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PRODUCTS OF ‘TRANSITIVE’ MODAL LOGICS

D. GABELAIA, A. KURUCZ, F. WOLTER, AND M. ZAKHARYASCHEV

Abstract. We solve a major open problem concerning algorithmic properties of prod-
ucts of ‘transitive’ modal logics by showing that products and commutators of such stan-
dard logics as K4, S4, S4.1, K4.3, GL, or Grz are undecidable and do not have the finite
model property. More generally, we prove that no Kripke complete extension of the com-
mutator [K4,K4] with product frames of arbitrary finite or infinite depth (with respect
to both accessibility relations) can be decidable. In particular, if C; and C2 are classes of
transitive frames such that their depth cannot be bounded by any fixed n < w, then the
logic of the class {§1 X §2 | 1 € C1, T2 € C2} is undecidable. (On the contrary, the
product of, say, K4 and the logic of all transitive Kripke frames of depth < n, for some
fixed n < w, is decidable.) The complexity of these undecidable logics ranges from r.e. to
co-r.e. and H%—complete. As a consequence, we give the first known examples of Kripke
incomplete commutators of Kripke complete logics.

§1. Introduction. Products of modal (in particular, temporal, spatial, epis-
temic, description, etc.) logics—or, more generally, multi-modal languages inter-
preted in various product-like structures—are very natural and clear formalisms
arising in both pure logic and numerous applications; see, e.g., [29, 8, 3, 30, 12, 1,
6, 38]. For example, dynamic topological logics of [2, 24, 25, 7] or spatio-temporal
logics of [38, 15] are interpreted in structures of the form (7', <) x (W, R) where
(T, <) models the flow of time (say, (w, <)) and (W, R) is a quasi-order (a frame
for S4) representing the topological space, with the S4-box being understood as
the interior operator over this space. By interpreting W as a domain of objects
whose properties may change over time, one can also use such product frames as
models for (fragments of) first-order temporal and modal logics, temporal data
or knowledge bases.

Introduced in the 1970s [32, 33], products of modal logics have been inten-
sively studied over the last decade; for a comprehensive exposition and further
references see [11]. The landscape of the obtained results that are relevant to
the decision problem for these logics can be briefly outlined as follows:

1. The product of finitely many logics, whose Kripke frames are definable by
recursive sets of first-order sentences, is recursively enumerable [12].

2. Products of two standard logics, where at least one component logic is
determined by a class of frames of finite bounded depth (like S5), are
usually decidable. This condition can be considerably weakened: product
logics are often decidable when, in order to check satisfiability of a formula
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p, it is enough to consider only those product frames where the depth of
one of the components is bounded by some finite number which can be
effectively computed from ¢. This result covers multi-modal K and S5 as
well as products with tense extensions of multi-modal K or temporal logics
of metric spaces [12, 13, 11, 30, 22].

3. Products of two ‘linear transitive’ logics are undecidable whenever the depth
of frames for both component logics cannot be bounded by any fixed n < w;
examples are products of K4.3, S4.3, GL.3 or Log (w, <) (the logic of the
frame (w, <)) [28, 31, 35].

4. Products of more than two modal logics are usually undecidable. In fact,
no logic between K x K x K and S5 x S5 x S5 is decidable [20].

Thus, the main gap in our knowledge about the decision problem for product
logics is the computational behaviour of products of two ‘transitive’ logics whose
‘depth’ is not bounded by any fixed n < w and at least one component logic
has branching frames. Many natural and useful logics, such as S4 x S4 and
S4.3 x S4, belong to this group. Apart from item 3 above, the only known result
in this direction concerns products with Log (w, <). Namely, [11, Theorem 7.24]
showed that the product logics Log (w, <) x K4 and Log(w, <) x S4 are not
decidable. However, that proof was rather tailor-made for this special case. On
the one hand, it heavily used the linearity and discreteness of (w,<). On the
other hand, the proof reduced the undecidable but recursively enumerable Post’s
correspondence problem to the satisfiability problem for the logics in question.
Since products like K4 x K4 or S4.3 x S4 are recursively enumerable by item
1 above, there was no hope to ‘simply extend the proof’ to these cases.

In this paper, we introduce a novel technique for dealing with products of logics
with transitive branching frames. Our main new result is that all products—and
quite often even the commutators—of two Kripke complete modal logics with
transitive frames of arbitrary finite or infinite depth are undecidable, in many
cases these products are not axiomatisable and do not enjoy the (abstract) finite
model property, and sometimes they are even II}-hard. Precise formulations
are given in Section 3. These results solve a number of open problems from
[12, 27, 6, 11].

To a certain extent, the obtained results are optimal. For example, the product
of, say, K4 and the logic of all transitive Kripke frames of depth < n, for some
fixed n < w, is decidable. This can be proved using the method of quasi-models
similarly to [11, Theorem 6.10].

Modal logic is usually praised for being reasonably expressive and yet compu-
tationally manageable. Although the series of ‘negative’ results from the 1970-
1980s produced a zoo of ‘monstrous’ modal logics for any taste (see, e.g., [5]),
basically all of those ‘monsters’ were artificial. The standard, natural modal
logics are reasonably simple. The results of this paper show that simple and
natural combinations of standard modal logics can be extremely complex. For
example, the undecidable product logic K4 x K4 is defined syntactically by the
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axioms of classical propositional logic, the modal axioms

GB(p — ¢q) = (Bp — Og) O(p — ¢) = (Op — Og)
Op — OOp Op — O0Op
SOp — OGp SOp & SOp

and the inference rules modus ponens, substitution and necessitation /3¢ and
/0. Its semantical definition is equally natural and transparent (see below
for details).

As a ‘by-product,” we also obtain natural Kripke incomplete logics, such as the
logic [K4, GL.3] which can be obtained by adding to K4 x K4 the well-known
axioms

O(0p — p) — Op O(p A dp —q)V OgATg — p).

The structure of the paper is as follows. Section 2 provides all the relevant
definitions. Section 3 lists the obtained results. The proofs are given in Sections 4
and 5. Roughly, the scheme is as follows. First, in Section 4, we present a
formula ¢, which ‘forces’ the existence of ‘n x m-rectangles,” for all n,m < w,
in any frame for K4 x K4. Then, in Section 5.1, we use these rectangles to
encode points of the w x w-grid, a kind of universal structure where one can
represent one’s favourite undecidable master problem, be it the (non)halting
problem for Turing or register machines, a tiling (or domino) problem, or Post’s
correspondence problem. In this paper we obtain our undecidability results using
Turing machines (encoded in Section 5.2) and tilings (encoded in Section 5.3).
Finally, in Section 6 we discuss the obtained results and future directions of
research.

§2. Products and commutators. Given unimodal Kripke frames §; =
(W1, Ry) and §2 = (Wa, R»), their product is defined to be the bimodal frame

31 X 8’2 = (Wl X W27Rh7RU)7

where W, x W5 is the Cartesian product of Wi and W5 and, for all u,u’ € Wy,
v,v' € Wa,

(u,v)Rp(u',v") iff wRyu' and v =0/,
(u,v)Ry(u',v") iff  vRyv' and u =u'.

Bimodal frames of this form will be called product frames throughout. Let L,
be a normal (uni)modal logic in the language with the box 3 and the diamond
&. Let Ly be a normal (uni)modal logic in the language with the box M and the
diamond <. Assume also that both L; and L, are Kripke complete. Then the
product of the logics L; and Lo is the (Kripke complete) bimodal logic Ly x Lo
in the language MLy with the boxes 3, M and the diamonds &, <& which is
characterised by the class of product frames §; X §2, where §; is a frame for L;,
i =1,2. (Here we assume that 3@ and < are interpreted by Ry, while M and &
are interpreted by R,.)
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A good starting point in understanding the behaviour of product logics is to
find basic principles that hold for every product frame (W; x Wa, Ry, R,):

o left commutativity: YaoVyVz (zRyy A yRpz = Ju (zRyu A uR,z)),

e right commutativity: YaVyVz (Rpy A yRyz = Ju (zRyu A uRpz)),

e Church—Rosser property: YaVyVz (achy AxzRpz — Ju (yRpu A zRvu)).
These properties can also be expressed by the M Lo-formulas

SOp— OOp, OOp— OOp,  OGhp— M. (1)

Given Kripke complete unimodal logics Ly and Lo, their commutator [Li, Ls]
is the smallest normal modal logic in the language ML, which contains Lj, L,
and the axioms (1).

Clearly, we always have [L, Ly] C L; x Lo. However, sometimes more in-
formation can be drawn. First, since the axioms in (1) are Sahlqvist formulas,
the commutator of two canonical logics is always canonical [12], and so Kripke
complete (like, e.g., [K4,K4] and [K4.3,S4]). As we will see later on in this
paper, not all commutators are Kripke complete; examples are [K4, GL.3] and
[GL, Grz.3] (see Corollary 4.2 below). Second, using the Kripke completeness
of the commutators, it is shown in [12, 11] that for certain pairs of logics, their
commutators and products actually coincide: for example,

[K4,K4] = K4xK4 and  [S4,5S4] = S4 x S4.

On the other hand, the Kripke complete [K4.3,K4]| does not coincide with
K4.3 x K4; see [11, Theorem 5.15].

