$\mathbf{S 5}{ }^{3}$ lacks the fmp (another proof)

A. Kurucz

1 August 2000

Abstract

We show, using the idea of Németi [1], that all 3-modal logics between [$\mathbf{S 5}, \mathbf{S 5}, \mathbf{S 5}$] and $\mathbf{S 5} 5^{3}$ lack the fmp.

Theorem 1. All 3-modal logics between $[\mathbf{S 5}, \mathbf{S 5}, \mathbf{S 5}]$ and $\mathbf{S 5}{ }^{3}$ lack the fmp.
Proof. Let $\Phi\left(p, d_{01}, d_{02}, d_{12}\right)$ be the conjunction of the following formulas:
(a) $\square\left(p \wedge \diamond_{0}\left(p \wedge d_{02}\right) \rightarrow d_{02}\right) \quad$ (" p^{-1} is a function")
(b) $\square\left(p \leftrightarrow \diamond_{2} p\right) \quad$ (" p is binary")
(c) $\square \diamond_{1} p \quad$ ("Dom $\left.p=\top "\right)$
(d) $\neg \diamond_{1}\left(\diamond_{0} p \wedge d_{01}\right) \quad(" R n g p \neq \top ")$
(1) $\square\left(\diamond_{0} d_{01} \wedge \diamond_{2} d_{02}\right)$
(2) $\square\left[\left(\diamond_{0} d_{12} \leftrightarrow d_{12}\right) \wedge\left(\diamond_{1} d_{02} \leftrightarrow d_{02}\right) \wedge\left(\diamond_{2} d_{01} \leftrightarrow d_{01}\right)\right]$
(3) $\square\left[\left(d_{01} \wedge d_{02} \rightarrow d_{12}\right) \wedge\left(d_{12} \wedge d_{02} \rightarrow d_{01}\right)\right]$
(4) $\square\left(d_{12} \wedge \diamond_{1}\left(d_{12} \wedge p\right) \rightarrow p\right)$

Lemma 1. Φ is $\mathbf{S 5}^{3}$-satisfiable.
Proof. Let \mathfrak{F} be the universal product frame on $\omega \times \omega \times \omega$. Let

$$
\begin{aligned}
v(p) & =\{(x, x+1, z): x, z \in \omega\} \\
v\left(d_{i j}\right) & =\left\{\left(x_{0}, x_{1}, x_{2}\right): x_{0}, x_{1}, x_{2} \in \omega, x_{i}=x_{j}\right\} \quad(i<j<3) .
\end{aligned}
$$

Then (say) $(\mathfrak{F}, v),(0,0,0) \models \Phi$.
Lemma 2. Φ is not satisfiable in finite frames for $[\mathbf{S 5}, \mathbf{S 5}, \mathbf{S 5}]$.
Proof. Assume $\mathfrak{F}=\left(W, R_{0}, R_{1}, R_{2}\right)$ is a frame for [$\mathbf{S 5}, \mathbf{S 5}, \mathbf{S 5}$], that is, the $R_{i}(i<3)$ are commuting equivalence relations on W. Suppose \mathfrak{M} is a model on \mathfrak{F} and $\mathfrak{M}, x \models \Phi$. We show that \mathfrak{F} must be infinite. For each $n \in \omega$ we define a formula φ_{n} and worlds x_{n}, y_{n} of \mathfrak{F} as follows.

$$
\begin{aligned}
\varphi_{0} & =\neg \diamond_{1}\left(\diamond_{0} p \wedge d_{01}\right) \\
\varphi_{n+1} & =\diamond_{1}\left(\diamond_{0}\left(\varphi_{n} \wedge p\right) \wedge d_{01}\right)
\end{aligned}
$$

Let $x_{0}=x$. Assume x_{k} is already defined. By (c) and (1), there are y_{k}, x_{k+1} such that $x_{k} R_{1} y_{k} R_{0} x_{k+1}, y_{k} \models p$ and $x_{k+1} \models d_{01}$.

