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PRODUCTS OF `TRANSITIVE' MODAL LOGICS

D. GABELAIA, A. KURUCZ, F. WOLTER, AND M. ZAKHARYASCHEV

Abstra
t. We solve a major open problem 
on
erning algorithmi
 properties of prod-

u
ts of `transitive' modal logi
s by showing that produ
ts and 
ommutators of su
h stan-

dard logi
s as K4, S4, S4:1, K4:3, GL, or Grz are unde
idable and do not have the �nite

model property. More generally, we prove that no Kripke 
omplete extension of the 
om-

mutator [K4;K4℄ with produ
t frames of arbitrary �nite or in�nite depth (with respe
t

to both a

essibility relations) 
an be de
idable. In parti
ular, if C

1

and C

2

are 
lasses of

transitive frames su
h that their depth 
annot be bounded by any �xed n < !, then the

logi
 of the 
lass fF

1

� F

2

j F

1

2 C

1

; F

2

2 C

2

g is unde
idable. (On the 
ontrary, the

produ
t of, say, K4 and the logi
 of all transitive Kripke frames of depth � n, for some

�xed n < !, is de
idable.) The 
omplexity of these unde
idable logi
s ranges from r.e. to


o-r.e. and �

1

1

-
omplete. As a 
onsequen
e, we give the �rst known examples of Kripke

in
omplete 
ommutators of Kripke 
omplete logi
s.

x1. Introdu
tion. Produ
ts of modal (in parti
ular, temporal, spatial, epis-

temi
, des
ription, et
.) logi
s|or, more generally, multi-modal languages inter-

preted in various produ
t-like stru
tures|are very natural and 
lear formalisms

arising in both pure logi
 and numerous appli
ations; see, e.g., [29, 8, 3, 30, 12, 1,

6, 38℄. For example, dynami
 topologi
al logi
s of [2, 24, 25, 7℄ or spatio-temporal

logi
s of [38, 15℄ are interpreted in stru
tures of the form (T;<)� (W;R) where

(T;<) models the 
ow of time (say, (!;<)) and (W;R) is a quasi-order (a frame

for S4) representing the topologi
al spa
e, with the S4-box being understood as

the interior operator over this spa
e. By interpreting W as a domain of obje
ts

whose properties may 
hange over time, one 
an also use su
h produ
t frames as

models for (fragments of) �rst-order temporal and modal logi
s, temporal data

or knowledge bases.

Introdu
ed in the 1970s [32, 33℄, produ
ts of modal logi
s have been inten-

sively studied over the last de
ade; for a 
omprehensive exposition and further

referen
es see [11℄. The lands
ape of the obtained results that are relevant to

the de
ision problem for these logi
s 
an be brie
y outlined as follows:

1. The produ
t of �nitely many logi
s, whose Kripke frames are de�nable by

re
ursive sets of �rst-order senten
es, is re
ursively enumerable [12℄.

2. Produ
ts of two standard logi
s, where at least one 
omponent logi
 is

determined by a 
lass of frames of �nite bounded depth (like S5), are

usually de
idable. This 
ondition 
an be 
onsiderably weakened: produ
t

logi
s are often de
idable when, in order to 
he
k satis�ability of a formula
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', it is enough to 
onsider only those produ
t frames where the depth of

one of the 
omponents is bounded by some �nite number whi
h 
an be

e�e
tively 
omputed from '. This result 
overs multi-modal K and S5 as

well as produ
ts with tense extensions of multi-modal K or temporal logi
s

of metri
 spa
es [12, 13, 11, 30, 22℄.

3. Produ
ts of two `linear transitive' logi
s are unde
idable whenever the depth

of frames for both 
omponent logi
s 
annot be bounded by any �xed n < !;

examples are produ
ts of K4:3, S4:3, GL:3 or Log (!;<) (the logi
 of the

frame (!;<)) [28, 31, 35℄.

4. Produ
ts of more than two modal logi
s are usually unde
idable. In fa
t,

no logi
 between K�K�K and S5� S5� S5 is de
idable [20℄.

Thus, the main gap in our knowledge about the de
ision problem for produ
t

logi
s is the 
omputational behaviour of produ
ts of two `transitive' logi
s whose

`depth' is not bounded by any �xed n < ! and at least one 
omponent logi


has bran
hing frames. Many natural and useful logi
s, su
h as S4 � S4 and

S4:3�S4, belong to this group. Apart from item 3 above, the only known result

in this dire
tion 
on
erns produ
ts with Log (!;<). Namely, [11, Theorem 7.24℄

showed that the produ
t logi
s Log (!;<) � K4 and Log (!;<) � S4 are not

de
idable. However, that proof was rather tailor-made for this spe
ial 
ase. On

the one hand, it heavily used the linearity and dis
reteness of (!;<). On the

other hand, the proof redu
ed the unde
idable but re
ursively enumerable Post's


orresponden
e problem to the satis�ability problem for the logi
s in question.

Sin
e produ
ts like K4 �K4 or S4:3 � S4 are re
ursively enumerable by item

1 above, there was no hope to `simply extend the proof' to these 
ases.

In this paper, we introdu
e a novel te
hnique for dealing with produ
ts of logi
s

with transitive bran
hing frames. Our main new result is that all produ
ts|and

quite often even the 
ommutators|of two Kripke 
omplete modal logi
s with

transitive frames of arbitrary �nite or in�nite depth are unde
idable, in many


ases these produ
ts are not axiomatisable and do not enjoy the (abstra
t) �nite

model property, and sometimes they are even �

1

1

-hard. Pre
ise formulations

are given in Se
tion 3. These results solve a number of open problems from

[12, 27, 6, 11℄.

To a 
ertain extent, the obtained results are optimal. For example, the produ
t

of, say, K4 and the logi
 of all transitive Kripke frames of depth � n, for some

�xed n < !, is de
idable. This 
an be proved using the method of quasi-models

similarly to [11, Theorem 6.10℄.

Modal logi
 is usually praised for being reasonably expressive and yet 
ompu-

tationally manageable. Although the series of `negative' results from the 1970{

1980s produ
ed a zoo of `monstrous' modal logi
s for any taste (see, e.g., [5℄),

basi
ally all of those `monsters' were arti�
ial. The standard, natural modal

logi
s are reasonably simple. The results of this paper show that simple and

natural 
ombinations of standard modal logi
s 
an be extremely 
omplex. For

example, the unde
idable produ
t logi
 K4�K4 is de�ned synta
ti
ally by the
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axioms of 
lassi
al propositional logi
, the modal axioms

B(p! q)! (Bp! Bq) A(p! q)! (Ap! Aq)

Bp! BBp Ap! AAp

bAp! Abp abp$ bap

and the inferen
e rules modus ponens, substitution and ne
essitation '=B' and

'=A'. Its semanti
al de�nition is equally natural and transparent (see below

for details).

As a `by-produ
t,' we also obtain natural Kripke in
omplete logi
s, su
h as the

logi
 [K4;GL:3℄ whi
h 
an be obtained by adding to K4�K4 the well-known

axioms

A(Ap! p)! Ap A(p ^Ap! q) _A(q ^Aq ! p):

The stru
ture of the paper is as follows. Se
tion 2 provides all the relevant

de�nitions. Se
tion 3 lists the obtained results. The proofs are given in Se
tions 4

and 5. Roughly, the s
heme is as follows. First, in Se
tion 4, we present a

formula '

1

whi
h `for
es' the existen
e of `n�m-re
tangles,' for all n;m < !,

in any frame for K4 � K4. Then, in Se
tion 5.1, we use these re
tangles to

en
ode points of the ! � !-grid, a kind of universal stru
ture where one 
an

represent one's favourite unde
idable master problem, be it the (non)halting

problem for Turing or register ma
hines, a tiling (or domino) problem, or Post's


orresponden
e problem. In this paper we obtain our unde
idability results using

Turing ma
hines (en
oded in Se
tion 5.2) and tilings (en
oded in Se
tion 5.3).

Finally, in Se
tion 6 we dis
uss the obtained results and future dire
tions of

resear
h.

x2. Produ
ts and 
ommutators. Given unimodal Kripke frames F

1

=

(W

1

; R

1

) and F

2

= (W

2

; R

2

), their produ
t is de�ned to be the bimodal frame

F

1

� F

2

= (W

1

�W

2

; R

h

; R

v

);

where W

1

�W

2

is the Cartesian produ
t of W

1

and W

2

and, for all u; u

0

2 W

1

,

v; v

0

2 W

2

,

(u; v)R

h

(u

0

; v

0

) i� uR

1

u

0

and v = v

0

;

(u; v)R

v

(u

0

; v

0

) i� vR

2

v

0

and u = u

0

:

Bimodal frames of this form will be 
alled produ
t frames throughout. Let L

1

be a normal (uni)modal logi
 in the language with the box B and the diamond

b. Let L

2

be a normal (uni)modal logi
 in the language with the box A and the

diamond a. Assume also that both L

1

and L

2

are Kripke 
omplete. Then the

produ
t of the logi
s L

1

and L

2

is the (Kripke 
omplete) bimodal logi
 L

1

� L

2

in the language ML

2

with the boxes B; A and the diamonds b; a whi
h is


hara
terised by the 
lass of produ
t frames F

1

�F

2

, where F

i

is a frame for L

i

,

i = 1; 2. (Here we assume that B and b are interpreted by R

h

, while A and a

are interpreted by R

v

.)
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A good starting point in understanding the behaviour of produ
t logi
s is to

�nd basi
 prin
iples that hold for every produ
t frame (W

1

�W

2

; R

h

; R

v

):

� left 
ommutativity : 8x8y8z

�

xR

v

y ^ yR

h

z ! 9u (xR

h

u ^ uR

v

z)

�

,

� right 
ommutativity : 8x8y8z

�

xR

h

y ^ yR

v

z ! 9u (xR

v

u ^ uR

h

z)

�

,

� Chur
h{Rosser property : 8x8y8z

�

xR

v

y ^ xR

h

z ! 9u (yR

h

u ^ zR

v

u)

�

.

These properties 
an also be expressed by the ML

2

-formulas

abp! bap; bap! abp; bAp! Abp: (1)

Given Kripke 
omplete unimodal logi
s L

1

and L

2

, their 
ommutator [L

1

; L

2

℄

is the smallest normal modal logi
 in the language ML

2

whi
h 
ontains L

1

, L

2

and the axioms (1).

Clearly, we always have [L

1

; L

2

℄ � L

1

� L

2

. However, sometimes more in-

formation 
an be drawn. First, sin
e the axioms in (1) are Sahlqvist formulas,

the 
ommutator of two 
anoni
al logi
s is always 
anoni
al [12℄, and so Kripke


omplete (like, e.g., [K4;K4℄ and [K4:3;S4℄). As we will see later on in this

paper, not all 
ommutators are Kripke 
omplete; examples are [K4;GL:3℄ and

[GL;Grz:3℄ (see Corollary 4.2 below). Se
ond, using the Kripke 
ompleteness

of the 
ommutators, it is shown in [12, 11℄ that for 
ertain pairs of logi
s, their


ommutators and produ
ts a
tually 
oin
ide: for example,

[K4;K4℄ = K4�K4 and [S4;S4℄ = S4� S4:

On the other hand, the Kripke 
omplete [K4:3;K4℄ does not 
oin
ide with

K4:3�K4; see [11, Theorem 5.15℄.

