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PRODUCTS OF `TRANSITIVE' MODAL LOGICS

D. GABELAIA, A. KURUCZ, F. WOLTER, AND M. ZAKHARYASCHEV

Abstrat. We solve a major open problem onerning algorithmi properties of prod-

uts of `transitive' modal logis by showing that produts and ommutators of suh stan-

dard logis as K4, S4, S4:1, K4:3, GL, or Grz are undeidable and do not have the �nite

model property. More generally, we prove that no Kripke omplete extension of the om-

mutator [K4;K4℄ with produt frames of arbitrary �nite or in�nite depth (with respet

to both aessibility relations) an be deidable. In partiular, if C

1

and C

2

are lasses of

transitive frames suh that their depth annot be bounded by any �xed n < !, then the

logi of the lass fF

1

� F

2

j F

1

2 C

1

; F

2

2 C

2

g is undeidable. (On the ontrary, the

produt of, say, K4 and the logi of all transitive Kripke frames of depth � n, for some

�xed n < !, is deidable.) The omplexity of these undeidable logis ranges from r.e. to

o-r.e. and �

1

1

-omplete. As a onsequene, we give the �rst known examples of Kripke

inomplete ommutators of Kripke omplete logis.

x1. Introdution. Produts of modal (in partiular, temporal, spatial, epis-

temi, desription, et.) logis|or, more generally, multi-modal languages inter-

preted in various produt-like strutures|are very natural and lear formalisms

arising in both pure logi and numerous appliations; see, e.g., [29, 8, 3, 30, 12, 1,

6, 38℄. For example, dynami topologial logis of [2, 24, 25, 7℄ or spatio-temporal

logis of [38, 15℄ are interpreted in strutures of the form (T;<)� (W;R) where

(T;<) models the ow of time (say, (!;<)) and (W;R) is a quasi-order (a frame

for S4) representing the topologial spae, with the S4-box being understood as

the interior operator over this spae. By interpreting W as a domain of objets

whose properties may hange over time, one an also use suh produt frames as

models for (fragments of) �rst-order temporal and modal logis, temporal data

or knowledge bases.

Introdued in the 1970s [32, 33℄, produts of modal logis have been inten-

sively studied over the last deade; for a omprehensive exposition and further

referenes see [11℄. The landsape of the obtained results that are relevant to

the deision problem for these logis an be briey outlined as follows:

1. The produt of �nitely many logis, whose Kripke frames are de�nable by

reursive sets of �rst-order sentenes, is reursively enumerable [12℄.

2. Produts of two standard logis, where at least one omponent logi is

determined by a lass of frames of �nite bounded depth (like S5), are

usually deidable. This ondition an be onsiderably weakened: produt

logis are often deidable when, in order to hek satis�ability of a formula
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', it is enough to onsider only those produt frames where the depth of

one of the omponents is bounded by some �nite number whih an be

e�etively omputed from '. This result overs multi-modal K and S5 as

well as produts with tense extensions of multi-modal K or temporal logis

of metri spaes [12, 13, 11, 30, 22℄.

3. Produts of two `linear transitive' logis are undeidable whenever the depth

of frames for both omponent logis annot be bounded by any �xed n < !;

examples are produts of K4:3, S4:3, GL:3 or Log (!;<) (the logi of the

frame (!;<)) [28, 31, 35℄.

4. Produts of more than two modal logis are usually undeidable. In fat,

no logi between K�K�K and S5� S5� S5 is deidable [20℄.

Thus, the main gap in our knowledge about the deision problem for produt

logis is the omputational behaviour of produts of two `transitive' logis whose

`depth' is not bounded by any �xed n < ! and at least one omponent logi

has branhing frames. Many natural and useful logis, suh as S4 � S4 and

S4:3�S4, belong to this group. Apart from item 3 above, the only known result

in this diretion onerns produts with Log (!;<). Namely, [11, Theorem 7.24℄

showed that the produt logis Log (!;<) � K4 and Log (!;<) � S4 are not

deidable. However, that proof was rather tailor-made for this speial ase. On

the one hand, it heavily used the linearity and disreteness of (!;<). On the

other hand, the proof redued the undeidable but reursively enumerable Post's

orrespondene problem to the satis�ability problem for the logis in question.

Sine produts like K4 �K4 or S4:3 � S4 are reursively enumerable by item

1 above, there was no hope to `simply extend the proof' to these ases.

In this paper, we introdue a novel tehnique for dealing with produts of logis

with transitive branhing frames. Our main new result is that all produts|and

quite often even the ommutators|of two Kripke omplete modal logis with

transitive frames of arbitrary �nite or in�nite depth are undeidable, in many

ases these produts are not axiomatisable and do not enjoy the (abstrat) �nite

model property, and sometimes they are even �

1

1

-hard. Preise formulations

are given in Setion 3. These results solve a number of open problems from

[12, 27, 6, 11℄.

To a ertain extent, the obtained results are optimal. For example, the produt

of, say, K4 and the logi of all transitive Kripke frames of depth � n, for some

�xed n < !, is deidable. This an be proved using the method of quasi-models

similarly to [11, Theorem 6.10℄.

Modal logi is usually praised for being reasonably expressive and yet ompu-

tationally manageable. Although the series of `negative' results from the 1970{

1980s produed a zoo of `monstrous' modal logis for any taste (see, e.g., [5℄),

basially all of those `monsters' were arti�ial. The standard, natural modal

logis are reasonably simple. The results of this paper show that simple and

natural ombinations of standard modal logis an be extremely omplex. For

example, the undeidable produt logi K4�K4 is de�ned syntatially by the
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axioms of lassial propositional logi, the modal axioms

B(p! q)! (Bp! Bq) A(p! q)! (Ap! Aq)

Bp! BBp Ap! AAp

bAp! Abp abp$ bap

and the inferene rules modus ponens, substitution and neessitation '=B' and

'=A'. Its semantial de�nition is equally natural and transparent (see below

for details).

As a `by-produt,' we also obtain natural Kripke inomplete logis, suh as the

logi [K4;GL:3℄ whih an be obtained by adding to K4�K4 the well-known

axioms

A(Ap! p)! Ap A(p ^Ap! q) _A(q ^Aq ! p):

The struture of the paper is as follows. Setion 2 provides all the relevant

de�nitions. Setion 3 lists the obtained results. The proofs are given in Setions 4

and 5. Roughly, the sheme is as follows. First, in Setion 4, we present a

formula '

1

whih `fores' the existene of `n�m-retangles,' for all n;m < !,

in any frame for K4 � K4. Then, in Setion 5.1, we use these retangles to

enode points of the ! � !-grid, a kind of universal struture where one an

represent one's favourite undeidable master problem, be it the (non)halting

problem for Turing or register mahines, a tiling (or domino) problem, or Post's

orrespondene problem. In this paper we obtain our undeidability results using

Turing mahines (enoded in Setion 5.2) and tilings (enoded in Setion 5.3).

Finally, in Setion 6 we disuss the obtained results and future diretions of

researh.

x2. Produts and ommutators. Given unimodal Kripke frames F

1

=

(W

1

; R

1

) and F

2

= (W

2

; R

2

), their produt is de�ned to be the bimodal frame

F

1

� F

2

= (W

1

�W

2

; R

h

; R

v

);

where W

1

�W

2

is the Cartesian produt of W

1

and W

2

and, for all u; u

0

2 W

1

,

v; v

0

2 W

2

,

(u; v)R

h

(u

0

; v

0

) i� uR

1

u

0

and v = v

0

;

(u; v)R

v

(u

0

; v

0

) i� vR

2

v

0

and u = u

0

:

Bimodal frames of this form will be alled produt frames throughout. Let L

1

be a normal (uni)modal logi in the language with the box B and the diamond

b. Let L

2

be a normal (uni)modal logi in the language with the box A and the

diamond a. Assume also that both L

1

and L

2

are Kripke omplete. Then the

produt of the logis L

1

and L

2

is the (Kripke omplete) bimodal logi L

1

� L

2

in the language ML

2

with the boxes B; A and the diamonds b; a whih is

haraterised by the lass of produt frames F

1

�F

2

, where F

i

is a frame for L

i

,

i = 1; 2. (Here we assume that B and b are interpreted by R

h

, while A and a

are interpreted by R

v

.)
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A good starting point in understanding the behaviour of produt logis is to

�nd basi priniples that hold for every produt frame (W

1

�W

2

; R

h

; R

v

):

� left ommutativity : 8x8y8z

�

xR

v

y ^ yR

h

z ! 9u (xR

h

u ^ uR

v

z)

�

,

� right ommutativity : 8x8y8z

�

xR

h

y ^ yR

v

z ! 9u (xR

v

u ^ uR

h

z)

�

,

� Churh{Rosser property : 8x8y8z

�

xR

v

y ^ xR

h

z ! 9u (yR

h

u ^ zR

v

u)

�

.

These properties an also be expressed by the ML

2

-formulas

abp! bap; bap! abp; bAp! Abp: (1)

Given Kripke omplete unimodal logis L

1

and L

2

, their ommutator [L

1

; L

2

℄

is the smallest normal modal logi in the language ML

2

whih ontains L

1

, L

2

and the axioms (1).

Clearly, we always have [L

1

; L

2

℄ � L

1

� L

2

. However, sometimes more in-

formation an be drawn. First, sine the axioms in (1) are Sahlqvist formulas,

the ommutator of two anonial logis is always anonial [12℄, and so Kripke

omplete (like, e.g., [K4;K4℄ and [K4:3;S4℄). As we will see later on in this

paper, not all ommutators are Kripke omplete; examples are [K4;GL:3℄ and

[GL;Grz:3℄ (see Corollary 4.2 below). Seond, using the Kripke ompleteness

of the ommutators, it is shown in [12, 11℄ that for ertain pairs of logis, their

ommutators and produts atually oinide: for example,

[K4;K4℄ = K4�K4 and [S4;S4℄ = S4� S4:

On the other hand, the Kripke omplete [K4:3;K4℄ does not oinide with

K4:3�K4; see [11, Theorem 5.15℄.

Although produt logis L

1

�L

2

are Kripke omplete by de�nition, there an

be (and, in general, there are) other, non-produt, frames for L

1

�L

2

. This gives

rise to two di�erent types of the �nite model property. As usual, a bimodal logi

L (in partiular, a produt logi L

1

� L

2

) is said to have the (abstrat) �nite

model property (fmp, for short) if, for everyML

2

-formula ' =2 L, there is a �nite

frame F for L suh that F 6j= '. (By a standard argument, this is equivalent to

saying that M 6j= ' for some �nite model M for L; see, e.g., [5℄.) And we say

that L

1

�L

2

has the produt �nite model property (produt fmp, for short) if, for

every ML

2

-formula ' =2 L

1

� L

2

, there is a �nite produt frame F for L

1

� L

2

suh that F 6j= '.