Although product logics Ly x Lo are Kripke complete by definition, there can
be (and, in general, there are) other, non-product, frames for L; x Lo. This gives
rise to two different types of the finite model property. As usual, a bimodal logic
L (in particular, a product logic Ly x L) is said to have the (abstract) finite
model property (fmp, for short) if, for every M Ly-formula ¢ ¢ L, there is a finite
frame § for L such that § }~ ¢. (By a standard argument, this is equivalent to
saying that 9 £ ¢ for some finite model M for L; see, e.g., [5].) And we say
that L; x Ly has the product finite model property (product fmp, for short) if, for
every MLs-formula ¢ ¢ Ly x Lo, there is a finite product frame § for L; x Ly
such that § & ¢.

Clearly, the product fmp implies the fmp. Examples of product logics having
the product fmp (and so the fmp) are K x K, K x S5, and S5 x S5 (see [11]
and references therein). On the other hand, there are product logics, such as
K4 x S5 and S4 x K, that do enjoy the (abstract) fmp [12, 34], but lack the
product fmp [11]. In general, it is well known that many product logics with at
least one ‘transitive’ (but not ‘symmetric’) component do not have the product
fmp (see, e.g., [11, Theorems 5.32, 5.33, and 7.10]). A simple M L,-formula that
can be used to show that many such logics do not have the product fmp is as
follows:

FtopABTO(p —» a1 p),
where @1 abbreviates ¢ A @y. Note that this formula (as well as the others

known so far) is satisfiable in appropriate finite (in fact, very small) non-product
frames for the logics in question.
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§3. Main results. From now on we only consider products and commutators
of ‘transitive’ (uni)modal logics, that is, normal extensions of K4. In other
words, we deal with extensions of the bimodal logic [K4,K4] = K4 x K4. In
this section we list the main results of the paper and illustrate them by drawing
some consequences. The proofs are provided in Sections 4 and 5.

Given a transitive frame § = (W, R), a point « € W is said to be of depth
n < win g if there is a path z = zgRz1 R . .. Rz, of points from distinct clusters!
in § (that is, ;41 Rz; does not hold for any ¢ < n) and there is no such path
of greater length. If for every n < w there is a path of n points from distinct
clusters starting from x, then we say that x is of infinite depth, or x is of depth
00. The depth of § is defined to be the supremum of the depths of its points
(with n < oo for all n < w). For instance, § is of infinite depth if it contains
points of arbitrary finite depth. By the depth of a bimodal frame (W, Ry, R»)
with transitive Ry, Ry we understand the minimal depth of (W, R;) and (W, Ry).

Given classes C; and Cy of frames, we let

Ci xCy = {F1xF2|F €C1, §2€Ca}.

Denote by Log (C) the normal modal logic of a class C of frames. If C consists of
a single frame § then we write Log § instead of Log ({F}). Recall that a logic L
is Kripke complete if L = Log (C) for some class C of frames.

The main result of this paper is the following:

THEOREM 1. Let C; and Co be classes of transitive frames both containing
frames of arbitrarily large finite or infinite depth. Then Log (Cy x C2) is unde-
cidable.

More generally, if L is any Kripke complete bimodal logic containing [K4,K4]
and having product frames of arbitrarily large finite or infinite depth, then L is
undecidable.

We obtain this theorem as a consequence of more general Theorems 2 and 3
below. To formulate them, we require some terminology. We remind the reader
that a bimodal frame (W, Ry, R») is called rooted if there exists r € W such that
W ={u € W | r(Ry URy)*u}, where R* denotes the reflexive and transitive
closure of R. Fix some propositional variables h and v. Given a Kripke model
9 based on § = (W, Ry, Ry), define new relations Ry and R3" by taking, for
all z,y e W,

Ry if 3z €W [zRizand (M,2) Eh < (M,2) E-h) (2)
and (either z = y or zRyy)],

sRY'y iff 3z €W [zRez and (M, z) Ev < (M,2) E-—w) (3)
and (either z = y or zRyy)].

In other words, z R{™y iff 2 R,y and either x, y are of different ‘horizontal colours’
in the sense that h is true in precisely one of them, or z, y are of the same h-
colour (i.e., z |= h iff y = h), but there is a point z of different h-colour such
that 2Ry zR,y. Clearly, we always have R; C R; (i = 1,2).

LA set X C W is called a cluster in § if X = {z} U{y € W | xRy and yRx} for some
zeW.
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For every point = € W, define its horizontal and vertical ranks hrm(az) and
or™(z) in M as follows:

n, if the length of the longest R"-path
™ () = starting from = is n < w, (4)
00, otherwise,
n, if the length of the longest RY'-path
x) = starting from z is n < w, (5)
00, otherwise.

Note that, say, hr™ (x) is not the same as the depth of  in the frame (¥, RM™).
For example, if 2Ry, yRiz and z, y are of different h-colours then 2Rz and
™ () = 0.

For our constructions in Sections 4 and 5, points of finite horizontal and ver-
tical ranks will be of particular importance. For & < w, we call a rooted bimodal
frame § = (W, Ry, Ry) for [K4,K4]| a k-chessboard if there is a model 9t based
on § and such that the following conditions are satisfied:

(cbl) forall z,y € W with zRyy, (O, z) = v iff (M, y) = v;

(cb2) for all z,y € W with zRyy, (O, z) |= h iff (9N, y) = h; and

(cb3) there is z € W such that hr™ (z) = vr™(z) = k.
Clearly, if § is a k-chessboard then it is an n-chessboard for any n < k. Observe
that the product of any two rooted transitive frames of depths at least k is always
a k-chessboard. Further, it is not hard to see that for any model 9t based on

a rooted frame for [K4, K4] that satisfies (cb1) and (cb2), (W, Ry RY) is a
(not necessarily rooted) frame for [K4,K4], that is,

both RY and RJ" are transitive, (tran)
R™ and RY" commute, and (com)
R and RY" are Church-Rosser. (chro)

A rooted frame § for [K4,K4] is called an oco-chessboard if there is an 9
based on § which satisfies (cb1), (cb2) and contains points zj, with hr™ (z) =
or™ (zy) = k for every k < w. Clearly, an oo-chessboard is a k-chessboard, for
every k < w, and

an oo-chessboard is always infinite. (6)

Typical examples of co-chessboards are products of transitive frames where each
component, is

e cither a frame containing an infinite descending chain with a root, say,
({oo} Uw,>) or ({00} UZ, >);

e or a frame containing the infinite n-ary tree for some n > 2 as a subframe;

e or an infinite ‘xmas tree’ with arbitrarily long finite branches (that is, an
w-type ascending chain where a branch of length n starts at point n, for
every n < w).

(For more details see the proof of Corollary 4.1 in Section 5.) Note, how-
ever, that a product of transitive frames of infinite depth is not necessarily an
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oo-chessboard. For instance, it is not hard to see that if one of the components
is
e an infinite frame of finite width (that is, without antichains of more than
n points, for some fixed n < w) containing no infinite descending chain (in
particular, the infinite ascending chain (w, <)),
then the product is mot an oo-chessboard. As we will see in Section 4, there
is a formula that is satisfiable in precisely those frames for [K4,K4]| that are
oo-chessboards.
THEOREM 2. Let L be any bimodal logic containing [K4,K4] and having an
oco-chessboard among its frames. Then L
(i) does not have the (abstract) fmp, and
(ii) 4s undecidable.
Observe that Theorem 2 does not require L to be Kripke complete.

THEOREM 3. Let C be a class of frames for [K4,K4] with the following prop-
erties:

e it contains no oco-chessboard;

e it contains a k-chessboard for every k < w.
Then Log (C) is not recursively enumerable.

Clearly, Theorems 2 and 3 together imply Theorem 1. It follows from Theo-
rem 3 that if classes C; or Cs contain only finite transitive frames of arbitrarily
large finite depth then Log(C; x C2) is not recursively enumerable. Here is a
consequence of Theorem 2 which involves logics from the standard nomenclature
(see, e.g., [5] for their syntax and semantics):

COROLLARY 3.1. Let Ly and Lo be any logics from the list
K4, K4.1, K4.2, K4.3, S4, S4.1, S4.2, S4.3,
GL, GL.3, Grz, Grz.3, Log (w, <), Log (w, <).
Then both [L1, Ls] and Ly x Ly are undecidable and lack the (abstract) fmp.

In some cases, we can even say a bit more. We remind the reader that K4.3
is the logic of all transitive frames (W, R) that are weakly connected:

Va,y,z € W (kRy AxRz — y =2V yRz V zRy).

Note that, according to [9], all normal unimodal logics containing K4.3 are
Kripke complete, and by [40], those of them that are finitely axiomatisable are
decidable, but do not necessarily have the fmp.

Now consider the logic DisK4.3 determined by all Kripke frames for K4.3
which do not contain subframes that can be p-morphically mapped onto a two-
element cluster followed by a reflexive point ()0 or a two-element cluster fol-
lowed by an irreflexive point (2)—+e. In other words, a frame (W, R) for K4.3 is
a frame for DisK4.3 iff it satisfies the following aspect of discreteness:

there are no points xg, 1,...,%p,...,Tso in W such that
roRx1RxoR ... Rx,R. .. Rxy, (7

x; # xiy1 and —(xoo Rz;) for all i < w.
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The logic DisK4.3 can be axiomatised by adding to K4.3 the (subframe) canon-

ical formulas a(@—+e) and a(@—o) or, which is the same, the corresponding
Fine’s subframe formulas (for details see [10, 39, 5]).

