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o Large-scale PIN dataset are available nowdays

@ Data are biased and incomplete

Is it possible to use the available data reliably?

Yes, if we understand the relation between the patterns of a real
graph and those of a graph sample

A Annibale Sampling from biological networks



Quantifying biases Tailored random graph ensembles Sampling protocols Results

Outline

© Quantifying biases
@ Tailored random graph ensembles

A Annibale Sampling from biological networks



Quantifying biases Tailored random graph ensembles Sampling protocols Results

Graphs/Networks in a nutshell

@ size N; 'nodes’: i,j,k=1...N

A Annibale Sampling from biological networks



Quantifying biases Tailored random graph ensembles Sampling protocols Results

Graphs/Networks in a nutshell

@ size N; 'nodes’: i,j,k=1...N

1 +—
@ 'links’: Connectivity matrix Cij Z{ 0 oth]erwise

A Annibale Sampling from biological networks



Quantifying biases Tailored random graph ensembles Sampling protocols Results

Graphs/Networks in a nutshell

@ size N; 'nodes’: i,j,k=1...N 1
" . . o —)
@ 'links’: Connectivity matrix Cij { 0 otherwise

o degrees: k; =) .cij; k= (ki ka,...,kn)
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Graphs/Networks in a nutshell

i

0 otherwise

@ size N; 'nodes’: i,j,k=1...N 1
@ 'links’: Connectivity matrix Cij = {

o degrees: k; =) .cij; k= (ki ka,...,kn)

015

@ degree distribution

p(k) = N_l Z 676,7%

005
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Graphs/Networks in a nutshell

@ size N; 'nodes’: i,j,k=1...N 1 i
@ 'links’: Connectivity matrix Cij = { 0 o;jerwise
o degrees: k; =) .cij; k= (ki ka,...,kn)

@ degree distribution

p(k) = N_l Z 676,7%

005

@ Degree correlation

Wk, k') = Zij CijOk k; Ok’ k; ki =k |
2ij Cig
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Macroscopic measures of topology

e p(k), W(k, k") macroscopic measures, independent on N

@ Not independent:
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k' k
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Macroscopic measures of topology

e p(k), W(k, k") macroscopic measures, independent on N

@ Not independent:

Wk = 3" Wk, K) = ]“]’E(’“) F= Y kp(k)
k' k

o No degree correlations = W (k, k') = W (k)W (k')
@ Define
Tk, k) = W (k, &)/ W (k)W ()
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Macroscopic measures of topology

e p(k), W(k, k") macroscopic measures, independent on N

@ Not independent:

Wk = 3" Wk, K) = ]“]’E(’“) F= Y kp(k)
k' k

o No degree correlations = W (k, k') = W (k)W (k')
@ Define
Tk, k) = W (k, &)/ W (k)W ()

IT # 1 signals presence of structure beyond degrees statistics
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@ Random graph ensemble G: set of allowed graphs G and
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Tailored random graphs ensembles

@ Random graph ensemble G: set of allowed graphs G and
probability P(c) >0V ce G

e Tailored G: given ©(c) = (21(c),...,Qr(c)), demand
e Hard: Q(c) =QVceGyg
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Tailored random graphs ensembles

@ Random graph ensemble G: set of allowed graphs G and
probability P(c) >0V ce G
e Tailored G: given ©(c) = (21(c),...,Qr(c)), demand
e Hard: Q(c) =QVceGyg
1

PL(C|Q) - ZL(Q) 59((3)797 ZL(Q) = ZG(;Q(C)7Q
ce
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Tailored random graphs ensembles

@ Random graph ensemble G: set of allowed graphs G and
probability P(c) >0V ce G
e Tailored G: given ©(c) = (21(c),...,Qr(c)), demand
e Hard: Q(c) =QVceGyg
1

Pp(c[?) = m‘sﬂ(c)ﬂv Z1(2) = ZG5Q(C),Q
ce

o Soft: (Qu(c)) =Qu, p=1,...,L
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Tailored random graphs ensembles

@ Random graph ensemble G: set of allowed graphs G and
probability P(c) >0V ce G

e Tailored G: given ©(c) = (21(c),...,Qr(c)), demand
e Hard: Q(c) =QVceGyg

1
Pr(c|Q) = m‘sﬂ(c)ﬂa ZL() =Y 50 .0

celG

o Soft: (Qu(c)) =Qu, p=1,...,L

1 w C
Py(c|Q) = A IR Zr ()= ex (S0 (e)
ceG

with w,, () solved from . Pr(c|Q)Q,(c) = Q,
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Tailored random graphs ensembles

