$\mathbf{S5}^3$ lacks the fmp (another proof)

A. Kurucz

1 August 2000

Abstract

We show, using the idea of Németi [1], that all 3-modal logics between [S5, S5, S5] and $S5^3$ lack the fmp.

Theorem 1. All 3-modal logics between [S5, S5, S5] and $S5^3$ lack the fmp.

Proof. Let $\Phi(p, d_{01}, d_{02}, d_{12})$ be the conjunction of the following formulas:

(a)
$$\Box(p \land \diamondsuit_0(p \land d_{02}) \to d_{02})$$
 (" p^{-1} is a function")

(b)
$$\Box(p \leftrightarrow \diamondsuit_2 p)$$
 ("p is binary")

- (c) $\Box \diamondsuit_1 p$ ("*Dom* $p = \top$ ")
- (d) $\neg \diamondsuit_1 (\diamondsuit_0 p \land d_{01})$ ("Rng $p \neq \top$ ")
- (1) $\Box (\diamond_0 d_{01} \land \diamond_2 d_{02})$
- $(2) \quad \Box \left[(\diamondsuit_0 d_{12} \leftrightarrow d_{12}) \land (\diamondsuit_1 d_{02} \leftrightarrow d_{02}) \land (\diamondsuit_2 d_{01} \leftrightarrow d_{01}) \right]$
- (3) $\Box [(d_{01} \wedge d_{02} \rightarrow d_{12}) \wedge (d_{12} \wedge d_{02} \rightarrow d_{01})]$
- (4) $\Box(d_{12} \land \Diamond_1(d_{12} \land p) \to p)$

Lemma 1. Φ is $\mathbf{S5}^3$ -satisfiable.

Proof. Let \mathfrak{F} be the universal product frame on $\omega \times \omega \times \omega$. Let

$$\begin{aligned} \upsilon(p) &= \{(x, x+1, z) : x, z \in \omega\} \\ \upsilon(d_{ij}) &= \{(x_0, x_1, x_2) : x_0, x_1, x_2 \in \omega, \ x_i = x_j\} \quad (i < j < 3). \end{aligned}$$

Then (say) $(\mathfrak{F}, v), (0, 0, 0) \models \Phi$.

Lemma 2. Φ is not satisfiable in finite frames for [S5, S5, S5].

Proof. Assume $\mathfrak{F} = (W, R_0, R_1, R_2)$ is a frame for $[\mathbf{S5}, \mathbf{S5}, \mathbf{S5}]$, that is, the R_i (i < 3) are commuting equivalence relations on W. Suppose \mathfrak{M} is a model on \mathfrak{F} and $\mathfrak{M}, x \models \Phi$. We show that \mathfrak{F} must be infinite. For each $n \in \omega$ we define a formula φ_n and worlds x_n, y_n of \mathfrak{F} as follows.

$$\varphi_0 = \neg \diamondsuit_1 (\diamondsuit_0 p \land d_{01})$$

$$\varphi_{n+1} = \diamondsuit_1 (\diamondsuit_0 (\varphi_n \land p) \land d_{01})$$

Let $x_0 = x$. Assume x_k is already defined. By (c) and (1), there are y_k, x_{k+1} such that $x_k R_1 y_k R_0 x_{k+1}, y_k \models p$ and $x_{k+1} \models d_{01}$.

Claim 2.1. $(\forall n \in \omega) \ y_n \models \varphi_n$.

Proof. By induction on n.

CLAIM 2.2. $(\forall n \in \omega)$ if $w \models \varphi_n$ and wR_2w' then $w' \models \varphi_n$ as well.

Proof. By induction on n: Assume $w' \not\models \varphi_0$. Then, by commutativity, there are u, v with:

Then $u \models d_{01}$ by (2), $v \models p$ by (b), thus $w \not\models \varphi_0$.