Clearly, the produt fmp implies the fmp. Examples of produt logis having

the produt fmp (and so the fmp) are K �K, K � S5, and S5 � S5 (see [11℄

and referenes therein). On the other hand, there are produt logis, suh as

K4 � S5 and S4 �K, that do enjoy the (abstrat) fmp [12, 34℄, but lak the

produt fmp [11℄. In general, it is well known that many produt logis with at

least one `transitive' (but not `symmetri') omponent do not have the produt

fmp (see, e.g., [11, Theorems 5.32, 5.33, and 7.10℄). A simpleML

2

-formula that

an be used to show that many suh logis do not have the produt fmp is as

follows:

B

+

ap ^B

+

A(p! bB

+

:p);

where B

+

 abbreviates  ^ B . Note that this formula (as well as the others

known so far) is satis�able in appropriate �nite (in fat, very small) non-produt

frames for the logis in question.
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x3. Main results. From now on we only onsider produts and ommutators

of `transitive' (uni)modal logis, that is, normal extensions of K4. In other

words, we deal with extensions of the bimodal logi [K4;K4℄ = K4 �K4. In

this setion we list the main results of the paper and illustrate them by drawing

some onsequenes. The proofs are provided in Setions 4 and 5.

Given a transitive frame F = (W;R), a point x 2 W is said to be of depth

n < ! in F if there is a path x = x

0

Rx

1

R : : : Rx

n

of points from distint lusters

1

in F (that is, x

i+1

Rx

i

does not hold for any i < n) and there is no suh path

of greater length. If for every n < ! there is a path of n points from distint

lusters starting from x, then we say that x is of in�nite depth, or x is of depth

1. The depth of F is de�ned to be the supremum of the depths of its points

(with n < 1 for all n < !). For instane, F is of in�nite depth if it ontains

points of arbitrary �nite depth. By the depth of a bimodal frame (W;R

1

; R

2

)

with transitive R

1

, R

2

we understand the minimal depth of (W;R

1

) and (W;R

2

).

Given lasses C

1

and C

2

of frames, we let

C

1

� C

2

= fF

1

� F

2

j F

1

2 C

1

; F

2

2 C

2

g:

Denote by Log (C) the normal modal logi of a lass C of frames. If C onsists of

a single frame F then we write LogF instead of Log (fFg). Reall that a logi L

is Kripke omplete if L = Log (C) for some lass C of frames.

The main result of this paper is the following:

Theorem 1. Let C

1

and C

2

be lasses of transitive frames both ontaining

frames of arbitrarily large �nite or in�nite depth. Then Log (C

1

� C

2

) is unde-

idable.

More generally, if L is any Kripke omplete bimodal logi ontaining [K4;K4℄

and having produt frames of arbitrarily large �nite or in�nite depth, then L is

undeidable.

We obtain this theorem as a onsequene of more general Theorems 2 and 3

below. To formulate them, we require some terminology. We remind the reader

that a bimodal frame (W;R

1

; R

2

) is alled rooted if there exists r 2W suh that

W = fu 2 W j r(R

1

[ R

2

)

�

ug, where R

�

denotes the reexive and transitive

losure of R. Fix some propositional variables h and v. Given a Kripke model

M based on F = (W;R

1

; R

2

), de�ne new relations

�

R

M

1

and

�

R

M

2

by taking, for

all x; y 2W ,

x

�

R

M

1

y i� 9z 2W

�

xR

1

z and

�

(M; x) j= h () (M; z) j= :h

�

(2)

and (either z = y or zR

1

y)

�

;

x

�

R

M

2

y i� 9z 2W

�

xR

2

z and

�

(M; x) j= v () (M; z) j= :v

�

(3)

and (either z = y or zR

2

y)

�

:

In other words, x

�

R

M

1

y i� xR

1

y and either x, y are of di�erent `horizontal olours'

in the sense that h is true in preisely one of them, or x, y are of the same h-

olour (i.e., x j= h i� y j= h), but there is a point z of di�erent h-olour suh

that xR

1

zR

1

y. Clearly, we always have

�

R

i

� R

i

(i = 1; 2).

1

A set X � W is alled a luster in F if X = fxg [ fy 2 W j xRy and yRxg for some

x 2W .
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For every point x 2 W , de�ne its horizontal and vertial ranks hr

M

(x) and

vr

M

(x) in M as follows:

hr

M

(x) =

8

<

:

n; if the length of the longest

�

R

M

1

-path

starting from x is n < !,

1; otherwise,

(4)

vr

M

(x) =

8

<

:

n; if the length of the longest

�

R

M

2

-path

starting from x is n < !,

1; otherwise.

(5)

Note that, say, hr

M

(x) is not the same as the depth of x in the frame (W;

�

R

M

1

).

For example, if xR

1

y, yR

1

x and x, y are of di�erent h-olours then x

�

R

M

1

x and

hr

M

(x) =1.

For our onstrutions in Setions 4 and 5, points of �nite horizontal and ver-

tial ranks will be of partiular importane. For k < !, we all a rooted bimodal

frame F = (W;R

1

; R

2

) for [K4;K4℄ a k-hessboard if there is a model M based

on F and suh that the following onditions are satis�ed:

(b1) for all x; y 2 W with xR

1

y, (M; x) j= v i� (M; y) j= v;

(b2) for all x; y 2 W with xR

2

y, (M; x) j= h i� (M; y) j= h; and

(b3) there is x 2 W suh that hr

M

(x) = vr

M

(x) = k.

Clearly, if F is a k-hessboard then it is an n-hessboard for any n < k. Observe

that the produt of any two rooted transitive frames of depths at least k is always

a k-hessboard. Further, it is not hard to see that for any model M based on

a rooted frame for [K4;K4℄ that satis�es (b1) and (b2), (W;

�

R

M

1

;

�

R

M

2

) is a

(not neessarily rooted) frame for [K4;K4℄, that is,

both

�

R

M

1

and

�

R

M

2

are transitive, (tran)

�

R

M

1

and

�

R

M

2

ommute, and (om)

�

R

M

1

and

�

R

M

2

are Churh{Rosser. (hro)

A rooted frame F for [K4;K4℄ is alled an 1-hessboard if there is an M

based on F whih satis�es (b1), (b2) and ontains points x

k

with hr

M

(x

k

) =

vr

M

(x

k

) = k for every k < !. Clearly, an 1-hessboard is a k-hessboard, for

every k < !, and

an 1-hessboard is always in�nite. (6)

Typial examples of1-hessboards are produts of transitive frames where eah

omponent is

� either a frame ontaining an in�nite desending hain with a root, say,

(f1g [ !;>) or (f1g [Z; >);

� or a frame ontaining the in�nite n-ary tree for some n � 2 as a subframe;

� or an in�nite `xmas tree' with arbitrarily long �nite branhes (that is, an

!-type asending hain where a branh of length n starts at point n, for

every n < !).

(For more details see the proof of Corollary 4.1 in Setion 5.) Note, how-

ever, that a produt of transitive frames of in�nite depth is not neessarily an
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1-hessboard. For instane, it is not hard to see that if one of the omponents

is

� an in�nite frame of �nite width (that is, without antihains of more than

n points, for some �xed n < !) ontaining no in�nite desending hain (in

partiular, the in�nite asending hain (!;<)),

then the produt is not an 1-hessboard. As we will see in Setion 4, there

is a formula that is satis�able in preisely those frames for [K4;K4℄ that are

1-hessboards.

Theorem 2. Let L be any bimodal logi ontaining [K4;K4℄ and having an

1-hessboard among its frames. Then L

(i) does not have the (abstrat) fmp, and

(ii) is undeidable.

Observe that Theorem 2 does not require L to be Kripke omplete.

Theorem 3. Let C be a lass of frames for [K4;K4℄ with the following prop-

erties:

� it ontains no 1-hessboard;

� it ontains a k-hessboard for every k < !.

Then Log (C) is not reursively enumerable.

Clearly, Theorems 2 and 3 together imply Theorem 1. It follows from Theo-

rem 3 that if lasses C

1

or C

2

ontain only �nite transitive frames of arbitrarily

large �nite depth then Log (C

1

� C

2

) is not reursively enumerable. Here is a

onsequene of Theorem 2 whih involves logis from the standard nomenlature

(see, e.g., [5℄ for their syntax and semantis):

Corollary 3.1. Let L

1

and L

2

be any logis from the list

K4; K4:1; K4:2; K4:3; S4; S4:1; S4:2; S4:3;

GL; GL:3; Grz; Grz:3; Log (!;<); Log (!;�):

Then both [L

1

; L

2

℄ and L

1

� L

2

are undeidable and lak the (abstrat) fmp.

In some ases, we an even say a bit more. We remind the reader that K4.3

is the logi of all transitive frames (W;R) that are weakly onneted :

8x; y; z 2 W (xRy ^ xRz ! y = z _ yRz _ zRy):

Note that, aording to [9℄, all normal unimodal logis ontaining K4:3 are

Kripke omplete, and by [40℄, those of them that are �nitely axiomatisable are

deidable, but do not neessarily have the fmp.

Now onsider the logi DisK4:3 determined by all Kripke frames for K4:3

whih do not ontain subframes that an be p-morphially mapped onto a two-

element luster followed by a reexive point 2

-

Æ or a two-element luster fol-

lowed by an irreexive point 2

-

�. In other words, a frame (W;R) for K4:3 is

a frame for DisK4:3 i� it satis�es the following aspet of disreteness :

there are no points x

0

; x

1

; : : : ; x

n

; : : : ; x

1

in W suh that

x

0

Rx

1

Rx

2

R : : :Rx

n

R : : : Rx

1

; (7)

x

i

6= x

i+1

and :(x

1

Rx

i

) for all i < !.
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The logiDisK4:3 an be axiomatised by adding toK4:3 the (subframe) anon-

ial formulas �(2

-

�) and �(2

-

Æ) or, whih is the same, the orresponding

Fine's subframe formulas (for details see [10, 39, 5℄).

A number of important `linear' modal logis are extensions of DisK4:3, for

example, Log (!;<), Log (!;�), GL:3, and Grz:3, where GL:3 and Grz:3 are

the logis of Noetherian irreexive and reexive linear orders, respetively. We

remind the reader that a frame (W;R) is Noetherian if it ontains no in�nite

asending hains x

0

Rx

1

Rx

2

R : : : where x

i

6= x

i+1

. It is not hard to see that

Log (!;�) � Grz:3. It should also be noted that eah of the logis DisK4:3,

Log (!;<), Log (!;�), GL:3, and Grz:3 has frames ontaining in�nite desend-

ing hains; for example, (f1g [ Z; >) is a frame for Log (!;<).

Theorem 4. Let L be any Kripke omplete bimodal logi having an 1-hess-

board among its frames and ontaining [K4;DisK4:3℄. Then L is �

1

1

-hard.

