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ON AXIOMATISING PRODUCTS OF KRIPKE FRAMES

ÁGNES KURUCZ

Abstract. It is shown that the many-dimensional modal logic Kn , determined by products of n-many

Kripke frames, is not finitely axiomatisable in the n-modal language, for any n > 2. On the other hand,

Kn is determined by a class of frames satisfying a single first-order sentence.

§1. Introduction. In this paper we show that the multi-modal logic Kn , deter-
mined by the class of Cartesian products of n-many Kripke frames, is not finitely
axiomatisable, whenever n > 2. It is also shown that Kn is determined by a first-
order definable class of frames.
The formation of products is a standard mathematical way of introducing new
dimensions. In modal logic products are used for constructing systems with several
modal operators (say, temporal, epistemic, spatial). Modal products appear both
in theoretical studies (e.g., [13], [14], [15]) and applications ([2], [4]). They are also
closely related to finite variable fragments of classical first-order logic and to the
corresponding classes of algebras (cylindric and polyadic) ([1], [9]).
In general, products of modal logics do not inherit the ‘nice’ axiomatisability
properties of their components. One can find already two dimensional ‘nasty’
examples: e.g., though the well-known modal logic of the frame (ù,<) is finitely
axiomatisable [12], the bi-modal logic of (ù,<)× (ù,<) is not even recursively
enumerable [15]. On the other hand, some two-dimensional products of standard
modal systems, such asS5×S5 andK×K , remain finitely axiomatisable (see [13], [7]).
Not too much is known about axiomatisability properties of higher dimensional
products. As an exception, S5n is known to be non-finitely axiomatisable, whenever
n > 2 ([11]).

Notation. Our notation is mostly standard. We consider binary relations as sets
of ordered pairs, and write them in the infix form xRy.

Basic definitions. For any non-zero natural number n, let G0 = (G0, R
G0), G1 =

(G1, R
G1), . . . ,Gn−1 = (Gn−1, R

Gn−1) be usual Kripke frames — that is, relational

structures having one binary relation. Their product G
def
= G0×G1×· · ·×Gn−1 is

defined to be the relational structure (G,RG0 , R
G

1 , . . . , R
G

n−1)whereG is theCartesian
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productG0×G1×· · ·×Gn−1 and, for each ℓ < n, R
G

ℓ is the following binary relation
on G : for all ū = (u0, . . . , un−1), v̄ = (v0, . . . , vn−1) ∈ G ,

ūRGℓ v̄ iff uℓR
Gℓvℓ , and uk = vk whenever k 6= ℓ .

Such a product frame G will be called an n-cube.
Since n-cubes have n accessibility relations, the n-modal language which cor-
responds to them has to have n modal operators ✸0, . . . ,✸n−1 (and their duals
✷0, . . . ,✷n−1). Formulas of this language, using propositional variables from some
fixed countable set P, will be called n-formulas. Also, the first-order language
which is able to speak about n-cubes, the n-frame language, has n binary predicates
R0, . . . , Rn−1 (and no equality). One can expand the n-frame language with count-
ably many unary predicates p (p ∈ P), and define the standard first-order translation
ϕA(x) of each n-formula A as follows.

ϕp(x)
def
= p(x), for p ∈ P;

ϕB∧C (x)
def
= ϕB(x) ∧ ϕC (x); ϕ¬B(x)

def
= ¬ϕB(x);

ϕ✸ℓB(x)
def
= ∃y (xRℓy ∧ ϕB(y/x)), for ℓ < n (here y is a fresh variable).

An n-frame is a relational structure F = (F,RFℓ )ℓ<n where for each ℓ < n, R
F

ℓ

is a binary (accessibility) relation on the set F of (possible) worlds. Therefore, n-
cubes are special n-frames. Throughout, n-frames are denoted by script letters with
the corresponding roman letter denoting the set of worlds. A model M = (F , õ)
based on an n-frame F is defined in the usual way, by giving a subset õ(p) of F (a
valuation), for each propositional variable p. We also say that F is the underlying
n-frame ofM . Truth and validity of n-formulas in models and n-frames are defined
as usual. Note that a model M can be considered as a first-order model of the
n-frame language expanded with countably many unary predicates. It is routine to
check that, for any n-formula A, A is valid in M (considered as a modal model)
iff its standard first-order translation ϕA is valid in M (considered as a first-order
model).
The usual operations on frames can be defined on n-frames as well. In particular,
given two n-frames F = (F,RFℓ )ℓ<n and G = (G,R

G

ℓ )ℓ<n , a function h : F → G
is called a p-morphism from F to G if it satisfies the following conditions, for all
u, v ∈ F , y ∈ G , ℓ < n.

• uRFℓ v implies h(u)R
G

ℓ h(v) (forward condition)
• h(u)RGℓ y implies (∃w ∈ F ) h(w) = y and uR

F

ℓ w (backward condition).

If h is onto then we say that G is a p-morphic image of F . F is a subframe of G if
F ⊆ G and, for all ℓ < n, RFℓ = R

G

ℓ ∩ (F ×F ). Given some w ∈ G , the subframe
G
w of G generated by point w is the subframe of G with the following set Gw of
worlds:

Gw = {w} ∪ {u ∈ G : u is accessible from w

by the transitive closure of
⋃

ℓ<n R
G

ℓ

}
.

Similarly to the mono-modal case, validity in frames is preserved under taking
p-morphic images, point-generated subframes and disjoint unions as well.
An n-modal logic is a set of n-formulas closed under the rules of Substitution,
Modus Ponens, andNecessitationA/✷ℓA (ℓ < n), and containing all propositional
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tautologies and all formulas ✷ℓ(p → q) → (✷ℓp → ✷ℓq) (ℓ < n, p, q ∈ P). We
say that an n-modal logic L is axiomatised by some set Σ of n-formulas, if L is the
smallest n-modal logic which contains Σ. An n-modal logic L is determined by a
class C of n-frames, if L is the set of all n-formulas which are valid in each member
of C. Kn is the n-modal logic determined by the class of all n-cubes.

Main results. It is proved in [7] that the logic K2 can be axiomatised by the
following two Sahlqvist-type 2-formulas (both are followed by their first-order
correspondents).
Commutativity: ✷0✷1p ↔ ✷1✷0p

∀xyz[(xR0y ∧ yR1z → ∃u(xR1u ∧ uR0z))

∧ (xR1y ∧ yR0z → ∃u(xR0u ∧ uR1z))]

Church–Rosser property: ✸0✷1p → ✷1✸0p

∀xyz[xR0y ∧ xR1z → ∃u(yR1u ∧ zR0u)]

Ourmain result says that in higher dimensions an axiomatisationmust be infinite:

Theorem 1.1. For any natural number n > 2, Kn is not finitely axiomatisable in
the n-modal language.

Theorem 1.1 answers negatively the first part of question Q16.163 of [6] namely,
whether K3 is finitely axiomatisable. A negative answer to Question 23 posed in [7]
also follows: K3 is not axiomatisable with the commutativity and Church–Rosser
axioms (each of them is stated now for all pairs of coordinates).

Proof of Theorem 1.1. We define a series (Fk : k ∈ ù) of n-frames with the
following properties:

(I) For every k, Fk does not validate K
n (Lemma 3.4 in §3).

(II) For any series of models Mk based on Fk (k ∈ ù), there is some model M
′

such that (i)M ′ is an elementary substructure1 of somenontrivial ultraproduct
of theMk ’s, and (ii) the underlying frame ofM

′ validates Kn (Lemma 4.6 in
§4).