@ Random graph ensemble G: set of allowed graphs G and
probability P(c) >0V ce G
e Tailored G: given ©(c) = (21(c),...,Qr(c)), demand
e Hard: Q(c) =QVceGyg
1

PL(C|Q) - ZL(Q) 59((3)797 ZL(Q) = ZC;(;Q(C)7Q
ce

o Soft: (Qu(c)) =Qu, p=1,...,L

1 w C
Py(c|Q) = A IR Zr ()= ex (S0 (e)
ceG

with w,, () solved from . Pr(c|Q)Q,(c) = Q,

Numerical sampling of w,,(£2) hard for sophisticated €2, but
progress feasible for suitable choices and N large!
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Ensembles as null models or proxies

e Can any c* by G, with © = Q(c*)

e Increasingly detailed measurements Q = (k, p, 1L, .. .)

/ G = {0, 1}N(N=1)/2 \

% D,
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Hierarchy of ensembles

(i) Erdos-Renyi graphs
_ k k
P(clk) = 11 {N‘SW + (1 - N) 5%.,0] (soft)

(ii) prescribe k = (kq,...,kn)

(iii)
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Hierarchy of ensembles

(i) Erdos-Renyi graphs
_ k k
P(clk) = 11 {N‘SW + (1 - N) 5%.,0] (soft)

(ii) prescribe k = (kq,...,kn)

(iii)

Plek.@) = 295 TT [ S gk, k)00, + (1= ki) o o
Z0e.@) U N
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Hierarchy of ensembles

(i) Erdos-Renyi graphs
_ k k
P(clk) = 11 {N‘SW + (1 - N) 5%.,0] (soft)

(ii) prescribe k = (kq,...,kn)

(iii)

Ok k(c
P(eli Q) = ot 1] mQ(ki,kj)a%l + <1<]’3Q(ki,kj)>5c,,j,o}

Right choice:
Q(k, k') = T1(k, K")kk'/ (k)
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Hierarchy of ensembles

(i) Erdos-Renyi graphs
_ k k
P(clk) = 11 {N‘SW + (1 - N) 5%.,0] (soft)

(ii) prescribe k = (kq,...,kn)

(iii)

Ok k(c
P(eli Q) = ot 1] mQ(ki,kj)a%l + <1<]’3Q(ki,kj)>5c,,j,o}

Right choice:
Q(k, k') = T1(k, K")kk'/ (k) = W (k, k") /p(k)p(K')
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o consider all graphs with same p, W
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Modelling biological networks

@ Biological network ¢ = measure p(k), W (k, k)

o consider all graphs with same p, W

P(c|p, W) ZP ck, W) Hp

[A Annibale, ACC Coolen, LP Fernandes, F Fraternali J Kleinjung J. Phys. A: Math. Theor. 42 485001

(2009)]
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Distance between networks

Information theory

4

Distance between and cp

P(c|pa, Wa)
D P Wa)log ————————~
AB = QNE (c|pa, Wa)log Plelps. Ws)
P(clpr, W)
§ P(c|pp, Wi) log — P8V B)

:f( »PB, 7WB)
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Dendrograms

dom graph ensembles Sampling protocols
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[LP Fernandes, A Annibale, J Kleinjung, ACC Coolen, F Fraternali PLoS ONE 5(8): e12083 (2010) ]
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Accounting for biases

sampling

relation?

p, W

Y
’B\
3
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Accounting for biases

sampling
C »
relation?
p,W > W
So far:

@ only p’ was studied and

@ only for random node sampling
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Accounting for biases

sampling
¢ > C Microscopic

relation?

Y

p, W p', W' Macroscopic
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(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

ol — 1 mnode i detected
7| 0 otherwise

A Annibale Sampling from biological networks



Quantifying biases Tailored randor ph ensembles Sampling protocols Results

(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

ol — 1 mnode i detected
7| 0 otherwise

H P
@ bond undersampling: ¢;; = 7;;¢;;

. 1 bond i — j detected
971 0 otherwise
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(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

ol — 1 mnode i detected
7| 0 otherwise

o bond undersampling: ¢;; = 7;,¢i;
. 1 bond i — j detected
771 0 otherwise
@ bond oversampling: cfij = cij + (1 — cij) \ij

N — 1 bond i — j created
“ 1 0 otherwise
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(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

~_J 1 nodei detected
7171 0 otherwise

o bond undersampling: ¢;; = 7;,¢i;
~_J 1 bondi—j detected
Tii =1 0 otherwise
@ bond oversampling: cfij = cij + (1 — cij) \ij
{ 1 bond i — j created
)\ij =

0 otherwise

(3 in combination

cij = oioj[ricij + (1 — cij) Aij]
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(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

ol — 1 node i detected T
"7 1 0 otherwise 11—z
Y
@ bond undersampling: Cij = TijCij

