof are provided by the libraries resolve.lib
and reszeta.lib; graphical output may be generated automatically by using external pro-
grams surf and dot respectively to which a specialized interface is provided by the library
resgraph.lib. In this example, the basic functionality of the resolution of singularities pack-
age is illustrated by the computation of the intersection matrix and genera of the exceptional
curves on a surface obtained from resolving a A6 surface singularity. A separate tutorial,
which introduces the complete functionality of the package and explains the rather complicated
data structures appearing in intermediate results, can be found at http://www.singular.uni-
kl.de/tutor_resol.ps.

LIB"resolve.lib"; // load the resolution algorithm
LIB"reszeta.lib"; // load its application algorithms

ring R=0,(x,y,z),dp; // define the ring Q[x,y,z]
ideal I=x7+y2-z2; // an A6 surface singularity
list L=resolve(I); // compute the resolution
list iD=intersectionDiv(L); // compute intersection properties
iD; // show the output
7→ [1]:
7→ -2,0,1,0,0,0,
7→ 0,-2,0,1,0,0,
7→ 1,0,-2,0,1,0,
7→ 0,1,0,-2,0,1,
7→ 0,0,1,0,-2,1,
7→ 0,0,0,1,1,-2
7→ [2]:
7→ 0,0,0,0,0,0
7→ [3]:
7→ [1]:
7→ [1]:
7→ 2,1,1
7→ [2]:
7→ 4,1,1

7→ [2]:
7→ [1]:
7→ 2,1,2
7→ [2]:
7→ 4,1,2
7→ [3]:
7→ [1]:
7→ 4,2,1
7→ [2]:
7→ 6,2,1
7→ [4]:
7→ [1]:
7→ 4,2,2
7→ [2]:
7→ 6,2,2
7→ [5]:
7→ [1]:
7→ 6,3,1
7→ [2]:
7→ 7,3,2
7→ [6]:
7→ [1]:
7→ 6,3,2
7→ [2]:
7→ 7,3,1
7→ [4]:
7→ 1,1,1,1,1,1
// The output is a list whose first entry contains the intersection matrix
// of the exceptional divisors. The second entry is the list of genera
// of these divisors. The third and fourth entry contain the information
// how to find the corresponding divisors in the respective charts.

4.5 Invariant Theory

4.6 Noncommutative Algebra

4.6.1 Left and two-sided Groebner bases

For a set of polynomials (resp. vectors) S in a noncommutative G-algebra, Singular:Plural
provides two algorithms for computing Groebner bases.

The command std computes a left Groebner basis of a left module, generated by the set S
(see 〈undefined〉 [std (plural)], page 〈undefined〉). The command twostd computes a two-sided
Groebner basis (which is in particular also a left Groebner basis) of a two-sided ideal, generated
by the set S (see 〈undefined〉 [twostd], page 〈undefined〉).

In the example below, we consider a particular set S in the algebra A := U(sl2) with the
degree reverse lexicographic ordering. We compute a left Groebner basis L of the left ideal
generated by S and a two-sided Groebner basis T of the two-sided ideal generated by S.
Then, we read off the information on the vector space dimension of the factor modules A/L and
A/T using the command vdim (see 〈undefined〉 [vdim (plural)], page 〈undefined〉).

Further on, we use the command reduce (see 〈undefined〉 [reduce (plural)], page 〈undefined〉)
to compare the left ideals generated by L and T.

We set option(redSB) and option(redTail) to make Singular compute completely re-
duced minimal bases of ideals (see 〈undefined〉 [option], page 〈undefined〉 and 〈undefined〉 [Groeb-
ner bases in G-algebras], page 〈undefined〉 for definitions and further details).

For long running computations, it is always recommended to set option(prot) to make
Singular display some information on the performed computations (see 〈undefined〉 [option],
page 〈undefined〉 for an interpretation of the displayed symbols).

