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Abstract

We prove that the equation «1 theory of semigroup* becomes undecidable if we add a semilattice
structure with a 'touch of symmetric difference'. At a corollary we obtain that the variety of all
Boolean algebras with an associative binary operator has a 'hereditarily' undecidable equational
theory. Our results have implications in logic, e.g. they imply undeddabUi ty of modal logics extending
the Lambek Calculus and undeddabiBty of Arrow Logics with an associative arrow modality.

Below we prove that semilattice-ordered semigroups with a 'touch of symmetric dif-
ference' have a 'hereditarily' undecidable equational theory.

There were results and methods available showing that many discriminator va-
rieties having an associative binary operation are undecidable. See e.g. Andreka-
Givant-Nemeti [2] for a relatively large variety of such methods and references. For
completeness we note that Tarski around 1950 and Maddux around 1977 already had
such kinds of results.

One of the main aims of our method herein is to elaborate a general method which
works for varieties which are very far from discriminator varieties. By 'very far' we
mean that we do not use discriminator algebras at any point of our proof. E.g. one of
the proofs in Kurucz-Nemeti-Sain-Gyuris [10] proves that a certain variety, say, V is
undecidable by proving that for every algebra A € V one can define a new structure
B (with both universe and operations different from those of A) being a subdirect
product of discriminator algebras, then one can use the discriminator property of B.
In contrast, the present proof method does not use discriminator algebras even in this
indirect way.
THEOREM 0.1

Let K be a class of algebras such that the binary operations V, *, o and the constant
1 are term definable in K. Assume that conditions (l)-(5) below hold in K.

1. V is an upper semilattice (i.e. x < y i f f x V y = y) with greatest element 1
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92 Undeddable Varieties of Semil&ttice-ordeied Semigroups

2(i) (r * y) * (x • y) < x * y
(ii) y*y<x = > x • i < y * y,

(iii) x < (x * y) V y
3. o distributes over V
4. o is associative
5. For infinitely many nonisomorphic monadic-generated1 simple Relation Algebras

A, the {0, V, o}-reduct of A is a subreduct of some element of K and A =̂ x*x = 0.

Then the equational theory of K is undeddable.

PROOF. Fix a unary term c(x) of type t. Let Qeq denote the set of all quasiequations
in the language of semigroups (using o for the semigroup operation). For any q € Qeq
of form

[(n = cri) A . . . A (rn = <rnj\ -* (r0 = cr0)

an equation ec(q) of type t is denned as follows.

«c(g) d= [(r0 V C(T)) * (cr0 V c(r))] V [(<r0 V c(r)) * (r0 V c(r))] < c{r),

where r d= (n * <n) V ( ^ * rx) V - • • V (rn * <rn) V (o-n * rn). I

Let SG denote the class of all semigroups.

LEMMA 0.2
If

(a) c is increasing, i.e. K ^ x < c(x);
(b) 'dual'-relativizing with c(x) is a o-homomorphism for every x, i.e.

K |= (y o z) V c(x) = [(y V c(x)) o (z V c(x))] V c(x)

then for any q € Qeq
SG [= 9 = > K [= Cc(g).

To prove Lemma 0.2 we need Claims 0.3 and 0.4 below.

CLAIM 0.3
For any algebra A 6 K, a e WA

PROOF. For every Jb (ib = 1 , . . . , n)

((n * <7t) Kin* <rk))[a] < (rt * ak)[a] < r[a] < c{r)[d] < (^ V c(r))[5].

Assume that ([r0 V c(T))[d] = («r0 V c(r))[5] holds. Then by (2)(ii)

[(roVc(r)),(<r0Vc(r))][5] < ((rt*<rt)«(rJt*<ri))[a] <' (ri*<rt)[a] < r[a] < c(T)[a}.

Similarly, [(<70 Vc(r)) * (T0VC(T))] [a] < c(r)[a] also holds, contradicting A ^ ec(q)[a\.
I

1A RoUtioo A l febn u man id i c -gcns rued rff it L> g<n<»t«d by i »tt of d«montj I »iti»fying I « 1 = I .
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CLAIM 0.4

For every Jfc (£ = 1 , . . . , n)

K|= (rkyc{T) = <xkWc{r)).