. 1 bond i — j detected
971 0 otherwise

@ bond oversampling: cfij = cij + (1 — cij) Nij

N — 1 bond i — j created
“ 1 0 otherwise

[} in combination

cij = 050 [ricij + (1 — cij) Aij]

A Annibale Sampling from biological networks



Quantifying biases Tailored rando ph ensembles Sampling protocols Results

(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

ol — 1 node i detected T
"7 1 0 otherwise 11—z
Y
@ bond undersampling: Cij = TijCij

. 1 bond i — j detected
771 0 otherwise

@ bond oversampling: cfij = cij + (1 — cij) Nij

N — 1 bond i — j created
“ 1 0 otherwise

(3 in combination

cij = 050 [ricij + (1 — cij) Aij]

A Annibale Sampling from biological networks



Quantifying biases Tailored rando ph ensembles Sampling protocols Results

(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

ol — 1 node i detected T
"7 1 0 otherwise 11—z
Y
@ bond undersampling: Cij = TijCij

. 1 bond i — j detected
771 0 otherwise

@ bond oversampling: cfij = cij + (1 — cij) Nij

N — 1 bond i — j created N1z
“ 1 0 otherwise 1-N"1z
(3 in combination

cij = 050 [ricij + (1 — cij) Aij]
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(Connectivity-dependent) Sampling protocols

T
@ node undersampling: Cij = 0i0Cij

~_ | 1 node i detected x(ky)
7171 0 otherwise 1—x(k;)
o bond undersampling: ¢;; = 7;;¢;;

~_J 1 bondi—j detected
Tii =1 0 otherwise

@ bond oversampling: cfij = cij + (1 — cij) Nij

N — 1 bond i — j created N=1z(k;, k)
“ | 0 otherwise 1 — N7 2(ky, ky)
(3 in combination

cij = 050 [ricij + (1 — cij) Aij]

A Annibale Sampling from biological networks



Quantifying biases Tailored random graph ensembles Sampling protocols Results

Macroscopic features

A Annibale Sampling from biological networks



Quantifying biases Tailored random graph ensembles Sampling protocols Results

Macroscopic features

bo, WO

A Annibale Sampling from biological networks



Quantifying biases Tailored random graph ensembles Sampling protocols Results

Macroscopic features

bo, WO

Zi Uiék,zj Cijt

(e = ==

/
Zij cijék,ze cgzék’,zé e

/
ij Cij

(k,K'|c') =
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Macroscopic features

(- DorA

bo, WO

Zi Uiék,zj Cijt

(e = ==

/
Zij cijék,ze cgzék’,zé e

/
ij Cij

(k,K'|c') =
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Macroscopic features

bo, WO

Zi Uiék,zj Cijt >
o7,

(kle') = ( = |

Z"c/"ék S,k 5k’ S,
AAN 1] 1) TR 2a0 Cip »2.0 €0
(k1) = { -

/
ij Gij ’

)
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Macroscopic features

bo, WO ?

Zi Uiék,zj Cijt >
o

(kle') = (==

A

Z"c/"ék S,k 5k’ S,
AAN 1] 1) TR 2a0 Cip »2.0 €0
(k1) = { -

/
ij Gij ’

)
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Macroscopic features

Do, WO

Zi Uiék,zj Cijt >
o

(kle') = (==

A

(k,K|c/) = <Z” c;j(sk’zf Céfakl’zé CQ‘Z>
’ i Cij oA

)
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Macroscopic features

S Plelm. 1) | l (g
C
Po, Wo

Zi Uiék,zj Cijt >
>0 o,

/

Zij Cijék’Zz iy 5’“’722 e >
/

Zij Cij o7,

(kl, y,2) = ngnoozcjmc|po,wo><

(KL, ,2) = Jim >~ Plelpo, Wo) (
C
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Macroscopic features

S Plelm. 1) | l (g
C
Po, Wo

Zi Uiék,zj Cijt >
>0 o,

/

Zij Cijék’Zz iy 5’“’722 e >
/

Zij Cij o7,

(kl, y,2) = ngnoozcjmc|po,wo><

(KL, ,2) = Jim >~ Plelpo, Wo) (
C

= Statistical mechanics techniques =
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Macroscopic features
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= Statistical mechanics techniques =
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Results

g e(@)p(@){ala)T (kla) + ab(a)£(kl9) }
k34 p(a)z(q)

p(klz, v, 2) =

gt >0 2(@2(@){p(@)p(a)2(a, 4 )T (kla) T (K'1a") + EW (0, a')y(a, d' ) E(kla) £(k'|a") }

w k:,k/ T,Y,z) = —
(o sy 2) K@ 9. 2) 2 g p(@)2(0)

g z(@)p(a)ale) + qb(q)]
g r(@)z(q)

k@, 2) = kp(kle,y, 2) =
k

with

min{k—1,q} a ak—lfn(q)