We will show that this result applies to a number of `standard' produt logis:

Corollary 4.1. Let L

1

be like in Corollary 3.1 and

L

2

2 fLog (!;<); Log (!;�); GL:3; Grz:3; DisK4:3g:

Then any Kripke omplete bimodal logi L in the interval

[L

1

; L

2

℄ � L � L

1

� L

2

is �

1

1

-hard. In fat, the produt logis L

1

� L

2

are �

1

1

-omplete.

We also obtain the following interesting orollary. As the ommutator of two

reursively axiomatisable logis is reursively axiomatisable by de�nition, The-

orem 4 yields a number of Kripke inomplete ommutators of Kripke omplete

and �nitely axiomatisable logis:

Corollary 4.2. Let L

1

and L

2

be like in Corollary 4.1. Then the ommuta-

tor [L

1

; L

2

℄ is Kripke inomplete.

It is worth noting that if L

2

=GL:3 then L

1

�L

2

is the only Kripke omplete

logi between [L

1

; L

2

℄ and L

1

�L

2

, for any Kripke omplete logi L

1

; for details

see [14℄.

x4. No �nite model property. In this setion we prove Theorem 2 (i). We

de�ne a formula '

1

suh that, for any rooted frame F for [K4;K4℄,

'

1

is satis�able in F i� F is an 1-hessboard. (8)

By (6), this learly implies that, for any logi L spei�ed in Theorem 2, '

1

is

L-satis�able, but only in in�nite frames for L, that is, L does not have the fmp.

The formula '

1

and its `�nite variant' '

�n

to be de�ned in Setion 5.4 play

a ruial role in all of our undeidability proofs in Setion 5.

To begin with, take two propositional variables h and v, and de�ne new modal

operators by setting, for every bimodal formula  ,

e =

�

h! b

�

:h ^ ( _b )

��

^

�

:h! b

�

h ^ ( _b )

��

;

d =

�

v ! a

�

:v ^ ( _a )

��

^

�

:v ! a

�

v ^ ( _a )

��

;

E = :e: ; and D = :d: :
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(Similar operators were used by Spaan [35℄ and in [31, 11℄.)

De�ne '

1

to be the onjuntion of the following formulas:

BA

�

(h _ah! Ah) ^ (:h _a:h! A:h)

�

; (9)

BA

�

(v _bv ! Bv) ^ (:v _b:v ! B:v)

�

; (10)

de(D? ^E?); (11)

ED(D? ^E? ! d); (12)

De(:d ^Ed); (13)

Ed(d ^D:d); (14)

ED(d ! Edd); (15)

ED(:d ! De:d): (16)

Suppose �rst that '

1

is satis�ed at the root r of a model M based on a

frame F = (W;R

1

; R

2

) for [K4;K4℄. Then both R

1

and R

2

are transitive, they

ommute and satisfy the Churh{Rosser property. We show that in this ase F

must be an 1-hessboard, and so in�nite.

De�ne new binary relations

�

R

1

=

�

R

M

1

and

�

R

2

=

�

R

M

2

on W by means of (2)

and (3) above. By (9){(10), F satis�es (b1) and (b2), and so

�

R

1

and

�

R

2

satisfy (tran), (om) and (hro). Moreover, for all x 2W ,

(M; x) j=e i� 9y 2W (x

�

R

1

y and (M; y) j=  );

(M; x) j=d i� 9y 2W (x

�

R

2

y and (M; y) j=  ):

We will use the following abbreviations. For every formula  , ` 2 fe;dg and

� 2 fE;Dg, let

`

0

 = �

0

 =  

and, for n < !, let

`

n+1

 = ``

n

 ; �

n+1

 = ��

n

 ; and

`

=n

 = `

n

 ^�

n+1

: :

(The last formula means `see  in n steps but not in n+ 1 steps.')

Now it should be lear that if we de�ne the horizontal and vertial ranks

hr(x) = hr

M

(x) and vr(x) = vr

M

(x) of a point x by means of (4) and (5), then

we have

hr(x) =

�

n; if n < ! and (M; x) j= e

=n

>,

1; otherwise,

vr(x) =

�

n; if n < ! and (M; x) j= d

=n

>,

1; otherwise.

The reader an readily hek, using (om) and (hro), that if x

�

R

1

y then vr(x) =

vr(y), and if x

�

R

2

y then hr(x) = hr(y).

Let

V = fx 2W j 9u 2 W r

�

R

1

u

�

R

2

xg:
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Lemma 1. Suppose that M is a model based on a rooted frame for [K4;K4℄.

If (M; r) j= '

1

then, for all n < !, there exists x

n

2 V suh that hr(x

n

) =

vr(x

n

) = n. (Therefore, if '

1

is satis�able in a rooted frame F for [K4;K4℄

then F is an 1-hessboard.)

Proof. First, we laim that the following formulas are true in M, for all

n < !:

ED(:d ! e>); (17)

ED(d! E

n

d

n

d); (18)

ED(:d ! D

n

e

n

:d): (19)

Indeed, (17) is a straightforward onsequene of (12), (16) and (om). We prove

(18) by indution on n. The ase n = 0 is trivial. Suppose now that (18) holds

for some n. Take some w 2 V with (M; w) j= d and z

1

; : : : ; z

n

; z

n+1

suh that

w

�

R

1

z

1

�

R

1

: : :

�

R

1

z

n

�

R

1

z

n+1

:

Then z

n

2 V and, by IH, there are w

1

; : : : ; w

n

2 V suh that

z

n

�

R

2

w

1

�

R

2

: : :

�

R

2

w

n

and (M; w

n

) j= d:

By (hro), there are s

1

; : : : ; s

n

2 V suh that w

i

�

R

1

s

i

, for i = 1; : : : ; n, and

z

n+1

�

R

2

s

1

�

R

2

: : :

�

R

2

s

n

. Sine w

n

�

R

1

s

n

, it follows from (15) that there exists s

n+1

suh that

s

n

�

R

2

s

n+1

and (M; s

n+1

) j= d;

from whih (M; z

n+1

) j= d

n+1

d. The proof of (19) is analogous, it uses (16) in

plae of (15).

Now we de�ne indutively four in�nite sequenes

x

0

; x

1

; x

2

; : : : ; y

0

; y

1

; y

2

; : : : ; u

0

; u

1

; u

2

; : : : and v

0

; v

1

; v

2

; : : : (20)

of points from W suh that, for every i < !,

(gen1) (M; x

i

) j= d ^D:d,

(gen2) (M; y

i

) j= :d ^Ed,

(gen3) r

�

R

2

u

i

, u

i

�

R

1

x

i

and u

i

�

R

1

y

i

, that is, vr(u

i

) = vr(x

i

) = vr(y

i

), and

(gen4) if i > 0 then r

�

R

1

v

i

, v

i

�

R

2

x

i

and v

i

�

R

2

y

i�1

, that is, hr(v

i

) = hr(x

i

) =

hr(y

i�1

).

(We do not laim at this point that, say, all the x

i

are distint.)

To begin with, by (11), there are u

0

; x

0

suh that r

�

R

2

u

0

�

R

1

x

0

and

(M; x

0

) j= E? ^D?: (21)

By (12), (M; x

0

) j= d. By (13), there is y

0

suh that u

0

�

R

1

y

0

and

(M; y

0

) j= :d ^Ed:

So (gen1){(gen3) hold for i = 0.

Now suppose that, for some n < !, x

i

and y

i

with (gen1){(gen4) have

already been de�ned for all i � n. By (gen3) for i = n and by (om), there is
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v

n+1

suh that r

�

R

1

v

n+1

�

R

2

y

n

. So by (14), there is x

n+1

suh that v

n+1

�

R

2

x

n+1

and

(M; x

n+1

) j= d ^D:d:

Now again by (om), there is u

n+1

suh that r

�

R

2

u

n+1

�

R

1

x

n+1

. So, by (13), there

is y

n+1

suh that u

n+1

�

R

1

y

n+1

and

(M; y

n+1

) j= :d ^Ed;

as required (see Fig. 1). Observe that x

i

and y

i

are in V for all i < !.

r

r

r

v

i+1

r

v

i+2

r

u

i+2

r

x

i+2

r

u

i+1

r

x

i+1

r

y

i+1

r x

i

r

u

i

r

y

i

-

�

�

�

�

�

�

�:

�

�

�

�

�

�

�:

�

�

�

�

�

�

�:

-

-

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

O

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

O

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

�

-

�

R

1

p p p p p p-

�

R

2

Figure 1. Generating the points x

i

, y

i

, u

i

and v

i

.

We laim that, for all i; n < !,

(M; x

i

) j=e

n

> $ d

n

>; that is, hr(x

i

) = vr(x

i

); (22)

(M; y

i

) j= e

n+1

>$ d

n

>; that is, hr(y

i

) = vr(y

i

) + 1: (23)

Indeed, if n = 0 then (22) is trivial, and (23) follows from (gen2) and (17). So

we may assume that n > 0.

To prove (22), suppose �rst that we have (M; x

i

) j= e

n

>. Then there is

a point z suh that x

i

�

R

n

1

z. By (gen1), (M; x

i

) j= d. So, (M; z) j= d

n

d, by

(18). Using (om), we �nd a point v suh that x

i

�

R

n

2

v and v

�

R

n

1

u, from whih

(M; x

i

) j= d

n

>. Conversely, suppose (M; x

i

) j= d

n

>, that is, there are points

z

1

; : : : ; z

n

suh that x

i

�

R

2

z

1

�

R

2

: : :

�

R

2

z

n

. By (gen1), (M; x

i

) j= D:d, and so

(M; z

1

) j= :d. Therefore, by (19) and (17), we have (M; z

n

) j= e

n

>, and then

obtain (M; x

i

) j= e

n

> using (om).

To show (23), assume �rst that we have (M; y

i

) j= d

n

>. Then there is a point

z suh that y

i

�

R

n

2

z. By (gen2), (M; y

i

) j= :d. So, by (19), (M; z) j= e

n

:d, and

by (17), (M; z) j= e

n+1

>. Now (M; y

i

) j= e

n+1

> follows by (om). Conversely,
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suppose (M; y

i

) j= e

n+1

>, that is, there are points z

1

; : : : ; z

n

; z

n+1

suh that

y

i

�

R

1

z

1

�

R

1

: : :

�

R

1

z

n

�

R

1

z

n+1

. By (gen2), (M; y

i

) j= Ed, and so (M; z

1

) j= d.

Therefore, by (18), we have (M; z

n+1

) j= d

n

>. And �nally, using (om) we

obtain (M; y

i

) j= d

n

>.

