Phase Transitions
with a Minimal Number of Jumps
in the Singular Limits of
Higher Order Theories

P. I. Plotnikov & J. F. Toland
Russian Academy of Sciences & University of Bath
A Minimization Problem

\[
\inf_{\varphi \in L_{\text{per}}^\infty} \int_0^L W(\varphi(s), \vartheta(s)) \, ds
\]

Class of Functions \(W \) Parametrized by \(\theta \in \mathbb{R}^n \)

- For all \(\theta \in \mathbb{R}^d \),
 \[
 W(\phi, \theta) \to \infty \quad \text{as} \quad \phi \downarrow 0 \quad \text{or as} \quad \phi \uparrow \infty
 \]

- \(W(\cdot, \theta) \) has never more than three critical points, depending on the value of \(\theta \in \mathbb{R}^d \)

- \(\mathbb{R}^d = G_1 \cup G_2 \cup G_3 \) and \(G_3^0 \subset G_3 \), defined as follows:
Graph of $W(\cdot, \theta), \theta \in G_1 \subset \mathbb{R}^d$
Graph of $W(\cdot, \theta), \quad \theta \in G_2$

$\phi = \phi_{mu}(\theta)$

$\phi = \phi_s(\theta)$
Graph of \(W(\cdot, \theta), \quad \theta \in G_3 \subset \mathbb{R}^d \)

\[
\phi = \phi_u(\theta) \\
\phi = \phi_m(\theta) \\
\phi = \phi_s(\theta)
\]
Graph of $W(\cdot, \theta)$, $\theta \in G^0_3 \subset \mathbb{R}^d$
Minimizers

When $\vartheta : \mathbb{R} \to \mathbb{R}^d$ is a given continuous L-periodic function

$$\inf_{\varphi \in L^\infty_{\text{per}}} \int_0^L W(\varphi(s), \vartheta(s)) \, ds$$

is attained at a minimizers φ; indeed

- If $\vartheta(s)$ is never in G^0_3, then the minimizer is unique, continuous and $\varphi(s)$ is the global minimizer of $W(\cdot, \vartheta(s))$.
- If $\vartheta(s)$ crosses G^0_3 transversally at s_0, then φ must jump through $|\phi^-(\vartheta(s_0)) - \phi^+(\vartheta(s_0))|$ at s_0.
- If $\vartheta(s) \in G^0_3$ for $s \in [a, b]$, then $\varphi(s)$ can take any value between $\phi^-(\vartheta(s))$ and $\phi^+(\vartheta(s))$ on $[a, b]$.
- For a general function ϑ, minimizers need not be continuous and may have infinitely many jumps.
For a piecewise regular minimizer there is a sequence \(\{ S_n \} \):

- invariant with respect to \(s \to s + L \)
- \(0 < k \leq S_{n+1} - S_n \leq K < \infty \) \(\forall \ n \).
- \(\vartheta(S_n) \in G^0_3, \ n \in \mathbb{Z}, \)
- \(\varphi \in H^1(S_n, S_{n+1}) \) for all \(n \)
- \(\lim_{s \to S_n \pm 0} \varphi(s) \in \{ \phi_s^-(\vartheta(S_n)), \ \phi_s^+(\vartheta(S_n)) \} \)
- The function \(\varphi \) has a jump at \(S_n \) with magnitude

\[
\phi_s^+(\vartheta(S_n)) - \phi_s^-(\vartheta(S_n))
\]
More about the Set $G_3^0 \subset \mathbb{R}^d$

If W is real-analytic, G_3^0 is a real-analytic variety.
More generally, G_3^0 is typically the closure of a union of manifolds with dimensions $d - 1$, or less (except in non-generic situations possibly due to symmetries)
When $d = 1$, G_3^0 is often a discrete set of points.
Let B be smooth and strictly increasing