Claim 2.1. $(\forall n \in \omega) y_{n}=\varphi_{n}$.
Proof. By induction on n.
Claim 2.2. $(\forall n \in \omega)$ if $w \vDash \varphi_{n}$ and $w R_{2} w^{\prime}$ then $w^{\prime} \models \varphi_{n}$ as well.
Proof. By induction on n : Assume $w^{\prime} \not \vDash \varphi_{0}$. Then, by commutativity, there are u, v with:

Then $u \models d_{01}$ by (2), $v \models p$ by (b), thus $w \not \models \varphi_{0}$.
Now assume $w \models \varphi_{n+1}$. Then, by commutativity, there are u, v with:

Then $u=d_{01}$ by (2), $v \models \varphi_{n} \wedge p$ by (b) and the induction hypothesis, thus $w^{\prime} \models \varphi_{n+1}$.
Claim 2.3. $(\forall n \in \omega) \mathfrak{M} \vDash \square\left(d_{02} \wedge \diamond_{0}\left(d_{02} \wedge \varphi_{n}\right) \rightarrow \varphi_{n}\right)$.
Proof. For $n=0$: let w such that $w \models d_{02} \wedge \diamond_{0}\left(d_{02} \wedge \neg \diamond_{1}\left(\diamond_{0} p \wedge d_{01}\right)\right)$, and assume that $w \models \diamond_{1}\left(\diamond_{0} p \wedge d_{01}\right)$ also holds. Then there are u, v and, by commutativity, w^{\prime} such that:

Then $u=d_{02}$ and $w^{\prime} \models d_{02}$, by (2). Thus $u \models d_{12}$, by (3); and $w^{\prime} \models d_{12}$, by (2). Therefore $w^{\prime} \models d_{01}$, again by (3), contradicting $v \models \neg \diamond_{1}\left(\diamond_{0} p \wedge d_{01}\right)$.

For $n+1$: assume $w \models d_{02} \wedge \diamond_{0}\left[d_{02} \wedge \diamond_{1}\left(\diamond_{0}\left(\varphi_{n} \wedge p\right) \wedge d_{01}\right)\right]$. Then there is some u and, by commutativity, there is a w^{\prime} with:

Then $u \models d_{02}$ and $w^{\prime} \models d_{02}$, by (2). Therefore $u \models d_{12}$, by (3). Thus $w^{\prime} \models d_{12}$, by (2); and $w^{\prime} \models d_{01}$, again by (3). Thus $w^{\prime} \models \diamond_{0}\left(\varphi_{0} \wedge p\right) \wedge d_{01}$, implying $w \models \diamond_{1}\left(\diamond_{0}\left(\varphi_{n} \wedge p\right) \wedge d_{01}\right)$.

Claim 2.4. $(\forall k, n \in \omega, k<n)(\forall w) w \not \models \varphi_{k} \wedge \varphi_{n}$.
Proof. Induction on k. For $n>0, k=0$: if $w \models \varphi_{n}$ then $w R_{1}$-sees a d_{01}-world which R_{0}-sees a p-world; if $w=\varphi_{0}$ then w does not R_{1}-see a d_{01}-world which R_{0}-sees a p-world.

Assume $w \models \varphi_{k+1} \wedge \varphi_{n+1}$. Then there is w^{\prime} with $w^{\prime} \models d_{01} \wedge \diamond_{0}\left(\varphi_{n} \wedge p\right)$. By (1), there is u with $w^{\prime} R_{2} u$ and $u \models d_{02}$. Thus, by commutativity, there are $v, x, w^{\prime \prime}, y$ such that:

Then $u \vDash d_{01}$, by (2); thus $u \models d_{12}$, by (3); and $v \models d_{12}$, again by (2). Further, $v \models \varphi_{n}$, by Claim 2.2; $y \models \varphi_{n}$, by definition of φ_{n}. On the other hand, $w^{\prime \prime} \models d_{01} \wedge d_{02}$, by (2); thus $w^{\prime \prime} \models d_{12}$, by (3). Therefore, $y \models d_{12}$, by (2). Finally, $y \models p$, by (4). Since $x \models \varphi_{k} \wedge p$, by Claim 2.2 and (b), we obtain that x and y are such that

$$
x R_{0} y, \quad x \models \varphi_{k} \wedge p \text { and } y \models \varphi_{n} \wedge p .
$$

By (1), there is some s with $y R_{2} s$ and $s \models d_{02}$. By commutativity, there is some $w^{\prime \prime \prime}$ with:

By (b) and Claim 2.2, $w^{\prime \prime \prime} \models \varphi_{k} \wedge p$ and $s \models \varphi_{n} \wedge p$. By (a), $w^{\prime \prime \prime} \models d_{02}$ follows. Then, by Claim 2.3, $w^{\prime \prime \prime} \models \varphi_{n}$. Thus $w^{\prime \prime \prime} \models \varphi_{k} \wedge \varphi_{n}$, contradicting the induction hypothesis.

Now Lemma 2 clearly follows from Claims 2.1 and 2.4.
Finally, Theorem 1 follows from Lemmas 1 and 2.

References

[1] I. Németi, Neither $C A_{\alpha}$ nor $G s_{\alpha}$ is generated by its finite members if $\alpha \geq 3$, Preprint, Math. Inst. Hung. Acad. Sci., 1984.