THa) =@ (1) S @1 = b))

"0 (E—1—
( )min{k—lvq—l} -1 ak—lfn(q) )
_ _—al(q - n qg—1—n
L(klq) = e Py ("% )Gy @0 k@)
%
a(e) = Y p(d)z(a)z(a,d"),  bla) = > @(d)y(a,a ) W(a, q)
2'>0 ap(q) >0
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Poisson - Unbiased Bond Oversampling

1.2-

A theory =2
%~ theory z=5

(=Y

-0 theory z=10

1.2

-x theory z=5
- theory =10

- Biased Bond Oversampling

1.2¢

[CIN %-x theory
Y G- theory =10

k+1
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Random sampling from Elegans: degree correlations

15 1015 20 25 N % 40 45 055 60 15 1015 2 25 % % 40 45 0 % 0

Figure: Random

1051015 20 2 2 % 40 45 S0 S5 60 1051015 20 25 N % 40 45 50 55 60 15 1015 2 25 0 % 40 45 0 % 60

Figure: Random bond oversampling z = 1,y = 1,z = 1, N = 3512, k = 3.72

[A Annibale, ACC Coolen Interface Focus December 6, 2011 1:836—856]
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© Inferring the true network from imperfect data
@ Bayesian analysis
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Bayesian analysis

e /=1,..., L species
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Bayesian analysis

e /=1,..., L species
@ a=1,..., M experimental protocols, parameters
004 = {xaa Yo, Zoz}
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Bayesian analysis

e /=1,..., L species

@ a=1,..., M experimental protocols, parameters
0o = {Ta; Yas 20}

@ Observed networks ¢ = py, Wy, 0,7
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Bayesian analysis

e /=1,..., L species

@ a=1,..., M experimental protocols, parameters
0o = {Ta; Yas 20}

@ Observed networks ¢ = py, Wy, 0,7

cy cy
T 0, =7
< p?/ W[fl
pe =7, W;, ="
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Bayesian analysis

e /=1,..., L species

@ a=1,..., M experimental protocols, parameters
0o = {Ta; Yas 20}

@ Observed networks ¢ = py, Wy, 0,7

cy cy

P
-

¢ PN «
s Wz
pe =7, W;, ="

e Maximize p({ea}, {pf}v {WZ}HC?}) Oover py, Wfa ea
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@ Uniform choice for prior

p(p27W5)7 p(oa)
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@ Uniform choice for prior

p(pe, We),  p(0a)

o Likelihood:
p(cg|9aapf7W€) = ZP<C€|W5ap£) p(C?|9a7CE>

Cy
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@ Uniform choice for prior

p(p27W5)7 p(oa)

o Likelihood:
p(cg|9aapf7W€) = ZP<C€|W5ap£) p(C?|9a7CE>

cy
with

p(cy]0“, c¢) determined from relation between ¢, and c§ (known!)
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@ Uniform choice for prior
p(pe; We),  p(ba)

o Likelihood:
p(cg|9aapf7W€) = ZP<C€|W5ap£) p(C?|9a7CE>

cy
with

p(cy]0“, c¢) determined from relation between ¢, and c§ (known!)

o Calculate (p(c7'|0“, c;)) via statistical mechanics
@ Maximise posterior using Lagrange multipliers to handle
constraints

Yoy =1 Y Wilk,q) = kpe(k)/ke
k q
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@ Uniform choice for prior
p(pe; We),  p(ba)

o Likelihood:
p(cg|9aapf7W€) = ZP<C€|W5ap£) p(C?|9a7CE>

cy
with

p(cy]0“, c¢) determined from relation between ¢, and c§ (known!)

o Calculate (p(c7'|0“, c;)) via statistical mechanics
@ Maximise posterior using Lagrange multipliers to handle
constraints

Yoy =1 Y Wilk,q) = kpe(k)/ke
k q

@ get a set of equations for py, Wy and =%, y“, 2% in terms of
the observed py', W/
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Conclusions

@ Tailored random graphs ensemble can be used to model
complex networks and quantify distances between them.

@ Tailored graph ensembles can be used to quantify sampling
effects on degree distributions and degree correlations for
general sampling protocols (simulations match theory!)

@ Underway: Bayesian inference of macroscopic features of
biological networks and sampling parameters of different
experiments given the observed networks

o Future: go all the way back to the original matrices
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