A weighted measure of the jump at $\theta \in G_3^0$

$$
\phi(\theta) = \frac{1}{\sqrt{2}} \int_{\phi_s^-(\theta)}^{\phi_s^+(\theta)} B'(\lambda) \sqrt{W(\lambda, \theta) - A} d\lambda
$$

where $A = W(\phi_s^{\pm}(\theta), \theta)$ Our hypotheses on B and W guarantee that $\phi(\theta)$ is bounded below by a positive constant, $\theta \in G_3^0$.
If $d = 1$ and G_3^0 is a discrete set of points, then ϕ takes a finite set of positive values
A weighted measure of the jump at $\theta \in G_3^0$:

$$
\phi(\theta) = \frac{1}{\sqrt{2}} \int_{\phi_s^- (\theta)}^{\phi_s^+ (\theta)} B'(\lambda) \sqrt{W(\lambda, \theta) - A} \, d\lambda
$$

$$
A = W(\phi_s^+ (\theta))
$$
Counting Jumps

The **actual number of jumps of** \(\varphi \) **per period** is

\[
\mathcal{N}(\varphi) = \sum_{[0,L) \cap \{S_n\}} 1 = \text{card } Q(\varphi)
\]

The **weighted number of jumps of** \(\varphi \) **per period** is

\[
\mathcal{W}(\varphi) = \sum_{s \in Q(\varphi)} \varphi(\vartheta(s)),
\]

where

\[
Q(\varphi) = [0, L) \cap \{S_n : n \in \mathbb{N}\}
\]

Let

\[
\mathcal{W}_{\text{min}} = \inf\{\mathcal{W}(\varphi) : \varphi \text{ is piecewise regular}\}
\]
Lemma

If there exists a piecewise regular minimizer, then there exists a piecewise regular minimizer with a minimal weighted number of jumps.

Let

$$N^* = \max_{\varphi_{\text{min}}} N(\varphi_{\text{min}}),$$

where the maximum of the actual number of jumps is taken over all piecewise regular minimizers with minimal weighted number of jumps.

Then there exists \(\delta > 0 \) such that \(N(\varphi) \leq N^* \) if \(W(\varphi) \leq W_{\text{min}} + \delta \).
Regularized Variational Problems

Suppose throughout that $E \subset (0, \infty)$ has a limit point at 0.

We are interested in how often piecewise regular minimizers arise as limits of regularized problems.

Let H^1_{per} denote the Sobolev space of L-periodic functions which, with their weak derivatives, are in $L^2_{\text{loc}}(\mathbb{R})$.

Let $\vartheta_\varepsilon \rightharpoonup \vartheta$ in $(H^1_{\text{per}})^d$ as $E \ni \varepsilon \searrow 0$, $d \geq 1$.

For $\varepsilon \geq 0$ consider the non-autonomous variational problem for an L-periodic function $\varphi : \mathbb{R} \to \mathbb{R}$:

$$
\mathcal{E}(\varepsilon) = \inf_{\varphi \in H^1_{\text{per}}} \int_0^L \left(\frac{\varepsilon}{2} (B'(\varphi))^2 + W(\varphi, \vartheta_\varepsilon) \right) \, ds
$$

where B is a strictly increasing smooth function.
The Euler-Lagrange Equation

Suppose that $\varepsilon > 0$ and that $\mathcal{E}(\varepsilon)$ is attained at φ_ε:

$$\mathcal{E}(\varepsilon) = \int_0^L \left(\frac{\varepsilon}{2}(B(\varphi_\varepsilon))' \right)^2 + W(\varphi_\varepsilon, \vartheta_\varepsilon) ds$$

Then φ_ε satisfies the Euler-Lagrange equation

$$\varepsilon B'(\varphi_\varepsilon(s))(B'(\varphi_\varepsilon)\varphi_\varepsilon)'(s) - \partial_\varphi W(\varphi_\varepsilon(s), \vartheta_\varepsilon(s)) = 0 \text{ on } \mathbb{R}$$