Given such Fk ’s, assume now that there is some n-formula Ax axiomatising K
n.

Then, by (I), for each k there is some model Mk based on Fk such that Ax fails
inMk . Then, considering nowMk as a first-order structure of the language having
binary predicatesR0, . . . , Rn−1 and countably many unary predicates, the standard
first-order translation ϕAx of Ax fails in Mk . Then, by (II)(i), ϕAx fails in M

′

as well. Thus, considering now M ′ as a modal model, Ax fails in M ′. But this
contradicts (II)(ii) namely, that the underlying frame ofM ′ validates Kn, so it must
validate Ax. ⊣

Since K2 is axiomatised by Sahlqvist formulas, K2 is determined by a first-order
definable class of frames. Our second result says that this latter property also holds
in higher dimensions.

Theorem 1.2. For any natural number n > 0, Kn is determined by a class of
n-frames satisfying a single first-order sentence of the n-frame language.

1Here modal models are considered as relational structures of the first-order language (without
equality) having binary predicates R0, . . . , Rn−1 and countably many unary predicates.
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Questions. (all are for 2 < n ∈ ù)

Q1. Kn is known to be recursively enumerable, see Cor.5.8 of [7]. Find a modal
axiomatisation for Kn. Is there an axiomatisation using only finitely many
propositional variables?

Q2. Is Kn Sahlqvist?
Q3. As it is mentioned, S5n is also known to be non-finitely axiomatisable (a result

of Johnson [11], proved in an algebraic setting). Is S5n finitely axiomatisable
over Kn?

Plan of paper. The next section gives the definition of the n-framesFk . We try to
demonstrate the ‘geometrical reason’ behind properties (I) and (II) above: While
‘not too large’ pieces of Fk are always ‘representable’ in the sense that they are
p-morphic images of n-cubes,Fk itself is not representable. However, taking larger
and larger frames, the ‘distance’ between the two ‘clashing patterns’ which cause
the non-representability becomes ‘infinite in the limit’.
In §3 a series of Kn-valid n-formulas is introduced which shows that the Fk ’s are
not only non-representable, but in fact they do not validateKn (property (I) above).
In §4 a certain two-player game is defined on so-called ‘networks’ over an n-frame
F . This game is similar to the ones played on networks over various atomic algebras
of n-ary relations in the papers of Hirsch and Hodkinson, see e.g., [10]. In our case,
a network is a ‘semi p-morphism’ (satisfying only the forward condition) from some
n-cube (not necessarily on)to F . Playing the game over some countable n-frame
F , the second, ‘existential’ player has a winning strategy in the ù-length game over
F iff every point-generated subframe of F is a p-morphic image of some n-cube.
Also, for any sequence (Fk : k ∈ ù) of n-frames, if the existential player has a
winning strategy in longer and longer finite games over Fk as k increases then she
has a winning strategy in the ù-length game over any nontrivial ultraproduct of the
Fk ’s. Therefore, given such n-frames Fk , an argument similar to one in [10] shows
that there is some modelM having property (II) above, which completes the proof
of Theorem 1.1.
In §5 we prove that, playing the above game over n-frames satisfying a certain
first-order sentence Φn (of the n-frame language), the existential player always has
a winning strategy in the ù-length game. This implies that Kn is determined by the
class of all n-frames satisfying Φn, thus proves Theorem 1.2.
Finally, in §6 we discuss some possible generalisation of the results, and some
related open problems.

§2. Frames. In this section we construct the n-framesFk (k ∈ ù). These frames
are obtained by sticking together copies of three small ‘gadgets’ G1, G2 and G3.
Below we first define these gadgets and show that they are ‘representable’ in the
sense that they are p-morphic images of n-cubes. Next we define the Fk ’s and
show that certain not too large subframes of them are representable. Here we also
illustrate that the Fk ’s themselves are not representable, and later in §3 we prove
that they do not even validate Kn.

About the drawings. All the n-frames to be defined in this section are such that
relations Rℓ = ∅ whenever 2 < ℓ < n. Therefore they can be illustrated with
the help of pictures showing 3-dimensional objects. In those figures which show
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Figure 1. Gadget G1.

‘abstract’ (i.e., non-cubic) 3-frames, our convention in drawing R0, R1 and R2 is
the following.

✲
R0

✻R1 ✓✓✼
R2

Weusually draw lines instead of arrows. However, whenwe draw 3-cubes (Figures 2,
4, 6, 8, 9), we always indicate the three 1-frameswhose product the 3-cube in question
is. The dotted lines in the figures indicate some patterns which will be explained at
the end of this section and in §3.

Definition 2.1. (gadget G1) Let G1 = (G1, Rℓ)ℓ<n be the following n-frame:

G1
def
= {1, 2, 3, . . . , 15}

R0
def
= {(8, 1), (9, 2), (10, 3), (11, 4), (12, 5), (13, 6), (14, 7), (15, 7)}

R1
def
= {(1, 2), (1, 5), (3, 4), (3, 7), (6, 4), (6, 7),
(8, 9), (8, 12), (10, 11), (10, 15), (13, 11), (13, 14)}

R2
def
= {(1, 3), (1, 6), (2, 4), (2, 7), (5, 4), (5, 7),
(8, 10), (8, 13), (9, 11), (9, 14), (12, 11), (12, 15)}

Rℓ
def
= ∅, for 2 < ℓ < n (see Figure 1).

Proposition 2.1. There is a p-morphism h1 from some n-cubeH1 onto G1.

Proof. Consider the following three small 1-frames, V , A and E .
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Figure 2. The p-morphism h1 : H1 → G1.

s

ss

✓
✓

✓✼

❙
❙

❙♦
V : s s✲A : sE :

LetH1 beA×V×V for n = 3, andA×V×V×E
n−3 for n > 3. Figure 2 illustrates

H1 and defines a function h1 from H1 to G1 by labelling each world of H1 with its
h1-image. It is routine to check that h1 is a p-morphism onto G1. ⊣

Definition 2.2. (gadget G2) Let G2 = (G2, Rℓ)ℓ<n be the following n-frame:

G2
def
= {1, 2, 3, 4, 5, 6, 7, a, b, c, d, e, f, g, h, i, j, k}

R0
def
= {(1, a), (1, e), (2, b), (2, g), (3, c), (3, i),
(4, j), (4, k), (5, b), (5, f), (6, c), (6, h), (7, d), (7, k)}

R1
def
= {(1, 2), (1, 5), (3, 4), (3, 7), (6, 4), (6, 7), (a, b), (a, f),
(c, d), (c, k), (e, b), (e, g), (h, j), (h, k), (i, j), (i, k)}

R2
def
= {(1, 3), (1, 6), (2, 4), (2, 7), (5, 4), (5, 7),
(a, c), (a, h), (b, d), (b, j), (e, c), (e, i), (f, k), (g, k)}

Rℓ
def
= ∅, for 2 < ℓ < n (see Figure 3).

Proposition 2.2. There is a p-morphism h2 from some n-cubeH2 onto G2.

Proof. Take the 1-frames V and E defined in the proof of Prop. 2.1, and letH2
be V ×V ×V for n = 3, and V ×V ×V ×E n−3 for n > 3. Figure 4 illustrates H2
and defines the p-morphism h2. ⊣
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Figure 3. Gadget G2.
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Figure 5. Gadget G3.