Next, we laim that, for all n < !,

vr(u

n

) = n; (24)

hr(v

n

) = n; (25)

hr(x

n

) = vr(x

n

) = n: (26)

First we prove (24) by indution on n. For n = 0, it follows from the de�nition

of x

0

(see (21)) and (gen3). Suppose that (24) holds for some n < !. Then

vr(u

n+1

)

(gen3)

= vr(x

n+1

)

(22)

= hr(x

n+1

)

(gen4)

=

hr(y

n

)

(23)

= vr(y

n

) + 1

(gen3)

= vr(u

n

) + 1

(IH)

= n+ 1:

Now (25) and (26) follow from (24) and

hr(v

n

)

(gen4)

= hr(x

n

)

(22)

= vr(x

n

)

(gen3)

= vr(u

n

);

as required. a

Let us now prove the `(' diretion of (8).

Lemma 2. '

1

is satis�able in any 1-hessboard.

Proof. We begin with some de�nitions. Fix some k < ! and a frame

F = (W;R

1

; R

2

) for [K4;K4℄ with root r. We all a model N over F a per-

fet k-hessboard model if the following hold:

(a) N satis�es (b1) and (b2);

(b) for every point v 2W , if r

�

R

N

1

v then hr

N

(v) is �nite;

() for every point u 2 W , if r

�

R

N

2

u then vr

N

(u) is �nite;

(d) for every n < k, there is a point v

n

2 W with r

�

R

N

1

v

n

and hr

N

(v

n

) = n;

(e) for every n < k, there is a point u

n

2W with r

�

R

N

2

u

n

and vr

N

(u

n

) = n.

We all N a perfet 1-hessboard model, if (d) and (e) hold for k = !.

Claim 2.1. (i) If F is a k-hessboard then there is a perfet k-hessboard

model based on F.

(ii) If F is an 1-hessboard then there is a perfet 1-hessboard model based

on F.

Proof of Claim 2.1. (i) Take a k-hessboard F with root r. Then there is

a modelM based on F that satis�es (b1) and (b2), and suh that there exist

points x

n

with hr

M

(x

n

) = vr

M

(x

n

) = n for every n � k. We know that

�

R

M

1

and

�

R

M

2

satisfy (tran), (om) and (hro).

We may assume that (M; r) j= :h ^ :v (if this is not the ase, we hange the

truth-values values of h and v to the `opposite'). De�ne a new model N over F

by taking

(N; x) j= h i� (M; x) j= h and hr

M

(x) is �nite,

(N; x) j= v i� (M; x) j= v and vr

M

(x) is �nite.
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We show that N satis�es onditions (a){(e). Observe �rst that for all x; y 2W ,

if xR

1

y then hr

M

(x) � hr

M

(y); (27)

if xR

2

y then vr

M

(x) � vr

M

(y): (28)

Now take a point u suh that hr

M

(u) is �nite. Then it follows from (27) that,

for all v 2 W , we have u

�

R

M

1

v i� u

�

R

N

1

v. Similarly, if vr

M

(u) is �nite then, for

all v 2W , we have u

�

R

M

2

v i� u

�

R

N

2

v. Therefore, for all u 2 W ,

if hr

M

(u) is �nite then hr

N

(u) = hr

M

(u); (29)

if vr

M

(u) is �nite then vr

N

(u) = vr

M

(u): (30)

We are now in a position to prove (a){(e) for N.

(a) It is easy to see that, sine M satis�es (b1), R

1

and

�

R

M

2

are Churh{

Rosser and ommute. Therefore, for all x; y with xR

1

y, we have vr

M

(x) =

vr

M

(y), whih implies (b1) for N. The proof of (b2) is similar: we use the

fat that R

2

and

�

R

M

1

are Churh{Rosser and ommute.

(b) Let r

�

R

N

1

u and suppose that hr

N

(u) =1. By (29), we then have hr

M

(u) =

1, and so (N; u) j= :h. Sine (M; r) j= :h, we also have (N; r) j= :h. So there

is a v suh that rR

1

vR

1

u and (N; v) j= h. But then hr

M

(v) must be �nite,

ontrary to vR

1

u, hr

M

(u) =1, and (27). So hr

N

(u) <1.

() is similar. We use (30) and (28).

(d) Take an n < k. Then there is x

n+1

suh that hr

M

(x

n+1

) = vr

M

(x

n+1

) =

n+1. We have either x

n+1

= r, or rR

1

x

n+1

, or rR

2

x

n+1

, rR

1

z

n+1

R

2

x

n+1

. Sine

�

R

M

1

and R

2

ommute and are Churh{Rosser, if two points are R

2

-onneted

then their horizontal ranks in M must be the same. So in any ase we have a

point z

n+1

suh that hr

M

(z

n+1

) = n+1 and either z

n+1

= r or rR

1

z

n+1

. By (29),

hr

N

(z

n+1

) = n + 1, and so there is u

n

suh that z

n+1

�

R

N

1

u

n

and hr

N

(u

n

) = n.

So we have r

�

R

N

1

u

n

as required.

(e) is proved in the same way using (30).

(ii) If F is an1-hessboard then the above proofs for (d) and (e) show that in

fat N satis�es (d) and (e) for k = !, whih ompletes the proof of Claim 2.1. a

Now suppose that F = (W;R

1

; R

1

) is an 1-hessboard with root r. By

Claim 2.1, there is a perfet 1-hessboard model N based on F. De�ne a valu-

ation of the propositional variable d in N by taking, for all x 2W ,

(N; x) j= d i� hr

N

(x) � vr

N

(x) <1: (31)

We laim that (N; r) j= '

1

. Indeed, (9) and (10) hold beause of property

(a) of the perfet 1-hessboard model N, and so

�

R

N

1

and

�

R

N

2

satisfy (om)

and (hro). The proof for the remaining onjunts is straightforward. We only

onsider (13). Take a u suh that r

�

R

N

2

u. Then, by (), vr

N

(u) = n for some

n < !. By (d), there is v

n+1

suh that r

�

R

N

1

v

n+1

and hr

N

(v

n+1

) = n+1. Then,

by (om) and (hro), there is y suh that u

�

R

N

1

y and hr

N

(y) = n + 1. We also

have vr

N

(y) = vr

N

(u) = n, and so (N; y) j= :d. On the other hand, if x is

suh that y

�

R

N

1

x then hr

N

(x) � n and vr

N

(x) = n, from whih (N; x) j= d, as

required. a
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x5. Undeidability. In the proof of Lemma 1 above we saw how the formula

'

1

ensured the existene of a sort of `diagonal points' x

n

with hr(x

n

) = vr(x

n

) =

n. We will use these points to enode parts of the `! � !-grid' in frames with

two transitive ommuting and Churh{Rosser relations.

Various undeidable problems an be `represented' on the !�!-grid, say, ver-

sions of the halting problems for Turing mahines, register mahines, et., Post's

orrespondene problem, as well as the in�nite tiling (or domino) problems. In

Setions 5.2 and 5.3 we show two examples: the halting problem for Turing

mahines and in�nite tiling problems.

To prove our undeidability results, we will redue a suÆiently omplex prob-

lem for Turing mahines or tilings to the satis�ability problem for the logi in

question. More preisely, we will use

� non-reursively enumerable problems, viz., the non-halting problem for Tur-

ing mahines or the !�! tiling problem, to obtain the general undeidabil-

ity result of Theorem 2 (whih overs, in partiular, reursively enumerable

logis like K4�K4);

� a reursively enumerable problem whose omplement is not reursively enu-

merable, namely, the halting problem for Turing mahines, to prove non-

reursive enumerability in Theorem 3;

� �

1

1

-hard problems, viz., the non-halting problem for reurrent non-deter-

ministi Turing mahines or the reurrent tiling problem, to obtain �

1

1

-

hardness in Theorem 4.

5.1. Enoding the ! � !-grid. The enumeration of the points of ! � !

we use below has been introdued in several papers dealing with undeidable

multimodal logis; see, e.g., [18, 28, 31℄. However, in all these ases either the

language had next-time operators or the frames were linear. Here we show that

one an ode this enumeration even if the frames are branhing (and, of ourse,

transitive), and no next-time operators are available.

Let pair : ! ! ! � ! be the funtion de�ned reursively by taking:

� pair(0) = (0; 0),

� if pair(n) = (0; j) then pair(n+ 1) = (j + 1; 0),

� otherwise, if pair(n) = (i+ 1; j) then pair(n+ 1) = (i; j + 1);

see Fig. 2. It is easy to see that pair is one-one and onto. Let ℄ : ! � ! ! !

denote the inverse of the funtion pair. If pair(n) is not on the wall (that is, the

�rst oordinate of pair(n) is di�erent from 0) then de�ne left

n

to be the ℄ of the

left neighbour of pair(n). The reader an readily hek the following important

properties of these funtions, for all n > 0:

(t1) If neither pair(n) nor pair(n� 1) are on the wall then left

n

= left

n�1

+ 1.

(t2) If n > 1 and pair(n) is not on the wall, but pair(n� 1) is on the wall, then

n > 2, pair(n� 2) is not on the wall, and left

n

= left

n�2

+ 1.

(t3) pair(n) is on the wall i� pair(left

n�1

) is on the wall.

(t4) Either pair(n) or pair(n� 1) is not on the wall.

We will require the following propositional variables:

� grid (marking the points of the grid),

� left (a pointer from n to left

n

when pair(n) is not on the wall),
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Figure 2. The enumeration pair.

� wall (marking the wall, i.e., the pairs of the form (0; n)).

Let '

grid

be the onjuntion of (9), (10) and the formulas (32){(38):

ED

�

E? ! (grid$ D?)

�

; (32)

ED(E? ^ grid! wall); (33)

ED(wall! grid); (34)

ED(ewall! E(grid! wall)

�

; (35)

ED

�

e>! (grid$ d

=1

e

=1

grid)

�

; (36)

ED

�

grid ^e>!

�

wall$ d(e

=1

left ^ewall)

��

; (37)

ED

h

left$

�

(e

=1

> ^D?) _

�

d(e

=2

left ^ewall) ^d

=1

e

=2

left

�

_

�

d(e

=1

left ^ :ewall) ^d

=1

e

=1

left

�

�i

: (38)

Lemma 3. '

1

^ '

grid

is satis�able in any 1-hessboard.

Proof. Let F = (W;R

1

; R

2

) be an 1-hessboard with root r. By Claim 2.1,

there is a perfet 1-hessboard model N over F. De�ne a valuation of the

propositional variables grid, wall and left in N by taking, for all x 2W ,

(N; x) j= grid i� hr

N

(x) = vr

N

(x) <1; (39)

(N; x) j= wall i� hr

N

(x) = vr

N

(x) = ℄(0; j) for some j < !;

(N; x) j= left i� hr

N

(x) = n; vr

N

(x) = left

n

for some n < !

suh that pair(n) is not on the wall:

Then it is straightforward to hek that (N; r) j= '

1

^ '

grid

. a

The next lemma shows that in fat '

grid

`fores' the !�!-grid onto `diagonal

points of �nite rank.'
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Lemma 4. Suppose thatM is a model based on a rooted frame F = (W;R

1

; R

2

)

for [K4;K4℄. If (M; r) j= '

grid

then the following hold, for all n;m < ! and all

x 2 V suh that hr(x) = n and vr(x) = m:

(i) (M; x) j= grid i� n = m,

(ii) (M; x) j=e

=1

left i� n > 0, pair(n�1) is not on the wall and m = left

n�1

,

(iii) (M; x) j= wall i� n = m and pair(n) is on the wall,

(iv) (M; x) j= left i� pair(n) is not on the wall and m = left

n

.