PROOF.
C x (1) (2)(ui)

K f = J i V C(T) H r i V r V C(T) > n V (ck * T>) V c(r) > <rt V c(r).

The other direction can be proved similarly, thus the proof of Claim 0.4 is completed.
I

PROOF, [of Lemma 0.2] Assume K £ ec(q) that is, there is some A € K and 5 £ "A
such that A £ ee(g)[5]. Let 5 =? (5, o5) be the following algebra:

B d={xVc(T)(a) : xeA}

I O S J I 1= (xo^y) Vc(r)(a), for any x, y € .0.

Then, by (b), B is a semigroup. Also by (b) and by Claims 0.3 and 0.4 above,

B \= (T0 ? <T0)[a'] and 8 K i = # 1 (i = l , . . . , n ) ,

where a' W (..., aj V (^^[5],.. . ) i g u . Thus £ £ gfa'], i.e. SG £ q. I

Now let FSG denote the class of all finite semigroups.

LEMMA 0.5

If

(c) c is normal2 in the special relation algebras occurring in condition (5)

then for any q £ Qtq
K |= ec(g) = > FSG |= q.

PROOF. Assume FSG £ q. Then there is a finite semigroup Q in which q does not
hold. Then condition (5) of the Theorem ensures3 that there is some A € K such
that the Cayley-representation 4 of Q can be embedded into the 'o'-reduct of A, thus
A £ q. Again by (5), x ** x is the empty set for any i € A. Thus by (c) C(T) = 0
that is, the right hand side of ec(g) is equal to 0. But the left hand side is not, since
for any x, y € A if ( i * y) V (y * r ) = 0 then

(2)(Ui) (1)
i < ( i * y) V y < ( i * y) V (y * i ) V y = y,

and similarly, y<x. Thus .4 £ ec(q) that is, K £ ee(q). •

LEMMA 0.6

Let Q be a quasivariety of semigroups. Assume FSG C Q. Then the set Qeq(Q) of
quasiequations valid in Q is undecidable5.

c U norm*] is u *lg«bn >* iff >» ̂  c(0) » 0.
3C(. Andr«lc»-GiTujt-N«m«ti [2] u d N4m«ti [11] (or detail.
*For »ny itmijroup C, the C*ylejr r«pr««atition o( ( ii > iemijToap whote demenu »re fanctiom uid the

ttmifroap oper&tioa u the composition of function*.
W« do not nmd to uinmc that the whole of F S G u in Q, bat th« pmant form u ampler to »t»tc.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article-abstract/1/1/91/783011 by King's C

ollege London user on 05 June 2019



94 Uadeddable Varieties of Semilattice-ordeied Semigroups

PROOF. This lemma is essentially known, therefore we include here only an outline of
the proof6. The full proof is included e.g. in the long, tutorial version of the present
paper, also in Andreka-Givant-Nemeti [2], and in the long, tutorial version of Nemeti
[11]; from the latter we recall below all that seem important.

Outline of the proof By a Turing machine-input (TM-input) pair we understand a
pair (T, b) where T is a Turing machine and b is a possible input for T.

A pair {T, b) is called bounded if the execution of {T, b) involves only finitely many
configurations of T. (If (T, b) terminates then it is obviously bounded.) I

CLAIM 0.7
Among the bounded TM-input pairs the terminating and nontermin&ting ones are
recursively inseparable. In other words, there is no decidable set H of TM-input pairs
such that

(for all bounded (T, b)) [(T, b) e H <*=>• (T, b) terminates].

Note that H above was not restricted to contain only bounded pairs.

PROOF. The proof is exactly the same as that of undecidability of the Halting Prob-
lem. (The only extra consists in noticing that the Turing machine constructed by
diagonalization is bounded for every possible input.) I

Next, exactly as in the Handbook of Math. Logic [3], to every TM-input pair (T, b)
we associate a quasiequation qr,t in the language of semigroups. This is a standard
construction, and it is also standard to show that

SG}=gr,i <=> {T,b} terminates,

cf. e.g. op. cit.
Next we consider the standard proof of ((T, b) diverges = > SG ^ QT,b)- There,

from the divergent pair (T,b), one constructs a semigroup S in which qr.i fails (for
some evaluation of the variables).

