
CM331A Special Relativity and Electromagnetism: Problem Sheet III

0.” Please send an email to andreas.recknagel@kcl.ac.uk if you haven’t done so by now.

1. Read the derivation of the Coulomb field (and of the Coulomb potential) given in the
handout (pp. 23 ff). Then use the same method to compute the electric field of a uniformly
charged ball of radius R, i.e. for the static charge density (ρ0 = const)

ρ(~x′) =

{

ρ0 for |~x′| ≤ R ,
0 for |~x′| > R .

(Note: To obtain ~E(~x) outside the ball, i.e. for |~x| > R, one doesn’t require new calculations
– why?)

Then, give the electric field ~E(~x) induced by a charged ball without core, i.e. for

ρ(~x′) =







0 for |~x′| < R1 ,
ρ0 for R1 ≤ |~x′| ≤ R2 ,
0 for |~x′| > R2 .

in the region |~x| > R2 (i.e. outside of the ball). (Note: This follows without real compu-
tation from the first part and the superposition principle.)

2. Compute the electric field of an infinite plate (coinciding with the x-y-plane) that carries a
constant surface charge density σ. (This means that a piece of the plate with area A carries
the charge A σ, and a volume V whose intersection with the plate has area A contains the
same amount of charge.)
To do this, first use the symmetry of the situation (translations; field lines) to determine

the direction of ~E and to see that ~E(~x) = ~E(z). Then apply Gauss’ law (in the integral
form) to compute |E(z)|; the surface SV used in Gauss’ law should be chosen in such a way
that the symmetry can be exploited and that the surface integral becomes simple (spheres
are not useful here).
In addition, use the superposition principle to compute the electric field of two such planes,
parallel, at a distance d, and carrying opposite constant surface charges σ resp. −σ. (This
is an infinite capacitor.)

3. The Dirac delta distribution: Any continuous function g(x) can be viewed as a distribution
by the following definition of its action on a testfunction f ∈ S:

g[f ] := Dg[f ] =

∫

∞

−∞

f(x) g(x) dx

(Recall that testfunctions are smooth and have compact support, i.e. vanish outside of a
finite subset of R; this ensures that the integral exists.) In slight abuse of notation (but
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employed all the time in physics), we have also written δ(x) for the Dirac delta ‘function’,
which actually is not a function but a distribution defined by

δ[f ] := f(0) ;

the abuse enables us to write this in the form

δ[f ] =

∫

∞

−∞

f(x) δ(x) dx .

(Note that also
∫ R2

−R1

f(x) δ(x) dx = f(0) for any R1 > 0 and R2 > 0 since the ‘function’

δ(x) vanishes away from x = 0.) Use this function notation and substitution of integration
variables to prove the formula

δ(a x) =
1

|a|
δ(x) for any real a 6= 0

given in the lecture.

While δ is not an ordinary function, one can approximate it by a sequence of smooth
functions: Let

δn(x) := n e−π n2 x2

for n = 1, 2, . . . .

First show that the δn satisfy the same normalisation condition as δ, namely

∫

R

δn(x) dx = 1 for all n .

Sketch the graphs of some δn and observe what happens as n grows.
Note that the δn(x) go to zero very fast when |x| grows; the faster, the larger n is. Use
this fact and the mean value theorem of integral calculus, to argue that

lim
n→∞

δn[f ] = δ[f ]

for any testfunction f ∈ S. (A rigorous proof requires to make trickier estimates, but you
should be able to find the idea of the argument.)

This shows that the highly singular delta ‘function’ can be approximated by a sequence
of perfectly nice smooth functions. There are other possible choices for sequences that do
the same job, e.g.

δ̃n(x) :=
1

π

1/n

x2 + (1/n)2
or δ̂n(x) :=

1

π

sin nx

x
.
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