Although produ
t logi
s L

1

�L

2

are Kripke 
omplete by de�nition, there 
an

be (and, in general, there are) other, non-produ
t, frames for L

1

�L

2

. This gives

rise to two di�erent types of the �nite model property. As usual, a bimodal logi


L (in parti
ular, a produ
t logi
 L

1

� L

2

) is said to have the (abstra
t) �nite

model property (fmp, for short) if, for everyML

2

-formula ' =2 L, there is a �nite

frame F for L su
h that F 6j= '. (By a standard argument, this is equivalent to

saying that M 6j= ' for some �nite model M for L; see, e.g., [5℄.) And we say

that L

1

�L

2

has the produ
t �nite model property (produ
t fmp, for short) if, for

every ML

2

-formula ' =2 L

1

� L

2

, there is a �nite produ
t frame F for L

1

� L

2

su
h that F 6j= '.

Clearly, the produ
t fmp implies the fmp. Examples of produ
t logi
s having

the produ
t fmp (and so the fmp) are K �K, K � S5, and S5 � S5 (see [11℄

and referen
es therein). On the other hand, there are produ
t logi
s, su
h as

K4 � S5 and S4 �K, that do enjoy the (abstra
t) fmp [12, 34℄, but la
k the

produ
t fmp [11℄. In general, it is well known that many produ
t logi
s with at

least one `transitive' (but not `symmetri
') 
omponent do not have the produ
t

fmp (see, e.g., [11, Theorems 5.32, 5.33, and 7.10℄). A simpleML

2

-formula that


an be used to show that many su
h logi
s do not have the produ
t fmp is as

follows:

B

+

ap ^B

+

A(p! bB

+

:p);

where B

+

 abbreviates  ^ B . Note that this formula (as well as the others

known so far) is satis�able in appropriate �nite (in fa
t, very small) non-produ
t

frames for the logi
s in question.
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x3. Main results. From now on we only 
onsider produ
ts and 
ommutators

of `transitive' (uni)modal logi
s, that is, normal extensions of K4. In other

words, we deal with extensions of the bimodal logi
 [K4;K4℄ = K4 �K4. In

this se
tion we list the main results of the paper and illustrate them by drawing

some 
onsequen
es. The proofs are provided in Se
tions 4 and 5.

Given a transitive frame F = (W;R), a point x 2 W is said to be of depth

n < ! in F if there is a path x = x

0

Rx

1

R : : : Rx

n

of points from distin
t 
lusters

1

in F (that is, x

i+1

Rx

i

does not hold for any i < n) and there is no su
h path

of greater length. If for every n < ! there is a path of n points from distin
t


lusters starting from x, then we say that x is of in�nite depth, or x is of depth

1. The depth of F is de�ned to be the supremum of the depths of its points

(with n < 1 for all n < !). For instan
e, F is of in�nite depth if it 
ontains

points of arbitrary �nite depth. By the depth of a bimodal frame (W;R

1

; R

2

)

with transitive R

1

, R

2

we understand the minimal depth of (W;R

1

) and (W;R

2

).

Given 
lasses C

1

and C

2

of frames, we let

C

1

� C

2

= fF

1

� F

2

j F

1

2 C

1

; F

2

2 C

2

g:

Denote by Log (C) the normal modal logi
 of a 
lass C of frames. If C 
onsists of

a single frame F then we write LogF instead of Log (fFg). Re
all that a logi
 L

is Kripke 
omplete if L = Log (C) for some 
lass C of frames.

The main result of this paper is the following:

Theorem 1. Let C

1

and C

2

be 
lasses of transitive frames both 
ontaining

frames of arbitrarily large �nite or in�nite depth. Then Log (C

1

� C

2

) is unde-


idable.

More generally, if L is any Kripke 
omplete bimodal logi
 
ontaining [K4;K4℄

and having produ
t frames of arbitrarily large �nite or in�nite depth, then L is

unde
idable.

We obtain this theorem as a 
onsequen
e of more general Theorems 2 and 3

below. To formulate them, we require some terminology. We remind the reader

that a bimodal frame (W;R

1

; R

2

) is 
alled rooted if there exists r 2W su
h that

W = fu 2 W j r(R

1

[ R

2

)

�

ug, where R

�

denotes the re
exive and transitive


losure of R. Fix some propositional variables h and v. Given a Kripke model

M based on F = (W;R

1

; R

2

), de�ne new relations

�

R

M

1

and

�

R

M

2

by taking, for

all x; y 2W ,

x

�

R

M

1

y i� 9z 2W

�

xR

1

z and

�

(M; x) j= h () (M; z) j= :h

�

(2)

and (either z = y or zR

1

y)

�

;

x

�

R

M

2

y i� 9z 2W

�

xR

2

z and

�

(M; x) j= v () (M; z) j= :v

�

(3)

and (either z = y or zR

2

y)

�

:

In other words, x

�

R

M

1

y i� xR

1

y and either x, y are of di�erent `horizontal 
olours'

in the sense that h is true in pre
isely one of them, or x, y are of the same h-


olour (i.e., x j= h i� y j= h), but there is a point z of di�erent h-
olour su
h

that xR

1

zR

1

y. Clearly, we always have

�

R

i

� R

i

(i = 1; 2).

1

A set X � W is 
alled a 
luster in F if X = fxg [ fy 2 W j xRy and yRxg for some

x 2W .
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For every point x 2 W , de�ne its horizontal and verti
al ranks hr

M

(x) and

vr

M

(x) in M as follows:

hr

M

(x) =

8

<

:

n; if the length of the longest

�

R

M

1

-path

starting from x is n < !,

1; otherwise,

(4)

vr

M

(x) =

8

<

:

n; if the length of the longest

�

R

M

2

-path

starting from x is n < !,

1; otherwise.

(5)

Note that, say, hr

M

(x) is not the same as the depth of x in the frame (W;

�

R

M

1

).

For example, if xR

1

y, yR

1

x and x, y are of di�erent h-
olours then x

�

R

M

1

x and

hr

M

(x) =1.

For our 
onstru
tions in Se
tions 4 and 5, points of �nite horizontal and ver-

ti
al ranks will be of parti
ular importan
e. For k < !, we 
all a rooted bimodal

frame F = (W;R

1

; R

2

) for [K4;K4℄ a k-
hessboard if there is a model M based

on F and su
h that the following 
onditions are satis�ed:

(
b1) for all x; y 2 W with xR

1

y, (M; x) j= v i� (M; y) j= v;

(
b2) for all x; y 2 W with xR

2

y, (M; x) j= h i� (M; y) j= h; and

(
b3) there is x 2 W su
h that hr

M

(x) = vr

M

(x) = k.

Clearly, if F is a k-
hessboard then it is an n-
hessboard for any n < k. Observe

that the produ
t of any two rooted transitive frames of depths at least k is always

a k-
hessboard. Further, it is not hard to see that for any model M based on

a rooted frame for [K4;K4℄ that satis�es (
b1) and (
b2), (W;

�

R

M

1

;

�

R

M

2

) is a

(not ne
essarily rooted) frame for [K4;K4℄, that is,

both

�

R

M

1

and

�

R

M

2

are transitive, (tran)

�

R

M

1

and

�

R

M

2


ommute, and (
om)

�

R

M

1

and

�

R

M

2

are Chur
h{Rosser. (
hro)

A rooted frame F for [K4;K4℄ is 
alled an 1-
hessboard if there is an M

based on F whi
h satis�es (
b1), (
b2) and 
ontains points x

k

with hr

M

(x

k

) =

vr

M

(x

k

) = k for every k < !. Clearly, an 1-
hessboard is a k-
hessboard, for

every k < !, and

an 1-
hessboard is always in�nite. (6)

Typi
al examples of1-
hessboards are produ
ts of transitive frames where ea
h


omponent is

� either a frame 
ontaining an in�nite des
ending 
hain with a root, say,

(f1g [ !;>) or (f1g [Z; >);

� or a frame 
ontaining the in�nite n-ary tree for some n � 2 as a subframe;

� or an in�nite `xmas tree' with arbitrarily long �nite bran
hes (that is, an

!-type as
ending 
hain where a bran
h of length n starts at point n, for

every n < !).

(For more details see the proof of Corollary 4.1 in Se
tion 5.) Note, how-

ever, that a produ
t of transitive frames of in�nite depth is not ne
essarily an
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1-
hessboard. For instan
e, it is not hard to see that if one of the 
omponents

is

� an in�nite frame of �nite width (that is, without anti
hains of more than

n points, for some �xed n < !) 
ontaining no in�nite des
ending 
hain (in

parti
ular, the in�nite as
ending 
hain (!;<)),

then the produ
t is not an 1-
hessboard. As we will see in Se
tion 4, there

is a formula that is satis�able in pre
isely those frames for [K4;K4℄ that are

1-
hessboards.

Theorem 2. Let L be any bimodal logi
 
ontaining [K4;K4℄ and having an

1-
hessboard among its frames. Then L

(i) does not have the (abstra
t) fmp, and

(ii) is unde
idable.

Observe that Theorem 2 does not require L to be Kripke 
omplete.

Theorem 3. Let C be a 
lass of frames for [K4;K4℄ with the following prop-

erties:

� it 
ontains no 1-
hessboard;

� it 
ontains a k-
hessboard for every k < !.

Then Log (C) is not re
ursively enumerable.

Clearly, Theorems 2 and 3 together imply Theorem 1. It follows from Theo-

rem 3 that if 
lasses C

1

or C

2


ontain only �nite transitive frames of arbitrarily

large �nite depth then Log (C

1

� C

2

) is not re
ursively enumerable. Here is a


onsequen
e of Theorem 2 whi
h involves logi
s from the standard nomen
lature

(see, e.g., [5℄ for their syntax and semanti
s):

Corollary 3.1. Let L

1

and L

2

be any logi
s from the list

K4; K4:1; K4:2; K4:3; S4; S4:1; S4:2; S4:3;

GL; GL:3; Grz; Grz:3; Log (!;<); Log (!;�):

Then both [L

1

; L

2

℄ and L

1

� L

2

are unde
idable and la
k the (abstra
t) fmp.

In some 
ases, we 
an even say a bit more. We remind the reader that K4.3

is the logi
 of all transitive frames (W;R) that are weakly 
onne
ted :

8x; y; z 2 W (xRy ^ xRz ! y = z _ yRz _ zRy):

Note that, a

ording to [9℄, all normal unimodal logi
s 
ontaining K4:3 are

Kripke 
omplete, and by [40℄, those of them that are �nitely axiomatisable are

de
idable, but do not ne
essarily have the fmp.

Now 
onsider the logi
 DisK4:3 determined by all Kripke frames for K4:3

whi
h do not 
ontain subframes that 
an be p-morphi
ally mapped onto a two-

element 
luster followed by a re
exive point 
2

-

Æ or a two-element 
luster fol-

lowed by an irre
exive point 
2

-

�. In other words, a frame (W;R) for K4:3 is

a frame for DisK4:3 i� it satis�es the following aspe
t of dis
reteness :

there are no points x

0

; x

1

; : : : ; x

n

; : : : ; x

1

in W su
h that

x

0

Rx

1

Rx

2

R : : :Rx

n

R : : : Rx

1

; (7)

x

i

6= x

i+1

and :(x

1

Rx

i

) for all i < !.
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The logi
DisK4:3 
an be axiomatised by adding toK4:3 the (subframe) 
anon-

i
al formulas �(
2

-

�) and �(
2

-

Æ) or, whi
h is the same, the 
orresponding

Fine's subframe formulas (for details see [10, 39, 5℄).