The next step is to observe that if (T, b) is bounded then we can make 5 finite.
This is done in the following way. The standard construction of S is as a quotient of
a free semigroup G + generated by a finite G- The elements of G * code the possible
configurations of the Turing machine T. But if {T, b) is bounded, then we need only
finitely many configurations. Hence we need only a finite part P C G * of G *. Let
m G u b e large enough such that all words in P are shorter than m. Let ~C G *xG *
be defined by

(Vu;, tx G G *) [w ~ u •<=> (w = u or (|to| > m and |u| > m))].

Then instead of G * we can use G * / ~ since all what is relevant to the execution
of {T, 6) is inside P which is isomorphically represented in G * / ~. Therefore if in
the construction of 5 we replace G * with G * / ~, we will obtain a (perhaps new)
version Si of S, which still has the property S\ fc£ qr,b-

ThU outlia* u d«tAil«d anoofh *ach th*l tuiag the Handbook of 2£*ch. Logic [3] th« iai«re*t«d rc&dcr c u flU
in the p p i . In thU outline we explain how to modify the jundard proof of undccidabUity of Q«j(SG) • { . in the
tbora quoted handbook, to obtain to* p n u g l Lemma 0.6.
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Since G * / ~ is finite, so is Si. This proves that, for any bounded (T, b),

(T, b) diverges = > FSG £ gT>4-

Assume now, FSG CQC SG. Then by the above,

(for all bounded (T, b)) [(T, b) terminates <=> Q (= qr,b] •

Therefore if Qeq(Q) were decidable then the set

would be decidable too. But this would contradict our Claim 0.7. Thus Qeq(Q) is
undecidable, as was desired.

Now it is left to show a unary term c(x) of type t with properties (a)-(c) of Lemmas
0.2 and 0.5 above. Let

c(x) =f x V (1 o r) V (z o 1) V (1 o x o 1).

Then (a) and (c) obviously hold for c.
To prove (b) it is enough to show that 1 o c(z) < c(r) and c(x) o 1 < c(x), which,

by conditions (3) and (4), obviously hold for the term c above.
Now, since the function ee above is dearly recursive, Lemmas 0.2-0.6 above imply

that the equational theory of K is undecidable, completing the proof of Theorem
0.1. I

I
REMARK 0.8

The operation * is really only a 'touch' of symmetric difference in K. Even x * x is
far from being 0-like. Indeed, let A £ K be arbitrary and let

H = {x € A: x = y* z for some y, z 6 A}
At{H) d= {(x + x)*{x*x) :x <=A} = {(x*x) + (x*x) :x£H}.

Then H is 'atomic', i.e. below each element of H there is an element of At(H) .
This set At(H) of 'atoms' can be almost anything, it can form an arbitrarily large
antdchain, or there can be a lot of elements below At{H) (but not members of H). I

COROLLARY 0.9

(i) The equational theory of the variety BAO° of all Boolean Algebras with an as-
sociative binary operator (which distributes over V) is undecidable.

(ii) BAO° is 'hereditarily' undecidable in the sense that any K CBAO0 satisfying
condition (5) of Thm 0.1 is undecidable.

(iii) The equational theories of Residuated Boolean Monoids (RM) and of Euclidean
Residuated Boolean Monoids (ERM) (as defined in Birkhoff [5] §XTV\5, Jipsen
[8], Jonsson-Tsinakis [9]) are undecidable.

(iv) The equational theory of the variety of dual Brouwerian semilattices with an asso-
ciative binary operator V is 'hereditarily' undecidable (in the sense of (ii) above).7

Cf. e.{. Ptgoxzi [12] for doaJ Broawtriu *«mil*ttic«* with op«nxor*.
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96 Undecidable Varieties of Semilattice-ordered Semigroups

PROOF. We prove only (i), the others are similar
Take '*' to be the real symmetric difference. Condition (5) is satisfied, because now

the {0, V, o)—reduct of any full representable Relation Algebra is a subreduct of some
algebra in K. I
REMARK 0.10

We note that the methods of Andreka-Givant-Nemeti [2] and Simon-Kurucz [14]
yield that the varieties Commutative ERM, Integral ERM, Symmetric ERM and
AERM (cf. Jipsen [8]) have hereditarily undecidable equational theories. For detail
see Simon-Sain-Nemeti [15], where the methods and results are extended to residu-
ated Boolean Algebras with Operators (EUR's in the notation of Jipsen [8]).