Now assume $w \models \varphi_{n+1}$. Then, by commutativity, there are u, v with:

Then $u \models d_{01}$ by (2), $v \models \varphi_n \wedge p$ by (b) and the induction hypothesis, thus $w' \models \varphi_{n+1}$. \Box CLAIM 2.3. $(\forall n \in \omega) \ \mathfrak{M} \models \Box (d_{02} \wedge \diamond_0 (d_{02} \wedge \varphi_n) \rightarrow \varphi_n)$.

Proof. For n = 0: let w such that $w \models d_{02} \land \Diamond_0(d_{02} \land \neg \Diamond_1(\Diamond_0 p \land d_{01}))$, and assume that $w \models \Diamond_1(\Diamond_0 p \land d_{01})$ also holds. Then there are u, v and, by commutativity, w' such that:

Then $u \models d_{02}$ and $w' \models d_{02}$, by (2). Thus $u \models d_{12}$, by (3); and $w' \models d_{12}$, by (2). Therefore $w' \models d_{01}$, again by (3), contradicting $v \models \neg \diamondsuit_1 (\diamondsuit_0 p \land d_{01})$.

For n + 1: assume $w \models d_{02} \land \Diamond_0[d_{02} \land \Diamond_1(\Diamond_0(\varphi_n \land p) \land d_{01})]$. Then there is some u and, by commutativity, there is a w' with:

Then $u \models d_{02}$ and $w' \models d_{02}$, by (2). Therefore $u \models d_{12}$, by (3). Thus $w' \models d_{12}$, by (2); and $w' \models d_{01}$, again by (3). Thus $w' \models \diamond_0(\varphi_0 \land p) \land d_{01}$, implying $w \models \diamond_1(\diamond_0(\varphi_n \land p) \land d_{01})$. \Box

Claim 2.4. $(\forall k, n \in \omega, k < n)(\forall w) \ w \not\models \varphi_k \land \varphi_n$.

Proof. Induction on k. For n > 0, k = 0: if $w \models \varphi_n$ then $w \ R_1$ -sees a d_{01} -world which R_0 -sees a p-world; if $w \models \varphi_0$ then w does not R_1 -see a d_{01} -world which R_0 -sees a p-world.

Assume $w \models \varphi_{k+1} \land \varphi_{n+1}$. Then there is w' with $w' \models d_{01} \land \Diamond_0(\varphi_n \land p)$. By (1), there is u with $w'R_2u$ and $u \models d_{02}$. Thus, by commutativity, there are v, x, w'', y such that:

Then $u \models d_{01}$, by (2); thus $u \models d_{12}$, by (3); and $v \models d_{12}$, again by (2). Further, $v \models \varphi_n$, by Claim 2.2; $y \models \varphi_n$, by definition of φ_n . On the other hand, $w'' \models d_{01} \land d_{02}$, by (2); thus $w'' \models d_{12}$, by (3). Therefore, $y \models d_{12}$, by (2). Finally, $y \models p$, by (4). Since $x \models \varphi_k \land p$, by Claim 2.2 and (b), we obtain that x and y are such that

$$xR_0y, x \models \varphi_k \land p \text{ and } y \models \varphi_n \land p.$$

By (1), there is some s with yR_2s and $s \models d_{02}$. By commutativity, there is some w''' with:

By (b) and Claim 2.2, $w''' \models \varphi_k \wedge p$ and $s \models \varphi_n \wedge p$. By (a), $w''' \models d_{02}$ follows. Then, by Claim 2.3, $w''' \models \varphi_n$. Thus $w''' \models \varphi_k \wedge \varphi_n$, contradicting the induction hypothesis.

Now Lemma 2 clearly follows from Claims 2.1 and 2.4. $\hfill \Box$

Finally, Theorem 1 follows from Lemmas 1 and 2.

References

[1] I. Németi, Neither CA_{α} nor Gs_{α} is generated by its finite members if $\alpha \geq 3$, Preprint, Math. Inst. Hung. Acad. Sci., 1984.