A number of important `linear' modal logi
s are extensions of DisK4:3, for

example, Log (!;<), Log (!;�), GL:3, and Grz:3, where GL:3 and Grz:3 are

the logi
s of Noetherian irre
exive and re
exive linear orders, respe
tively. We

remind the reader that a frame (W;R) is Noetherian if it 
ontains no in�nite

as
ending 
hains x

0

Rx

1

Rx

2

R : : : where x

i

6= x

i+1

. It is not hard to see that

Log (!;�) � Grz:3. It should also be noted that ea
h of the logi
s DisK4:3,

Log (!;<), Log (!;�), GL:3, and Grz:3 has frames 
ontaining in�nite des
end-

ing 
hains; for example, (f1g [ Z; >) is a frame for Log (!;<).

Theorem 4. Let L be any Kripke 
omplete bimodal logi
 having an 1-
hess-

board among its frames and 
ontaining [K4;DisK4:3℄. Then L is �

1

1

-hard.

We will show that this result applies to a number of `standard' produ
t logi
s:

Corollary 4.1. Let L

1

be like in Corollary 3.1 and

L

2

2 fLog (!;<); Log (!;�); GL:3; Grz:3; DisK4:3g:

Then any Kripke 
omplete bimodal logi
 L in the interval

[L

1

; L

2

℄ � L � L

1

� L

2

is �

1

1

-hard. In fa
t, the produ
t logi
s L

1

� L

2

are �

1

1

-
omplete.

We also obtain the following interesting 
orollary. As the 
ommutator of two

re
ursively axiomatisable logi
s is re
ursively axiomatisable by de�nition, The-

orem 4 yields a number of Kripke in
omplete 
ommutators of Kripke 
omplete

and �nitely axiomatisable logi
s:

Corollary 4.2. Let L

1

and L

2

be like in Corollary 4.1. Then the 
ommuta-

tor [L

1

; L

2

℄ is Kripke in
omplete.

It is worth noting that if L

2

=GL:3 then L

1

�L

2

is the only Kripke 
omplete

logi
 between [L

1

; L

2

℄ and L

1

�L

2

, for any Kripke 
omplete logi
 L

1

; for details

see [14℄.

x4. No �nite model property. In this se
tion we prove Theorem 2 (i). We

de�ne a formula '

1

su
h that, for any rooted frame F for [K4;K4℄,

'

1

is satis�able in F i� F is an 1-
hessboard. (8)

By (6), this 
learly implies that, for any logi
 L spe
i�ed in Theorem 2, '

1

is

L-satis�able, but only in in�nite frames for L, that is, L does not have the fmp.

The formula '

1

and its `�nite variant' '

�n

to be de�ned in Se
tion 5.4 play

a 
ru
ial role in all of our unde
idability proofs in Se
tion 5.

To begin with, take two propositional variables h and v, and de�ne new modal

operators by setting, for every bimodal formula  ,

e =

�

h! b

�

:h ^ ( _b )

��

^

�

:h! b

�

h ^ ( _b )

��

;

d =

�

v ! a

�

:v ^ ( _a )

��

^

�

:v ! a

�

v ^ ( _a )

��

;

E = :e: ; and D = :d: :
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(Similar operators were used by Spaan [35℄ and in [31, 11℄.)

De�ne '

1

to be the 
onjun
tion of the following formulas:

BA

�

(h _ah! Ah) ^ (:h _a:h! A:h)

�

; (9)

BA

�

(v _bv ! Bv) ^ (:v _b:v ! B:v)

�

; (10)

de(D? ^E?); (11)

ED(D? ^E? ! d); (12)

De(:d ^Ed); (13)

Ed(d ^D:d); (14)

ED(d ! Edd); (15)

ED(:d ! De:d): (16)

Suppose �rst that '

1

is satis�ed at the root r of a model M based on a

frame F = (W;R

1

; R

2

) for [K4;K4℄. Then both R

1

and R

2

are transitive, they


ommute and satisfy the Chur
h{Rosser property. We show that in this 
ase F

must be an 1-
hessboard, and so in�nite.

De�ne new binary relations

�

R

1

=

�

R

M

1

and

�

R

2

=

�

R

M

2

on W by means of (2)

and (3) above. By (9){(10), F satis�es (
b1) and (
b2), and so

�

R

1

and

�

R

2

satisfy (tran), (
om) and (
hro). Moreover, for all x 2W ,

(M; x) j=e i� 9y 2W (x

�

R

1

y and (M; y) j=  );

(M; x) j=d i� 9y 2W (x

�

R

2

y and (M; y) j=  ):

We will use the following abbreviations. For every formula  , ` 2 fe;dg and

� 2 fE;Dg, let

`

0

 = �

0

 =  

and, for n < !, let

`

n+1

 = ``

n

 ; �

n+1

 = ��

n

 ; and

`

=n

 = `

n

 ^�

n+1

: :

(The last formula means `see  in n steps but not in n+ 1 steps.')

Now it should be 
lear that if we de�ne the horizontal and verti
al ranks

hr(x) = hr

M

(x) and vr(x) = vr

M

(x) of a point x by means of (4) and (5), then

we have

hr(x) =

�

n; if n < ! and (M; x) j= e

=n

>,

1; otherwise,

vr(x) =

�

n; if n < ! and (M; x) j= d

=n

>,

1; otherwise.

The reader 
an readily 
he
k, using (
om) and (
hro), that if x

�

R

1

y then vr(x) =

vr(y), and if x

�

R

2

y then hr(x) = hr(y).

Let

V = fx 2W j 9u 2 W r

�

R

1

u

�

R

2

xg:
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Lemma 1. Suppose that M is a model based on a rooted frame for [K4;K4℄.

If (M; r) j= '

1

then, for all n < !, there exists x

n

2 V su
h that hr(x

n

) =

vr(x

n

) = n. (Therefore, if '

1

is satis�able in a rooted frame F for [K4;K4℄

then F is an 1-
hessboard.)

Proof. First, we 
laim that the following formulas are true in M, for all

n < !:

ED(:d ! e>); (17)

ED(d! E

n

d

n

d); (18)

ED(:d ! D

n

e

n

:d): (19)

Indeed, (17) is a straightforward 
onsequen
e of (12), (16) and (
om). We prove

(18) by indu
tion on n. The 
ase n = 0 is trivial. Suppose now that (18) holds

for some n. Take some w 2 V with (M; w) j= d and z

1

; : : : ; z

n

; z

n+1

su
h that

w

�

R

1

z

1

�

R

1

: : :

�

R

1

z

n

�

R

1

z

n+1

:

Then z

n

2 V and, by IH, there are w

1

; : : : ; w

n

2 V su
h that

z

n

�

R

2

w

1

�

R

2

: : :

�

R

2

w

n

and (M; w

n

) j= d:

By (
hro), there are s

1

; : : : ; s

n

2 V su
h that w

i

�

R

1

s

i

, for i = 1; : : : ; n, and

z

n+1

�

R

2

s

1

�

R

2

: : :

�

R

2

s

n

. Sin
e w

n

�

R

1

s

n

, it follows from (15) that there exists s

n+1

su
h that

s

n

�

R

2

s

n+1

and (M; s

n+1

) j= d;

from whi
h (M; z

n+1

) j= d

n+1

d. The proof of (19) is analogous, it uses (16) in

pla
e of (15).

Now we de�ne indu
tively four in�nite sequen
es

x

0

; x

1

; x

2

; : : : ; y

0

; y

1

; y

2

; : : : ; u

0

; u

1

; u

2

; : : : and v

0

; v

1

; v

2

; : : : (20)

of points from W su
h that, for every i < !,

(gen1) (M; x

i

) j= d ^D:d,

(gen2) (M; y

i

) j= :d ^Ed,

(gen3) r

�

R

2

u

i

, u

i

�

R

1

x

i

and u

i

�

R

1

y

i

, that is, vr(u

i

) = vr(x

i

) = vr(y

i

), and

(gen4) if i > 0 then r

�

R

1

v

i

, v

i

�

R

2

x

i

and v

i

�

R

2

y

i�1

, that is, hr(v

i

) = hr(x

i

) =

hr(y

i�1

).

(We do not 
laim at this point that, say, all the x

i

are distin
t.)

To begin with, by (11), there are u

0

; x

0

su
h that r

�

R

2

u

0

�

R

1

x

0

and

(M; x

0

) j= E? ^D?: (21)

By (12), (M; x

0

) j= d. By (13), there is y

0

su
h that u

0

�

R

1

y

0

and

(M; y

0

) j= :d ^Ed:

So (gen1){(gen3) hold for i = 0.

Now suppose that, for some n < !, x

i

and y

i

with (gen1){(gen4) have

already been de�ned for all i � n. By (gen3) for i = n and by (
om), there is
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v

n+1

su
h that r

�

R

1

v

n+1

�

R

2

y

n

. So by (14), there is x

n+1

su
h that v

n+1

�

R

2

x

n+1

and

(M; x

n+1

) j= d ^D:d:

Now again by (
om), there is u

n+1

su
h that r

�

R

2

u

n+1

�

R

1

x

n+1

. So, by (13), there

is y

n+1

su
h that u

n+1

�

R

1

y

n+1

and

(M; y

n+1

) j= :d ^Ed;

as required (see Fig. 1). Observe that x

i

and y

i

are in V for all i < !.

r

r

r

v

i+1

r

v

i+2

r

u

i+2

r

x

i+2

r

u

i+1

r

x

i+1

r

y

i+1

r x

i

r

u

i

r

y

i

-

�

�

�

�

�

�

�:

�

�

�

�

�

�

�:

�

�

�

�

�

�

�:

-

-

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

O

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

O

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

�

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

�

-

�

R

1

p p p p p p-

�

R

2

Figure 1. Generating the points x

i

, y

i

, u

i

and v

i

.

We 
laim that, for all i; n < !,

(M; x

i

) j=e

n

> $ d

n

>; that is, hr(x

i

) = vr(x

i

); (22)

(M; y

i

) j= e

n+1

>$ d

n

>; that is, hr(y

i

) = vr(y

i

) + 1: (23)

Indeed, if n = 0 then (22) is trivial, and (23) follows from (gen2) and (17). So

we may assume that n > 0.

To prove (22), suppose �rst that we have (M; x

i

) j= e

n

>. Then there is

a point z su
h that x

i

�

R

n

1

z. By (gen1), (M; x

i

) j= d. So, (M; z) j= d

n

d, by

(18). Using (
om), we �nd a point v su
h that x

i

�

R

n

2

v and v

�

R

n

1

u, from whi
h

(M; x

i

) j= d

n

>. Conversely, suppose (M; x

i

) j= d

n

>, that is, there are points

z

1

; : : : ; z

n

su
h that x

i

�

R

2

z

1

�

R

2

: : :

�

R

2

z

n

. By (gen1), (M; x

i

) j= D:d, and so

(M; z

1

) j= :d. Therefore, by (19) and (17), we have (M; z

n

) j= e

n

>, and then

obtain (M; x

i

) j= e

n

> using (
om).

To show (23), assume �rst that we have (M; y

i

) j= d

n

>. Then there is a point

z su
h that y

i

�

R

n

2

z. By (gen2), (M; y

i

) j= :d. So, by (19), (M; z) j= e

n

:d, and

by (17), (M; z) j= e

n+1

>. Now (M; y

i

) j= e

n+1

> follows by (
om). Conversely,
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suppose (M; y

i

) j= e

n+1

>, that is, there are points z

1

; : : : ; z

n

; z

n+1

su
h that

y

i

�

R

1

z

1

�

R

1

: : :

�

R

1

z

n

�

R

1

z

n+1

. By (gen2), (M; y

i

) j= Ed, and so (M; z

1

) j= d.