The limiting equation, with $\varepsilon = 0$ is

$$\partial_\varphi W(\varphi(s), \vartheta(s)) = 0 \text{ on } \mathbb{R}$$

Our purpose is to study the limit as $\varepsilon \downarrow 0$ of φ_ε

A peculiarity of the problem is that a weak* limit of φ_ε need not satisfy the limiting equation with $\varepsilon = 0$

It satisfies a relaxed form of the limiting equation instead.
$W^{**} -$ the relaxation of W

$\theta \in G_1$

$\phi = \phi_s(\theta)$

$\theta \in G_3^0$

$\phi = \phi^+_s(\theta)$

Graph of W^{**}

$\phi = \phi^+_m(\theta)$

$\phi = \phi_s(\theta)$
Example: Cahn-Hilliard Theory
from phase separation theory

\[W(\varphi, \vartheta) = \frac{1}{4}(\varphi^2 - 1)^2 - \vartheta \varphi, \]

where \(\vartheta \) is the chemical potential.
If \(\varphi \) and \(\vartheta \) are \(L \)-periodic, the total mesoscopic energy per period is

\[J_\varepsilon(\varphi) : = \int_0^L \left(\frac{\varepsilon}{2} \varphi'^2 + \frac{1}{4}(\varphi^2 - 1)^2 - \vartheta \varphi \right) \, dx, \quad \varepsilon > 0, \]

\(\varepsilon \varphi'^2 / 2 \) corresponds to the energy of phase interactions
small \(\sqrt{\varepsilon} \) characterizes the width of interfaces between phases
Critical points of \(J_\varepsilon \) satisfy

\[-\varepsilon \varphi''(x) + \varphi(x)^3 - \varphi(x) = \vartheta(x), \quad x \in \mathbb{R}. \]
Questions in Cahn Hilliard Theory

Two questions about weak* limits in L^∞_{per} of minimizers as $\varepsilon \to 0$

(1) How to characterise weak* limits of minimizers?

(2) Is there a so-called macroscopic variational problem with minimizers that coincide with these weak* limits?

A common belief is that both issues can be resolved using Γ-convergence theory,

We think that this is not always the case
Gamma Convergence on a Metric Space X

A sequence of functionals $F_\varepsilon : X \to [\alpha, \infty]$, $\alpha > -\infty$ has Γ-limit $F : X \to [\alpha, \infty]$ if, for every φ_0 and $\varphi_\varepsilon \to \varphi_0$,

$$F(\varphi_0) \leq \liminf_{\varepsilon \to 0} F_\varepsilon(\varphi_\varepsilon)$$

and there exists a sequence $\bar{\varphi}_\varepsilon \to \varphi_0$ so that

$$F(\varphi_0) = \lim_{\varepsilon \to 0} F_\varepsilon(\bar{\varphi}_\varepsilon).$$

Let $\mathcal{M}F_\varepsilon$ and $\mathcal{M}F$ be the set of minimizers of F_ε and F respectively.

$\mathcal{L}F$ be the limit points of sequences $x_\varepsilon \in \mathcal{M}F_\varepsilon$ as $\varepsilon \to 0$.

It is clear that $\mathcal{L}F \subset \mathcal{M}F$, but they are not equal in general.
In the **mesoscopic theory** of phase transitions F_ε would represent the total free energy and $\varphi_\varepsilon \in \mathcal{M} F_\varepsilon$ the corresponding stable equilibrium states.

