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Abstrat

We show, using the idea of N�emeti [1℄, that all 3-modal logis between [S5;S5;S5℄

and S5

3

lak the fmp.

Theorem 1. All 3-modal logis between [S5;S5;S5℄ and S5

3

lak the fmp.
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Lemma 1. � is S5

3

-satis�able.

Proof. Let F be the universal produt frame on ! � ! � !. Let

�(p) = f(x; x+ 1; z) : x; z 2 !g
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Then (say) (F; �); (0; 0; 0) j= �.

Lemma 2. � is not satis�able in �nite frames for [S5;S5;S5℄.

Proof. Assume F = (W;R

0

; R

1

; R

2

) is a frame for [S5;S5;S5℄, that is, the R

i

(i < 3) are

ommuting equivalene relations on W . SupposeM is a model on F andM; x j= �. We show

that F must be in�nite. For eah n 2 ! we de�ne a formula '

n

and worlds x
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Claim 2.1. (8n 2 !) y

n

j= '

n

.

Proof. By indution on n.
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Then u j= d
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Then u j= d

02

and w
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, by (2). Thus u j= d

12

, by (3); and w
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, by (2). Therefore
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and w
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, by (2). Therefore u j= d
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, by (3). Thus w
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Claim 2.4. (8k; n 2 !; k < n)(8w) w 6j= '
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Proof. Indution on k. For n > 0; k = 0: if w j= '
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Then u j= d

01

, by (2); thus u j= d

12

, by (3); and v j= d

12

, again by (2). Further, v j= '

n

,

by Claim 2.2; y j= '

n

, by de�nition of '

n

. On the other hand, w

00

j= d

01
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By (b) and Claim 2.2, w

000

j= '

k

^ p and s j= '

n

^ p. By (a), w

000

j= d

02

follows. Then, by

Claim 2.3, w

000

j= '
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. Thus w

000

j= '

k

^ '

n

, ontraditing the indution hypothesis.

Now Lemma 2 learly follows from Claims 2.1 and 2.4.

Finally, Theorem 1 follows from Lemmas 1 and 2.
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