// ----- 1. setting up the algebra
ring A = 0,(e,f,h),dp;
matrix D[3][3];
D[1,2]=-h; D[1,3]=2*e; D[2,3]=-2*f;
ncalgebra(1,D);

// ----- equivalently, you may use the following:
// LIB "ncalg.lib";
// def A = makeUsl2();
// setring A;
// ----- 2. defining the set S

ideal S = e^3, f^3, h^3 - 4*h;
option(redSB);
option(redTail);
option(prot); // let us see the protocol
ideal L = std(S);

7→ 3(2)s
7→ s
7→ s
7→ 5s
7→ s
7→ (4)s
7→ 4(5)s
7→ (7)s
7→ 3(6)s
7→ (8)(7)(6)4(5)(4)(3)(2)s
7→ (3)(2)s
7→ 3(3)(2)45
7→ (S:5)-----
7→ product criterion:6 chain criterion:16
L;

7→ L[1]=h3-4h
7→ L[2]=fh2-2fh
7→ L[3]=eh2+2eh
7→ L[4]=2efh-h2-2h
7→ L[5]=f3
7→ L[6]=e3
vdim(L); // the vector space dimension of the module A/L

7→ 15
option(noprot); // turn off the protocol
ideal T = twostd(S);
T;

7→ T[1]=h3-4h
7→ T[2]=fh2-2fh

7→ T[3]=eh2+2eh
7→ T[4]=f2h-2f2
7→ T[5]=2efh-h2-2h
7→ T[6]=e2h+2e2
7→ T[7]=f3
7→ T[8]=ef2-fh
7→ T[9]=e2f-eh-2e
7→ T[10]=e3
vdim(T); // the vector space dimension of the module A/T

7→ 10
print(matrix(reduce(L,T))); // reduce L with respect to T

7→ 0,0,0,0,0,0
// as we see, L is included in the left ideal generated by T
print(matrix(reduce(T,L))); // now, reduce T with respect to L

7→ 0,0,0,f2h-2f2,0,e2h+2e2,0,ef2-fh,e2f-eh-2e,0
// the non-zero elements belong to T only
ideal LT = twostd(L); // the two-sided Groebner basis of L
// LT and T coincide as left ideals:
size(reduce(LT,T));

7→ 0
size(reduce(T,LT));

7→ 0

4.6.2 Right Groebner bases and syzygies

Most of the Singular:Plural commands correspond to the left-sided computations, that
is left Groebner bases, left syzygies, left resolutions and so on. However, the right-sided compu-
tations can be done, using the left-sided functionality and opposite algebras.

In the example below, we consider the algebra A := U(sl2) and a set of generators I = {e2, f}.
We will compute a left Groebner basis LI and a left syzygy module LS of a left ideal, generated

by the set I .

Then, we define the opposite algebra Aop of A, set it as a basering, and create opposite objects
of already computed ones.

Further on, we compute a right Groebner basis RI and a right syzygy module RS of a right
ideal, generated by the set I in A .

// ----- setting up the algebra:
LIB "ncalg.lib";
def A = makeUsl2();
setring A; A;
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering dp
7→ // : names e f h
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // fe=ef-h
7→ // he=eh+2e
7→ // hf=fh-2f
// ----- equivalently, you may use
// ring A = 0,(e,f,h),dp;
// matrix D[3][3];

// D[1,2]=-h; D[1,3]=2*e; D[2,3]=-2*f;
// ncalgebra(1,D);
option(redSB);
option(redTail);
matrix T;
// --- define a generating set
ideal I = e2,f;
ideal LI = std(I); // the left Groebner basis of I
LI; // we see that I was not a Groebner basis
7→ LI[1]=f
7→ LI[2]=h2+h
7→ LI[3]=eh+e
7→ LI[4]=e2
module LS = syz(I); // the left syzygy module of I
print(LS);
7→ -ef-2h+6,-f3, -ef2-fh+4f, -e2f2-4efh+16ef-6h2+42h-72\