If a **macroscopic theory** is to be regarded as a limit of mesoscopic theory, then macroscopic stable equilibria should belong to $\mathcal{L} F$ with the Γ-limit F interpreted as macroscopic free energy. The validity of such an approach depends on the size of $\mathcal{M} F \setminus \mathcal{L} F$. If it is not empty, an additional selection principle is needed to identify the solutions of the macroscopic problem that are relevant to the mesoscopic theory particularly if $\mathcal{L} F$ is small in $\mathcal{M} F$.
Examples of different relations between \mathcal{MF} and \mathcal{LF}

ϑ is a given, continuous L-periodic function

L^p_{per} or L^∞_{per} is the space of L-periodic functions with restrictions that are p^{th}-power integrable or essentially bounded on $(0, L)$

Problem I: to minimize

$$J_\epsilon(\varphi^*) = \min_{\varphi \in L^4_{\text{per}}} J_\epsilon(\varphi) := \int_0^L \left\{ \epsilon \varphi'^2 + \frac{1}{4} (\varphi^2 - 1)^2 - \varphi \vartheta \right\} ds.$$

Problem II: to minimize

$$\tilde{J}_\epsilon(\psi^*) = \min_{\psi \in L^4_{\text{per}}} \tilde{J}_\epsilon(\psi) := \int_0^L \left(\sqrt{\epsilon} \psi'^2 + \frac{1}{4 \sqrt{\epsilon}} (\psi^2 - 1)^2 - \psi \vartheta \right) ds.$$

If ϑ in J_ϵ is replaced by $\sqrt{\epsilon} \vartheta$, problem I is transformed into problem II but there is an essential difference between the two as they stand
and its Minimizers

\(X = L^4_{\text{per}} \) with the weak topology - bounded sets are metrizable

The \(\Gamma \)-limit \(J \) of \(J_\varepsilon \) is

\[
J(\varphi) =: \Gamma- \lim J_\varepsilon(\varphi) = \int_0^L W^{**}(\varphi, \vartheta) \, ds,
\]

where \(W^{**}(\cdot, \theta) \) denotes the convex envelope of \(W(\cdot, \theta) \).

Since \(W \) is bounded below, the set of minimizers of \(J \) is non-empty and there are various possibilities.

- The minimizer may be unique as when the set of zeros of \(\vartheta \) is discrete
- Alternatively, there may be an infinite set of minimizers, as when \(\vartheta \) vanishes on some interval.
- A minimizer may be discontinuous at every point of such an interval.
\mathcal{J} and its Minimizers

$X = L^4_{\text{per}}$ with the weak topology - bounded sets are metrizable

$$\Gamma\text{-}\lim J_\epsilon(\psi) = \mathcal{J}(\psi) := \begin{cases}
\varphi_0 N(\psi) - \int_0^L \psi \vartheta \, ds & \text{if } |\psi| = 1 \\
\text{almost everywhere on } [0, L) \\
\text{and } \psi \text{ is piecewise constant,} \\
+\infty & \text{otherwise,}
\end{cases}$$

where $N(\psi)$ is the number of discontinuities of ψ in $[0, L)$ and

$$\varphi_0 = 2 \int_{-1}^1 \sqrt{\frac{1}{4}(\phi^2 - 1)^2} \, d\phi = \frac{4}{3}.$$

Elements of $\mathcal{M}\mathcal{J}$ are piecewise constant functions ψ with a finite number of jumps and $N(\psi)\varphi_0$ is a weighted count of jumps per period.

Roughly speaking the first term strives to minimize the number of jumps, but this process is controlled by ϑ.
A difference between $\mathcal{M}\tilde{\mathcal{J}}_\varepsilon$ and $\mathcal{M}\mathcal{J}_\varepsilon$

Elements of $\mathcal{M}\tilde{\mathcal{J}}_\varepsilon$ have a regularity property independent of ε because the set

$$\{\Phi(\psi_\varepsilon) \psi_\varepsilon \in \mathcal{M}\tilde{\mathcal{J}}_\varepsilon, \varepsilon \in (0, 1)\},$$

where $\Phi(\phi) = \int_0^\phi |s^2 - 1| \, ds$,

is bounded in the Sobolev space $W^{1,1}_{\text{per}}$.

In contrast, minimizers of J_ε have no regularity independent of ε.