Proof. We use the same notation as in Setion 4, in partiular,

�

R

1

=

�

R

M

1

and

�

R

2

=

�

R

M

2

, hr(x) = hr

M

(x) and vr(x) = vr

M

(x), and

V = fx 2W j 9u 2 W r

�

R

1

u

�

R

2

xg:

The proof proeeds by indution on n. For n = 0, we obtain (i) by (32), (iii)

by (33) and (34), and (iv) by (38).

Now take any n > 0 and suppose that the lemma holds for all k < n. Through-

out, we will use the following observation. Given numbers a; b < ! and some

x 2 V with hr(x) = a and vr(x) = b, there exists what we all a perfet a � b-

retangle starting at x, that is, there are points x

i;j

(for i � a, j � b) suh

that

� x = x

a;b

,

� hr(x

i;j

) = i and vr(x

i;j

) = j,

� x

i;j

�

R

1

x

k;j

for i > k, and x

i;j

�

R

2

x

i;k

for j > k.

Indeed, given x, take an a-long

�

R

1

-path and a b-long

�

R

2

-path starting from x,

and then `lose them' under the Churh-Rosser property.

(i) We laim that, for all m < ! and all x 2 V with hr(x) = n and vr(x) = m,

(M; x) j= e

=1

grid i� m = n� 1: (40)

Indeed, suppose �rst that m = n� 1. Take a perfet n� (n � 1)-retangle x

i;j

(i � n, j � n � 1) starting at x. Then by IH (i), (M; x

n�1;n�1

) j= grid, and

so (M; x) j= egrid. Now let u be suh that x

�

R

1

u and (M; u) j= grid. Then

we have hr(u) = k < n and vr(u) = vr(x) = n � 1 < !. By IH (i), we have

k = n�1, and so (M; x) 6j= e

2

grid. Conversely, suppose that (M; x) j= e

=1

grid.

Then there is u suh that x

�

R

1

u and (M; u) j= grid. We have hr(u) = k < n

and vr(u) = vr(x) = m. So m = k follows, by IH (i). Now take a perfet

n � k-retangle x

i;j

(i � n, j � k) starting at x. By IH (i) again, we have

(M; x

k;k

) j= grid. Sine (M; x) j= e

=1

grid and x = x

n;k

�

R

1

x

k;k

, we must have

m = k = n� 1 as required in (40).

Our next laim is that, for all m < ! and all x 2 V with hr(x) = n and

vr(x) = m,

(M; x) j= d

=1

e

=1

grid i� m = n: (41)

Indeed, suppose �rst that m = n. Take a perfet n � n-retangle x

i;j

(i � n,

j � n) starting at x. Then (M; x

n;n�1

) j= e

=1

grid, by (40), and therefore

(M; x) j= de

=1

grid. Now, the fat that (M; x) 6j= d

2

e

=1

grid also follows from

(40). Conversely, suppose that (M; x) j= d

=1

e

=1

grid. Then there is u suh

that x

�

R

2

u and (M; u) j= e

=1

grid. Sine hr(u) = n, by (40) we obtain that
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vr(u) = n � 1, and so m � n. Now take a perfet n �m-retangle x

i;j

(i � n,

j � m) starting at x. By (40) again, (M; x

n;n�1

) j= e

=1

grid, so m = n must

hold.

Now laim (i) of Lemma 4 follows from (41) and (36).

(ii) The proof is similar to the proof of (40); we only use IH (iv) in plae of

IH (i). In fat, we an even prove a slightly stronger laim: for all i;m < ! and

all x 2 V with hr(x) = n and vr(x) = m,

(M; x) j= e

=i

left i� n � i; pair(n� i) is not on the wall, m = left

n�i

. (42)

Indeed, suppose �rst that n � i, pair(n� i) is not on the wall and m = left

n�i

.

Take a perfet n � left

n�i

-retangle x

a;b

(a � n, b � left

n�i

) starting at x. By

IH (iv), (M; x

n�i;left

n�i

) j= left, and so (M; x) j= e

i

left. Now let u be suh that

x

�

R

1

u and (M; u) j= left. Then vr(u) = vr(x) = left

n�i

and hr(u) = k < n.

By IH (iv), pair(k) is not on the wall and vr(u) = left

k

, from whih k = n � i

follows, implying (M; x) 6j=e

i+1

left. Conversely, suppose that (M; x) j= e

=i

left.

Then n � i and there is u suh that x

�

R

i

1

u and (M; u) j= left. So we have

hr(u) = k � n� i and vr(u) = vr(x) = m. So, by IH (iv), pair(k) is not on the

wall and m = left

k

. Now take a perfet n� left

k

-retangle x

a;b

(a � n, b � left

k

)

starting at x. By IH (iv) again, we have (M; x

k;left

k

) j= left, and so k = n � i

must hold, as required in (42).

(iii) Suppose �rst that n = m and pair(n) is on the wall. Then, by (t4),

pair(n� 1) is not on the wall. By IH (i), we have (M; x) j= grid. So by (37), it

is enough to show that

(M; x) j= d(e

=1

left ^ewall): (43)

Take a perfet n � m-retangle x

i;j

(i � n, j � m) starting at x. We have

(M; x

n;left

n�1

) j= e

=1

left, by Lemma 4 (ii). On the other hand, by (t3),

pair(left

n�1

) is on the wall. So, by IH (iii), (M; x

left

n�1

;left

n�1

) j= wall, and

so (M; x

n;left

n�1

) j= ewall. Sine x

�

R

2

x

n;left

n�1

, we obtain (43).

Conversely, suppose that (M; x) j= wall. By (34), we have (M; x) j= grid, so

n = m follows by Lemma 4 (i). By (37), (M; x) j= d(e

=1

left ^ewall). Then

there is a u suh that x

�

R

2

u and (M; u) j= e

=1

left ^ewall. By Lemma 4 (ii),

pair(n � 1) is not on the wall and vr(u) = left

n�1

. Take a perfet n � left

n�1

-

retangle u

i;j

(i � n, j � left

n�1

) starting at u. By Lemma 4 (i), we have

(M; u

left

n�1

;left

n�1

) j= grid and so, by (35), (M; u

left

n�1

;left

n�1

) j= wall. Now by

IH (iii), pair(left

n�1

) is on the wall and so, by (t3), pair(n) is on the wall, as

required.

(iv) First, we laim that, for all i;m < ! and all x 2 V with hr(x) = n and

vr(x) = m,

(M; x) j= d

=1

e

=i

left i� n � i; pair(n� i) is not on the wall

and m = left

n�i

+ 1. (44)

The proof of this laim is similar to that of (41), using (42) in plae of (40), so

we leave it to the reader.
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Now suppose that pair(n) is not on the wall and m = left

n

. We will show how

(38) an be used to dedue (M; x) j= left. There are three ases:

Case 1 : n = 1. Then m = left

1

= 0, and so (M; x) j= e

=1

> ^D?.

Case 2 : n > 1 and pair(n � 1) is on the wall. Then, by (t2), pair(n � 2) is

not on the wall and left

n

= left

n�2

+1. By (t3), pair(left

n�2

) is on the wall. We

laim that

(M; x) j= d(e

=2

left ^ewall) ^d

=1

e

=2

left:

Indeed, (M; x) j= d

=1

e

=2

left, by (44). Take a perfet n�(left

n�2

+1)-retangle

x

i;j

(i � n, j � left

n�2

+ 1) starting at x. Then (M; x

left

n�2

;left

n�2

) j= wall, by

IH (iii). On the other hand, (M; x

n;left

n�2

) j= e

=2

left, by (42), and so we have

(M; x

n;left

n�2

) j=e

=2

left ^ewall.

Case 3 : n > 1 and pair(n � 1) is not on the wall. Then, by (t1), left

n

=

left

n�1

+ 1. By (t3), pair(left

n�1

) is not on the wall. We laim that

(M; x) j= d(e

=1

left ^ :ewall) ^d

=1

e

=1

left:

Indeed, (M; x) j= d

=1

e

=1

left, by (44). Take a perfet n � (left

n�1

+ 1)-

retangle x

i;j

(i � n, j � left

n�1

+ 1) starting at x. Then we have, by IH (iii),

(M; x

left

n�1

;left

n�1

) 6j= wall. So, by (35), (M; x

n;left

n�1

) j= :ewall. On the other

hand, (M; x

n;left

n�1

) j= e

=1

left, by (42).

Conversely, suppose that (M; x) j= left. By (38), there are three ases.

Case 1 : (M; x) j= e

=1

>^D?. Then n = 1, m = 0 = left

1

, and pair(1) is not

on the wall.

Case 2 : (M; x) j= d(e

=2

left ^ewall) ^d

=1

e

=2

left. By (44), we have that

pair(n � 2) is not on the wall and m = left

n�2

+ 1. Take a point u suh

that x

�

R

2

u and (M; u) j= e

=2

left ^ ewall. By (42), vr(u) = left

n�2

. Take

a perfet n � left

n�2

-retangle u

i;j

(i � n, j � left

n�2

) starting at u. By

Lemma 4 (i), (M; u

left

n�2

;left

n�2

) j= grid and so, by (35) and (M; u) j= ewall,

(M; u

left

n�2

;left

n�2

) j= wall. Now by IH (iii), pair(left

n�2

) is on the wall and so,

by (t3), pair(n� 1) is on the wall. By (t4), pair(n) is not on the wall. Finally,

by (t2), left

n

= left

n�2

+ 1 as required.

Case 3 : (M; x) j= d(e

=1

left ^ :ewall) ^d

=1

e

=1

left. By (44), pair(n � 1)

is not on the wall and m = left

n�1

+ 1. Take a point u suh that x

�

R

2

u and

(M; u) j=e

=1

left^:ewall. By (42), vr(u) = left

n�1

. Take a perfet n� left

n�1

-

retangle u

i;j

(i � n, j � left

n�1

) starting at u. Sine (M; u) j= :ewall, we have

(M; u

left

n�1

;left

n�1

) 6j= wall. So, by IH (iii), pair(left

n�1

) is not on the wall and

so, by (t3), pair(n) is not on the wall either. Finally, by (t1), left

n

= left

n�1

+1

as required.