A number of important ‘linear’ modal logics are extensions of DisK4.3, for
example, Log (w, <), Log (w, <), GL.3, and Grz.3, where GL.3 and Grz.3 are
the logics of Noetherian irreflexive and reflexive linear orders, respectively. We
remind the reader that a frame (W, R) is Noetherian if it contains no infinite
ascending chains zgRzy RzoR ... where x; # x;41. It is not hard to see that
Log (w, <) C Grz.3. It should also be noted that each of the logics DisK4.3,
Log (w, <), Log (w, <), GL.3, and Grz.3 has frames containing infinite descend-
ing chains; for example, ({00} UZ, >) is a frame for Log (w, <).

THEOREM 4. Let L be any Kripke complete bimodal logic having an oo-chess-
board among its frames and containing [K4, DisK4.3]. Then L is 11} -hard.

We will show that this result applies to a number of ‘standard’ product logics:
COROLLARY 4.1. Let Ly be like in Corollary 3.1 and
L, € {lLog(w,<), Log(w,<), GL.3, Grz.3, DisK4.3}.
Then any Kripke complete bimodal logic L in the interval
[L1,Ls] € L C Ly x Lo
is I} -hard. In fact, the product logics Ly x Lo are II}-complete.

We also obtain the following interesting corollary. As the commutator of two
recursively axiomatisable logics is recursively axiomatisable by definition, The-
orem 4 yields a number of Kripke incomplete commutators of Kripke complete
and finitely axiomatisable logics:

COROLLARY 4.2. Let Ly and Ly be like in Corollary 4.1. Then the commuta-
tor [Ly, L] is Kripke incomplete.

It is worth noting that if Lo = GL.3 then Ly X Ly is the only Kripke complete
logic between [L, Ly] and L; X Ly, for any Kripke complete logic Ly; for details
see [14].

§4. No finite model property. In this section we prove Theorem 2 (i). We
define a formula ., such that, for any rooted frame § for [K4, K4],

Yoo 18 satisfiable in § iff  § is an oco-chessboard. (8)

By (6), this clearly implies that, for any logic L specified in Theorem 2, ¢, is
L-satisfiable, but only in infinite frames for L, that is, L does not have the fmp.

The formula ¢, and its ‘finite variant’ ¢g, to be defined in Section 5.4 play
a crucial role in all of our undecidability proofs in Section 5.

To begin with, take two propositional variables h and v, and define new modal
operators by setting, for every bimodal formula 1,

&Y = [h—= O(-h AWV OY))]| A [-h—= S(hA @V SY))],
QY = [v — <>(—|v/\ (v Vv 0¢))] A [—w — <>(v/\ (Vv <>1,ZJ))],
M) = —&—1h, and ) = =P,
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(Similar operators were used by Spaan [35] and in [31, 11].)
Define ¢, to be the conjunction of the following formulas:

ga((hV ©h — Oh) A (=h V &=k — [O-h)), 9)
O0((v vV Sv — Gv) A (v V & — B-w)), (10)
*s(mMLAML), (11)
(WL A®L—d), (12)
WS (—~d A md), (13)
= (d A B—d), (14)
mm(d — m>d), (15)
=l (~d — IS—d). (16)

Suppose first that ¢ is satisfied at the root r of a model 9t based on a
frame § = (W, Ry, R») for [K4,K4]. Then both R; and R, are transitive, they
commute and satisfy the Church—Rosser property. We show that in this case §
must be an oco-chessboard, and so infinite.

Define new binary relations R; = R and Ry = RY® on W by means of (2)
and (3) above. By (9)-(10), § satisfies (cb1) and (cb2), and so R; and R
satisfy (tran), (com) and (chro). Moreover, for all z € W,

(M,z) =&y iff Ty eW (zRiy and (M,y) =),

(M, z) |= ¢y iff Jy € W (zRay and (M, y) E 9).
We will use the following abbreviations. For every formula ¢, & € {#, ®} and
O € {m, }, let

O% = 0% = ¢

and, for n < w, let

ortly = oMy, oty = DO,  and

O™ = OMpAOMH ).

(The last formula means ‘see ¢ in n steps but not in n 4+ 1 steps.’)

Now it should be clear that if we define the horizontal and vertical ranks
hr(z) = hr™ (z) and vr(z) = vr™(z) of a point = by means of (4) and (5), then
we have

hr(z) = n, ifn<wand (M)} &="T,
00, otherwise,

or(z) = n, ifn<wand (M, z)E ¢="T,
00, otherwise.

The reader can readily check, using (com) and (chro), that if 2R,y then vr(z) =
vr(y), and if zRoy then hr(z) = hr(y).
Let

V = {zeW|JueW rRuRsx}.
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LEMMA 1. Suppose that 9 is a model based on a rooted frame for [K4,K4].
If (M, 1) E v then, for all n < w, there ezists x, € V such that hr(zy,) =
vr(xz,) = n. (Therefore, if Y 1is satisfiable in a rooted frame § for [K4,K4]
then § is an oo-chessboard.)

ProoOF. First, we claim that the following formulas are true in 91, for all
n < w:

mm(-d — &T), (17)
=m(d — m"d"d), (18)
=m(—d — I"&"~d). (19)

Indeed, (17) is a straightforward consequence of (12), (16) and (com). We prove
(18) by induction on n. The case n = 0 is trivial. Suppose now that (18) holds
for some n. Take some w € V with (0, w) |=d and z1,..., 2z, 2,41 such that

WR121R1 . Rlan1Zn+1-
Then z, € V and, by IH, there are wy,...,w, € V such that
ZnRow1 Ry ... Ryw,, and (M, w,) E=d.

By (chro), there are si,...,s, € V such that w;Rys;, for i = 1,...,n, and
Znt1Ras1Rs . .. Rasy. Since wy, Ry sy, it follows from (15) that there exists s,11
such that

SnRoSni1 and (M, sp+1) Ed,

from which (9, z,41) | ®"T1d. The proof of (19) is analogous, it uses (16) in
place of (15).
Now we define inductively four infinite sequences

To,T1, T2,y Y0,Y1,Y2,--+5 Uo,UL,U2,... and vo,v1,vz,... (20)
of points from W such that, for every i < w,
(genl) (M, z;) =dAD-d,
(gen2) (M,y;) = —~d A |d,
(gen3) rRyu;, u;Ryz; and u;Ryy;, that is, vr(u;) = vr(x;) = vr(y;), and
(gend) if i > 0 then rRyv;, v; Rox; and v;Ray;—1, that is, hr(v;) = hr(z;) =
hr(yi-1)-
(We do not claim at this point that, say, all the z; are distinct.)
To begin with, by (11), there are ug, z¢ such that rRougRyzo and

(M, z0) FELADL. (21)
By (12), (9, z0) = d. By (13), there is yo such that ugR;yo and
(9, o) |= —d A =,

So (genl)—(gen3) hold for i = 0.
Now suppose that, for some n < w, z; and y; with (genl)—(gend) have
already been defined for all i < n. By (gen3) for i = n and by (com), there is
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Vpt1 such that rRyv, 1 Roy,. So by (14), there is @, such that v, Rompiq
and
(M, 2p41) E dA D,

Now again by (com), there is u, 1 such that r Ryt 41 Ri2ni1. So, by (13), there
is yn+1 such that wp41 R1y,p41 and

(DR, ynJrl) |: —d A\ Bd,

as required (see Fig. 1). Observe that z; and y; are in V for all i < w.

W e o
. ‘ B

...... » R2
T Vi+1
FIGURE 1. Generating the points x;, y;, u; and v;.
We claim that, for all i,n < w,
(M, ;) =" T & ST, that is, hr(z;) = vr(z;), (22)
(M, y;) = "' T « O"T, thatis, hr(y;) = vr(y;)+ 1. (23)

Indeed, if n = 0 then (22) is trivial, and (23) follows from (gen2) and (17). So
we may assume that n > 0.

To prove (22), suppose first that we have (9,2;) = @"T. Then there is
a point z such that z;Rf'z. By (genl), (M, ;) |= d. So, (M,2) = *"d, by
(18). Using (com), we find a point v such that x; R}v and vR}u, from which
(M, z;) = S™T. Conversely, suppose (I, z;) |= ¢™T, that is, there are points
21,...,2p such that z;Rez1 Ry ... Raz,. By (genl), (9, ;) = @—d, and so
(M, z1) E —d. Therefore, by (19) and (17), we have (I, z,,) = " T, and then
obtain (M, z;) = €™ T using (com).

To show (23), assume first that we have (9, y;) = ®"T. Then there is a point
z such that y; R¥z. By (gen2), (M, y;) &= ~d. So, by (19), (I, 2) = &#"~d, and
by (17), (9, 2) E $"1T. Now (IM,y;) = 4" T follows by (com). Conversely,
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suppose (M, y;) E &7 T, that is, there are points 21,..., 2, 2,41 such that
yiRiz1Ry ... RizpRizpi1. By (gen2), (MM,y;) &= ™d, and so (M,21) E d.
Therefore, by (18), we have (M, z,+1) = " T. And finally, using (com) we
obtain (M, y;) = *"T.

Next, we claim that, for all n < w,

or(up) =n, (24)
hr(vg) = n, (25)
hr(zy) = vr(z,) = n. (26)

First we prove (24) by induction on n. For n = 0, it follows from the definition
of zg (see (21)) and (gen3). Suppose that (24) holds for some n < w. Then

(i) =2 or(@nin) E hr(eng)

hr(yn) 2 or(ya) +1 52 () +1E 041,
Now (25) and (26) follow from (24) and
hr(vy) (gend) hr(zy,) 22 vr(xy,) (gon3) or(uy),

as required. -

(gen4)

Let us now prove the ‘<=’ direction of (8).
LEMMA 2. ¢ is satisfiable in any oo-chessboard.