Definition 2.3. (gadget G3) Let G3 = (G3, Rℓ)ℓ<n be the following n-frame:

G3
def
= {L1, L2, L3, L4, L5, L6, L7, R1, R2, R3, R4, R5, R6, R7}

R0
def
= {(L1, R1), (L2, R2), (L3, R3), (L4, R4), (L5, R5), (L6, R6), (L7, R7)}

R1
def
= {(L1, L2), (L1, L5), (L3, L4), (L3, L7), (L6, L4), (L6, L7),
(R1, R2), (R1, R5), (R3, R4), (R3, R7), (R6, R4), (R6, R7)}

R2
def
= {(L1, L3), (L1, L6), (L2, L4), (L2, L7), (L5, L4), (L5, L7),
(R1, R3), (R1, R6), (R2, R4), (R2, R7), (R5, R4), (R5, R7)}

Rℓ
def
= ∅, for 2 < ℓ < n (see Figure 5).

Proposition 2.3. There are two different p-morphisms h13 and h
2
3 onto G3, both are

coming from the same n-cube.

Proof. It is easy to see that G1 and G3 are p-morphic images of the same n-cube
H1, defined in the proof of Prop. 2.1. However, in case of G3 one can give two
different p-morphisms h13 and h

2
3 from H1. See Figure 6 for the definitions of h

1
3

and h23 , again by labelling the worlds ofH1 with their p-morphic images in G3. ⊣

Now we are in a position to define the n-frames Fk , for k ∈ ù. Observe that the
‘right face’ of gadget G1 (i.e., the subframe consisting of worlds 1, 2, 3, 4, 5, 6, 7) is
isomorphic to the ‘left face’ of gadget G2, and also to both the left and right faces of
gadget G3. Fk will be the n-frame obtained by ‘sticking together’ G1, then k-many
G3’s, and then G2, always identifying the corresponding ‘1, 2, 3, 4, 5, 6, 7’-faces. This
‘sticking’ process can be defined in general as follows. Assume that two arbitrary
n-frames A andB are given, together with subframes A ′ ⊆ A ,B ′ ⊆ B such that
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Figure 6. The two different p-morphisms onto G3.

there is some isomorphism f between A ′ andB ′. First, take an isomorphic copy
A

∗ of A along some isomorphism g such that

• g extends f
• A∗ ∩ B = B ′.

Next, define the amalgam Am(A ,B , f) of A and B along f to be the union (as
relational structures) of A ∗ andB that is, let

Am(A ,B , f)
def
= (A∗ ∪ B,RA

∗

ℓ ∪R
B

ℓ )ℓ<n

(which is now defined up to isomorphism).

For each 0 < k ∈ ù, we define the n-frameG3(k) as follows. Let G3(1)
def
= G3, and

for each 0 < k ∈ ù, let G3(k + 1)
def
= Am(G3,G3(k), f33), where f33 is the function

taking world Ri to (some isomorphic copy of) Li , for i = 1, . . . , 7.

Definition 2.4. (frames F leftk , F rightk and Fk) Let

F
left
0

def
= G1, F

right
0

def
= G2, and F0

def
= Am(G1,G2, f12),

where f12 is the identity on the set {1, 2, 3, 4, 5, 6, 7}. For k > 0, let

F
left
k

def
= Am(G1,G3(k), f13),

where f13 is the function taking world i to (some isomorphic copy of) Li , for
i = 1, . . . , 7; let

F
right
k

def
= Am(G3(k),G2, f32),

where f32 is the function taking world Ri to i , for i = 1, . . . , 7; and let

Fk
def
= Am(F leftk ,G2, f32) = Am(G1,F

right
k , f13) (see Figure 7).
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Figure 7. Frames Fk , F
left
k and F rightk .

Proposition 2.4. Both F leftk and F rightk are p-morphic images of n-cubes.

Proof. See Figures 8 and 9. ⊣

In the next section we will show thatFk does not validate K
n, thus it cannot be a

p-morphic image of any n-cube. One way of seeing the reason for this is as follows.
G2 can be considered as a gadget forcing a p-morphism where there is no pre-image
of world 4 which is R-accessible from some pre-images of both 2 and 3. On the
other hand, G1 forces a p-morphism where all pre-images of 4 areR-accessible from
some pre-images of both 2 and 3. Since G3 only transfers these ‘forces’ to some
distance, wherever they meet they clash: there cannot be a p-morphism with both
properties.

§3. Formulas. For each natural number k > 0, we define ϕk to be the following
first-order sentence of the n-frame language (in fact, only predicatesR0, R1 andR2
are used), see also Figure 10:

ϕk : ∀x1 . . . xkxyz [xR0x1 ∧ x1R0x2 ∧ · · · ∧ xk−1R0xk ∧ xR1y ∧ xR2z →

∃ uy1 . . . ykz1 . . . zku1 . . . uk (yR2u ∧ zR1u ∧ yR0y1 ∧

y1R0y2 ∧ · · · ∧ yk−1R0yk ∧ zR0z1 ∧ z1R0z2 ∧ · · · ∧ zk−1R0zk ∧ uR0u1 ∧

u1R0u2 ∧ · · · ∧ uk−1R0uk ∧ xkR1yk ∧ xkR2zk ∧ ykR2uk ∧ zkR1uk)
]
.

It is easy to check the following claim.
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Figure 10. The formula ϕk .

Claim 3.1. For any 0 < k ∈ ù, ϕk is valid in every n-cube.

These first-order properties are modally definable. Namely, for each 0 < k ∈ ù,
consider the following n-formula Vk :

Vk :
[

✸
k
0 (✷1p01 ∧✷2p02) ∧ ✸1(✷

k
0p10 ∧ ✷2p12) ∧ ✸2(✷

k
0p20 ∧ ✷1p21) ∧

∧ ✷
k
0✷1(p01 ∧ p10 → ✷2q2) ∧ ✷

k
0✷2(p02 ∧ p20 → ✷1q1) ∧

∧ ✷1✷2(p12 ∧ p21 → ✷
k
0q0)

]

−→ ✸
k
0✸1✸2(q0 ∧ q1 ∧ q2) .

(Here ✸
k
0 and ✷

k
0 abbreviate k-length sequences of ✸0’s and ✷0’s, respectively.)

Claim 3.2. For any 0 < k ∈ ù, and for any n-frame F , ϕk is valid in F iff Vk is
valid in F .

Proof. We prove the harder right-to-left direction only. Fix some 0 < k ∈ ù.
AssumeF = (F,RFℓ )ℓ<n is an n-frame validating Vk , and let x, y, z, x1, . . . , xk ∈ F
be given as in ϕk . In order to ‘cubify’ them, we define a modelM = (F , õ) on F
as follows.

• õ(p01)
def
= {v ∈ F : xkR

F

1 v}

• õ(p02)
def
= {v ∈ F : xkR

F

2 v}

• õ(p10)
def
= {v ∈ F : v is RF0 -accessible in k steps from y}

• õ(p12)
def
= {v ∈ F : yRF2 v}

• õ(p20)
def
= {v ∈ F : v is RF0 -accessible in k steps from z}

• õ(p21)
def
= {v ∈ F : zRF1 v}

• õ(q0)
def
= {v ∈ F : v is RF0 -accessible in k steps from an s ∈ õ(p02) ∩ õ(p20)}

• õ(q1)
def
= {v ∈ F : ∃s ∈ õ(p02) ∩ õ(p20) sR

F

1 v}

• õ(q2)
def
= {v ∈ F : ∃s ∈ õ(p01) ∩ õ(p10) sR

F

2 v}

It is routine to check that the antecedent of Vk holds in M at world x. Thus, by
assumption, ✸k0✸1✸2(q0 ∧ q1 ∧ q2) also holds in M at x which implies that there
are worlds x′1, . . . , x

′
k , y

′
k , uk with xR

F

0 x
′
1, . . . , x

′
k−1R

F

0 x
′
k , x

′
kR
F

1 y
′
k , y

′
kR
F

2 uk , and

q0 ∧ q1 ∧ q2 holds in M at uk . Unfolding the definitions of õ(q0), õ(q1) and õ(q2),
we obtain worlds u, y1, . . . , yk , z1, . . . , zk , u1, . . . , uk−1 as required. ⊣

Corollary 3.3. For any 0 < k ∈ ù, Vk is a K
n-validity.