,
7→ e3, e2f2-6efh-6ef+6h2+18h+12,e3f-3e2h-6e2,e4f
T = transpose(LS)*transpose(I); // check: LS is a left syzygy, if T=0
print(T);
7→ 0,
7→ 0,
7→ 0,
7→ 0
// --- let us define the opposite algebra of A
def Aop = opposite(A);
setring Aop; Aop; // see how Aop looks like
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering a
7→ // : names H F E
7→ // : weights 1 1 1
7→ // block 2 : ordering ls
7→ // : names H F E
7→ // block 3 : ordering C
7→ // noncommutative relations:
7→ // FH=HF-2F
7→ // EH=HE+2E
7→ // EF=FE-H
// --- we "oppose" (transfer) objects from A to Aop
ideal Iop = oppose(A,I);
ideal RIop = std(Iop); // the left Groebner basis of Iop in Aop
module RSop = syz(Iop); // the left syzygy module of Iop in Aop
module LSop = oppose(A,LS);
module RLS = syz(transpose(LSop)); // left syzygy of transposed LSop in Aop
// --- let us return to A and transfer (i.e. oppose) the computed objects back
setring A;
ideal RI = oppose(Aop,RIop); // the right Groebner basis of I
RI; // it differs from the left Groebner basis LI
7→ RI[1]=f
7→ RI[2]=h2-h

7→ RI[3]=eh+e
7→ RI[4]=e2
module RS = oppose(Aop,RSop); // the right syzygy module of I
print(RS);
7→ -ef+3h+6,-f3, -ef2+3fh,-e2f2+4efh+4ef,
7→ e3, e2f2+2efh-6ef+2h2-10h+12,e3f, e4f
T = matrix(I)*RS; // check: RS is a right syzygy, if T=0
T;
7→ T[1,1]=0
7→ T[1,2]=0
7→ T[1,3]=0
7→ T[1,4]=0
module RLS;
RLS = transpose(oppose(Aop,RLS)); // the right syzygy of a left syzygy of I
print(RLS); // it is I itself
7→ e2,f

4.7 Applications

4.7.1 Solving systems of polynomial equations

Here we turn our attention to the probably most popular aspect of the solving problem: given
a system of complex polynomial equations with only finitely many solutions, compute floating
point approximations for these solutions. This is widely considered as a task for numerical
analysis. However, due to rounding errors, purely numerical methods are often unstable in an
unpredictable way.

Therefore, in many cases, it is worth investing more computing power to derive additional
knowledge on the geometric structure of the set of solutions (not to mention the question of how
to decide whether the set of solutions is finite or not). The symbolic-numerical approach to the
solving problem combines numerical methods with a symbolic preprocessing.

Depending on whether we want to preserve the multiplicities of the solutions or not, possible
goals for a symbolic preprocessing are

• to find another system of generators (for instance, a reduced Groebner basis) for the ideal
I generated by the polynomial equations. Or, to find a system of polynomials defining an
ideal which has the same radical as I (see Section 4.2 [Computing Groebner and Standard
Bases], page 21, resp. 〈undefined〉 [radical], page 〈undefined〉).

In any case, the goal should be to find a system for which a numerical solution can be found
more easily and in a more stable way. For systems with a large number of generators, a first
step in a Singular computation could be to reduce the number of generators by applying the
interred command (see 〈undefined〉 [interred], page 〈undefined〉). Another goal might be

• to decompose the system into several smaller (or, at least, more accessible) systems of
polynomial equations. Then, the set of solutions of the original system is obtained by
taking the union of the sets of solutions of the new systems.

Such a decomposition can be obtained in several ways: for instance, by computing a triangular
decomposition (see 〈undefined〉 [triang lib], page 〈undefined〉) for the ideal I, or by applying the
factorizing Buchberger algorithm (see 〈undefined〉 [facstd], page 〈undefined〉), or by computing
a primary decomposition of I (see 〈undefined〉 [primdec lib], page 〈undefined〉).

Moreover, the equational modelling of a problem frequently causes unwanted solutions, for
instance, zero as a multiple solution. Not only for stability reasons, one is frequently interested

to get rid of those. This can be done by computing the saturation of I with respect to an ideal
having the excess components as set of solutions (see 〈undefined〉 [sat], page 〈undefined〉).

The Singular libraries solve.lib and triang.lib provide several commands for solving
systems of polynomial equations (based on a symbolic-numerical approach via Groebner bases,
resp. resultants). In the example below, we show some of these commands at work.