Therefore, by (18), we have (M; z

n+1

) j= d

n

>. And �nally, using (
om) we

obtain (M; y

i

) j= d

n

>.

Next, we 
laim that, for all n < !,

vr(u

n

) = n; (24)

hr(v

n

) = n; (25)

hr(x

n

) = vr(x

n

) = n: (26)

First we prove (24) by indu
tion on n. For n = 0, it follows from the de�nition

of x

0

(see (21)) and (gen3). Suppose that (24) holds for some n < !. Then

vr(u

n+1

)

(gen3)

= vr(x

n+1

)

(22)

= hr(x

n+1

)

(gen4)

=

hr(y

n

)

(23)

= vr(y

n

) + 1

(gen3)

= vr(u

n

) + 1

(IH)

= n+ 1:

Now (25) and (26) follow from (24) and

hr(v

n

)

(gen4)

= hr(x

n

)

(22)

= vr(x

n

)

(gen3)

= vr(u

n

);

as required. a

Let us now prove the `(' dire
tion of (8).

Lemma 2. '

1

is satis�able in any 1-
hessboard.

Proof. We begin with some de�nitions. Fix some k < ! and a frame

F = (W;R

1

; R

2

) for [K4;K4℄ with root r. We 
all a model N over F a per-

fe
t k-
hessboard model if the following hold:

(a) N satis�es (
b1) and (
b2);

(b) for every point v 2W , if r

�

R

N

1

v then hr

N

(v) is �nite;

(
) for every point u 2 W , if r

�

R

N

2

u then vr

N

(u) is �nite;

(d) for every n < k, there is a point v

n

2 W with r

�

R

N

1

v

n

and hr

N

(v

n

) = n;

(e) for every n < k, there is a point u

n

2W with r

�

R

N

2

u

n

and vr

N

(u

n

) = n.

We 
all N a perfe
t 1-
hessboard model, if (d) and (e) hold for k = !.

Claim 2.1. (i) If F is a k-
hessboard then there is a perfe
t k-
hessboard

model based on F.

(ii) If F is an 1-
hessboard then there is a perfe
t 1-
hessboard model based

on F.

Proof of Claim 2.1. (i) Take a k-
hessboard F with root r. Then there is

a modelM based on F that satis�es (
b1) and (
b2), and su
h that there exist

points x

n

with hr

M

(x

n

) = vr

M

(x

n

) = n for every n � k. We know that

�

R

M

1

and

�

R

M

2

satisfy (tran), (
om) and (
hro).

We may assume that (M; r) j= :h ^ :v (if this is not the 
ase, we 
hange the

truth-values values of h and v to the `opposite'). De�ne a new model N over F

by taking

(N; x) j= h i� (M; x) j= h and hr

M

(x) is �nite,

(N; x) j= v i� (M; x) j= v and vr

M

(x) is �nite.
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We show that N satis�es 
onditions (a){(e). Observe �rst that for all x; y 2W ,

if xR

1

y then hr

M

(x) � hr

M

(y); (27)

if xR

2

y then vr

M

(x) � vr

M

(y): (28)

Now take a point u su
h that hr

M

(u) is �nite. Then it follows from (27) that,

for all v 2 W , we have u

�

R

M

1

v i� u

�

R

N

1

v. Similarly, if vr

M

(u) is �nite then, for

all v 2W , we have u

�

R

M

2

v i� u

�

R

N

2

v. Therefore, for all u 2 W ,

if hr

M

(u) is �nite then hr

N

(u) = hr

M

(u); (29)

if vr

M

(u) is �nite then vr

N

(u) = vr

M

(u): (30)

We are now in a position to prove (a){(e) for N.

(a) It is easy to see that, sin
e M satis�es (
b1), R

1

and

�

R

M

2

are Chur
h{

Rosser and 
ommute. Therefore, for all x; y with xR

1

y, we have vr

M

(x) =

vr

M

(y), whi
h implies (
b1) for N. The proof of (
b2) is similar: we use the

fa
t that R

2

and

�

R

M

1

are Chur
h{Rosser and 
ommute.

(b) Let r

�

R

N

1

u and suppose that hr

N

(u) =1. By (29), we then have hr

M

(u) =

1, and so (N; u) j= :h. Sin
e (M; r) j= :h, we also have (N; r) j= :h. So there

is a v su
h that rR

1

vR

1

u and (N; v) j= h. But then hr

M

(v) must be �nite,


ontrary to vR

1

u, hr

M

(u) =1, and (27). So hr

N

(u) <1.

(
) is similar. We use (30) and (28).

(d) Take an n < k. Then there is x

n+1

su
h that hr

M

(x

n+1

) = vr

M

(x

n+1

) =

n+1. We have either x

n+1

= r, or rR

1

x

n+1

, or rR

2

x

n+1

, rR

1

z

n+1

R

2

x

n+1

. Sin
e

�

R

M

1

and R

2


ommute and are Chur
h{Rosser, if two points are R

2

-
onne
ted

then their horizontal ranks in M must be the same. So in any 
ase we have a

point z

n+1

su
h that hr

M

(z

n+1

) = n+1 and either z

n+1

= r or rR

1

z

n+1

. By (29),

hr

N

(z

n+1

) = n + 1, and so there is u

n

su
h that z

n+1

�

R

N

1

u

n

and hr

N

(u

n

) = n.

So we have r

�

R

N

1

u

n

as required.

(e) is proved in the same way using (30).

(ii) If F is an1-
hessboard then the above proofs for (d) and (e) show that in

fa
t N satis�es (d) and (e) for k = !, whi
h 
ompletes the proof of Claim 2.1. a

Now suppose that F = (W;R

1

; R

1

) is an 1-
hessboard with root r. By

Claim 2.1, there is a perfe
t 1-
hessboard model N based on F. De�ne a valu-

ation of the propositional variable d in N by taking, for all x 2W ,

(N; x) j= d i� hr

N

(x) � vr

N

(x) <1: (31)

We 
laim that (N; r) j= '

1

. Indeed, (9) and (10) hold be
ause of property

(a) of the perfe
t 1-
hessboard model N, and so

�

R

N

1

and

�

R

N

2

satisfy (
om)

and (
hro). The proof for the remaining 
onjun
ts is straightforward. We only


onsider (13). Take a u su
h that r

�

R

N

2

u. Then, by (
), vr

N

(u) = n for some

n < !. By (d), there is v

n+1

su
h that r

�

R

N

1

v

n+1

and hr

N

(v

n+1

) = n+1. Then,

by (
om) and (
hro), there is y su
h that u

�

R

N

1

y and hr

N

(y) = n + 1. We also

have vr

N

(y) = vr

N

(u) = n, and so (N; y) j= :d. On the other hand, if x is

su
h that y

�

R

N

1

x then hr

N

(x) � n and vr

N

(x) = n, from whi
h (N; x) j= d, as

required. a
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x5. Unde
idability. In the proof of Lemma 1 above we saw how the formula

'

1

ensured the existen
e of a sort of `diagonal points' x

n

with hr(x

n

) = vr(x

n

) =

n. We will use these points to en
ode parts of the `! � !-grid' in frames with

two transitive 
ommuting and Chur
h{Rosser relations.

Various unde
idable problems 
an be `represented' on the !�!-grid, say, ver-

sions of the halting problems for Turing ma
hines, register ma
hines, et
., Post's


orresponden
e problem, as well as the in�nite tiling (or domino) problems. In

Se
tions 5.2 and 5.3 we show two examples: the halting problem for Turing

ma
hines and in�nite tiling problems.

To prove our unde
idability results, we will redu
e a suÆ
iently 
omplex prob-

lem for Turing ma
hines or tilings to the satis�ability problem for the logi
 in

question. More pre
isely, we will use

� non-re
ursively enumerable problems, viz., the non-halting problem for Tur-

ing ma
hines or the !�! tiling problem, to obtain the general unde
idabil-

ity result of Theorem 2 (whi
h 
overs, in parti
ular, re
ursively enumerable

logi
s like K4�K4);

� a re
ursively enumerable problem whose 
omplement is not re
ursively enu-

merable, namely, the halting problem for Turing ma
hines, to prove non-

re
ursive enumerability in Theorem 3;

� �

1

1

-hard problems, viz., the non-halting problem for re
urrent non-deter-

ministi
 Turing ma
hines or the re
urrent tiling problem, to obtain �

1

1

-

hardness in Theorem 4.

5.1. En
oding the ! � !-grid. The enumeration of the points of ! � !

we use below has been introdu
ed in several papers dealing with unde
idable

multimodal logi
s; see, e.g., [18, 28, 31℄. However, in all these 
ases either the

language had next-time operators or the frames were linear. Here we show that

one 
an 
ode this enumeration even if the frames are bran
hing (and, of 
ourse,

transitive), and no next-time operators are available.

Let pair : ! ! ! � ! be the fun
tion de�ned re
ursively by taking:

� pair(0) = (0; 0),

� if pair(n) = (0; j) then pair(n+ 1) = (j + 1; 0),

� otherwise, if pair(n) = (i+ 1; j) then pair(n+ 1) = (i; j + 1);

see Fig. 2. It is easy to see that pair is one-one and onto. Let ℄ : ! � ! ! !

denote the inverse of the fun
tion pair. If pair(n) is not on the wall (that is, the

�rst 
oordinate of pair(n) is di�erent from 0) then de�ne left

n

to be the ℄ of the

left neighbour of pair(n). The reader 
an readily 
he
k the following important

properties of these fun
tions, for all n > 0:

(t1) If neither pair(n) nor pair(n� 1) are on the wall then left

n

= left

n�1

+ 1.

(t2) If n > 1 and pair(n) is not on the wall, but pair(n� 1) is on the wall, then

n > 2, pair(n� 2) is not on the wall, and left

n

= left

n�2

+ 1.

(t3) pair(n) is on the wall i� pair(left

n�1

) is on the wall.

(t4) Either pair(n) or pair(n� 1) is not on the wall.

We will require the following propositional variables:

� grid (marking the points of the grid),

� left (a pointer from n to left

n

when pair(n) is not on the wall),
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Figure 2. The enumeration pair.

� wall (marking the wall, i.e., the pairs of the form (0; n)).

Let '

grid

be the 
onjun
tion of (9), (10) and the formulas (32){(38):

ED

�

E? ! (grid$ D?)

�

; (32)

ED(E? ^ grid! wall); (33)

ED(wall! grid); (34)

ED(ewall! E(grid! wall)

�

; (35)

ED

�

e>! (grid$ d

=1

e

=1

grid)

�

; (36)

ED

�

grid ^e>!

�

wall$ d(e

=1

left ^ewall)

��

; (37)

ED

h

left$

�

(e

=1

> ^D?) _

�

d(e

=2

left ^ewall) ^d

=1

e

=2

left

�

_

�

d(e

=1

left ^ :ewall) ^d

=1

e

=1

left

�

�i

: (38)

Lemma 3. '

1

^ '

grid

is satis�able in any 1-
hessboard.

Proof. Let F = (W;R

1

; R

2

) be an 1-
hessboard with root r. By Claim 2.1,

there is a perfe
t 1-
hessboard model N over F. De�ne a valuation of the

propositional variables grid, wall and left in N by taking, for all x 2W ,

(N; x) j= grid i� hr

N

(x) = vr

N

(x) <1; (39)

(N; x) j= wall i� hr

N

(x) = vr

N

(x) = ℄(0; j) for some j < !;

(N; x) j= left i� hr

N

(x) = n; vr

N

(x) = left

n

for some n < !

su
h that pair(n) is not on the wall:

Then it is straightforward to 
he
k that (N; r) j= '

1

^ '

grid

. a

The next lemma shows that in fa
t '

grid

`for
es' the !�!-grid onto `diagonal

points of �nite rank.'