Next, we prove that the frames Fk (k ∈ ù), defined in §2, do not validate K
n.

Lemma 3.4. For any k ∈ ù, Vk+2 fails in Fk . Thus, Fk does not validate K
n.

Proof. Take the following ‘fork’ of Fk :
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. . . . . .✜
✜

r

8
r

1
r

1
r

1
r

a

r9
r 10

(dotted lines in Figure 7). Then

• the only world which is both R2-accessible from 9 and R1-accessible from 10
is 11;
• the only world which is both R1-accessible from a and R0-accessible in k + 2
steps from 9 is b;
• the only world which is both R2-accessible from a and R0-accessible in k + 2
steps from 10 is c;
• the only world which is both R2-accessible from b and R1-accessible from c is

d;

but d is not R0-accessible in k + 2 steps from 11. ⊣

Remark. The formula V1 was shown to me by V. Shehtman. It was Sz. Mikulás
who pointed out that this formula does not follow from the commutativity and
Church-Rosser properties. A 3-frame (of 33 worlds) showing this independence
of V1 can be found in 3.2.68 of [9]. As far as I know, V1 is the simplest K

n-
validity which does not follow from the above obvious properties. Note that, by
Prop.2.4, Cor.3.3, and Lemma 3.4, Vk does not follow from commutativity and
Church-Rosser properties plus {Vj : j < k}, for any k > 1.

§4. Games.

Notation. Throughout, we use notation ū = (u0, . . . , un−1) for n-tuples. Given
ℓ < n, and two n-tuples ū and v̄, ū ≡ℓ v̄ denotes that uk = vk whenever k 6= ℓ. In
case h is a function and X is a subset of its domain then h|X denotes the restriction
of h to X .

Fix, for this section, an arbitrary n-frame F = (F,RFℓ )ℓ<n . We will define a
game between two players ∀ (male) and ∃ (female) overF . In this game, ∃ intends
to construct, step-by-step, a p-morphism from some n-cube onto F , and ∀ tries to
challenge her by showing possible defects of her construction. Our game and its
properties are similar to those of Hirsch and Hodkinson in [10] where games are
played on networks over various atomic algebras of n-ary relations.
We define an F -network to be a tuple

N = (UN0 , . . . , U
N
n−1, R

N
0 , . . . , R

N
n−1, h

N ),

where for each ℓ < n, UNℓ is a non-empty set, R
N
ℓ ⊆U

N
ℓ ×U

N
ℓ , and h

N : UN0 ×· · ·×
UNn−1 → F is a function such that for all ū, v̄ ∈ U

N
0 ×· · ·×U

N
n−1, for all ℓ < n,

if ū ≡ℓ v̄ and uℓR
N
ℓ vℓ then hN (ū)RFℓ h

N (v̄)

(that is, hN is a homomorphism2 from the n-cube (UN0 , R
N
0 )×· · ·×(U

N
n−1, R

N
n−1) to

the n-frame F ). An F -network N is called finite if each of the sets UNℓ (ℓ < n) is
finite.

2A homomorphism satisfies the forward condition (concerning p-morphisms) only.
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We define a game Gù(F ) between ∀ and ∃. They build a countable sequence of
finite F -networks

N0 ⊆ N1 ⊆ . . . ⊆ Ni ⊆ . . . .

(Here Ni−1 ⊆ Ni means that, for each ℓ < n, U
Ni−1
ℓ ⊆ UNiℓ , R

Ni−1
ℓ ⊆ RNiℓ , and

hNi−1 ⊆ hNi .)
In the 0th round, ∀ picks any world a ∈ F . ∃ responds with some F -network N0
with UN00 ×· · ·×U

N0
n−1 = {ū} for some n-tuple ū, R

N0
ℓ = ∅ (ℓ < n), and h

N0(ū) = a.

In the i th round (0 < i ∈ ù), some sequence N0 ⊆ · · · ⊆ Ni−1 of F -networks is
already built. ∀ picks

• an n-tuple v̄ ∈ U
Ni−1
0 ×· · ·×U

Ni−1
n−1

• an index ℓ < n
• a world b ∈ F such that hNi−1(v̄)RFℓ b.

∃ can respond in two ways. If there is some n-tuple w̄ ∈ U
Ni−1
0 ×· · ·×U

Ni−1
n−1

with v̄ ≡ℓ w̄, vℓR
Ni−1
ℓ wℓ and h

Ni−1(w̄) = b then she responds with Ni = Ni−1.
Otherwise, she responds (if she can) with someF -networkNi extendingNi−1 such
that

• UNiℓ = U
Ni−1
ℓ ∪{u+} (where u+ is some fresh point);RNiℓ = R

Ni−1
ℓ ∪{(vℓ , u

+)};

• UNik = U
Ni−1
k , RNik = R

Ni−1
k whenever k 6= ℓ; and

• hNi (v0, . . . , vℓ−1, u
+, vℓ+1, . . . , vn−1) = b.

If ∃ can respond in each round i for i ∈ ù then she wins the play. We say that ∃
has a winning strategy in Gù(F ) if she can win all plays, whatever moves ∀ takes in
the rounds.
The game Gk(F ) (for k ∈ ù) is similar to Gù(F ), but there are only k rounds.
If ∃ can successfully respond in all rounds up to the kth round, she has won the play.
Similarly, we say that ∃ has a winning strategy in Gk(F ), if she can win all plays of
length k. Clearly, if ∃ has a winning strategy in Gk(F ) for some k ≤ ù, then she
has a winning strategy in Gi(F ) as well, for any i < k.

Claim 4.1. IfF is a p-morphic image of some n-cube then ∃ has a winning strategy
in Gù(F ).

Proof. Suppose that there is some p-morphism h onto F , coming from some
n-cube G = (U0, R0)×· · ·×(Un−1, Rn−1). ∃ can use this h to determine her winning
strategy in Gù(F ) as follows. In the 0

th round, suppose ∀ picks some a ∈ F . Then
let ∃ choose some h-preimage ū = (u0, . . . , un−1) of a and let her respond with
the F -network N0 = ({u0}, . . . , {un−1}, ∅, . . . , ∅, h|{ū}). We may assume that in

the i th round (i > 0) some F -network Ni−1 has been already constructed with the
following properties:

(∀ℓ < n) U
Ni−1
ℓ ⊆ Uℓ , R

Ni−1
ℓ ⊆ Rℓ , and

hNi−1 = h|
U
Ni−1
0

×···×U
Ni−1
n−1

. (1)

Let ∀ pick some n-tuple v̄ ∈ U
Ni−1
0 ×· · ·×U

Ni−1
n−1 , ℓ < n, and b ∈ F with h

Ni−1(v̄)RFℓ b.