This ompletes the proof of Lemma 4. a

5.2. Enoding Turing mahines. A (one-tape deterministi) Turing ma-

hine M has a �nite tape alphabet T (inluding B, the blank symbol, and $,

the `left-end marker'), a �nite set Q of states, with q

0

being the initial state

and q

1

the halting state, and a transition funtion % given as follows. For every

q 2 Q� fq

1

g and every X 2 T , the value of %(q;X) is a pair (p; Y ), where

� p 2 Q is the next state;
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� either Y 2 T � f$g (Y is the symbol to be written in the ell being

sanned|it replaes the symbol that was there before), or Y 2 fL;Rg

(Y is the diretion, left or right, in whih the head moves, with L and R

being fresh symbols).

We an always assume thatM is suh that its head never moves left of its initial

position (say, by postulating that %(q;$) = (p;R) always holds). Starting from

an all-blank tape with the head sanning the ell next to $, at eah step there

are only �nitely many non-blank ells, so we an represent a on�guration of M

as an in�nite sequene of the form

{ = ($; X

1

; : : : ; X

n�1

; (q;X

n

); X

n+1

; : : : ; X

m

; B;B; : : : );

where q 2 Q is the urrent state, $; X

1

; : : : ; X

m

is the non-blank part of the

urrent tape desription, and the head is sanning the nth ell. For example,

the initial on�guration {

0

of M looks as follows:

{

0

= ($; (q

0

; B); B;B; : : : ):

Starting with {

0

and using the transition funtion %, we de�ne in the standard

way the unique sequene of on�gurations {

0

;{

1

; : : : of M whih is alled the

omputation of M . Let H

M

denote the number of on�gurations in this om-

putation (that is, H

M

< ! if M eventually stops, and H

M

= ! if it does not).

Observe that in {

n

the head annot be further to the right than the n+1st ell.

Now, given a Turing mahine M , we de�ne a bimodal formula '

M

as follows.

Let

A = T [ (Q� T ):

Slightly abusing notation, for every s 2 A, we introdue a propositional variable

s (in partiular, we treat (q;X) 2 Q � T as a single variable in this ontext).

Then '

M

is the onjuntion of the formulas:

ED(grid$

_

s2A

s); (45)

ED

^

s6=s

0

2A

:(s ^ s

0

); (46)

ED(E? ^D? ! $); (47)

ED

�

e

=1

> ^d

=1

>! (q

0

; B)

�

; (48)

ED(d

=1

e

=1

wall ^ee>! B); (49)

^

Æ(q;X)=(p;L)

Z2T

ED

�

grid ^d

=1

e

=1

�

(q;X) ^d(left ^eZ)

�

! (p; Z)

�

; (50)

^

Æ(q;X)=(p;Y )

Y 6=L; Z2T

ED

�

grid ^d

=1

e

=1

�

(q;X) ^d(left ^eZ)

�

! Z

�

; (51)

^

Æ(q;X)=(p;Y )

Y 2T

ED

�

grid ^d

�

e

=1

left ^e(q;X)

�

! (p; Y )

�

; (52)
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^

Æ(q;X)=(p;Y )

Y =2T

ED

�

grid ^d

�

e

=1

left ^e(q;X)

�

! X

�

; (53)

^

Æ(q;X)=(p;R)

Z2T

ED

�

grid ^

d

�

e

=1

left ^e

�

Z ^d(left ^e(q;X))

�

�

! (p; Z)

�

; (54)

^

Æ(q;X)=(p;Y )

Y 6=R; Z2T

ED

�

grid ^

d

�

e

=1

left ^e

�

Z ^d(left ^e(q;X))

�

�

! Z

�

; (55)

^

X;Y;Z2T

ED

h

grid ^

d

=1

e

=1

�

Z ^d

�

left ^e

�

Y ^

�

wall _d(left ^eX)

��

��

! Y

i

: (56)

Lemma 5. '

1

^ '

grid

^ '

M

is satis�able in any 1-hessboard.

Proof. Let F = (W;R

1

; R

2

) be an1-hessboard with root r. Take the model

N over F de�ned in the proof of Lemma 3. As is shown there, (N; r) j= '

1

^'

grid

.

De�ne a valuation of the propositional variables s 2 A in N by taking, for all

x 2W ,

(N; x) j= s i� hr

N

(x) = vr

N

(x) = ℄(i; j) for some i; j < !

suh that the ith symbol in {

min(j;H

M

�1)

is s. (57)

Then it is straightforward to hek that (N; r) j= '

M

. a

The next lemma shows that in fat '

M

`fores' the onseutive on�gurations

{

0

;{

1

; : : : of the omputation of M on the onseutive horizontal lines of the

! �H

M

-grid (starting from the line (0; 0); (1; 0); (2; 0); : : : ):

Lemma 6. Suppose that M is a model based on a frame F = (W;R

1

; R

2

) for

[K4;K4℄ with root r. If (M; r) j= '

grid

^'

M

then, for all s 2 A, all n < ! suh

that pair(n) = (i; j) and j < H

M

, and all x 2 V suh that hr(x) = vr(x) = n,

(M; x) j= s i� the ith symbol of the on�guration {

j

is s. (58)

Proof. As before we use the notation of Setion 4. The proof proeeds by

indution on n. For n = 0, (58) follows from (47) and (46).

Suppose that n > 0 is suh that pair(n) = (i; j), j < H

M

, and (58) holds for

all k < n. Take an x 2 V with hr(x) = vr(x) = n. If pair(n) is on the oor then

(58) holds by (48), (49) and (46). So suppose that pair(n) is not on the oor,

that is, j > 0. Then ℄(i + 1; j � 1) = n � 1, ℄(i; j � 1) = left

n�1

and, if i > 0,

℄(i� 1; j� 1) = left

left

n�1

. Let s

i

2 A denote the ith symbol of the on�guration

{

j�1

. Take a perfet n � n-retangle x

i;j

(i � n, j � n) starting at x. By the

indution hypothesis we then have

(M; x

n�1;n�1

) j= s

i+1

; (M; x

left

n�1

;left

n�1

) j= s

i

(59)

and, if i > 0, (M; x

left

left

n�1

;left

left

n�1

) j= s

i�1

:



PRODUCTS OF `TRANSITIVE' MODAL LOGICS 21

Let h < ! be suh that the head is sanning the hth ell of �

j�1

. There are four

ases:

Case 1 : h = i + 1, that is, s

i+1

= (q;X) for some q 2 Q, X 2 T . Then, by

(59), (41), (45), and Lemma 4 (i) and (iv),

(M; x) j= grid ^d

=1

e

=1

�

(q;X) ^d(left ^es

i

)

�

:

Now one an use either (50) and (46), or (51) and (46) (depending on the value

of Æ(q;X)) to obtain (58), as required.

Case 2 : h = i. This ase is similar to Case 1: we only use (52) or (53) in plae

of (50) and (51).

Case 3 : h = i� 1. This time we use (54) or (55).

Case 4 : h 6= i� 1; i; i+ 1. In this ase we use (56). a

5.3. Enoding tilings. A tile type is a 4-tuple of olours

t = (left(t); right(t); up(t); down(t)):

For a �nite set � of tile types and a subset X � ! � !, we say that � tiles

X if there exists a funtion (alled a tiling) � from X to � suh that, for all

(i; j) 2 X ,

� if (i; j + 1) 2 X then up(�(i; j)) = down(�(i; j + 1)) and

� if (i+ 1; j) 2 X then right(�(i; j)) = left(�(i + 1; j)).

Given a �nite set � of tile types, we introdue a propositional variable t, for

every t 2 �. Let '

�

be the onjuntion of the following formulas:

ED(grid$

_

t2�

t); (60)

ED

^

t6=t

0

2�

:(t ^ t

0

); (61)

ED

^

t;t

0

2�

up(t

0

)6=down(t)

�

t! D(e

=1

left! :et

0

)

�

; (62)

ED

^

t;t

0

2�

right(t

0

)6=left(t)

�

t! D(left! :et

0

)

�

: (63)

Lemma 7. Suppose that � tiles !� !. Then '

1

^'

grid

^'

�

is satis�able in

any 1-hessboard.

Proof. Let F be an 1-hessboard with root r. Take a model N over F

as in the proof of Lemma 3. Then, as is shown in the proof of Lemma 3,

(N; r) j= '

1

^ '

grid

holds.

Fix some tiling � : !�!! �. De�ne a valuation of the propositional variables

t 2 � in N by taking, for all x 2W ,

(N; x) j= t i� hr

N

(x) = vr

N

(x) = ℄(i; j) for some i; j < ! with �(i; j) = t.

Then it is straightforward to hek that (N; r) j= '

�

. a

For every n < !, let

plane

n

= f(i; j) j ℄(i; j) � ng:
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Lemma 8. Suppose that a modelM is based on a frame for [K4;K4℄ with root

r and that (M; r) j= '

grid

^ '

�

. Then, for every n < !, every x 2 V suh that

hr(x) = vr(x) = n, and every perfet n� n-retangle x

i;j

(i � n, j � n) starting

at x, the funtion � : plane

n

! � de�ned by

�(i; j) = t i� (M; x

℄(i;j);℄(i;j)

) j= t

is a tiling of plane

n

.

Proof. The proof is by indution on n. For n = 0 the statement is obvious.

Suppose that n > 0 and the statement of the lemma holds for all k < n. Take a

perfet n � n-retangle x

i;j

(i � n, j � n) starting at x. Sine left

n

(if pair(n)

is not on the wall) and left

n�1

(if pair(n) is not on the oor) are both smaller

than n, the statement holds by IH, Lemma 4, (62) and (63). a

5.4. Proofs of Theorems 2{4. We are now in a position to prove the results

of Setion 3. As we already saw, Theorem 1 is an immediate onsequene of

Theorems 2 and 3.

Proof of Theorem 2. Item (i), the lak of the fmp, was proved in Setion 4.

Here we give two di�erent proofs of undeidability, one using Turing mahines,

and another using tilings.

Let L be as spei�ed in the formulation of Theorem 2. First we redue the

undeidable non-halting problem for Turing mahines (see, e.g., [21℄) to the

satis�ability problem for L. To this end, given a Turing mahine M , de�ne a

formula �

M

to be the onjuntion of the formulas '

1

, '

grid

, '

M

introdued

above, and

ED

^

X2T

:(q

1

; X): (64)

We laim that

�

M

is L-satis�able i� M does not stop having started

from an all-blank tape.

Suppose �rst that �

M

is satis�ed in a model M for L. As [K4;K4℄ � L

and [K4;K4℄ is Kripke omplete, we may assume that the underlying frame of

M is a frame for [K4;K4℄. Suppose that M eventually stops. Then H

M

< !

and there is i < ! suh that the ith symbol of {

H

M

�1

is (q

1

; X), for some

X 2 T . Let n = pair(i;H

M

� 1). By Lemma 1, there is some x 2 V suh that

hr(x) = vr(x) = n. So by Lemma 6, (M; x) j= (q

1

; X), ontrary to (64).

Now suppose that M does not stop having started from an all-blank tape. By

assumption, L has an 1-hessboard F with root r among its frames. Take the

model N over F de�ned in the proof of Lemma 5. As is shown there, (N; r) j=

'

1

^ '

grid

^ '

M

. It is straightforward to see that (64) also holds at r in N.