PROOF. We begin with some definitions. Fix some k¥ < w and a frame
§ = (W, Ry, Ry) for [K4,K4] with root r. We call a model 9 over § a per-
fect k-chessboard model if the following hold:

(a) I satisfies (cbl) and (cb2);

(b) for every point v € W, if R} then hr™(v) is finite;
(c) for every point u € W, if rR3'u then vr”(u) is finite;
(d) for every n < k, there is a point v, € W with rRv, and ™ (v,) = n;
(e) for every n < k, there is a point u,, € W with rR3'u,, and v (u,) = n.
We call 9 a perfect co-chessboard model, if (d) and (e) hold for k = w.

Cram 2.1. (i) If § is a k-chessboard then there is a perfect k-chessboard
model based on §.
(il) If § is an oo-chessboard then there is a perfect co-chessboard model based

ong.

Proor ofF CraimM 2.1. (i) Take a k-chessboard § with root r. Then there is
a model M based on § that satisfies (cb1) and (cb2), and such that there exist
points z,, with ™ (z,) = ™ (x,) = n for every n < k. We know that R
and RJ" satisfy (tran), (com) and (chro).

We may assume that (91, r) = =h A —wv (if this is not the case, we change the
truth-values values of h and v to the ‘opposite’). Define a new model D over §
by taking

M,z) =h iff (M,z) =h and k™ (z) is finite,
M,z) v iff (9M,z) Ev and w™(z) is finite.
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We show that 9 satisfies conditions (a)—(e). Observe first that for all z,y € W,

if Ryy then hr™(x) > ™ (y), (27)
™ (). (28)
Now take a point u such that hr™ (u) is finite. Then it follows from (27) that,

for all v € W, we have uRv iff uR{'v. Similarly, if vr™ (u) is finite then, for
all v € W, we have uR?' iff uR3'w. Therefore, for all u € W,

if zRyy then wr™(z) > ur

if hr™(u) is finite then hr™(u) = ™ (u), (29)
M (u) = v (w). (30)

if or™(u) is finite then v’ (u)

We are now in a position to prove (a)—(e) for 9.

(a) It is easy to see that, since 9 satisfies (cbl), R; and RY" are Church—
Rosser and commute. Therefore, for all ,y with xRy, we have w™(z) =
vr™ (y), which implies (cbl) for 9. The proof of (cb2) is similar: we use the
fact that Ry and R are Church-Rosser and commute.

(b) Let rR*u and suppose that hr™ (u) = co. By (29), we then have hr™ (u) =
00, and so (M, w) = —h. Since (IM,r) = —h, we also have (N, r) = —h. So there
is a v such that rRyvRu and (M,v) = h. But then hr™(v) must be finite,
contrary to vRyu, hr™" (u) = oo, and (27). So hr™(u) < co.

(c) is similar. We use (30) and (28).

(d) Take an n < k. Then there is ,4; such that ™ (2,4 1) = ™ (z,41) =
n+1. We have either z,,41 = r, or rR1Zp41, Or rRotpi1, rRizpt1 Raxp41. Since
R and Ry commute and are Church-Rosser, if two points are Rp-connected
then their horizontal ranks in 99t must be the same. So in any case we have a
point z,41 such that hrm(znﬂ) = n+1 and either 2,41 = 7 or rR; z,+1. By (29),
hr™ (zp41) = n + 1, and so there is u,, such that z,41 R} u, and hr™(u,) = n.
So we have rR{'u,, as required.

(e) is proved in the same way using (30).

(ii) If § is an oo-chessboard then the above proofs for (d) and (e) show that in
fact M satisfies (d) and (e) for k¥ = w, which completes the proof of Claim 2.1. -

Now suppose that § = (W, R;,R;) is an oo-chessboard with root r. By
Claim 2.1, there is a perfect oo-chessboard model O based on §. Define a valu-
ation of the propositional variable d in 9t by taking, for all z € W,

M) =d  iff  (z) < or’(z) < co. (31)

We claim that (M,r) E ¢s. Indeed, (9) and (10) hold because of property
(a) of the perfect oo-chessboard model M, and so R{' and R3' satisfy (com)
and (chro). The proof for the remaining conjuncts is straightforward. We only
consider (13). Take a u such that 7RJu. Then, by (c), vr”'(u) = n for some
n < w. By (d), there is v,41 such that 7R, 1 and hrm(vnﬂ) =n+1. Then,
by (com) and (chro), there is y such that uR}'y and k™' (y) = n + 1. We also
have wr™(y) = vr”'(u) = n, and so (M,y) | —d. On the other hand, if z is
such that yR¥z then hr™(z) < n and vr™(z) = n, from which (M, z) |= d, as
required. -
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§5. Undecidability. In the proof of Lemma 1 above we saw how the formula
oo ensured the existence of a sort of ‘diagonal points’ z,, with hr(z,,) = vr(z,) =
n. We will use these points to encode parts of the ‘w x w-grid’ in frames with
two transitive commuting and Church—Rosser relations.

Various undecidable problems can be ‘represented’ on the w x w-grid, say, ver-
sions of the halting problems for Turing machines, register machines, etc., Post’s
correspondence problem, as well as the infinite tiling (or domino) problems. In
Sections 5.2 and 5.3 we show two examples: the halting problem for Turing
machines and infinite tiling problems.

To prove our undecidability results, we will reduce a sufficiently complex prob-
lem for Turing machines or tilings to the satisfiability problem for the logic in
question. More precisely, we will use

e non-recursively enumerable problems, viz., the non-halting problem for Tur-
ing machines or the w X w tiling problem, to obtain the general undecidabil-
ity result of Theorem 2 (which covers, in particular, recursively enumerable
logics like K4 x K4);

e a recursively enumerable problem whose complement is not recursively enu-
merable, namely, the halting problem for Turing machines, to prove non-
recursive enumerability in Theorem 3;

e Yl-hard problems, viz., the non-halting problem for recurrent non-deter-
ministic Turing machines or the recurrent tiling problem, to obtain II}-
hardness in Theorem 4.

5.1. Encoding the w X w-grid. The enumeration of the points of w x w
we use below has been introduced in several papers dealing with undecidable
multimodal logics; see, e.g., [18, 28, 31]. However, in all these cases either the
language had next-time operators or the frames were linear. Here we show that
one can code this enumeration even if the frames are branching (and, of course,
transitive), and no next-time operators are available.

Let pair: w — w X w be the function defined recursively by taking:

e pair(0) = (0,0),

e if pair(n) = (0, ) then pair(n + 1) = (j + 1,0),

e otherwise, if pair(n) = (i + 1, ) then pair(n + 1) = (i,j + 1);
see Fig. 2. It is easy to see that pair is one-one and onto. Let §:w X w — w
denote the inverse of the function pair. If pair(n) is not on the wall (that is, the
first coordinate of pair(n) is different from 0) then define left,, to be the t of the
left neighbour of pair(n). The reader can readily check the following important
properties of these functions, for all n > 0:
(t1) If neither pair(n) nor pair(n — 1) are on the wall then left, = left,—1 + 1.
(t2) If n > 1 and pair(n) is not on the wall, but paeir(n — 1) is on the wall, then

n > 2, pair(n — 2) is not on the wall, and left,, = left,,_» + 1.

(t3) pair(n) is on the wall iff pair(left,,—1) is on the wall.
(t4) Either pair(n) or pair(n — 1) is not on the wall.
We will require the following propositional variables:

e grid (marking the points of the grid),

e left (a pointer from n to left, when pair(n) is not on the wall),
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wall
04)s o o e
(0,3)
(0,2)

(0,1)

floor
(0,0) (1,0) (2,0) (3,0) (4,0)

FIGURE 2. The enumeration pair.

e wall (marking the wall, i.e., the pairs of the form (0,n)).
Let @gria be the conjunction of (9), (10) and the formulas (32)—(38):

=M (ML — (grid <> m1)), (32)

m(=mL A grid — wall), (33)
=@ (wall — grid), (34)
mm(Swall — ®(grid — wall)), (35)
mm(ST — (grid + ¢~ &= grid)), (36)
= (grid A €T — (wall < *(S="left A Swall))), (37)
= [Ieft o ( STITAML)V (B(S72left A Swall) A 3=1&=2left)

V (&7 eft A ~Swall) A d=1 &= left) )] (38)
LEMMA 3. @oo A @gria 15 satisfiable in any oo-chessboard.

ProOF. Let § = (W, Ry, R2) be an oo-chessboard with root 7. By Claim 2.1,
there is a perfect co-chessboard model M over §. Define a valuation of the
propositional variables grid, wall and left in 9 by taking, for all z € W,

M, z) = grid iff  (z)
M, z) Ewall iff ()
M, z) = left i " (z)

m(x) < 00, (39)
M(z) = #(0,4) for some j < w,

ur
ur

n, vr(z) = left, for some n < w
such that pair(n) is not on the wall.

Then it is straightforward to check that (M, 7) = ¢oo A ©grid- -

The next lemma shows that in fact g4 ‘forces’ the w x w-grid onto ‘diagonal
points of finite rank.’
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LEMMA 4. Suppose that 9 is a model based on a rooted frame § = (W, Ry, R»)
for [K4,K4]. If (M, ) = pgria then the following hold, for all n,m < w and all
x €V such that hr(xz) = n and vr(z) = m:

(i) O, z) Egrid iff n=m,

(i) (M, z) = &=tleft iff n >0, pair(n—1) is not on the wall and m = left, 1,
(iii) (M, z) =wall iff n=m and pair(n) is on the wall,
(iv) (M, z) [ left iff pair(n) is not on the wall and m = left,.