Then, by (1), h(v̄)RFℓ b holds. Let ∃ choose some w̄ ∈ U0×· · ·×Un−1 with h(w̄) = b,

v̄ ≡ℓ w̄ and vℓRℓwℓ . If w̄ can be chosen from U
Ni−1
0 ×· · ·×U

Ni−1
n−1 then let ∃
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respond with Ni = Ni−1. Otherwise, wℓ /∈ U
Ni−1
ℓ must hold, thus let her take

UNiℓ = U
Ni−1
ℓ ∪ {wℓ}; R

Ni
ℓ = R

Ni−1
ℓ ∪ {(vℓ , wℓ)}; U

Ni
k = U

Ni−1
k , RNik = R

Ni−1
k ,

whenever k 6= ℓ; and hNi = h|
U
Ni
0
×···×U

Ni
n−1

. Clearly, Ni is an F -network extending

Ni−1, in both cases. Moreover, since (1) is still satisfied, ∃ can continue to play in
this way forever. ⊣

Claim 4.2. Let F be a countable n-frame.

(i) If ∃ has a winning strategy in Gù(F ) then every point-generated subframe ofF
is a p-morphic image of some n-cube.

(ii) If ∃ has a winning strategy in Gù(F ) then F validates Kn.

Proof. (i): Pick some subframe F a of F , generated by world a. Consider
a play of the game Gù(F ) when ∀ eventually picks all possible n-tuples, and
corresponding worlds and Rℓ -connections ofF

a (sinceF a is countable, he can do
this). If ∃ uses her strategy then she succeeds to construct a countable ascending
chain ofF -networks whose union gives a p-morphism from some n-cube ontoF a .
(ii): This follows from (i), since every frame is a p-morphic image of some disjoint
union of its point-generated subframes. ⊣

Claim 4.3. If, for everyk ∈ ù,Gk is ann-frame such that∃ has awinning strategy in
Gk(Gk) then ∃ has a winning strategy inGù(G ), whereG is any nontrivial ultraproduct
of the Gk ’s.

Proof. Let G be an ultraproduct of the Gk ’s over some nonprincipal ultrafilter
D over ù. One can define the ‘ultraproduct’ of the winning strategies in Gk(Gk)
to obtain a winning strategy in Gù(G ) as follows. It is easy to see that, for any
finite G -network N = (U0, . . . , Un−1, R0, . . . , Rn−1, h), one can choose a series of
functions

h(k) : U0×· · ·×Un−1 → Gk (k ∈ ù),

such that h(ū) equals to the D-class of the sequence (h(k)(ū) : k ∈ ù), for each
ū ∈ U0×· · ·×Un−1; and

{k ∈ ù : N (k)
def
= (U0, . . . , Un−1, R0, . . . , Rn−1, h

(k)) is a finite Gk-network}∈D.

Also, it is easy to see that, in round 0 of any play of the game Gù(G ), ∃ can always
respond with some finite G -network N0 such that

{k ∈ ù : N (k)0 is a finite Gk-network} ∈ D .

Thus we may assume that in round i (0 < i ∈ ù) some sequence N0 ⊆ · · · ⊆ Ni−1
of finite G -networks is already defined such that

Xi
def
= {k ∈ ù : N (k)0 ⊆ · · · ⊆ N

(k)
i−1 is a sequence of finite Gk-networks} ∈ D .

Let Ni−1 = (U0, . . . , Un−1, R0, . . . , Rn−1, h) and assume that ∀ picks some v̄ ∈
U0×· · ·×Un−1, ℓ < n, b ∈ G with h(v̄)R

G

ℓ b. We show that ∃ can always respond
properly with some finite G -network Ni ⊇ Ni−1 such that

{k ∈ ù : N (k)0 ⊆ . . . N
(k)
i−1 ⊆ N

(k)
i is a sequence of finite Gk-networks} ∈ D (2)

holds. Assume that b is the D-class of some sequence (bk ∈ Gk : k ∈ ù). Then

Ti
def
= {k ∈ ù : h(k)(v̄)RGkℓ bk} ∈ D,
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and, by assumption on the Gk ’s,

Yi
def
= {k ∈ ù : ∃ has a winning strategy in Gi(Gk)} ∈ D .

For any k ∈ Ti ∩Xi ∩Yi , letM
(k)
i = (. . . , f(k)) be ∃’s response to ∀’s move v̄, ℓ, bk

in the play of the game Gi(Gk), having history N
(k)
0 ⊆ · · · ⊆ N

(k)
i−1. Then

(i) either Zi
def
= {k ∈ Ti ∩Xi ∩ Yi : M

(k)
i = N (k)i−1} ∈ D

(ii) or Z+i
def
= {k ∈ Ti ∩ Xi ∩ Yi : M

(k)
i ⊃ N (k)i−1} ∈ D

hold. In case (i), let ∃ respondwithNi = Ni−1, and letN
(k)
i

def
= M (k)i , for all k ∈ Zi ,

and arbitrary otherwise. In case (ii), we may assume that ∃ used the same fresh

point u+ to extend Uℓ for the Gk-networkM
(k)
i (k ∈ Z

+
i ). Then let N

(k)
i

def
= M (k)i ,

for all k ∈ Z+i , and arbitrary otherwise. Define a function f as follows. For all
ū ∈ U0×· · ·×(Uℓ ∪ {u

+})×. . .×Un−1, for all k ∈ ù, let

(f(ū))k
def
=

{

f(k)(ū) , if k ∈ Z+i
any c ∈ Gk , otherwise .

Finally, for all ū ∈ U0×· · ·×(Uℓ ∪ {u
+})×. . .×Un−1, let h

Ni (ū) be the D-class of
the sequence (f(k)(ū) : k ∈ ù), and let

Ni
def
= (U0, · · · , Uℓ ∪ {u

+}, . . . , Un−1, R0, · · · , Rℓ ∪ {(vℓ , u
+)}, . . . , Rn−1, h

Ni ) .

It is easily checked that, in both cases (i) and (ii), Ni is a proper response satisfying
(2), thus ∃ can continue this way forever. ⊣

Claim 4.4. If ∃ has a winning strategy inGù(F ) then for any modelM onF there
is some countable elementary substructure3M ′ = (F ′, . . . ) ofM such that ∃ also has
a winning strategy in Gù(F ′).

Proof. Wewill build a countable elementary chain of countable, elementary sub-
structures ofM , anddefineM ′ to be the unionof the chain. LetM ′

0 be any countable,
elementary substructure ofM (which exists by the downward Löwenheim-Skolem-
Tarski theorem). Suppose that we have already defined the countable, elementary
substructure M ′

k = (F
′
k , . . . ) of M , for some k ∈ ù. ∃ has a winning strategy in

Gù(F ): everymove she takes according to this strategy depends on the actual move
of ∀ and on the ‘history’ of that particular play — that is, on the previous moves of
∀ and the previous responses of her. We also know that in each round of any play
the number of worlds of F mentioned by ∃ in that play so far is always finite. Now
consider those plays of the game Gù(F ) where in each round ∀ can pick worlds
from F ′

k only. Then the set Sk ⊆ F of all those worlds which are mentioned in
some response of ∃ in some of these plays is countable. Let M ′

k+1 be a countable,
elementary substructure ofM containing Sk ∪F

′
k (again, it exists by the downward

Löwenheim-Skolem-Tarski theorem). Finally, let M ′ be the union (as structures)
of theM ′

k ’s, k ∈ ù. ThenM
′ is an elementary substructure ofM , by the elementary

chain theorem (see e.g., [3]). Clearly,M ′ is countable and ∃ has a winning strategy
in Gù(F

′). ⊣

3Heremodal models are considered as relational structures of the first-order language (without equal-
ity) having binary predicates R0, . . . , Rn−1 and countably many unary predicates for the propositional

variables.
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Now consider the sequence (Fk : k ∈ ù) of n-frames defined in §2. Below we
show (Lemma 4.6) that they satisfy property (II), discussed in §1.