Our seond proof uses tilings. We redue the following undeidable (see [37, 4℄)

! � !-tiling problem to the satis�ability problem for L: given a �nite set � of

tile types, deide whether � an tile ! � !.

Indeed, using Lemma 8, it is straightforward to show that if '

1

^ '

grid

^ '

�

is L-satis�able then � tiles plane

n

, for all n < !. A standard ompatness

argument (or K�onig's lemma) shows that if a given �nite set � of tile types tiles

plane

n

for every n < !, then it atually tiles the whole ! � !-grid.
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On the other hand, sine L has an 1-hessboard F among its frames, if �

tiles ! � !, then '

1

^ '

grid

^ '

�

is L-satis�able, by Lemma 7.

Both proofs above show that L must be undeidable. a

Proof of Theorem 3. Now we deal with the logi Log (C) suh that C on-

tains a k-hessboard for every k < !, but no 1-hessboard. This time we

redue the (undeidable, but reursively enumerable) halting problem for Turing

mahines to the satis�ability problem for Log (C). To this end, given a Turing

mahine M , de�ne a formula '

�n

in the same way as '

1

but with the `generat-

ing' onjunts (13) and (14) replaed by their `relativised' versions

D

�

:e

_

X2T

(q

1

; X)! e(:d ^Ed)

�

; (65)

E

�

:d

_

X2T

(q

1

; X)! d(d ^D:d)

�

; (66)

and with two extra onjunts

^

X2T

E

�

d(q

1

; X)! D(grid! (q

1

; X))

�

; (67)

^

X2T

D

�

e(q

1

; X)! E(grid! (q

1

; X))

�

(68)

added. Let 	

M

be the onjuntion of '

�n

, '

grid

and '

M

. We laim that

	

M

is Log (C)-satis�able i� M stops having started from an all-blank tape.

Suppose �rst that 	

M

is satis�ed at the root r of a model M that is based

on a frame F = (W;R

1

; R

2

) from C. Then both R

1

and R

2

are transitive, they

ommute and are Churh{Rosser. De�ne

�

R

M

1

and

�

R

M

2

as in (2) and (3), and

the horizontal and vertial ranks of points as in (4) and (5). Then (b1) and

(b2) are satis�ed by (9) and (10), and so

�

R

M

1

and

�

R

M

2

satisfy (tran), (om)

and (hro).

Using (65) and (66), we start to `generate' the points x

n

, u

n

and v

n

in the

same way as in the proof of Lemma 1 (see (20) and Fig. 1). We laim that there

is N < ! suh that

either (M; u

N

) j= e

_

X2T

(q

1

; X) or (M; v

N

) j= d

_

X2T

(q

1

; X): (69)

For suppose this is not the ase. Then '

�n

generates the x

n

, u

n

and v

n

for all

n < ! in the same way as '

1

did. So, as the proof of Lemma 1 shows, we have

points x

n

with hr

M

(x

n

) = vr

M

(x

n

) = n, for every n < !. Therefore, F is an

1-hessboard, whih is a ontradition sine C does not ontain suh frames.

So let N < ! be the smallest number suh that (69) holds. Suppose, for

example, that (M; u

N

) j= e(q

1

; X) for someX 2 T . (Note that by (45){(47) and

(68), we have N > 0.) Then the points x

0

; : : : ; x

N

and u

0

; : : : ; u

N

are generated

like in the proof of Lemma 1. As hr

M

(x

N

) = vr

M

(x

N

) = N by (26), Lemma 4 (i)

implies that (M; x

N

) j= grid. As u

N

�

R

M

1

x

N

, (M; x

N

) j= (q

1

; X) follows by (68).

Let pair(N) = (i; j). By Lemma 6, the ith symbol in {

j

is (q

1

; X), and so M

must stop no later than in j steps. The ase when (M; v

N

) j= d(q

1

; X) is similar;

we have to use (67) in plae of (68).
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Now suppose that M stops having started from an all-blank tape, that is,

H

M

< !. As we know, L has a k-hessboard F with root r among its frames,

for some k � H

M

. By Claim 2.1, there is a perfet k-hessboard model N based

on F. De�ne a valuation of the propositional variable d in N as in (31). Extend

this model to the `grid' and `Turing mahine variables' as in (39) and (57). Then

(N; r) j= '

grid

^'

M

. A proof similar to that of Lemma 2 shows that (N; r) j= '

�n

also holds. Moreover, it is not hard to see that (67) and (68) hold at r in N as

well. a

To prove Theorem 4 with the help of Turing mahines, one should �nd a

suitable �

1

1

-hard problem. A non-deterministi Turing mahine M is alled

reurrent if, having started from the all-blank tape, it has a omputation that

never halts and reenters the initial state q

0

in�nitely often. It is known (see,

e.g., [19℄) that the problem `given a non-deterministi Turing mahineM , deide

whether it is reurrent' is �

1

1

-omplete. By appropriately modifying the formulas

above, it is not diÆult to redue this problem to the satis�ability problems for

the logis mentioned in Theorem 4. However, the formulas beome even more

omplex than before, so below we give a (more transparent) proof with the help

of a reurrent tiling problem instead.

Proof of Theorem 4. The following reurrent tiling problem is known to

be �

1

1

-omplete [17℄: given a �nite set � of tile types and a t

0

2 �, deide

whether � tiles the ! � !-grid in suh a way that t

0

ours in�nitely often on

the wall.

So suppose that � and some t

0

2 � are given. De�ne 	

�;t

0

to be the on-

juntion of '

1

, '

grid

, '

�

, and the formulas

Dere; (70)

ED(re! :dgrid); (71)

E

�

dre! d(wall ^ t

0

)

�

; (72)

^

t2�

E

�

dt! D(grid! t)

�

; (73)

^

t2�

D

�

et! E(grid! t)

�

: (74)

Now let L be as spei�ed in the formulation of the theorem. We laim that

	

�;t

0

is L-satis�able i� � tiles ! � ! with t

0

ourring

in�nitely often on the wall. (75)

Suppose �rst that 	

�;t

0

is satis�ed at the root r of a modelM for L. Sine L

is Kripke omplete, we may assume thatM is based on a frame F = (W;R

1

; R

2

)

for L. In partiular, F is a frame for [K4;DisK4:3℄. Then both R

1

and R

2

are transitive, they ommute and are Churh{Rosser. We also know that R

2

is

weakly onneted and satis�es (7). De�ne the relations

�

R

1

=

�

R

M

1

and

�

R

2

=

�

R

M

2

as in (2) and (3). Then they satisfy (tran), (om) and (hro). Moreover, sine

�

R

2

� R

2

and R

2

satis�es (7),

�

R

2

satis�es (7) as well.

Note that

�

R

2

is not neessarily weakly onneted. However, it always has the

following property:
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Claim 4.1. For all x; y; z 2W , if x

�

R

2

y, x

�

R

2

z and vr(y) > vr(z) then y

�

R

2

z.

Proof of Claim 4.1. Clearly, it is enough to show that if x; y; z are suh

that x

�

R

2

y and x

�

R

2

z but neither z

�

R

2

y nor y

�

R

2

z hold, then vr(y) = vr(z). This

statement is an immediate onsequene of the following property:

8xyz

�

x

�

R

2

y ^ x

�

R

2

z ^ :y

�

R

2

z ^ :z

�

R

2

y �! 8w (y

�

R

2

w $ z

�

R

2

w)

�

:

The ase of y = z is obvious. So suppose y 6= z. Sine x

�

R

2

y and x

�

R

2

z, but the

points y and z do not

�

R

2

-see eah other, they must have the same `vertial olour,'

say, v. Now suppose that y

�

R

2

w. Then there is some u with vertial olour :v

suh that yR

2

u and either u = w or uR

2

w. Sine R

2

is weakly onneted, we

have either yR

2

z or zR

2

y. If zR

2

y then z

�

R

2

w follows by transitivity. So suppose

yR

2

z. Then either uR

2

z or zR

2

u. We annot have uR

2

z, beause y

�

R

2

z does

not hold, so zR

2

u. Therefore, z

�

R

2

w. a

Our next observation is that, for every x 2W ,

if vr(x) 6= 0 then there is u suh that x

�

R

2

u and vr(u) = 0. (76)

Indeed, if x = r then (76) follows from (11) and (hro). If r

�

R

1

x then take a u

with r

�

R

2

u and vr(u) = 0, whih gives (76) by (hro). If r

�

R

2

x then take a u with

r

�

R

2

u and vr(u) = 0. Then we have x

�

R

2

u by Claim 4.1. Finally, if r

�

R

1

z

�

R

2

x for

some z then take a u with z

�

R

2

u and vr(u) = 0. Then again x

�

R

2

u follows from

Claim 4.1.

Next, we show that

�

R

2

is irreexive. (77)

Suppose otherwise, that is, there is x 2W with x

�

R

2

x. Then there is y suh that

xR

2

yR

2

x and the `v-olours' of x and y are di�erent, i.e., x 6= y. By (76), there

is u suh that x

�

R

2

u and vr(u) = 0, and so uR

2

x annot hold. But then we arrive

to a ontradition with the property (7) of R

2

beause xR

2

yR

2

xR

2

: : : R

2

u.

Claim 4.2. For every x 2 V with (M; x) j= grid, there is n < ! suh that

vr(x) = n.

Proof of Claim 4.2. If (M; x) j= E? then the laim holds by (32). Now

let x

0

= x. Starting from x

0

, we onstrut a sequene x

0

; x

1

; : : : as follows.

Suppose that (M; x

n

) 6j= E?. Then, by (36), we have (M; x

n

) j= d

=1

e

=1

grid,

and so there are points y

n+1

and x

n+1

suh that

� x

n

�

R

2

y

n+1

�

R

1

x

n+1

,

� there is no point z suh that x

n

�

R

2

z

�

R

2

y

n+1

,

� (M; x

n+1

) j= grid.

Moreover, if we let u

0

= x

0

and u

1

= y

1

and use (om) then, for eah n > 0 suh

that (M; x

n

) 6j= E?, we have points u

n

suh that u

n

�

R

2

u

n+1

�

R

1

y

n+1

. We laim

that there is some n < ! suh that (M; x

n

) j= E?. Suppose otherwise. Then

we have the points u

n

for all n < !. By (77), u

n

6= u

n+1

for all n < !. By (76),

there is u

1

suh that x

0

�

R

2

u

1

and vr(u

1

) = 0. So, by Claim 4.1 and the fat

that x

0

�

R

2

u

n

, we have u

n

�

R

2

u

1

for all n < !. But this is impossible in view of

the property (7) of

�

R

2

.
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So let n < ! be suh that (M; x

n

) j= E? holds. Then (M; x

n

) j= D? follows

from (32), and so vr(x

n

) = 0. We laim that for all i � n,

vr(x

n�i

) = i:

The proof is by indution on i. The basis of indution has been shown above. So

suppose that our laim holds for every j with j < i � n, and take x

n�i

. Then

x

n�i

�

R

2

y

n�i+1

�

R

1

x

n�i+1

. By IH, vr(x

n�i+1

) = i� 1, and so vr(y

n�i+1

) = i� 1

as well. Suppose that vr(x

n�i

) > i. Then there is w suh that x

n�i

�

R

2

w and

vr(w) > i� 1. So, by Claim 4.1, w

�

R

2

y

n�i+1

. Sine there is no point z suh that

x

n�i

�

R

2

z

�

R

2

y

n�i+1

, we arrive to a ontradition. Therefore, vr(x

n�i

) = i. a

Claim 4.3. For every n < ! there exist m � n, m < !, and x 2 V suh that

hr(x) = vr(x) = m and (M; x) j= wall ^ t

0

.