PROOF. We use the same notation as in Section 4, in particular, Ry = R

and Ry = RY, hr(z) = ™ (z) and vr(z) = or™(z), and
V = {xeW|3JueW rRuRyz}.

The proof proceeds by induction on n. For n = 0, we obtain (i) by (32), (iii)
by (33) and (34), and (iv) by (38).

Now take any n > 0 and suppose that the lemma holds for all k¥ < n. Through-
out, we will use the following observation. Given numbers a,b < w and some
z € V with hr(z) = a and vr(xz) = b, there exists what we call a perfect a x b-
rectangle starting at x, that is, there are points z;; (for i < a, j < b) such
that

° T =Tqy,

o hr(z;;)=1and vr(z;;) = J,

° :Ui7jR1.’L'k7j for ¢ > k, and :Ui7jR2:Ui7k for j > k.
Indeed, given z, take an a-long R;-path and a b-long Ry-path starting from z,
and then ‘close them’ under the Church-Rosser property.

(i) We claim that, for all m < w and all x € V with hr(z) = n and vr(z) = m,

(M, z) = &=tgrid iff m=n—1 (40)
Indeed, suppose first that m = n — 1. Take a perfect n x (n — 1)-rectangle x; ;
(i <n,j <n-—1) starting at . Then by IH (i), (M, zp—1,n—1) E grid, and
so (M,z) = #grid. Now let u be such that zR;u and (9, u) & grid. Then
we have hr(u) = k < n and vr(u) = vwr(x) =n —1 < w. By IH (i), we have
k=n—1,and so (M, z) £ &2grid. Conversely, suppose that (9, z) = &=Lgrid.
Then there is u such that zRju and (9, u) |= grid. We have hr(u) = k < n
and vr(u) = vr(z) = m. So m = k follows, by IH (i). Now take a perfect
n X k-rectangle z;; (i < n, j < k) starting at «. By IH (i) again, we have
(M, xk1) | grid. Since (M, z) = &=1grid and © = z,, , R17 k, Wwe must have
m =k =n — 1 as required in (40).

Our next claim is that, for all m < w and all x € V with hr(z) = n and
vr(xz) = m,

(M, z) = ¢~ & 1grid if m =n. (41)
Indeed, suppose first that m = n. Take a perfect n x n-rectangle z;; (i < n,
j < n) starting at . Then (M, zp,,—1) | @ grid, by (40), and therefore
(M, z) = *S=1grid. Now, the fact that (9, z) & ®?&=1grid also follows from
(40). Conversely, suppose that (,z) = #=1&=1grid. Then there is u such
that zRyu and (9, u) | &=1grid. Since hr(u) = n, by (40) we obtain that
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or(u) = n — 1, and so m > n. Now take a perfect n x m-rectangle z; ; (i < n,
j < m) starting at z. By (40) again, (M, z,, 1) = $~ grid, so m = n must
hold.

Now claim (i) of Lemma 4 follows from (41) and (36).

(ii) The proof is similar to the proof of (40); we only use IH (iv) in place of
IH (i). In fact, we can even prove a slightly stronger claim: for all i,m < w and
all x € V with hr(z) = n and vr(z) = m,

(M, z) |= & left iff n >, pair(n — i) is not on the wall, m = left, ;. (42)

Indeed, suppose first that n > i, pair(n — ¢) is not on the wall and m = left,_;.
Take a perfect n x left,_;-rectangle z, (a < n, b < left,_;) starting at . By
IH (iv), (M, Tp—iefr, ;) E left, and so (M, z) = &lleft. Now let u be such that
rRyu and (MM, u) = left. Then vr(u) = vr(x) = left, ; and hr(u) = k < n.
By IH (iv), pair(k) is not on the wall and vr(u) = lefty, from which k =n — i
follows, implying (9, ) [~ @ *tleft. Conversely, suppose that (9, z) | &=lleft.
Then n > i and there is u such that xRiu and (9, u) | left. So we have
hr(u) =k <n—1iand vr(u) = vr(z) = m. So, by IH (iv), pair(k) is not on the
wall and m = left,. Now take a perfect n x leftg-rectangle x4 (a < n, b < lefty)
starting at . By IH (iv) again, we have (I, &k o5, ) = left, and so k = n — 4
must hold, as required in (42).

(iii) Suppose first that n = m and pair(n) is on the wall. Then, by (t4),
pair(n — 1) is not on the wall. By IH (i), we have (9, ) |= grid. So by (37), it
is enough to show that

(M, z) = S (S eft A Swall). (43)

Take a perfect n x m-rectangle z; ; (i < n, j < m) starting at . We have
(O, T tefr, ) = &7 tleft, by Lemma 4 (ii). On the other hand, by (t3),
pair(left,—1) is on the wall. So, by IH (iii), (O, Zieft, . teft._.) E wall, and
so (M, Ty iept, 1) = Swall. Since TRy, jefr, ,, we obtain (43).

Conversely, suppose that (9, z) = wall. By (34), we have (9, xz) = grid, so
n = m follows by Lemma 4 (i). By (37), (9, z) £ ® (& left A $wall). Then
there is a u such that zRyu and (9, u) = &~ Lleft A #wall. By Lemma 4 (ii),
pair(n — 1) is not on the wall and vr(u) = left,—1. Take a perfect n x left,,_1-
rectangle u; ; (i < n, j < left,—1) starting at . By Lemma 4 (i), we have
(m, Ufleftn,l,leftn_l) |: grid and SO, by (35), (Dﬁ,uleﬂnihleﬂn_l) ': wall. Now by
IH (iii), pair(left,—1) is on the wall and so, by (t3), pair(n) is on the wall, as
required.

(iv) First, we claim that, for all i,m < w and all x € V with hr(z) = n and
vr(x) = m,

(M, 2) = *= & eft  iff n > i, pair(n — i) is not on the wall
and m = left,—; + 1. (44)

The proof of this claim is similar to that of (41), using (42) in place of (40), so
we leave it to the reader.
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Now suppose that pair(n) is not on the wall and m = left,,. We will show how
(38) can be used to deduce (M, z) |= left. There are three cases:

Case 1: n =1. Then m = left; = 0, and so (M, z) = =1 T ADL.

Case 2: n > 1 and pair(n — 1) is on the wall. Then, by (t2), pair(n — 2) is
not on the wall and left, = left,—» + 1. By (t3), pair(left,_») is on the wall. We
claim that

(M, z) = * (S 2left A Swall) A B~ &2|eft.
Indeed, (MM, z) = ®=1&=2left, by (44). Take a perfect n x (left,,—2+ 1)-rectangle
zi; (0 <n, j < left,_o + 1) starting at . Then (I, 2iepr, 5,165, ) = wall, by
IH (iii). On the other hand, (M, zp iefr, ,) = S=2left, by (42), and so we have
(O, Ty tefr, o) | S72left A Swall.

Case 3: n > 1 and pair(n — 1) is not on the wall. Then, by (t1), left, =

left,—1 + 1. By (t3), pair(left,—1) is not on the wall. We claim that

(M, z) = ® (S eft A ~Swall) A B=1 &= left.
Indeed, (MM, x) = O®=1&=Lleft, by (44). Take a perfect n x (left,—1 + 1)-
rectangle x; ; (i < n, j < left,_1 + 1) starting at z. Then we have, by IH (iii),
(M, Tieft,, _y ieft, ) [~ wall. So, by (35), (M, zp tefr, .) = ~@wall. On the other
hand, (9, zy 1efe,, ) = S left, by (42).

Conversely, suppose that (9, z) |= left. By (38), there are three cases.

Case 1: (M, x) = =T ADL. Thenn =1, m = 0 = left, and pair(1) is not
on the wall.

Case 2: (M, z) E (& 2left A Swall) A =1 &=2eft. By (44), we have that
pair(n — 2) is not on the wall and m = left,_» + 1. Take a point u such
that zRou and (M, u) | &=2left A $wall. By (42), vr(u) = left,_2. Take
a perfect n x left,_o-rectangle u;; (i < n, j < left,—2) starting at u. By
Lemma 4 (i), (O, Wiept, s e, ») = grid and so, by (35) and (9, u) = Swall,
(M, wieft,, s 1eft, o) = wall. Now by IH (iii), pair(left,—») is on the wall and so,
by (t3), pair(n — 1) is on the wall. By (t4), pair(n) is not on the wall. Finally,
by (t2), left, = left,—> + 1 as required.

Case 3: (M, z) = O (S=left A ~Swall) A d=1&=1left. By (44), pair(n — 1)
is not on the wall and m = left,_; + 1. Take a point u such that zR>u and
(M, u) = &=eft A~Swall. By (42), vr(u) = left,,—1. Take a perfect n x left, ;-
rectangle u; ; (i <n, j < left,_1) starting at u. Since (I, u) = ~®wall, we have
(M, wiepe,, , teft_,) = wall. So, by IH (iii), pair(left,—1) is not on the wall and
so, by (t3), pair(n) is not on the wall either. Finally, by (t1), left, = left,—1 +1
as required.