An analysis of the relation between $\mathcal{M}\mathcal{J}$ and $\mathcal{L}\mathcal{J}$ is consequently more difficult and is our concern here.
To Get Around This

note that the Euler-Lagrange equation implies that
\[A'_\varepsilon(s) = \partial_\vartheta W(\varphi_\varepsilon(s), \vartheta_\varepsilon(s))\vartheta'_\varepsilon(s) \]
where the adiabatic variable
\[A_\varepsilon(s) := W(\varphi_\varepsilon(s), \vartheta_\varepsilon(s)) - \frac{\varepsilon}{2} (B(\varphi_\varepsilon)'(s))^2. \]

and we have the estimates
\[M^{-1} \leq \varphi_\varepsilon(s), \varphi(s) \leq M \text{ for } s \in \mathbb{R}, \quad \|A_\varepsilon\|_{H^1_{\text{per}}} \leq M, \]

Therefore, if periodic solutions \(\varphi_\varepsilon \) converge weak* in \(L^\infty_{\text{per}} \) to \(\varphi \),
then, after passing to a subsequence, \((A_\varepsilon, \vartheta_\varepsilon) \) converges weakly in \((H^1_{\text{per}})^{d+1} \) to some \((A, \vartheta) \).

The idea is to obtain a representation for weak* limits of solutions in terms of \(A \) and \(\vartheta \).
Of course \(\vartheta \) and \(A \) are both unknown.
The Result - in a Nut Shell

LJ under the assumption that the limiting problem, with $\varepsilon = 0$, has at least one piecewise continuous minimizer.

There exists a set $E \subset (0, 1)$ which is Lebesgue dense at 0

$$\lim_{t \downarrow 0} \frac{\text{meas } E \cap [0, t]}{t} = 1$$

with the following property:
Elements of LJ which arise from sequences in E are true minimizers of

$$\inf_{\varphi \in L^\infty_{\text{per}}} \int_0^L W(\varphi(s), \vartheta(s)) \, ds$$

not only of the relaxed problem
and are piecewise continuous functions with the minimal weighted number of jumps
Ignoring Variational Structure

Suppose that \(\vartheta_\varepsilon, \varepsilon \in E \) is bounded in \((H^1_{\text{per}})^d\), and that

\[
\varepsilon B'(\varphi_\varepsilon(s))(B'(\varphi_\varepsilon)\varphi'_\varepsilon)'(s) - \partial_\phi W(\varphi_\varepsilon(s), \vartheta_\varepsilon(s)) = 0 \text{ on } \mathbb{R},
\]

It is easily shown that

\[
\|\vartheta_\varepsilon\|_{(H^1_{\text{per}})^d} \leq M \Rightarrow C(M)^{-1} \leq \varphi_\varepsilon(s) \leq C(M) \text{ for } s \in \mathbb{R},
\]

Thus

\[
\{\vartheta_\varepsilon : \varepsilon \in E\} \text{ is weakly relatively compact in } (H^1_{\text{per}})^d,
\]

\[
\{\varphi_\varepsilon : \varepsilon \in E\} \text{ is weak* relatively compact in } L^\infty_{\text{per}}.
\]

Therefore, for a sequence of \(E \ni \varepsilon \downarrow 0 \),

\[
\vartheta_\varepsilon \rightharpoonup \vartheta \text{ in } (H^1_{\text{per}})^d \text{ and hence uniformly on } \mathbb{R},
\]

and \(\varphi_\varepsilon \rightharpoonup^* \varphi \text{ in } L^\infty_{\text{per}} \),

where \(\vartheta \) and \(\varphi \) depend on the sequence.
Bounding the Weighted Number of Jumps