16 D. GABELAIA, A. KURUCZ, F. WOLTER, AND M. ZAKHARYASCHEV

Lemma 4. Suppose thatM is a model based on a rooted frame F = (W;R

1

; R

2

)

for [K4;K4℄. If (M; r) j= '

grid

then the following hold, for all n;m < ! and all

x 2 V su
h that hr(x) = n and vr(x) = m:

(i) (M; x) j= grid i� n = m,

(ii) (M; x) j=e

=1

left i� n > 0, pair(n�1) is not on the wall and m = left

n�1

,

(iii) (M; x) j= wall i� n = m and pair(n) is on the wall,

(iv) (M; x) j= left i� pair(n) is not on the wall and m = left

n

.

Proof. We use the same notation as in Se
tion 4, in parti
ular,

�

R

1

=

�

R

M

1

and

�

R

2

=

�

R

M

2

, hr(x) = hr

M

(x) and vr(x) = vr

M

(x), and

V = fx 2W j 9u 2 W r

�

R

1

u

�

R

2

xg:

The proof pro
eeds by indu
tion on n. For n = 0, we obtain (i) by (32), (iii)

by (33) and (34), and (iv) by (38).

Now take any n > 0 and suppose that the lemma holds for all k < n. Through-

out, we will use the following observation. Given numbers a; b < ! and some

x 2 V with hr(x) = a and vr(x) = b, there exists what we 
all a perfe
t a � b-

re
tangle starting at x, that is, there are points x

i;j

(for i � a, j � b) su
h

that

� x = x

a;b

,

� hr(x

i;j

) = i and vr(x

i;j

) = j,

� x

i;j

�

R

1

x

k;j

for i > k, and x

i;j

�

R

2

x

i;k

for j > k.

Indeed, given x, take an a-long

�

R

1

-path and a b-long

�

R

2

-path starting from x,

and then `
lose them' under the Chur
h-Rosser property.

(i) We 
laim that, for all m < ! and all x 2 V with hr(x) = n and vr(x) = m,

(M; x) j= e

=1

grid i� m = n� 1: (40)

Indeed, suppose �rst that m = n� 1. Take a perfe
t n� (n � 1)-re
tangle x

i;j

(i � n, j � n � 1) starting at x. Then by IH (i), (M; x

n�1;n�1

) j= grid, and

so (M; x) j= egrid. Now let u be su
h that x

�

R

1

u and (M; u) j= grid. Then

we have hr(u) = k < n and vr(u) = vr(x) = n � 1 < !. By IH (i), we have

k = n�1, and so (M; x) 6j= e

2

grid. Conversely, suppose that (M; x) j= e

=1

grid.

Then there is u su
h that x

�

R

1

u and (M; u) j= grid. We have hr(u) = k < n

and vr(u) = vr(x) = m. So m = k follows, by IH (i). Now take a perfe
t

n � k-re
tangle x

i;j

(i � n, j � k) starting at x. By IH (i) again, we have

(M; x

k;k

) j= grid. Sin
e (M; x) j= e

=1

grid and x = x

n;k

�

R

1

x

k;k

, we must have

m = k = n� 1 as required in (40).

Our next 
laim is that, for all m < ! and all x 2 V with hr(x) = n and

vr(x) = m,

(M; x) j= d

=1

e

=1

grid i� m = n: (41)

Indeed, suppose �rst that m = n. Take a perfe
t n � n-re
tangle x

i;j

(i � n,

j � n) starting at x. Then (M; x

n;n�1

) j= e

=1

grid, by (40), and therefore

(M; x) j= de

=1

grid. Now, the fa
t that (M; x) 6j= d

2

e

=1

grid also follows from

(40). Conversely, suppose that (M; x) j= d

=1

e

=1

grid. Then there is u su
h

that x

�

R

2

u and (M; u) j= e

=1

grid. Sin
e hr(u) = n, by (40) we obtain that
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vr(u) = n � 1, and so m � n. Now take a perfe
t n �m-re
tangle x

i;j

(i � n,

j � m) starting at x. By (40) again, (M; x

n;n�1

) j= e

=1

grid, so m = n must

hold.

Now 
laim (i) of Lemma 4 follows from (41) and (36).

(ii) The proof is similar to the proof of (40); we only use IH (iv) in pla
e of

IH (i). In fa
t, we 
an even prove a slightly stronger 
laim: for all i;m < ! and

all x 2 V with hr(x) = n and vr(x) = m,

(M; x) j= e

=i

left i� n � i; pair(n� i) is not on the wall, m = left

n�i

. (42)

Indeed, suppose �rst that n � i, pair(n� i) is not on the wall and m = left

n�i

.

Take a perfe
t n � left

n�i

-re
tangle x

a;b

(a � n, b � left

n�i

) starting at x. By

IH (iv), (M; x

n�i;left

n�i

) j= left, and so (M; x) j= e

i

left. Now let u be su
h that

x

�

R

1

u and (M; u) j= left. Then vr(u) = vr(x) = left

n�i

and hr(u) = k < n.

By IH (iv), pair(k) is not on the wall and vr(u) = left

k

, from whi
h k = n � i

follows, implying (M; x) 6j=e

i+1

left. Conversely, suppose that (M; x) j= e

=i

left.

Then n � i and there is u su
h that x

�

R

i

1

u and (M; u) j= left. So we have

hr(u) = k � n� i and vr(u) = vr(x) = m. So, by IH (iv), pair(k) is not on the

wall and m = left

k

. Now take a perfe
t n� left

k

-re
tangle x

a;b

(a � n, b � left

k

)

starting at x. By IH (iv) again, we have (M; x

k;left

k

) j= left, and so k = n � i

must hold, as required in (42).

(iii) Suppose �rst that n = m and pair(n) is on the wall. Then, by (t4),

pair(n� 1) is not on the wall. By IH (i), we have (M; x) j= grid. So by (37), it

is enough to show that

(M; x) j= d(e

=1

left ^ewall): (43)

Take a perfe
t n � m-re
tangle x

i;j

(i � n, j � m) starting at x. We have

(M; x

n;left

n�1

) j= e

=1

left, by Lemma 4 (ii). On the other hand, by (t3),

pair(left

n�1

) is on the wall. So, by IH (iii), (M; x

left

n�1

;left

n�1

) j= wall, and

so (M; x

n;left

n�1

) j= ewall. Sin
e x

�

R

2

x

n;left

n�1

, we obtain (43).

Conversely, suppose that (M; x) j= wall. By (34), we have (M; x) j= grid, so

n = m follows by Lemma 4 (i). By (37), (M; x) j= d(e

=1

left ^ewall). Then

there is a u su
h that x

�

R

2

u and (M; u) j= e

=1

left ^ewall. By Lemma 4 (ii),

pair(n � 1) is not on the wall and vr(u) = left

n�1

. Take a perfe
t n � left

n�1

-

re
tangle u

i;j

(i � n, j � left

n�1

) starting at u. By Lemma 4 (i), we have

(M; u

left

n�1

;left

n�1

) j= grid and so, by (35), (M; u

left

n�1

;left

n�1

) j= wall. Now by

IH (iii), pair(left

n�1

) is on the wall and so, by (t3), pair(n) is on the wall, as

required.

(iv) First, we 
laim that, for all i;m < ! and all x 2 V with hr(x) = n and

vr(x) = m,

(M; x) j= d

=1

e

=i

left i� n � i; pair(n� i) is not on the wall

and m = left

n�i

+ 1. (44)

The proof of this 
laim is similar to that of (41), using (42) in pla
e of (40), so

we leave it to the reader.
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Now suppose that pair(n) is not on the wall and m = left

n

. We will show how

(38) 
an be used to dedu
e (M; x) j= left. There are three 
ases:

Case 1 : n = 1. Then m = left

1

= 0, and so (M; x) j= e

=1

> ^D?.

Case 2 : n > 1 and pair(n � 1) is on the wall. Then, by (t2), pair(n � 2) is

not on the wall and left

n

= left

n�2

+1. By (t3), pair(left

n�2

) is on the wall. We


laim that

(M; x) j= d(e

=2

left ^ewall) ^d

=1

e

=2

left:

Indeed, (M; x) j= d

=1

e

=2

left, by (44). Take a perfe
t n�(left

n�2

+1)-re
tangle

x

i;j

(i � n, j � left

n�2

+ 1) starting at x. Then (M; x

left

n�2

;left

n�2

) j= wall, by

IH (iii). On the other hand, (M; x

n;left

n�2

) j= e

=2

left, by (42), and so we have

(M; x

n;left

n�2

) j=e

=2

left ^ewall.

Case 3 : n > 1 and pair(n � 1) is not on the wall. Then, by (t1), left

n

=

left

n�1

+ 1. By (t3), pair(left

n�1

) is not on the wall. We 
laim that

(M; x) j= d(e

=1

left ^ :ewall) ^d

=1

e

=1

left:

Indeed, (M; x) j= d

=1

e

=1

left, by (44). Take a perfe
t n � (left

n�1

+ 1)-

re
tangle x

i;j

(i � n, j � left

n�1

+ 1) starting at x. Then we have, by IH (iii),

(M; x

left

n�1

;left

n�1

) 6j= wall. So, by (35), (M; x

n;left

n�1

) j= :ewall. On the other

hand, (M; x

n;left

n�1

) j= e

=1

left, by (42).

Conversely, suppose that (M; x) j= left. By (38), there are three 
ases.

Case 1 : (M; x) j= e

=1

>^D?. Then n = 1, m = 0 = left

1

, and pair(1) is not

on the wall.

Case 2 : (M; x) j= d(e

=2

left ^ewall) ^d

=1

e

=2

left. By (44), we have that

pair(n � 2) is not on the wall and m = left

n�2

+ 1. Take a point u su
h

that x

�

R

2

u and (M; u) j= e

=2

left ^ ewall. By (42), vr(u) = left

n�2

. Take

a perfe
t n � left

n�2

-re
tangle u

i;j

(i � n, j � left

n�2

) starting at u. By

Lemma 4 (i), (M; u

left

n�2

;left

n�2

) j= grid and so, by (35) and (M; u) j= ewall,

(M; u

left

n�2

;left

n�2

) j= wall. Now by IH (iii), pair(left

n�2

) is on the wall and so,

by (t3), pair(n� 1) is on the wall. By (t4), pair(n) is not on the wall. Finally,

by (t2), left

n

= left

n�2

+ 1 as required.

Case 3 : (M; x) j= d(e

=1

left ^ :ewall) ^d

=1

e

=1

left. By (44), pair(n � 1)

is not on the wall and m = left

n�1

+ 1. Take a point u su
h that x

�

R

2

u and

(M; u) j=e

=1

left^:ewall. By (42), vr(u) = left

n�1

. Take a perfe
t n� left

n�1

-

re
tangle u

i;j

(i � n, j � left

n�1

) starting at u. Sin
e (M; u) j= :ewall, we have

(M; u

left

n�1

;left

n�1

) 6j= wall. So, by IH (iii), pair(left

n�1

) is not on the wall and

so, by (t3), pair(n) is not on the wall either. Finally, by (t1), left

n

= left

n�1

+1

as required.