This completes the proof of Lemma 4. 4

5.2. Encoding Turing machines. A (one-tape deterministic) Turing ma-
chine M has a finite tape alphabet T (including B, the blank symbol, and £,
the ‘left-end marker’), a finite set @) of states, with go being the initial state
and ¢; the halting state, and a transition function e given as follows. For every
g€ Q—{q} and every X € T, the value of g(q, X) is a pair (p,Y), where

e p € () is the next state;



PRODUCTS OF ‘TRANSITIVE’ MODAL LOGICS 19

e cither Y € T — {£} (Y is the symbol to be written in the cell being
scanned—it replaces the symbol that was there before), or ¥ € {L,R}
(Y is the direction, left or right, in which the head moves, with L and R
being fresh symbols).

We can always assume that M is such that its head never moves left of its initial
position (say, by postulating that o(q, £) = (p,R) always holds). Starting from
an all-blank tape with the head scanning the cell next to £, at each step there
are only finitely many non-blank cells, so we can represent a configuration of M
as an infinite sequence of the form

" = (’CaXl:"'7Xn—17(ann)aXn-‘rl:'"7X’maBaB7"')7

where ¢ € @ is the current state, £,X;,...,X,, is the non-blank part of the
current, tape description, and the head is scanning the nth cell. For example,
the initial configuration s¢ of M looks as follows:

o = (£7(q07B)7B7B7"')‘

Starting with s¢ and using the transition function g, we define in the standard
way the unique sequence of configurations s, s1,... of M which is called the
computation of M. Let Hps denote the number of configurations in this com-
putation (that is, Hy < w if M eventually stops, and Hys = w if it does not).
Observe that in s, the head cannot be further to the right than the n + 1st cell.

Now, given a Turing machine M, we define a bimodal formula ¢, as follows.
Let

A=TU(@xT).

Slightly abusing notation, for every s € A, we introduce a propositional variable
s (in particular, we treat (¢, X) € @ x T as a single variable in this context).
Then ¢y is the conjunction of the formulas:

= m(grid + \/ s), (45)
sEA
= /\ (s A s, (46)
s#s'€A
mO(mLA DL - £), (47)
mI (&= T A O=IT = (0, B)), (48)
ma(>=1&=1wall A 48T — B), (49)
A Pa(grid A 0TS (q, X) A O (et A 82)) > (1,2)),  (50)
0(¢,X)=(p;L)
zZeT
A ﬂ[l(grid A S8 ((q, X) A (left A &2)) — Z), (51)
0(¢,X)=(p,Y)
Y#L, ZeT
A Etl(grid A& (S left A &(q, X)) = (p, Y)), (52)

3(¢,X)=(p,Y)
YeT
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A = (grid A o (87Meft A S(g, X)) - X), (53)
5(0.X)=(p,Y)
YT

/\ = (grid A
6(¢,X)=(p:R)
ZeT

(&7eft A &(2 A O (Ieft A 8(¢, X)) = (1, 2)),  (54)

A =o (grid A
5(;17)():(1)73’)

4R, Z€T
> (S7Meft A &(Z A D(lefe A &(q, X)) > Z),  (55)
A\ =o [grid A
X,Y,ZET
71671 (Z 1 0 lefe A &(Y A (wall v O (lefe A 8X))))) = V] (56)

LEMMA 5. ¢oo A @gria A a5 satisfiable in any co-chessboard.

ProOOF. Let § = (W, Ry, Rs) be an co-chessboard with root r. Take the model
N over § defined in the proof of Lemma 3. As is shown there, (3, 7) = ©oc A@gria-
Define a valuation of the propositional variables s € A in 91 by taking, for all
reW,

M,z) s iff W(z) = ™ (z) = 4(i,§) for some i, < w
such that the ith symbol in ¢y, (5,1, —1) 18 5. (57)

Then it is straightforward to check that (,7) = ¢ =

The next lemma shows that in fact pas ‘forces’ the consecutive configurations
2y, 1, ... of the computation of M on the consecutive horizontal lines of the
w x Hpr-grid (starting from the line (0,0), (1,0),(2,0),...):

LEMMA 6. Suppose that M is a model based on a frame §F = (W, Ry, Ry) for
[K4, K4] with root r. If (M, 1) = pgria ANom then, for all s € A, alln < w such
that pair(n) = (i,j) and j < Hyr, and all © € V' such that hr(z) = vr(z) = n,

M, z) |=s iff the ith symbol of the configuration x; is s. (58)

PROOF. As before we use the notation of Section 4. The proof proceeds by
induction on n. For n =0, (58) follows from (47) and (46).

Suppose that n > 0 is such that pair(n) = (4,7), 7 < Hpy, and (58) holds for
all k < n. Take an z € V with hr(z) = vr(x) = n. If pair(n) is on the floor then
(58) holds by (48), (49) and (46). So suppose that pair(n) is not on the floor,
that is, j > 0. Then §(i + 1,7 — 1) = n—1, #(i,j — 1) = left,—1 and, if i > 0,
8(i—1,5 —1) = leftiefs,_,. Let s; € A denote the ith symbol of the configuration
»j_1. Take a perfect n x n-rectangle z; ; (i < n, j < n) starting at . By the
induction hypothesis we then have

(M, zp—1,n-1) F Sit1, (O, Tieft, o tefta 1) F Si (59)
and, if i > 0, (9, -’I/'leftlgﬂnil,leftluﬂnil) = sic1-
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Let h < w be such that the head is scanning the hth cell of x;_;. There are four
cases:

Case 1: h =i+ 1, that is, s;41 = (¢, X) for some ¢ € @, X € T. Then, by
(59), (41), (45), and Lemma 4 (i) and (iv),

(M, z) = grid A ¢ &=L ((q, X) A B (left A &5)).

Now one can use either (50) and (46), or (51) and (46) (depending on the value
of 6(g, X)) to obtain (58), as required.

Case 2: h = i. This case is similar to Case 1: we only use (52) or (53) in place
of (50) and (51).

Case 3: h =1 — 1. This time we use (54) or (55).

Case 4: h#1i—1,i,i+ 1. In this case we use (56). 4

5.3. Encoding tilings. A tile type is a 4-tuple of colours

t = (left(t), right(t), up(t), down(t)).

For a finite set O of tile types and a subset X C w X w, we say that O tiles
X if there exists a function (called a tiling) 7 from X to © such that, for all
(i,5) € X,

e if (i,74+ 1) € X then up(7(i,j)) = down(r(i,j + 1)) and

e if (i +1,j) € X then right(r(i, j)) = left(r(i + 1,5)).

Given a finite set © of tile types, we introduce a propositional variable ¢, for
every t € 0. Let po be the conjunction of the following formulas:

mm(grid «» \/ 1), (60)
te®
mm A\ (tAt), (61)
t#£t' €O
=fi A (t — (S teft — ~&1)), (62)
t,t'cO
up(t')#down(t)
=fi A (t — m(left — ~&1)). (63)
t,t'cO

right(t’)#left(t)
LEMMA 7. Suppose that © tiles w x w. Then Yoo A Qgria A\ pe is satisfiable in
any oo-chessboard.

PRrROOF. Let § be an oo-chessboard with root r. Take a model 9 over §
as in the proof of Lemma 3. Then, as is shown in the proof of Lemma 3,
(M, 7) |= Poo A @grig holds.

Fix some tiling 7 : w xw — ©. Define a valuation of the propositional variables
t € O in N by taking, for all z € W,

M,z) =t iff W (x) = o™ (x) = #(i,§) for some i,j < w with 7(i, ) = t.
Then it is straightforward to check that (91,r) | pe. =

For every n < w, let

plane, = {(17.7) | ﬂ(%]) < n}
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LEMMA 8. Suppose that a model I is based on a frame for [K4, K4] with root
r and that (M, r) = @gria A pe. Then, for every n < w, every x € V such that
hr(z) = vr(z) = n, and every perfect n x n-rectangle x; ; (i <n, j <n) starting
at ©, the function 7 : plane, — © defined by

T3 =t iff M2y 66.0) F1
is a tiling of plane,.

PRrOOF. The proof is by induction on n. For n = 0 the statement is obvious.
Suppose that n > 0 and the statement of the lemma holds for all k¥ < n. Take a
perfect n x n-rectangle x; ; (i < n, j < n) starting at «. Since left,, (if pair(n)
is not on the wall) and left,,—; (if pair(n) is not on the floor) are both smaller
than n, the statement holds by IH, Lemma 4, (62) and (63). o

5.4. Proofs of Theorems 2—4. We are now in a position to prove the results
of Section 3. As we already saw, Theorem 1 is an immediate consequence of
Theorems 2 and 3.

PROOF OF THEOREM 2. Item (i), the lack of the fmp, was proved in Section 4.
Here we give two different proofs of undecidability, one using Turing machines,
and another using tilings.

Let L be as specified in the formulation of Theorem 2. First we reduce the
undecidable non-halting problem for Turing machines (see, e.g., [21]) to the
satisfiability problem for L. To this end, given a Turing machine M, define a
formula ®,; to be the conjunction of the formulas ¢u,, @grid, Yam introduced
above, and

mm A (g, X). (64)
Xer
We claim that
&), is L-satisfiable iff M does not stop having started
from an all-blank tape.

Suppose first that ®,s is satisfied in a model 9 for L. As [K4,K4] C L
and [K4,K4] is Kripke complete, we may assume that the underlying frame of
M is a frame for [K4,K4]. Suppose that M eventually stops. Then Hy < w
and there is i < w such that the ith symbol of sy,,—1 is (q1,X), for some
X € T. Let n = pair(i, Hyy — 1). By Lemma 1, there is some z € V such that
hr(z) = vr(z) = n. So by Lemma 6, (9, z) |= (¢1,X), contrary to (64).