LIB "solve.lib";
ring r=0,x(1..5),dp;
poly f0= x(1)^3+x(2)^2+x(3)^2+x(4)^2-x(5)^2;
poly f1= x(2)^3+x(1)^2+x(3)^2+x(4)^2-x(5)^2;
poly f2=x(3)^3+x(1)^2+x(2)^2+x(4)^2-x(5)^2;
poly f3=x(4)^2+x(1)^2+x(2)^2+x(3)^2-x(5)^2;
poly f4=x(5)^2+x(1)^2+x(2)^2+x(3)^2;
ideal i=f0,f1,f2,f3,f4;
ideal si=std(i);
//
// dimension of solution set (here, 0) can be read from a Groebner bases
// (with respect to any global monomial ordering)
dim(si);
7→ 0
//
// the number of complex solutions (counted with multiplicities) is:
vdim(si);
7→ 108
//
// The given system has a multiple solution at the origin. We use facstd
// to compute equations for the non-zero solutions:
option(redSB);
ideal maxI=maxideal(1);
ideal j=sat(si,maxI)[1]; // output is Groebner basis
vdim(j); // number of non-zero solutions (with mult’s)
7→ 76
//
// We compute a triangular decomposition for the ideal I. This requires first
// the computation of a lexicographic Groebner basis (we use the FGLM
// conversion algorithm):
ring R=0,x(1..5),lp;
ideal j=fglm(r,j);
list L=triangMH(j);
size(L); // number of triangular components
7→ 7
L[1]; // the first component
7→ _[1]=x(5)^2+1
7→ _[2]=x(4)^2+2
7→ _[3]=x(3)-1
7→ _[4]=x(2)^2
7→ _[5]=x(1)^2
//
// We compute floating point approximations for the solutions (with 30 digits)
def S=triang_solve(L,30);
7→
7→ // ’triang_solve’ created a ring, in which a list rlist of numbers (the

7→ // complex solutions) is stored.
7→ // To access the list of complex solutions, type (if the name R was assig\

ned
7→ // to the return value):
7→ setring R; rlist;
setring S;
size(rlist); // number of different non-zero solutions
7→ 28
rlist[1]; // the first solution
7→ [1]:
7→ 0
7→ [2]:
7→ 0
7→ [3]:
7→ 1
7→ [4]:
7→ (-I*1.41421356237309504880168872421)
7→ [5]:
7→ -I
//
// Alternatively, we could have applied directly the solve command:
setring r;
def T=solve(i,30,1,"nodisplay"); // compute all solutions with mult’s
7→
7→ // ’solve’ created a ring, in which a list SOL of numbers (the complex so\

lutions)
7→ // is stored.
7→ // To access the list of complex solutions, type (if the name R was assig\

ned
7→ // to the return value):
7→ setring R; SOL;
setring T;
size(SOL); // number of different solutions
7→ 4
SOL[1][1]; SOL[1][2]; // first solution and its multiplicity
7→ [1]:
7→ [1]:
7→ 1
7→ [2]:
7→ 1
7→ [3]:
7→ 1
7→ [4]:
7→ (i*2.449489742783178098197284074706)
7→ [5]:
7→ (i*1.732050807568877293527446341506)
7→ [2]:
7→ [1]:
7→ 1
7→ [2]:
7→ 1

7→ [3]:
7→ 1
7→ [4]:
7→ (-i*2.449489742783178098197284074706)
7→ [5]:
7→ (i*1.732050807568877293527446341506)
7→ [3]:
7→ [1]:
7→ 1
7→ [2]:
7→ 1
7→ [3]:
7→ 1
7→ [4]:
7→ (i*2.449489742783178098197284074706)
7→ [5]:
7→ (-i*1.732050807568877293527446341506)
7→ [4]:
7→ [1]:
7→ 1
7→ [2]:
7→ 1
7→ [3]:
7→ 1
7→ [4]:
7→ (-i*2.449489742783178098197284074706)
7→ [5]:
7→ (-i*1.732050807568877293527446341506)
7→ 1
SOL[size(SOL)]; // solutions of highest multiplicity
7→ [1]:
7→ [1]:
7→ [1]:
7→ 0
7→ [2]:
7→ 0
7→ [3]:
7→ 0
7→ [4]:
7→ 0
7→ [5]:
7→ 0
7→ [2]:
7→ 32
//
// Or, we could remove the multiplicities first, by computing the
// radical:
setring r;
ideal k=std(radical(i));
vdim(k); // number of different complex solutions
7→ 29