Without variational characterization of φ_ε

Theorem

$$\liminf_{E \ni \varepsilon \downarrow 0} \frac{\sqrt{\varepsilon}}{2} \int_{[0,L]} (B(\varphi_\varepsilon(s))')^2 \, ds \geq \sum_{s \in \mathcal{O}} \varphi(\vartheta(s)),$$

where

$$\mathcal{O} = \{ s \in [0, L) : \varphi \text{ is discontinuous} \}.$$

If \mathcal{O} is infinite, then both sides are infinite.
Recall that $\varphi(\vartheta(s))$ is bounded below by a positive constant.
Therefore if left side tends to zero as $\varepsilon \to 0$, the limit is continuous.
In general: he left hand limit bounds the number of jumps of the weak* limit function φ.
Limiting Behaviour of Minimizers

- Suppose the $\varepsilon = 0$ variational problem has at least one piecewise regular minimizer with a finite number of jumps.

Does the weak* limit φ of minimizers φ_{ε} have a finite number of jumps?

We need a hypothesis on the dependence of ϑ_{ε} on ε.

$$\|\vartheta_{\varepsilon} - \vartheta\|_{(L^1_{\text{per}})^d} = o(\sqrt{\varepsilon}) \text{ as } \varepsilon \downarrow 0$$

and, for almost all $\varepsilon \in (0, 1)$,

$$\liminf_{\lambda \downarrow 0} \frac{\|\vartheta_{\varepsilon} - \lambda - \vartheta_{\varepsilon}\|_{(L^1_{\text{per}})^d}}{\lambda} = \Lambda(\varepsilon) \text{ where } \sqrt{\varepsilon}\Lambda(\varepsilon) \to 0.$$

This is automatic of ϑ_{ε} is a C^1-function of ε; in particular when $\vartheta_{\varepsilon} = \vartheta$, independent of ε.
Asymptotic Behavior of the Energy

Recall that

\[\mathcal{E}(\varepsilon) = \inf_{\varphi \in H^1_{\text{per}}} \int_0^L \left(\frac{\varepsilon}{2} (B(\varphi))'\right)^2 + W(\varphi, \vartheta_{\varepsilon}) \right) \, ds, \quad \varepsilon > 0, \]

\[\mathcal{E}(0) = \int_0^L A(s) \, ds \text{ where } A(s) = \inf_{\phi} W(\phi, \vartheta(s)). \]

Theorem

*If a piecewise regular minimizer \(\varphi \) exists then

\[
\limsup_{\varepsilon \searrow 0} \frac{\mathcal{E}(\varepsilon) - \mathcal{E}(0)}{\sqrt{\varepsilon}} \leq 2 \sum_{s \in Q(\varphi)} \varphi(\vartheta(S_n)) =: 2\mathcal{W}(\varphi)
\]

\(\mathcal{W}(\varphi) \) is the weighted number of jumps of \(\varphi \).
Our main corollary of these observations is that, *almost always*, solutions to the variational problem converge weak* to piecewise regular minimizers with a minimal number of jumps, in the following sense:

Theorem

For any $\delta > 0$ *there is a set* $E_\delta \subset (0, 1]$ *which is dense at 0 with the following property.*

If a sequence $\{\varphi_{\varepsilon_n}\}$, $E_\delta \ni \varepsilon_n \to 0$, *of minimizers converges weak* in L^∞_{per} *to some function* φ, *then* φ *is an actual minimizer with weighted number of jumps* $\mathcal{W}(\varphi) \leq \mathcal{W}_{\text{min}} + \delta$.
Theorem
There exists a piecewise regular minimizer with a minimal weighted number of jumps.

Let

$$N^* = \max_{\varphi_{\text{min}}} N(\varphi_{\text{min}}),$$

where the maximum number of actual jumps is taken over all piecewise regular minimizers with minimal weighted number of jumps.

Then, $N^* < \infty$ and for any $\delta > 0$, E_δ can be chosen such that

$$N(\varphi) \leq N^*$$

where $N(\varphi)$ is the actual number of jumps of φ in the preceding theorem.