Claim 4.5. For each k ∈ ù, ∃ has a winning strategy in Gk(Fk).

Proof. Fix some k ∈ ù. By Prop. 2.4, both F leftk and F rightk are p-morphic
images of n-cubes. This implies, by Claim 4.1, that ∃ has a winning strategy in

Gù(F
left
k ) and also in Gù(F

right
k ). Consider a play of the game Gk(Fk). In the 0

th

round, ∀ picks some a ∈ Fk such that either (i) a ∈ F
left
k − F rightk or (ii) a ∈ F rightk .

Thus from now on this play over Fk (which is of length less than k now) can be

considered as either a play over F leftk (in case (i)) or over F rightk (in case (ii)). In
both cases, ∃ is able to survive k rounds. ⊣

Lemma 4.6. For any series of modelsMk on Fk (k ∈ ù), there is some modelM
′

such that (i) M ′ is an elementary substructure of some nontrivial ultraproduct of the
Mk ’s, and (ii) the underlying frame ofM

′ validates Kn.

Proof. Let M be some nontrivial ultraproduct of the Mk ’s. Then clearly, the
underlying frame F ofM is the ultraproduct of the Fk ’s. By Claims 4.5 and 4.3, ∃
has a winning strategy inGù(F ). Now one can use Claims 4.4 and 4.2(ii) to obtain
a modelM ′ as required. ⊣

Now, Lemmas 3.4 and 4.6 together complete the proof of Theorem 1.1.

§5. First-order axiomatisability. In this section we prove Theorem 1.2. First, we
discuss the case of n = 3 and then show how to generalise it for larger n’s. Consider
the following sentences of the 3-frame language: for all i < j < 3, let

øij1 : ∀xyz(xRjy ∧ yRiz → ∃u(xRiu ∧ uRjz)) (commutativity1);

øij2 : ∀xyz(xRiy ∧ yRjz → ∃u(xRju ∧ uRiz)) (commutativity2);

øij3 : ∀xyz(xRiy ∧ xRjz → ∃u(yRju ∧ zRiu)) (Church–Rosser property);

÷1 : ∀xyzstr(xR1s ∧ sR0y ∧ yR2r ∧ xR2t ∧ tR0z ∧ zR1r →

∃u(xR0u ∧ uR1y ∧ uR2z));

∀
✲✲✻

✻

✓✓✼

✓✓✼

r

r r
r r

r

∃
✲✲✻

✻

✓✓✼

✓✓✼

r ❜

r r
r r

r

✲
✻
✓✓✼

÷2 : ∀xyzstr(yR0s ∧ sR1x ∧ xR2t ∧ yR2r ∧ rR1z ∧ zR0t →

∃u(uR0x ∧ yR1u ∧ uR2z));

∀
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r
r

r r

∃
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r
r

r r

❜ ✲
✻
✓✓✼

÷3 : ∀xyzstr(sR0y ∧ yR2r ∧ rR1z ∧ sR1x ∧ xR2t ∧ tR0z →

∃u(xR0u ∧ yR1u ∧ uR2z));
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∀
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r
r

r r

∃
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r ❜
r

r r

✲
✻
✓✓✼

÷4 : ∀xyzstr(zR0t ∧ tR2x ∧ xR1s ∧ zR1r ∧ rR2y ∧ yR0s →

∃u(uR0x ∧ uR1y ∧ zR2u));

∀
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r
r

r r

∃
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r
r

r r

❜ ✲
✻

✓✓✼

÷5 : ∀xyzstr(tR0z ∧ zR1r ∧ rR2y ∧ tR2x ∧ xR1s ∧ sR0y →

∃u(xR0u ∧ uR1y ∧ zR2u));

∀
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r
r

r r

∃
✲

✲

✻
✻

✓✓✼

✓✓✼

r r

r
r ❜

r r

✲
✻

✓✓✼

÷6 : ∀xyzstr(rR1z ∧ zR0t ∧ tR2x ∧ rR2y ∧ yR0s ∧ sR1x →

∃u(uR0x ∧ yR1u ∧ zR2u));

∀
✲✲✻

✻

✓✓✼

✓✓✼

r

r r
r r

r

∃
✲✲✻

✻

✓✓✼

✓✓✼

r

r r
r r

r❜ ✲
✻✓✓✼

÷7 : ∀xyzstr(sR0y ∧ sR1x ∧ tR0z ∧ tR2x ∧ rR1z ∧ rR2y →

∃u(xR0u ∧ yR1u ∧ zR2u));
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∀
✲✲✻
✻

✓✓✼

✓✓✼

r

r r
r r

r

∃
✲✲✻
✻

✓✓✼

✓✓✼

r

r r
r r

r ❜✲
✻✓✓✼

and let
Φ3 : ø

01
1 ∧ø

01
2 ∧ø

01
3 ∧ø

02
1 ∧ø

02
2 ∧ø

02
3 ∧ø

12
1 ∧ø

12
2 ∧ø

12
3 ∧÷1∧÷2∧÷3∧÷4∧÷5∧÷6∧÷7.

It is easy to check the following claim.

Claim 5.1. Φ3 holds in every 3-cube.

Lemma 5.2. IfF is a 3-frame satisfyingΦ3 then ∃ has awinning strategy inGù(F ).

As a corollary we obtain that K3 is determined by a first-order definable class of
frames.

THEOREM 5.3. K3 is determined by the class of 3-frames satisfying Φ3. That is,
a 3-formula is valid in every 3-cube iff it is valid in every 3-frame satisfying Φ3.

Proof of Theorem 5.3. Claim 5.1 proves the right-to-left direction. For the
other direction, it is enough to consider only countable 3-frames satisfying Φ3, by a
standard Löwenheim–Skolem–Tarski argument (see e.g., [7], Prop.5.4). However,
countable 3-frames satisfying Φ3 validate K

3, by Lemma 5.2 and Claim 4.2(ii). ⊣

Proof of Lemma 5.2. Fix some 3-frame F = (F,RF0 , R
F

1 , R
F

2 ) satisfying Φ3.
Wedefine the strategy∃ should follow in each round i (i ∈ ù) of the gameoverF . In
round 0, her response is determined by the rules of the game. In round i (0 < i ∈ ù),
some sequence N0 ⊆ · · · ⊆ Ni−1 of F -networks is already constructed with, say,
Ni−1 = (U0, U1, U2, R0, R1, R2, h). Assume that ∀ picks some ū ∈ U0×U1×U2,
ℓ < 3 and b ∈ F with h(u0, u1, u2)R

F

ℓ b.
First, assume that ℓ = 0. By the rules of the game, if there is some v̄ ∈ U0×U1×U2

such that ū ≡0 v̄ and u0R0v0 then ∃must respond with Ni
def
= Ni−1. Otherwise, she

has to take a fresh point u+ and to respond with some F -network

Ni = (U0 ∪ {u
+}, U1, U2, R

+
0 , R

+
1 , R

+
2 , h

+) ,

where R+0 = R0 ∪ {(u0, u
+)}, R+1 = R1, R

+
2 = R2, h

+|U0×U1×U2 = h and
h+(u+, u1, u2) = b. If both U1 and U2 are one-element sets then there is noth-
ing more to do, since Ni is defined. Otherwise, say, when |U1| > 1, the remaining
task is to define h+ on all the 3-tuples of form (u+, v, w), where v ∈ U1, w ∈ U2
and (v, w) 6= (u1, u2). (These 3-tuples will be called new 3-tuples.) In order to do
this, let us observe the following.