This 
ompletes the proof of Lemma 4. a

5.2. En
oding Turing ma
hines. A (one-tape deterministi
) Turing ma-


hine M has a �nite tape alphabet T (in
luding B, the blank symbol, and $,

the `left-end marker'), a �nite set Q of states, with q

0

being the initial state

and q

1

the halting state, and a transition fun
tion % given as follows. For every

q 2 Q� fq

1

g and every X 2 T , the value of %(q;X) is a pair (p; Y ), where

� p 2 Q is the next state;
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� either Y 2 T � f$g (Y is the symbol to be written in the 
ell being

s
anned|it repla
es the symbol that was there before), or Y 2 fL;Rg

(Y is the dire
tion, left or right, in whi
h the head moves, with L and R

being fresh symbols).

We 
an always assume thatM is su
h that its head never moves left of its initial

position (say, by postulating that %(q;$) = (p;R) always holds). Starting from

an all-blank tape with the head s
anning the 
ell next to $, at ea
h step there

are only �nitely many non-blank 
ells, so we 
an represent a 
on�guration of M

as an in�nite sequen
e of the form

{ = ($; X

1

; : : : ; X

n�1

; (q;X

n

); X

n+1

; : : : ; X

m

; B;B; : : : );

where q 2 Q is the 
urrent state, $; X

1

; : : : ; X

m

is the non-blank part of the


urrent tape des
ription, and the head is s
anning the nth 
ell. For example,

the initial 
on�guration {

0

of M looks as follows:

{

0

= ($; (q

0

; B); B;B; : : : ):

Starting with {

0

and using the transition fun
tion %, we de�ne in the standard

way the unique sequen
e of 
on�gurations {

0

;{

1

; : : : of M whi
h is 
alled the


omputation of M . Let H

M

denote the number of 
on�gurations in this 
om-

putation (that is, H

M

< ! if M eventually stops, and H

M

= ! if it does not).

Observe that in {

n

the head 
annot be further to the right than the n+1st 
ell.

Now, given a Turing ma
hine M , we de�ne a bimodal formula '

M

as follows.

Let

A = T [ (Q� T ):

Slightly abusing notation, for every s 2 A, we introdu
e a propositional variable

s (in parti
ular, we treat (q;X) 2 Q � T as a single variable in this 
ontext).

Then '

M

is the 
onjun
tion of the formulas:

ED(grid$

_

s2A

s); (45)

ED

^

s6=s

0

2A

:(s ^ s

0

); (46)

ED(E? ^D? ! $); (47)

ED

�

e

=1

> ^d

=1

>! (q

0

; B)

�

; (48)

ED(d

=1

e

=1

wall ^ee>! B); (49)

^

Æ(q;X)=(p;L)

Z2T

ED

�

grid ^d

=1

e

=1

�

(q;X) ^d(left ^eZ)

�

! (p; Z)

�

; (50)

^

Æ(q;X)=(p;Y )

Y 6=L; Z2T

ED

�

grid ^d

=1

e

=1

�

(q;X) ^d(left ^eZ)

�

! Z

�

; (51)

^

Æ(q;X)=(p;Y )

Y 2T

ED

�

grid ^d

�

e

=1

left ^e(q;X)

�

! (p; Y )

�

; (52)
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^

Æ(q;X)=(p;Y )

Y =2T

ED

�

grid ^d

�

e

=1

left ^e(q;X)

�

! X

�

; (53)

^

Æ(q;X)=(p;R)

Z2T

ED

�

grid ^

d

�

e

=1

left ^e

�

Z ^d(left ^e(q;X))

�

�

! (p; Z)

�

; (54)

^

Æ(q;X)=(p;Y )

Y 6=R; Z2T

ED

�

grid ^

d

�

e

=1

left ^e

�

Z ^d(left ^e(q;X))

�

�

! Z

�

; (55)

^

X;Y;Z2T

ED

h

grid ^

d

=1

e

=1

�

Z ^d

�

left ^e

�

Y ^

�

wall _d(left ^eX)

��

��

! Y

i

: (56)

Lemma 5. '

1

^ '

grid

^ '

M

is satis�able in any 1-
hessboard.

Proof. Let F = (W;R

1

; R

2

) be an1-
hessboard with root r. Take the model

N over F de�ned in the proof of Lemma 3. As is shown there, (N; r) j= '

1

^'

grid

.

De�ne a valuation of the propositional variables s 2 A in N by taking, for all

x 2W ,

(N; x) j= s i� hr

N

(x) = vr

N

(x) = ℄(i; j) for some i; j < !

su
h that the ith symbol in {

min(j;H

M

�1)

is s. (57)

Then it is straightforward to 
he
k that (N; r) j= '

M

. a

The next lemma shows that in fa
t '

M

`for
es' the 
onse
utive 
on�gurations

{

0

;{

1

; : : : of the 
omputation of M on the 
onse
utive horizontal lines of the

! �H

M

-grid (starting from the line (0; 0); (1; 0); (2; 0); : : : ):

Lemma 6. Suppose that M is a model based on a frame F = (W;R

1

; R

2

) for

[K4;K4℄ with root r. If (M; r) j= '

grid

^'

M

then, for all s 2 A, all n < ! su
h

that pair(n) = (i; j) and j < H

M

, and all x 2 V su
h that hr(x) = vr(x) = n,

(M; x) j= s i� the ith symbol of the 
on�guration {

j

is s. (58)

Proof. As before we use the notation of Se
tion 4. The proof pro
eeds by

indu
tion on n. For n = 0, (58) follows from (47) and (46).

Suppose that n > 0 is su
h that pair(n) = (i; j), j < H

M

, and (58) holds for

all k < n. Take an x 2 V with hr(x) = vr(x) = n. If pair(n) is on the 
oor then

(58) holds by (48), (49) and (46). So suppose that pair(n) is not on the 
oor,

that is, j > 0. Then ℄(i + 1; j � 1) = n � 1, ℄(i; j � 1) = left

n�1

and, if i > 0,

℄(i� 1; j� 1) = left

left

n�1

. Let s

i

2 A denote the ith symbol of the 
on�guration

{

j�1

. Take a perfe
t n � n-re
tangle x

i;j

(i � n, j � n) starting at x. By the

indu
tion hypothesis we then have

(M; x

n�1;n�1

) j= s

i+1

; (M; x

left

n�1

;left

n�1

) j= s

i

(59)

and, if i > 0, (M; x

left

left

n�1

;left

left

n�1

) j= s

i�1

:
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Let h < ! be su
h that the head is s
anning the hth 
ell of �

j�1

. There are four


ases:

Case 1 : h = i + 1, that is, s

i+1

= (q;X) for some q 2 Q, X 2 T . Then, by

(59), (41), (45), and Lemma 4 (i) and (iv),

(M; x) j= grid ^d

=1

e

=1

�

(q;X) ^d(left ^es

i

)

�

:

Now one 
an use either (50) and (46), or (51) and (46) (depending on the value

of Æ(q;X)) to obtain (58), as required.

Case 2 : h = i. This 
ase is similar to Case 1: we only use (52) or (53) in pla
e

of (50) and (51).

Case 3 : h = i� 1. This time we use (54) or (55).

Case 4 : h 6= i� 1; i; i+ 1. In this 
ase we use (56). a

5.3. En
oding tilings. A tile type is a 4-tuple of 
olours

t = (left(t); right(t); up(t); down(t)):

For a �nite set � of tile types and a subset X � ! � !, we say that � tiles

X if there exists a fun
tion (
alled a tiling) � from X to � su
h that, for all

(i; j) 2 X ,

� if (i; j + 1) 2 X then up(�(i; j)) = down(�(i; j + 1)) and

� if (i+ 1; j) 2 X then right(�(i; j)) = left(�(i + 1; j)).

Given a �nite set � of tile types, we introdu
e a propositional variable t, for

every t 2 �. Let '

�

be the 
onjun
tion of the following formulas:

ED(grid$

_

t2�

t); (60)

ED

^

t6=t

0

2�

:(t ^ t

0

); (61)

ED

^

t;t

0

2�

up(t

0

)6=down(t)

�

t! D(e

=1

left! :et

0

)

�

; (62)

ED

^

t;t

0

2�

right(t

0

)6=left(t)

�

t! D(left! :et

0

)

�

: (63)

Lemma 7. Suppose that � tiles !� !. Then '

1

^'

grid

^'

�

is satis�able in

any 1-
hessboard.

Proof. Let F be an 1-
hessboard with root r. Take a model N over F

as in the proof of Lemma 3. Then, as is shown in the proof of Lemma 3,

(N; r) j= '

1

^ '

grid

holds.

Fix some tiling � : !�!! �. De�ne a valuation of the propositional variables

t 2 � in N by taking, for all x 2W ,

(N; x) j= t i� hr

N

(x) = vr

N

(x) = ℄(i; j) for some i; j < ! with �(i; j) = t.

Then it is straightforward to 
he
k that (N; r) j= '

�

. a

For every n < !, let

plane

n

= f(i; j) j ℄(i; j) � ng:
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Lemma 8. Suppose that a modelM is based on a frame for [K4;K4℄ with root

r and that (M; r) j= '

grid

^ '

�

. Then, for every n < !, every x 2 V su
h that

hr(x) = vr(x) = n, and every perfe
t n� n-re
tangle x

i;j

(i � n, j � n) starting

at x, the fun
tion � : plane

n

! � de�ned by

�(i; j) = t i� (M; x

℄(i;j);℄(i;j)

) j= t

is a tiling of plane

n

.

Proof. The proof is by indu
tion on n. For n = 0 the statement is obvious.

Suppose that n > 0 and the statement of the lemma holds for all k < n. Take a

perfe
t n � n-re
tangle x

i;j

(i � n, j � n) starting at x. Sin
e left

n

(if pair(n)

is not on the wall) and left

n�1

(if pair(n) is not on the 
oor) are both smaller

than n, the statement holds by IH, Lemma 4, (62) and (63). a

5.4. Proofs of Theorems 2{4. We are now in a position to prove the results

of Se
tion 3. As we already saw, Theorem 1 is an immediate 
onsequen
e of

Theorems 2 and 3.

Proof of Theorem 2. Item (i), the la
k of the fmp, was proved in Se
tion 4.

Here we give two di�erent proofs of unde
idability, one using Turing ma
hines,

and another using tilings.

Let L be as spe
i�ed in the formulation of Theorem 2. First we redu
e the

unde
idable non-halting problem for Turing ma
hines (see, e.g., [21℄) to the

satis�ability problem for L. To this end, given a Turing ma
hine M , de�ne a

formula �

M

to be the 
onjun
tion of the formulas '

1

, '

grid

, '

M

introdu
ed

above, and

ED

^

X2T

:(q

1

; X): (64)

We 
laim that

�

M

is L-satis�able i� M does not stop having started

from an all-blank tape.

Suppose �rst that �

M

is satis�ed in a model M for L. As [K4;K4℄ � L

and [K4;K4℄ is Kripke 
omplete, we may assume that the underlying frame of

M is a frame for [K4;K4℄. Suppose that M eventually stops. Then H

M

< !

and there is i < ! su
h that the ith symbol of {

H

M

�1

is (q

1

; X), for some

X 2 T . Let n = pair(i;H

M

� 1). By Lemma 1, there is some x 2 V su
h that

hr(x) = vr(x) = n. So by Lemma 6, (M; x) j= (q

1

; X), 
ontrary to (64).

Now suppose that M does not stop having started from an all-blank tape. By

assumption, L has an 1-
hessboard F with root r among its frames. Take the

model N over F de�ned in the proof of Lemma 5. As is shown there, (N; r) j=

'

1

^ '

grid

^ '

M

. It is straightforward to see that (64) also holds at r in N.