def T1=solve(k,30,"nodisplay"); // compute all solutions with mult’s
7→
7→ // ’solve’ created a ring, in which a list SOL of numbers (the complex so\

lutions)
7→ // is stored.
7→ // To access the list of complex solutions, type (if the name R was assig\

ned
7→ // to the return value):
7→ setring R; SOL;
setring T1;
size(SOL); // number of different solutions
7→ 29
SOL[1];
7→ [1]:
7→ 1
7→ [2]:
7→ 1
7→ [3]:
7→ 1
7→ [4]:
7→ (-i*2.449489742783178098197284074706)
7→ [5]:
7→ (-i*1.732050807568877293527446341506)

4.7.2 AG codes

The library brnoeth.lib provides an implementation of the Brill-Noether algorithm for solv-
ing the Riemann-Roch problem and applications in Algebraic Geometry codes. The procedures
can be applied to plane (singular) curves defined over a prime field of positive characteristic.

LIB "brnoeth.lib";
ring s=2,(x,y),lp; // characteristic 2
poly f=x3y+y3+x; // the Klein quartic
list KLEIN=Adj_div(f); // compute the conductor
7→ Computing affine singular points ...
7→ Computing all points at infinity ...
7→ Computing affine singular places ...
7→ Computing singular places at infinity ...
7→ Computing non-singular places at infinity ...
7→ Adjunction divisor computed successfully
7→
7→ The genus of the curve is 3
KLEIN=NSplaces(1..3,KLEIN); // computes places up to degree 3
7→ Computing non-singular affine places of degree 1 ...
7→ Computing non-singular affine places of degree 2 ...
7→ Computing non-singular affine places of degree 3 ...
KLEIN=extcurve(3,KLEIN); // construct Klein quartic over F_8
7→
7→ Total number of rational places : NrRatPl = 24
7→
KLEIN[3]; // display places (degree, number)
7→ [1]:
7→ 1,1

7→ [2]:
7→ 1,2
7→ [3]:
7→ 1,3
7→ [4]:
7→ 2,1
7→ [5]:
7→ 3,1
7→ [6]:
7→ 3,2
7→ [7]:
7→ 3,3
7→ [8]:
7→ 3,4
7→ [9]:
7→ 3,5
7→ [10]:
7→ 3,6
7→ [11]:
7→ 3,7
// We define a divisor G of degree 14=6*1+4*2:
intvec G=6,0,0,4,0,0,0,0,0,0,0; // 6 * place #1 + 4 * place #4
// We compute an evaluating code which evaluates at all rational places
// outside the support of G (place #4 is not rational)
intvec D=2..24;
// in D, the number i refers to the ith element of the list POINTS in
// the ring KLEIN[1][5].
def RR=KLEIN[1][5];
setring RR; POINTS[1]; // the place in the support of G (not in supp(D))
7→ [1]:
7→ 0
7→ [2]:
7→ 1
7→ [3]:
7→ 0
setring s;
def RR=KLEIN[1][4];
7→ // ** redefining RR **
setring RR;
matrix C=AGcode_L(G,D,KLEIN); // generator matrix for the evaluation AG code
7→ Forms of degree 5 :
7→ 21
7→
7→ Vector basis successfully computed
7→
nrows(C);
7→ 12
ncols(C);
7→ 23
//
// We can also compute a generator matrix for the residual AG code