Now suppose that M does not stop having started from an all-blank tape. By
assumption, L has an co-chessboard § with root r among its frames. Take the
model N over § defined in the proof of Lemma 5. As is shown there, (N, r) |=
Yoo A Qgria A par. It is straightforward to see that (64) also holds at r in 9.

Our second proof uses tilings. We reduce the following undecidable (see [37, 4])
w X w-tiling problem to the satisfiability problem for L: given a finite set © of
tile types, decide whether © can tile w x w.

Indeed, using Lemma 8, it is straightforward to show that if po, A @gria A e
is L-satisfiable then © tiles plane,, for all n < w. A standard compactness
argument (or Konig’s lemma) shows that if a given finite set © of tile types tiles
plane, for every n < w, then it actually tiles the whole w x w-grid.
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On the other hand, since L has an oco-chessboard § among its frames, if ©
tiles w x w, then Yoo A @grig A o is L-satisfiable, by Lemma 7.
Both proofs above show that L must be undecidable. -

ProoF oF THEOREM 3. Now we deal with the logic Log (C) such that C con-
tains a k-chessboard for every k < w, but no oo-chessboard. This time we
reduce the (undecidable, but recursively enumerable) halting problem for Turing
machines to the satisfiability problem for Log (C). To this end, given a Turing
machine M, define a formula g, in the same way as ¢ but with the ‘generat-
ing’ conjuncts (13) and (14) replaced by their ‘relativised’ versions

(=& \/(@1,X) > &(~d A Bd)), (65)
XeT

B (= \/(@, X) = *(d A @-d)), (66)
XeT

and with two extra conjuncts

A 2(¥ (g1, X) - Wgrid = (1, X)), (67)
XeT
A 3($(q1,X) = B(grid = (q1, X)) (68)
XeT

added. Let ¥, be the conjunction of @gn, @griq and @p. We claim that
Uy is Log (C)-satisfiable iff M stops having started from an all-blank tape.

Suppose first that ¥, is satisfied at the root r of a model 91 that is based
on a frame § = (W, Ry, R2) from C. Then both R; and R, are transitive, they
commute and are Church-Rosser. Define R and RJ" as in (2) and (3), and
the horizontal and vertical ranks of points as in (4) and (5). Then (cbl) and
(cb2) are satisfied by (9) and (10), and so R and RJ" satisfy (tran), (com)
and (chro).

Using (65) and (66), we start to ‘generate’ the points z,, u, and v, in the
same way as in the proof of Lemma 1 (see (20) and Fig. 1). We claim that there
is N < w such that

either  (M,un) =& \/ (@1, X) or Mon) E* \/ (@, X).  (69)
Xer XeT
For suppose this is not the case. Then ¢g, generates the z,, u, and v, for all
n < w in the same way as @ did. So, as the proof of Lemma 1 shows, we have
points x, with hr™ (z,) = w™(x,) = n, for every n < w. Therefore, § is an
oo-chessboard, which is a contradiction since C does not contain such frames.
So let N < w be the smallest number such that (69) holds. Suppose, for
example, that (MM, uy) = € (g1, X) for some X € T. (Note that by (45)—(47) and
(68), we have N > 0.) Then the points xo, ..., zn and ug, ..., un are generated
like in the proof of Lemma 1. As hr™ (zx) = or™(zx) = N by (26), Lemma 4 (i)
implies that (9, zy) |= grid. As unyRPzy, (M, zx) E (q1,X) follows by (68).
Let pair(N) = (i,7). By Lemma 6, the ith symbol in »; is (¢1,X), and so M
must stop no later than in j steps. The case when (M, vy) E ®(q1, X) is similar;
we have to use (67) in place of (68).
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Now suppose that M stops having started from an all-blank tape, that is,
Hy < w. As we know, L has a k-chessboard § with root r among its frames,
for some k > Hjy;. By Claim 2.1, there is a perfect k-chessboard model 9t based
on §. Define a valuation of the propositional variable d in 9t as in (31). Extend
this model to the ‘grid” and ‘Turing machine variables’ as in (39) and (57). Then
M, 7) |= pgriaApar. A proof similar to that of Lemma 2 shows that (M, ) |= ¢fin
also holds. Moreover, it is not hard to see that (67) and (68) hold at r in 9 as
well. 4

To prove Theorem 4 with the help of Turing machines, one should find a
suitable ¥i-hard problem. A non-deterministic Turing machine M is called
recurrent if, having started from the all-blank tape, it has a computation that
never halts and reenters the initial state go infinitely often. It is known (see,
e.g., [19]) that the problem ‘given a non-deterministic Turing machine M, decide
whether it is recurrent’ is X}-complete. By appropriately modifying the formulas
above, it is not difficult to reduce this problem to the satisfiability problems for
the logics mentioned in Theorem 4. However, the formulas become even more
complex than before, so below we give a (more transparent) proof with the help
of a recurrent tiling problem instead.

ProOF OF THEOREM 4. The following recurrent tiling problem is known to
be Xl-complete [17]: given a finite set © of tile types and a t; € O, decide
whether O tiles the w x w-grid in such a way that ¢y occurs infinitely often on
the wall.

So suppose that © and some t;, € © are given. Define ¥g 4, to be the con-
junction of pu, Yerid, Yo, and the formulas

m&recc, (70)
m@(recc — —Pgrid), (71)
= (Precc — d(wall A o)), (72)
N\ B(ot — m(grid — 1)), (73)
te®

/\ m (&t — =(grid — ¢)). (74)
te®

Now let L be as specified in the formulation of the theorem. We claim that

Ve 4, is L-satisfiable iff O tiles w x w with ¢ty occurring
infinitely often on the wall. (75)

Suppose first that We ¢, is satisfied at the root r of a model 9 for L. Since L
is Kripke complete, we may assume that 91 is based on a frame § = (W, Ry, R»)
for L. In particular, § is a frame for [K4,DisK4.3]. Then both R; and R»
are transitive, they commute and are Church—Rosser. We also know that Ry is
weakly connected and satisfies (7). Define the relations Ry = RY and Ry = RV
as in (2) and (3). Then they satisfy (tran), (com) and (chro). Moreover, since
Ry C Ry and R, satisfies (7), Ry satisfies (7) as well.

Note that Ry is not necessarily weakly connected. However, it always has the
following property:
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CLAIM 4.1. For all z,y,z € W, if xRyy, *Roz and vr(y) > vr(z) then yRyz.

Proor or Cramm 4.1. Clearly, it is enough to show that if z,y, 2 are such

that zR»y and xR,z but neither zRyy nor yRyz hold, then vr(y) = vr(z). This
statement is an immediate consequence of the following property:

Voyz (zRyy A xRyz A —yRyz A —2Ryy — Yw (yRaw < zRyw)).

The case of y = z is obvious. So suppose y # z. Since zR»y and zRyz, but the
points y and z do not Ry-see each other, they must have the same ‘vertical colour,’
say, v. Now suppose that yRow. Then there is some u with vertical colour —w
such that yRyu and either u = w or uR>w. Since R» is weakly connected, we
have either yRsz or zRsy. If zRyy then zRyw follows by transitivity. So suppose
yRyz. Then either uR>z or zRou. We cannot have uR»z, because y}_fgz does

not hold, so zRyu. Therefore, zRyw. -
Our next observation is that, for every z € W,
if vr(x) # 0 then there is u such that zRyu and vr(u) = 0. (76)

Indeed, if 2 = r then (76) follows from (11) and (chro). If rR;x then take a u
with rReu and vr(u) = 0, which gives (76) by (chro). If rRyz then take a u with
rRyu and vr(u) = 0. Then we have x Ryu by Claim 4.1. Finally, if rR; 2 Ryx for
some z then take a u with zRsu and vr(u) = 0. Then again zRyu follows from
Claim 4.1.

Next, we show that

Ry is irreflexive. (77)

Suppose otherwise, that is, there is « € W with 2 Ry2. Then there is y such that
zRoyRyx and the ‘v-colours’ of = and y are different, i.e., z # y. By (76), there
is u such that zRyu and vr(u) = 0, and so uRzx cannot hold. But then we arrive
to a contradiction with the property (7) of Ry because zRyyR2z R ... Ryu.

CLAIM 4.2. For every x € V with (M, x) |= grid, there is n < w such that
vr(x) =n.

PrOOF OF CLAIM 4.2. If (9, 2) = ™ML then the claim holds by (32). Now
let o = x. Starting from zg, we construct a sequence g, z1,... as follows.
Suppose that (9, z,,) % ®mL. Then, by (36), we have (M, z,,) E ¢~ &=1grid,
and so there are points y,+1 and z,4+; such that

* Tnloynt1Riznia, L

e there is no point z such that x, RazRaypn+1,

o (M, xpy1) [ grid.

Moreover, if we let ug = x¢ and u; = y; and use (com) then, for each n > 0 such
that (90, z,) [~ ML, we have points u, such that w,Retn 1 Riyni1- We claim
that there is some n < w such that (9, z,) = ML. Suppose otherwise. Then
we have the points u,, for all n < w. By (77), up # unp41 for all n < w. By (76),
there is us such that oRate, and vr(us) = 0. So, by Claim 4.1 and the fact
that zoRou,, we have u, Rous for all n < w. But this is impossible in view of
the property (7) of Rs.
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So let n < w be such that (9, z,,) |= ML holds. Then (90, z,,) = ML follows
from (32), and so vr(z,) = 0. We claim that for all i < n,

or(Tp—;) = i.