Our se
ond proof uses tilings. We redu
e the following unde
idable (see [37, 4℄)

! � !-tiling problem to the satis�ability problem for L: given a �nite set � of

tile types, de
ide whether � 
an tile ! � !.

Indeed, using Lemma 8, it is straightforward to show that if '

1

^ '

grid

^ '

�

is L-satis�able then � tiles plane

n

, for all n < !. A standard 
ompa
tness

argument (or K�onig's lemma) shows that if a given �nite set � of tile types tiles

plane

n

for every n < !, then it a
tually tiles the whole ! � !-grid.
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On the other hand, sin
e L has an 1-
hessboard F among its frames, if �

tiles ! � !, then '

1

^ '

grid

^ '

�

is L-satis�able, by Lemma 7.

Both proofs above show that L must be unde
idable. a

Proof of Theorem 3. Now we deal with the logi
 Log (C) su
h that C 
on-

tains a k-
hessboard for every k < !, but no 1-
hessboard. This time we

redu
e the (unde
idable, but re
ursively enumerable) halting problem for Turing

ma
hines to the satis�ability problem for Log (C). To this end, given a Turing

ma
hine M , de�ne a formula '

�n

in the same way as '

1

but with the `generat-

ing' 
onjun
ts (13) and (14) repla
ed by their `relativised' versions

D

�

:e

_

X2T

(q

1

; X)! e(:d ^Ed)

�

; (65)

E

�

:d

_

X2T

(q

1

; X)! d(d ^D:d)

�

; (66)

and with two extra 
onjun
ts

^

X2T

E

�

d(q

1

; X)! D(grid! (q

1

; X))

�

; (67)

^

X2T

D

�

e(q

1

; X)! E(grid! (q

1

; X))

�

(68)

added. Let 	

M

be the 
onjun
tion of '

�n

, '

grid

and '

M

. We 
laim that

	

M

is Log (C)-satis�able i� M stops having started from an all-blank tape.

Suppose �rst that 	

M

is satis�ed at the root r of a model M that is based

on a frame F = (W;R

1

; R

2

) from C. Then both R

1

and R

2

are transitive, they


ommute and are Chur
h{Rosser. De�ne

�

R

M

1

and

�

R

M

2

as in (2) and (3), and

the horizontal and verti
al ranks of points as in (4) and (5). Then (
b1) and

(
b2) are satis�ed by (9) and (10), and so

�

R

M

1

and

�

R

M

2

satisfy (tran), (
om)

and (
hro).

Using (65) and (66), we start to `generate' the points x

n

, u

n

and v

n

in the

same way as in the proof of Lemma 1 (see (20) and Fig. 1). We 
laim that there

is N < ! su
h that

either (M; u

N

) j= e

_

X2T

(q

1

; X) or (M; v

N

) j= d

_

X2T

(q

1

; X): (69)

For suppose this is not the 
ase. Then '

�n

generates the x

n

, u

n

and v

n

for all

n < ! in the same way as '

1

did. So, as the proof of Lemma 1 shows, we have

points x

n

with hr

M

(x

n

) = vr

M

(x

n

) = n, for every n < !. Therefore, F is an

1-
hessboard, whi
h is a 
ontradi
tion sin
e C does not 
ontain su
h frames.

So let N < ! be the smallest number su
h that (69) holds. Suppose, for

example, that (M; u

N

) j= e(q

1

; X) for someX 2 T . (Note that by (45){(47) and

(68), we have N > 0.) Then the points x

0

; : : : ; x

N

and u

0

; : : : ; u

N

are generated

like in the proof of Lemma 1. As hr

M

(x

N

) = vr

M

(x

N

) = N by (26), Lemma 4 (i)

implies that (M; x

N

) j= grid. As u

N

�

R

M

1

x

N

, (M; x

N

) j= (q

1

; X) follows by (68).

Let pair(N) = (i; j). By Lemma 6, the ith symbol in {

j

is (q

1

; X), and so M

must stop no later than in j steps. The 
ase when (M; v

N

) j= d(q

1

; X) is similar;

we have to use (67) in pla
e of (68).
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Now suppose that M stops having started from an all-blank tape, that is,

H

M

< !. As we know, L has a k-
hessboard F with root r among its frames,

for some k � H

M

. By Claim 2.1, there is a perfe
t k-
hessboard model N based

on F. De�ne a valuation of the propositional variable d in N as in (31). Extend

this model to the `grid' and `Turing ma
hine variables' as in (39) and (57). Then

(N; r) j= '

grid

^'

M

. A proof similar to that of Lemma 2 shows that (N; r) j= '

�n

also holds. Moreover, it is not hard to see that (67) and (68) hold at r in N as

well. a

To prove Theorem 4 with the help of Turing ma
hines, one should �nd a

suitable �

1

1

-hard problem. A non-deterministi
 Turing ma
hine M is 
alled

re
urrent if, having started from the all-blank tape, it has a 
omputation that

never halts and reenters the initial state q

0

in�nitely often. It is known (see,

e.g., [19℄) that the problem `given a non-deterministi
 Turing ma
hineM , de
ide

whether it is re
urrent' is �

1

1

-
omplete. By appropriately modifying the formulas

above, it is not diÆ
ult to redu
e this problem to the satis�ability problems for

the logi
s mentioned in Theorem 4. However, the formulas be
ome even more


omplex than before, so below we give a (more transparent) proof with the help

of a re
urrent tiling problem instead.

Proof of Theorem 4. The following re
urrent tiling problem is known to

be �

1

1

-
omplete [17℄: given a �nite set � of tile types and a t

0

2 �, de
ide

whether � tiles the ! � !-grid in su
h a way that t

0

o

urs in�nitely often on

the wall.

So suppose that � and some t

0

2 � are given. De�ne 	

�;t

0

to be the 
on-

jun
tion of '

1

, '

grid

, '

�

, and the formulas

Dere

; (70)

ED(re

! :dgrid); (71)

E

�

dre

! d(wall ^ t

0

)

�

; (72)

^

t2�

E

�

dt! D(grid! t)

�

; (73)

^

t2�

D

�

et! E(grid! t)

�

: (74)

Now let L be as spe
i�ed in the formulation of the theorem. We 
laim that

	

�;t

0

is L-satis�able i� � tiles ! � ! with t

0

o

urring

in�nitely often on the wall. (75)

Suppose �rst that 	

�;t

0

is satis�ed at the root r of a modelM for L. Sin
e L

is Kripke 
omplete, we may assume thatM is based on a frame F = (W;R

1

; R

2

)

for L. In parti
ular, F is a frame for [K4;DisK4:3℄. Then both R

1

and R

2

are transitive, they 
ommute and are Chur
h{Rosser. We also know that R

2

is

weakly 
onne
ted and satis�es (7). De�ne the relations

�

R

1

=

�

R

M

1

and

�

R

2

=

�

R

M

2

as in (2) and (3). Then they satisfy (tran), (
om) and (
hro). Moreover, sin
e

�

R

2

� R

2

and R

2

satis�es (7),

�

R

2

satis�es (7) as well.

Note that

�

R

2

is not ne
essarily weakly 
onne
ted. However, it always has the

following property:
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Claim 4.1. For all x; y; z 2W , if x

�

R

2

y, x

�

R

2

z and vr(y) > vr(z) then y

�

R

2

z.

Proof of Claim 4.1. Clearly, it is enough to show that if x; y; z are su
h

that x

�

R

2

y and x

�

R

2

z but neither z

�

R

2

y nor y

�

R

2

z hold, then vr(y) = vr(z). This

statement is an immediate 
onsequen
e of the following property:

8xyz

�

x

�

R

2

y ^ x

�

R

2

z ^ :y

�

R

2

z ^ :z

�

R

2

y �! 8w (y

�

R

2

w $ z

�

R

2

w)

�

:

The 
ase of y = z is obvious. So suppose y 6= z. Sin
e x

�

R

2

y and x

�

R

2

z, but the

points y and z do not

�

R

2

-see ea
h other, they must have the same `verti
al 
olour,'

say, v. Now suppose that y

�

R

2

w. Then there is some u with verti
al 
olour :v

su
h that yR

2

u and either u = w or uR

2

w. Sin
e R

2

is weakly 
onne
ted, we

have either yR

2

z or zR

2

y. If zR

2

y then z

�

R

2

w follows by transitivity. So suppose

yR

2

z. Then either uR

2

z or zR

2

u. We 
annot have uR

2

z, be
ause y

�

R

2

z does

not hold, so zR

2

u. Therefore, z

�

R

2

w. a

Our next observation is that, for every x 2W ,

if vr(x) 6= 0 then there is u su
h that x

�

R

2

u and vr(u) = 0. (76)

Indeed, if x = r then (76) follows from (11) and (
hro). If r

�

R

1

x then take a u

with r

�

R

2

u and vr(u) = 0, whi
h gives (76) by (
hro). If r

�

R

2

x then take a u with

r

�

R

2

u and vr(u) = 0. Then we have x

�

R

2

u by Claim 4.1. Finally, if r

�

R

1

z

�

R

2

x for

some z then take a u with z

�

R

2

u and vr(u) = 0. Then again x

�

R

2

u follows from

Claim 4.1.

Next, we show that

�

R

2

is irre
exive. (77)

Suppose otherwise, that is, there is x 2W with x

�

R

2

x. Then there is y su
h that

xR

2

yR

2

x and the `v-
olours' of x and y are di�erent, i.e., x 6= y. By (76), there

is u su
h that x

�

R

2

u and vr(u) = 0, and so uR

2

x 
annot hold. But then we arrive

to a 
ontradi
tion with the property (7) of R

2

be
ause xR

2

yR

2

xR

2

: : : R

2

u.

Claim 4.2. For every x 2 V with (M; x) j= grid, there is n < ! su
h that

vr(x) = n.

Proof of Claim 4.2. If (M; x) j= E? then the 
laim holds by (32). Now

let x

0

= x. Starting from x

0

, we 
onstru
t a sequen
e x

0

; x

1

; : : : as follows.

Suppose that (M; x

n

) 6j= E?. Then, by (36), we have (M; x

n

) j= d

=1

e

=1

grid,

and so there are points y

n+1

and x

n+1

su
h that

� x

n

�

R

2

y

n+1

�

R

1

x

n+1

,

� there is no point z su
h that x

n

�

R

2

z

�

R

2

y

n+1

,

� (M; x

n+1

) j= grid.

Moreover, if we let u

0

= x

0

and u

1

= y

1

and use (
om) then, for ea
h n > 0 su
h

that (M; x

n

) 6j= E?, we have points u

n

su
h that u

n

�

R

2

u

n+1

�

R

1

y

n+1

. We 
laim

that there is some n < ! su
h that (M; x

n

) j= E?. Suppose otherwise. Then

we have the points u

n

for all n < !. By (77), u

n

6= u

n+1

for all n < !. By (76),

there is u

1

su
h that x

0

�

R

2

u

1

and vr(u

1

) = 0. So, by Claim 4.1 and the fa
t

that x

0

�

R

2

u

n

, we have u

n

�

R

2

u

1

for all n < !. But this is impossible in view of

the property (7) of

�

R

2

.
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So let n < ! be su
h that (M; x

n

) j= E? holds. Then (M; x

n

) j= D? follows

from (32), and so vr(x

n

) = 0. We 
laim that for all i � n,

vr(x

n�i

) = i:

The proof is by indu
tion on i. The basis of indu
tion has been shown above. So

suppose that our 
laim holds for every j with j < i � n, and take x

n�i

. Then

x

n�i

�

R

2

y

n�i+1

�

R

1

x

n�i+1

. By IH, vr(x

n�i+1

) = i� 1, and so vr(y

n�i+1

) = i� 1

as well. Suppose that vr(x

n�i

) > i. Then there is w su
h that x

n�i

�

R

2

w and

vr(w) > i� 1. So, by Claim 4.1, w

�

R

2

y

n�i+1

. Sin
e there is no point z su
h that

x

n�i

�

R

2

z

�

R

2

y

n�i+1

, we arrive to a 
ontradi
tion. Therefore, vr(x

n�i

) = i. a

Claim 4.3. For every n < ! there exist m � n, m < !, and x 2 V su
h that

hr(x) = vr(x) = m and (M; x) j= wall ^ t

0

.