Note that the dual version of Theorem 0.1 above also holds.
COROLLARY 0.11
The equational theory of the variety of all Heyting Algebras with an associative binary
operator (which distributes over A) is undecidable.

Before formulating the corollaries in logic we recall some conventions from the logic
literature (cf. e.g. Venema [16]).

In the literature of multi-modal logics by a (O-iype) modality we understand an n-
ary logical connective, say, Oi(<fi, • • • ,¥>n) such that Q,- distributes over 'V in each of
its arguments. In the same multi—modal logic there may be several such connectives,
like Oo, • - . , 0 i . There is no other restriction on what we recall a multi-modal logic
(except that the Boolean connectives are assumed to be available). A modality is
either O-type or O-type. The D-type differs from the O-type only in that it distributes
over 'A' instead of 'V.
COROLLARY 0.12 (Corollaries in logic)
(i) Any multi-modal logic extending (conservatively) the Lambek Calculus is unde-

cidable.
(ii) Any Arrow Logic (cf, e.g. van Benthem [4], Venema [16]) with an associative arrow

modality is undecidable.
(iii) Let L be any multi-modal logic with an associative binary O-type modality o (and

with other arbitrarily 'strange' connectives). Let Thi{o) denote those theorems
of L which involve only o and Boolean connectives. If for every n < u there is
some set U with \U\ > n such that 77ii(o) is valid in the full relational Kripke
frame U x U then the logic L is undecidable.

(iv) Any multi-modal intuitionistic logic with an associative binary D-type modality
is 'hereditarily' undecidable (in a sense similar to item (iv) above).

As contrast we mention the following theorems.
THEOREM 0.13
The equational theory of the variety of all Boolean Algebras with an associative binary
operator (which does not necessarily distribute over V) is decidable.

PROOF. It can be found in Gyuris [6]. I

THEOREM 0.14
The equational theory of the variety of all distributive lattices with an associative
binary operator (which does distribute over V) is decidable.

PROOF. It can be found in Andreka [1]. I
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Applications to Pratt's algebras and logics

In §3 of Pratt [13] Pratt lists as 'work needed' the problem of settling the decidability
properties of the equational theories of the classes of algebras he discussed in that
paper.

Below, we settle some of these questions: The classes we will mention below are
collected on the figure at the beginning of §2 in Pratt's paper.

The variety ISR of idempotent semirings is decidable. (This follows from results
in Andreka [1].)

It looks likely that the methods of Andreka [1] can be extended to decide SLM too
but we did not check this.

It would be good to know if instead of residuated monoids RES we studied its more
mundane version obtained the following way. Add to ISR the operation of classical
equivalence '<-•'. Here, (z *—• y) = — (—x © —y), where © is Boolean symmetric
difference. Let ISR~ denote this variety. Is the equational theory of ISR** decidable?

Let us return to answering questions from Pratt [13] instead of generating new ones.
The variety BSR of Boolean semirings is hereditarily undecddable, e.g. by our Thm.
0.1. Therefore for any class K such that K CBSR or for some reduct Rd(K) of K,
Rd(K) CBSR, whenever K satisfies Condition (5) of Thm. 0.1, then the equational
theory of K is undecidable. Therefore all the classes BSRT, RBM, etc. below BSR
on the figure in Pratt [13] are undecidable. Moreover, all the classes in Pratt [13]
which strengthen BSR either by new axioms or by new operations are undecidable.
(Also the equational theory of LL is undecidable, but we think this was known.)

With the above (together with classical results) more than 2/3-rd of the varieties
on the picture in Pratt [13] seems to be settled (from the point of view of equational
decidability). The only varieties whose decision problems remain open seem to be
RES and ACT.
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