Claim 5.4. For each ℓ < 3, the structure (Uℓ , Rℓ) is a finite, irreflexive, intransitive
tree.

We intend to define a binary relation≺ on (U0∪{u
+})×U1×U2. To this end, recall

the 3-tuple ū = (u0, u1, u2) which ∀ picked. Enumerate U1 = {a
0, a1, . . . , aM1}

(M1 ≥ 1) in the following way: let a
0 def= u1 and then take the unique R

−1
1 -path,

starting from u1 and ending with the root of the tree (U1, R1). (Call these points of
U1 as downward points.) Then continue with all the other points ofU1 in their order
of ‘creation’ in the game (upward points ofU1). EnumerateU2 = {b

0, . . . , bM2} in a
similar way, starting from u2. It is not hard to see that these enumerations have the
following property.
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Claim 5.5. For all 0 < j ≤ M1, there is a unique 1-predecessor of aj : there is a
unique k < j such that either akR1aj or ajR1ak . In particular, if aj is a downward
point then its 1-predecessor is aj−1 and ajR1aj−1; if aj is an upward point and ak

is its 1-predecessor then akR1a
j . Similarly, for all 0 < j ≤ M2, there is a unique

2-predecessor of bj .

Now for all v̄, v̄′ ∈ (U0 ∪ {u
+})×U1×U2, let

v̄ ≺ v̄′⇐⇒ either v̄ ∈ U0×U1×U2 and v̄ 6= v̄
′;

or v0 = v
′
0 = u

+ and v1 = a
j , v′1 = a

k with j < k;

or v0 = v
′
0 = u

+ and v1 = v
′
1 and v2 = b

j , v′2 = b
k with j < k .

Claim 5.6. Any two distinct elements ofU0×U1×U2 are≺-comparable; any element
of U0×U1×U2 is ≺-less than (u

+, u1, u2); and ≺ is an irreflexive, transitive linear
ordering on {u+}×U1×U2 with (u+, u1, u2) being the ≺-least element.

Nowwe are in a position to define the function h+ on {u+}×U1×U2. ByClaim 5.6,
we can proceed by induction on ≺. For all new 3-tuples x̄, we will define h+(x̄) in
such a way that the following always holds:

(I.H.(x̄)) (∀ℓ < 3)(∀ȳ ≺ x̄) ȳ ≡ℓ x̄ and yℓR
+
ℓ xℓ implies h

+(ȳ)RFℓ h
+(x̄)

ȳ ≡ℓ x̄ and xℓR
+
ℓ yℓ implies h

+(x̄)RFℓ h
+(ȳ).

This condition clearly holds for x̄ = (u+, u1, u2) because of the following. If ȳ ≺ x̄
then ȳ must be an element of U0×U1×U2. If ȳ ≡0 x̄ and either y0R

+
0 x0 or x0R

+
0 y0

hold then the only possibility is ȳ = (u0, u1, u2) and y0R
+
0 x0. But in this case

h+(x̄) = b and h+(ȳ)RF0 b, by h
+(ȳ) = h(ȳ). In case ℓ = 1, 2, there is no ȳ ≺ x̄

with ȳ ≡ℓ x̄, by Claim 5.6.
Now take some new 3-tuple x̄ and assume that h+ has been defined on all
z̄ ∈ {u+}×U1×U2, z̄ ≺ x̄ such that (I.H.(z̄)) hold. We distinguish three cases:

(1) x̄ = (u+, u1, w) for some w 6= u2;
(2) x̄ = (u+, v, u2) for some v 6= u1;
(3) x̄ = (u+, v, w) for some v 6= u1, w 6= u2.

Case (1): Recall the enumeration {b0, . . . , bM2} of U2. Assume w = b
j , for

some 0 < j ≤ M2. There are two cases. Case (1a): w is a downward point.
Then, by Claim 5.5, the 2-predecessor of w is bj−1 and bjR2b

j−1 holds. Since
h+|U0×U1×U2 = h, h

+(u0, u1, b
j)RF2 h

+(u0, u1, b
j−1) follows. Also, since the new

3-tuple (u+, u1, b
j−1) ≺ x̄, we have (I.H.(u+, u1, b

j−1)). Thus, by u0R
+
0 u
+ and

(u0, u1, b
j−1) ≺ (u+, u1, b

j−1), h+(u0, u1, b
j−1)RF0 h

+(u+, u1, b
j−1) follows. Thus

there is a c1 ∈ F with h
+(u0, u1, b

j)RF0 c1 and c1R
F

2 h
+(u+, u1, b

j−1), by ø021 .

✲

✓
✓

✓✓✼

✲ ✓
✓
✓✼

r ❜

r r

h+(u0, u1, b
j) c1 = h

+(u+, u1, w)

h+(u0, u1, b
j−1)

h+(u+, u1, b
j−1)

Let h+(x̄)
def
= c1. It remains to show that (I.H.(x̄)) holds. The only ȳ ≺ x̄ such

that ȳ ≡0 x̄ and either y0R
+
0 x0 or x0R

+
0 y0 is ȳ = (u0, u1, b

j). There is no ȳ ≺ x̄
with ȳ ≡1 x̄. If ȳ ≺ x̄, ȳ ≡2 x̄ and either y2R

+
2 x2 or x2R

+
2 y2 then ȳ must be

(u+, u1, b
j−1), by Claim 5.5. In all cases, (I.H.(x̄)) holds. Case (1b): w is an
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upward point. Let bk be the 2-predecessor of bj . Then, by Claim 5.5, k < j and
bkR2b

j . Everything is similar to case (1a), but this time one must use ø023 to define
h+(x̄).
Case (2): x̄ = (u+, v, u2) for some v 6= u1. Case (2a): v is a downward point.
Use ø011 . Case (2b): v is an upward point. Use ø

01
3 .

Case (3): x̄ = (u+, v, w) for some v 6= u1, w 6= u2. Case (3a): both v and w are
downward points, say v = aj , w = bs , for some 0 < j ≤ M1, 0 < s ≤ M2. Then,
by Claim 5.5, the 1-predecessor of v is aj−1, the 2-predecessor of w is bs−1, and we
have the following diagram:

✲
✲

✻

✻

✓
✓

✓✓✼

✓
✓

✓✓✼

r

r r

r r

r

(u0, a
j, bs)

(u0, a
j, bs−1) (u+, aj, bs−1)

(u+, aj−1, bs−1)

(u0, a
j−1, bs)

(u+, aj−1, bs)

All new 3-tuples of this diagram are ≺-less than x̄. Thus, by h+|U0×U1×U2 = h and
(I.H.), the h+-images of the above 3-tuples are connected in the same way as they
are. Therefore, by ÷1, there is some c2 ∈ F such that

h+(u0, a
j , bs)RF0 c2, c2R

F

1 h
+(u+, aj−1, bs) and c2R

F

2 h
+(u+, aj , bs−1) .