The proof is by induction on i. The basis of induction has been shown above. So
suppose that our claim holds for every j with j < ¢ < n, and take z,,_;. Then
Ty ilfoyn—iv1FaTyn—iv1. By IH, or(zp—ip1) =i — 1, and so vr(yn—it1) =i —1
as well. Suppose that vr(z,—;) > i. Then there is w such that z,_;Row and
vr(w) > i—1. So, by Claim 4.1, wRsy,_;+1. Since there is no point z such that
Tp_iRozRoyn_ir1, we arrive to a contradiction. Therefore, vr(z,_;) = i. .

CrAaM 4.3. For every n < w there exist m > n, m < w, and x € V such that
hr(z) = vr(z) = m and (M, z) = wall A to.

PrOOF OF CLAIM 4.3. Fix an n < w. Since (IM,r) = ¢, there exists uy,
such that r Reu,, and vr(u,) = n (see (gen3d) and (24) in the proof of Lemma 1).
By (70), there is w such that u,, Ryw and (9, w) |= recc. So vr(w) = n as well.
By (com), there is v such that rRjvRaw. By (72), there is z such that vR»z
and (I, z) |= wall A tg. Then, by (60), (9, 2) | grid. So, by Claim 4.2, we have
vr(z) = m for some m < w. By (71), wR>z cannot hold. So it follows from
Claim 4.1 that m = vr(z) > vr(w) = n.

We can show now that there exists € V such that hr(z) = vr(z) = m and
(O, z) | wall A tg. By (com), there is u such that rRyuR;2 and vr(u) = m. In
view of (gend) and (25), there is a point v,, such that rRyv,, and hr(v,,) = m.
By (chro), there is = such that uR;z and v,, Rex, and so hr(z) = vwr(z) = m.
Finally, we obtain (90, z) |= grid by Lemma 4 (i), and (9, z) = wall Aty by (35)
and (74). =

CrLAamM 4.4. For alln < m < w and x € V with hr(z) = vr(z) = n, and for
every perfect n x n-rectangle x; ; (i,j < n) starting at x, there exist ay € V
with hr(y) = vr(y) = m and a perfect m x m-rectangle y; ; (i,j < m) starting at
y such that,

for everyi <n and everyt € ©, (M, z;;) =t iff (Myi.) =t (78)

ProOOF oF CLAIM 4.4. Take some n < m < w, z and a perfect rectangle
starting at z as specified above. Let u be such that rRyuRyz. Then vr(u) = n.
By Lemma 1, there are points ., and x,, such that r Rou,, R1x,, and or(u,,) =
(@) = hr(xy,) = m. So there are points Upm—1,Um—2,--.,Upt+1 such that
vr(u;) =4 and

umR2um71R2um72R2 . RQun+17
and points Ym—1,m, Ym—2,m, - - - » Yn,m such that hr(y; ) = ¢ and
melym—l,leym—&le - Rlyn,m-

By Claim 4.1, we also have u,1 Rau. By (chro), there are points ¥, m—1, Yn,m—2,
-+ Yn,n such that vr(y, ;) =i and

ymmRZyn,mflRZyn,mfZRZ v RZyn,n
and uRlyn,n.
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We claim that if we choose y to be x,, and take any perfect m x m-rectangle
starting at y that contains the points y; ., (m—1<4i<n)and y,; (m—-1<j <
n) above, then (78) is satisfied. Indeed, first let ¢ = n. Then (I, y, ) = grid
by Lemma 4 (i), and so (78) holds by z = =z, ,, uRex, uRsy,, and (74).
Now fix some ¢ < n, and suppose that, say, (I, z;;) = ¢, for some ¢t € O.
Then =z, ,Ri7i,Roz;; and yp nR1yinRayii. By (com), there are u, and Uy
such that uRsuy, uRzuy, u Ry, uleyi7i, and so vr(u,) = vr(uy) = i. By
(chro), there is w such that u,Rjw and y; ,Row, so hr(w) = vr(w) = i. By
Lemma 4 (i), we have (9, w) |= grid. Then (9, y; ;) |= t follows from (73), (74)
and Lemma 4 (i). -

Claims 4.3, 4.4 and Lemma 8 imply, with the help of Kénig’s lemma, that there
is a tiling of w x w with ¢y occurring infinitely often on the wall, as required.

Now let us prove the ‘<=’ direction of (75). Take a recurrent tiling of w x w.
By assumption, L has an co-chessboard § with root r among its frames. Define
a model 9 over § as in the proof of Lemma 7. As is shown in that proof,
(M, 7) |= poo A @gria A po. Then, for all z in §, define

(M, z) =recc  iff  there is z such that (N, z) = wall Aty and

either = z or zRJ'x.

It is not hard to see that (70)—(74) are also satisfied at r in . 4
PROOF OF COROLLARY 4.1. Let Ly, Ly and L be as specified in the formu-
lation of the corollary. Then we know that L has a frame that is a product of
two rooted linear orders each of which contains an infinite descending chain of
distinct points.
We show that such a frame is an oco-chessboard. Let § = (W;,<;) and
F2 = (W3, <32) be two rooted linear orders with infinite descending chains

330%13312133221--- and y0§2y1§2y27>¢2---
of points from W; and W5, respectively. Define a valuation U in §; X §2 by
taking:

B(h) = {(z,y) | vo <1 2} U{(2,y) |20 <12 <1 Tp1, 0 <1 <w, nis even},
B(v) = {(z,9) | yo <2y} U{(2,9) | yn <2 @ <2 Yn—1, 0 < n <w, nis even},
and let M = (F1 X F2, V). It is not hard to see that for all (z,y) in F1 x Fo2, and

for all n < w,

™ (x,y) =n iff  either n =0 and g <; @, or &, <1 T <y Tp_1,

™ (z,y) =n iff  either n =0 and yo <2y, or yn <2 Y <2 Yn_1.
It follows that §1 x §2 is an oco-chessboard. Therefore, by Theorem 4, L is
I1}-hard.

For the II} upper bound, it is readily seen by a step-by-step argument that,

for each of the listed pairs L and Ly, their product Ly X Lo is determined by
products of countable L;- and Ly-frames. Now, a Kripke model 9 over such

a frame can be selected with universal second-order quantification. Once 90 is
selected, the check that 9t |= ¢ is first-order. .
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§6. Discussion. We conclude this paper with a few remarks on related re-
sults and further research.

The undecidability theorems presented in this paper are optimal in the sense
that all ‘natural’ logics containing [K4,K4] and having no frames of arbitrary
finite or infinite depth are in fact decidable. They are not optimal, however, in
the sense that

(a) some logics determined by products of linear frames are known to be of
higher complexity than it follows from the results of this paper, and
(b) for some of the discussed logics the exact complexity is still unknown.

Let us first discuss (a). Interesting examples are the logics
Log ((w, <) x (w, <)) and Log {(w,<) x § | § = K4.3}

which are shown to be II}-hard in [35, 31] and [11, Theorem 7.12]. (In the
context of this paper these logics are covered by Theorem 3 which ‘only’ shows
that they are not recursively enumerable.) Note that the IT}-complete logics

Log (w, <) X Log (w,<) and Log((w,<) x (w, <))

are different because, for instance, ({oo} UZ,>) x ({0} UZ,>) is a frame for
Log (w, <) % Log (w, <) and it is an co-chessboard satisfying ¢, while the frame
(w, <) x (w, <) is not an oo-chessboard, and s0 ¢, is not Log ((w, <) X (w, <))-
satisfiable. The proofs of II}-hardness of these logics uses the same enumeration
of the w x w grid as in Section 5.1. The difference is that if both components are
linear then one can also write a formula that generates the diagonal ‘forwards,’
as opposed to our ¢, that does it ‘backwards.” For more examples and details
the reader is referred to [11].

As concerns (b), we note first that we have obtained II}-completeness results
only for ‘transitive’ products where one component is a ‘linear discrete’ modal
logic. The exact complexity of undecidable product logics like K4 x GL or
Grz x Grz remains unknown. However, we conjecture that there are logics of
much higher complexity than I} satisfying the conditions of Theorem 4 and that
this can be proved using the technique of Thomason [36].

Because of the extremely high computational complexity of product logics, an
interesting and promising direction of research is to consider various relativisa-
tions of the product construction. In the extreme, when arbitrary relativisations
are allowed, we may end up with the fusion of the combined modal logics [26].
On the other hand, it is shown in [16] that ‘expanding domain’ relativisations
of product logics with transitive frames can be decidable, though not in primi-
tive recursive time. In particular, bimodal logics interpreted in two-dimensional
structures are decidable, if one component—call it the flow of time—is a finite
linear order (or a finite transitive tree) and the other component is composed
of transitive trees (or partial orders/quasi-orders/finite linear orders) expand-
ing over the time. As we saw in this paper, none of these logics is decidable
when interpreted in models with constant domains. Further, [23] presents an
investigation of expanding domain relativisations along (w, <) of products with
Log (w, <) and shows that, for example, the expanding domain relativisations of
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Log (w, <) x K4, Log (w, <) x S4 and Log (w, <) x S4.3 are undecidable. It re-
mains open whether the expanding domain relativisations of products of ‘branch-
ing or non-discrete transitive’ logics like S4 x S4 or S4.3 x K4 are decidable.
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