matrix CO=AGcode_Omega(G,D,KLEIN);
7→ Forms of degree 5 :
7→ 21
7→
7→ Vector basis successfully computed
7→
//
// Preparation for decoding:
// We need a divisor of degree at least 6 whose support is disjoint to the
// support of D:
intvec F=6; // F = 6*point #1
// in F, the ith entry refers to the ith element of the list POINTS in
// the ring KLEIN[1][5]
list K=prepSV(G,D,F,KLEIN);
7→ Forms of degree 5 :
7→ 21
7→
7→ Vector basis successfully computed
7→
7→ Forms of degree 4 :
7→ 15
7→
7→ Vector basis successfully computed
7→
7→ Forms of degree 4 :
7→ 15
7→
7→ Vector basis successfully computed
7→
K[size(K)][1]; // error correcting capacity
7→ 3
//
// Coding and Decoding:
matrix word[1][11]; // words of length 11 are coded
word = 1,1,1,1,1,1,1,1,1,1,1;
def y=word*CO; // the code word (length: 23)
matrix disturb[1][23];
disturb[1,1]=1;
disturb[1,10]=a;
disturb[1,12]=1+a;
y=y+disturb; // disturb the code word (3 errors)
def yy=decodeSV(y,K); // error correction
yy-y; // display the error
7→ _[1,1]=1
7→ _[1,2]=0
7→ _[1,3]=0
7→ _[1,4]=0
7→ _[1,5]=0
7→ _[1,6]=0
7→ _[1,7]=0
7→ _[1,8]=0

7→ _[1,9]=0
7→ _[1,10]=(a)
7→ _[1,11]=0
7→ _[1,12]=(a+1)
7→ _[1,13]=0
7→ _[1,14]=0
7→ _[1,15]=0
7→ _[1,16]=0
7→ _[1,17]=0
7→ _[1,18]=0
7→ _[1,19]=0
7→ _[1,20]=0
7→ _[1,21]=0
7→ _[1,22]=0
7→ _[1,23]=0

4.8 Further smallexamples

The example section of the Singular manual contains further examples, e.g.:

• Long coefficients
how they arise in innocent smallexamples

• T1 and T2
compute first order deformations and obstructions

• Finite fields
compute in fields with q = pn elements

• Ext
compute Ext groups, derived from the Hom functor

• Polar curves
compute local and global polar curves

• Depth
various ways to compute the depth of a module

• Cyclic roots
create and compute with this standard benchmark smallexample

• Invariants of finite group
compute invariant rings for finite group

• Normalization
compute the normalization of a ring

• Classification of hypersurface singularities
determine type and normal form of a hypersurface singularity after Arnold

• Parallelization with MPtcp links
use MP for distributed and parallel computation

In this list the names of the items are the names of the examples in the online help system. So
by the command help T1 and T2 the example about the computation of first order deformations
and obstructions is displayed.

Table of Contents

1 Preface . 1

2 Introduction. 3
2.1 Background . 3
2.2 How to use this tutorial . 3

3 Getting started . 5
3.1 First steps . 5
3.2 Rings and standard bases . 6
3.3 Procedures and libraries . 9
3.4 Change of rings . 10
3.5 Modules and their annihilator . 11
3.6 Resolution . 12

4 Examples . 14
4.1 Programming . 14

4.1.1 Basic programming . 14
4.1.2 Writing procedures and libraries . 15
4.1.3 Rings associated to monomial orderings 18
4.1.4 Parameters . 19
4.1.5 Formatting output . 20
4.1.6 Dynamic modules . 20

4.2 Computing Groebner and Standard Bases . 21
4.2.1 groebner and std . 21
4.2.2 Groebner basis conversion . 23
4.2.3 slim Groebner bases . 25

4.3 Commutative Algebra . 26
4.3.1 Saturation . 26
4.3.2 Elimination . 26
4.3.3 Free resolution . 29
4.3.4 Handling graded modules . 32
4.3.5 Factorization . 33
4.3.6 Primary decomposition . 34
4.3.7 Kernel of module homomorphisms. 36
4.3.8 Algebraic dependence . 37

4.4 Singularity Theory . 38
4.4.1 Milnor and Tjurina number . 39
4.4.2 Critical points . 40
4.4.3 Deformations . 41
4.4.4 Invariants of plane curve singularities 44
4.4.5 Resolution of singularities . 46

4.5 Invariant Theory . 47
4.6 Noncommutative Algebra . 47

4.6.1 Left and two-sided Groebner bases 47
4.6.2 Right Groebner bases and syzygies 49

4.7 Applications . 51
4.7.1 Solving systems of polynomial equations 51
4.7.2 AG codes . 55

4.8 Further smallexamples . 58