Proof of Claim 4.3. Fix an n < !. Sin
e (M; r) j= '

1

, there exists u

n

su
h that r

�

R

2

u

n

and vr(u

n

) = n (see (gen3) and (24) in the proof of Lemma 1).

By (70), there is w su
h that u

n

�

R

1

w and (M; w) j= re

. So vr(w) = n as well.

By (
om), there is v su
h that r

�

R

1

v

�

R

2

w. By (72), there is z su
h that v

�

R

2

z

and (M; z) j= wall^ t

0

. Then, by (60), (M; z) j= grid. So, by Claim 4.2, we have

vr(z) = m for some m < !. By (71), w

�

R

2

z 
annot hold. So it follows from

Claim 4.1 that m = vr(z) � vr(w) = n.

We 
an show now that there exists x 2 V su
h that hr(x) = vr(x) = m and

(M; x) j= wall ^ t

0

. By (
om), there is u su
h that r

�

R

2

u

�

R

1

z and vr(u) = m. In

view of (gen4) and (25), there is a point v

m

su
h that r

�

R

1

v

m

and hr(v

m

) = m.

By (
hro), there is x su
h that u

�

R

1

x and v

m

�

R

2

x, and so hr(x) = vr(x) = m.

Finally, we obtain (M; x) j= grid by Lemma 4 (i), and (M; x) j= wall^ t

0

by (35)

and (74). a

Claim 4.4. For all n < m < ! and x 2 V with hr(x) = vr(x) = n, and for

every perfe
t n � n-re
tangle x

i;j

(i; j � n) starting at x, there exist a y 2 V

with hr(y) = vr(y) = m and a perfe
t m�m-re
tangle y

i;j

(i; j � m) starting at

y su
h that,

for every i � n and every t 2 �, (M; x

i;i

) j= t i� (M; y

i;i

) j= t: (78)

Proof of Claim 4.4. Take some n < m < !, x and a perfe
t re
tangle

starting at x as spe
i�ed above. Let u be su
h that r

�

R

2

u

�

R

1

x. Then vr(u) = n.

By Lemma 1, there are points u

m

and x

m

su
h that r

�

R

2

u

m

�

R

1

x

m

and vr(u

m

) =

vr(x

m

) = hr(x

m

) = m. So there are points u

m�1

; u

m�2

; : : : ; u

n+1

su
h that

vr(u

i

) = i and

u

m

�

R

2

u

m�1

�

R

2

u

m�2

�

R

2

: : :

�

R

2

u

n+1

;

and points y

m�1;m

; y

m�2;m

; : : : ; y

n;m

su
h that hr(y

i;m

) = i and

x

m

�

R

1

y

m�1;m

�

R

1

y

m�2;m

�

R

1

: : :

�

R

1

y

n;m

:

By Claim 4.1, we also have u

n+1

�

R

2

u. By (
hro), there are points y

n;m�1

; y

n;m�2

;

: : : ; y

n;n

su
h that vr(y

n;i

) = i and

y

n;m

�

R

2

y

n;m�1

�

R

2

y

n;m�2

�

R

2

: : :

�

R

2

y

n;n

and u

�

R

1

y

n;n

.
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We 
laim that if we 
hoose y to be x

m

and take any perfe
t m�m-re
tangle

starting at y that 
ontains the points y

i;m

(m�1 � i � n) and y

n;j

(m�1 � j �

n) above, then (78) is satis�ed. Indeed, �rst let i = n. Then (M; y

n;n

) j= grid

by Lemma 4 (i), and so (78) holds by x = x

n;n

, u

�

R

2

x, u

�

R

2

y

n;n

and (74).

Now �x some i < n, and suppose that, say, (M; x

i;i

) j= t, for some t 2 �.

Then x

n;n

�

R

1

x

i;n

�

R

2

x

i;i

and y

n;n

�

R

1

y

i;n

�

R

2

y

i;i

. By (
om), there are u

x

and u

y

su
h that u

�

R

2

u

x

, u

�

R

2

u

y

, u

x

�

R

1

x

i;i

, u

y

�

R

1

y

i;i

, and so vr(u

x

) = vr(u

y

) = i. By

(
hro), there is w su
h that u

x

�

R

1

w and y

i;n

�

R

2

w, so hr(w) = vr(w) = i. By

Lemma 4 (i), we have (M; w) j= grid. Then (M; y

i;i

) j= t follows from (73), (74)

and Lemma 4 (i). a

Claims 4.3, 4.4 and Lemma 8 imply, with the help of K�onig's lemma, that there

is a tiling of ! � ! with t

0

o

urring in�nitely often on the wall, as required.

Now let us prove the `(' dire
tion of (75). Take a re
urrent tiling of ! � !.

By assumption, L has an 1-
hessboard F with root r among its frames. De�ne

a model N over F as in the proof of Lemma 7. As is shown in that proof,

(N; r) j= '

1

^ '

grid

^ '

�

. Then, for all x in F, de�ne

(N; x) j= re

 i� there is z su
h that (N; z) j= wall ^ t

0

and

either x = z or z

�

R

N

2

x:

It is not hard to see that (70){(74) are also satis�ed at r in N. a

Proof of Corollary 4.1. Let L

1

, L

2

and L be as spe
i�ed in the formu-

lation of the 
orollary. Then we know that L has a frame that is a produ
t of

two rooted linear orders ea
h of whi
h 
ontains an in�nite des
ending 
hain of

distin
t points.

We show that su
h a frame is an 1-
hessboard. Let F

1

= (W

1

; <

1

) and

F

2

= (W

2

; <

2

) be two rooted linear orders with in�nite des
ending 
hains

x

0

	

1

x

1

	

1

x

2

	

1

: : : and y

0

	

2

y

1

	

2

y

2

	

2

: : :

of points from W

1

and W

2

, respe
tively. De�ne a valuation V in F

1

� F

2

by

taking:

V(h) = f(x; y) j x

0

�

1

xg [ f(x; y) j x

n

�

1

x <

1

x

n�1

; 0 < n < !; n is eveng;

V(v) = f(x; y) j y

0

�

2

yg [ f(x; y) j y

n

�

2

x <

2

y

n�1

; 0 < n < !; n is eveng;

and letM = (F

1

�F

2

;V). It is not hard to see that for all (x; y) in F

1

�F

2

, and

for all n < !,

hr

M

(x; y) = n i� either n = 0 and x

0

�

1

x, or x

n

�

1

x <

1

x

n�1

;

vr

M

(x; y) = n i� either n = 0 and y

0

�

2

y, or y

n

�

2

y <

2

y

n�1

:

It follows that F

1

� F

2

is an 1-
hessboard. Therefore, by Theorem 4, L is

�

1

1

-hard.

For the �

1

1

upper bound, it is readily seen by a step-by-step argument that,

for ea
h of the listed pairs L

1

and L

2

, their produ
t L

1

� L

2

is determined by

produ
ts of 
ountable L

1

- and L

2

-frames. Now, a Kripke model M over su
h

a frame 
an be sele
ted with universal se
ond-order quanti�
ation. On
e M is

sele
ted, the 
he
k that M j= ' is �rst-order. a
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x6. Dis
ussion. We 
on
lude this paper with a few remarks on related re-

sults and further resear
h.

The unde
idability theorems presented in this paper are optimal in the sense

that all `natural' logi
s 
ontaining [K4;K4℄ and having no frames of arbitrary

�nite or in�nite depth are in fa
t de
idable. They are not optimal, however, in

the sense that

(a) some logi
s determined by produ
ts of linear frames are known to be of

higher 
omplexity than it follows from the results of this paper, and

(b) for some of the dis
ussed logi
s the exa
t 
omplexity is still unknown.

Let us �rst dis
uss (a). Interesting examples are the logi
s

Log ((!;<)� (!;<)) and Log f(!;<)� F j F j= K4:3g

whi
h are shown to be �

1

1

-hard in [35, 31℄ and [11, Theorem 7.12℄. (In the


ontext of this paper these logi
s are 
overed by Theorem 3 whi
h `only' shows

that they are not re
ursively enumerable.) Note that the �

1

1

-
omplete logi
s

Log (!;<)� Log (!;<) and Log ((!;<)� (!;<))

are di�erent be
ause, for instan
e, (f1g [ Z; >)� (f1g [ Z; >) is a frame for

Log (!;<)�Log (!;<) and it is an1-
hessboard satisfying '

1

, while the frame

(!;<)� (!;<) is not an 1-
hessboard, and so '

1

is not Log ((!;<)� (!;<))-

satis�able. The proofs of �

1

1

-hardness of these logi
s uses the same enumeration

of the !�! grid as in Se
tion 5.1. The di�eren
e is that if both 
omponents are

linear then one 
an also write a formula that generates the diagonal `forwards,'

as opposed to our '

1

that does it `ba
kwards.' For more examples and details

the reader is referred to [11℄.

As 
on
erns (b), we note �rst that we have obtained �

1

1

-
ompleteness results

only for `transitive' produ
ts where one 
omponent is a `linear dis
rete' modal

logi
. The exa
t 
omplexity of unde
idable produ
t logi
s like K4 � GL or

Grz �Grz remains unknown. However, we 
onje
ture that there are logi
s of

mu
h higher 
omplexity than �

1

1

satisfying the 
onditions of Theorem 4 and that

this 
an be proved using the te
hnique of Thomason [36℄.

Be
ause of the extremely high 
omputational 
omplexity of produ
t logi
s, an

interesting and promising dire
tion of resear
h is to 
onsider various relativisa-

tions of the produ
t 
onstru
tion. In the extreme, when arbitrary relativisations

are allowed, we may end up with the fusion of the 
ombined modal logi
s [26℄.

On the other hand, it is shown in [16℄ that `expanding domain' relativisations

of produ
t logi
s with transitive frames 
an be de
idable, though not in primi-

tive re
ursive time. In parti
ular, bimodal logi
s interpreted in two-dimensional

stru
tures are de
idable, if one 
omponent|
all it the 
ow of time|is a �nite

linear order (or a �nite transitive tree) and the other 
omponent is 
omposed

of transitive trees (or partial orders/quasi-orders/�nite linear orders) expand-

ing over the time. As we saw in this paper, none of these logi
s is de
idable

when interpreted in models with 
onstant domains. Further, [23℄ presents an

investigation of expanding domain relativisations along (!;<) of produ
ts with

Log (!;<) and shows that, for example, the expanding domain relativisations of
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Log (!;<)�K4, Log (!;<)� S4 and Log (!;<)� S4:3 are unde
idable. It re-

mains open whether the expanding domain relativisations of produ
ts of `bran
h-

ing or non-dis
rete transitive' logi
s like S4� S4 or S4:3�K4 are de
idable.
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