Proof of Claim 4.3. Fix an n < !. Sine (M; r) j= '

1

, there exists u

n

suh that r

�

R

2

u

n

and vr(u

n

) = n (see (gen3) and (24) in the proof of Lemma 1).

By (70), there is w suh that u

n

�

R

1

w and (M; w) j= re. So vr(w) = n as well.

By (om), there is v suh that r

�

R

1

v

�

R

2

w. By (72), there is z suh that v

�

R

2

z

and (M; z) j= wall^ t

0

. Then, by (60), (M; z) j= grid. So, by Claim 4.2, we have

vr(z) = m for some m < !. By (71), w

�

R

2

z annot hold. So it follows from

Claim 4.1 that m = vr(z) � vr(w) = n.

We an show now that there exists x 2 V suh that hr(x) = vr(x) = m and

(M; x) j= wall ^ t

0

. By (om), there is u suh that r

�

R

2

u

�

R

1

z and vr(u) = m. In

view of (gen4) and (25), there is a point v

m

suh that r

�

R

1

v

m

and hr(v

m

) = m.

By (hro), there is x suh that u

�

R

1

x and v

m

�

R

2

x, and so hr(x) = vr(x) = m.

Finally, we obtain (M; x) j= grid by Lemma 4 (i), and (M; x) j= wall^ t

0

by (35)

and (74). a

Claim 4.4. For all n < m < ! and x 2 V with hr(x) = vr(x) = n, and for

every perfet n � n-retangle x

i;j

(i; j � n) starting at x, there exist a y 2 V

with hr(y) = vr(y) = m and a perfet m�m-retangle y

i;j

(i; j � m) starting at

y suh that,

for every i � n and every t 2 �, (M; x

i;i

) j= t i� (M; y

i;i

) j= t: (78)

Proof of Claim 4.4. Take some n < m < !, x and a perfet retangle

starting at x as spei�ed above. Let u be suh that r

�

R

2

u

�

R

1

x. Then vr(u) = n.

By Lemma 1, there are points u

m

and x

m

suh that r

�

R

2

u

m

�

R

1

x

m

and vr(u

m

) =

vr(x

m

) = hr(x

m

) = m. So there are points u

m�1

; u

m�2

; : : : ; u

n+1

suh that

vr(u

i

) = i and

u

m

�

R

2

u

m�1

�

R

2

u

m�2

�

R

2

: : :

�

R

2

u

n+1

;

and points y

m�1;m

; y

m�2;m

; : : : ; y

n;m

suh that hr(y

i;m

) = i and

x

m

�

R

1

y

m�1;m

�

R

1

y

m�2;m

�

R

1

: : :

�

R

1

y

n;m

:

By Claim 4.1, we also have u

n+1

�

R

2

u. By (hro), there are points y

n;m�1

; y

n;m�2

;

: : : ; y

n;n

suh that vr(y

n;i

) = i and

y

n;m

�

R

2

y

n;m�1

�

R

2

y

n;m�2

�

R

2

: : :

�

R

2

y

n;n

and u

�

R

1

y

n;n

.
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We laim that if we hoose y to be x

m

and take any perfet m�m-retangle

starting at y that ontains the points y

i;m

(m�1 � i � n) and y

n;j

(m�1 � j �

n) above, then (78) is satis�ed. Indeed, �rst let i = n. Then (M; y

n;n

) j= grid

by Lemma 4 (i), and so (78) holds by x = x

n;n

, u

�

R

2

x, u

�

R

2

y

n;n

and (74).

Now �x some i < n, and suppose that, say, (M; x

i;i

) j= t, for some t 2 �.

Then x

n;n

�

R

1

x

i;n

�

R

2

x

i;i

and y

n;n

�

R

1

y

i;n

�

R

2

y

i;i

. By (om), there are u

x

and u

y

suh that u

�

R

2

u

x

, u

�

R

2

u

y

, u

x

�

R

1

x

i;i

, u

y

�

R

1

y

i;i

, and so vr(u

x

) = vr(u

y

) = i. By

(hro), there is w suh that u

x

�

R

1

w and y

i;n

�

R

2

w, so hr(w) = vr(w) = i. By

Lemma 4 (i), we have (M; w) j= grid. Then (M; y

i;i

) j= t follows from (73), (74)

and Lemma 4 (i). a

Claims 4.3, 4.4 and Lemma 8 imply, with the help of K�onig's lemma, that there

is a tiling of ! � ! with t

0

ourring in�nitely often on the wall, as required.

Now let us prove the `(' diretion of (75). Take a reurrent tiling of ! � !.

By assumption, L has an 1-hessboard F with root r among its frames. De�ne

a model N over F as in the proof of Lemma 7. As is shown in that proof,

(N; r) j= '

1

^ '

grid

^ '

�

. Then, for all x in F, de�ne

(N; x) j= re i� there is z suh that (N; z) j= wall ^ t

0

and

either x = z or z

�

R

N

2

x:

It is not hard to see that (70){(74) are also satis�ed at r in N. a

Proof of Corollary 4.1. Let L

1

, L

2

and L be as spei�ed in the formu-

lation of the orollary. Then we know that L has a frame that is a produt of

two rooted linear orders eah of whih ontains an in�nite desending hain of

distint points.

We show that suh a frame is an 1-hessboard. Let F

1

= (W

1

; <

1

) and

F

2

= (W

2

; <

2

) be two rooted linear orders with in�nite desending hains

x

0

	

1

x

1

	

1

x

2

	

1

: : : and y

0

	

2

y

1

	

2

y

2

	

2

: : :

of points from W

1

and W

2

, respetively. De�ne a valuation V in F

1

� F

2

by

taking:

V(h) = f(x; y) j x

0

�

1

xg [ f(x; y) j x

n

�

1

x <

1

x

n�1

; 0 < n < !; n is eveng;

V(v) = f(x; y) j y

0

�

2

yg [ f(x; y) j y

n

�

2

x <

2

y

n�1

; 0 < n < !; n is eveng;

and letM = (F

1

�F

2

;V). It is not hard to see that for all (x; y) in F

1

�F

2

, and

for all n < !,

hr

M

(x; y) = n i� either n = 0 and x

0

�

1

x, or x

n

�

1

x <

1

x

n�1

;

vr

M

(x; y) = n i� either n = 0 and y

0

�

2

y, or y

n

�

2

y <

2

y

n�1

:

It follows that F

1

� F

2

is an 1-hessboard. Therefore, by Theorem 4, L is

�

1

1

-hard.

For the �

1

1

upper bound, it is readily seen by a step-by-step argument that,

for eah of the listed pairs L

1

and L

2

, their produt L

1

� L

2

is determined by

produts of ountable L

1

- and L

2

-frames. Now, a Kripke model M over suh

a frame an be seleted with universal seond-order quanti�ation. One M is

seleted, the hek that M j= ' is �rst-order. a
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x6. Disussion. We onlude this paper with a few remarks on related re-

sults and further researh.

The undeidability theorems presented in this paper are optimal in the sense

that all `natural' logis ontaining [K4;K4℄ and having no frames of arbitrary

�nite or in�nite depth are in fat deidable. They are not optimal, however, in

the sense that

(a) some logis determined by produts of linear frames are known to be of

higher omplexity than it follows from the results of this paper, and

(b) for some of the disussed logis the exat omplexity is still unknown.

Let us �rst disuss (a). Interesting examples are the logis

Log ((!;<)� (!;<)) and Log f(!;<)� F j F j= K4:3g

whih are shown to be �

1

1

-hard in [35, 31℄ and [11, Theorem 7.12℄. (In the

ontext of this paper these logis are overed by Theorem 3 whih `only' shows

that they are not reursively enumerable.) Note that the �

1

1

-omplete logis

Log (!;<)� Log (!;<) and Log ((!;<)� (!;<))

are di�erent beause, for instane, (f1g [ Z; >)� (f1g [ Z; >) is a frame for

Log (!;<)�Log (!;<) and it is an1-hessboard satisfying '

1

, while the frame

(!;<)� (!;<) is not an 1-hessboard, and so '

1

is not Log ((!;<)� (!;<))-

satis�able. The proofs of �

1

1

-hardness of these logis uses the same enumeration

of the !�! grid as in Setion 5.1. The di�erene is that if both omponents are

linear then one an also write a formula that generates the diagonal `forwards,'

as opposed to our '

1

that does it `bakwards.' For more examples and details

the reader is referred to [11℄.

As onerns (b), we note �rst that we have obtained �

1

1

-ompleteness results

only for `transitive' produts where one omponent is a `linear disrete' modal

logi. The exat omplexity of undeidable produt logis like K4 � GL or

Grz �Grz remains unknown. However, we onjeture that there are logis of

muh higher omplexity than �

1

1

satisfying the onditions of Theorem 4 and that

this an be proved using the tehnique of Thomason [36℄.

Beause of the extremely high omputational omplexity of produt logis, an

interesting and promising diretion of researh is to onsider various relativisa-

tions of the produt onstrution. In the extreme, when arbitrary relativisations

are allowed, we may end up with the fusion of the ombined modal logis [26℄.

On the other hand, it is shown in [16℄ that `expanding domain' relativisations

of produt logis with transitive frames an be deidable, though not in primi-

tive reursive time. In partiular, bimodal logis interpreted in two-dimensional

strutures are deidable, if one omponent|all it the ow of time|is a �nite

linear order (or a �nite transitive tree) and the other omponent is omposed

of transitive trees (or partial orders/quasi-orders/�nite linear orders) expand-

ing over the time. As we saw in this paper, none of these logis is deidable

when interpreted in models with onstant domains. Further, [23℄ presents an

investigation of expanding domain relativisations along (!;<) of produts with

Log (!;<) and shows that, for example, the expanding domain relativisations of
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Log (!;<)�K4, Log (!;<)� S4 and Log (!;<)� S4:3 are undeidable. It re-

mains open whether the expanding domain relativisations of produts of `branh-

ing or non-disrete transitive' logis like S4� S4 or S4:3�K4 are deidable.
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