Let h+(x̄) = h+(u+, aj , bs)
def
= c2. It remains to show that (I.H.(x̄)) holds. If

ȳ ≺ x̄, ȳ ≡0 x̄ and either y0R
+
0 x0 or x0R

+
0 y0 then ȳ must be (u0, a

j , bs). If ȳ ≺ x̄,
ȳ ≡1 x̄ and either y1R

+
1 x1 or x1R

+
1 y1 then ȳ must be (u

+, aj−1, bs). If ȳ ≺ x̄,
ȳ ≡2 x̄ and either y2R

+
2 x2 or x2R

+
2 y2 then ȳ must be (u

+, aj , bs−1). In all cases,
(I.H.(x̄)) holds. Case (3b): v is an upward point, w is a downward point. It is
similar to case (3a), but now use ÷3. Case (3c): v is a downward point, w is an
upward point. Use ÷5. Case (3d): both v and w are upward points. Use ÷7.
This way we defined h+(x̄), for all new 3-tuples x̄.

Claim 5.7. Ni = (U0∪{u
+}, U1, U2, R

+
0 , R

+
1 , R

+
2 , h

+) is anF -network extending
Ni−1.

Proof. Ni ⊇ Ni−1 by definition. Take some ℓ < 3 and x̄, ȳ ∈ (U0 ∪ {u
+})×

U1×U2 with x̄ ≡ℓ ȳ and xℓR
+
ℓ yℓ . Let, say, ȳ ≺ x̄. If x̄ 6∈ {u

+}×U1×U2 then
ȳ 6∈ {u+}×U1×U2 as well, thus h

+(x̄)RFℓ h
+(ȳ) holds by h+|U0×U1×U2 = h. If

x̄ ∈ {u+}×U1×U2 then h
+(x̄)RFℓ h

+(ȳ) holds by (I.H.(x̄)). The case of x̄ ≺ ȳ is
similar. ⊣

Claim 5.7 proves that we succeeded to define a response for ∃, in case ∀ picks
the index ℓ = 0. The cases when he picks 1 or 2 are similar: one has to use the
first-order sentences

ø012 , ø
01
3 , ø

12
1 , ø

12
3 , ÷2, ÷3, ÷6, ÷7, and ø

02
2 , ø

02
3 , ø

12
2 , ø

12
3 , ÷4, ÷5, ÷6, ÷7,

respectively, in order to define a proper response for ∃. ⊣

Proof of Theorem 1.2. For any 0 < n ∈ ù, we are going to define a sentence Φn
of the n-frame language. First, for any natural number 2 ≤ k ≤ n, for any strictly
increasing sequence f̄ : k → n, and for any natural number 1 ≤ ℓ < 2k , we define
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a sentence Φf̄ℓ as follows. Let ℓ̄ denote the first k digits of the number ℓ in binary

in the reverse order, i.e., let ℓ̄ : k → {0, 1} be such that ℓ =
∑k−1
i=0 (2

ℓi − 1). Let

ū(0), ū(1), . . . , ū(k−1) be the k ‘neighbours’ of ℓ̄, i.e., the 0-1 sequences with ū(i) ≡i ℓ̄,
ū(i) 6= ℓ̄ (i < k). It is easy to see that for any i < j < k there is some unique
v̄(ij) : k → {0, 1} such that v̄(ij) ≡j ū

(i), v̄(ij) 6= ū(i), and v̄(ij) ≡i ū
(j), v̄(ij) 6= ū(j).

Now for each of ū(i) (i < k), v̄(ij) (i < j < k), and ℓ̄ take some variable u(i), v(ij),

ℓ, respectively, and let Φf̄ℓ be

∀u(0). . . u(k−1)v(01). . . v(k−2,k−1)(
∧

i<j<k

v(ij)R±
fi
u(i) ∧ v(ij)R±

fj
u(j) →

∃ℓ(
∧

i<k

ℓR±
fi
u(i))),

where xR±
fi
u(i) (x ∈ {v(01), . . . , v(k−2,k−1), ℓ}, i < k) denotes xRfiu

(i) if xi = 0 and

u(i)i = 1; and it denotes u
(i)Rfix if xi = 1 and u

(i)
i = 0.

Now, for 2 ≤ n ∈ ù, let Φn be the conjuction of all Φ
f̄
ℓ ’s, for any k ∈ ù,

2 ≤ k ≤ n, for any strictly increasing sequence f̄ : k → n, and for any ℓ ∈ ù,
1 ≤ ℓ < 2k . Note that, with this notation, øijℓ of the previous proof is just Φ

ij
ℓ ,

and ÷ℓ is Φ
012
ℓ , thus we obtain the same Φ3. Also, Φ2 is just the conjuction of

commutativity and Church–Rosser properties, for R0 and R1. Φ1 can be, say,
∀x (x = x). A proof similar to the one of Theorem 5.3 shows that, for every
0 < n ∈ ù, Kn is determined by the class of n-frames satisfying Φn. Note that
this way we obtain a new, step-by-step proof of the theorem in [7] stating that K2 is
axiomatised by commutativity and Church–Rosser properties. ⊣

For any n-modal logic L, a set Σ of n-formulas is said to be L-consistent if no
negation of some finite conjuction of elements of Σ belongs to L. The canonical
frame F LP = (F LP , RLPℓ )ℓ<n for an n-modal logic L, corresponding to some set
P of propositional variables, is the n-frame where F LP is the set of all maximal
L-consistent sets of n-formulas, using propositional variables from P; and for all
ℓ < n, Σ,∆, ΣRLPℓ ∆ iff for any n-formula A, ✷ℓA ∈ Σ implies A ∈ ∆. An n-modal
logic L is called canonical if its canonical framesF LP validate L, for all possible sets
P. Thewell-knownFine–vanBenthem theorem (cf. [5] and [16] for themono-modal
case) says that if an n-modal logic is determined by a first-order definable class of
n-frames then it is canonical. Thus Theorem 1.2 yields the following corollary.

Corollary 5.8. For any 0 < n ∈ ù, Kn is canonical.

The canonicity ofKn can be proved in a simpler way as well, as it was pointed out
by Y. Venema. Namely, it is straightforward to show that the class of isomorphic
copies of n-cubes is closed under taking ultraproducts. Then one can use Thm.3.6.7
of Goldblatt [8], saying (in an algebraic setting) that if an n-modal logic is deter-
mined by a class of n-frameswhich is closed under ultraproducts then it is canonical.

§6. Outlook. Little modifications of the proof of Theorem 1.1 yield further non-
finite axiomatisability results concerning products. In general, for any 0 < n ∈ ù,
and Kripke complete mono-modal logics Lℓ (ℓ < n), define the product logic
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L0×· · ·×Ln−1 as the set of all n-formulas which are valid in those n-cubes (U0, R0)×
· · ·×(Un−1, Rn−1) where, for each ℓ < n, frame (Uℓ , Rℓ) validates Lℓ .
The following mono-modal logics are considered here as components. K = all
frames; K4 = all transitive frames; T = all reflexive frames; S4 = K4+T; KB = all
symmetric frames; B = KB + T; S5 = S4+ KB.

Theorem 6.1. For any 3 ≤ n ∈ ù, if L0 ∈ {K ,T}, L1,L2 ∈ {K ,K4,T,S4},
Lℓ ∈ {K ,K4,T,S4,B,KB,S5} (3 ≤ ℓ < n) then the product logic L0×· · ·×Ln−1 is
not finitely axiomatisable in the n-modal language.

Proof. One has to modify the definition of a network and some rules of the game
played over n-frames in order to build p-morphisms which come from appropriate
n-cubes. In case some of the component logics are reflexive, one also have tomodify
the definition of the n-frames Fk (k ∈ ù) of §2 by postulating every node to be
reflexive in the required coordinates. ⊣

There are many products of standard mono-modal logics which are out of the
scope of Theorem 6.1 above. E.g., is the logic KB3 finitely axiomatisable?
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